WorldWideScience

Sample records for arming yeast expressing

  1. Shuffling Yeast Gene Expression Data

    CERN Document Server

    Bilke, S

    2000-01-01

    A new method to sort gene expression patterns into functional groups is presented. The method is based on a sorting algorithm using a non-local similarity score, which takes all other patterns in the dataset into account. The method is therefore very robust with respect to noise. Using the expression data for yeast, we extract information about functional groups. Without prior knowledge of parameters the cell cycle regulated genes in yeast can be identified. Furthermore a second, independent cell clock is identified. The capability of the algorithm to extract information about signal flow in the regulatory network underlying the expression patterns is demonstrated.

  2. Effect of flocculation on performance of arming yeast in direct ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Khaw Teik Seong; Katakura, Yoshio; Ninomiya, Kazuaki; Shioya, Suteaki [Osaka Univ. (Japan). Dept. of Biotechnology; Bito, Yohei; Katahira, Satoshi; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences

    2006-11-15

    In the direct ethanol fermentation of raw starch by arming yeast with {alpha}-amylase and glucoamylase, it is preferable to use a flocculent yeast because it can be recovered without centrifugation. Three types of arming yeast system, I (nonflocculent), II (mildly flocculent), and III (heavily flocculent), were constructed and their fermentation performances were compared. With an increase in the degree of flocculation, specific ethanol production rate for soluble starch decreased (0.19, 0.17, and 0.12 g g-dry-cell{sup -1} h{sup -1} for systems I, II, and III, respectively), but that for raw starch did not decrease as much as expected (0.06, 0.06, and 0.04 g g-dry-cell{sup -1} h{sup -1} for systems I, II and III, respectively). Microscopic observation revealed that many starch granules were captured in the yeast flocs in system III during the direct ethanol fermentation of raw starch. It was suggested that the capture of starch granules increases apparent substrate concentration for amylolytic enzymes in arming yeast cell flocs; thus, the specific ethanol production rate of system III was kept at a level comparable to those of the other systems. (orig.)

  3. Efficient expression of the yeast metallothionein gene in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Berka, T.; Shatzman, A.; Zimmerman, J.; Strickler, J.; Rosenberg, M.

    1988-01-01

    The yeast metallothionein gene CUP1 was cloned into a bacterial expression system to achieve efficient, controlled expression of the stable, unprocessed protein product. The Escherichia coli-synthesized yeast metallothionein bound copper, cadmium, zinc, indicating that the protein was functional. Furthermore, E. coli cells expressing CUP1 acquired a new, inducible ability to selectively sequester heavy metal ions from the growth medium.

  4. Visual Display of 5p-arm and 3p-arm miRNA Expression with a Mobile Application

    Directory of Open Access Journals (Sweden)

    Chao-Yu Pan

    2017-01-01

    Full Text Available MicroRNAs (miRNAs play important roles in human cancers. In previous studies, we have demonstrated that both 5p-arm and 3p-arm of mature miRNAs could be expressed from the same precursor and we further interrogated the 5p-arm and 3p-arm miRNA expression with a comprehensive arm feature annotation list. To assist biologists to visualize the differential 5p-arm and 3p-arm miRNA expression patterns, we utilized a user-friendly mobile App to display. The Cancer Genome Atlas (TCGA miRNA-Seq expression information. We have collected over 4,500 miRNA-Seq datasets from 15 TCGA cancer types and further processed them with the 5p-arm and 3p-arm annotation analysis pipeline. In order to be displayed with the RNA-Seq Viewer App, annotated 5p-arm and 3p-arm miRNA expression information and miRNA gene loci information were converted into SQLite tables. In this distinct application, for any given miRNA gene, 5p-arm miRNA is illustrated on the top of chromosome ideogram and 3p-arm miRNA is illustrated on the bottom of chromosome ideogram. Users can then easily interrogate the differentially 5p-arm/3p-arm expressed miRNAs with their mobile devices. This study demonstrates the feasibility and utility of RNA-Seq Viewer App in addition to mRNA-Seq data visualization.

  5. PolI-driven integrative expression vectors for yeast.

    Science.gov (United States)

    Blancafort, P; Ferbeyre, G; Sariol, C; Cedergren, R

    1997-07-23

    A novel expression vector for yeast has been constructed from the regulatory elements present in the polI promoter and the enhancer/termination region (E/T) of rDNA. Under some conditions, this promoter/vector combination produces small RNAs such as the hammerhead RNA sequence at levels comparable to polII- and polIII-dependent systems. No stable transcription product can be demonstrated with this vector when the enhancer/termination sequence is less than 100 nucleotides downstream from the promoter. On the other hand, high expression of a stable, hammerhead RNA molecule can be obtained from this vector by inserting a 400-bp fragment containing the ADH1 transcription termination region upstream of the E/T. RNAs produced by this vector are polyadenylated and multiple copies of this plasmid can be stably integrated into the yeast chromosome.

  6. Functional analysis of expressed peptides that bind yeast STE proteins.

    Science.gov (United States)

    Caponigro, Giordano; Abedi, Majid; Kamb, Alexander

    2003-08-15

    Peptides are potentially useful for target validation and other reverse genetic applications. For instance, if a specific protein is susceptible to peptide inhibition, it may have a higher probability of being vulnerable to small molecules. We used the yeast two-hybrid technique to identify and study peptide binders for three yeast proteins involved in pheromone response: Ste11p, Ste18p, and Ste50p. A subset of peptide binders was shown to inhibit pheromone response in cells using two different functional assays. In addition, we utilized a variant of the yeast two-hybrid method to examine relative binding affinities based on competitive interactions in yeast. Our results suggest that binding affinity and inhibitory potency of peptides do not correlate perfectly and that peptide-protein interactions can be complex and unpredictable. Taken together these results suggest that while peptides are useful as in vivo inhibitors of protein function, caution must be exercised when choosing peptides for further studies and when inferring affinities from expression phenotypes.

  7. Heterologous expression of glucose oxidase in the yeast Kluyveromyces marxianus

    Directory of Open Access Journals (Sweden)

    Gombert Andreas K

    2010-01-01

    Full Text Available Abstract Background In spite of its advantageous physiological properties for bioprocess applications, the use of the yeast Kluyveromyces marxianus as a host for heterologous protein production has been very limited, in constrast to its close relative Kluyveromyces lactis. In the present work, the model protein glucose oxidase (GOX from Aspergillus niger was cloned into K. marxianus CBS 6556 and into K. lactis CBS 2359 using three different expression systems. We aimed at verifying how each expression system would affect protein expression, secretion/localization, post-translational modification, and biochemical properties. Results The highest GOX expression levels (1552 units of secreted protein per gram dry cell weight were achieved using an episomal system, in which the INU1 promoter and terminator were used to drive heterologous gene expression, together with the INU1 prepro sequence, which was employed to drive secretion of the enzyme. In all cases, GOX was mainly secreted, remaining either in the periplasmic space or in the culture supernatant. Whereas the use of genetic elements from Saccharomyces cerevisiae to drive heterologous protein expression led to higher expression levels in K. lactis than in K. marxianus, the use of INU1 genetic elements clearly led to the opposite result. The biochemical characterization of GOX confirmed the correct expression of the protein and showed that K. marxianus has a tendency to hyperglycosylate the protein, in a similar way as already observed for other yeasts, although this tendency seems to be smaller than the one of e.g. K. lactis and S. cerevisiae. Hyperglycosylation of GOX does not seem to affect its affinity for the substrate, nor its activity. Conclusions Taken together, our results indicate that K. marxianus is indeed a good host for the expression of heterologous proteins, not only for its physiological properties, but also because it correctly secretes and folds these proteins.

  8. A hammerhead ribozyme inhibits ADE1 gene expression in yeast.

    Science.gov (United States)

    Ferbeyre, G; Bratty, J; Chen, H; Cedergren, R

    1995-03-21

    To study factors that affect in vivo ribozyme (Rz) activity, a model system has been devised in Saccharomyces cerevisiae based on the inhibition of ADE1 gene expression. This gene was chosen because Rz action can be evaluated visually by the Red phenotype produced when the activity of the gene product is inhibited. Different plasmid constructs allowed the expression of the Rz either in cis or in trans with respect to ADE1. Rz-related inhibition of ADE1 expression was correlated with a Red phenotype and a diminution of ADE1 mRNA levels only when the Rz gene was linked 5' to ADE1. The presence of the expected 3' cleavage fragment was demonstrated using a technique combining RNA ligation and PCR. This yeast system and detection technique are suited to the investigation of general factors affecting Rz-catalyzed inhibition of gene expression under in vivo conditions.

  9. Optogenetic switches for light-controlled gene expression in yeast.

    Science.gov (United States)

    Salinas, Francisco; Rojas, Vicente; Delgado, Verónica; Agosin, Eduardo; Larrondo, Luis F

    2017-04-01

    Light is increasingly recognized as an efficient means of controlling diverse biological processes with high spatiotemporal resolution. Optogenetic switches are molecular devices for regulating light-controlled gene expression, protein localization, signal transduction and protein-protein interactions. Such molecular components have been mainly developed through the use of photoreceptors, which upon light stimulation undergo conformational changes passing to an active state. The current repertoires of optogenetic switches include red, blue and UV-B light photoreceptors and have been implemented in a broad spectrum of biological platforms. In this review, we revisit different optogenetic switches that have been used in diverse biological platforms, with emphasis on those used for light-controlled gene expression in the budding yeast Saccharomyces cerevisiae. The implementation of these switches overcomes the use of traditional chemical inducers, allowing precise control of gene expression at lower costs, without leaving chemical traces, and positively impacting the production of high-value metabolites and heterologous proteins. Additionally, we highlight the potential of utilizing this technology beyond laboratory strains, by optimizing it for use in yeasts tamed for industrial processes. Finally, we discuss how fungal photoreceptors could serve as a source of biological parts for the development of novel optogenetic switches with improved characteristics. Although optogenetic tools have had a strong impact on basic research, their use in applied sciences is still undervalued. Therefore, the invitation for the future is to utilize this technology in biotechnological and industrial settings.

  10. Super-paramagnetic clustering of yeast gene expression profiles

    CERN Document Server

    Getz, G; Domany, E; Zhang, M Q

    2000-01-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, Super-Paramagnetic Clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  11. Super-paramagnetic clustering of yeast gene expression profiles

    Science.gov (United States)

    Getz, G.; Levine, E.; Domany, E.; Zhang, M. Q.

    2000-04-01

    High-density DNA arrays, used to monitor gene expression at a genomic scale, have produced vast amounts of information which require the development of efficient computational methods to analyze them. The important first step is to extract the fundamental patterns of gene expression inherent in the data. This paper describes the application of a novel clustering algorithm, super-paramagnetic clustering (SPC) to analysis of gene expression profiles that were generated recently during a study of the yeast cell cycle. SPC was used to organize genes into biologically relevant clusters that are suggestive for their co-regulation. Some of the advantages of SPC are its robustness against noise and initialization, a clear signature of cluster formation and splitting, and an unsupervised self-organized determination of the number of clusters at each resolution. Our analysis revealed interesting correlated behavior of several groups of genes which has not been previously identified.

  12. Regulation of wee1(+) expression during meiosis in fission yeast.

    Science.gov (United States)

    Murakami-Tonami, Yuko; Ohtsuka, Hokuto; Aiba, Hirofumi; Murakami, Hiroshi

    2014-01-01

    In eukaryotes, the cyclin-dependent kinase Cdk1p (Cdc2p) plays a central role in entry into and progression through nuclear division during mitosis and meiosis. Cdk1p is activated during meiotic nuclear divisions by dephosphorylation of its tyrosine-15 residue. The phosphorylation status of this residue is largely determined by the Wee1p kinase and the Cdc25p phosphatase. In fission yeast, the forkhead-type transcription factor Mei4p is essential for entry into the first meiotic nuclear division. We recently identified cdc25(+) as an essential target of Mei4p in the control of entry into meiosis I. Here, we show that wee1(+) is another important target of Mei4p in the control of entry into meiosis I. Mei4p bound to the upstream region of wee1(+) in vivo and in vitro and inhibited expression of wee1(+), whereas Mei4p positively regulated expression of the adjacent pseudogene. Overexpression of Mei4p inhibited expression of wee1(+) and induced that of the pseudogene. Conversely, deletion of Mei4p did not decrease expression of wee1(+) but inhibited that of the pseudogene. In addition, deletion of Mei4p-binding regions delayed repression of wee1(+) expression as well as induction of expression of the pseudogene. These results suggest that repression of wee1(+) expression is primarily owing to Mei4p-mediated transcriptional interference.

  13. Isolated yeast promoter sequence and a method of regulated heterologous expression

    Science.gov (United States)

    Gao, Johnway; Skeen, Rodney S.; Hooker, Brian S.; Anderson, Daniel B.

    2005-05-31

    The present invention provides the promoter clone discovery of a glucoamylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated glucoamylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  14. Inositol and Phosphatidylinositol Mediated Glucose Derepression, Gene Expression and Invertase Secretion in Yeasts

    Institute of Scientific and Technical Information of China (English)

    Zhen-Ming CHI; Jun-Feng LI; Xiang-Hong WANG; Shu-Min YAO

    2004-01-01

    Glucose repression occurs in many yeast species and some filamentous fungi, and it represses the expression and secretion of many intracellular and extracellular proteins. In recent years, it has been found that many biochemical reactions in yeast cells are mediated by phosphatidylinositol (PI)-type signaling pathway. However, little is known about the relationships between PI-type signaling and glucose repression,gene expression and invertase secretion in yeasts. Many evidences in our previous studies showed that glucose repression, invertase secretion, gene expression and cell growth were mediated by inositol and PI in Saccharomyces and Schizosaccharomyces. The elucidation of the new regulatory mechanisms of protein secretion, gene expression and glucose repression would be an entirely new aspect of inositol and PI-type signaling regulation in yeasts.

  15. Yeast expression proteomics by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Walther, Tobias C; Olsen, Jesper Velgaard; Mann, Matthias

    2010-01-01

    -translational controls contribute majorly to regulation of protein abundance, for example in heat shock stress response. The development of new sample preparation methods, high-resolution mass spectrometry and novel bioinfomatic tools close this gap and allow the global quantitation of the yeast proteome under different...... conditions. Here, we provide background information on proteomics by mass-spectrometry and describe the practice of a comprehensive yeast proteome analysis....

  16. Expression of recombinant staphylokinase in the methylotrophic yeast Hansenula polymorpha

    Directory of Open Access Journals (Sweden)

    Moussa Manal

    2012-12-01

    Full Text Available Abstract Background Currently, the two most commonly used fibrinolytic agents in thrombolytic therapy are recombinant tissue plasminogen activator (rt-PA and streptokinase (SK. Whereas SK has the advantage of substantially lower costs when compared to other agents, it is less effective than either rt-PA or related variants, has significant allergenic potential, lacks fibrin selectivity and causes transient hypotensive effects in high dosing schedules. Therefore, development of an alternative fibrinolytic agent having superior efficacy to SK, approaching that of rt-PA, together with a similar or enhanced safety profile and advantageous cost-benefit ratio, would be of substantial importance. Pre-clinical data suggest that the novel fibrinolytic recombinant staphylokinase (rSAK, or related rSAK variants, could be candidates for such development. However, since an efficient expression system for rSAK is still lacking, it has not yet been fully developed or evaluated for clinical purposes. This study’s goal was development of an efficient fermentation process for the production of a modified, non-glycosylated, biologically active rSAK, namely rSAK-2, using the well-established single cell yeast Hansenula polymorpha expression system. Results The development of an efficient large scale (80 L Hansenula polymorpha fermentation process of short duration for rSAK-2 production is described. It evolved from an initial 1mL HTP methodology by successive scale-up over almost 5 orders of magnitude and improvement steps, including the optimization of critical process parameters (e.g. temperature, pH, feeding strategy, medium composition, etc.. Potential glycosylation of rSAK-2 was successfully suppressed through amino acid substitution within its only N-acetyl glycosylation motif. Expression at high yields (≥ 1g rSAK-2/L cell culture broth of biologically active rSAK-2 of expected molecular weight was achieved. Conclusion The optimized production process

  17. Nitrogen starvation induces expression of Lg-FLO1 and flocculation in bottom-fermenting yeast.

    Science.gov (United States)

    Ogata, Tomoo

    2012-11-01

    When exponentially growing cells of bottom-fermenting yeast were starved for nitrogen or were grown on proline (a non-preferred nitrogen source), flocculation was induced. This flocculation was not induced by starvation for either carbon or amino acids. Expression of Lg-FLO1, which is required for flocculation of bottom-fermenting yeast, was also found to be induced by starvation for nitrogen. This suggests that the flocculation of bottom-fermenting yeast is under the control of a nitrogen catabolite repression (NCR)-like mechanism.

  18. Yeast expressing hepatitis B virus surface antigen determinants on its surface: Implications for a possible oral vaccine

    NARCIS (Netherlands)

    Schreuder, M.P.; Deen, C.; Boersma, W.J.A.; Pouwels, P.H.; Klis, F.M.

    1996-01-01

    The two major hydrophilic regions of the hepatitis B virus surface antigen (HBsAg) have been expressed in the outer mannoprotein layer of the cell wall of 'Bakers Yeast', Saccharomyces cerevisiae, by fusing them between the yeast invertase signal sequence and the yeast α-agglutinin carboxyterminal c

  19. Functional expression of parasite drug targets and their human orthologs in yeast.

    Directory of Open Access Journals (Sweden)

    Elizabeth Bilsland

    2011-10-01

    Full Text Available BACKGROUND: The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents. METHODOLOGY/PRINCIPAL FINDINGS: Using pyrimethamine/dihydrofolate reductase (DHFR as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p expressing yeast ((ScDFR1, human ((HsDHFR, Schistosoma ((SmDHFR, and Trypanosoma ((TbDHFR and (TcDHFR DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium ((PfDHFR and (PvDHFR DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR ((Pfdhfr(51I,59R,108N are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs and N-myristoyl transferases (NMTs. CONCLUSIONS/SIGNIFICANCE: We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.

  20. Analysis of heterogeneity of gene products(interferon)expressed in yeast

    Institute of Scientific and Technical Information of China (English)

    王洪海; 高卜渝; 陈佩丽; 董灵; 李育阳

    1995-01-01

    FPLC,SDS-PAGE and Western blot techniques are used to analyse the heterogeneity ofinterferon αA(IFN-αA) expressed in yeast.The heterogeneity consists of (i) the presence of IFN polymer,(ii)partial processing of signal leader peptide and (iii) internal degradation.The reasons for heterogeneity ofgene products in expression system of yeast are analysed.The methods of avoiding heterogeneity,such asdepolymerization,adding inhibitors of protease to the culture supernatant,the oligonucleotide-directed deletionmutagenesis and improvements of fermentation,are discussed.

  1. Post-translational regulation of expression and conformation of an immunoglobulin domain in yeast surface display.

    Science.gov (United States)

    Parthasarathy, Ranganath; Subramanian, Shyamsundar; Boder, Eric T; Discher, Dennis E

    2006-01-01

    Display of heterologous proteins on the surface of Saccharomyces cerevisiae is increasingly being exploited for directed evolution because of straightforward cell screens. However, yeast post-translationally modifies proteins in ways that must be factored into library engineering and refinement. Here, we express the extracellular immunoglobulin domain of an ubiquitous mammalian membrane protein, CD47, which is implicated in cancer, immunocompatibility, and motility. CD47 has multiple sites of glycosylation and a core disulfide bond. We assess the effects of both of these post-translational modifications on expression and antibody binding. CD47's extracellular domain is fused to the yeast mating protein Aga2p on the cell wall, and the resulting fusion protein binds several key antibodies, including a conformation-sensitive antibody. Site-by-site mutagenesis of CD47's five N-linked glycosylation sites progressively decreases expression levels on yeast, but folding appears stable. Cysteine mutations disrupt the expected core disulfide, and also decrease protein expression levels, though not to the extent seen with complete deglycosylation. However, with the core disulfide mutants, antibody binding proves to be lower than expected from expression levels and glycosylation is clearly reduced compared to wild-type. The results indicate that glycosylation regulates heterologous display on yeast more than core disulfides do and thus suggest bounds on directed evolution by post-translational processing.

  2. Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering.

    Science.gov (United States)

    Crook, Nathan C; Schmitz, Alexander C; Alper, Hal S

    2014-05-16

    Reduction of endogenous gene expression is a fundamental operation of metabolic engineering, yet current methods for gene knockdown (i.e., genome editing) remain laborious and slow, especially in yeast. In contrast, RNA interference allows facile and tunable gene knockdown via a simple plasmid transformation step, enabling metabolic engineers to rapidly prototype knockdown strategies in multiple strains before expending significant cost to undertake genome editing. Although RNAi is naturally present in a myriad of eukaryotes, it has only been recently implemented in Saccharomyces cerevisiae as a heterologous pathway and so has not yet been optimized as a metabolic engineering tool. In this study, we elucidate a set of design principles for the construction of hairpin RNA expression cassettes in yeast and implement RNA interference to quickly identify routes for improvement of itaconic acid production in this organism. The approach developed here enables rapid prototyping of knockdown strategies and thus accelerates and reduces the cost of the design-build-test cycle in yeast.

  3. Expression of a Ripening-Related Avocado (Persea americana) Cytochrome P450 in Yeast.

    Science.gov (United States)

    Bozak, K R; O'keefe, D P; Christoffersen, R E

    1992-12-01

    One of the mRNAs that accumulates during the ripening of avocado (Persea americana Mill. cv Hass) has been previously identified as a cytochrome P450 (P450) monooxygenase and the corresponding gene designated CYP71A1. In this report we demonstrate that during ripening the accumulation of antigenically detected CYP71A1 gene product (CYP71A1) correlates with increases in total P450 and two P450-dependent enzyme activities: para-chloro-N-methylaniline demethylase, and trans-cinnamic acid hydroxylase (tCAH). To determine whether both of these activities are derived from CYP71A1, we have expressed this protein in yeast (Saccharomyces cerevisiae) using a galactose-inducible yeast promoter. Following induction, the microsomal fraction of transformed yeast cells undergoes a large increase in P450 level, attributable almost exclusively to the plant CYP71A1 protein. These membranes exhibit NADPH-dependent para-chloro-N-methylaniline demethylase activity at a rate comparable to that in avocado microsomes but have no detectable tCAH. These results demonstrate both that the CYP71A1 protein is not a tCAH and that a plant P450 is fully functional upon heterologous expression in yeast. These findings also indicate that the heterologous P450 protein can interact with the yeast NADPH:P450 reductase to produce a functional complex.

  4. New examples of membrane protein expression and purification using the yeast based Pdr1-3 expression strategy.

    Science.gov (United States)

    Gupta, Rakeshkumar P; Kueppers, Petra; Schmitt, Lutz

    2014-12-10

    Overexpression and purification of membrane proteins has been a bottleneck for their functional and structural study for a long time. Both homologous and heterologous expression of membrane proteins with suitable tags for purification presents unique challenges for cloning and expression. Saccharomyces cerevisiae is a potential host system with significant closeness to higher eukaryotes and provides opportunity for attempts to express membrane proteins. In the past, bakers yeast containing mutations within the transcriptional regulator Pdr1 has been used to overexpress various membrane proteins including for example the ABC transporters Pdr5 and Yor1, respectively. In this study we exploited this system and tried to express and purify 3 membrane proteins in yeast along with Pdr5 and Yor1 viz. Rsb1, Mdl1 and Drs2 by virtue of an N-terminal 14-histidine affinity tag. Out of these five, we could express all membrane proteins although at different levels. Satisfactory yields were obtained for three examples i.e. Pdr5, Yor1 and Drs2. Rsb1 expression was comparatively low and Mdl1 was rather unsatisfactory. Thus, we demonstrate here the application of this yeast based expression system that is suitable for cloning, expression and purification of a wide variety of membrane proteins.

  5. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression.

    Science.gov (United States)

    Rautio, Jari J; Huuskonen, Anne; Vuokko, Heikki; Vidgren, Virve; Londesborough, John

    2007-09-01

    Brewer's yeast experiences constantly changing environmental conditions during wort fermentation. Cells can rapidly adapt to changing surroundings by transcriptional regulation. Changes in genomic expression can indicate the physiological condition of yeast in the brewing process. We monitored, using the transcript analysis with aid of affinity capture (TRAC) method, the expression of some 70 selected genes relevant to wort fermentation at high frequency through 9-10 day fermentations of very high gravity wort (25 degrees P) by an industrial lager strain. Rapid changes in expression occurred during the first hours of fermentations for several genes, e.g. genes involved in maltose metabolism, glycolysis and ergosterol synthesis were strongly upregulated 2-6 h after pitching. By the time yeast growth had stopped (72 h) and total sugars had dropped by about 50%, most selected genes had passed their highest expression levels and total mRNA was less than half the levels during growth. There was an unexpected upregulation of some genes of oxygen-requiring pathways during the final fermentation stages. For five genes, expression of both the Saccharomyces cerevisiae and S. bayanus components of the hybrid lager strain were determined. Expression profiles were either markedly different (ADH1, ERG3) or very similar (MALx1, ILV5, ATF1) between these two components. By frequent analysis of a chosen set of genes, TRAC provided a detailed and dynamic picture of the physiological state of the fermenting yeast. This approach offers a possible way to monitor and optimize the performance of yeast in a complex process environment.

  6. Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression

    Science.gov (United States)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA

    2003-04-01

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  7. Use of CYP52A2A promoter to increase gene expression in yeast

    Science.gov (United States)

    Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan

    2004-01-06

    A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.

  8. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System.

    Directory of Open Access Journals (Sweden)

    Yoichiro Ito

    Full Text Available Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering.

  9. Human pancreatic triglyceride lipase expressed in yeast cells: purification and characterization.

    Science.gov (United States)

    Yang, Y; Lowe, M E

    1998-06-01

    A cDNA clone encoding human pancreatic triglyceride lipase was cloned into a yeast expression vector so that the yeast PHO1 signal peptide replaced the native signal peptide. Pichia pastoris cells were transfected with the vector, and clones expressing human pancreatic triglyceride lipase were isolated. Recombinant human pancreatic lipase was expressed in broth cultures and was purified from the medium by DEAE blue Sepharose and hydroxyapatite chromatography. The highly purified lipase had specific activities for various triglyceride substrates identical to those of tissue-purified human pancreatic triglyceride lipase; it was inhibited by bile salts, required colipase for activity, and demonstrated interfacial activation. This expression system is suitable for the rapid, efficient production of human pancreatic triglyceride lipase in amounts adequate for biophysical studies.

  10. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Lauren E Hudson

    Full Text Available Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  11. Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation.

    Science.gov (United States)

    Smart, Katherine A

    2007-11-01

    The genome structure, ancestry and instability of the brewing yeast strains have received considerable attention. The hybrid nature of brewing lager yeast strains provides adaptive potential but yields genome instability which can adversely affect fermentation performance. The requirement to differentiate between production strains and assess master cultures for genomic instability has led to significant adoption of specialized molecular tool kits by the industry. Furthermore, the development of genome-wide transcriptional and protein expression technologies has generated significant interest from brewers. The opportunity presented to explore, and the concurrent requirement to understand both, the constraints and potential of their strains to generate existing and new products during fermentation is discussed.

  12. [Expression of inulinase genes in the yeasts Saccharomyces cerevisiae and Kluyveromyces marxianus].

    Science.gov (United States)

    Sokolenko, G G; Karpechenko, N A

    2015-01-01

    Expression of the genes encoding the enzymes involved in inulin, sucrose, and glucose metabolism in the yeasts Saccharomyces cerevisiae and Kluyveromyces marxianus was studied. The exon-intron structure of the relevant genes was identified and the primers for quantitative PCR were optimized. Expression of the genes was found to depend on the carbon source. Glucose was shown to exhibit a repressive effect on inulinase synthesis by K. marxianus, while in S. cerevisiae glucose and sucrose were inulinase inducer and repressor, respectively.

  13. Expression of the yeast FRE genes in transgenic tobacco.

    Science.gov (United States)

    Samuelsen, A I; Martin, R C; Mok, D W; Mok, M C

    1998-09-01

    Two yeast genes, FRE1 and FRE2 (encoding Fe(III) reductases) were placed under the control of the cauliflower mosaic virus 35S promoter and introduced into tobacco (Nicotiana tabacum L.) via Agrobacterium tumefaciens-mediated transformation. Homozygous lines containing FRE1, FRE2, or FRE1 plus FRE2 were generated. Northern-blot analyses revealed mRNA of two different sizes in FRE1 lines, whereas all FRE2 lines had mRNA only of the expected length. Fe(III) reduction, chlorophyll contents, and Fe levels were determined in transgenic and control plants under Fe-sufficient and Fe-deficient conditions. In a normal growth environment, the highest root Fe(III) reduction, 4-fold higher than in controls, occurred in the double transformant (FRE1 + FRE2). Elevated Fe(III) reduction was also observed in all FRE2 and some FRE1 lines. The increased Fe(III) reduction occurred along the entire length of the roots and on shoot sections. FRE2 and double transformants were more tolerant to Fe deficiency in hydroponic culture, as shown by higher chlorophyll and Fe concentrations in younger leaves, whereas FRE1 transformants did not differ from the controls. Overall, the beneficial effects of FRE2 were consistent, suggesting that FRE2 may be used to improve Fe efficiency in crop plants.

  14. Palytoxin induces K+ efflux from yeast cells expressing the mammalian sodium pump.

    Science.gov (United States)

    Scheiner-Bobis, G; Meyer zu Heringdorf, D; Christ, M; Habermann, E

    1994-06-01

    Palytoxin causes potassium efflux and sodium influx in all investigated animals cells. Much evidence points to the sodium pump (Na+/K(+)-ATPase) as the target of the toxin. A heterologous expression system for mammalian Na+/K(+)-ATPase in the brewers yeast Saccharomyces cerevisiae has been used to test this hypothesis. Yeast cells do not contain endogenous sodium pumps but can be transformed with vectors coding for the alpha and beta subunits of the mammalian sodium pump. We now show that transformed yeast cells expressing both alpha and beta subunits of Na+/K(+)-ATPase are highly sensitive to the toxin, as measured by the loss of intracellular potassium. Palytoxin-induced potassium efflux is completely inhibited by 500 microM ouabain. In contrast, nontransformed yeast cells or cells expressing either the alpha or beta subunits are insensitive to palytoxin. Thus, the alpha/beta heterodimer of the sodium pump is required for the release of potassium induced by palytoxin. The results suggest that palytoxin converts the sodium pump into an open channel, allowing the passage of alkali ions.

  15. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    Science.gov (United States)

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants.

  16. Analysis of the structure and function of EMRE in a yeast expression system.

    Science.gov (United States)

    Yamamoto, Takenori; Yamagoshi, Ryohei; Harada, Kazuki; Kawano, Mayu; Minami, Naoki; Ido, Yusuke; Kuwahara, Kana; Fujita, Atsushi; Ozono, Mizune; Watanabe, Akira; Yamada, Akiko; Terada, Hiroshi; Shinohara, Yasuo

    2016-06-01

    The mitochondrial calcium uniporter (MCU) complex is a highly-selective calcium channel, and this complex is believed to consist of a pore-forming subunit, MCU, and its regulatory subunits. As yeast cells lack orthologues of the mammalian proteins, the yeast expression system for the mammalian calcium uniporter subunits is useful for investigating their functions. We here established a yeast expression system for the native-form mouse MCU and 4 other subunits. This expression system enabled us to precisely reconstitute the properties of the mammalian MCU complex in yeast mitochondria. Using this expression system, we analyzed the essential MCU regulator (EMRE), which is a key subunit for Ca(2+) uptake but whose functions and structure remain unclear. The topology of EMRE was revealed: its N- and C-termini projected into the matrix and the inter membrane space, respectively. The expression of EMRE alone was insufficient for Ca(2+) uptake; and co-expression of MCU with EMRE was necessary. EMRE was independent of the protein levels of other subunits, indicating that EMRE was not a protein-stabilizing factor. Deletion of acidic amino acids conserved in EMRE did not significantly affect Ca(2+) uptake; thus, EMRE did not have basic properties of ion channels such as ion-selectivity filtration and ion concentration. Meanwhile, EMRE closely interacted with the MCU on both sides of the inner membrane, and this interaction was essential for Ca(2+) uptake. This close interaction suggested that EMRE might be a structural factor for opening of the MCU-forming pore.

  17. Hordeum vulgare cysteine protease heterologous expressed in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    During germination of barley seeds, the mobilization of protein is essential and Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins [1]. Cysteine proteases exist as pro-enzyme until activated through reduction...... of the active site cysteines and via removal of the pro-domain. The complement of cysteine proteases is comprehensive and for detailed studies of the individual components of this complement, a fast and efficient eukaryotic expression platform is highly desirable. One of the key cysteine proteases in Barley...... days and the expression in the C-terminal mutant was slightly higher than for the full length protease....

  18. Production of novel antioxidative phenolic amides through heterologous expression of the plant’s chlorogenic acid biosynthesis genes in yeast

    NARCIS (Netherlands)

    Moglia, A.; Comino, C.; Lanteri, S.; Vos, de C.H.; Waard, de P.; Beek, van T.A.; Goitre, L.; Retta, S.F.; Beekwilder, M.J.

    2010-01-01

    Phenolic esters like chlorogenic acid play an important role in therapeutic properties of many plant extracts. We aimed to produce phenolic esters in baker’s yeast, by expressing tobacco 4CL and globe artichoke HCT. Indeed yeast produced phenolic esters. However, the primary product was identified a

  19. Minimization of biosynthetic costs in adaptive gene expression responses of yeast to environmental changes.

    Directory of Open Access Journals (Sweden)

    Ester Vilaprinyo

    2010-02-01

    Full Text Available Yeast successfully adapts to an environmental stress by altering physiology and fine-tuning metabolism. This fine-tuning is achieved through regulation of both gene expression and protein activity, and it is shaped by various physiological requirements. Such requirements impose a sustained evolutionary pressure that ultimately selects a specific gene expression profile, generating a suitable adaptive response to each environmental change. Although some of the requirements are stress specific, it is likely that others are common to various situations. We hypothesize that an evolutionary pressure for minimizing biosynthetic costs might have left signatures in the physicochemical properties of proteins whose gene expression is fine-tuned during adaptive responses. To test this hypothesis we analyze existing yeast transcriptomic data for such responses and investigate how several properties of proteins correlate to changes in gene expression. Our results reveal signatures that are consistent with a selective pressure for economy in protein synthesis during adaptive response of yeast to various types of stress. These signatures differentiate two groups of adaptive responses with respect to how cells manage expenditure in protein biosynthesis. In one group, significant trends towards downregulation of large proteins and upregulation of small ones are observed. In the other group we find no such trends. These results are consistent with resource limitation being important in the evolution of the first group of stress responses.

  20. Positive and negative regulation of basal expression of a yeast HSP70 gene.

    OpenAIRE

    Park, H O; Craig, E A

    1989-01-01

    The SSA1 gene, one of the heat-inducible HSP70 genes in the yeast Saccharomyces cerevisiae, also displays a basal level of expression during logarithmic growth. Multiple sites related to the heat shock element (HSE) consensus sequence are present in the SSA1 promoter region (Slater and Craig, Mol. Cell. Biol. 7:1906-1916, 1987). One of the HSEs, HSE2, is important in the basal expression of SSA1 as well as in heat-inducible expression. A promoter containing a mutant HSE2 showed a fivefold-low...

  1. Analysis of gene expression profiles of Lactobacillus paracasei induced by direct contact with Saccharomyces cerevisiae through recognition of yeast mannan

    Science.gov (United States)

    YAMASAKI-YASHIKI, Shino; SAWADA, Hiroshi; KINO-OKA, Masahiro; KATAKURA, Yoshio

    2016-01-01

    Co-culture of lactic acid bacteria (LAB) and yeast induces specific responses that are not observed in pure culture. Gene expression profiles of Lactobacillus paracasei ATCC 334 co-cultured with Saccharomyces cerevisiae IFO 0216 were analyzed by DNA microarray, and the responses induced by direct contact with the yeast cells were investigated. Coating the LAB cells with recombinant DnaK, which acts as an adhesive protein between LAB and yeast cells, enhanced the ratio of adhesion of the LAB cells to the yeast cells. The signals induced by direct contact were clarified by removal of the LAB cells unbound to the yeast cells. The genes induced by direct contact with heat-inactivated yeast cells were very similar to both those induced by the intact yeast cells and those induced by a soluble mannan. The top 20 genes upregulated by direct contact with the heat-inactivated yeast cells mainly encoded proteins related to exopolysaccharide synthesis, modification of surface proteins, and transport systems. In the case of the most upregulated gene, LSEI_0669, encoding a protein that has a region homologous to polyprenyl glycosylphosphotransferase, the expression level was upregulated 7.6-, 11.0-, and 8.8-fold by the heat-inactivated yeast cells, the intact yeast cells, and the soluble mannan, respectively, whereas it was only upregulated 1.8-fold when the non-adherent LAB cells were not removed before RNA extraction. Our results indicated that the LAB responded to direct contact with the yeast cells through recognition of mannan on the surface of the yeast.

  2. Gene expression dynamics in the oxidative stress response of fission yeast

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil

    , is known to damage cellular components. In humans, redox imbalance is associated withaging, cancer, atherosclerosis, Alzheimer’s and Parkinson’s disease among others. Therefore, studies investigating the cellular mechanisms employed in response to oxidative stress have markedly increased in recent years...... uncovered the transcriptional program of fission yeast cells in response to oxidative stimuli. Thus, a solid basis of stress response data is available for this yeast and constitutes a valuable framework for further studies on gene expression in stress. Post-transcriptional control of gene expression is...... variables with high precision for hundreds of segregants in a high-throughput setting. The extent of the dosage dependent, negative-effects on growth of segregant strains was observed to be non-trivially related to the stress phenotypes of the parental strains. Accordingly, segregants could be grouped...

  3. Evidence for widespread adaptive evolution of gene expression in budding yeast.

    Science.gov (United States)

    Fraser, Hunter B; Moses, Alan M; Schadt, Eric E

    2010-02-16

    Changes in gene expression have been proposed to underlie many, or even most, adaptive differences between species. Despite the increasing acceptance of this view, only a handful of cases of adaptive gene expression evolution have been demonstrated. To address this discrepancy, we introduce a simple test for lineage-specific selection on gene expression. Applying the test to genome-wide gene expression data from the budding yeast Saccharomyces cerevisiae, we find that hundreds of gene expression levels have been subject to lineage-specific selection. Comparing these findings with independent population genetic evidence of selective sweeps suggests that this lineage-specific selection has resulted in recent sweeps at over a hundred genes, most of which led to increased transcript levels. Examination of the implicated genes revealed a specific biochemical pathway--ergosterol biosynthesis--where the expression of multiple genes has been subject to selection for reduced levels. In sum, these results suggest that adaptive evolution of gene expression is common in yeast, that regulatory adaptation can occur at the level of entire pathways, and that similar genome-wide scans may be possible in other species, including humans.

  4. A newly isolated yeast as an expression host for recombinant lipase.

    Science.gov (United States)

    Oslan, Siti Nurbaya; Salleh, Abu Bakar; Raja Abd Rahman, Raja Noor Zaliha; Leow, Thean Chor; Sukamat, Hafizah; Basri, Mahiran

    2015-06-01

    Pichia guilliermondii strain SO isolated from spoiled orange was developed for use as an alternative expression host by using Pichia pastoris as the model of the experiment. This is the first study to report on the capability of P. guilliermondii SO as a host to express thermostable T1 lipase from Geobacillus zalihae. Alcohol oxidase and formaldehyde dehydrogenase promoters were present in the yeast genome. Interestingly, the recombinant yeast [SO/pPICZαB/T1-2 (SO2)] took only 30 h to reach optimal production with minimal methanol induction [1.5% (v/v)] in YPTM medium, as compared to P. pastoris, which took longer to reach its optimal condition. The purification yield of the His-tagged fusion lipase was 68.58%, with specific activity of 194.58 U/mg. The optimum temperature was 65°C at pH 9 in glycine-NaOH buffer, and it was stable up to 70°C in a wide pH range from pH 5 to 12. In conclusion, a newly isolated yeast from spoiled orange has been proven suitable for use as an expression host.

  5. A STUDY ON EXPRESSION OF ARmRNA IN HUMEN BPH TISSUE WITH IN SITU RT-PCR

    Institute of Scientific and Technical Information of China (English)

    邱曙东; 霍涌玮; 张秋养; 葛玲

    2002-01-01

    Objecive To check and compare the expression le vels of human androgen receptor (AR) mRNA in both normal adult prostate (NAP) an d benign prostate hyperplasia (BPH) tissues, and to try to find if BPH results f rom the abnormal transcription of ARmRNA in prostate. Methods Expression of the human ARmRNA in 14 paraffin-embedded prosta te tissues (4 cases of NAP and 10 cases of BPH) was studied with the direct in situ reverse transcription-polymerase chain reaction (RT-PC R). Quantitative analysis of the ARmRNA products was performed using the image a nalysis system. Results ①Specific ARmRNA was detected in bo th NAP and BPH speci mens and in both epithelia and interstitial cells. The positive products were re latively densely localized in the cytoplasm of perinuclear zone. ② The intensit y of ARmRNA signals in epithelial cells was significantly stronger than that in interstitial cells (P<0.001). However, there was no statistically significa nt difference in ARmRNA level between NAP and BPH; ③ The heterogeneity of ARmRN A signal and the androgen-independent cells were observed in prostatic epitheli a. Stronger positive signals of ARmRNA were shown in a few basal-cell layer (BC L) cells of BPH tissue, but were not found in that of NAP tissue. Conclusion Results of this study show that there is no signifi cant difference in the ARmRNA expression between NAP and BPH groups in both epit helium and interstitial cells. It may indicate that BPH does not result from the ARmRNA transcription in the prostate.

  6. A STUDY ON EXPRESSION OF ARmRNA IN HUMEN BPH TISSUE WITH IN SITU RT-PCR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objecive:To check and compare the expression levels of human androgen receptor(AR) mRNA in both normal adult prostate(NAP)and benign prostate hyperplasia(BPH) tissues,and to try to find if BPH results from the abnormal transcription of ARmRNA in prostate.Methods:Expression of the human ARmRNA in 14 paraffinembedded prostate tissues(4 cases of NAP and 10 cases of BPH)was studied with the direct in situ reverse transcription-polymerase chain reaction(RT-PCR).Quantitative analysis of the ARmRNA products was performed using the image analysis system.Results:(1)Specific ARmRNA was detected in both NAP and BPH specimens and in both epithelia and interstitial cells,The positive products were relatively densely localized in the cytoplasm of perinuclear zone.(2)The intensity of ARmRNA signals in epithelial cells was significantly stronger than that in interstitial cells(P<0.001).However,there was no statistically significant difference in ARmRNA level between NAP and BPH;(3)The heterogeneity of ARmRNA signal and the androgen-independent cells were observed in prostatic epithelia.Stronger positive signals of ARmRNA were shown in a few basal-cell layer(BCL) cells of BPH tissue,but were not found in that of NAP tissue,Conclusion:Results of this study show that there is no significant difference in the ARmRNA expression between NAP and BPH groups in both epithelium and interstitial cessl,It may indicate that BPH does not result from the ARmRNA transcription in the prostate.

  7. Expression of Leishmania major LmSTI1 in Yeast Pichia Pastoris

    Directory of Open Access Journals (Sweden)

    Mehdi Shokri

    2017-01-01

    Full Text Available Background: Leishmania major LmSTI1 is a conserved protein among different species of leishmania, and expressed in both amastigote and promastigote forms of L. major life cycle. It has previously been expressed in bacterial systems.Materials and Methods: To express LmSTI1 in the methylotrophic yeast         Pichia pastoris (P. pastoris, the shuttle vector pPICZA containing gene lmsti1 was constructed under the control of the AOX1 promoter. The recombinant vector was electro-transformed into P. pastoris, and induced by 0.5% methanol in the buffered medium. The expression of the LmSTI1 protein was visualized in the total soluble protein of P. pastoris by 12% SDS-PAGE, and further confirmed by Western blotting with L.major-infected mouse sera and HRP-conjugated goat anti-mouse IgG as the first and secondary antibodies, respectively.Results: The expression level was 0.2% of total soluble proteins.Conclusion: It might be possible to use this formulation as a whole yeast candidate vaccine against cutaneous leishmanization.

  8. Cloning and expression of phosphoglycerate mutase from the psychrophilic yeast, Glaciozyma antarctica PI12

    Science.gov (United States)

    Jaafar, Nardiah Rizwana; Bakar, Farah Diba Abu; Murad, Abdul Munir Abdul; Mahadi, Nor Muhammad

    2015-09-01

    The conversion of 3-phosphoglycerate to 2-phosphoglycerate during glycolysis and gluconeogenesis is catalyzed by phosphoglycerate mutase (PGM). Better understanding of metabolic reactions performed by this enzyme has been studied extensively in prokaryotes and eukaryotes. Here, we report a phosphoglycerate mutase from the psychrophilic yeast, Glaciozyma antarctica. cDNA encoding for PGM from G. antarctica PI12, a psychrophilic yeast isolated from sea ice at Casey Station, Antarctica was amplified. The gene was then cloned into a cloning vector and sequenced, which verified its identity as the gene putatively encoding for PGM. The recombinant protein was expressed in Escherichia coli BL21 (DE3) as inclusion bodies and this was confirmed by SDS-PAGE and Western blot.

  9. Increased longevity mediated by yeast NDI1 expression in Drosophila intestinal stem and progenitor cells.

    Science.gov (United States)

    Hur, Jae H; Bahadorani, Sepehr; Graniel, Jacqueline; Koehler, Christopher L; Ulgherait, Matthew; Rera, Michael; Jones, D Leanne; Walker, David W

    2013-09-01

    A functional decline in tissue stem cells and mitochondrial dysfunction have each been linked to aging and multiple aging-associated pathologies. However, the interplay between energy homeostasis, stem cells, and organismal aging remains poorly understood. Here, we report that expression of the single-subunit yeast alternative NADH dehydrogenase, ndi1, in Drosophila intestinal stem and progenitor cells delays the onset of multiple markers of intestinal aging and extends lifespan. In addition, expression of ndi1 in the intestine increases feeding behavior and results in organismal weight gain. Consistent with increased nutrient uptake, flies expressing ndi1 in the digestive tract display a systemic reduction in the activity of AMP-activated protein kinase (AMPK), a key cellular energy sensor. Together, these results demonstrate that ndi1 expression in the intestinal epithelium is an effective strategy to delay tissue and organismal aging.

  10. Validation of a rapid yeast estrogen bioassay, based on the expression of green fluorescent protein, for the screening of estrogenic activity in calf urine

    NARCIS (Netherlands)

    Bovee, T.F.H.; Heskamp, H.H.; Hamers, A.R.M.; Hoogenboom, L.A.P.; Nielen, M.W.F.

    2005-01-01

    Previously we described the construction and properties of a rapid yeast bioassay stably expressing human estrogen receptor a (hERa) and yeast enhanced green fluorescent protein (yEGFP) in response to estrogens. In the present study, this yeast estrogen assay was validated as a qualitative screening

  11. [Expression Of DNA-Encoded Antidote to Organophosphorus Toxins in the Methylotrophic Yeast Pichia Pastoris].

    Science.gov (United States)

    Terekhov, S S; Bobik, T V; Mokrushina, Yu A; Stepanova, A V; Aleksandrova, N M; Smirnov, I V; Belogurov, A A; Ponomarenko, N A; Gabibov, A G

    2016-01-01

    A platform for the cloning and expression of active human butyrylcholinesterase (BuChE) in the yeast Pichia pastoris is first presented. Genetic constructs for BuChE gene expression, separately and in conjunction with a proline-rich peptide called proline-rich attachment domain (PRAD), are based on the vector pPICZαA. It is shown that the highest level of production is achieved in the expression of a BuChE gene without PRAD pPICZαA. It is found that one can obtain up to 125 mg of active enzyme from 1 L of culture medium at an optimal pH environment (pH 7.6), an optical seed culture density of 3 o.u., and an optimum methanol addition mode of (0.5% methanol in the first day and 0.2% thereafter from the second day).

  12. Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?

    Science.gov (United States)

    Fossati, Sara Maria; Candiani, Simona; Nödl, Marie-Therese; Maragliano, Luca; Pennuto, Maria; Domingues, Pedro; Benfenati, Fabio; Pestarino, Mario; Zullo, Letizia

    2015-08-01

    Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis.

  13. Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase.

    Science.gov (United States)

    Singh, Shailendra; Lee, Wonkyu; Dasilva, Nancy A; Mulchandani, Ashok; Chen, Wilfred

    2008-02-01

    Phytochelatins (PCs) are naturally occurring peptides with high-binding capabilities for a wide range of heavy metals including arsenic (As). PCs are enzymatically synthesized by phytochelatin synthases and contain a (gamma-Glu-Cys)(n) moiety terminated by a Gly residue that makes them relatively proteolysis resistant. In this study, PCs were introduced by expressing Arabidopsis thaliana Phytochelatin Synthase (AtPCS) in the yeast Saccharomyces cerevisiae for enhanced As accumulation and removal. PCs production in yeast resulted in six times higher As accumulation as compared to the control strain under a wide range of As concentrations. For the high-arsenic concentration, PCs production led to a substantial decrease in levels of PC precursors such as glutathione (GSH) and gamma-glutamyl cysteine (gamma-EC). The levels of As(III) accumulation were found to be similar between AtPCS-expressing wild type strain and AtPCS-expressing acr3Delta strain lacking the arsenic efflux system, suggesting that the arsenic uptake may become limiting. This is further supported by the roughly 1:3 stoichiometric ratio between arsenic and PC2 (n = 2) level (comparing with a theoretical value of 1:2), indicating an excess availability of PCs inside the cells. However, at lower As(III) concentration, PC production became limiting and an additive effect on arsenic accumulation was observed for strain lacking the efflux system. More importantly, even resting cells expressing AtPCS pre-cultured in Zn(2+) enriched media showed PCs production and two times higher arsenic removal than the control strain. These results open up the possibility of using cells expressing AtPCS as an inexpensive sorbent for the removal of toxic arsenic.

  14. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Oshiro, Satoshi; Shima, Jun; Takagi, Hiroshi

    2013-08-01

    During the bread-making process, yeast cells are exposed to many types of baking-associated stress. There is thus a demand within the baking industry for yeast strains with high fermentation abilities under these stress conditions. The POG1 gene, encoding a putative transcription factor involved in cell cycle regulation, is a multicopy suppressor of the yeast Saccharomyces cerevisiae E3 ubiquitin ligase Rsp5 mutant. The pog1 mutant is sensitive to various stresses. Our results suggested that the POG1 gene is involved in stress tolerance in yeast cells. In this study, we showed that overexpression of the POG1 gene in baker's yeast conferred increased fermentation ability in high-sucrose-containing dough, which is used for sweet dough baking. Furthermore, deletion of the POG1 gene drastically increased the fermentation ability in bread dough after freeze-thaw stress, which would be a useful characteristic for frozen dough baking. Thus, the engineering of yeast strains to control the POG1 gene expression level would be a novel method for molecular breeding of baker's yeast.

  15. Expression of the mammalian renal peptide transporter PEPT2 in the yeast Pichia pastoris and applications of the yeast system for functional analysis.

    Science.gov (United States)

    Döring, F; Michel, T; Rösel, A; Nickolaus, M; Daniel, H

    1998-01-01

    It has recently been identified the PEPT2 cDNA encodes the high affinity proton-coupled peptide transporter in rabbit kidney cortex. PEPT2 represents a 729 amino acid protein with 12 putative transmembrane domains that mediates H+/H3O+ dependent electrogenic transmembrane transport of di- and tripeptides and of selected peptidomimetics. Here the functional expression of PEPT2 in the methylotropic yeast Pichia pastoris is described under the control of a methanol inducible promoter. Western blot analysis of Pichia cell membranes prepared from a recombinant clone identified a protein with an apparent molecular mass of about 85-87 kDa. Peptide uptake into cells expressing PEPT2 was up to 80 times higher than in control cells. Cells of recombinant clones showed a saturable peptide transport activity for the hydrolysis resistant dipeptide 3H-D-Phe-Ala with an app. K0.5 of 0.143 +/- 0.016 mM. Inhibition of 3H-D-Phe-Ala uptake by selected di- and tripeptides and beta-lactam antibiotics revealed the same substrate specificity as obtained in renal membrane vesicles or for PEPT2 when expressed in Xenopus laevis oocytes. A novel fluorescence based assay for assessing transport function based on a coumarin-labeled fluorescent peptide analogue has also been developed. Moreover, using a histidyl auxotrophe strain a PEPT2 expressing cell clone in which transport function can be monitored by a simple yeast growth test was established. In conclusion, this is one of only a few reports on successful functional expression of mammalian membrane transport proteins in yeast. The high expression level will provide a simple means for future studies either on the structure-affinity relationship for substrate interaction with PEPT2 or for selection of mutants generated by random mutagenesis.

  16. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan

    2014-06-01

    The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase.

  17. Whole Pichia pastoris yeast expressing measles virus nucleoprotein as a production and delivery system to multimerize Plasmodium antigens.

    Directory of Open Access Journals (Sweden)

    Daria Jacob

    Full Text Available Yeasts are largely used as bioreactors for vaccine production. Usually, antigens are produced in yeast then purified and mixed with adjuvants before immunization. However, the purification costs and the safety concerns recently raised by the use of new adjuvants argue for alternative strategies. To this end, the use of whole yeast as both production and delivery system appears attractive. Here, we evaluated Pichia pastoris yeast as an alternative vaccine production and delivery system for the circumsporozoite protein (CS of Plasmodium, the etiologic agent of malaria. The CS protein from Plasmodium berghei (Pb was selected given the availability of the stringent C57Bl/6 mouse model of infection by Pb sporozoites, allowing the evaluation of vaccine efficacy in vivo. PbCS was multimerized by fusion to the measles virus (MV nucleoprotein (N known to auto-assemble in yeast in large-size ribonucleoprotein rods (RNPs. Expressed in P. pastoris, the N-PbCS protein generated highly multimeric and heterogenic RNPs bearing PbCS on their surface. Electron microscopy and immunofluorescence analyses revealed the shape of these RNPs and their localization in peripheral cytoplasmic inclusions. Subcutaneous immunization of C57Bl/6 mice with heat-inactivated whole P. pastoris expressing N-PbCS RNPs provided significant reduction of parasitemia after intradermal challenge with a high dose of parasites. Thus, in the absence of accessory adjuvants, a very low amount of PbCS expressed in whole yeast significantly decreased clinical damages associated with Pb infection in a highly stringent challenge model, providing a proof of concept of the intrinsic adjuvancy of this vaccine strategy. In addition to PbCS multimerization, the N protein contributed by itself to parasitemia delay and long-term mice survival. In the future, mixtures of whole recombinant yeasts expressing relevant Plasmodium antigens would provide a multivalent formulation applicable for antigen

  18. Transcriptome analysis of potato leaves expressing the trehalose-6-phosphate synthase 1 gene of yeast.

    Science.gov (United States)

    Kondrák, Mihály; Marincs, Ferenc; Kalapos, Balázs; Juhász, Zsófia; Bánfalvi, Zsófia

    2011-01-01

    Transgenic lines of the potato cultivar White Lady expressing the trehalose-6-phosphate synthase (TPS1) gene of yeast exhibit improved drought tolerance, but grow slower and have a lower carbon fixation rate and stomatal density than the wild-type. To understand the molecular basis of this phenomenon, we have compared the transcriptomes of wild-type and TPS1-transgenic plants using the POCI microarray containing 42,034 potato unigene probes. We show that 74 and 25 genes were up-, and down-regulated, respectively, in the mature source leaves of TPS1-transgenic plants when compared with the wild-type. The differentially regulated genes were assigned into 16 functional groups. All of the seven genes, which were assigned into carbon fixation and metabolism group, were up-regulated, while about 42% of the assigned genes are involved in transcriptional and post-transcriptional regulation. Expression of genes encoding a 14-3-3 regulatory protein, and four transcription factors were down-regulated in the TPS1-transgenic leaves. To verify the microarray results, we used RNA gel blot analysis to examine the expression of eight genes and found that the RNA gel blot and microarray data correlated in each case. Using the putative Arabidopsis orthologs of the assigned potato sequences we have identified putative transcription binding sites in the promoter region of the differentially regulated genes, and putative protein-protein interactions involving some of the up- and down-regulated genes. We have also demonstrated that starch content is lower, while malate, inositol and maltose contents are higher in the TPS1-transgenic than in the wild-type leaves. Our results suggest that a complex regulatory network, involving transcription factors and other regulatory proteins, underpins the phenotypic alterations we have observed previously in potato when expressing the TPS1 gene of yeast.

  19. Transcriptome analysis of potato leaves expressing the trehalose-6-phosphate synthase 1 gene of yeast.

    Directory of Open Access Journals (Sweden)

    Mihály Kondrák

    Full Text Available Transgenic lines of the potato cultivar White Lady expressing the trehalose-6-phosphate synthase (TPS1 gene of yeast exhibit improved drought tolerance, but grow slower and have a lower carbon fixation rate and stomatal density than the wild-type. To understand the molecular basis of this phenomenon, we have compared the transcriptomes of wild-type and TPS1-transgenic plants using the POCI microarray containing 42,034 potato unigene probes. We show that 74 and 25 genes were up-, and down-regulated, respectively, in the mature source leaves of TPS1-transgenic plants when compared with the wild-type. The differentially regulated genes were assigned into 16 functional groups. All of the seven genes, which were assigned into carbon fixation and metabolism group, were up-regulated, while about 42% of the assigned genes are involved in transcriptional and post-transcriptional regulation. Expression of genes encoding a 14-3-3 regulatory protein, and four transcription factors were down-regulated in the TPS1-transgenic leaves. To verify the microarray results, we used RNA gel blot analysis to examine the expression of eight genes and found that the RNA gel blot and microarray data correlated in each case. Using the putative Arabidopsis orthologs of the assigned potato sequences we have identified putative transcription binding sites in the promoter region of the differentially regulated genes, and putative protein-protein interactions involving some of the up- and down-regulated genes. We have also demonstrated that starch content is lower, while malate, inositol and maltose contents are higher in the TPS1-transgenic than in the wild-type leaves. Our results suggest that a complex regulatory network, involving transcription factors and other regulatory proteins, underpins the phenotypic alterations we have observed previously in potato when expressing the TPS1 gene of yeast.

  20. Construction and evaluation of yeast expression networks by database-guided predictions

    Directory of Open Access Journals (Sweden)

    Katharina Papsdorf

    2016-05-01

    Full Text Available DNA-Microarrays are powerful tools to obtain expression data on the genome-wide scale. We performed microarray experiments to elucidate the transcriptional networks, which are up- or down-regulated in response to the expression of toxic polyglutamine proteins in yeast. Such experiments initially generate hit lists containing differentially expressed genes. To look into transcriptional responses, we constructed networks from these genes. We therefore developed an algorithm, which is capable of dealing with very small numbers of microarrays by clustering the hits based on co-regulatory relationships obtained from the SPELL database. Here, we evaluate this algorithm according to several criteria and further develop its statistical capabilities. Initially, we define how the number of SPELL-derived co-regulated genes and the number of input hits influences the quality of the networks. We then show the ability of our networks to accurately predict further differentially expressed genes. Including these predicted genes into the networks improves the network quality and allows quantifying the predictive strength of the networks based on a newly implemented scoring method. We find that this approach is useful for our own experimental data sets and also for many other data sets which we tested from the SPELL microarray database. Furthermore, the clusters obtained by the described algorithm greatly improve the assignment to biological processes and transcription factors for the individual clusters. Thus, the described clustering approach, which will be available through the ClusterEx web interface, and the evaluation parameters derived from it represent valuable tools for the fast and informative analysis of yeast microarray data.

  1. Natural sequence variants of yeast environmental sensors confer cell-to-cell expression variability.

    Science.gov (United States)

    Fehrmann, Steffen; Bottin-Duplus, Hélène; Leonidou, Andri; Mollereau, Esther; Barthelaix, Audrey; Wei, Wu; Steinmetz, Lars M; Yvert, Gaël

    2013-10-08

    Living systems may have evolved probabilistic bet hedging strategies that generate cell-to-cell phenotypic diversity in anticipation of environmental catastrophes, as opposed to adaptation via a deterministic response to environmental changes. Evolution of bet hedging assumes that genotypes segregating in natural populations modulate the level of intraclonal diversity, which so far has largely remained hypothetical. Using a fluorescent P(met17)-GFP reporter, we mapped four genetic loci conferring to a wild yeast strain an elevated cell-to-cell variability in the expression of MET17, a gene regulated by the methionine pathway. A frameshift mutation in the Erc1p transmembrane transporter, probably resulting from a release of laboratory strains from negative selection, reduced P(met17)-GFP expression variability. At a second locus, cis-regulatory polymorphisms increased mean expression of the Mup1p methionine permease, causing increased expression variability in trans. These results demonstrate that an expression quantitative trait locus (eQTL) can simultaneously have a deterministic effect in cis and a probabilistic effect in trans. Our observations indicate that the evolution of transmembrane transporter genes can tune intraclonal variation and may therefore be implicated in both reactive and anticipatory strategies of adaptation.

  2. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Smialowska, Agata, E-mail: smialowskaa@gmail.com [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden); Djupedal, Ingela; Wang, Jingwen [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); Kylsten, Per [School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden); Swoboda, Peter [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); Ekwall, Karl, E-mail: Karl.Ekwall@ki.se [Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institute, Huddinge 141-83 (Sweden); School of Life Sciences, Södertörn Högskola, Huddinge 141-89 (Sweden)

    2014-02-07

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe.

  3. Fructo-oligosaccharides production by the Gluconacetobacter diazotrophicus levansucrase expressed in the methylotrophic yeast Pichia pastoris.

    Science.gov (United States)

    Trujillo, L E.; Arrieta, J G.; Dafhnis, F; García, J; Valdés, J; Tambara, Y; Pérez, M; Hernández, L

    2001-02-01

    Levansucrase (LsdA) (EC 2.4.1.10) from Gluconacetobacter diazotrophicus (formerly Acetobacter diazotrophicus) yields high levels of fructo-oligosaccharides (FOS) from sucrose. A DNA fragment encoding the precursor LsdA lacking the first 57 amino acids was fused to the pho1 signal sequence under the control of the Pichia pastoris-alcohol oxidase 1 (AOX1) promoter. Methanol induction of a P. pastoris strain harboring a single copy of the lsdA expression cassette integrated in the genome resulted in the production of active levansucrase. After fermentation of the recombinant yeast, LsdA activity was detected in the periplasmic fraction (81%) and in the culture supernatant (18%) with an overall yield of 1% of total protein. The recombinant LsdA was glycosylated and displayed optimal pH and temperature for enzyme activity similar to those of the native enzyme, but thermal stability was increased. Neither fructosylpolymerase activity nor FOS production was affected. Incubation of recombinant LsdA in sucrose (500 g l(-1)) yielded 43% (w/w) of total sugar as 1-kestose, with a conversion efficiency about 70%. Intact recombinant yeast cells also converted sucrose to FOS although for a 30% efficiency.

  4. In vivo unnatural amino acid expression in the methylotrophic yeast Pichia pastoris

    Science.gov (United States)

    Young, Travis [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2014-02-11

    The invention provides orthogonal translation systems for the production of polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris. Methods for producing polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris are also provided.

  5. Yeast β-d-glucans induced antimicrobial peptide expressions against Salmonella infection in broiler chickens.

    Science.gov (United States)

    Shao, Yujing; Wang, Zhong; Tian, Xiangyu; Guo, Yuming; Zhang, Haibo

    2016-04-01

    The present study was designed to investigate the effects of yeast β-d-glucans (YG) on gene expression of endogenous β-defensins (AvBDs), cathelicidins (Cath) and liver-expressed antimicrobial peptide-2 (LEAP-2) in broilers challenged with Salmonella enteritidis (SE). 240 day-old Cobb male broilers were randomly assigned to 2×2 factorial arrangements of treatments with two levels of dietary YG (0 or 200mg/kg in diet) and two levels of SE challenge (0 or 1×10(9) SE at 7-9 days of age). The results showed SE infection reduced growth performance,and increased salmonella cecal colonization and internal organs invasion, increased concentration of intestinal specific IgA and serum specific IgG antibody, as compared to uninfected birds. SE challenge differentially regulated AvBDs, Caths and LEAP-2 gene expression in the jejunum and spleen of broiler chickens during the infection period. However, YG supplementation inhibited the growth depression by SE challenge, and further increased level of serum specific IgG and intestinal specific IgA antibody. Higher level of salmonella colonization and internal organs invasion in the SE-infected birds were reduced by YG. SE-induced differentially expression patterns of AMPs genes was inhibited or changed by YG. Results indicated YG enhance chicken's resistance to salmonella infection.

  6. Selective inhibition of purified human phosphodiesterase 4A expressed in yeast cell GL62 by ciclamilast, piclamilast, and rolipram

    Institute of Scientific and Technical Information of China (English)

    Jun-chun CHEN; Ji-qiang CHEN; Qiang-min Xie; Yi-liang ZHU

    2004-01-01

    AIM: To improve the specific activity of human phosphodiesterase 4A (PDE4A) expressed in yeast cell GL62 and investigate the effects of selective phosphodiesterase 4 (PDE4) inhibitors (ciclamilast, piclamilast, and rolipram),selective phosphodiesterase 5 (PDES) inhibitor zaprinast, and cyclooxygenase (COX) inhibitors (aspirin, indomethacin)on human PDE4A activity expressed in yeast cell GL62. METHODS: Human PDE4A was expressed in yeast cell GL62 after CuSO4 induction and the specific activity of human PDE4A was improved by ammonium sulfate fractionation, DEAE Sephadex A-50 chromatography, and Sephadex G-100 chromatography. The activity of PDE4A was measured by high performance liquid chromatography (HPLC). RESULTS: Induced PDE4A activity expressed in crude yeast cell GL62 supernatant and pellet was (340±21) nmol.g-1.min-1 and (250±25) nmol.g-1.min-lrespectively. The specific activity of recombinant PDE4A in supernatant was improved 6.4 fold. Ciclamilast,piclamilast, and rolipram could inhibit PDE4A activity. The ICs0 values (95 % confidence limits) of ciclamilast,piclamilast, and rolipram were 1.27 (0.84-1.91), 66.4 (33.3-132.2), and 3.73 (2.51-5.53) μmol/L respectively.Zaprinast, aspirin, and indomethacin had no obvious inhibitory effect on PDE4A activity. CONCLUSION: The specific activity of PDE4A expressed in yeast cell GL62 can be improved by ammonium sulfate fractionation,DEAE Sephadex A-50 chromatography, and Sephadex G-100 chromatography. Ciclamilast, piclamilast, and rolipram can inhibit PDE4A activity while zaprinast, aspirin, and indomethacin have no obvious inhibitory effect on PDE4A activity. Human PDE4A expressed in GL62 might be useful in the research and screening of new selective PDE4 inhibitors.

  7. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    Directory of Open Access Journals (Sweden)

    Hudler Petra

    2009-10-01

    Full Text Available Abstract Background Loss of DNA mismatch repair (MMR in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC. Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Methods Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. Results The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Conclusion Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene.

  8. Cell organisation, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells

    Directory of Open Access Journals (Sweden)

    Passos Geraldo AS

    2006-08-01

    Full Text Available Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM, a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein, bgl (encoding for a 1,3-β-glucosidase in mycelium cells; and ags (an α-1,3-glucan synthase, cda (a chitin deacetylase and vrp (a verprolin in yeast cells; (ii ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken

  9. An extranuclear expression system for analysis of cytoplasmic promoters of yeast linear killer plasmids.

    Science.gov (United States)

    Schründer, J; Meinhardt, F

    1995-03-01

    Based on the cytoplasmically localized killer plasmids pGKL1 and pGKL2 of Kluyveromyces lactis two new linear hybrid plasmids were constructed which consist of pGKL1, into which in addition to the previously developed cytoplasmically expressible LEU2* selectable marker a glucose dehydrogenase-encoding bacterial gene (gdh A) has been integrated. One of the hybrid plasmids carries the bacterial gene preceded by an arbitrarily placed cytoplasmic promoter (upstream conserved sequence) in front of the coding region (pRKL121). The other plasmid was constructed in such a way that the ATG start codon of the gdh A gene was fused in frame to the ATG start codon of the killer plasmid's open reading frame 5 (pRKL122). The structures of both linear hybrid plasmids were confirmed by restriction analysis, Southern hybridization, and sequencing of the junction sites. Yeast strains carrying either of the plasmids expressed the glucose dehydrogenase gene; however, expression of the in phase fused gene was 40-fold higher compared to the arbitrarily placed cytoplasmic promoter. In general, an in phase fusion was not required for expression, but efficiency is dramatically enhanced when the 5' noncoding sequences in front of the heterologous genes are the same as those found on the native killer plasmids. The developed system can serve as a reporter for determining the efficiency of the different cytoplasmic promoters present on both linear plasmids. Hybrid plasmids were stably maintained without selective pressure in K. lactis and they were transferred and expressed also in Saccharomyces cerevisiae.

  10. Zinc up-regulated the expression of the rice metallonthionein gene family and enhanced the zinc tolerance of yeast cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Northern blot and functional complementation assay were employed to analyze the effects of zinc on expression of ten rice metallothionein genes (OsMT-Is) in rice seedlings and the growth of yeast cells transformed with OsMT-Is. Northern blot revealed that in shoots of the rice seedlings treated with different Zn2+ concentrations, expression of most members of OsMT-I family was increased, except the type 4 OsMT-Is (OsMT-I-4a, 4b and 4c). In roots, Zn2+ significantly increased the transcription of OsMT-I-1b and OsMT-I-2c, but reduced the trascription of OsMT-I-1a and OsMT-I-3a. When these ten cDNAs were heterologously expressed in zinc sensitive yeast mutant, all transgenic yeasts showed increased tolerance to Zn2+, and zinc accumulation in these yeast cells also increased.These indicated that OsMT-I family members might respond to extra Zn2+, and they could enhance Zn2+ tolerance of cells by direct binding Zn2+.

  11. Triosephosphate isomerase: energetics of the reaction catalyzed by the yeast enzyme expressed in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Nickbarg, E.B.; Knowles, J.R.

    1988-08-09

    Triosephosphate isomerase from bakers' yeast, expressed in Escherichia coli strain DF502(p12), has been purified to homogeneity. The kinetics of the reaction in each direction have been determined at pH 7.5 and 30 degrees C. Deuterium substitution at the C-2 position of substrate (R)-glyceraldehyde phosphate and at the 1-pro-R position of substrate dihydroxyacetone phosphate results in kinetic isotope effects on kcat of 1.6 and 3.4, respectively. The extent of transfer of tritium from (1(R)-TH)dihydroxyacetone phosphate to product (R)-glyceraldehyde phosphate during the catalyzed reaction is only 3% after 66% conversion to product, indicating that the enzymic base that mediates proton transfer is in rapid exchange with solvent protons. When the isomerase-catalyzed reaction is run in tritiated water in each direction, radioactivity is incorporated both into the remaining substrate and into the product. In the exchange-conversion experiment with dihydroxyacetone phosphate as substrate, the specific radioactivity of remaining dihydroxyacetone phosphate rises as a function of the extent of reaction with a slope of about 0.3, while the specific radioactivity of the products is 54% that of the solvent. In the reverse direction with (R)-glyceraldehyde phosphate as substrate, the specific radioactivity of the product formed is only 11% that of the solvent, while the radioactivity incorporated into the remaining substrate (R)-glyceraldehyde phosphate also rises as a function of the extent of reaction with a slope of 0.3. These results have been analyzed according to the protocol described earlier to yield the free energy profile of the reaction catalyzed by the yeast isomerase.

  12. The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability.

    Science.gov (United States)

    Mendes-Ferreira, Ana; Barbosa, Catarina; Jimenez-Marti, Elena; Del Olmo, Marcel Li; Mendes-Faia, Arlete

    2010-09-01

    Sulfur metabolism in S. cerevisiae is well established, but the mechanisms underlying the formation of sulfide remain obscure. Here we investigated by real time RT-PCR the dependence of expression levels of MET3, MET5/ECM17, MET10, MET16 and MET17 along with SSU1 on nitrogen availability in two wine yeast strains that produce divergent sulfide profiles. MET3 was the most highly expressed of the genes studied in strain PYCC4072, and SSU1 in strain UCD522. Strains behaved differently according to the sampling times, with UCD522 and PYCC4072 showing the highest expression levels at 120h and 72h, respectively. In the presence of 267mg assimilable N/l, the genes were more highly expressed in strain UCD522 than in PYCC4072. MET5/ECM17 and MET17 were only weakly expressed in both strains under any condition tested. MET10 and SSU1 in both strains, but MET16 only in PYCC4072, were consistently up-regulated when sulfide production was inhibited. This study illustrates that strain genotype could be important in determining enzyme activities and therefore the rate of sulfide liberation. This linkage, for some yeast strains, of sulfide production to expression levels of genes associated to sulfate assimilation and sulfur amino acid biosynthesis could be relevant for defining new strategies for genetic improvement of wine yeasts.

  13. Recombinant Expression and Phenotypic Screening of a Bioactive Cyclotide Against α-Synuclein-Induced Cytotoxicity in Baker's Yeast.

    Science.gov (United States)

    Jagadish, Krishnappa; Gould, Andrew; Borra, Radhika; Majumder, Subhabrata; Mushtaq, Zahid; Shekhtman, Alexander; Camarero, Julio A

    2015-07-13

    We report for the first time the recombinant expression of fully folded bioactive cyclotides inside live yeast cells by using intracellular protein trans-splicing in combination with a highly efficient split-intein. This approach was successfully used to produce the naturally occurring cyclotide MCoTI-I and the engineered bioactive cyclotide MCoCP4. Cyclotide MCoCP4 was shown to reduce the toxicity of human α-synuclein in live yeast cells. Cyclotide MCoCP4 was selected by phenotypic screening from cells transformed with a mixture of plasmids encoding MCoCP4 and inactive cyclotide MCoTI-I in a ratio of 1:5×10(4). This demonstrates the potential for using yeast to perform phenotypic screening of genetically encoded cyclotide-based libraries in eukaryotic cells.

  14. A yeast expression system for functional and pharmacological studies of the malaria parasite Ca2+/H+ antiporter

    Directory of Open Access Journals (Sweden)

    Salcedo-Sora J

    2012-08-01

    Full Text Available Abstract Background Calcium (Ca2+ signalling is fundamental for host cell invasion, motility, in vivo synchronicity and sexual differentiation of the malaria parasite. Consequently, cytoplasmic free Ca2+ is tightly regulated through the co-ordinated action of primary and secondary Ca2+ transporters. Identifying selective inhibitors of Ca2+ transporters is key towards understanding their physiological role as well as having therapeutic potential, therefore screening systems to facilitate the search for potential inhibitors are a priority. Here, the methodology for the expression of a Calcium membrane transporter that can be scaled to high throughputs in yeast is presented. Methods The Plasmodium falciparum Ca2+/H+ antiporter (PfCHA was expressed in the yeast Saccharomyces cerevisiae and its activity monitored by the bioluminescence from apoaequorin triggered by divalent cations, such as calcium, magnesium and manganese. Results Bioluminescence assays demonstrated that PfCHA effectively suppressed induced cytoplasmic peaks of Ca2+, Mg2+ and Mn2+ in yeast mutants lacking the homologue yeast antiporter Vcx1p. In the scalable format of 96-well culture plates pharmacological assays with a cation antiporter inhibitor allowed the measurement of inhibition of the Ca2+ transport activity of PfCHA conveniently translated to the familiar concept of fractional inhibitory concentrations. Furthermore, the cytolocalization of this antiporter in the yeast cells showed that whilst PfCHA seems to locate to the mitochondrion of P. falciparum, in yeast PfCHA is sorted to the vacuole. This facilitates the real-time Ca2+-loading assays for further functional and pharmacological studies. Discussion The functional expression of PfCHA in S. cerevisiae and luminescence-based detection of cytoplasmic cations as presented here offer a tractable system that facilitates functional and pharmacological studies in a high-throughput format. PfCHA is shown to behave as a divalent

  15. High-yield expression of recombinant SARS coronavirus nucleocapsid protein in methylotrophic yeast Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Ru-Shi Liu; Kun-Yu Yang; Jian Lin; Yi-Wei Lin; Zhi-Hong Zhang; Jun Zhang; Ning-Shao Xia

    2004-01-01

    AIM: Nucleocapsid (N) protein plays an important role in reproduction and pathological reaction of severe acute respiratory syndrome (SARS) coronavirus (SCoV), theantigenicity of the protein is better than spike (S) protein.This study was to find a highly specific and antigenic recombinant SCoV nucleocapsid (rSCoVN) protein, and to provide a basis for further researches on early diagnosis of SARS.METHODS: Full length cDNA of SCoV nucleocapsid (SCoVN)protein was amplified through polymerase chain reaction (PCR) and cloned into yeast expression vector pPIC3.5K to construct plasmid of pPIC3.5K-SCoVN. The plasmid was linearized and then transformed into Pichia pastoris (P. pastoris) GS115 (HisMut+) by electroporation. His+Mut+recombinant strains were identified by PCR and cultivated on MM/MD plates. The influence of different factors on biomass and rSCoVN protein production during induction phase, such as various induction media, dissolved oxygen (DO) and different final concentrations of methanol, was subsequently studied. The expression level and activation were detected by SDS-PAGE and Western-blot respectively.RESULTS: All of the recombinants were His+Mut+ aftertransformation of P. pastoriswith linearized plasmids. The BMMY medium was optimal for recombinant ScoVN (rSCoVN)protein expression and growth of the recombinant strains.The final optimal concentration of methanol was 20 mL/L,the DO had a significant effect on rSCoVN protein expression and growth of recombinant strains. The rSCoVN protein expressed in recombinant strains was about 8% of the total cell protein, 520 mg/L of rSCoVN protein was achieved,and a maximum cell ,A at 600 nm of 62 was achieved in shake flask culture. The rSCoVN protein had a high specificity against mouse-anti-SARS-CoVN-mAb and SARS positive sera, but had no cross-reaction with normal human serum.The biological activity of rSCoVN expressed in P. pastoris was about 4-fold higher than that expressed in E.coliwhen the same rSCoVN protein

  16. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast

    Science.gov (United States)

    Sze, H.; Liang, F.; Hwang, I.; Curran, A. C.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    The spatial and temporal regulation of calcium concentration in plant cells depends on the coordinate activities of channels and active transporters located on different organelles and membranes. Several Ca2+ pumps have been identified and characterized by functional expression of plant genes in a yeast mutant (K616). This expression system has opened the way to a genetic and biochemical characterization of the regulatory and catalytic features of diverse Ca2+ pumps. Plant Ca(2+)-ATPases fall into two major types: AtECA1 represents one of four or more members of the type IIA (ER-type) Ca(2+)-ATPases in Arabidopsis, and AtACA2 is one of seven or more members of the type IIB (PM-type) Ca(2+)-ATPases that are regulated by a novel amino terminal domain. Type IIB pumps are widely distributed on membranes, including the PM (plasma membrane), vacuole, and ER (endoplasmic reticulum). The regulatory domain serves multiple functions, including autoinhibition, calmodulin binding, and sites for modification by phosphorylation. This domain, however, is considerably diverse among several type IIB ATPases, suggesting that the pumps are differentially regulated. Understanding of Ca2+ transporters at the molecular level is providing insights into their roles in signaling networks and in regulating fundamental processes of cell biology.

  17. Expressing yeast SAMdc gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit.

    Science.gov (United States)

    Kolotilin, Igor; Koltai, Hinanit; Bar-Or, Carmiya; Chen, Lea; Nahon, Sahadia; Shlomo, Haviva; Levin, Ilan; Reuveni, Moshe

    2011-07-01

    Tomato (Solanum lycopersicum) fruits expressing a yeast S-adenosyl methionine decarboxylase (ySAMdc) gene under control of a ripening-induced promoter show altered phytonutrient content and broad changes in gene expression. Genome-wide transcriptional alterations in pericarp tissues of the ySAMdc-expressing fruits are shown. Consistent with the ySAMdc expression pattern from the ripening-induced promoter, very minor transcriptional alterations were detected at the mature green developmental stage. At the breaker and red stages, altered levels of numerous transcripts were observed with a general tendency toward upregulation in the transgenic fruits. Ontological analysis of up- and downregulated transcript groups revealed various affected metabolic processes, mainly carbohydrate and amino acid metabolism, and protein synthesis, which appeared to be intensified in the ripening transgenic fruits. Other functional ontological categories of altered transcripts represented signal transduction, transcription regulation, RNA processing, molecular transport and stress response, as well as metabolism of lipids, glycans, xenobiotics, energy, cofactors and vitamins. In addition, transcript levels of genes encoding structural enzymes for several biosynthetic pathways showed strong correlations to levels of specific metabolites that displayed altered levels in transgenic fruits. Increased transcript levels of fatty acid biosynthesis enzymes were accompanied by a change in the fatty acid profile of transgenic fruits, most notably increasing ω-3 fatty acids at the expense of other lipids. Thus, SAMdc is a prime target in manipulating the nutritional value of tomato fruits. Combined with analyses of selected metabolites in the overripe fruits, a model of enhanced homeostasis of the pericarp tissue in the polyamine-accumulating tomatoes is proposed.

  18. [The cloning and expression of the gene for beta-galactosidase from Candida pseudotropicalis yeasts in Saccharomyces cerevisiae cells].

    Science.gov (United States)

    Tretiak, K A; Zakal'skiĭ, A E; Gudz', S P

    1998-01-01

    The gene of beta-galactosidase of lactose-assimilating yeast Candida pseudotropicalis was cloned in pG2 and pBG2-3 hybrid shuttle vectors and expressed in Saccharomyces cerevisiae laboratory strains under the control of own promoter. The plasmids were able to replicate autonomously with relative stability in transformants of baker's yeasts. The availability of glucose or lactose in the medium influenced the recombinant plasmid stability and the expression of the cloned gene. A number of experiments have shown that the LAC+ phenotype in pG2-transformed Saccharomyces cerevisiae was due to the expression of the Candida pseudotropicalis lactose permease gene that is probably located in SaIG1/XhoI DNA fragment about 4.3 kb long. Southern hybridization experiments showed that LAC(+)-transformants of Saccharomyces cerevisiae contained both autonomously-replicative, and integrative pG2 plasmid.

  19. Protective vaccination against infectious bursal disease virus with whole recombinant Kluyveromyces lactis yeast expressing the viral VP2 subunit.

    Directory of Open Access Journals (Sweden)

    Marina Arnold

    Full Text Available Here we report on vaccination approaches against infectious bursal disease (IBD of poultry that were performed with complete yeast of the species Kluyveromyces lactis (K. lactis. Employing a genetic system that enables the rapid production of stably transfected recombinant K. lactis, we generated yeast strains that expressed defined quantities of the virus capsid forming protein VP2 of infectious bursal disease virus (IBDV. Both, subcutaneous as well as oral vaccination regiments with the heat-inactivated but otherwise untreated yeast induced IBDV-neutralizing antibodies in mice and chickens. A full protection against a subsequent IBDV infection was achieved by subcutaneous inoculation of only milligram amounts of yeast per chicken. Oral vaccination also generated protection: while mortality was observed in control animals after virus challenge, none of the vaccinees died and ca. one-tenth were protected as indicated by the absence of lesions in the bursa of Fabricius. Recombinant K. lactis was thus indicated as a potent tool for the induction of a protective immune response by different applications. Subcutaneously applied K. lactis that expresses the IBDV VP2 was shown to function as an efficacious anti-IBD subunit vaccine.

  20. Appetite suppressive effects of yeast hydrolysate on nitric oxide synthase (NOS) expression and vasoactive intestinal peptide (VIP) immunoreactivity in hypothalamus.

    Science.gov (United States)

    Jung, E Y; Suh, H J; Kim, S Y; Hong, Y S; Kim, M J; Chang, U J

    2008-11-01

    To investigate the effects of yeast hydrolysate on appetite regulation mechanisms in the central nervous system, nitric oxide synthase (NOS) expression and vasoactive intestinal peptide (VIP) immunoreactivity in the paraventricular nucleus (PVN) and ventromedial hypothalamic nucleus (VMH) of the hypothalamus were examined. Male Sprague-Dawley (SD) rats were assigned to five groups: control (normal diet), BY-1 and BY-2 (normal diet with oral administration of 0.1 g and 1.0 g of yeast hydrolysate yeast hydrolysate 10-30 kDa/kg body weight, respectively). The body weight gain in the BY groups was less than that in the control. In particular, the weight gain of the BY-2 group (133.0 +/- 5.1 g) was significantly lower (p yeast hydrolysate of <10 kDa reduced the body weight gain and body fat in normal diet-fed rats and increased the lipid energy metabolism by altering the expression of NOS and VIP in neurons.

  1. Rapid yeast estrogen bioassays stably expressing human estrogen receptors alpha and beta, and green fluorescent protein: a comparison of different compounds on both receptor types

    NARCIS (Netherlands)

    Bovee, T.F.H.; Helsdingen, J.R.; Rietjens, I.M.C.M.; Keijer, J.; Hoogenboom, L.A.P.

    2004-01-01

    Previously, we described the construction of a rapid yeast bioassay stably expressing human estrogen receptor (hER) and yeast enhanced green fluorescent protein (yEGFP) in response to estrogens. In the present study, the properties of this assay were further studied by testing a series of estrogenic

  2. Characterization and expression analysis of a gene cluster for nitrate assimilation from the yeast Arxula adeninivorans.

    Science.gov (United States)

    Böer, Erik; Schröter, Anja; Bode, Rüdiger; Piontek, Michael; Kunze, Gotthard

    2009-02-01

    In Arxula adeninivorans nitrate assimilation is mediated by the combined actions of a nitrate transporter, a nitrate reductase and a nitrite reductase. Single-copy genes for these activities (AYNT1, AYNR1, AYNI1, respectively) form a 9103 bp gene cluster localized on chromosome 2. The 3210 bp AYNI1 ORF codes for a protein of 1070 amino acids, which exhibits a high degree of identity to nitrite reductases from the yeasts Pichia anomala (58%), Hansenula polymorpha (58%) and Dekkera bruxellensis (54%). The second ORF (AYNR1, 2535 bp) encodes a nitrate reductase of 845 residues that shows significant (51%) identity to nitrate reductases of P. anomala and H. polymorpha. The third ORF in the cluster (AYNT1, 1518 bp) specifies a nitrate transporter with 506 amino acids, which is 46% identical to that of H. polymorpha. The three genes are independently expressed upon induction with NaNO(3). We quantitatively analysed the promoter activities by qRT-PCR and after fusing individual promoter fragments to the phytase (phyK) gene from Klebsiella sp. ASR1. The AYNI1 promoter was found to exhibit the highest activity, followed by the AYNT1 and AYNR1 elements. Direct measurements of nitrate and nitrite reductase activities performed after induction with NaNO(3) are compatible with these results. Both enzymes show optimal activity at around 42 degrees C and near-neutral pH, and require FAD as a co-factor and NADPH as electron donor.

  3. Phenotypic expression of primary lesions of genetic material in Saccharomyces yeasts.

    Science.gov (United States)

    Inge-Vechtomov, S G; Repnevskaya, M V

    1989-01-01

    "Illegitimate" mating of yeasts (alpha x alpha), either spontaneous or induced by uv light or ethyl methanesulfanate, in a selective system for "cytoduction" revealed that about 95% of cytoductants expressed their original (alpha) mating type. Inducing the mating by treating the recipient of cytoplasm with uv light reached two orders of magnitude. An additional copy of MAT alpha in the alpha recipient almost completely eliminated the effect, which means that nonheritable mating type changes observed are formally recessive and are localized within MAT alpha complex. About 1% of cytoductants obtained were nonmating types and some of them were identified as mat alpha l mutants. Radl8 mutant as a recipient showed a considerably elevated spontaneous frequency of illegitimate hybridization and cytoduction. The cytoductants also preserved the original mating type. These facts suggest that nonheritable changes of mating type are due to repairable primary (premutational) lesions in MAT alpha genetic material. The significance of these results for understanding the mechanism of nonheritable variability is discussed.

  4. Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species.

    Science.gov (United States)

    Portela, Rui M C; Vogl, Thomas; Kniely, Claudia; Fischer, Jasmin E; Oliveira, Rui; Glieder, Anton

    2017-03-17

    Synthetic biology and metabolic engineering experiments frequently require the fine-tuning of gene expression to balance and optimize protein levels of regulators or metabolic enzymes. A key concept of synthetic biology is the development of modular parts that can be used in different contexts. Here, we have applied a computational multifactor design approach to generate de novo synthetic core promoters and 5' untranslated regions (UTRs) for yeast cells. In contrast to upstream cis-regulatory modules (CRMs), core promoters are typically not subject to specific regulation, making them ideal engineering targets for gene expression fine-tuning. 112 synthetic core promoter sequences were designed on the basis of the sequence/function relationship of natural core promoters, nucleosome occupancy and the presence of short motifs. The synthetic core promoters were fused to the Pichia pastoris AOX1 CRM, and the resulting activity spanned more than a 200-fold range (0.3% to 70.6% of the wild type AOX1 level). The top-ten synthetic core promoters with highest activity were fused to six additional CRMs (three in P. pastoris and three in Saccharomyces cerevisiae). Inducible CRM constructs showed significantly higher activity than constitutive CRMs, reaching up to 176% of natural core promoters. Comparing the activity of the same synthetic core promoters fused to different CRMs revealed high correlations only for CRMs within the same organism. These data suggest that modularity is maintained to some extent but only within the same organism. Due to the conserved role of eukaryotic core promoters, this rational design concept may be transferred to other organisms as a generic engineering tool.

  5. Large-scale production and purification of recombinant Galanthus nivalis agglutinin (GNA) expressed in the methylotrophic yeast Pichia pastoris.

    Science.gov (United States)

    Baumgartner, Philippe; Harper, Karen; Raemaekers, Romaan J M; Durieux, Alain; Gatehouse, Angharad M R; Davies, Howard V; Taylor, Mark A

    2003-08-01

    The gene coding for agglutinin from Galanthus nivalis (GNA) was expressed in, and secreted by, the methylotrophic yeast, Pichia pastoris. Transformants of P. pastoris were selected and a process to produce and purify gram quantities of recombinant GNA was developed. GNA was secreted at approximately 80 mg l(-1) at the 200 1 scale and was purified to 95% homogeneity using hydrophobic interaction chromatography. The recombinant protein was similar to the protein synthesised in plant with respect to structure and biological activity.

  6. CASCADE, a platform for controlled gene amplification for high, tunable and selection-free gene expression in yeast

    DEFF Research Database (Denmark)

    Strucko, Tomas; Buron, Line Due; Jarczynska, Zofia Dorota

    2017-01-01

    Over-expression of a gene by increasing its copy number is often desirable in the model yeast Saccharomyces cerevisiae. It may facilitate elucidation of enzyme functions, and in cell factory design it is used to increase production of proteins and metabolites. Current methods are typically exploi...... production of two fluorescent proteins, the enzyme β-galactosidase the fungal polyketide 6-methyl salicylic acid and the plant metabolite vanillin glucoside....

  7. Expression of Genes Related to Oxidative Stress in Yeast Treated with Ionizing Radiation and N-acetyl -L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Young; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-10-15

    Ionizing radiation (IR) induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage including DNA strand breaks (DSBs), base damage, protein damage and lipid-hydroperoxide. Detoxifying enzymes are immediately triggered for ROS scavenging. Yeast contains two forms of superoxide dismutase (SOD). SOD1 as a cytosolic copper-zinc superoxide dismutase is located in the cytoplasm and cytosol. SOD2 as a manganese containing enzyme is act in mitochondria matrix and mitochondrion. These enzymes scavenge superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast contains two catalases. Catalase A (CTA1) and Cytosolic catalase T (CTT1) is located in peroxisome and cytoplasm, respectively. Yeast has two glutathione (GSH) peroxidases, which are GPX1 and GPX2. GPX1 and GPX2 are component of cellular component and cytoplasm, respectively. The biochemical function of GSH peroxidase is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. Otherwise, chemicals and materials help ROS detoxification against oxidative damage. N-acetyl-Lcysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. In this study, we examined the effect of NAC through gene expressions related to protective enzyme against oxidative stress in yeast

  8. Sequencing of a 9.9 kb segment on the right arm of yeast chromosome VII reveals four open reading frames, including PFK1, the gene coding for succinyl-CoA synthetase (beta-chain) and two ORFs sharing homology with ORFs of the yeast chromosome VIII.

    Science.gov (United States)

    Guerreiro, P; Azevedo, D; Barreiros, T; Rodrigues-Pousada, C

    1997-03-15

    A 9.9 kb DNA fragment from the right arm of chromosome VII of Saccharomyces cerevisiae has been sequenced and analysed. The sequence contains four open reading frames (ORFs) longer than 100 amino acids. One gene, PFK1, has already been cloned and sequenced and the other one is the probable yeast gene coding for the beta-subunit of the succinyl-CoA synthetase. The two remaining ORFs share homology with the deduced amino acid sequence (and their physical arrangement is similar to that) of the YHR161c and YHR162w ORFs from chromosome VIII.

  9. Yeast surface display for directed evolution of protein expression, affinity, and stability.

    Science.gov (United States)

    Boder, E T; Wittrup, K D

    2000-01-01

    The described protocols enable thorough screening of polypeptide libraries with high confidence in the isolation of improved clones. It should be emphasized that the protocols have been fashioned for thoroughness, rather than speed. With library plasmid DNA in hand, the time to plated candidate yeast display mutants is typically 2-3 weeks. Each of the experimental approaches required for this method is fairly standard: yeast culture, immunofluorescent labeling, flow cytometry. Protocols that are more rapid could conceivably be developed by using solid substrate separations with magnetic beads, for instance. However, loss of the two-color normalization possible with flow cytometry would remove the quantitative advantage of the method. Yeast display complements existing polypeptide library methods and opens the possibility of examining extracellular eukaryotic proteins, an important class of proteins not generally amenable to yeast two-hybrid or phage display methodologies.

  10. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    Science.gov (United States)

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-01

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  11. Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast

    DEFF Research Database (Denmark)

    Clément-Ziza, Mathieu; Marsellach, Francesc X.; Codlin, Sandra;

    2014-01-01

    Our current understanding of how natural genetic variation affects gene expression beyond well-annotated coding genes is still limited. The use of deep sequencing technologies for the study of expression quantitative trait loci (eQTLs) has the potential to close this gap. Here, we generated...... the first recombinant strain library for fission yeast and conducted an RNA-seq-based QTL study of the coding, non-coding, and antisense transcriptomes. We show that the frequency of distal effects (trans-eQTLs) greatly exceeds the number of local effects (cis-eQTLs) and that non-coding RNAs are as likely...

  12. Molecular cloning of amphioxus uncoupling protein and assessment of its uncoupling activity using a yeast heterologous expression system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kun [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China); Sun, Guoxun [Department of Hematology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001 (China); Lv, Zhiyuan; Wang, Chen [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China); Jiang, Xueyuan, E-mail: xueyuanjiang@yahoo.com.cn [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China); Li, Donghai, E-mail: lidonghai@gmail.com [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China); Zhang, Chenyu, E-mail: cyzhang@nju.edu.cn [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China)

    2010-10-01

    Research highlights: {yields} Invertebrates, for example amphioxus, do express uncoupling proteins. {yields} Both the sequence and the uncoupling activity of amphioxus UCP resemble UCP2. {yields} UCP1 is the only UCP that can form dimer on yeast mitochondria. -- Abstract: The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functional similarity of amphioxus UCP to mammalian UCP1 and -2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.

  13. Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform

    DEFF Research Database (Denmark)

    Mikkelsen, Michael Dalgaard; Buron, Line Due; Salomonsen, Bo;

    2012-01-01

    Epidemiological studies have shown that consumption of cruciferous vegetables, such as, broccoli and cabbages, is associated with a reduced risk of developing cancer. This phenomenon has been attributed to specific glucosinolates among the ∼30 glucosinolates that are typically present as natural...... products characteristic of cruciferous plants. Accordingly, there has been a strong interest to produce these compounds in microbial cell factories as it will allow production of selected beneficial glucosinolates. We have developed a versatile platform for stable expression of multi-gene pathways...... in the yeast, Saccharomyces cerevisiae. Introduction of the seven-step pathway of indolylglucosinolate from Arabidopsis thaliana to yeast resulted in the first successful production of glucosinolates in a microbial host. The production of indolylglucosinolate was further optimized by substituting supporting...

  14. Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis.

    Science.gov (United States)

    Shima, Jun; Kuwazaki, Seigo; Tanaka, Fumiko; Watanabe, Hajime; Yamamoto, Hideki; Nakajima, Ryoichi; Tokashiki, Tadaaki; Tamura, Hiromi

    2005-06-25

    Genes whose expression levels are enhanced or reduced during the cultivation process that uses cane molasses in baker's yeast production were identified in this study. The results showed that baker's yeast grown in molasses medium had higher fermentation ability and stress tolerance compared with baker's yeast grown in synthetic medium. Molasses apparently provided not only sugar as a carbon source but also provided functional components that enhanced or reduced expression of genes involved in fermentation ability and stress tolerance. To identify the genes whose expression is enhanced or reduced during cultivation in molasses medium, DNA microarray analysis was then used to compare the gene expression profile of cells grown in molasses with that of cells grown in synthetic medium. To simulate the commercial baker's yeast production process, cells were cultivated using a fed-batch culture system. In molasses medium, genes involved in the synthesis or uptake of vitamins (e.g., biotin, pyridoxine and thiamine) showed enhanced expression, suggesting that vitamin concentrations in molasses medium were lower than those in synthetic medium. Genes involved in formate dehydrogenase and maltose assimilation showed enhanced expression in molasses medium. In contrast, genes involved in iron utilization (e.g., siderophore, iron transporter and ferroxidase) showed enhanced expression in synthetic medium, suggesting that iron starvation occurred. The genes involved in the metabolism of amino acids also showed enhanced expression in synthetic medium. This identification of genes provides information that will help improve the baker's yeast production process.

  15. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Teixeira Miguel C

    2012-07-01

    Full Text Available Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC Superfamily and Major Facilitator Superfamily (MFS in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to

  16. Adjustable under-expression of yeast mating pathway proteins in Saccharomyces cerevisiae using a programmed ribosomal frameshift.

    Science.gov (United States)

    Choi, Min-Yeon; Park, Sang-Hyun

    2016-06-01

    Experimental research in molecular biology frequently relies on the promotion or suppression of gene expression, an important tool in the study of its functions. Although yeast is among the most studied model systems with the ease of maintenance and manipulation, current experimental methods are mostly limited to gene deletion, suppression or overexpression of genes. Therefore, the ability to reduce protein expressions and then observing the effects would promote a better understanding of the exact functions and their interactions. Reducing protein expression is mainly limited by the difficulties associated with controlling the reduction level, and in some cases, the initial endogenous abundance is too low. For the under-expression to be useful as an experimental tool, repeatability and stability of reduced expression is important. We found that cis-elements in programmed -1 ribosomal frameshifting (-1RFS) of beet western yellow virus (BWYV) could be utilized to reduced protein expression in Saccharomyces cerevisiae. The two main advantages of using -1RFS are adjustable reduction rates and ease of use. To demonstrate the utility of this under-expression system, examples of reduced protein abundance were shown using yeast mating pathway components. The abundance of MAP kinase Fus3 was reduced to approximately 28-75 % of the wild-type value. Other MAP kinase mating pathway components, including Ste5, Ste11, and Ste7, were also under-expressed to verify that the -1RFS system works with different proteins. Furthermore, reduced Fus3 abundance altered the overall signal transduction outcome of the mating pathway, demonstrating the potential for further studies of signal transduction adjustment via under-expression.

  17. Expression studies and promoter analysis of the nuclear gene for mitochondrial transcription factor 1 (MTF1) in yeast.

    Science.gov (United States)

    Jan, P S; Stein, T; Hehl, S; Lisowsky, T

    1999-08-01

    The basal mitochondrial transcription apparatus of Saccharomyces cerevisiae consists of the core enzyme for mitochondrial RNA polymerase and the specificity factor. The core enzyme is homologous to those of bacteriophages T3, T7 and SP6 whereas the specificity factor shows similarities with bacterial sigma factors. Recently it was shown that the bacteriophage-type core enzyme is widespread among the eukaryotic lineage and a common picture for the mitochondrial transcription apparatus in eukaryotic cells is now emerging. In contrast to the situation for the core enzyme, the gene for the specificity factor has only been identified from S. cerevisiae and more recently from two other yeast species. As the specificity factor is the key component for initiation of transcription at the mitochondrial promoter we wanted to study in more detail gene expression, regulation, and the function of the promoter of the nuclear MTF1 gene. For this purpose the messenger RNA level for scMTF1 was investigated under a large number of different growth conditions and thereby exhibited a very low, but regulated and carbon source-dependent, expression. Deletion experiments identify the minimal promoter for functional complementation in yeast. To evaluate the functional conservation of the promoter elements the homologous MTF1 gene from the closely related yeast Saccharomyces douglasii was isolated and tested in heterologous complementation experiments. In spite of a highly conserved protein sequence these studies demonstrate that at low-copy number sdMTF1 is not able to substitute for scMTF1 in S. cerevisiae. Promoter exchange experiments with MTF1 from S. cerevisiae and S. douglasii demonstrate that differences in gene expression are responsible for the failure in heterologous complementation. This finding prompted us to compare the promoter regions of MTF1 from four different yeast species. For this purpose the sequences of the 5' regions from S. douglasii, S. kluyveri and Kluyveromyces

  18. Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30ºC

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Nielsen, Jens

    2016-01-01

    to grow at increased temperature, activated a constitutive heat stress response when grown at the optimal ancestral temperature, and that this is associated with a reduced growth rate. This preventive response was perfected by additional transcriptional changes activated when the cultivation temperature....... This demonstrates robustness of the yeast transcriptional program when exposed to heat, and that the thermotolerant strains streamlined their path to rapidly and optimally reach post-stress transcriptional and metabolic levels. Thus, long-term adaptation to heat improved yeasts ability to rapidly adapt to increased...

  19. Yeast Extract and Silver Nitrate Induce the Expression of Phenylpropanoid Biosynthetic Genes and Induce the Accumulation of Rosmarinic Acid in Agastache rugosa Cell Culture.

    Science.gov (United States)

    Park, Woo Tae; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Yeo, Sun Kyung; Jeon, Jin; Park, Jong Seok; Lee, Sook Young; Park, Sang Un

    2016-01-01

    The present study aimed to investigate the role of yeast extract and silver nitrate on the enhancement of phenylpropanoid pathway genes and accumulation of rosmarinic acid in Agastache rugosa cell cultures. The treatment of cell cultures with yeast extract (500 mg/L) and silver nitrate (30 mg/L) for varying times enhanced the expression of genes in the phenylpropanoid pathway and the production of rosmarinic acid. The results indicated that the expression of RAS and HPPR was proportional to the amount of yeast extract and silver nitrate. The transcript levels of HPPR under yeast extract treatment were 1.84-, 1.97-, and 2.86-fold higher than the control treatments after 3, 6, and 12 h, respectively, whereas PAL expression under silver nitrate treatment was 52.31-fold higher than in the non-treated controls after 24 h of elicitation. The concentration of rosmarinic acid was directly proportional to the concentration of the applied elicitors. Yeast extract supplementation documented the highest amount of rosmarinic acid at 4.98 mg/g, whereas silver nitrate addition resulted in a comparatively lower amount of rosmarinic acid at 0.65 mg/g. In conclusion, addition of yeast extract to the cell cultures enhanced the accumulation of rosmarinic acid, which was evidenced by the expression levels of the phenylpropanoid biosynthetic pathway genes in A. rugosa.

  20. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein.

    Science.gov (United States)

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M O; Rajan, Binoy; Tinsley, John W; Bickerdike, Ralph; Martin, Samuel A M; Bowman, Alan S

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts.

  1. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar): Increased Abundance and Expression of a Calreticulin-Like Protein

    Science.gov (United States)

    Micallef, Giulia; Cash, Phillip; Fernandes, Jorge M. O.; Rajan, Binoy; Tinsley, John W.; Bickerdike, Ralph

    2017-01-01

    In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts. PMID:28046109

  2. spo12 is a multicopy suppressor of mcs3 that is periodically expressed in fission yeast mitosis.

    Science.gov (United States)

    Samuel, J M; Fournier, N; Simanis, V; Millar, J B

    2000-10-01

    Hyperactivation of Cdc2 in fission yeast causes cells to undergo a lethal premature mitosis, a phenomenon called mitotic catastrophe. This phenotype is observed in cdc2-3w wee1-50 cells at high temperature and is suppressed by a single recessive mutant, mcs3-12. Mcs3 acts independently of the Wee1 kinase and Cdc25 phosphatase, two major regulators of Cdc2. We have isolated multicopy suppressors of the cell cycle arrest phenotype of mcs3-12 wee1-50 cdc25-22 cells, but did not identify the mcs3 gene itself. Instead several known mitotic regulators were isolated, including the Cdc25 phosphatase, Wis2 cyclophilin, Cek1 kinase, and an Hsp90 homologue, Swo1. We also isolated clones encoding non-functional, truncated forms of the Wee1 kinase and Dis2 type 1 phosphatase. In addition we identified a multicopy suppressor that encodes a structural homologue of the budding yeast SPO12 gene. We find that overexpression of fission yeast spo12 not only suppresses the phenotype of the mcs3-12 wee1-50 cdc25-22 strain, but also that of a win1-1 wee1-50 cdc25-22 strain at high temperature, indicating that the function of spo12 is not directly related to mcs3. We show that spo12 mRNA is periodically expressed during the fission yeast cell cycle, peaking at the G2/M transition coincidently with cdc15. Deletion of spo12, however, has no overt effect on either the mitotic or meiotic cell cycles, except when the function of the major B type cyclin, Cdc13, is compromised.

  3. Expression of the Salmonella spp. virulence factor SifA in yeast alters Rho1 activity on peroxisomes.

    Science.gov (United States)

    Vinh, Dani B N; Ko, Dennis C; Rachubinski, Richard A; Aitchison, John D; Miller, Samuel I

    2010-10-15

    The Salmonella typhimurium effector protein SifA regulates the assembly and tubulation of the Salmonella phagosome. SifA localizes to the phagosome and interacts with the membrane via its prenylated tail. SifA is a structural homologue of another bacterial effector that acts as a GTP-exchange factor for Rho family GTPases and can bind GDP-RhoA. When coexpressed with a bacterial lipase that is activated by RhoA, SifA can induce tubulation of mammalian endosomes. In an effort to develop a genetic system to study SifA function, we expressed SifA and characterized its activity in yeast. GFP-SifA predominantly localized to yeast peroxisomal membranes. Under peroxisome-inducing conditions, GFP-SifA reduced the number of free peroxisomes and promoted the formation of large peroxisomes with membrane invaginations. GFP-SifA activity depended on the recruitment to peroxisomes of wild-type Rho1p and Pex25p, a receptor for Rho1p. GFP-SifA could also rescue the actin organization defects in pex25Δ and rho1 mutants, suggesting that SifA may recruit and potentiate Rho1p activity. We reexamined the distribution of GFP-SifA in mammalian cells and found the majority colocalizing with LAMP1-positive compartment and not with the peroxisomal marker PMP70. Together, these data suggest that SifA may use a similar mode of action via Rho proteins to alter yeast peroxisomal and mammalian endosomal membranes. Further definition of SifA activity on yeast peroxisomes could provide more insight into its role in regulating host membrane dynamics and small GTPases.

  4. Global Effects on Gene Expression in Fission Yeast by Silencing and RNA Interference Machineries

    DEFF Research Database (Denmark)

    Hansen, Klavs R.; Burns, G.; Mata, J.

    2005-01-01

    sequences such as long terminal repeats (LTRs). We analyzed the global effects of the Clr3 and Clr6 histone deacetylases, the Clr4 methyltransferase, the zinc finger protein Clr1, and the RNAi proteins Dicer, RdRP, and Argonaute on the transcriptome of Schizosaccharomyces pombe (fission yeast). The clr...

  5. Molecular characterization of hap complex components responsible for methanol-inducible gene expression in the methylotrophic yeast Candida boidinii.

    Science.gov (United States)

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sasano, Yu; Sakai, Yasuyoshi

    2015-03-01

    We identified genes encoding components of the Hap complex, CbHAP2, CbHAP3, and CbHAP5, as transcription factors regulating methanol-inducible gene expression in the methylotrophic yeast Candida boidinii. We found that the Cbhap2Δ, Cbhap3Δ, and Cbhap5Δ gene-disrupted strains showed severe growth defects on methanol but not on glucose and nonfermentable carbon sources such as ethanol and glycerol. In these disruptants, the transcriptional activities of methanol-inducible promoters were significantly decreased compared to those of the wild-type strain, indicating that CbHap2p, CbHap3p, and CbHap5p play indispensable roles in methanol-inducible gene expression. Further molecular and biochemical analyses demonstrated that CbHap2p, CbHap3p, and CbHap5p localized to the nucleus and bound to the promoter regions of methanol-inducible genes regardless of the carbon source, and heterotrimer formation was suggested to be necessary for binding to DNA. Unexpectedly, distinct from Saccharomyces cerevisiae, the Hap complex functioned in methanol-specific induction rather than glucose derepression in C. boidinii. Our results shed light on a novel function of the Hap complex in methanol-inducible gene expression in methylotrophic yeasts.

  6. Optimization of the expression of surface antigen SAG1/2 of Toxoplasma gondii in the yeast Pichia pastoris.

    Science.gov (United States)

    Thiruvengadam, G; Init, I; Fong, M Y; Lau, Y L

    2011-12-01

    Surface antigens are the most abundant proteins found on the surface of the parasite Toxoplasma gondii. Surface antigen 1 (SAG1) and Surface antigen 2 (SAG2) remain the most important and extensively studied surface proteins. These antigens have been identified to play a role in host cell invasion, immune modulation, virulence attenuation. Recombinant SAG1/2 was cloned and expressed in yeast Pichia pastoris. We describe here optimization of critical parameters involved in high yield expression of the recombinant SAG1/2. Our results suggest that recombinant SAG1/2 were best expressed at 30ºC, pH 6 and 1% methanol as the carbon source by X33 Pichia cells. Additional optimizations included the downstream process such as ammonium sulphate precipitation and dialysis. The fusion protein was purified using Ni-NTA purification system with 80% recovery. The purified protein was 100% specific and sensitive in detection of toxoplasmosis.

  7. Characterization of expression and stability of recombinant cystein-rich protein human MT1A from yeast.

    Science.gov (United States)

    Jie, Li; Kaifeng, Shao; Dian, Yao; Lin, An; Binggen, Ru

    2005-08-01

    Metallothionein (MT) is the protein that has been shown to bind heavy metals, scavenge free radicals, protect DNA from radiation damage, and alleviate disease symptoms. However, only very limited success has been achieved in expression and production of active recombinant metallothionein. In this study, human metallothionein 1A (hMT1A) was transformed into yeast Pichia pastoris for expression with secretion of the protein into the medium. The expression system was optimized to obtain the targeted protein in active form at 335 mg per litre culture. hMT1A showed the character of extreme instability in the experiment. High concentration, aeration and heavy metal ions are the main factors affecting hMT1A stability.

  8. Rice OsRAD21-2 is Expressed in Actively Dividing Tissues and its Ectopic Expression in Yeast Results in Aberrant Cell Division and Growth

    Institute of Scientific and Technical Information of China (English)

    Chunyan Gong; Tang Li; Qi Li; Longfeng Yan; Tai Wang

    2011-01-01

    Rad21 and its meiotic counterpart Rec8,the key components of the cohesin complex,are essential for sister chromatid cohesion and chromosome segregation in mitosis and meiosis,respectively.In contrast to yeast and vertebrates,which have only two RAD21/REC8 genes,the rice genome encodes four Rad21/Rec8 proteins.Here,we report on the cloning and characterization of OsRAD21-2 from rice (Oryza sativa L.).Phylogenetic analysis of the full-length amino acids showed that OsRad21-2 was grouped into the plant-specific Rad21 subfamily.Semi-quantitative reverse transcription-polymerase chain reaction revealed OsRAD21-2 preferentially expressed in premeiotic flowers.Further RNA in situ hybridization analysis and promoter::β-glucuronidase staining indicated that OsRAD21-2 was mainly expressed in actively dividing tissues including premeiotic stamen,stem intercalary meristem,leaf meristem,and root pericycle.Ectopic expression of OsRAD21-2 in fission yeast resulted in cell growth delay and morphological abnormality.Flow cytometric analysis revealed that the OsRAD21-2-expressed cells were arrested in G2 phase.Our results suggest that OsRad21-2 functions in regulation of cell division and growth.

  9. Expression of C-5 sterol desaturase from an edible mushroom in fisson yeast enhances its ethanol and thermotolerance.

    Science.gov (United States)

    Kamthan, Ayushi; Kamthan, Mohan; Datta, Asis

    2017-01-01

    Bioethanol is an environment friendly and renewable source of energy produced by the fermentation of agricultural raw material by a variety of microorganisms including yeast. Obtaining yeast strains that are tolerant to stresses like high levels of ethanol and high temperature is highly desirable as it reduces cost and increases yield during bioethanol production. Here, we report that heterologous expression of C-5 Sterol desaturase (FvC5SD)-an ergosterol biosynthesis enzyme from an edible mushroom Flammulina velutipes in fission yeast, not only imparts increased thermotolerance but also tolerance towards high ethanol concentration and low pH. This tolerance could be attributed to an increase of ≈1.5 fold in the level of ergosterol and oleic acid (C-18 unsaturated fatty acid) as analysed by gas chromatography- mass spectrometry. FvC5SD is a membrane localized iron binding enzyme that introduces double bond at C-5 position into the Δ7-sterol substrates to yield Δ5, 7- sterols as products. In F. velutipes, FvC5SD transcript was observed to be upregulated by ≈5 fold under low pH condition and by ≈ 9 folds and ≈5 fold at 40°C and 4°C respectively when compared to normal growth temperature of 23°C. Besides, susceptibility to cell wall inhibiting drugs like Congo red and Calcoflour white was also found to increase in FvC5SD expressing S. pombe strain. Alteration in membrane sterol and fatty acid composition could also lead to increase in susceptibility to cell wall inhibiting drugs. Thus, this study has immense industrial application and can be employed to ensure competitiveness of fermentation process.

  10. Linear antigenic mapping of flagellin (FliC) from Salmonella enterica serovar Enteritidis with yeast surface expression system.

    Science.gov (United States)

    Wang, Gaoling; Shi, Bingtian; Li, Tao; Zuo, Teng; Wang, Bin; Si, Wei; Xin, Jiuqing; Yang, Kongbin; Shi, Xuanlin; Liu, Siguo; Liu, Henggui

    2016-02-29

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne illness around the world and can have significant health implications in humans, poultry and other animals. Flagellin (FliC) is the primary component of bacterial flagella. It has been shown that the FliC of S. Enteritidis is a significant antigenic structure and can elicit strong humoral responses against S. Enteritidis infection in chickens. Here, we constructed a FliC antigen library using a yeast surface expression system. Yeast cells expressing FliC peptide antigens were labeled with chicken sera against S. Enteritidis and sorted using FACS. The analyses of FliC peptides revealed that the FliC linear antigenicity in chickens resided on three domains which were able to elicit strong humoral responses in vivo. Animal experiments further revealed that the antibodies elicited by these antigenic domains were able to significantly inhibit the invasion of S. Enteritidis into the liver and spleen of chickens. These findings will facilitate our better understanding of the humoral responses elicited by FliC in chickens upon infection by S. Enteritidis.

  11. Integrated expression of the α-amylase, dextranase and glutathione gene in an industrial brewer's yeast strain.

    Science.gov (United States)

    Wang, Jin-Jing; Wang, Zhao-Yue; He, Xiu-Ping; Zhang, Bo-Run

    2012-01-01

    Genetic engineering is widely used to meliorate biological characteristics of industrial brewing yeast. But how to solve multiple problems at one time has become the bottle neck in the genetic modifications of industrial yeast strains. In a newly constructed strain TYRL21, dextranase gene was expressed in addition of α-amylase to make up α-amylase's shortcoming which can only hydrolyze α-1,4-glycosidic bond. Meanwhile, 18s rDNA repeated sequence was used as the homologous sequence for an effective and stable expression of LSD1 gene. As a result, TYRL21 consumed about twice much starch than the host strain. Moreover TYRL21 speeded up the fermentation which achieved the maximum cell number only within 3 days during EBC tube fermentation. Besides, flavor evaluation comparing TYRL21 and wild type brewing strain Y31 also confirmed TYRL21's better performances regarding its better saccharides utilization (83% less in residual saccharides), less off-flavor compounds (57% less in diacetyl, 39% less in acetaldehyde, 67% less in pentanedione), and improved stability index (increased by 49%) which correlated with sensory evaluation of final beer product.

  12. UV-dependent production of 25-hydroxyvitamin D{sub 2} in the recombinant yeast cells expressing human CYP2R1

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi; Kamakura, Masaki [Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 (Japan); Ohta, Miho [Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, 4-4-1 Nanko-naka, Suminoe-ku, Osaka 559-0033 (Japan); Sakaki, Toshiyuki, E-mail: tsakaki@pu-toyama.ac.jp [Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 (Japan)

    2013-05-03

    Highlights: •We produce 25-hydroxyvitamin D in the recombinant yeast expressing human CYP2R1. •Vitamin D2 is produced in yeast from endogenous ergosterol with UV irradiation. •We produce 25-hydroxyvitamin D2 in the recombinant yeast without added substrate. -- Abstract: CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D{sub 3} or vitamin D{sub 2} was added to the cell suspension of CYP2R1-expressing yeast cells in a buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D{sub 2} was produced without additional vitamin D{sub 2}. Endogenous ergosterol was likely converted into vitamin D{sub 2} by UV irradiation and thermal isomerization, and then the resulting vitamin D{sub 2} was converted to 25-hydroxyvitamin D{sub 2} by CYP2R1. This novel method for producing 25-hydroxyvitamin D{sub 2} without a substrate could be useful for practical purposes.

  13. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance.

    Science.gov (United States)

    Romero, C; Bellés, J M; Vayá, J L; Serrano, R; Culiáñez-Macià, F A

    1997-03-01

    The yeast trehalose-6-phosphate synthase gene (TPS1) was engineered under the control of the cauliflower mosaic virus regulatory sequences (CaMV35S) for expression in plants. Using Agrobacterium-mediated transfer, the gene was incorporated into the genomic DNA and constitutively expressed in Nicotiana tabacum L. plants. Trehalose was determined in the transformants, by anion-exchange chromatography coupled to pulsed amperometric detection. The non-reducing disaccharide accumulated up to 0.17 mg per g fresh weight in leaf extracts of transgenic plants. Trehaloseaccumulating plants exhibited multiple phenotypic alterations, including stunted growth, lancet-shaped leaves, reduced sucrose content and improved drought tolerance. These pleiotropic effects, and the fact that water loss from detached leaves was not significantly affected by trehalose accumulation, suggest that synthesis of this sugar, rather than leading to an osmoprotectant effect, had altered sugar metabolism and regulatory pathways affecting plant development and stress tolerance.

  14. Expression of Pseudomonas syringae type III effectors in yeast under stress conditions reveals that HopX1 attenuates activation of the high osmolarity glycerol MAP kinase pathway.

    Science.gov (United States)

    Salomon, Dor; Bosis, Eran; Dar, Daniel; Nachman, Iftach; Sessa, Guido

    2012-11-01

    The Gram-negative bacterium Pseudomonas syringae pv. tomato (Pst) is the causal agent of speck disease in tomato. Pst pathogenicity depends on a type III secretion system that delivers effector proteins into host cells, where they promote disease by manipulating processes to the advantage of the pathogen. Previous studies identified seven Pst effectors that inhibit growth when expressed in yeast under normal growth conditions, suggesting that they interfere with cellular processes conserved in yeast and plants. We hypothesized that effectors also target conserved cellular processes that are required for yeast growth only under stress conditions. We therefore examined phenotypes induced by expression of Pst effectors in yeast grown in the presence of various stressors. Out of 29 effectors tested, five (HopX1, HopG1, HopT1-1, HopH1 and AvrPtoB) displayed growth inhibition phenotypes only in combination with stress conditions. Viability assays revealed that the HopX1 effector caused loss of cell viability under prolonged osmotic stress. Using transcription reporters, we found that HopX1 attenuated the activation of the high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway, which is responsible for yeast survival under osmotic stress, while other MAPK pathways were mildly affected by HopX1. Interestingly, HopX1-mediated phenotypes in yeast were dependent on the putative transglutaminase catalytic triad of the effector. This study enlarges the pool of phenotypes available for the functional analysis of Pst type III effectors in yeast, and exemplifies how analysis of phenotypes detected in yeast under stress conditions can lead to the identification of eukaryotic cellular processes affected by bacterial effectors.

  15. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klein, Mathias; Islam, Zia ul; Knudsen, Peter Boldsen;

    2016-01-01

    of predicted glycerol facilitators (Fps1 homologues) from superior glycerol-utilizing yeast species such as Pachysolen tannophilus, Komagataella pastoris, Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S....... cerevisiae wild-type strain (CBS 6412-13A). The maximum specific growth rate increased from 0.13 up to 0.18 h−1 and a biomass yield coefficient of 0.56 gDW/gglycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based...

  16. Improving the performance of industrial ethanol-producing yeast by expressing the aspartyl protease on the cell surface.

    Science.gov (United States)

    Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang

    2010-12-01

    The yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. The PEP4 gene, encoding a vacuolar aspartyl protease in Saccharomyces cerevisiae, was either secretively or cell-surface anchored expressed in industrial ethanol-producing S. cerevisiae. The obtained recombinant strains APA (expressing the protease secretively) and APB (expressing the protease on the cell wall) were studied under ethanol fermentation conditions in feed barley cultures. The effects of expression of the protease on product formation, growth and cell protein content were measured. The biomass yield of the wild-type was clearly lower than that of the recombinant strains (0.578 ± 0.12 g biomass/g glucose for APA and 0.582 ± 0.08 g biomass/g glucose for APB). In addition, nearly 98-99% of the theoretical maximum level of ethanol yield was achieved (relative to the amount of substrate consumed) for the recombinant strains, while limiting the nitrogen source resulted in dissatisfactory fermentation for the wild-type and more than 30 g/l residual sugar was detected at the end of fermentation. In addition, higher growth rate, viability and lower yields of byproducts such as glycerol and pyruvic acid for recombinant strains were observed. Expressing acid protease can be expected to lead to a significant increase in ethanol productivity.

  17. Yeast expression and DNA immunization of hepatitis B virus S gene with second-loop deletion of α determinant region

    Institute of Scientific and Technical Information of China (English)

    Hui Hu; Xiao-Mou Peng; Yang-Su Huang; Lin Gu; Qi-Feng Xie; Zhi-Liang Gao

    2004-01-01

    AIM: Immune escape mutations of HBV often occur in the dominant epitope, the second-loop of the a determinant of hepatitis B surface antigen (HBsAg). To let the hosts respond to the subdominant epitopes in HBsAg may be an effective way to decrease the prevalence of immune escape mutants. For this reason, a man-made clone of HBV S gene with the second-loop deletion was constructed. Its antigenicity was evaluated by yeast expression analysis and DNA immunization in mice.METHODS: HBV S gene with deleted second-loop, amino acids from 139 to 145, was generated using splicing by overlap extension. HBV deleted S gene was then cloned into the yeast expression vector pPIC9 and the mammalian expression vector pcDNA3 to generate pHB-SDY and pHB-SD,respectively. The complete S gene was cloned into the same vectors as controls. The deleted recombinant HBsAg expressed in yeasts was detected using Abbott IMx HBsAg test kits, enzyme-linked immunoadsorbent assay (ELISA)and immune dot blotting to evaluate its antigenicity in vitro.The anti-HBs responses to DNA immunization in BALB/c mice were detected using Abbott IMx AUSAB test kits to evaluate the antigenicity of that recombinant protein in vivo.RESULTS: Both deleted and complete HBsAg were successfully expressed in yeasts. They were intracellular expressions. The deleted HBsAg could not be detected by ELISA, in which the monoclonal anti-HBs against the α determinant was used, but could be detected by Abbott IMx and immune dot blotting, in which multiple monoclonal antiHBs and polyclonal anti-HBs were used, respectively. The activity of the deleted HBsAg detected by Abbott IMx was much lower than that of complete HBsAg (the ratio of sample value/cut off value, 106±26.7 vs1 814.4±776.3, P<0.01,t = 5.02). The anti-HBs response of pHB-SD to DNA immunization was lower than that of complete HBV S gene vector pHB (the positive rate 2/10 vs6/10, 4.56±3.52 mIU/mL vs27.60±17.3 mIU/mL, P= 0.02, t= 2.7).CONCLUSIONS: HBsAg with deleted

  18. Increased expression of Hsp40 chaperones, transcriptional factors, and ribosomal protein Rpp0 can cure yeast prions.

    Science.gov (United States)

    Kryndushkin, Dmitry S; Smirnov, Vladimir N; Ter-Avanesyan, Michael D; Kushnirov, Vitaly V

    2002-06-28

    The Sup35 (eRF3) translation termination factor of Saccharomyces cerevisiae can undergo a prion-like conformational conversion, thus resulting in the [PSI(+)] nonsense-suppressor determinant. In vivo this process depends critically on the chaperone Hsp104, whose lack or overexpression can cure [PSI(+)]. The use of artificial prion [PSI(+)PS] based on a hybrid Sup35PS with prion domain from the yeast Pichia methanolica allowed us to uncover three more chaperones, Ssb1, Ssa1, and Ydj1, whose overexpression can cure prion determinants. Here, we used the [PSI(+)PS] to search a multicopy yeast genomic library for novel factors able to cure prions. It was found that overexpression of the Hsp40 family chaperones Sis1 and Ynl077w, chaperone Sti1, transcriptional factors Sfl1 and Ssn8, and acidic ribosomal protein Rpp0 can interfere with propagation and manifestation of [PSI(+)PS] in a prion strain-specific manner. Some of these factors also affected the manifestation and propagation of conventional [PSI(+)]. Excess of Sfl1, Ssn8, and Rpp0 influenced at least one of the tested chaperone-specific promoters, SSA4, HSP104, and model promoters, with either the heat shock or stress response elements. Thus, the induction of chaperone expression by these proteins could explain their prion-curing effects.

  19. Development of a plant viral-vector-based gene expression assay for the screening of yeast cytochrome p450 monooxygenases.

    Science.gov (United States)

    Hanley, Kathleen; Nguyen, Long V; Khan, Faizah; Pogue, Gregory P; Vojdani, Fakhrieh; Panda, Sanjay; Pinot, Franck; Oriedo, Vincent B; Rasochova, Lada; Subramanian, Mani; Miller, Barbara; White, Earl L

    2003-02-01

    Development of a gene discovery tool for heterologously expressed cytochrome P450 monooxygenases has been inherently difficult. The activity assays are labor-intensive and not amenable to parallel screening. Additionally, biochemical confirmation requires coexpression of a homologous P450 reductase or complementary heterologous activity. Plant virus gene expression systems have been utilized for a diverse group of organisms. In this study we describe a method using an RNA vector expression system to phenotypically screen for cytochrome P450-dependent fatty acid omega-hydroxylase activity. Yarrowia lipolytica CYP52 gene family members involved in n-alkane assimilation were amplified from genomic DNA, cloned into a plant virus gene expression vector, and used as a model system for determining heterologous expression. Plants infected with virus vectors expressing the yeast CYP52 genes (YlALK1-YlALK7) showed a distinct necrotic lesion phenotype on inoculated plant leaves. No phenotype was detected on negative control constructs. YlALK3-, YlALK5-, and YlALK7-inoculated plants all catalyzed the terminal hydroxylation of lauric acid as confirmed using thin-layer and gas chromatography/mass spectrometry methods. The plant-based cytochrome P450 phenotypic screen was tested on an n-alkane-induced Yarrowia lipolytica plant virus expression library. A subset of 1,025 random library clones, including YlALK1-YlALK7 constructs, were tested on plants. All YlALK gene constructs scored positive in the randomized screen. Following nucleotide sequencing of the clones that scored positive using a phenotypic screen, approximately 5% were deemed appropriate for further biochemical analysis. This report illustrates the utility of a plant-based system for expression of heterologous cytochrome P450 monooxygenases and for the assignment of gene function.

  20. The suppressor of AAC2 Lethality SAL1 modulates sensitivity of heterologously expressed artemia ADP/ATP carrier to bongkrekate in yeast.

    Science.gov (United States)

    Wysocka-Kapcinska, Monika; Torocsik, Beata; Turiak, Lilla; Tsaprailis, George; David, Cynthia L; Hunt, Andrea M; Vekey, Karoly; Adam-Vizi, Vera; Kucharczyk, Roza; Chinopoulos, Christos

    2013-01-01

    The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner.

  1. Differential gene expression and Hog1 interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii

    Directory of Open Access Journals (Sweden)

    Plemenitaš Ana

    2007-08-01

    Full Text Available Abstract Background Fluctuations in external salinity force eukaryotic cells to respond by changes in the gene expression of proteins acting in protective biochemical processes, thus counteracting the changing osmotic pressure. The high-osmolarity glycerol (HOG signaling pathway is essential for the efficient up-regulation of the osmoresponsive genes. In this study, the differential gene expression of the extremely halotolerant black yeast Hortaea werneckii was explored. Furthermore, the interaction of mitogen-activated protein kinase HwHog1 and RNA polymerase II with the chromatin in cells adapted to an extremely hypersaline environment was analyzed. Results A cDNA subtraction library was constructed for H. werneckii, adapted to moderate salinity or an extremely hypersaline environment of 4.5 M NaCl. An uncommon osmoresponsive set of 95 differentially expressed genes was identified. The majority of these had not previously been connected with the adaptation of salt-sensitive S. cerevisiae to hypersaline conditions. The transcriptional response in hypersaline-adapted and hypersaline-stressed cells showed that only a subset of the identified genes responded to acute salt-stress, whereas all were differentially expressed in adapted cells. Interaction with HwHog1 was shown for 36 of the 95 differentially expressed genes. The majority of the identified osmoresponsive and HwHog1-dependent genes in H. werneckii have not been previously reported as Hog1-dependent genes in the salt-sensitive S. cerevisiae. The study further demonstrated the co-occupancy of HwHog1 and RNA polymerase II on the chromatin of 17 up-regulated and 2 down-regulated genes in 4.5 M NaCl-adapted H. werneckii cells. Conclusion Extremely halotolerant H. werneckii represents a suitable and highly relevant organism to study cellular responses to environmental salinity. In comparison with the salt-sensitive S. cerevisiae, this yeast shows a different set of genes being expressed at

  2. CASCADE, a platform for controlled gene amplification for high, tunable and selection-free gene expression in yeast

    Science.gov (United States)

    Strucko, Tomas; Buron, Line Due; Jarczynska, Zofia Dorota; Nødvig, Christina Spuur; Mølgaard, Louise; Halkier, Barbara Ann; Mortensen, Uffe Hasbro

    2017-01-01

    Over-expression of a gene by increasing its copy number is often desirable in the model yeast Saccharomyces cerevisiae. It may facilitate elucidation of enzyme functions, and in cell factory design it is used to increase production of proteins and metabolites. Current methods are typically exploiting expression from the multicopy 2 μ-derived plasmid or by targeting genes repeatedly into sequences like Ty or rDNA; in both cases, high gene expression levels are often reached. However, with 2 μ-based plasmid expression, the population of cells is very heterogeneous with respect to protein production; and for integration into repeated sequences it is difficult to determine the genetic setup of the resulting strains and to achieve specific gene doses. For both types of systems, the strains often suffer from genetic instability if proper selection pressure is not applied. Here we present a gene amplification system, CASCADE, which enables construction of strains with defined gene copy numbers. One or more genes can be amplified simultaneously and the resulting strains can be stably propagated on selection-free medium. As proof-of-concept, we have successfully used CASCADE to increase heterologous production of two fluorescent proteins, the enzyme β-galactosidase the fungal polyketide 6-methyl salicylic acid and the plant metabolite vanillin glucoside. PMID:28134264

  3. Gene expression analysis using strains constructed by NHEJ-mediated one-step promoter cloning in the yeast Kluyveromyces marxianus.

    Science.gov (United States)

    Suzuki, Ayako; Fujii, Hiroshi; Hoshida, Hisashi; Akada, Rinji

    2015-09-01

    Gene expression analysis provides valuable information to evaluate cellular state. Unlike quantitative mRNA analysis techniques like reverse-transcription PCR and microarray, expression analysis using a reporter gene has not been commonly used for multiple-gene analysis, probably due to the difficulty in preparing multiple reporter-gene constructs. To circumvent this problem, we developed a novel one-step reporter-gene construction system mediated by non-homologous end joining (NHEJ) in the yeast Kluyveromyces marxianus. As a selectable reporter gene, the ScURA3 selection marker was fused in frame with a red fluorescent gene yEmRFP (ScURA3:yEmRFP). The N-terminally truncated ScURA3:yEmRFP fragment was prepared by PCR. Promoter sequences were also prepared by PCR using primers containing the sequence of the deleted ScURA3 N-terminus to attach at their 3(') ends. The two DNA fragments were used for the transformation of a ura3(-) strain of K. marxianus, in which two DNA fragments are randomly joined and integrated into the chromosome through NHEJ. Only the correctly aligned fragments produced transformants on uracil-deficient medium and expressed red fluorescence under the control of the introduced promoters. A total of 36 gene promoters involved in glycolysis and other pathways were analyzed. Fluorescence measurements of these strains allowed real-time gene expression analysis in different culture conditions.

  4. Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast.

    Science.gov (United States)

    López-Torrejón, Gema; Jiménez-Vicente, Emilio; Buesa, José María; Hernandez, Jose A; Verma, Hemant K; Rubio, Luis M

    2016-04-29

    The extreme sensitivity of nitrogenase towards oxygen stands as a major barrier to engineer biological nitrogen fixation into cereal crops by direct nif gene transfer. Here, we use yeast as a model of eukaryotic cell and show that aerobically grown cells express active nitrogenase Fe protein when the NifH polypeptide is targeted to the mitochondrial matrix together with the NifM maturase. Co-expression of NifH and NifM with Nif-specific Fe-S cluster biosynthetic proteins NifU and NifS is not required for Fe protein activity, demonstrating NifH ability to incorporate endogenous mitochondrial Fe-S clusters. In contrast, expression of active Fe protein in the cytosol requires both anoxic growth conditions and co-expression of NifH and NifM with NifU and NifS. Our results show the convenience of using mitochondria to host nitrogenase components, thus providing instrumental technology for the grand challenge of engineering N2-fixing cereals.

  5. Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast

    Science.gov (United States)

    López-Torrejón, Gema; Jiménez-Vicente, Emilio; Buesa, José María; Hernandez, Jose A.; Verma, Hemant K.; Rubio, Luis M.

    2016-01-01

    The extreme sensitivity of nitrogenase towards oxygen stands as a major barrier to engineer biological nitrogen fixation into cereal crops by direct nif gene transfer. Here, we use yeast as a model of eukaryotic cell and show that aerobically grown cells express active nitrogenase Fe protein when the NifH polypeptide is targeted to the mitochondrial matrix together with the NifM maturase. Co-expression of NifH and NifM with Nif-specific Fe–S cluster biosynthetic proteins NifU and NifS is not required for Fe protein activity, demonstrating NifH ability to incorporate endogenous mitochondrial Fe–S clusters. In contrast, expression of active Fe protein in the cytosol requires both anoxic growth conditions and co-expression of NifH and NifM with NifU and NifS. Our results show the convenience of using mitochondria to host nitrogenase components, thus providing instrumental technology for the grand challenge of engineering N2-fixing cereals. PMID:27126134

  6. Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals

    DEFF Research Database (Denmark)

    Black, P N; Færgeman, Nils J.; DiRusso, C C

    2000-01-01

    signal that modulates gene expression. In the bacteria Escherichia coli, long-chain fatty acyl-CoA bind directly to the transcription factor FadR. Acyl-CoA binding renders the protein incapable of binding DNA, thus preventing transcription activation and repression of many genes and operons. In the yeast......). Both repression and activation are dependent upon the function of either of the acyl-CoA synthetases Faa1p or Faa4p. In mammals, purified hepatocyte nuclear transcription factor 4alpha (HNF-4alpha) like E. coli FadR, binds long chain acyl-CoA directly. Coexpression of HNF-4alpha and acyl-CoA synthetase...

  7. Heterologous Expression of Membrane and Soluble Proteins Derepresses GCN4 mRNA Translation in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Steffensen, L.; Pedersen, P. A.

    2006-01-01

    of the membrane-bound 1ß1 Na,K-ATPase from pig kidney, the rat pituitary adenylate cyclase seven-transmembrane-domain receptor, or a 401-residue soluble part of the Na,K-ATPase 1 subunit derepressed GCN4 mRNA translation up to 70-fold. GCN4 translation was very sensitive to the presence of heterologous protein......This paper describes the first physiological response at the translational level towards heterologous protein production in Saccharomyces cerevisiae. In yeast, the phosphorylation of eukaryotic initiation factor 2 (eIF-2 ) by Gcn2p protein kinase mediates derepression of GCN4 mRNA translation. Gcn4......, as a density of 1 of heterologous membrane protein derepressed translation maximally. Translational derepression of GCN4 was not triggered by misfolding in the endoplasmic reticulum, as expression of the wild type or temperature-sensitive folding mutants of the Na,K-ATPase increased GCN4 translation...

  8. Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain.

    Science.gov (United States)

    Yamakawa, Syun-ichi; Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Kondo, Akihiko

    2010-06-01

    We successfully demonstrated batch ethanol fermentation repeated ten times from raw starch with high ethanol productivity. We constructed a yeast diploid strain coexpressing the maltose transporter AGT1, alpha-amylase, and glucoamylase. The introduction of AGT1 allows maltose and maltotriose fermentation as well as the improvement of amylase activities. We also found that alpha-amylase activity during fermentation was retained by the addition of 10 mM calcium ion and that the highest alpha-amylase activity was 9.26 U/ml during repeated fermentation. The highest ethanol productivity was 2.22 g/l/h at the fourth batch, and after ten cycles, ethanol productivity of more than 1.43 g/l/h was retained, as was alpha-amylase activity at 6.43 U/ml.

  9. Combination of real-value smell and metaphor expression aids yeast detection.

    Directory of Open Access Journals (Sweden)

    Kouki Fujioka

    Full Text Available BACKGROUND: Smell provides important information about the quality of food and drink. Most well-known for their expertise in wine tasting, sommeliers sniff out the aroma of wine and describe them using beautiful metaphors. In contrast, electronic noses, devices that mimic our olfactory recognition system, also detect smells using their sensors but describe them using electronic signals. These devices have been used to judge the freshness of food or detect the presence of pathogenic microorganisms. However, unlike information from gas chromatography, it is difficult to compare odour information collected by these devices because they are made for smelling specific smells and their data are relative intensities. METHODOLOGY: Here, we demonstrate the use of an absolute-value description method using known smell metaphors, and early detection of yeast using the method. CONCLUSIONS: This technique may help distinguishing microbial-contamination of food products earlier, or improvement of the food-product qualities.

  10. Coexpression of redox partners increases the hydrocortisone (cortisol) production efficiency in CYP11B1 expressing fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Hakki, Tarek; Zearo, Silvia; Drăgan, Călin-Aurel; Bureik, Matthias; Bernhardt, Rita

    2008-02-01

    Cytochromes P450 play a vital role in the steroid biosynthesis pathway of the adrenal gland. An example of an essential P450 cytochrome is the steroid 11beta-hydroxylase CYP11B1, which catalyses the conversion of 11-deoxycorticol to hydrocortisone. However, despite its high biotechnological potential, this enzyme has so far been unsuccessfully employed in present-day biotechnology due to a poor expression yield and inherent protein instability. In this study, CYP11B1 was biotransformed into various strains of the yeast Schizosaccharomyces pombe, all of which also expressed the electron transfer proteins adrenodoxin and/or adrenodoxin reductase - central components of the mitochondrial P450 system - in order to maximise hydrocortisone production efficiency in our proposed model system. Site-directed mutagenesis of CYP11B1 at positions 52 and 78 was performed in order to evaluate the impact of altering the amino acids at these sites. It was found that the presence of an isoleucine at position 78 conferred the highest 11beta-hydroxylation activity of CYP11B1. Coexpression of adrenodoxin and adrenodoxin reductase appeared to further increase the 11beta-hydroxylase activity of the enzyme (3.4 fold). Adrenodoxin mutants which were found to significantly enhance enzyme efficiency in other cytochromes in previous studies were also tested in our system. It was found that, in this case, the wild type adrenodoxin was more efficient. The new fission yeast strain TH75 coexpressing the wild type Adx and AdR displays high hydrocortisone production efficiency at an average of 1mM hydrocortisone over a period of 72h, the highest value published to date for this biotransformation. Finally, our research shows that pTH2 is an ideal plasmid for the coexpression of the mitochondrial electron transfer counterparts, adrenodoxin and adrenodoxin reductase, in Schizosaccharomyces pombe, and so could serve as a convenient tool for future biotechnological applications.

  11. Process for assembly and transformation into Saccharomyces cerevisiae of a synthetic yeast artificial chromosome containing a multigene cassette to express enzymes that enhance xylose utilization designed for an automated pla

    Science.gov (United States)

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system ...

  12. Refolding and Purification of Yeast Acetyl-CoA Carboxylases CT Domain Expressed as Inclusion Bodies in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    YANG Xue-ying; TAO Jin; ZHENG Liang-yu; WANG Rui-jian; ZHAO Ke; CAO Shu-gui

    2009-01-01

    Acetyl-CoA carboxylase(ACCase) is a crucial enzyme in fatty acid synthesis, by regulating the first committed step in the process. Therefore, it is a potential target for the development of new compounds against obesity or as herbicides. The cDNA encoding yeast ACCase CT domains(YCTs) from Saccharomyces cerevisiae was amplified by RT-PCR and inserted into the vector PET28a(+) for bacterial expression of YCT fused to N-terminal His-tag(YCT-his6). YCTs-his6 was expressed in Escherichia coli BL21(DE3) Plys as inclusion bodies, which was solubilized in 8 mol/L urea. Ni-agarose chromatography was used to purify the inclusion bodies under denaturing condition. Correct refolding was achieved via systematic dialysis to remove the denaturant gently in the presence of 0.5 mmol/L Triton X-100. The low concentration Triton X-100 was included in the refolding buffer to increase the solubilization and enhance dimeric formation of refolding proteins. The activity of the refolded YCT-his6 was 1.2 U/mg as measured in a spectrophotometric assay using malonyl-CoA as the substrate. To our knowledge, it is the first time that the bioactive YCT-his6 has been expressed successfully in E. Coli and isolated from their inclusion bodies.

  13. [Heterologous extracellular expression and initial characterization of the peroxisomal catalase from the methylotrophic yeast Hansenula polymorpha in Pichia pastoris].

    Science.gov (United States)

    Tian, Y -S; Xu, H; Peng, R -H; Yao, Q -H

    2013-01-01

    Catalase is well known to eliminate H2O2 in cells and reduces the toxicity of peroxide compounds. A catalase gene HpCat1 of methylotrophic yeast Hansenula polymorpha without the part coding the native signal peptide was cloned into expression vector pYM3165 and then integrated into genome of Pichia pastoris GS115 by electroporation. The result of the enzyme activity assay and SDS-PAGE demonstrated that the recombinant protein (HpCAT1) of H. polymorpha was extracellularly expressed in P. pastoris. The expressed catalase was recovered from the culture supernatant of P. pastoris GS 115 and purified by (NH4) 2SO4 fractionation and Ni-NTA affinity chromatography. The main biochemical properties of the recombinant protein HpCAT1, such as thermodependence and thermostability, pH optimum and pH stability, as well as the effect of metal ions and chemicals, were characterized. With H2O2 as the substrate, HpCAT1 displayed pH and tem- perature optima of approximately 2.6 and 45°C,respectively. The recombinant HpCAT1 activity was inhibited by 1 mM Hg2+ and Cu2+, but was highly enhanced by 1.0 mM Fe2+.

  14. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris.

    Science.gov (United States)

    Weninger, Astrid; Hatzl, Anna-Maria; Schmid, Christian; Vogl, Thomas; Glieder, Anton

    2016-10-10

    The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is one of the most commonly used expression systems for heterologous protein production. However the recombination machinery in P. pastoris is less effective in contrast to Saccharomyces cerevisiae, where efficient homologous recombination naturally facilitates genetic modifications. The lack of simple and efficient methods for gene disruption and specifically integrating cassettes has remained a bottleneck for strain engineering in P. pastoris. Therefore tools and methods for targeted genome modifications are of great interest. Here we report the establishment of CRISPR/Cas9 technologies for P. pastoris and demonstrate targeting efficiencies approaching 100%. However there appeared to be a narrow window of optimal conditions required for efficient CRISPR/Cas9 function for this host. We systematically tested combinations of various codon optimized DNA sequences of CAS9, different gRNA sequences, RNA Polymerase III and RNA Polymerase II promoters in combination with ribozymes for the expression of the gRNAs and RNA Polymerase II promoters for the expression of CAS9. Only 6 out of 95 constructs were functional for efficient genome editing. We used this optimized CRISPR/Cas9 system for gene disruption studies, to introduce multiplexed gene deletions and to test the targeted integration of homologous DNA cassettes. This system allows rapid, marker-less genome engineering in P. pastoris enabling unprecedented strain and metabolic engineering applications.

  15. Cloning and expressing a recombinant human tissue inhibitor of metalloproteinase-2 (TIMP-2)in methylotrophic yeast Pichia pastoris and its characterizations

    Institute of Scientific and Technical Information of China (English)

    YAN Xunyou; ZHAO Hongliang; ZHANG Weiguang; XUE Chong; LIU Zhimin

    2007-01-01

    To obtain human tissue inhibitor of metalloproteinase-2 (TIMP-2)cDNA and the secretory expression of TIMP-2 gene in Pichia pastoris,we designed and synthesized a 618 base pairs artificial gene coding for the TIMP-2 with a computer-aided design method using a standard chemical synthesis technique,which was composed of frequently used codons in the highly expressed Pichia pastoris genes.Then the synthetic gene encoding TIMP-2 was checked by means of dideoxynucleotide sequencing.The verified gene of TIMP-2 was cloned to the Escherichia coli-yeast shuttle vector of pPIC9 to construct a recombinant plasmid pPIC9-T2.The plasmid was transformed into GS115 cells of the methylotrophic yeast,Pichia pastoris by electroporation,and we got the expression cell through phenotype selection and induction with methanol.Separation,purification,and bioactivity analysis of the expressed products were performed.

  16. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  17. Hydrolytic properties of two cellulases of Trichoderma reesei expressed in yeast.

    Science.gov (United States)

    Bailey, M J; Siika-aho, M; Valkeajärvi, A; Penttilä, M E

    1993-02-01

    Two cellulases of the filamentous fungus Trichoderma reesei, cellobiohydrolase II (CBHII, EC 3.2.1.91) and endoglucanase I (EGI, EC 3.2.1.4), produced in recombinant strains of the yeast Saccharomyces cerevisiae, were tested in the hydrolysis of cellulose, xylan and other polymeric substrates. Both enzymes were active against unsubstituted, insoluble cellulose. CBHII had greater activity than EGI against crystalline cellulose, whereas in the case of amorphous substrate the order was reversed. Evidence for synergism was obtained when mixtures of the two enzymes were used with a constant total protein dosage. The EGI was also active against soluble substituted cellulose derivatives, whereas the activity of CBHII against these substrates was insignificant. Both enzymes were active against barley (1-->3,1-->4)-beta-glucan, but were inactive against (1-->3,1-->6)-beta-glucan (laminarin). An apparent low mannan-degrading activity of EGI against locust-bean (Ceratonia siliqua) gum galactomannan was not confirmed when homopolymeric mannan was used as substrate in a prolonged hydrolysis test. EGI exhibited considerably greater activity against insoluble, unsubstituted hardwood xylan than against amorphous cellulose. Soluble 4-O-methyl-glucuronoxylan was also attacked by EGI, although to a somewhat lesser extent than the unsubstituted xylan. By comparison with two purified xylanases of T. reesei, EGI produced xylo-oligosaccharides with a longer mean chain length when acting on both substituted and unsubstituted xylan substrates. CBHII was inactive against xylan.

  18. 5´-UTR introns enhance protein expression in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Hoshida, Hisashi; Kondo, Masaki; Kobayashi, Takafumi; Yarimizu, Tohru; Akada, Rinji

    2017-01-01

    Saccharomyces cerevisiae is one of the most suitable microorganisms for recombinant protein production. To enhance protein production, various expression systems have been intensively studied. However, the effect of introns on protein expression has not been examined deeply in S. cerevisiae. In this study, we analyzed the effect of some introns on protein expression. RPS25A, RPS26A, and RPS26B contain single introns within the 5´-untranslated regions (5´-UTRs), and RPS24A has an intron just downstream of the initiation codon. Expression activity of the promoter regions containing introns (intron promoters) were analyzed by luciferase reporter assays. These intron promoters showed higher expression than the TDH3 promoter (TDH3p), which is one of the strongest promoters in S. cerevisiae. Deletion of the introns from these promoters decreased luciferase expression, indicating that introns have a role in enhancing protein expression. To develop artificial strong intron promoters, several chimeric promoters were constructed using the TDH3p and the RPS25A intron promoter. A construct containing the entire TDH3p followed by the RPS25A intron showed about 50-fold higher expression than the TDH3p alone. Inducible expressions driven by the GAL10 promoter and the CUP1 promoter were also enhanced by the RPS25A intron. However, enhancement of mRNA accumulation by the TDH3p and the GAL10 promoter with the RPS25A intron was lower than the effect on luciferase activity, suggesting that the intron affects post-transcriptionally. The chimeric promoter, TDH3p-RPS25A-intron, enhanced expressions of some, but not all proteins examined, indicating that 5'-UTR introns increase production of a certain type of recombinant proteins in S. cerevisiae.

  19. Endoglucanase enzyme protein engineering by site-directed mutagenesis to improve the enzymatic properties and its expression in yeast

    Directory of Open Access Journals (Sweden)

    Farnaz Nikzad Jamnani

    2013-11-01

    Full Text Available Introduction: Fossil fuel is an expensive and finite energy source. Therefore, the use of renewable energy and biofuels production has been taken into consideration. One of the most suitable raw materials for biofuels is cellulosic compounds. Only microorganisms that contain cellulose enzymes can decompose cellulose and fungus of Trichodermareesei is the most important producer of this enzyme. Methods: In this study the nucleotide sequence of endoglucanase II, which is the starter of attack to cellulose chains, synthesized from amino acid sequence of this enzyme in fungus T.reesei and based on codon usage in the host; yeast Pichiapastoris. To produce optimized enzyme and to decrease the production time and enzyme price, protein engineering will be used. There are some methods to improve the enzymatic properties like site-directed mutagenesis in which amino-acid replacement occur. In this study two mutations were induced in endoglucanase enzyme gene by PCR in which free syctein positions 169 and 393 were switched to valine and histidine respectively. Then this gene was inserted into the pPinka expression vector and cloned in Escherichia coli. The recombinant plasmids were transferred into P.pastoris competent cells with electroporation, recombinant yeasts were cultured in BMMY medium and induced with methanol. Results: The sequencing of gene proved the induction of the two mutations and the presence of recombinant enzyme was confirmed by dinitrosalicilic acid method and SDS-PAGE. Conclusion: Examination of biochemical properties revealed that the two mutations simultaneously decreased catalytic power, thermal stability and increased the affinity of enzyme and substrate.

  20. Secretory expression of human protein in the Yeast Pichia pastoris by controlled fermentor culture.

    Science.gov (United States)

    Murasugi, Akira

    2010-06-01

    The heterologous protein expression system of Pichia pastoris is now widely used for expression of many human proteins, because the efficiently expressed proteins will be correctly folded in Pichia pastoris cells and also efficiently secreted from the cells. Recombinant human serum albumin (rHSA) is efficiently secreted from Pichia pastoris. Nowadays, the expression of rHSA exceeds 10g in 1 L fermentor culture broth, and the protein is completely purified. Recombinant HSA expressed in Pichia pastoris was approved as a medicine by the authorities in 2007, and launched in 2008 in Japan. One of the insulin precursors (IP) was also successfully expressed in Pichia pastoris, and secreted up to 3.6g in 1 L medium using a multi-copy transformant. The insulin precursor could be efficiently converted to insulin, the final product, in vitro. Human growth hormone was also expressed in Pichia pastoris, and secreted up to 49 mg in 1 L medium. These proteins are also important for clinical applications. Midkine and pleiotrophin may be two of the candidates for clinical applications. Secretion signals, the copy number of an expression cassette in transformants, and culture conditions for fermentation were examined for efficient expression of these proteins in Pichia pastoris. The best signal was selected, and other factors were optimized. The amounts of native midkine and native pleiotrophin expressed were approximately 0.36g and 0.26g in 1 L medium, respectively. Expression of bile-salt stimulated lipase (BSSL) had been extremely low in the beginning of a fermentor culture experiment. However, approximately 1 g rBSSL in 1 L medium was finally expressed in a fermentor by unlimited feeding of glycerol for cell growth and optimization of other factors. BSSL from human milk and rBSSL from Pichia cells are glycosylated. The structure differences between these glycans are obvious. When humanization of Pichia glycans is established by genetic engineering, the Pichia pastoris expression

  1. Linking yeast genetics to mammalian genomes: Identification and mapping of the human homolog of CDC27 via the expressed sequence tag (EST) data base

    Energy Technology Data Exchange (ETDEWEB)

    Tugendreich, S.; Hieter, P. (Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)); Boguski, M.S. (National Institute of Health, Bethesda, MD (United States)); Seldin, M.S. (Duke Univ. Medical Center, Durham, NC (United States))

    1993-11-15

    The authors describe a strategy for quickly identifying and positionally mapping human homologs of yeast genes to cross-reference the biological and genetic information known about yeast genes to mammalian chromosomal maps. Optimized computer search methods have been developed to scan the rapidly expanding expressed sequence tag (EST) data base to find human open reading frames related to yeast protein sequence queries. These methods take advantage of the newly developed BLOSUM scoring matrices and the query masking function SEG. The corresponding human cDNA is then used to obtain a high-resolution map position on human and mouse chromosomes, providing the links between yeast genetic analysis and mapped mammalian loci. By using these methods, a human homolog of Saccharomyces cerevisiae CDC27 has been identified and mapped to human chromosome 17 and mouse chromosome 11 between the Pkca and Erbb-2 genes. Human CDC27 encodes an 823-aa protein with global similarity to its fungal homologs CDC27, nuc2+, and BimA. Comprehensive cross-referencing of genes and mutant phenotypes described in humans, mice, and yeast should accelerate the study of normal eukaryotic biology and human disease states.

  2. Effects of N-acetyl-L-cysteine on gene expression of antioxidant enzymes in yeast cells after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Park, Ji Young; Ryu, Tae Ho; Roh, Chang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Ionizing radiation induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage. When exposed to ionizing radiation, cells activates ROS scavenging detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase. SOD scavenges superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast has two catalase and three GPx proteins. The biochemical function of GPx is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. N-acetylL-cysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity and alkaline phosphatase. In this study, the role of NAC as an antioxidant and a radioprotector was examined on cell survival, transcriptional level, and protein level. through observing viability of cells, analyzing the gene expression of antioxidant enzyme, measuring the SOD activity and intracellular GSH levels in yeast W303-1A strain The cell viability of haploid S. cerevisiae W303-1A strain was reduced significantly at the low dose (10∼30 Gy). The half-lethal dose of the strain was about 20 Gy. The CFU assay result confirmed that NAC could not rescue the cells from radiation-induced death. When irradiated with 100 Gy, an increase in the transcriptional expression was observed in the antioxicant genes. The expression of these genes decreased by treatment of NAC in irradiated cells. NAC decline SOD activity and intracellular GSH levels. The present study shows that NAC can directly scavenge

  3. Effect of Cottonseed Meal Fermented with Yeast on the Lipid-related Gene Expression in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    CX Nie

    2015-12-01

    Full Text Available ABSTRACT Fermented cottonseed meal (FCSM is widely used in poultry diets in China. This study was conducted to investigate the effect of FCSM on lipid-related gene expression in broilers. Initially, 180 broiler chickens (21-days-old, equal number of males and females were randomly divided into three groups, with six pens per group and 10 birds per pen. The chickens in the control group were fed a diet containing unfermented cottonseed meal, and those in the treatment groups were fed with diets including either CSM fermented by Candida tropicalis (Ct group or CSM fermented by Candida tropicalis plus Saccharomyces cerevisae (Ct-Sc group until 64 days old. The results revealed that, compared with the control group (p0.05. Likewise, the expressions of peroxisome proliferator-activated receptor gamma (PPAR-g and LPL in the abdominal fat were not altered by the FCSM-supplemented diets (p>0.05. The results in this study indicate that CSM fermented by Candida tropicalis and Saccharomyces cerevisiaeeffectively regulated the genes involved in fatty acid b-oxidation and triglyceride hydrolysis in male broiler chickens. Furthermore, the effects of the FCSM-supplemented diets were significantly different between bird sexes and between yeast strains used in the fermentation process.

  4. Yeast expressed recombinant Hemagglutinin protein of Novel H1N1 elicits neutralising antibodies in rabbits and mice

    Directory of Open Access Journals (Sweden)

    Athmaram TN

    2011-11-01

    Full Text Available Abstract Currently available vaccines for the pandemic Influenza A (H1N1 2009 produced in chicken eggs have serious impediments viz limited availability, risk of allergic reactions and the possible selection of sub-populations differing from the naturally occurring virus, whereas the cell culture derived vaccines are time consuming and may not meet the demands of rapid global vaccination required to combat the present/future pandemic. Hemagglutinin (HA based subunit vaccine for H1N1 requires the HA protein in glycosylated form, which is impossible with the commonly used bacterial expression platform. Additionally, bacterial derived protein requires extensive purification and refolding steps for vaccine applications. For these reasons an alternative heterologous system for rapid, easy and economical production of Hemagglutinin protein in its glycosylated form is required. The HA gene of novel H1N1 A/California/04/2009 was engineered for expression in Pichia pastoris as a soluble secreted protein. The full length HA- synthetic gene having α-secretory tag was integrated into P. pastoris genome through homologous recombination. The resultant Pichia clones having multiple copy integrants of the transgene expressed full length HA protein in the culture supernatant. The Recombinant yeast derived H1N1 HA protein elicited neutralising antibodies both in mice and rabbits. The sera from immunised animals also exhibited Hemagglutination Inhibition (HI activity. Considering the safety, reliability and also economic potential of Pichia expression platform, our preliminary data indicates the feasibility of using this system as an alternative for large-scale production of recombinant influenza HA protein in the face of influenza pandemic threat.

  5. Partially Functional Outer-Arm Dynein in a Novel Chlamydomonas Mutant Expressing a Truncated γ Heavy Chain▿

    Science.gov (United States)

    Liu, Zhongmei; Takazaki, Hiroko; Nakazawa, Yuki; Sakato, Miho; Yagi, Toshiki; Yasunaga, Takuo; King, Stephen M.; Kamiya, Ritsu

    2008-01-01

    The outer dynein arm of Chlamydomonas flagella contains three heavy chains (α, β, and γ), each of which exhibits motor activity. How they assemble and cooperate is of considerable interest. Here we report the isolation of a novel mutant, oda2-t, whose γ heavy chain is truncated at about 30% of the sequence. While the previously isolated γ chain mutant oda2 lacks the entire outer arm, oda2-t retains outer arms that contain α and β heavy chains, suggesting that the N-terminal sequence (corresponding to the tail region) is necessary and sufficient for stable outer-arm assembly. Thin-section electron microscopy and image analysis localize the γ heavy chain to a basal region of the outer-arm image in the axonemal cross section. The motility of oda2-t is lower than that of the wild type and oda11 (lacking the α heavy chain) but higher than that of oda2 and oda4-s7 (lacking the motor domain of the β heavy chain). Thus, the outer-arm dynein lacking the γ heavy-chain motor domain is partially functional. The availability of mutants lacking individual heavy chains should greatly facilitate studies on the structure and function of the outer-arm dynein. PMID:18487347

  6. Expression of Bovine Viral Diarrhea Virus Envelope Glycoprotein E2 in Yeast Pichia pastoris and its Application to an ELISA for Detection of BVDV Neutralizing Antibodies in Cattle.

    Science.gov (United States)

    Behera, Sthita Pragnya; Mishra, Niranjan; Nema, Ram Kumar; Pandey, Pooja Dubey; Kalaiyarasu, Semmannan; Rajukumar, Katherukamem; Prakash, Anil

    2015-01-01

    The aim of this article is to express envelope glycoprotein E2 of bovine viral diarrhea virus (BVDV) in yeast Pichia pastoris and its utility as a diagnostic antigen in ELISA. The BVDV E2 gene was cloned into the pPICZαA vector followed by integration into the Pichia pastoris strain X-33 genome for methanol-induced expression. SDS-PAGE and Western blot results showed that the recombinant BVDV E2 protein (72 kDa) was expressed and secreted into the medium at a concentration of 40 mg/L of culture under optimized conditions. An indirect ELISA was then developed by using the yeast-expressed E2 protein. Preliminary testing of 300 field cattle serum samples showed that the E2 ELISA showed a sensitivity of 91.07% and a specificity of 92.02% compared to the reference virus neutralization test. The concordance between the E2 ELISA and VNT was 91.67%. This study demonstrates feasibility of BVDV E2 protein expression in yeast Pichia pastoris for the first time and its efficacy as an antigen in ELISA for detecting BVDV neutralizing antibodies in cattle.

  7. Cloning and Expression of Recombinant Human Thymosin in Yeast Pichia pastoris

    Institute of Scientific and Technical Information of China (English)

    Cao Junxia(曹俊霞); Jin Liji; Duan Yanlong; An Lijia

    2003-01-01

    The gene of human thymosin alpha 1(hT(1)was synthesised according to favorite codons of Pichia pastoris by PCR. N-terminal 28 amino acid residues of 40S ribosomal protein (RP), S24E that is N-acetylserine were replaced by hT(1 for the constitution of hT(1-RP fusion gene in order to express acetyllated thymosin α1. And also,the Asn-Gly bond was designed to faciliate isolation of the target protein.The fusion gene was cloned into the expression vector, pPIC/9K. The constructs were transformed into HIS4 mutant strain GS115 by electroporation. Both SDS-PAGE analysis and Western blot analysis indicated that the fusion protein was expressed successfully.

  8. Construction and analysis of the cDNA subtraction library of yeast and mycelial phases of Sporothrix globosa isolated in China: identification of differentially expressed genes*

    Science.gov (United States)

    Hu, Qing-bi; He, Yu; Zhou, Xun

    2015-01-01

    Species included in the Sporothrix schenckii complex are temperature-dependent with dimorphic growth and cause sporotrichosis that is characterized by chronic and fatal lymphocutaneous lesions. The putative species included in the Sporothrix complex are S. brasiliensis, S. globosa, S. mexicana, S. pallida, S. schenckii, and S. lurei. S. globosa is the causal agent of sporotrichosis in China, and its pathogenicity appears to be closely related to the dimorphic transition, i.e. from the mycelial to the yeast phase, it adapts to changing environmental conditions. To determine the molecular mechanisms of the switching process that mediates the dimorphic transition of S. globosa, suppression subtractive hybridization (SSH) was used to prepare a complementary DNA (cDNA) subtraction library from the yeast and mycelial phases. Bioinformatics analysis was performed to profile the relationship between differently expressed genes and the dimorphic transition. Two genes that were expressed at higher levels by the yeast form were selected, and their differential expression levels were verified using a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). It is believed that these differently expressed genes are involved in the pathogenesis of S. globosa infection in China. PMID:26642182

  9. Construction and analysis of the cDNA subtraction library of yeast and mycelial phases of Sporothrix globosa isolated in China: identification of differentially expressed genes.

    Science.gov (United States)

    Hu, Qing-bi; He, Yu; Zhou, Xun

    2015-12-01

    Species included in the Sporothrix schenckii complex are temperature-dependent with dimorphic growth and cause sporotrichosis that is characterized by chronic and fatal lymphocutaneous lesions. The putative species included in the Sporothrix complex are S. brasiliensis, S. globosa, S. mexicana, S. pallida, S. schenckii, and S. lurei. S. globosa is the causal agent of sporotrichosis in China, and its pathogenicity appears to be closely related to the dimorphic transition, i.e. from the mycelial to the yeast phase, it adapts to changing environmental conditions. To determine the molecular mechanisms of the switching process that mediates the dimorphic transition of S. globosa, suppression subtractive hybridization (SSH) was used to prepare a complementary DNA (cDNA) subtraction library from the yeast and mycelial phases. Bioinformatics analysis was performed to profile the relationship between differently expressed genes and the dimorphic transition. Two genes that were expressed at higher levels by the yeast form were selected, and their differential expression levels were verified using a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). It is believed that these differently expressed genes are involved in the pathogenesis of S. globosa infection in China.

  10. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    Science.gov (United States)

    Husseneder, Claudia; Donaldson, Jennifer R; Foil, Lane D

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.

  11. Heterologous expression and purification of wheat storage proteins in the yeast Saccharomyces cerevisiae

    OpenAIRE

    2007-01-01

    Im Rahmen des Teilprojektes “Expression und Produktion von Weizenspeicherproteinen in der Hefe Saccharomyces cerevisiae“ des BMBF-Leitprojektes „Entwicklung von Weizen-, Roggen- und Gerstenproteinen ohne Zöliakietoxizität und deren Verwendung zur Herstellung von Lebensmitteln“ (Förderkennzeichen 0312246C) sollten die Ausbeute der heterolog in S. cerevisiae exprimierten Weizenproteine gesteigert werden, um sie für Zöliakietoxizitätsteste einzusetzen. Durch Optimierungsstrategien des Substrates...

  12. Effect of environmental stress on regulation of gene expression in the yeast

    Science.gov (United States)

    Gross, Eitan

    2015-07-01

    Several mathematical models have been proposed to predict the activation state of a transcription factor (TF) from the expression levels of its target genes. This inference problem is complicated however due to the fact that different genes may be regulated by different activation schemes (linear, exponential, sigmoidal, etc.). In addition to transcription regulation, the rate of gene expression at any instantaneous point in time is also determined by the independent rates of baseline production and degradation. Consequently, the set of solutions to any model equations describe an infinite number of trajectories in probability space, thus rendering the problem NP-hard. In the current study we used a Gaussian process (GP) approach to address this inverse problem. Experimental gene expression data were modeled by a putative linear activation scheme and discrepancy between theory and experiment was modeled by a GP. Model hyperparameters were calculated using maximum likelihood estimates to generate continuous TF state-space profiles. Identifiability of model parameters was optimized by obtaining TF state-space functions for multiple genes simultaneously. We found that model parameters were sensitive to environmental stress conditions, producing different state-space profiles for different stresses.

  13. Expression of Soluble Forms of Yeast Diacylglycerol Acyltransferase 2 That Integrate a Broad Range of Saturated Fatty Acids in Triacylglycerols.

    Science.gov (United States)

    Haïli, Nawel; Louap, Julien; Canonge, Michel; Jagic, Franjo; Louis-Mondésir, Christelle; Chardot, Thierry; Briozzo, Pierre

    2016-01-01

    The membrane proteins acyl-CoA:diacylglycerol acyltransferases (DGAT) are essential actors for triglycerides (TG) biosynthesis in eukaryotic organisms. Microbial production of TG is of interest for producing biofuel and value-added novel oils. In the oleaginous yeast Yarrowia lipolytica, Dga1p enzyme from the DGAT2 family plays a major role in TG biosynthesis. Producing recombinant DGAT enzymes pure and catalytically active is difficult, hampering their detailed functional characterization. In this report, we expressed in Escherichia coli and purified two soluble and active forms of Y. lipolytica Dga1p as fusion proteins: the first one lacking the N-terminal hydrophilic segment (Dga1pΔ19), the second one also devoid of the N-terminal putative transmembrane domain (Dga1pΔ85). Most DGAT assays are performed on membrane fractions or microsomes, using radiolabeled substrates. We implemented a fluorescent assay in order to decipher the substrate specificity of purified Dga1p enzymes. Both enzyme versions prefer acyl-CoA saturated substrates to unsaturated ones. Dga1pΔ85 preferentially uses long-chain saturated substrates. Dga1p activities are inhibited by niacin, a specific DGAT2 inhibitor. The N-terminal transmembrane domain appears important, but not essential, for TG biosynthesis. The soluble and active proteins described here could be useful tools for future functional and structural studies in order to better understand and optimize DGAT enzymes for biotechnological applications.

  14. Conformational change of glutathione-S-transferase by its co-expression with prion domain of yeast Ure2p

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Ure2 protein from Saccharomyces cerevisisae has a changeable structure similar to that ofrnammalian prion protein. Its N-terminal is the prion domain (PrD) consisting of 65 amino acids which plays a critical role in yeast prion development. In this study, PrD gene was recombinated with glutathione-S-transferase(GST) gene, and a soluble GST-PrD(sGST-PrD) fusion protein was expressed in E. coli. sGST-PrD could spontaneously polymerize into amyloid fibrils in vitro, displaying typical β-sheet-type structure; it had increased resistance to proteinase K and exhibited amvloid-like optical properties. Moreover, the aggregated GST-PrD(aGST-PrD) could induce sGST-PrD to aggregate into fibrils. These results indicate that PrD could change the conformation of GST moiety in a recombinant protein with PrD to form a prion-like chimeric protein, which proves that PrD has the ability to mediate a prion-like conversion of other proteins fused with it.

  15. Definition of culture conditions for Arxula adeninivorans, a rational basis for studying heterologous gene expression in this dimorphic yeast.

    Science.gov (United States)

    Stöckmann, Christoph; Palmen, Thomas G; Schroer, Kirsten; Kunze, Gotthard; Gellissen, Gerd; Büchs, Jochen

    2014-06-01

    The yeast Arxula adeninivorans is considered to be a promising producer of recombinant proteins. However, growth characteristics are poorly investigated and no industrial process has been established yet. Though of vital interest for strain screening and production processes, rationally defined culture conditions remain to be developed. A cultivation system was evolved based on targeted sampling and mathematical analysis of rationally designed small-scale cultivations in shake flasks. The oxygen and carbon dioxide transfer rates were analyzed as conclusive online parameters. Oxygen limitation extended cultivation and led to ethanol formation in cultures supplied with glucose. Cultures were inhibited at pH-values below 2.8. The phosphorus demand was determined as 1.55 g phosphorus per 100 g cell dry weight. Synthetic SYN6 medium with 20 g glucose l(-1) was optimized for cultivation in shake flasks by buffering at pH 6.4 with 140 mmol MES l(-1). Optimized SYN6 medium and operating conditions provided non-limited cultivations without by-product formation. A maximal specific growth rate of 0.32 h(-1) and short fermentations of 15 h were achieved. A pH optimum curve was derived from the oxygen transfer rates of differently buffered cultures, showing maximal growth between pH 2.8 and 6.5. Furthermore, it was shown that the applied medium and cultivation conditions were also suitable for non-limiting growth and product formation of a genetically modified A. adeninivorans strain expressing a heterologous phytase.

  16. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  17. Sphingoid Base Metabolism in Yeast: Mapping Gene Expression Patterns Into Qualitative Metabolite Time Course Predictions

    OpenAIRE

    Tomas Radivoyevitch

    2001-01-01

    Can qualitative metabolite time course predictions be inferred from measured mRNA expression patterns? Speaking against this possibility is the large number of ‘decoupling’ control points that lie between these variables, i.e. translation, protein degradation, enzyme inhibition and enzyme activation. Speaking for it is the notion that these control points might be coordinately regulated such that action exerted on the mRNA level is informative of action exerted on the protein and me...

  18. Heterologous expression and purification of barley (Hordeum vulgare L.) cysteine protease in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    2011-01-01

    The mobilization of protein during germination of barley seeds is essential and Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins [1]. Cysteine proteases exist as pro-enzyme until activated through reduction...... of the active site cysteines and via removal of the pro-domain. The complement of cysteine proteases is comprehensive and for detailed studies of the individual components of this complement, a fast and efficient eukaryotic expression platform is highly desirable. The barley key cysteine protease, endoprotease...

  19. Conversion of deoxynivalenol to 3-acetyldeoxynivalenol in barley-derived fuel ethanol co-products with yeast expressing trichothecene 3-O-acetyltransferases

    Directory of Open Access Journals (Sweden)

    Brooks Wynse S

    2011-09-01

    Full Text Available Abstract Background The trichothecene mycotoxin deoxynivalenol (DON may be concentrated in distillers dried grains with solubles (DDGS; a co-product of fuel ethanol fermentation when grain containing DON is used to produce fuel ethanol. Even low levels of DON (≤ 5 ppm in DDGS sold as feed pose a significant threat to the health of monogastric animals. New and improved strategies to reduce DON in DDGS need to be developed and implemented to address this problem. Enzymes known as trichothecene 3-O-acetyltransferases convert DON to 3-acetyldeoxynivalenol (3ADON, and may reduce its toxicity in plants and animals. Results Two Fusarium trichothecene 3-O-acetyltransferases (FgTRI101 and FfTRI201 were cloned and expressed in yeast (Saccharomyces cerevisiae during a series of small-scale ethanol fermentations using barley (Hordeum vulgare. DON was concentrated 1.6 to 8.2 times in DDGS compared with the starting ground grain. During the fermentation process, FgTRI101 converted 9.2% to 55.3% of the DON to 3ADON, resulting in DDGS with reductions in DON and increases in 3ADON in the Virginia winter barley cultivars Eve, Thoroughbred and Price, and the experimental line VA06H-25. Analysis of barley mashes prepared from the barley line VA04B-125 showed that yeast expressing FfTRI201 were more effective at acetylating DON than those expressing FgTRI101; DON conversion for FfTRI201 ranged from 26.1% to 28.3%, whereas DON conversion for FgTRI101 ranged from 18.3% to 21.8% in VA04B-125 mashes. Ethanol yields were highest with the industrial yeast strain Ethanol Red®, which also consumed galactose when present in the mash. Conclusions This study demonstrates the potential of using yeast expressing a trichothecene 3-O-acetyltransferase to modify DON during commercial fuel ethanol fermentation.

  20. Cloning of C-Terminal of Opioid μ-Receptor and Construction of Its Expression Plasmid for Yeast Two Hybrid System

    Institute of Scientific and Technical Information of China (English)

    YANHui; GONGZe-hui

    2004-01-01

    Aim: To obtain the C-terminal DNA and construct the expression plasmid in yeast two-hybrid. Methods: About 177bp DNA fragment was amplified from the complete sequence of ( receptor by PCR. After being sequenced, the C-terminal fragment was ligased into EcoR I-BamH I site of pGBKT7 vector to form recombinants. The recombinant plasmid

  1. Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast.

    Science.gov (United States)

    Saerens, S M G; Verbelen, P J; Vanbeneden, N; Thevelein, J M; Delvaux, F R

    2008-10-01

    During fermentation, the yeast Saccharomyces cerevisiae produces a broad range of aroma-active substances, which are vital for the complex flavour of beer. In order to obtain insight into the influence of high-gravity brewing and fermentation temperature on flavour formation, we analysed flavour production and the expression level of ten genes (ADH1, BAP2, BAT1, BAT2, ILV5, ATF1, ATF2, IAH1, EHT1 and EEB1) during fermentation of a lager and an ale yeast. Higher initial wort gravity increased acetate ester production, while the influence of higher fermentation temperature on aroma compound production was rather limited. In addition, there is a good correlation between flavour production and the expression level of specific genes involved in the biosynthesis of aroma compounds. We conclude that yeasts with desired amounts of esters and higher alcohols, in accordance with specific consumer preferences, may be identified based on the expression level of flavour biosynthesis genes. Moreover, these results demonstrate that the initial wort density can determine the final concentration of important volatile aroma compounds, thereby allowing beneficial adaptation of the flavour of beer.

  2. [Construction of yeast strains expressing long-acting glucagon-like peptide-1 (GLP-1) and their therapeutic effects on type 2 diabetes mellitus mouse model].

    Science.gov (United States)

    Ri, Wu; Chao, Ma; Xiaodan, Li; Huikun, Duan; Yanli, Ji; Yu, Wang; Pingzhe, Jiang; Haisong, Wang; Peipei, Tu; Miao, Li; Ganggang, Ni; Baicheng, Ma; Minggang, Li

    2015-02-01

    Probiotics, i.e., bacteria expressing therapeutic peptides (protein), are used as a new type of orally administrated biologic drugs to treat diseases. To develop yeast strains which could effectively prevent and treat type 2 diabetes mellitus, we firstly constructed the yeast integrating plasmid pNK1-PGK which could successfully express green fluorescent protein (GFP) in Saccharomyces cerevisiae. The gene encoding ten tandem repeats of glucagon-like peptide-1(10 × GLP-1) was cloned into the vector pNK1-PGK and the resulting plasmids were then transformed into the S. cerevisiae INVSc1. The long-acting GLP-1 hypoglycemic yeast (LHY) which grows rapidly and expresses 10 × GLP-1 stably was selected by nutrition screening and Western blotting. The amount of 10 × GLP-1 produced by LHY reached 1.56 mg per gram of wet cells. Moreover, the oral administration of LHY significantly reduced blood glucose level in type 2 diabetic mice induced by streptozotocin plus high fat and high sugar diet.

  3. [Expression of the Drosophila melanogaster limk1 gene 3'-UTRs mRNA in Yeast Saccharomyces cerevisiae].

    Science.gov (United States)

    Rumyantsev, A M; Zakharov, G A; Zhuravlev, A V; Padkina, M V; Savvateeva-Popova, E V; Sambuk, E V

    2014-06-01

    The stability of mRNA and its translation efficacy in higher eukaryotes are influenced by the interaction of 3'-untranscribed regions (3'-UTRs) with microRNAs and RNA-binding proteins. Since Saccharomyces cerevisiae lack microRNAs, it is possible to evaluate the contribution of only 3'-UTRs' and RNA-binding proteins' interaction in post-transcriptional regulation. For this, the post-transcriptional regulation of Drosophila limk1 gene encoding for the key enzyme of actin remodeling was studied in yeast. Analysis of limkl mRNA 3'-UTRs revealed the potential sites of yeast transcriptional termination. Computer remodeling demonstrated the possibility of secondary structure formation in limkl mRNA 3'-UTRs. For an evaluation of the functional activity of Drosophila 3'-UTRs in yeast, the reporter gene PHO5 encoding for yeast acid phosphatase (AP) fused to different variants of Drosophila limk1 mRNA 3'-UTRs (513, 1075, 1554 bp) was used. Assessments of AP activity and RT-PCR demonstrated that Drosophila limkl gene 3'-UTRs were functionally active and recognized in yeast. Therefore, yeast might be used as an appropriate model system for studies of 3'-UTR's role in post-transcriptional regulation.

  4. Molecular Cloning and Yeast Expression of Cinnamate 4-Hydroxylase from Ornithogalum saundersiae Baker

    Directory of Open Access Journals (Sweden)

    Jian-Qiang Kong

    2014-01-01

    Full Text Available OSW-1, isolated from the bulbs of Ornithogalum saundersiae Baker, is a steroidal saponin endowed with considerable antitumor properties. Biosynthesis of the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1 is known to take place biochemically via the phenylpropanoid biosynthetic pathway, but molecular biological characterization of the related genes has been insufficient. Cinnamic acid 4-hydroxylase (C4H, EC 1.14.13.11, catalyzing the hydroxylation of trans-cinnamic acid to p-coumaric acid, plays a key role in the ability of phenylpropanoid metabolism to channel carbon to produce the 4-methoxybenzoyl group on the disaccharide moiety of OSW-1. Molecular isolation and functional characterization of the C4H genes, therefore, is an important step for pathway characterization of 4-methoxybenzoyl group biosynthesis. In this study, a gene coding for C4H, designated as OsaC4H, was isolated according to the transcriptome sequencing results of Ornithogalum saundersiae. The full-length OsaC4H cDNA is 1,608-bp long, with a 1,518-bp open reading frame encoding a protein of 505 amino acids, a 55-bp 5′ non-coding region and a 35-bp 3'-untranslated region. OsaC4H was functionally characterized by expression in Saccharomyces cerevisiae and shown to catalyze the oxidation of trans-cinnamic acid to p-coumaric acid, which was identified by high performance liquid chromatography with diode array detection (HPLC-DAD, HPLC-MS and nuclear magnetic resonance (NMR analysis. The identification of the OsaC4H gene was expected to open the way to clarification of the biosynthetic pathway of OSW-1.

  5. Feeding glycerol-enriched yeast culture improves lactation performance, energy status, and hepatic gluconeogenic enzyme expression of dairy cows during the transition period.

    Science.gov (United States)

    Ye, G; Liu, J; Liu, Y; Chen, X; Liao, S F; Huang, D; Huang, K

    2016-06-01

    This study aimed to evaluate the effects of feeding glycerol-enriched yeast culture (GY) on feed intake, lactation performance, blood metabolites, and expression of some key hepatic gluconeogenic enzymes in dairy cows during the transition period. Forty-four multiparous transition Holstein cows were blocked by parity, previous 305-d mature equivalent milk yield, and expected calving date and randomly allocated to 4 dietary treatments: Control (no additive), 2 L/d of GY (75.8 g/L glycerol and 15.3 g/L yeast), 150 g/d of glycerol (G; 0.998 g/g glycerol), and 1 L/d of yeast culture (Y; 31.1 g/L yeast). All additives were top-dressed and hand mixed into the upper one-third of the total mixed ration in the morning from -14 to +28 d relative to calving. Results indicated that the DMI, NE intake, change of BCS, and milk yields were not affected by the treatments ( > 0.05). Supplementation of GY or Y increased milk fat percentages, milk protein percentages, and milk protein yields relative to the Control or G group ( 0.10). In conclusion, dietary GY or Y supplementation increased the milk fat and protein content of the cows in early lactation and GY or G supplementation improved the energy status as indicated by greater plasma glucose and lower plasma BHBA and NEFA concentrations and upregulated the hepatic gluconeogenic enzymes of dairy cows during the transition period. Feeding cows with a GY mixture in the peripartum period combined the effects of yeast on lactation performance and the effects of glycerol on energy status in dairy cows.

  6. EV71 virus-like particles produced by co-expression of capsid proteins in yeast cells elicit humoral protective response against EV71 lethal challenge

    OpenAIRE

    Wang, Xiaowen; Xiao, Xiangqian; Zhao, Miao; Wei LIU; Pang, Lin; Sun, Xin; Cen, Shan; Burton B Yang; Huang, Yuming; Sheng, Wang; Zeng, Yi

    2016-01-01

    Background Enterovirus 71 (EV71) is the most common causative pathogens of hand, foot and mouth disease (HFMD) associated with severe neurological complications. There is a great need to develop prophylactic vaccine against EV71 infection. Results EV71 virus-like particle (VLP) was produced in yeast expression system by the co-expression of four EV71 structural proteins VP1–VP4. Immunization with the recombinant VLPs elicited potent anti-EV71 antibody responses in adult mice and anti-VLP sera...

  7. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains.

    Science.gov (United States)

    Greppi, Anna; Krych, Łukasz; Costantini, Antonella; Rantsiou, Kalliopi; Hounhouigan, D Joseph; Arneborg, Nils; Cocolin, Luca; Jespersen, Lene

    2015-07-16

    Phytate is known as a strong chelate of minerals causing their reduced uptake by the human intestine. Ninety-three yeast isolates from traditional African fermented food products, belonging to nine species (Pichia kudriavzevii, Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces marxianus, Millerozyma farinosa, Candida glabrata, Wickerhamomyces anomalus, Hanseniaspora guilliermondii and Debaryomyces nepalensis) were screened for phytase production on solid and liquid media. 95% were able to grow in the presence of phytate as sole phosphate source, P. kudriavzevii being the best growing species. A phytase coding gene of P. kudriavzevii (PHYPk) was identified and its expression was studied during growth by RT-qPCR. The expression level of PHYPk was significantly higher in phytate-medium, compared to phosphate-medium. In phytate-medium expression was seen in the lag phase. Significant differences in gene expression were detected among the strains as well as between the media. A correlation was found between the PHYPk expression and phytase extracellular activity.

  8. Heterologous expression of a Tpo1 homolog from Arabidopsis thaliana confers resistance to the herbicide 2,4-D and other chemical stresses in yeast.

    Science.gov (United States)

    Cabrito, Tânia R; Teixeira, Miguel C; Duarte, Alexandra A; Duque, Paula; Sá-Correia, Isabel

    2009-10-01

    The understanding of the molecular mechanisms underlying acquired herbicide resistance is crucial in dealing with the emergence of resistant weeds. Saccharomyces cerevisiae has been used as a model system to gain insights into the mechanisms underlying resistance to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The TPO1 gene, encoding a multidrug resistance (MDR) plasma membrane transporter of the major facilitator superfamily (MFS), was previously found to confer resistance to 2,4-D in yeast and to be transcriptionally activated in response to the herbicide. In this work, we demonstrate that Tpo1p is required to reduce the intracellular concentration of 2,4-D. ScTpo1p homologs encoding putative plasma membrane MFS transporters from the plant model Arabidopsis thaliana were analyzed for a possible role in 2,4-D resistance. At5g13750 was chosen for further analysis, as its transcript levels were found to increase in 2,4-D stressed plants. The functional heterologous expression of this plant open reading frame in yeast was found to confer increased resistance to the herbicide in Deltatpo1 and wild-type cells, through the reduction of the intracellular concentration of 2,4-D. Heterologous expression of At5g13750 in yeast also leads to increased resistance to indole-3-acetic acid (IAA), Al(3+) and Tl(3+). At5g13750 is the first plant putative MFS transporter to be suggested as possibly involved in MDR.

  9. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Directory of Open Access Journals (Sweden)

    Andrade-Garda José

    2008-04-01

    Full Text Available Abstract Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  10. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Science.gov (United States)

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-01-01

    Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains. PMID:18412983

  11. HIV-1 Vif Protein Mediates the Degradation of APOBEC3G in Fission Yeast When Over-expressed Using Codon Optimization

    Institute of Scientific and Technical Information of China (English)

    Lin LI; Jing-yun LI; Hong-shuai SUI; Richard Y. Zhao; Yong-jian LIU; Zuo-yi BAO; Si-yang LIU; Dao-min ZHUANG

    2008-01-01

    Interaction between the HIV-1 Vif protein and the cellular host APOBEC3G protein is a promising target for inhibition of HIV-1 replication. Considering that human cells are a very complicated environment for the study of protein interactions, the goal of this study was to check whether fission yeast could be used as a model cell for studying the Vif-APOBEC3G interaction. Vif and APOBEC3G were expressed in fusion with GFP protein in the S. pombe SP223 strain. Subcellular localizations of Vif and APOBEC3G were observed with fluorescent microscopy. Codon optimization was used to over express the Vif protein in S. pombe cells. The degradation of APOBEC3G mediated by Vif was tested through expressing Vif and GFP-APOBEC3G proteins in the same cell. Western Blot analysis was used to measure the corresponding protein levels under different experimental conditions. The results showed that the Vif protein was predominantly localized in the nucleus of S.pombe cells, APOBEC3G was localized in the cytoplasm and concentrated at punctate bodies that were often in close proximity to the nucleus but were not necessarily restricted from other regions in the cytoplasm. Vif protein expression levels were increased significantly by using codon optimization and APOBEC3G was degraded when Vif was over-expressed in the same S. pombe cells. These results indicate that fission yeast is a good model for studying the interaction between the Vif and APOBEC3G proteins.

  12. Cell cycle arrest promotes trans-hammerhead ribozyme action in yeast.

    Science.gov (United States)

    Ferbeyre, G; Bratty, J; Chen, H; Cedergren, R

    1996-08-09

    A hammerhead ribozyme designed to cleave the yeast ADE1 mRNA has been expressed in yeast under the control of a galactose-inducible promoter. RNA prepared from the galactose-induced yeast cultures possesses an activity that cleaves ADE1 mRNA in vitro. However, in spite of high expression levels of the ribozyme, no cleavage activity could be demonstrated in vivo. On the other hand, when the yeast cells expressing hammerhead RNA were treated with the alpha-factor mating pheromone, the level of ADE1 mRNA was reduced by 50%. Similar reductions were observed when this strain was cultured in the presence of lithium acetate or in nitrogen-free medium. Moreover, control experiments in which disabled hammerhead genes were expressed showed no such reductions. Extension of the length of the flanking recognition arms of the ribozyme from a total of 10 to 16 or 24 nucleotides diminished the inhibitory effect of the ribozyme. These data suggest that ribozymes are able to cleave a trans-RNA target in yeast.

  13. The Freedom of Expression of Members of the Armed Forces Under the European Convention on Human Rights In Jokšas V. Lithuania

    Directory of Open Access Journals (Sweden)

    Kirchner Stefan

    2014-06-01

    Full Text Available Freedom of expression is one of the most fundamental rights in a democratic society. In fact, the freedom to express one’s opinion and to impart, as well as to receive, information, is essential for the participation in the democratic process. The ability to make decisions as a citizen requires access to information; the participation in the life of the society requires the ability to express one’s opinions. It is imperative that in a democratic society, as it is envisaged by the European Convention on Human Rights (ECHR, everybody is able to express their views, regardless as to whether these views correspond to the views of those who are in power. This ability is one of the key differences between democracy anddictatorship. In particular in the nation-states of Eastern Europe, which have only known freedom for a bit less than a quarter of a century, the growth of democratic structures is inextricably linked to the ability to exercise this right. But while human rights in principle pit the citizen against the State, the citizen who serves the State in a professional function might also wish to express opinions that go against the view of those who are entrusted with leading the State. This is particularly the case when it comes to members of the armed forces. The jurisprudence of the Convention organs with regard to the right of public officials and other State agents to express their opinion freely is not as coherent as it is with regard to other questions concerning the ECHR. In a case decided in late 2013, the European Court of Human Rights dealt with this question with regard to Lithuania. In this article, the authors look at the question of how far the State can restrict the freedom of expression of members of the armed forces under the European Convention on Human Rights.

  14. Tailor-made zinc-finger transcription factors activate FLO11 gene expression with phenotypic consequences in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Shieh, Jia-Ching; Cheng, Yu-Che; Su, Mao-Chang; Moore, Michael; Choo, Yen; Klug, Aaron

    2007-08-15

    Cys2His2 zinc fingers are eukaryotic DNA-binding motifs, capable of distinguishing different DNA sequences, and are suitable for engineering artificial transcription factors. In this work, we used the budding yeast Saccharomyces cerevisiae to study the ability of tailor-made zinc finger proteins to activate the expression of the FLO11 gene, with phenotypic consequences. Two three-finger peptides were identified, recognizing sites from the 5' UTR of the FLO11 gene with nanomolar DNA-binding affinity. The three-finger domains and their combined six-finger motif, recognizing an 18-bp site, were fused to the activation domain of VP16 or VP64. These transcription factor constructs retained their DNA-binding ability, with the six-finger ones being the highest in affinity. However, when expressed in haploid yeast cells, only one three-finger recombinant transcription factor was able to activate the expression of FLO11 efficiently. Unlike in the wild-type, cells with such transcriptional activation displayed invasive growth and biofilm formation, without any requirement for glucose depletion. The VP16 and VP64 domains appeared to act equally well in the activation of FLO11 expression, with comparable effects in phenotypic alteration. We conclude that the functional activity of tailor-made transcription factors in cells is not easily predicted by the in vitro DNA-binding activity.

  15. Cell surface engineering of yeast for applications in white biotechnology.

    Science.gov (United States)

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.

  16. The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast.

    Science.gov (United States)

    Roy, Adhiraj; Hashmi, Salman; Li, Zerui; Dement, Angela D; Cho, Kyu Hong; Kim, Jeong-Ho

    2016-03-01

    Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of expression of genes encoding glucose transporters (HXTs). Here we provide evidence that these glucose sensors are primary targets of MG in yeast. MG inhibits the growth of glucose-fermenting yeast cells by inducing endocytosis and degradation of the glucose sensors. However, the glucose sensors with mutations at their putative ubiquitin-acceptor lysine residues are resistant to MG-induced degradation. These results suggest that the glucose sensors are inactivated through ubiquitin-mediated endocytosis and degraded in the presence of MG. In addition, the inhibitory effect of MG on the glucose sensors is greatly enhanced in cells lacking Glo1, a key component of the MG detoxification system. Thus the stability of these glucose sensors seems to be critically regulated by intracellular MG levels. Taken together, these findings suggest that MG attenuates glycolysis by promoting degradation of the cell-surface glucose sensors and thus identify MG as a potential glycolytic inhibitor.

  17. VMA11, a novel gene that encodes a putative proteolipid, is indispensable for expression of yeast vacuolar membrane H(+)-ATPase activity.

    Science.gov (United States)

    Umemoto, N; Ohya, Y; Anraku, Y

    1991-12-25

    A gene, VMA11, is indispensable for expression of the vacuolar membrane H(+)-ATPase activity in the yeast Saccharomyces cerevisiae (Ohya, Y., Umemoto, N., Tanida, I., Ohta, A., Iida, H., and Anraku, Y. (1991) J. Biol. Chem. 266, 13971-13977). The VMA11 gene was isolated from a yeast genomic DNA library by complementation of the vma11 mutation. The nucleotide sequence of the gene predicts a hydrophobic proteolipid of 164 amino acids with a calculated molecular mass of 17,037 daltons. The deduced amino acid sequence shows 56.7% identity, and significant coincidence in amino acid composition with the 16-kDa subunit c (a VMA3 gene product) of the yeast vacuolar membrane H(+)-ATPase. VMA11 and VMA3 on a multicopy plasmid did not suppress the vma3 and vma11 mutation, respectively, suggesting functional independence of the two gene products. Biochemical detection of the VMA11 gene product was unsuccessful, but vacuoles in the VMA11-disrupted cells were not assembled with either subunit c or subunits a and b of the H(+)-ATPase, resulting in defects of the activity and in vivo vacuolar acidification.

  18. Mapping yeast transcriptional networks.

    Science.gov (United States)

    Hughes, Timothy R; de Boer, Carl G

    2013-09-01

    The term "transcriptional network" refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.

  19. Yeast cytochrome c peroxidase: mutagenesis and expression in Escherichia coli show tryptophan-51 is not the radical site in compound I

    Energy Technology Data Exchange (ETDEWEB)

    Fishel, L.A.; Villafranca, J.E.; Mauro, J.M.; Kraut, J.

    1987-01-27

    Using oligonucleotide-directed site-specific mutagenesis, they have constructed a system for the mutation and expression of yeast cytochrome c peroxidase (CCP, EC 1.11.1.5) in Escherichia coli and applied it to test the hypothesis that Trp-51 is the locus of the free radical observed in compound I of CCP. The system was created by substituting a CCP gene modified by site-directed mutagenesis, CCP(MI), for the fol gene in a vector previously used for mutagenesis and overexpression of dihydrofolate reductase. E. coli transformed with the resulting plasmid produced the CCP(MI) enzyme in large quantities, more than 15 mg/L of cell culture, of which 10% is holo- and 90% is apo-CCP(MI). The apoenzyme was easily converted to holoenzyme by the addition of bovine hemin. Purified CCP(MI) has the same catalytic activity and spectra as bakers' yeast CCP. A mutation has been made in CCP(MI), Trp-51 to Phe. The Phe-51 mutant protein CCP(MI,F51) is fully active, and the electron paramagnetic resonance (EPR) spectrum, at 89 K, of its oxidized intermediate, compound I, displays a strong sharp resonance at g = 2.004, which is very similar to the signal observed for compound I of both bakers' yeast CCP and CCP(MI). However, UV-visible and EPR spectroscopy revealed that the half-life of CCP(MI,F51) compound I at 23 /sup 0/C is only 1.4% of that observed for the compound I forms of CCP(MI) or bakers' yeast CCP. Thus, Trp-51 is not necessary for the formation of the free radical observed in compound I but appears to exert a significant influence on its stability.

  20. Differential transcription-activating capability of NS1 proteins from different influenza virus subtypes expressed in yeast

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Influenza A virus NS1 protein is an important regulatory factor with multiple functions and contributes greatly to viral pathogenesis.In the present study,transcription-activating potential of NS1 from different influenza A virus subtypes was examined in yeast two-hybrid system.The bait vectors contain-ing different NS1 genes,along with an empty prey vector,were transformed into yeast AH109(for growth assay on QDO plate and α-galactosidase assay),and Y187(for β-galactosidase assay).AH109 transformants with NS1 gene from H1N1,H5N1,and H9N2 viruses grew vigorously on the QDO plate and secreted high level of α-galactosidase.Also,Y187 bearing the above NS1 genes exhibited en-hanced β-galactosidase activity.Nevertheless,H3N2-NS1-transformed AH109 and Y187 yeasts did not grow on QDO plate and secrete β-galactosidase,respectively.These findings denote the remarkable variation in NS1 proteins from different influenza A virus subtypes on the transcription-stimulating capability in yeast.

  1. Differential transcription-activating capability of NS1 proteins from different influenza virus subtypes expressed in yeast

    Institute of Scientific and Technical Information of China (English)

    LI WeiZhong; WANG GeFei; ZENG Jun; ZHANG DanGui; ZHANG Heng; CHEN XiaoXuan; CHEN Ying; Li KangSheng

    2009-01-01

    Influenza A virus NS1 protein is an important regulatory factor with multiple functions and contributes greatly to viral pathogenesis. In the present study, transcription-activating potential of NS1 from dif-ferent influenza A virus subtypes was examined in yeast two-hybrid system. The bait vectors contain-ing different NS1 genes, along with an empty prey vector, were transformed into yeast AH109(for growth assay on QDO plate and a-galactosidase assay), and Y187(for β-galactosidase assay). AH109transformants with NS1 gene from H1N1, H5N1, and HgN2 viruses grew vigorously on the QDO plate and secreted high level of a-galactosidase. Also, Y187 bearing the above NS1 genes exhibited en-hanced β-galactosidase activity. Nevertheless, H3N2-NSl-transformed AH109 and Y187 yeasts did not grow on QDO plate and secrete β-galactosidase, respectively. These findings denote the remarkable variation in NS1 proteins from different influenza A virus subtypes on the transcription-stimulating capability in yeast.

  2. Expression of Bax in yeast affects not only the mitochondria but also vacuolar integrity and intracellular protein traffic

    DEFF Research Database (Denmark)

    Dimitrova, Irina; Toby, Garabet G; Tili, Esmerina;

    2004-01-01

    Bax-induced lethality in yeast is accompanied by morphological changes in mitochondria, giving rise to a reduced number of swollen tubules. Although these changes are completely abolished upon coexpression of the Bax inhibitor, Bcl-2, coexpression of Bax with Bax inhibiting-glutathione S-transfer...

  3. Exploiting the yeast L-A viral capsid for the in vivo assembly of chimeric VLPs as platform in vaccine development and foreign protein expression.

    Directory of Open Access Journals (Sweden)

    Frank Powilleit

    Full Text Available A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8(+ memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i a heterologous model protein (GFP, (ii a per se toxic protein (K28 alpha-subunit, and (iii a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A. Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production.

  4. Forces in yeast flocculation.

    Science.gov (United States)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N; Dufrêne, Yves F

    2015-02-07

    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion ("flocculation") is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  5. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  6. Expression of human AID in yeast induces mutations in context similar to the context of somatic hypermutation at G-C pairs in immunoglobulin genes

    Directory of Open Access Journals (Sweden)

    Kunkel Thomas A

    2005-06-01

    Full Text Available Abstract Background Antibody genes are diversified by somatic hypermutation (SHM, gene conversion and class-switch recombination. All three processes are initiated by the activation-induced deaminase (AID. According to a DNA deamination model of SHM, AID converts cytosine to uracil in DNA sequences. The initial deamination of cytosine leads to mutation and recombination in pathways involving replication, DNA mismatch repair and possibly base excision repair. The DNA sequence context of mutation hotspots at G-C pairs during SHM is DGYW/WRCH (G-C is a hotspot position, R = A/G, Y = T/C, W = A/T, D = A/G/T. Results To investigate the mechanisms of AID-induced mutagenesis in a model system, we studied the genetic consequences of AID expression in yeast. We constructed a yeast vector with an artificially synthesized human AID gene insert using codons common to highly expressed yeast genes. We found that expression of the artificial hAIDSc gene was moderately mutagenic in a wild-type strain and highly mutagenic in an ung1 uracil-DNA glycosylase-deficient strain. A majority of mutations were at G-C pairs. In the ung1 strain, C-G to T-A transitions were found almost exclusively, while a mixture of transitions with 12% transversions was characteristic in the wild-type strain. In the ung1 strain mutations that could have originated from deamination of the transcribed stand were found more frequently. In the wild-type strain, the strand bias was reversed. DGYW/WRCH motifs were preferential sites of mutations. Conclusion The results are consistent with the hypothesis that AID-mediated deamination of DNA is a major cause of mutations at G-C base pairs in immunoglobulin genes during SHM. The sequence contexts of mutations in yeast induced by AID and those of somatic mutations at G-C pairs in immunoglobulin genes are significantly similar. This indicates that the intrinsic substrate specificity of AID itself is a primary determinant of mutational hotspots at G

  7. Methanol Expression Regulator 1 (Mxr1p) Is Essential for the Utilization of Amino Acids as the Sole Source of Carbon by the Methylotrophic Yeast, Pichia pastoris.

    Science.gov (United States)

    Sahu, Umakant; Rangarajan, Pundi N

    2016-09-23

    Unlike Saccharomyces cerevisiae, the methylotrophic yeast Pichia pastoris can assimilate amino acids as the sole source of carbon and nitrogen. It can grow in media containing yeast extract and peptone (YP), yeast nitrogen base (YNB) + glutamate (YNB + Glu), or YNB + aspartate (YNB + Asp). Methanol expression regulator 1 (Mxr1p), a zinc finger transcription factor, is essential for growth in these media. Mxr1p regulates the expression of several genes involved in the utilization of amino acids as the sole source of carbon and nitrogen. These include the following: (i) GDH2 encoding NAD-dependent glutamate dehydrogenase; (ii) AAT1 and AAT2 encoding mitochondrial and cytosolic aspartate aminotransferases, respectively; (iii) MDH1 and MDH2 encoding mitochondrial and cytosolic malate dehydrogenases, respectively; and (iv) GLN1 encoding glutamine synthetase. Synthesis of all these enzymes is regulated by Mxr1p at the level of transcription except GDH2, whose synthesis is regulated at the level of translation. Mxr1p activates the transcription of AAT1, AAT2, and GLN1 in cells cultured in YP as well as in YNB + Glu media, whereas transcription of MDH1 and MDH2 is activated in cells cultured in YNB + Glu but not in YP. A truncated Mxr1p composed of 400 N-terminal amino acids activates transcription of target genes in cells cultured in YP but not in YNB + Glu. Mxr1p binds to Mxr1p response elements present in the promoters of AAT2, MDH2, and GLN1 We conclude that Mxr1p is essential for utilization of amino acids as the sole source of carbon and nitrogen, and it is a global regulator of multiple metabolic pathways in P. pastoris.

  8. Improved NADPH Regeneration for Fungal Cytochrome P450 Monooxygenase by Co-Expressing Bacterial Glucose Dehydrogenase in Resting-Cell Biotransformation of Recombinant Yeast.

    Science.gov (United States)

    Jeon, Hyunwoo; Durairaj, Pradeepraj; Lee, Dowoo; Ahsan, Md Murshidul; Yun, Hyungdon

    2016-12-28

    Fungal cytochrome P450 (CYP) enzymes catalyze versatile monooxygenase reactions and play a major role in fungal adaptations owing to their essential roles in the production avoid metabolites critical for pathogenesis, detoxification of xenobiotics, and exploitation avoid substrates. Although fungal CYP-dependent biotransformation for the selective oxidation avoid organic compounds in yeast system is advantageous, it often suffers from a shortage avoid intracellular NADPH. In this study, we aimed to investigate the use of bacterial glucose dehydrogenase (GDH) for the intracellular electron regeneration of fungal CYP monooxygenase in a yeast reconstituted system. The benzoate hydroxylase FoCYP53A19 and its homologous redox partner FoCPR from Fusarium oxysporum were co-expressed with the BsGDH from Bacillus subtilis in Saccharomyces cerevisiae for heterologous expression and biotransformations. We attempted to optimize several bottlenecks concerning the efficiency of fungal CYP-mediated whole-cell-biotransformation to enhance the conversion. The catalytic performance of the intracellular NADPH regeneration system facilitated the hydroxylation of benzoic acid to 4-hydroxybenzoic acid with high conversion in the resting-cell reaction. The FoCYP53A19+FoCPR+BsGDH reconstituted system produced 0.47 mM 4-hydroxybenzoic acid (94% conversion) in the resting-cell biotransformations performed in 50 mM phosphate buffer (pH 6.0) containing 0.5 mM benzoic acid and 0.25% glucose for 24 h at 30°C. The "coupled-enzyme" system can certainly improve the overall performance of NADPH-dependent whole-cell biotransformations in a yeast system.

  9. An RT-qPCR approach to study the expression of genes responsible for sugar assimilation during rehydration of active dry yeast.

    Science.gov (United States)

    Vaudano, Enrico; Costantini, Antonella; Noti, Olta; Garcia-Moruno, Emilia

    2010-09-01

    A short reactivation period in aqueous media is required for active dry yeast (ADY) to be utilised in winemaking. Rehydration restores the active metabolic conditions necessary for good fermentative and competitive abilities. We used a reverse transcription-quantitative PCR (RT-qPCR) method with relative quantification to investigate the expression of seven hexose transporter genes (HXT1-7) and one invertase-encoding gene (SUC2) during ADY rehydration in water with or without sucrose. For this, seven candidate reference genes were evaluated, and the three most stably expressed genes were selected and used for mRNA normalisation. The results show that, during the rehydration in the presence of sucrose, yeast cells are able to immediately hydrolyse this sugar into glucose and fructose as soon as they are introduced in the medium. Subsequently, differential glucose/fructose uptake occurs, which is mediated by hexose transporters. At the transcriptomic level, there is a strong induction of the high-affinity transporters, HXT2 and HXT4, and the low-affinity transporters, HXT3 and HXT1, when ADY is rehydrated with sucrose, while HXT5 and HXT6/7 are expressed at high levels with a moderate tendency to decrease. In water, the HXT2 gene was the only one of the transporter genes studied that showed significant variations. These results suggest that during rehydration, expression is not simply regulated by the affinity to hexose but is also controlled by other mechanisms that allow the cell to bypass glucose control. Moreover, the expression of SUC2 showed little variation in media with sucrose, suggesting that other invertases and/or posttranscriptional controls exist.

  10. Fission yeast Cdk7 controls gene expression through both its CAK and C-terminal domain kinase activities.

    Science.gov (United States)

    Devos, Maxime; Mommaerts, Elise; Migeot, Valerie; van Bakel, Harm; Hermand, Damien

    2015-05-01

    Cyclin-dependent kinase (Cdk) activation and RNA polymerase II transcription are linked by the Cdk7 kinase, which phosphorylates Cdks as a trimeric Cdk-activating kinase (CAK) complex, and serine 5 within the polymerase II (Pol II) C-terminal domain (CTD) as transcription factor TFIIH-bound CAK. However, the physiological importance of integrating these processes is not understood. Besides the Cdk7 ortholog Mcs6, fission yeast possesses a second CAK, Csk1. The two enzymes have been proposed to act redundantly to activate Cdc2. Using an improved analogue-sensitive Mcs6-as kinase, we show that Csk1 is not a relevant CAK for Cdc2. Further analyses revealed that Csk1 lacks a 20-amino-acid sequence required for its budding yeast counterpart, Cak1, to bind Cdc2. Transcriptome profiling of the Mcs6-as mutant in the presence or absence of the budding yeast Cak1 kinase, in order to uncouple the CTD kinase and CAK activities of Mcs6, revealed an unanticipated role of the CAK branch in the transcriptional control of the cluster of genes implicated in ribosome biogenesis and cell growth. The analysis of a Cdc2 CAK site mutant confirmed these data. Our data show that the Cdk7 kinase modulates transcription through its well-described RNA Pol II CTD kinase activity and also through the Cdc2-activating kinase activity.

  11. The Physiological and Biochemical Mechanisms Providing the Increased Constitutive Cold Resistance in the Potato Plants, Expressing the Yeast SUC2 Gene Encoding Apoplastic Invertase

    Directory of Open Access Journals (Sweden)

    A.N. Deryabin

    2016-05-01

    Full Text Available The expression of heterologous genes in plants is an effective method to improve our understanding of plant resistance mechanisms. The purpose of this work was to investigate the involvement of cell-wall invertase and apoplastic sugars into constitutive cold resistance of potato (Solanum tuberosum L., cv. Dйsirйe plants, which expressed the yeast SUC2 gene encoding apoplastic invertase. WT-plants of a potato served as the control. The increase in the essential cell-wall invertase activity in the leaves of transformed plants indicates significant changes in the cellular carbohydrate metabolism and regulatory function of this enzyme. The activity of yeast invertase changed the composition of intracellular sugars in the leaves of the transformed potato plant. The total content of sugars (sucrose, glucose, fructose in the leaves and apoplast was higher in the transformants, in comparison by WT-plants. Our data indicate higher constitutive resistance of transformants to severe hypothermia conditions compared to WT-plants. This fact allows us to consider cell-wall invertase as a enzyme of carbohydrate metabolism playing an important regulatory role in the metabolic signaling upon forming increased plant resistance to low temperature. Thus, the potato line with the integrated SUC2 gene is a convenient tool to study the role of the apoplastic invertase and the products of its activity during growth, development and formation constitutive resistance to hypothermia.

  12. Heterologous expression of type I antifreeze peptide GS-5 in baker's yeast increases freeze tolerance and provides enhanced gas production in frozen dough.

    Science.gov (United States)

    Panadero, Joaquin; Randez-Gil, Francisca; Prieto, Jose Antonio

    2005-12-28

    The demand for frozen-dough products has increased notably in the baking industry. Nowadays, no appropriate industrial baker's yeast with optimal gassing capacity in frozen dough is, however, available, and it is unlikely that classical breeding programs could provide significant improvements of this trait. Antifreeze proteins, found in diverse organisms, display the ability to inhibit the growth of ice, allowing them to survive at temperatures below 0 degrees C. In this study a recombinant antifreeze peptide GS-5 was expressed from the polar fish grubby sculpin (Myoxocephalus aenaeus) in laboratory and industrial baker's yeast strains of Saccharomyces cerevisiae. Production of the recombinant protein increased freezing tolerance in both strains tested. Furthermore, expression of the GS-5 encoding gene enhanced notably the gassing rate and total gas production in frozen and frozen sweet doughs. These effects are unlikely to be due to reduced osmotic damage during freezing/thawing, because recombinant cells showed growth behavior similar to that of the parent under hypermosmotic stress conditions.

  13. Inactivation of the budding yeast cohesin loader Scc2 alters gene expression both globally and in response to a single DNA double strand break.

    Science.gov (United States)

    Lindgren, Emma; Hägg, Sara; Giordano, Fosco; Björkegren, Johan; Ström, Lena

    2014-01-01

    Genome integrity is fundamental for cell survival and cell cycle progression. Important mechanisms for keeping the genome intact are proper sister chromatid segregation, correct gene regulation and efficient repair of damaged DNA. Cohesin and its DNA loader, the Scc2/4 complex have been implicated in all these cellular actions. The gene regulation role has been described in several organisms. In yeast it has been suggested that the proteins in the cohesin network would effect transcription based on its role as insulator. More recently, data are emerging indicating direct roles for gene regulation also in yeast. Here we extend these studies by investigating whether the cohesin loader Scc2 is involved in regulation of gene expression. We performed global gene expression profiling in the absence and presence of DNA damage, in wild type and Scc2 deficient G2/M arrested cells, when it is known that Scc2 is important for DNA double strand break repair and formation of damage induced cohesion. We found that not only the DNA damage specific transcriptional response is distorted after inactivation of Scc2 but also the overall transcription profile. Interestingly, these alterations did not correlate with changes in cohesin binding.

  14. Strategies for improving production and purification of a recombinant protein: rP30 of Toxoplasma gondii expressed in the yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Rolland, D; Raymond, F; Gauthier, M; Fournier, C; Charrier, J P; Jolivet, M; Dantigny, P

    2008-01-15

    Many problems concerned with the production and the purification of recombinant proteins must be addressed prior to launching an industrial production process. Among these problems, attention is focused on low-level expression that complicates the purification step and can jeopardise the process. The expression of a membrane protein, rP30, of Toxoplasma gondii in the yeast Schizosaccharomyces pombe led to a secretion of only 0.5 microg ml(-1). In order to obtain a sufficient quantity for biochemical characterization and evaluation in vitro diagnostic test development, strategies for both production and purification had to be optimized. First, the influence of four nitrogen sources (three peptones and yeast extract) on the growth rate, but also on the separation between the protein and the components of the fermentation broth was assessed. Second, batch and fed-batch fermentations were compared in terms of final biomass and rP30 concentrations. Third, three different protocols that included fixed and expanded bed ion exchange chromatography were compared for processing a large volume of feedstock. By using the most appropriate strategies, i.e. fed-batch fermentation, capture on EBA cation exchanger and affinity chromatography polishing, a purification factor of 1778 and a yield of 49% were achieved. These performances allowed a 12.5-fold increase for the overall rP30 process productivity.

  15. Functional expression in yeast and characterization of a clofibrate-inducible plant cytochrome P-450 (CYP94A1) involved in cutin monomers synthesis.

    Science.gov (United States)

    Tijet, N; Helvig, C; Pinot, F; Le Bouquin, R; Lesot, A; Durst, F; Salaün, J P; Benveniste, I

    1998-06-01

    The chemical tagging of a cytochrome P-450-dependent lauric acid omega-hydroxylase from clofibrate-treated Vicia sativa seedlings with [1-14C]11-dodecynoic acid allowed the isolation of a full-length cDNA designated CYP94A1. We describe here the functional expression of this novel P-450 in two Saccharomyces cerevisiae strains overproducing their own NADPH-cytochrome P-450 reductase or a reductase from Arabidopsis thaliana. The results show a much higher efficiency of the yeast strain overproducing the plant reductase compared with the yeast strain overproducing its own reductase for expressing CYP94A1. The methyl end of saturated (from C-10 to C-16) and unsaturated (C18:1, C18:2 and C18:3) fatty acids was mainly oxidized by CYP94A1. Both E/Z and Z/E configurations of 9, 12-octadecadienoic acids were omega-hydroxylated. Lauric, myristic and linolenic acids were oxidized with the highest turnover rate (24 min-1). The strong regioselectivity of CYP94A1 was clearly shifted with sulphur-containing substrates, since both 9- and 11-thia laurate analogues were sulphoxidized. Similar to animal omega-hydroxylases, this plant enzyme was strongly induced by clofibrate treatment. Rapid CYP94A1 transcript accumulation was detected less than 20 min after exposure of seedlings to the hypolipidaemic drug. The involvement of CYP94A1 in the synthesis of cutin monomers and fatty acid detoxification is discussed.

  16. Biotechnical Microbiology, yeast and bacteria

    DEFF Research Database (Denmark)

    Villadsen, Ingrid Stampe

    1999-01-01

    This section contains the following single lecture notes: Eukaryotic Cell Biology. Kingdom Fungi. Cell Division. Meiosis and Recombination. Genetics of Yeast. Organisation of the Chromosome. Organization and genetics of the mitochondrial Geneme. Regulatio of Gene Expression. Intracellular Compart...

  17. Expression of fission yeast cdc25 driven by the wheat ADP-glucose pyrophosphorylase large subunit promoter reduces pollen viability and prevents transmission of the transgene in wheat.

    Science.gov (United States)

    Chrimes, D; Rogers, H J; Francis, D; Jones, H D; Ainsworth, C

    2005-04-01

    Cell number was to be measured in wheat (Triticum aestivum) endosperm expressing Spcdc25 (a fission yeast cell-cycle regulator) controlled by a supposedly endosperm-specific promoter, AGP2 (from the large subunit of ADP glucose pyrophosphorylase). Wheat was transformed by biolistics either with AGP2::GUS or AGP2::Spcdc25. PCR and RT-PCR checked integration and expression of the transgene, respectively. In cv. Chinese Spring, AGP2::GUS was unexpectedly expressed in carpels and pollen, as well as endosperm. In cv. Cadenza, three AGP2::Spcdc25 plants, AGP2::Spcdc25.1, .2 and .3, were generated. Spcdc25 expression was detected in mature leaves of AGP2::Spcdc25.1/.3 which exhibited abnormal spikes, 50% pollen viability and low seed set per plant; both were small compared with the nonexpressing and normal AGP2::Spcdc25.2. Spcdc25 was not transmitted to the T(1) in AGP2::Spcdc25.1 or .3, which developed normally. Spcdc25 was PCR-positive in AGP2::Spcdc25.2, using primers for a central portion, but not with primers for the 5' end, of the ORF, indicating a rearrangement; Spcdc25 was not expressed in either T(0) or T(1). The AGP2 promoter is not tissue-specific and Spcdc25 expression disrupted reproduction.

  18. Over-expression of GSH1 gene and disruption of PEP4 gene in self-cloning industrial brewer's yeast.

    Science.gov (United States)

    Wang, Zhao-Yue; He, Xiu-Ping; Zhang, Bo-Run

    2007-11-01

    Foam stability is often influenced by proteinase A, and flavor stability is often affected by oxidation during beer storage. In this study, PEP4, the gene coding for proteinase A, was disrupted in industrial brewing yeast. In the meantime, one copy of GSH1 gene increased in the same strain. GSH1 is responsible for gamma-glutamylcysteine synthetase, a rate-limiting enzyme for synthesis of glutathione which is one kind of important antioxidant and beneficial to beer flavor stability. In order to improve the brewer's yeast, plasmid pYPEP, pPC and pPCG1 were firstly constructed, which were recombined plasmids with PEP4 gene, PEP4's disruption and PEP4's disruption+GSH1 gene respectively. These plasmids were verified to be correct by restriction enzymes' assay. By digesting pPCG1 with AatII and PstI, the DNA fragment for homologous recombination was obtained carrying PEP4 sequence in the flank and GSH1 gene internal to the fragment. Since self-cloning technique was applied in the study and the modified genes were from industrial brewing yeast itself, the improved strains, self-cloning strains, were safe to public. The genetic stability of the improved strains was 100%. The results of PCR analysis of genome DNA showed that coding sequence of PEP4 gene had been deleted and GSH1 gene had been inserted into the locus of PEP4 gene in self-cloning strains. The fermentation ability of self-cloning strain, SZ-1, was similar to that of the host. Proteinase A could not be detected in beer brewed with SZ-1, and GSH content in the beer increased 35% compared to that of the host, Z-1.

  19. Arm-Gal4 inheritance influences development and lifespan in Drosophila melanogaster.

    Science.gov (United States)

    Slade, F A; Staveley, B E

    2015-10-19

    The UAS-Gal4 ectopic expression system is a widely used and highly valued tool that allows specific gene expression in Drosophila melanogaster. Yeast transcription factor Gal4 can be directed using D. melanogaster transcriptional control elements, and is often assumed to have little effect on the organism. By evaluation of the consequences of maternal and paternal inheritance of a Gal4 transgene under the transcriptional regulation of armadillo control elements (arm-Gal4), we demonstrated that Gal4 expression could be detrimental to development and longevity. Male progeny expressing arm-Gal4 in the presence of UAS-lacZ transgene had reduced numbers and size of ommatidia, compared to flies expressing UAS-lacZ transgene under the control of other Gal4 transgenes. Aged at 25°C, the median life span of male flies with maternally inherited elav-Gal4 was 70 days, without a responding transgene or with UAS-lacZ. The median life span of maternally inherited arm-Gal4 male flies without a responding transgene was 48 days, and 40 days with the UAS-lacZ transgene. A partial rescue of this phenotype was observed with the expression of UAS-lacZ under paternal arm-Gal4 control, having an average median lifespan of 60 days. This data suggests that arm-Gal4 has detrimental effects on Drosophila development and lifespan that are directly dependent upon parental inheritance, and that the benign responder and reporter gene UAS-lacZ may influence D. melanogaster development. These findings should be taken into consideration during the design and execution of UAS-Gal4 expression experiments.

  20. Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin.

    Science.gov (United States)

    Liu, Xiao-Yan; Chi, Zhe; Liu, Guang-Lei; Madzak, Catherine; Chi, Zhen-Ming

    2013-02-01

    In this study, some of the ATP-citrate lyase genes (ACL1) were deleted and the copy number of the iso-citrate lyase gene (ICL1) was increased in the marine-derived yeast Yarrowia lipolytica SWJ-1b displaying the recombinant inulinase. It was found that lipid content and iso-citric acid in the transformant 30 obtained were greatly reduced and citric acid production was greatly enhanced. It was also found that the ACL1 gene expression and ATP-citrate lyase activity in the transformant 30 were declined and the ICL1 gene expression and iso-citrate lyase activity were promoted. During the 2-l fermentation, 84.0 g/l of citric acid and 1.8 g/l of iso-citric acid in the fermented medium were attained from 10.0 % of inulin by the transformant 30 within 214 h. The results showed that only 0.36 % of the residual reducing sugar and 1.0 % of the residual total sugar were left in the fermented medium, suggesting that 89.6 % of the total sugar was used for citric acid production and cell growth by the transformant 30.

  1. Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation.

    Science.gov (United States)

    Wu, Dianhui; Li, Xiaomin; Lu, Jian; Chen, Jian; Zhang, Liang; Xie, Guangfa

    2016-01-01

    Urea and ethanol are the main precursors of ethyl carbamate (EC) in Chinese rice wine. During fermentation, urea is generated from arginine by arginase in Saccharomyces cerevisiae, and subsequently cleaved by urea amidolyase or directly transported out of the cell into the fermentation liquor, where it reacts with ethanol to form EC. To reduce the amount of EC in Chinese rice wine, we metabolically engineered two yeast strains, N85(DUR1,2) and N85(DUR1,2)-c, from the wild-type Chinese rice wine yeast strain N85. Both new strains were capable of constitutively expressing DUR1,2 (encodes urea amidolyase) and thus enhancing urea degradation. The use of N85(DUR1,2) and N85(DUR1,2)-c reduced the concentration of EC in Chinese rice wine fermented on a small-scale by 49.1% and 55.3%, respectively, relative to fermentation with the parental strain. All of the engineered strains showed good genetic stability and minimized the production of urea during fermentation, with no exogenous genes introduced during genetic manipulation, and were therefore suitable for commercialization to increase the safety of Chinese rice wine.

  2. Rapid yeast estrogen bioassays stably expressing human estrogen receptors alpha and beta, and green fluorescent protein: a comparison of different compounds with both receptor types.

    Science.gov (United States)

    Bovee, Toine F H; Helsdingen, Richard J R; Rietjens, Ivonne M C M; Keijer, Jaap; Hoogenboom, Ron L A P

    2004-07-01

    Previously, we described the construction of a rapid yeast bioassay stably expressing human estrogen receptor (hERalpha) and yeast enhanced green fluorescent protein (yEGFP) in response to estrogens. In the present study, the properties of this assay were further studied by testing a series of estrogenic compounds. Furthermore, a similar assay was developed based on the stable expression of human estrogen receptor beta (hERbeta). When exposed to 17beta-estradiol, the maximum transcriptional activity of the ERbeta cytosensor was only about 40% of the activity observed with ERalpha, but the concentration where half-maximal activation is reached (EC50), was about five times lower. The relative estrogenic potencies (REP), defined as the ratio between the EC50 of 17beta-estradiol and the EC50 of the compound, of the synthetic hormones dienestrol, hexestrol and especially mestranol were higher with ER, while DES was slightly more potent with ERbeta. The gestagens progesterone and medroxyprogesterone-acetate showed no response, whereas the androgen testosterone showed a very weak response. The anabolic agent, 19-nortestosterone showed a clear dose-related response with estrogen receptor but not beta. The phytoestrogens coumestrol, genistein, genistin, daidzein, daidzin and naringenin were relatively more potent with ERbeta. Ranking of the estrogenic potency with ER was: 17beta-estradiol > 8-prenylnaringenin > coumestrol > zearalenone > genistein > genistin > naringenin. The ranking with the ERbeta was: 17beta-estradiol > coumestrol > genistein > zearalenone > 8-prenylnaringen > daidzein > naringenin > genistin > daidzin. The hop estrogen 8-prenylnaringenin is relatively more potent with ERalpha. These data show that the newly developed bioassays are valuable tools for the rapid and high-throughput screening for estrogenic activity.

  3. Sexually dimorphic expression of glutamate decarboxylase mRNA in the hypothalamus of the deep sea armed grenadier, Coryphaenoides (Nematonurus) armatus.

    Science.gov (United States)

    Trudeau, V L; Bosma, P T; Collins, M; Priede, I G; Docherty, K

    2000-11-01

    Glutamate decarboxylase (GAD), is a key enzyme in the central nervous system (CNS) that synthesizes the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) from glutamate. Our previous phylogenetic studies on the evolution of this enzyme indicates that there are at least two distinct forms: GAD65 and GAD67. They are the products of separate genes and probably derive from a common ancestral GAD gene following gene duplication prior to the emergence of the teleosts more than 200 Myr ago. Furthermore, a third GAD-like molecule, GAD3, discovered in the armed grenadier, Coryphaenoides (Nematonurus) armatus, is equally divergent from both GAD65 and GAD67. Specimens of C. (N.) armatus were collected by trawl at a depth of 4,000 m in the Porcupine Seabight (Northeastern Atlantic), and brains dissected and frozen for RNA extraction. All three GAD forms are found in the cerebellum, telencephalon and hypothalamus. Semiquantitative PCR analysis showed that males and females have similar levels of expression of GAD67 and GAD3 in the tissues studied. Independent of the sex examined, the levels of expression of GAD65 and GAD67 in the cerebellum were approximately half that in the telencephalon. GAD3 levels were approximately 30% higher in the cerebellum than in either the telencephalon or hypothalamus. In contrast to GAD67 and GAD3, hypothalamic expression of GAD65 mRNA is 1.8 times higher (p < 0.05) in males than in females. These data indicate that the expression of GAD65, a key enzyme for the synthesis of GABA is sexually dimorphic in females and males of C. (N.) armatus.

  4. Use of the Yeast Pichia pastoris as an Expression Host for Secretion of Enterocin L50, a Leaderless Two-Peptide (L50A and L50B) Bacteriocin from Enterococcus faecium L50▿

    Science.gov (United States)

    Basanta, Antonio; Gómez-Sala, Beatriz; Sánchez, Jorge; Diep, Dzung B.; Herranz, Carmen; Hernández, Pablo E.; Cintas, Luis M.

    2010-01-01

    In this work, we report the expression and secretion of the leaderless two-peptide (EntL50A and EntL50B) bacteriocin enterocin L50 from Enterococcus faecium L50 by the methylotrophic yeast Pichia pastoris X-33. The bacteriocin structural genes entL50A and entL50B were fused to the Saccharomyces cerevisiae gene region encoding the mating pheromone α-factor 1 secretion signal (MFα1s) and cloned, separately and together (entL50AB), into the P. pastoris expression and secretion vector pPICZαA, which contains the methanol-inducible alcohol oxidase promoter (PAOX1) to express the fusion genes. After transfer into the yeast, the recombinant plasmids were integrated into the genome, resulting in three bacteriocinogenic yeast strains able to produce and secrete the individual bacteriocin peptides EntL50A and EntL50B separately and together. The secretion was efficiently directed by MFα1s through the Sec system, and the precursor peptides were found to be correctly processed to form mature and active bacteriocin peptides. The present work describes for the first time the heterologous expression and secretion of a two-peptide non-pediocin-like bacteriocin by a yeast. PMID:20348300

  5. Yeast Interacting Proteins Database: YFR015C, YFR015C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...ression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary ...tion, nitrogen starvation, environmental stress, and entry into stationary phase Rows with this bait as bait..., the more highly expressed yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental

  6. Molecular cloning, immunochemical localization to the vacuole, and expression in transgenic yeast and tobacco of a putative sugar transporter from sugar beet.

    Science.gov (United States)

    Chiou, T J; Bush, D R

    1996-02-01

    Several plant genes have been cloned that encode members of the sugar transporter subgroup of the major facilitator superfamily of transporters. Here we report the cloning, expression, and membrane localization of one of these porters found in sugar beet (Beta vulgaris L.). This clone, cDNA-1, codes for a protein with 490 amino acids and an estimated molecular mass of 54 kD. The predicted membrane topology and sequence homology suggest that cDNA-1 is a member of the sugar transporter family. RNA gel blot analysis revealed that this putative sugar transporter is expressed in all vegetative tissues and expression increases with development in leaves. DNA gel blot analysis indicated that multiple gene copies exist for this putative sugar transporter in the sugar beet genome. Antibodies directed against small peptides representing the N- and C-terminal domains of the cDNA1 protein identified a 40-kD polypeptide in microsomes isolated from cDNA-1-transformed yeast (Saccharomyces cerevisiae). Moreover, the same protein was identified in sugar beet and transgenic tobacco (Nicotaina tobacum L.) membrane fractions. Detailed analysis of the transporter's distribution across linear sucrose gradients and flotation centrifugations showed that it co-migrates with tonoplast membrane markers. We conclude that this carrier is located on the tonoplast membrane and that it may mediate sugar partitioning between the vacuole and cytoplasmic compartments.

  7. 酵母胱硫醚β-合成酶的表达及酶活鉴定%Expression and Characterization of Yeast Cystathionine β-Synthase

    Institute of Scientific and Technical Information of China (English)

    王利群; 奚学志; 曹利民; 顾雅萍; 孙培培

    2013-01-01

    将重组质粒pET45b-yCBS转入E.coli BL21中,构建高效表达酵母胱硫醚β-合成酶(yeast cystathionine β-synthase,1)的重组菌.研究诱导时菌体浓度、诱导剂IPTG浓度、诱导时间和温度,以及在培养基中添加不同浓度的山梨醇、葡萄糖、甘油对1表达量的影响.使用Ni2+亲和色谱柱纯化重组蛋白,再经His-Trap脱盐柱脱盐,以茚三酮法检测蛋白活性.结果表明,培养基中添加0.05%的山梨醇,重组菌在37℃培养3h后,添加终浓度为0.1 mmo/L的IPTG于20℃诱导培养15h,可溶性1表达量达到110 mg/L;纯化后比活为1 320 u/mg.%The recombinant vector pET45b-yCBS was constructed and transformed into E.coli BL21 to over-express yeast cystathionine β-synthase (1).The effects of various factors on the protein expression were studied,including strain density,the concentration of the inducer IPTG and inducing temperature and time,as well as the cosubstrates such as sorbitol,glucose and glycerin.The expressed protein was purified by Ni2+ chelating affinity chromatography and desalted by His-Trap desalting column,and its activity was determined with the ninhydrin reaction.The results indicated that the expression level of 1 is the highest when the recombinant strain was induced by 0.1 mmol/L IPTG for 15 h at 20 ℃ after cultured for 3 h at 37 ℃ in the LB medium supplemented with 0.05 % sorbitol.The productivity of the soluble 1 reached 110 mg/L.The specific activity of purified 1 is 1 320 u/mg.

  8. Mapping Yeast Transcriptional Networks

    OpenAIRE

    Hughes, Timothy R; de Boer, Carl G.

    2013-01-01

    The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face....

  9. Effect of yeast-derived products and distillers dried grains with solubles (DDGS) on growth performance, gut morphology, and gene expression of pattern recognition receptors and cytokines in broiler chickens.

    Science.gov (United States)

    Alizadeh, M; Rodriguez-Lecompte, J C; Rogiewicz, A; Patterson, R; Slominski, B A

    2016-03-01

    An experiment was carried out to investigate the effect of yeast-derived products and distillers' dried grains with solubles (DDGS) on growth performance, small intestinal morphology, and innate immune response in broiler chickens from 1 to 21 d of age. Nine replicates of 5 birds each were assigned to dietary treatments consisting of a control diet without antibiotic (C), and diets containing 11 mg/kg of virginiamycin, 0.25% of yeast cell wall (YCW), 0.2% of a commercial product Maxi-Gen Plus, 0.025% of nucleotides, 0.05% of nucleotides, or a diet containing 10% of DDGS. On d 21, 5 birds per treatment were euthanized and approximately 5-cm long duodenum, jejunum, and ileum segments were collected for intestinal morphology measurements. Cecal tonsils and spleen were collected to measure the gene expression of toll-like receptors TLR2b, TLR4, and TLR21, macrophage mannose receptor (MMR), and cytokines IFN-γ, IL-12, IL-10, and IL-4. No significant difference was observed for growth performance parameters. However, diets containing 0.05% of nucleotides and YCW significantly increased (P yeast-derived products. The expression of TLR2b in the spleen was down-regulated for diets supplemented with nucleotides and antibiotic. In addition, lower expression of TLR21 and MMR was observed in the spleen of birds receiving yeast-derived products and antibiotic. However, expression of TLR4 in the spleen was up-regulated in diets supplemented with YCW and nucleotides. The expression of IFN-γ and IL-12 was down-regulated in the spleen of birds fed diets supplemented with yeast-derived products. In addition, inclusion of YCW, Maxi-Gen Plus, or 0.05% of nucleotides down-regulated the expression of IL-10 and IL-4 in the cecal tonsils. In conclusion, down-regulation of receptors and cytokines in spleen and cecal tonsils of birds fed diets supplemented with yeast-derived products may suggest that yeast products do not exert immune stimulating effect under normal health conditions.

  10. Analysis of cellular responses to aflatoxin B{sub 1} in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yingying [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Breeden, Linda L. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Fan, Wenhong [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zhao Lueping [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Eaton, David L. [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zarbl, Helmut [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States) and Fred Hutchinson Cancer Research Center, Seattle, WA (United States)]. E-mail: hzarbl@fhcrc.org

    2006-01-29

    Aflatoxin B1 (AFB{sub 1}) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB{sub 1} is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N{sup 7}-guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB{sub 1}, a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB{sub 1} that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB{sub 1} treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB{sub 1}-treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific

  11. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  12. Molecular Cloning and Optimization for High Level Expression of Cold-Adapted Serine Protease from Antarctic Yeast Glaciozyma antarctica PI12

    Directory of Open Access Journals (Sweden)

    Norsyuhada Alias

    2014-01-01

    Full Text Available Psychrophilic basidiomycete yeast, Glaciozyma antarctica strain PI12, was shown to be a protease-producer. Isolation of the PI12 protease gene from genomic and mRNA sequences allowed determination of 19 exons and 18 introns. Full-length cDNA of PI12 protease gene was amplified by rapid amplification of cDNA ends (RACE strategy with an open reading frame (ORF of 2892 bp, coded for 963 amino acids. PI12 protease showed low homology with the subtilisin-like protease from fungus Rhodosporidium toruloides (42% identity and no homology to other psychrophilic proteases. The gene encoding mature PI12 protease was cloned into Pichia pastoris expression vector, pPIC9, and positioned under the induction of methanol-alcohol oxidase (AOX promoter. The recombinant PI12 protease was efficiently secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. The highest protease production (28.3 U/ml was obtained from P. pastoris GS115 host (GpPro2 at 20°C after 72 hours of postinduction time with 0.5% (v/v of methanol inducer. The expressed protein was detected by SDS-PAGE and activity staining with a molecular weight of 99 kDa.

  13. A purified truncated form of yeast Gal4 expressed in Escherichia coli and used to functionalize poly(lactic acid) nanoparticle surface is transcriptionally active in cellulo.

    Science.gov (United States)

    Legaz, Sophie; Exposito, Jean-Yves; Borel, Agnès; Candusso, Marie-Pierre; Megy, Simon; Montserret, Roland; Lahaye, Vincent; Terzian, Christophe; Verrier, Bernard

    2015-09-01

    Gal4/UAS system is a powerful tool for the analysis of numerous biological processes. Gal4 is a large yeast transcription factor that activates genes including UAS sequences in their promoter. Here, we have synthesized a minimal form of Gal4 DNA sequence coding for the binding and dimerization regions, but also part of the transcriptional activation domain. This truncated Gal4 protein was expressed as inclusion bodies in Escherichia coli. A structured and active form of this recombinant protein was purified and used to cover poly(lactic acid) (PLA) nanoparticles. In cellulo, these Gal4-vehicles were able to activate the expression of a Green Fluorescent Protein (GFP) gene under the control of UAS sequences, demonstrating that the decorated Gal4 variant can be delivery into cells where it still retains its transcription factor capacities. Thus, we have produced in E. coli and purified a short active form of Gal4 that retains its functions at the surface of PLA-nanoparticles in cellular assay. These decorated Gal4-nanoparticles will be useful to decipher their tissue distribution and their potential after ingestion or injection in UAS-GFP recombinant animal models.

  14. Yeast Lab

    OpenAIRE

    Lewis, Matt; Powell, Jim

    2016-01-01

    Yeast are grown in a small, capped ask, generating carbon dioxide which is trapped in an inverted jar full of colored water. The volume of carbon dioxide produced can either be measured directly or using time-lapse imagery on an iPad or similar. Students are then challenged to model the resulting data. From this exercise students gain greater understand- ing of ODE compartment models, parameter estimation, population dynamics and limiting factors.

  15. Production of Candida antarctica lipase B gene open reading frame using automated PCR gene assembly protocol on robotic workcell and expression in an ethanologenic yeast for use as resin-bound biocatalyst in biodiesel production.

    Science.gov (United States)

    Hughes, Stephen R; Moser, Bryan R; Harmsen, Amanda J; Bischoff, Kenneth M; Jones, Marjorie A; Pinkelman, Rebecca; Bang, Sookie S; Tasaki, Ken; Doll, Kenneth M; Qureshi, Nasib; Saha, Badal C; Liu, Siqing; Jackson, John S; Robinson, Samantha; Cotta, Michael C; Rich, Joseph O; Caimi, Paolo

    2011-02-01

    A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was constructed, and the lycotoxin-1 (Lyt-1) C3 variant gene ORF, potentially to improve the availability of the active enzyme at the surface of the yeast cell, was added in frame with the CALB ORF using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. Saccharomyces cerevisiae strains expressing CALB protein or CALB Lyt-1 fusion protein were first grown on 2% (w/v) glucose, producing 9.3 g/L ethanol during fermentation. The carbon source was switched to galactose for GAL1-driven expression, and the CALB and CALB Lyt-1 enzymes expressed were tested for fatty acid ethyl ester (biodiesel) production. The synthetic enzymes catalyzed the formation of fatty acid ethyl esters from ethanol and either corn or soybean oil. It was further demonstrated that a one-step-charging resin, specifically selected for binding to lipase, was capable of covalent attachment of the CALB Lyt-1 enzyme, and that the resin-bound enzyme catalyzed the production of biodiesel. High-level expression of lipase in an ethanologenic yeast strain has the potential to increase the profitability of an integrated biorefinery by combining bioethanol production with coproduction of a low-cost biocatalyst that converts corn oil to biodiesel.

  16. Process for Assembly and Transformation into Saccharomyces cerevisiae of a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform.

    Science.gov (United States)

    Hughes, Stephen R; Cox, Elby J; Bang, Sookie S; Pinkelman, Rebecca J; López-Núñez, Juan Carlos; Saha, Badal C; Qureshi, Nasib; Gibbons, William R; Fry, Michelle R; Moser, Bryan R; Bischoff, Kenneth M; Liu, Siqing; Sterner, David E; Butt, Tauseef R; Riedmuller, Steven B; Jones, Marjorie A; Riaño-Herrera, Néstor M

    2015-12-01

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system in yeast and to design an assembly process suitable for an automated platform. Expression of XI and XKS from the YAC was confirmed by Western blot and PCR analyses. The recombinant and wild-type strains showed similar growth on plates containing hexose sugars, but only recombinant grew on D-xylose and L-arabinose plates. In glucose fermentation, doubling time (4.6 h) and ethanol yield (0.44 g ethanol/g glucose) of recombinant were comparable to wild type (4.9 h and 0.44 g/g). In whole-corn hydrolysate, ethanol yield (0.55 g ethanol/g [glucose + xylose]) and xylose utilization (38%) for recombinant were higher than for wild type (0.47 g/g and 12%). In hydrolysate from spent coffee grounds, yield was 0.46 g ethanol/g (glucose + xylose), and xylose utilization was 93% for recombinant. These results indicate introducing a YAC expressing XI and XKS enhanced xylose utilization without affecting integrity of the host strain, and the process provides a potential platform for automated synthesis of a YAC for expression of multiple optimized genes to improve yeast strains.

  17. Rsp5-Bul1/2 complex is necessary for the HSE-mediated gene expression in budding yeast.

    Science.gov (United States)

    Kaida, Daisuke; Toh-e, Akio; Kikuchi, Yoshiko

    2003-07-11

    Rsp5 is an essential ubiquitin ligase in Saccharomyces cerevisiae and is concerned with many functions such as endocytosis and transcription through ubiquitination of various substrates. Bul1 or its homologue Bul2 binds to Rsp5 through the PY-motif and the bul1 bul2 double mutant is sensitive to various stresses. We demonstrate here that heat shock element (HSE)-mediated gene expression was defective in both rsp5-101 and bul1 bul2 mutants under high temperature condition. The bul1 gene containing mutations in the PY motif region did not recover this defective gene expression of the bul1 bul2 mutant. The protein level and phosphorylation state of the HSE-binding transcription factor, Hsf1, was not affected by these mutations. Thus, the Rsp5-Bul1/2 complex has a new function for the HSE-mediated gene expression and may regulate it through other factors than Hsf1.

  18. Stimulation of chymosin secretion by simultaneous expression with chymosin-binding llama single-domain antibody fragments in yeast

    NARCIS (Netherlands)

    Harmsen, M.M.; Smits, C.B.; Geus, de B.

    2002-01-01

    We studied the effect of coexpression of chymosin and chymosin-binding llama single-domain antibody fragments (VHHs) on the secretion of chymosin by Saccharomyces cerevisiae cells. A VHH expression library containing chymosin-specific VHHs was obtained by immunization of a llama and coexpressed with

  19. Assembly and expression of a synthetic gene encoding the antigen Pfs48/45 of the human malaria parasite Plasmodium falciparum in yeast.

    NARCIS (Netherlands)

    Milek, R.L.B.; Stunnenberg, H.G.; Konings, R.N.H.

    2000-01-01

    Pfs48/45 is an important transmission-blocking vaccine candidate antigen of the human malaria parasite Plasmodium falciparum. This study was aimed at synthesis of recombinant Pfs48/45 containing conformation-constrained epitopes of the native antigen in yeast. Since in the yeast Saccharomyces cerevi

  20. Influence of N-glycans on Expression of Cell Wall Remodeling Related Genes in Paracoccidioides brasiliensis Yeast Cells

    Science.gov (United States)

    Almeida, Fausto; Antoniêto, Amanda Cristina Campos; Pessoni, André Moreira; Monteiro, Valdirene Neves; Alegre-Maller, Ana Claudia Paiva; Pigosso, Laurine Lacerda; Pereira, Maristela; Soares, Célia Maria de Almeida; Roque-Barreira, Maria Cristina

    2016-01-01

    Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America. It is caused by the temperature-dependent dimorphic fungus Paracoccidioides brasiliensis. The P. brasiliensis cell wall is a dynamic outer structure, composed of a network of glycoproteins and polysaccharides, such as chitin, glucan and N-glycosylated proteins. These glycoproteins can interact with the host to affect infection rates, and are known to perform other functions. We inhibited N-linked glycosylation using tunicamycin (TM), and then evaluated the expression of P. brasiliensis genes related to cell wall remodeling. Our results suggest that cell wall synthesis related genes, such as β-1,3-glucanosyltransferase (PbGEL3), 1,3-β-D-glucan synthase (PbFKS1), and α-1,4-amylase (PbAMY), as well as cell wall degrading related genes, such as N-acetyl-β-D-glucosaminidase (PbNAG1), α-1,3-glucanase (PbAGN), and β-1,3-glucanase (PbBGN1 and PbBGN2), have their expression increased by the N-glycosylation inhibition, as detected by qRT-PCR. The observed increases in gene expression levels reveal possible compensatory mechanisms for diminished enzyme activity due to the lack of glycosylation caused by TM. PMID:27226767

  1. Yeast Genetics and Biotechnological Applications

    Science.gov (United States)

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  2. Evaluation of antibody response in mice against avian influenza A (H5N1) strain neuraminidase expressed in yeast Pichia pastoris

    Indian Academy of Sciences (India)

    Murugan Subathra; Ponsekaran Santhakumar; Mangamoori Lakshmi Narasu; Syed Sultan Beevi; Sunil K Lal

    2014-06-01

    Avian influenza has raised many apprehension in the recent years because of its potential transmitability to humans. With the increasing emergence of drug-resistant avian influenza strains, development of potential vaccines are imperative to manage this disease. Two structural antigens, haemagglutinin and neuraminidase, have been the target candidates for the development of subunit vaccine against influenza. In an effort to develop a faster and economically beneficial vaccine, the neuraminidase gene of a highly pathogenic avian influenza isolate was cloned and expressed in the methylotrophic yeast Pichia pastoris. The recombinant neuraminidase (rNA) antigen was purified, and its bioactivity was analysed. The rNA was found to be functional, as determined by the neuraminidase assay. Four groups of mice were immunized with different concentrations of purified rNA antigen, which were adjuvanted with aluminium hydroxide. The immune response against rNA was analysed by enzyme-linked immunosorbent assay (ELISA) and neuraminidase inhibition assay. The mice groups immunized with 25 g and 10 g of antigen had a significant immune response against rNA. This method can be utilized for faster and cost-effective development of vaccines for a circulating and newer strain of avian influenza, and would aid in combating the disease in a pandemic situation, in which production time matters greatly.

  3. Identification and cloning of prs a 1, a 32-kDa endochitinase and major allergen of avocado, and its expression in the yeast Pichia pastoris.

    Science.gov (United States)

    Sowka, S; Hsieh, L S; Krebitz, M; Akasawa, A; Martin, B M; Starrett, D; Peterbauer, C K; Scheiner, O; Breiteneder, H

    1998-10-23

    Avocado, the fruit of the tropical tree Persea americana, is a source of allergens that can elicit diverse IgE-mediated reactions including anaphylaxis in sensitized individuals. We characterized a 32-kDa major avocado allergen, Prs a 1, which is recognized by 15 out of 20 avocado- and/or latex-allergic patients. Natural Prs a 1 was purified, and its N-terminal and two tryptic peptide sequences were determined. We isolated the Prs a 1 encoding cDNA by PCR using degenerate primers and 5'-rapid amplification of cDNA ends. The Prs a 1 cDNA coded for an endochitinase of 326 amino acids with a leader peptide of 25 amino acids. We expressed Prs a 1 in the yeast Pichia pastoris at 50 mg/liter of culture medium. The recombinant Prs a 1 showed endochitinase activity, inhibited growth and branching of Fusarium oxysporum hyphae, and possessed IgE binding capacity. IgE cross-reactivity with latex proteins including a 20-kDa allergen, most likely prohevein, was demonstrated, providing an explanation for the commonly observed cross-sensitization between avocado and latex proteins. Sequence comparison showed that Prs a 1 and prohevein had 70% similarity in their chitin-binding domains. Characterization of chitinases as allergens has implications for engineering transgenic crops with increased levels of chitinases.

  4. Yeast Interacting Proteins Database: YFR015C, YLR258W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into statio

  5. Arms control and international security

    Energy Technology Data Exchange (ETDEWEB)

    Kolkowicz, R. (ed.); Joeck, N.

    1984-01-01

    This book compiles the papers delivered at a symposium held at the University of California, in 1983. It provides the discussions upon the value and importance of arms debate. The paper presents an expression of personal views rather than an analysis of the arguments of the primary presentations.

  6. Biotechnological Applications of Dimorphic Yeasts

    Science.gov (United States)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  7. Oral application of freeze-dried yeast particles expressing the PCV2b Cap protein on their surface induce protection to subsequent PCV2b challenge in vivo.

    Science.gov (United States)

    Patterson, Robert; Eley, Thomas; Browne, Christopher; Martineau, Henny M; Werling, Dirk

    2015-11-17

    Porcine circovirus type 2 (PCV2) is now endemic in every major pig producing country, causing PCV-associated disease (PCVAD), linked with large scale economic losses. Current vaccination strategies are based on the capsid protein of the virus and are reasonably successful in preventing PCVAD but fail to induce sterile immunity. Additionally, vaccinating whole herds is expensive and time consuming. In the present study a "proof of concept" vaccine trial was employed to test the effectiveness of powdered freeze-dried recombinant Saccharomyces cerevisiae yeast stably expressing the capsid protein of PCV2b on its surface as an orally applied vaccine. PCV2-free pigs were given 3 doses of vaccine or left un-vaccinated before challenge with a defined PCV2b strain. Rectal temperatures were measured and serum and faeces samples were collected weekly. At the end of the study, pigs were euthanized, tissue samples taken and tested for PCV2b load by qPCR and immunohistochemistry. The peak of viraemia in sera and faeces of unvaccinated pigs was higher than that of vaccinated pigs. Additionally more sIgA was found in faeces of vaccinated pigs than unvaccinated. Vaccination was associated with lower serum concentrations of TNFα and IL-1β but higher concentrations of IFNα and IFNγ in comparison to the unvaccinated animals. At the end of the trial, a higher viral load was found in several lymphatic tissues and the ileum of unvaccinated pigs in comparison to vaccinated pigs. The difference between groups was especially apparent in the ileum. The results presented here demonstrate a possible use for recombinant S. cerevisiae expressing viral proteins as an oral vaccine against PCV2. A powdered freeze-dried recombinant S. cerevisiae used as an oral vaccine could be mixed with feed and may offer a cheap and less labour intensive alternative to inoculation with the additional advantage that no cooling chain would be required for vaccine transport and storage.

  8. Characterization of the microheterogeneities of PIXY321, a genetically engineered granulocyte-macrophage colony-stimulating factor/interleukin-3 fusion protein expressed in yeast.

    Science.gov (United States)

    Balland, A; Krasts, D A; Hoch, K L; Gerhart, M J; Stremler, K E; Waugh, S M

    1998-02-01

    PIXY321, a human cytokine analog genetically engineered by the fusion of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3), was expressed in yeast under the control of the alcohol dehydrogenase 2 (ADH2) promoter and the alpha-mating factor expression system. To provide the material necessary for the evaluation of PIXY321 in clinical trials, the production was scaled up to the 1200-1 scale and the PIXY321 molecule isolated by four successive steps of ion-exchange chromatography. Multiple heterogeneities, due to the presence of different patterns of glycosylation as well as multiple amino acid sequences at both N and C termini, were characterized on the purified molecule using complementary analytical techniques including electrophoresis, liquid chromatography and electrospray mass spectrometry. Four different N-terminal sequences were identified but simplified to a reproducible ratio of two sequences, the mature form and a form starting at Ala3, by adjustment of the process conditions. Molecules lacking 1-6 residues at the C-terminus were identified and their relative frequencies quantified. Amino acid modifications, such as three oxidized Met residues at positions 79, 141 and 187 and one deamidated Asn residue at position 176, were detected at low level. Microheterogeneities in glycosylation were characterized on four different sites, one located in the GM-CSF portion and three in the IL-3 portion of the molecule. The sites were shown to be differentially occupied and to carry 0-10 mannose residues according to their location in the sequence. Precise measurement of the heterogeneities at the molecular level were used to tune the process conditions and ensure reproducibility of the clinical product between lots.

  9. Secretory expression of α single-chain insulin precursor in yeast and its conversion into human insulin

    Institute of Scientific and Technical Information of China (English)

    张友尚; 胡红明; 蔡若蓉; 冯佑民; 朱尚权; 贺潜斌; 唐月华; 徐明华; 许英镐; 张新堂; 刘滨; 梁镇和

    1996-01-01

    A synthetic single-chain porcine insulin precursor (PIP) gene and an α-mating factor leader sequence (αMFL) gene obtained by the PCR method are inserted between the promoter and 3’-terminating sequence of the alcohol dehydrogenase gene ADH1 in plasmid pVT102-U to form plasmid pVT102-U/α MFL-PIP. The single-chain insulin precursor is expressed and secreted to the culture medium by Saccharomyces cererisiae transformed by pVT102-U/αMFL-PIP. The precursor is purified and converted into human insulin by tryptic transpeptidation. The purified human insulin is fully active and can be crystallized. The overall yield of human insulin is 25 mg per liter of culture medium.

  10. Latent herpesvirus infection arms NK cells.

    Science.gov (United States)

    White, Douglas W; Keppel, Catherine R; Schneider, Stephanie E; Reese, Tiffany A; Coder, James; Payton, Jacqueline E; Ley, Timothy J; Virgin, Herbert W; Fehniger, Todd A

    2010-06-03

    Natural killer (NK) cells were identified by their ability to kill target cells without previous sensitization. However, without an antecedent "arming" event, NK cells can recognize, but are not equipped to kill, target cells. How NK cells become armed in vivo in healthy hosts is unclear. Because latent herpesviruses are highly prevalent and alter multiple aspects of host immunity, we hypothesized that latent herpesvirus infection would arm NK cells. Here we show that NK cells from mice latently infected with Murid herpesvirus 4 (MuHV-4) were armed as evidenced by increased granzyme B protein expression, cytotoxicity, and interferon-gamma production. NK-cell arming occurred rapidly in the latently infected host and did not require acute viral infection. Furthermore, NK cells armed by latent infection protected the host against a lethal lymphoma challenge. Thus, the immune environment created by latent herpesvirus infection provides a mechanism whereby host NK-cell function is enhanced in vivo.

  11. Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Jinsong, E-mail: pangjs542@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Dong, Mingyue; Li, Ning; Zhao, Yanli [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Liu, Bao, E-mail: baoliu@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China)

    2013-03-01

    Highlights: ► A rice de novo DNA methyltransferase OsDRM2 was cloned. ► In vitro methylation activity of OsDRM2 was characterized with Escherichia coli. ► Assays of OsDRM2 in vivo methylation were done with Saccharomyces cerevisiae. ► OsDRM2 methylation activity is not preferential to any type of cytosine context. ► The activity of OsDRM2 is independent of RdDM pathway. - Abstract: DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo and maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5′-CCGG-3′ containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92–9.12%, and 2.88–6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA

  12. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains

    DEFF Research Database (Denmark)

    Greppi, Anna; Krych, Lukasz; Costantini, Antonella

    2015-01-01

    Phytate is known as a strong chelate of minerals causing their reduced uptake by the human intestine. Ninety-three yeast isolates from traditional African fermented food products, belonging to nine species (Pichia kudriavzevii, Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces...

  13. Signature gene expressions of cell wall integrity pathway concur with tolerance response of industrial yeast Saccharomyces cerevisiae against biomass pretreatment inhibitors

    Science.gov (United States)

    Traditional industrial ethanologenic yeast Saccharomyces cerevisiae has a robust performance under various environmental conditions and can be served as a candidate for the next-generation biocatalyst development for advanced biofuels production using lignocellulose mateials. Overcoming toxic compou...

  14. Detergent screening and purification of the human liver ABC transporters BSEP (ABCB11 and MDR3 (ABCB4 expressed in the yeast Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Philipp Ellinger

    Full Text Available The human liver ATP-binding cassette (ABC transporters bile salt export pump (BSEP/ABCB11 and the multidrug resistance protein 3 (MDR3/ABCB4 fulfill the translocation of bile salts and phosphatidylcholine across the apical membrane of hepatocytes. In concert with ABCG5/G8, these two transporters are responsible for the formation of bile and mutations within these transporters can lead to severe hereditary diseases. In this study, we report the heterologous overexpression and purification of human BSEP and MDR3 as well as the expression of the corresponding C-terminal GFP-fusion proteins in the yeast Pichia pastoris. Confocal laser scanning microscopy revealed that BSEP-GFP and MDR3-GFP are localized in the plasma membrane of P. pastoris. Furthermore, we demonstrate the first purification of human BSEP and MDR3 yielding ∼1 mg and ∼6 mg per 100 g of wet cell weight, respectively. By screening over 100 detergents using a dot blot technique, we found that only zwitterionic, lipid-like detergents such as Fos-cholines or Cyclofos were able to extract both transporters in sufficient amounts for subsequent functional analysis. For MDR3, fluorescence-detection size exclusion chromatography (FSEC screens revealed that increasing the acyl chain length of Fos-Cholines improved monodispersity. BSEP purified in n-dodecyl-β-D-maltoside or Cymal-5 after solubilization with Fos-choline 16 from P. pastoris membranes showed binding to ATP-agarose. Furthermore, detergent-solubilized and purified MDR3 showed a substrate-inducible ATPase activity upon addition of phosphatidylcholine lipids. These results form the basis for further biochemical analysis of human BSEP and MDR3 to elucidate the function of these clinically relevant ABC transporters.

  15. Global expression studies in baker's yeast reveal target genes for the improvement of industrially-relevant traits: the cases of CAF16 and ORC2

    Directory of Open Access Journals (Sweden)

    Randez-Gil Francisca

    2010-07-01

    Full Text Available Abstract Background Recent years have seen a huge growth in the market of industrial yeasts with the need for strains affording better performance or to be used in new applications. Stress tolerance of commercial Saccharomyces cerevisiae yeasts is, without doubt, a trait that needs improving. Such trait is, however, complex, and therefore only in-depth knowledge of their biochemical, physiological and genetic principles can help us to define improvement strategies and to identify the key factors for strain selection. Results We have determined the transcriptional response of commercial baker's yeast cells to both high-sucrose and lean dough by using DNA macroarrays and liquid dough (LD model system. Cells from compressed yeast blocks display a reciprocal transcription program to that commonly reported for laboratory strains exposed to osmotic stress. This discrepancy likely reflects differences in strain background and/or experimental design. Quite remarkably, we also found that the transcriptional response of starved baker's yeast cells was qualitatively similar in the presence or absence of sucrose in the LD. Nevertheless, there was a set of differentially regulated genes, which might be relevant for cells to adapt to high osmolarity. Consistent with this, overexpression of CAF16 or ORC2, two transcriptional factor-encoding genes included in this group, had positive effects on leavening activity of baker's yeast. Moreover, these effects were more pronounced during freezing and frozen storage of high-sucrose LD. Conclusions Engineering of differentially regulated genes opens the possibility to improve the physiological behavior of baker's yeast cells under stress conditions like those encountered in downstream applications.

  16. Improved orthopedic arm joint

    Science.gov (United States)

    Dane, D. H.

    1971-01-01

    Joint permits smooth and easy movement of disabled arm and is smaller, lighter and less expensive than previous models. Device is interchangeable and may be used on either arm at the shoulder or at the elbow.

  17. The level of MXR1 gene expression in brewing yeast during beer fermentation is a major determinant for the concentration of dimethyl sulfide in beer.

    Science.gov (United States)

    Hansen, Jørgen; Bruun, Susanne V; Bech, Lene M; Gjermansen, Claes

    2002-05-01

    DMS (dimethyl sulfide) is an important beer flavor compound which is derived either from the beer wort production process or via the brewing yeast metabolism. We investigated the contribution of yeast MXR1 gene activity to the final beer DMS content. The MXR1-CA gene from Saccharomyces carlsbergensis (synonym of Saccharomyces pastorianus) lager brewing yeast was isolated and sequenced, and found to be 88% identical with Saccharomyces cerevisiae MXR1. Inactive deletion alleles of both genes were substituted for their functional counterparts in S. carlsbergensis. Such yeasts fermented well and did not form DMS from dimethyl sulfoxide. Overexpression in brewing yeast of MXR1 from non-native promoters with various strengths and transcription profiles resulted in an enhanced and correlated DMS production. The promoters of MXR1 and MXR1-CA contain conserved Met31p/Met32p binding sites, and in accordance with this were found to be co-regulated with the genes of the sulfur assimilation pathway. In addition, conserved YRE-like DNA sequences are present in these promoters, indicating that Yap1p may also take part in the control of these genes.

  18. Arm Lift (Brachioplasty)

    Science.gov (United States)

    ... sagging. An arm lift might also boost your body image. As you get older, the skin on your upper arms changes — sagging and becoming loose. Significant weight loss also can cause the undersides of your upper arms to droop. While exercise can strengthen and improve muscle tone in the ...

  19. Cloning and Expression of Maltase Encoding Gene from Baker's Yeast and Optimization of the Expression Conditions%面包酵母麦芽糖酶的异源表达及产酶条件优化

    Institute of Scientific and Technical Information of China (English)

    宋海岩; 林雪; 柏晓雯; 张翠英; 肖冬光

    2015-01-01

    通过设计特异性引物从快速发酵面包酵母BY-14中PCR克隆获得麦芽糖酶编码基因。选择BamH I和Hind III分别为上下游引物的酶切位点,将麦芽糖酶基因克隆到pET28a载体上。表达质粒经PCR扩增、双酶切和测序进行验证。正确的表达质粒pET28a-Mal62导入大肠杆菌宿主BL(21),经IPTG诱导表达,结果显示,重组蛋白能够可溶性表达。随后对大肠杆菌产酶条件进行优化,结果表明,当IPTG终浓度为0.4 mmol/L,菌浓OD600达到1.0时加入诱导剂,在26℃下振荡培养12 h可获得最高的产酶量39.9 U/L,比优化前提高了4倍。%The maltase encoding gene was amplified via PCR from baker’s yeast. Then it was digested by BamH I and Hind III, and inserted in-to plasmid pET28a. The expression plasmid was identified via PCR, restriction endonuclease digestion and sequencing. The valid expression plasmid (pET28a-Mal62) was transformed into competence Escherichia coli BL(21) for heterologous expression. The experimental results showed that, the target protein was able to be expressed and most of them were soluble. Afterwards, the expression conditions for the target pro-tein was optimized as follows:as IPTG concentration was 0.4 mmol/L, the induced timing OD600 for 1.0, oscillation induced culture for 12 h at 26℃, it was feasible to express the recombinant fusion protein in the supernatant with the highest production of 39.9 U/L, which increased by 4 fold compared with unoptimized conditions.

  20. [Expression of SM30 (A-F) Genes Encoding Spicule Matrix Proteins in Intact and Damaged Sea Urchin Strongylocentrotus intermedius (A. Agassiz, 1863) at the Six-Arm Pluteus].

    Science.gov (United States)

    Sharmankina, V V; Kiselev, K V

    2016-03-01

    In this study we investigated expression of the SM30(A-F) gene family encoding Strongylocentrotus intermedius spicule matrix proteins during the normal and regenerative pluteus II stage (three pairs of arms). We found that SiSM30A and SiSM30B genes are expressed at high levels in the normal pluteus II sea urchin. SiSM30A is expression was also significantly upregulated in the reparative pluteus II stage 3 hours after damage. Conversely, SiSM30B was downregulated during the reparative pluteus II stage. Our findings reveal a substantial similarity between the activity of SiSM30A and SiSM30B activity in the processes of regenerative growth during the pluteus II stage and during normal development at the prism stage in Strongylocentrotus purpuratus. On the basis of our findings, we propose that normal developmental mechanisms corresponding to the preceding developmental stage are reactivated during pluteus regeneration.

  1. Expression patterns of the rice class I metallothionein gene family in response to lead stress in rice seedlings and functional complementation of its members in lead-sensitive yeast cells

    Institute of Scientific and Technical Information of China (English)

    XU YuFeng; ZHOU GongKe; ZHOU Lu; LI YiQin; LIU JinYuan

    2007-01-01

    Metallothioneins (MTs) are a group of low molecular mass and cysteine-rich proteins that can chelate heavy-metal ions.In this paper, Northern blot analysis was used to investigate the influence of lead stress on the expression patterns of 10 rice class I MT genes (OsMT-Is) in rice seedlings.With the exception of OsMT-I-3b, the data demonstrate dynamic changes of 9 OsMT-I transcripts in response to Pb2+ treatment in rice seedling roots.Of these genes, transcription of OsMT-I-1a, OsMT-I-1b, OsMT-I-2c, OsMT-I-4a, OsMT-I-4b and OsMT-I-4c increased significantly, while transcription of OsMT-I-2a and OsMT-I-3a increased marginally.In contrast, the expression of OsMT-I-2b was inhibited.Pb2+ induced the expression of 6 OsMT-I genes in seedling shoots, but had no obvious effects on the expression of OsMT-I-1a, OsMT-I-1b, OsMT-I-4a and OsMT-I-4b.All the 10 OsMT-Is had enhanced lead tolerance when heterologously expressed in lead-sensitive yeast mutant cells.These results provide an expression profile of the rice MT gene family in response to Pb2+ stress in rice seedlings and demonstrate increased lead tolerance in sensitive yeast mutant cells expressing OsMT-Is.This study lays a foundation for further analysis of the role of the rice MT gene family in respond to Pb2+ stress.

  2. Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress

    NARCIS (Netherlands)

    Gostincar, C.; Turk, M.; Trbuha, T.; Vaupotic, T.; Plemenitas, A.; Gunde-Cimerman, N.

    2008-01-01

    Multiple tolerance to stressful environmental conditions of the black, yeast-like fungus Aureobasidium pullulans is achieved through different adaptations, among which there is the restructuring of the lipid composition of their membranes. Here, we describe three novel genes encoding fatty-acid-modi

  3. Cloning, characterization and heterologous expression of epoxide hydrolase-encoding cDNA sequences from yeasts belonging to the genera Rhodotorula and Rhodosporidium

    NARCIS (Netherlands)

    Visser, H.; Weijers, C.A.G.M.; Ooyen, van A.J.J.; Verdoes, J.C.

    2002-01-01

    Epoxide hydrolase-encoding cDNA sequences were isolated from the basidiomycetous yeast species Rhodosporidium toruloides CBS 349, Rhodosporidium toruloides CBS 14 and Rhodotorula araucariae CBS 6031 in order to evaluate the molecular data and potential application of this type of enzymes. The deduce

  4. Biomarkers for detecting nitrogen deficiency during alcoholic fermentation in different commercial wine yeast strains.

    Science.gov (United States)

    Gutiérrez, Alicia; Chiva, Rosana; Beltran, Gemma; Mas, Albert; Guillamon, José Manuel

    2013-05-01

    Nitrogen deficiencies in grape musts are one of the main causes of stuck or sluggish wine fermentations. Several putative biomarkers were tested in order to analyze their appropriateness to detect nitrogen stress in the yeast. To this aim, four commercial wine strains (PDM, ARM, RVA and TTA) were grown in a synthetic grape must with different nitrogen concentrations. Trehalose accumulation, arginase activity and the expression of eleven genes were tested in these wine strains, known to have different nitrogen requirements. The overall response of the four strains was similar, with differences in response intensity (PDM and RVA with higher intensity) and response time (which was also related with nitrogen consumption time). Trehalose response was mostly related to entry into the stationary phase, whereas arginase activity was responsive to nitrogen depletion, although its measurement is too complicated to be used for routine monitoring during winemaking. The expression of the genes DAL4, DAL5, DUR3 and GAP1 was clearly related to nitrogen depletion and thus, GAP1 and DAL4 were selected as markers of nitrogen deficiency. In order to adapt expression analysis to winemaking conditions, the original strains were transformed into reporter strains based on the expression of green fluorescent protein (GFP) under control of the promoters for GAP1 and DAL4. The transformants had a similar fermentative capacity to the parental strains and were able to detect alterations in yeast physiological status due to nitrogen limitations.

  5. Accelerating Yeast Prion Biology using Droplet Microfluidics

    Science.gov (United States)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  6. Yeast That Smell

    Directory of Open Access Journals (Sweden)

    Eugenia Y Xu

    2008-08-01

    Full Text Available The fundamental mechanism of olfactory receptor activation has been conserved from yeast to humans. Engineered yeast cells can smell some of the same odorants as humans can, which makes yeast an ideal model system for studying human olfaction. Furthermore, if engineered yeast cells are incorporated into sensory arrays, they can be used as biosensors or artificial noses.Keywords: Yeast, olfactory receptor, G protein-coupled receptor, biosensor, smellReceived: 31 July 2008 / Received in revised form: 6 August 2008, Accepted: 13 August 2008, Published online: 17 August 2008

  7. [Demonstration of β-1,2 mannan structures expressed on the cell wall of Candida albicans yeast form but not on the hyphal form by using monoclonal antibodies].

    Science.gov (United States)

    Aydın, Cevahir; Ataoğlu, Haluk

    2015-01-01

    Candida albicans is a polymorphic fungus that may be observed as both commensal and opportunistic pathogen in humans. As one of the major components of Candida cell wall structure, mannan plays an important role in the fungus-host cell interaction and in virulence. The ability to switch from yeast to hypha form of microorganism is crutial in the development of C.albicans infections. Hyphal form has different antigenic properties compared to yeast form and structural changes occur in the yeast cell wall during transition from yeast to hypha form. Although there are several factors associated with this transition process, sufficient information is not available. The aim of this study was to investigate the change of configuration in mannan structure found in C.albicans cell wall by using monoclonal antibodies. C.albicans (NIHA 207) serotype A strains were used as test strains throughout the study, together with Salmonella choleraesuis 211 and Salmonella infantis as controls with similar cell wall structures to that of C.albicans. Cultures were maintained on YPD-agar medium by incubating at 28°C for yeast forms, and on YPD-broth medium in a shaking incubator at 37°C for 3-4 hours for the growth of hyphal forms. Cells were harvested in the exponential phase, and after being washed, the mannan content from C.albicans were extracted from pellet by heating in 20 mM sodium citrate buffer for 90 minutes at 125°C. Hybridoma technique was used for the production of monoclonal antibodies. After immunizing the Balb/C mice with antigen, the splenocytes were harvested and fusion was performed between spleen cells and F0 myeloma cells. The clones grown in HAT medium were screened for the presence of antibody producing hybrid cells by ELISA method. The antibody isotypes were determined by using a commercial kit (Pierce Biotechnology, ABD). The culture supernatants which contained monoclonal antibodies were collected and purified according to the ammonium sulphate method

  8. Inactivation of the budding yeast cohesin loader Scc2 alters gene expression both globally and in response to a single DNA double strand break

    OpenAIRE

    Lindgren, Emma; Hägg, Sara; Giordano, Fosco; Börkegren, Johan; Ström, Lena

    2014-01-01

    Genome integrity is fundamental for cell survival and cell cycle progression. Important mechanisms for keeping the genome intact are proper sister chromatid segregation, correct gene regulation and efficient repair of damaged DNA. Cohesin and its DNA loader, the Scc2/4 complex have been implicated in all these cellular actions. The gene regulation role has been described in several organisms. In yeast it has been suggested that the proteins in the cohesin network would effect transcription ba...

  9. Biosensor analyzer for BOD index express control on the basis of the yeast microorganisms Candida maltosa, Candida blankii, and Debaryomyces hansenii.

    Science.gov (United States)

    Arlyapov, Viacheslav; Kamanin, Stanislav; Ponamoreva, Olga; Reshetilov, Anatoly

    2012-04-01

    The parameters of biosensors based on the yeast strains Candida maltosa VKM Y-2359, Candida blankii VKM Y-2675, and Debaryomyces hansenii VKM Y-2482 for biochemical oxygen demand (BOD) detection are compared. The catalytic activity of the strains was analyzed in relation to the growth phase. The possibility of using D. hansenii as a basis for receptor element of a biosensor for BOD detection in municipal and biotechnological wastewaters was shown.

  10. Expression of LIP1 and LIP2 genes from Geotrichum species in Baker's yeast strains and their application to the bread-making process.

    Science.gov (United States)

    Monfort, A; Blasco, A; Sanz, P; Prieto, J A

    1999-02-01

    Lipolytic baker's yeast strains able to produce extracellular active lipase have been constructed by transformation with plasmids containing the LIP1 and LIP2 genes from Geotrichum sp. under the control of the Saccharomyces cerevisiae actin promoter (pACT1). Lipase productivity differed between both constructs, YEpACT-LIP1-t and YEpACT-LIP2-t, being higher for the strain bearing the LIP2 gene in all culture media tested. This result appeared not to be the consequence of a defect in the transcription of the LIP1 gene as revealed by Northern blot analysis. Replacing the signal sequence of LIP1 by that of LIP2 in the YEpACT-LIP1-t plasmid enhanced significantly the secretion of lipase 1, but the levels of lipase activity were still lower than those found for the YEpACT-LIP2-t transformant. Recombinant lipase 2 protein produced by baker's yeast exhibited biochemical properties similar to those of the natural enzyme. Fermented dough prepared with YEpACT-LIP2-t-carrying cells rendered a bread with a higher loaf volume and a more uniform crumb structure than that prepared with control yeast. These effects were stronger by the addition in the bread dough formulas of a preferment enriched in recombinant lipase 2.

  11. 游离高表达Mal62基因对面包酵母耐冷冻性的影响%Effects of High-expressed Ma162 Gene on Freezing Tolerance of Baker's Yeast

    Institute of Scientific and Technical Information of China (English)

    孙溪; 张翠英; 董建; 吴鸣月; 王光路; 肖冬光

    2012-01-01

    通过测定胞内海藻糖积累量、冷冻前后相对发酵力以及存活率的变化,对比游离高表达麦芽糖酶基因(Md62)的突变株BYCPM与亲本BY14的海藻糖合成能力,研究Ma/62基因游离高表达与酵母耐冷冻性之间的关系。结果表明.Ma/62基因游离高表达与酵母耐冷冻性有一定的相关性,突变株耐冷冻性改善,其在烘焙产业中具有潜在商业价值。%AThe relations between high-expressed Ma162 gene and freezing tolerance of baker's yeast were investigated through measuring the accumulating quantity of intracellular trehalose, observing the change of cell fermenting power and cell viability before and after freezing, and com- paring trehalose synthesis of parent strain BY14 and mutant strain BYCPM. The results showed that there was certain relativity between high-expressed ma/62 gene and freezing tolerance of baker' s yeast (freezing tolerance got improved for mutant strain). Accordingly, the improved freezing tolerance of BYCPM may make it useful in commercial baking industry.

  12. Effect of yeast-derived products and distillers dried grains with solubles (DDGS) on antibody-mediated immune response and gene expression of pattern recognition receptors and cytokines in broiler chickens immunized with T-cell dependent antigens.

    Science.gov (United States)

    Alizadeh, M; Rodriguez-Lecompte, J C; Echeverry, H; Crow, G H; Slominski, B A

    2016-04-01

    This study evaluated the effect of yeast-derived products on innate and antibody mediated immune response in broiler chickens following immunization with sheep red blood cells (SRBC) and bovine serum albumin (BSA). One-day-old male broiler chickens (Ross-308) were randomly assigned to 6 dietary treatments of 9 replicate cages of 5 birds each per treatment. Dietary treatments consisted of a Control diet without antibiotic, and diets containing 11 mg/kg of virginiamycin, 0.25% of yeast cell wall (YCW), 0.2% of a commercial product Maxi-Gen Plus containing processed yeast and nucleotides, 0.05% of nucleotides, or a diet containing 10% of DDGS. On days 21 and 28 post-hatching, 5 birds per treatment were immunized intramuscularly with both SRBC and BSA. One week after each immunization, blood samples were collected. Serum samples were analyzed by hemagglutination test for antibody response to SRBC, and by ELISA for serum IgM and IgG response to BSA. On d 35, 5 birds per treatment were euthanized and the tissue samples from the cecal tonsils were collected to assess the gene expression of toll-like receptors TLR2b, TLR4, and TLR21, monocyte mannose receptor (MMR), and cytokines IL-10, IL-13, IL-4, IL-12p35, and IFN-γ. The results for gene expression analysis demonstrated that the diet supplemented with YCW increased the expression of TLR2b and T-helper type 2 cytokines IL-10, IL-4, and IL-13 relative to the Control; and the expression of TLR4 and IL-13 was upregulated in the nucleotide-containing diet. However, the diets containing antibiotics or Maxi-Gen Plus downregulated the expression of IFN-γ compared to the control. The primary antibody response to SRBC was not affected by diets. However, the diet containing YCW increased the secondary antibody response to SRBC compared to the antibiotic treatment. Neither primary nor secondary IgG and IgM response against BSA were affected by diets. In conclusion, supplementation of the diet with YCW stimulated Th2 cell

  13. ARM Mentor Selection Process

    Energy Technology Data Exchange (ETDEWEB)

    Sisterson, D. L. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-01

    The Atmospheric Radiation Measurement (ARM) Program was created in 1989 with funding from the U.S. Department of Energy (DOE) to develop several highly instrumented ground stations to study cloud formation processes and their influence on radiative transfer. In 2003, the ARM Program became a national scientific user facility, known as the ARM Climate Research Facility. This scientific infrastructure provides for fixed sites, mobile facilities, an aerial facility, and a data archive available for use by scientists worldwide through the ARM Climate Research Facility—a scientific user facility. The ARM Climate Research Facility currently operates more than 300 instrument systems that provide ground-based observations of the atmospheric column. To keep ARM at the forefront of climate observations, the ARM infrastructure depends heavily on instrument scientists and engineers, also known as lead mentors. Lead mentors must have an excellent understanding of in situ and remote-sensing instrumentation theory and operation and have comprehensive knowledge of critical scale-dependent atmospheric processes. They must also possess the technical and analytical skills to develop new data retrievals that provide innovative approaches for creating research-quality data sets. The ARM Climate Research Facility is seeking the best overall qualified candidate who can fulfill lead mentor requirements in a timely manner.

  14. Mesenchymal stem cells with high telomerase expression do not actively restore their chromosome arm specific telomere length pattern after exposure to ionizing radiation

    DEFF Research Database (Denmark)

    Graakjaer, Jesper; Christensen, Rikke; Kolvraa, Steen;

    2007-01-01

    BACKGROUND: Previous studies have demonstrated that telomeres in somatic cells are not randomly distributed at the end of the chromosomes. We hypothesize that these chromosome arm specific differences in telomere length (the telomere length pattern) may be actively maintained. In this study we...... investigate the existence and maintenance of the telomere length pattern in stem cells. For this aim we studied telomere length in primary human mesenchymal stem cells (hMSC) and their telomerase-immortalised counterpart (hMSC-telo1) during extended proliferation as well as after irradiation. Telomere lengths...... were measured using Fluorescence In Situ Hybridization (Q-FISH). RESULTS: A telomere length pattern was found to exist in primary hMSC's as well as in hMSC-telo1. This pattern is similar to what was previously found in lymphocytes and fibroblasts. The cells were then exposed to a high dose of ionizing...

  15. Secretion expression of SOD1 and its overlapping function with GSH in brewing yeast strain for better flavor and anti-aging ability.

    Science.gov (United States)

    Wang, Zhaoyue; Bai, Xuejing; He, Xiuping; Zhang, Borun

    2014-09-01

    Superoxide dismutase (SOD) is a significant antioxidant, but unlike glutathione (GSH), SOD cannot be secreted into beer by yeast cells during fermentation, this directly leads to the limited application of SOD in beer anti-aging. In this investigation, we constructed the SOD1 secretion cassette in which strong promoter PGK1p and the sequence of secreting signal factor from Saccharomyces cerevisiae were both harbored to the upstream of coding sequence of SOD1 gene, as a result, the obtained strains carrying this cassette successfully realized the secretion of SOD1. In order to overcome the limitation of previous genetic modification on yeast strains, one new comprehensive strategy was adopted targeting the suitable homologous sites by gene deletion and SOD1 + GSH1 co-overexpression, and the new strain ST31 (Δadh2::SOD1 + Δilv2::GSH1) was constructed. The results of the pilot-scale fermentation showed that the diacetyl content of ST31 was lower by 42 % than that of the host, and the acetaldehyde content decreased by 29 %, the GSH content in the fermenting liquor of ST31 increased by 29 % compared with the host. Both SOD activity test and the positive and negative staining assay after native PAGE indicated that the secreted active SOD in the fermenting liquor of ST31 was mainly a dimer with the size of 32,500 Da. The anti-aging indexes such as the thiobarbituric acid and the resistance staling value further proved that the flavor stability of the beer brewed with strain ST31 was not only better than that of the original strain, but also better than that of the previous engineering strains. The multi-modification and comprehensive improvement of the beer yeast strain would greatly enhance beer quality than ever, and the self-cloning strain would be attractive to the public due to its bio-safety.

  16. Nonspecific Arm Pain

    Directory of Open Access Journals (Sweden)

    Ali Moradi

    2013-12-01

    Full Text Available Nonspecific activity-related arm pain is characterized by an absence of objective physical findings and symptoms that do not correspond with objective pathophysiology. Arm pain without strict diagnosis is often related to activity, work-related activity in particular, and is often seen in patients with physically demanding work. Psychological factors such as catastrophic thinking, symptoms of depression, and heightened illness concern determine a substantial percentage of the disability associated with puzzling hand and arm pains. Ergonomic modifications can help to control symptoms, but optimal health may require collaborative management incorporating psychosocial and psychological elements of illness.

  17. Nonspecific Arm Pain

    Directory of Open Access Journals (Sweden)

    Ali Moradi

    2013-12-01

    Full Text Available   Nonspecific activity-related arm pain is characterized by an absence of objective physical findings and symptoms that do not correspond with objective pathophysiology. Arm pain without strict diagnosis is often related to activity, work-related activity in particular, and is often seen in patients with physically demanding work. Psychological factors such as catastrophic thinking, symptoms of depression, and heightened illness concern determine a substantial percentage of the disability associated with puzzling hand and arm pains. Ergonomic modifications can help to control symptoms, but optimal health may require collaborative management incorporating psychosocial and psychological elements of illness.

  18. Arms Trafficking and Colombia

    Science.gov (United States)

    2003-01-01

    Brasil , February 20, 2001. 20 Arms Trafficking and Colombia chased, when and how they were transferred to the guerrillas or paramilitaries, or through...Mercado Blanco De Armas,” 1999, p. 44. 31Franco, Ilimar, “Pf to Block Farc Supply Routes in Amazon,” Jornal do Brasil , August 20, 1999. 26 Arms...Forces Mobilize in Response to Farc,” Sao Paulo Veja, November 10, 1999. 43“Arms Trafficking to Colombia Increases,” El Comercio , August 23, 2000

  19. 脲基酰胺酶基因在黄酒酵母中的整合型表达%Constitutive expression of DUR1 ,2 gene in Chinese rice wine yeast

    Institute of Scientific and Technical Information of China (English)

    朱旭亚; 陆健; 谢广发

    2012-01-01

    Ethyl carbamate(EC) is a potential carcinogen for human, which can be found in many fermented alcoholic beverages.The main precursor for EC is urea produced by yeast.The DUR1,2 gene which encoded urea amidolyase was cloned into plasmid pYX212 between the TPI promoter and terminator sites to form the DUR! ,2 expression cassette.The cassette was then integrated into the genome of the Chinese rice wine yeast 85#.Thus a urea-degrading Chinese rice wine yeast 85 was obtained.According to the laboratory scale rice wine brewing tests,urea was reduced to 8.34mg/L by yeast 85 69.9% less than the parental strain, while the ethyl carbamate level was 40.5% less than that of the parental strain after a period of storage.Meanwhile,85 was substantially equivalent to its parental strain in terms of fermentation ability, ethanol ,total acid and amino nitrogen.%氨基甲酸乙酯是一种人类的潜在致癌物,在许多发酵酒中均有存在,主要来源于发酵过程中酵母代谢产生的尿素。以pYX212为载体,将脲基酰胺酶基因DURl,2克隆到TPI强启动子和终止子之间的位点,再通过同源重组的方式将受强启动子调控的目的基因整合到黄酒酵母的基因组中,最终获得一株低产尿素的胞内脲基酰胺酶基因组成型高表达的黄酒酵母85在实验室规模的黄酒酿造实验中,85产尿素量为8.34mg/L,比出发菌株降低了69.9%,贮存一段时间后的酒液中氨基甲酸乙酯含量比出发菌株降低了40.5%,而发酵性能、酒精度、总酸及氨基态氮与出发菌株无显著差异,

  20. Mechanisms of expression and translocation of major fission yeast glucose transporters regulated by CaMKK/phosphatases, nuclear shuttling, and TOR.

    Science.gov (United States)

    Saitoh, Shigeaki; Mori, Ayaka; Uehara, Lisa; Masuda, Fumie; Soejima, Saeko; Yanagida, Mitsuhiro

    2015-01-15

    Hexose transporters are required for cellular glucose uptake; thus they play a pivotal role in glucose homeostasis in multicellular organisms. Using fission yeast, we explored hexose transporter regulation in response to extracellular glucose concentrations. The high-affinity transporter Ght5 is regulated with regard to transcription and localization, much like the human GLUT transporters, which are implicated in diabetes. When restricted to a glucose concentration equivalent to that of human blood, the fission yeast transcriptional regulator Scr1, which represses Ght5 transcription in the presence of high glucose, is displaced from the nucleus. Its displacement is dependent on Ca(2+)/calmodulin-dependent kinase kinase, Ssp1, and Sds23 inhibition of PP2A/PP6-like protein phosphatases. Newly synthesized Ght5 locates preferentially at the cell tips with the aid of the target of rapamycin (TOR) complex 2 signaling. These results clarify the evolutionarily conserved molecular mechanisms underlying glucose homeostasis, which are essential for preventing hyperglycemia in humans.

  1. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution.

    Science.gov (United States)

    Bock, Karl Walter

    2016-01-01

    UDP-glycosyltransferases (UGTs) are major phase II enzymes of a detoxification system evolved in all kingdoms of life. Lipophilic endobiotics such as hormones and xenobiotics including phytoalexins and drugs are conjugated by vertebrates mainly with glucuronic acid, by invertebrates and plants mainly with glucose. Plant-herbivore arms-race has been the major driving force for evolution of large UGT and other enzyme superfamilies. The UGT superfamily is defined by a common protein structure and signature sequence of 44 amino acids responsible for binding the UDP moiety of the sugar donor. Plants developed toxic phytoalexins stored as glucosides. Upon herbivore attack these conjugates are converted to highly reactive compounds. In turn, animals developed large families of UGTs in their intestine and liver to detoxify these phytoalexins. Interestingly, phytoalexins, exemplified by quercetin glucuronides and glucosinolate-derived isocyanates, are known insect attractant pigments in plants, and antioxidants, anti-inflammatory and chemopreventive compounds of humans. It is to be anticipated that phytochemicals may provide a rich source in beneficial drugs.

  2. An Elastica Arm Scale

    CERN Document Server

    Bosi, F; Corso, F Dal; Bigoni, D

    2015-01-01

    The concept of 'deformable arm scale' (completely different from a traditional rigid arm balance) is theoretically introduced and experimentally validated. The idea is not intuitive, but is the result of nonlinear equilibrium kinematics of rods inducing configurational forces, so that deflection of the arms becomes necessary for the equilibrium, which would be impossible for a rigid system. In particular, the rigid arms of usual scales are replaced by a flexible elastic lamina, free of sliding in a frictionless and inclined sliding sleeve, which can reach a unique equilibrium configuration when two vertical dead loads are applied. Prototypes realized to demonstrate the feasibility of the system show a high accuracy in the measure of load within a certain range of use. It is finally shown that the presented results are strongly related to snaking of confined beams, with implications on locomotion of serpents, plumbing, and smart oil drilling.

  3. Arm CT scan

    Science.gov (United States)

    ... scanners can perform the exam without stopping.) A computer creates separate images of the arm area, called ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  4. Worldwide Report, Arms Control

    Science.gov (United States)

    2007-11-02

    world war, a nuclear inferno , for over 40 years. A sober assessment of the situation in world politics was conducted at the meet- ing of the...there is success in stopping the arms race, or those forces accelerating the arms race and driving humanity to the edge of a nuclear inferno will gain...dialogue with all forces fighting against a nuclear inferno , affirmed by the Warsaw Pact countries, is being seen more and more as the only practicable

  5. Hello to Arms

    Science.gov (United States)

    2005-01-01

    This image highlights the hidden spiral arms (blue) that were discovered around the nearby galaxy NGC 4625 by the ultraviolet eyes of NASA's Galaxy Evolution Explorer. The image is composed of ultraviolet and visible-light data, from the Galaxy Evolution Explorer and the California Institute of Technology's Digitized Sky Survey, respectively. Near-ultraviolet light is colored green; far-ultraviolet light is colored blue; and optical light is colored red. As the image demonstrates, the lengthy spiral arms are nearly invisible when viewed in optical light while bright in ultraviolet. This is because they are bustling with hot, newborn stars that radiate primarily ultraviolet light. The youthful arms are also very long, stretching out to a distance four times the size of the galaxy's core. They are part of the largest ultraviolet galactic disk discovered so far. Located 31 million light-years away in the constellation Canes Venatici, NGC 4625 is the closest galaxy ever seen with such a young halo of arms. It is slightly smaller than our Milky Way, both in size and mass. However, the fact that this galaxy's disk is forming stars very actively suggests that it might evolve into a more massive and mature galaxy resembling our own. The armless companion galaxy seen below NGC 4625 is called NGC 4618. Astronomers do not know why it lacks arms but speculate that it may have triggered the development of arms in NGC 4625.

  6. RNA interference of WdFKS1 mRNA expression causes slowed growth, incomplete septation and loss of cell wall integrity in yeast cells of the polymorphic, pathogenic fungus Wangiella (Exophiala) dermatitidis.

    Science.gov (United States)

    Guo, Pengfei; Szaniszlo, Paul J

    2011-11-01

    As one of the main components of the fungal cell wall, β-1,3-glucan provides the mechanical strength to protect fungal protoplasts. The enzyme responsible for the synthesis of β-1,3-glucans in fungi is β-1,3-glucan synthase. Here we report the cloning, sequencing and characterization of the WdFKS1 gene, which in the pathogenic fungus Wangiella dermatitidis encodes the catalytic domain of its β-1, 3-glucan synthase. Because our research suggested that WdFKS1 is a single copy essential gene, we used RNA interference to reduce its expression. Reduction of the WdFKS1 messenger retarded growth and caused the loss of cell wall integrity of yeast cells, but not hyphae or sclerotic cells. We suggest that the WdFKS1 in this polymorphic agent of phaeohyphomycosis is not only required for cell wall construction and maintenance, but also is involved in septum formation.

  7. [Novel bioconversion systems using a yeast molecular display system].

    Science.gov (United States)

    Shibasaki, Seiji

    2010-11-01

    The budding yeast Saccharomyces cerevisiae has been used for the process of fermentation as well as for studies in biochemistry and molecular biology as a eukaryotic model cell or tool for the analysis of gene functions. Thus, yeast is essential in industries and researches. Yeast cells have a cell wall, which is one characteristic that helps distinguish yeast cells from other eukaryotic cells such as mammalian cells. We have developed a molecular display system using the protein of the yeast cell wall as an anchor for foreign proteins. Yeast cells have been designed for use in sensing and metal adsorption, and have been used in vaccines and for screening novel proteins. Currently, yeast is used not only as a tool for analyzing gene or protein function but also in molecular display technology. The phage display system, which is at the forefront of molecular display technologies, is a powerful tool for screening ligands bound to a target molecule and for analyzing protein-protein interactions; however, in some cases, eukaryotic proteins are not easily expressed by this system. On the other hand, yeast cells have the ability to express eukaryotic proteins and proliferate; thus, these cells display various proteins. Yeast cells are more appropriate for white biotechnology. In this review, displays of enzymes that are important in bioconversion, such as lipases and β-glucosidases, are going to be introduced.

  8. The yeast Golgi apparatus.

    Science.gov (United States)

    Suda, Yasuyuki; Nakano, Akihiko

    2012-04-01

    The Golgi apparatus is an organelle that has been extensively studied in the model eukaryote, yeast. Its morphology varies among yeast species; the Golgi exists as a system of dispersed cisternae in the case of the budding yeast Saccharomyces cerevisiae, whereas the Golgi cisternae in Pichia pastoris and Schizosaccharomyces pombe are organized into stacks. In spite of the different organization, the mechanism of trafficking through the Golgi apparatus is believed to be similar, involving cisternal maturation, in which the resident Golgi proteins are transported backwards while secretory cargo proteins can stay in the cisternae. Questions remain regarding the organization of the yeast Golgi, the regulatory mechanisms that underlie cisternal maturation of the Golgi and transport machinery of cargo proteins through this organelle. Studies using different yeast species have provided hints to these mechanisms.

  9. 酵母双杂交诱饵载体pGBKT7_MYC2构建及表达鉴定%Construction and Expressional Identification of Yeast Two - hybrid Bait Expression Vector pGBKT7_MYC2

    Institute of Scientific and Technical Information of China (English)

    刘武; 肖牧; 阮颖; 刘春林

    2012-01-01

    MYC2是一类含有helix - loop - helix (bHLH)结构域的转录因子.为进一步研究MYC2因子在植物防御抗性中的作用及其参与植物JA,SA等信号途径的作用机制,克隆了拟南芥的MYC2基因,以此构建了pGBKT7_MYC2酵母双杂交载体,通过Western blotting验证表明,该载体能在酵母细胞里正常表达.%MYC2, a basic helix - loop - helix (bHLH) domain - containing TF, acts as a positive regulator of abseisic acid - dependent drought responses and is also induced in JA - mediated responses. Taking the cDNA from Arabidophsis as the template, full - length COS of MYC2 had been cloned and then was ligated into the bait expression vector pG-BKT7. After verified by digestion, the bait vector was transformed into Clod yeast cells, and the expression of MYC2 gene was checked by Western blotting. As a result, the bait expression vector pGBKT7_MYC2 was constructed successfully, which laid the foundation for screening target proteins interacting and mapping the network with the MYC2 protein.

  10. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast.

    Science.gov (United States)

    Ran, Chao; Huang, Lu; Liu, Zhi; Xu, Li; Yang, Yalin; Tacon, Philippe; Auclair, Eric; Zhou, Zhigang

    2015-01-01

    Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut microvilli morphology, relieved stress status, and reduced intestinal inflammation of Nile tilapia fed diets supplemented with baker's yeast.

  11. Yeast systems for the commercial production of heterologous proteins.

    Science.gov (United States)

    Buckholz, R G; Gleeson, M A

    1991-11-01

    Yeasts are attractive hosts for the production of heterologous proteins. Unlike prokaryotic systems, their eukaryotic subcellular organization enables them to carry out many of the post-translational folding, processing and modification events required to produce "authentic" and bioactive mammalian proteins. In addition, they retain the advantages of a unicellular microorganism, with respect to rapid growth and ease of genetic manipulation. The vast majority of yeast expression work has focused on the well-characterized baker's yeast Saccharomyces cerevisiae. However, with the development of DNA transformation technologies, a growing number of non-Saccharomyces yeasts are becoming available as hosts for recombinant polypeptide production. These include Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, Schizosaccharomyces pombe, Schwanniomyces occidentalis and Yarrowia lipolytica. The performance of these alternative yeast expression systems is reviewed here relative to S. cerevisiae, and the advantages and limitations of these systems are discussed.

  12. Arm To Arm Interface Using Embedded C

    Directory of Open Access Journals (Sweden)

    Mohanraj.C

    2013-02-01

    Full Text Available Embedded systems are the most emerging field in these recent years. In this paper a different number of ARM processors (LPC2148 and LPC2378 are interconnected using C for distributed services. N numbers of processors are connected as the network and each processing devices are interlinked with each other, so that the each data that is processed by the devices and it can be used by the other device to activate their entire process. All the processed data’s are communicated to other device through Xbee interface card. LPC2148 and LPC2378 ARM processors are used in this prototype and winXtalk is used as a software terminal window. In this paper, the ultimate benefits of multiple processor interactions related to the embedded applications and design issues of processor interconnection are discussed. The features of multiple processor interaction in inter process communication and executions of embedded multitasking are also discussed. In modern embedded computing platform, embedded processor used in various applications like home automation, industrial control, medical system, access control, etc. In this paper, using embedded processor interactions, the several data communication is established.

  13. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  14. Vaginal Yeast Infections

    Science.gov (United States)

    ... infection caused by a type of fungus called candida albicans . Yeast infections usually happen in warm, moist parts of the body, like the mouth, or vagina. We all have candida in our bodies, but usually it's kept in ...

  15. Modeling brewers' yeast flocculation

    Science.gov (United States)

    van Hamersveld EH; van der Lans RG; Caulet; Luyben

    1998-02-01

    Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs. The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. Copyright 1998 John Wiley & Sons, Inc.

  16. JPRS Report, Arms Control

    Science.gov (United States)

    2007-11-02

    34military activities, whether in the armed forces, their civilian sectors, or in the ’defence’ indus- try". In another paper Professor Carl Sagan ...spurring the development of new weapons. Star Wars is a case in point. As Carl Sagan puts it, the idea is doomed: "SDI is ruinously expensive, it can

  17. Worldwide Report, Arms Control.

    Science.gov (United States)

    1985-08-12

    thai, in the long run one cannot oven tell to willy frandi’and fgon fahr . ’r’ho Soviets arc thus evoking the suspicion that they are playing dirty...material resources and the knowledge of scientists in combatting diseases , if the resources were spent on it that are taken up by the arms race

  18. JPRS Report, Arms Control.

    Science.gov (United States)

    2007-11-02

    Joint-Stock Company"] [Text] A constituent conference of the "Ural- Kosmos " closed joint-stock company [aktsionernoye obshchestvo zakrytogo tipa] has...due to be destroyed under arms cuts. Their warheads will be replaced by communications satellites. The founders of the "Ural- Kosmos " company note

  19. Worldwide Report, Arms Control

    Science.gov (United States)

    2007-11-02

    Soviet Laser Expert (N. G. Bazov Interview; CAMBIO 16, 11-18 Feb 85) 86 Unnamed General Urges French ’Star Wars’ Effort (Hoplites; LE MONDE, 6...1024 85 JPRS-TAC-85-002 1 April 1985 SPACE ARMS SPANISH MAGAZINE CITES SOVIET LASER EXPERT PM211619 [Editorial Report] Madrid CAMBIO 16 in Spanish

  20. Worldwide Report, Arms Control

    Science.gov (United States)

    1985-12-31

    Bonn RHEINISCHER MERKUR /CHRIST UND WELT, 12 Oct 85) . 14 GDR Commentary on Geneva Talks (Various sources,various dates) 19 Military...USSR GENEVA TALKS FRG DEFENSE UNDERSECRETARY SUPPORTS U.S. VIEW ON ARMS CONTROL Bonn RHEINISCHER MERKUR /CHRIST UND WELT in German 12 Oct 85 p 3

  1. Worldwide Report, Arms Control

    Science.gov (United States)

    2007-11-02

    like tired runners exposed to the sights of millions of viewers. The fear of oxygen starvation was handled by the U.S. President on several levels...and to present the U.S. attitudes as the only way out of the maze of the arms race. It is an attempt to push through the old principles of U.S

  2. Expression of a novel 90-kDa protein, Lsd90, involved in the metabolism of very long-chain fatty acid-containing phospholipids in a mitosis-defective fission yeast mutant.

    Science.gov (United States)

    Yokoyama, Kazuaki; Nakagawa, Miyuki; Satoh, Masayuki; Saitoh, Shigeaki; Dohmae, Naoshi; Harada, Ayako; Satoh, Noriko; Karasawa, Ken; Takio, Koji; Yanagida, Mitsuhiro; Inoue, Keizo

    2008-03-01

    The fission yeast lsd1/fas2 strain carries a temperature-sensitive mutation of the fatty-acid-synthase alpha-subunit, exhibiting an aberrant mitosis lsd phenotype, with accumulation of very-long-chain fatty-acid-containing phospholipid (VLCFA-PL). A novel 90-kDa protein, Lsd90 (SPBC16E9.16c), was found to be newly expressed in small particle-like structures in lsd1/fas2 cells under restrictive conditions. Two mismatches leading to a double frame shift were found between the sequences of the lsd90(+) gene registered in the genomic database and the sequences determined experimentally at the amino acid, cDNA and genomic DNA levels. Unexpectedly, overexpression and disruption of the lsd90(+) gene in either lsd1/fas2 or wild-type cells did not affect either cell growth or expression of the lsd phenotype. The amounts of VLCFA-PL that accumulated in lsd90-overexpressing lsd1/fas2 cells were significantly lower than those in lsd1/fas2 cells, suggesting the involvement of Lsd90 in the metabolism of VLCFA-PL.

  3. Complete biosynthesis of opioids in yeast.

    Science.gov (United States)

    Galanie, Stephanie; Thodey, Kate; Trenchard, Isis J; Filsinger Interrante, Maria; Smolke, Christina D

    2015-09-04

    Opioids are the primary drugs used in Western medicine for pain management and palliative care. Farming of opium poppies remains the sole source of these essential medicines, despite diverse market demands and uncertainty in crop yields due to weather, climate change, and pests. We engineered yeast to produce the selected opioid compounds thebaine and hydrocodone starting from sugar. All work was conducted in a laboratory that is permitted and secured for work with controlled substances. We combined enzyme discovery, enzyme engineering, and pathway and strain optimization to realize full opiate biosynthesis in yeast. The resulting opioid biosynthesis strains required the expression of 21 (thebaine) and 23 (hydrocodone) enzyme activities from plants, mammals, bacteria, and yeast itself. This is a proof of principle, and major hurdles remain before optimization and scale-up could be achieved. Open discussions of options for governing this technology are also needed in order to responsibly realize alternative supplies for these medically relevant compounds.

  4. Expression and location of ARMS2 protein in normal eye tissue%年龄相关性黄斑病变易感因子2蛋白在正常人眼组织中的表达和定位

    Institute of Scientific and Technical Information of China (English)

    赵中芳; 徐海峰; 董晓光; 刘廷

    2011-01-01

    Background Researches determined that the alteration of A69S locus of age-related maculopathy susceptibility 2 ( ARMS2 ) gene is closely associated with the pathogenesis and progression of age-related maculopathy ( AM D ).However,the location of ARMS2 protein in normal eye tissue is still in controversy,therefore,its function is below understanding up to now.Objective The goal of this laboratory work was to investigate the distribution,expression and location of ARMS2 protein in normal adult retina and choroid as well as in retinal pigment epithelial (RPE) cells and lay a basis for exploring further its function in the protein level.Methods Ten donor eyeballs of normal adult male with the age from 28-42 years were collected in eye bank of Qingdao Eye Hospital.The frozen sections of the retina and choroid were prepared for the detection and location of ARMS2 in 3 eyes by immunofluorescence under the confocal laser microscope.The retina was isolated for the primary culture of RPE cells using explant culture method.The cells were then identified by CK32 antibody by immunofluorescence.The distribution and expression of the ARMS2 protein in retina,ehoroid and RPE cells were determined by immunofluorescence technique.Results ARMS2 protein was strongly expressed in retinal vessel,RPE cell layer,Bruch membrane and choroidal vessel,but weak expression was in retinal ganglion cell layer,inner nuclear layer,outer plexiform layer,outer nuclear layer and inner plexiform layer in the normal eyes.The primarily cultured cells appeared the polygon shape with the abundant pigment in cytoplasm.The immunofluorescence of the cells showed the positive response for CK32,exhibiting the green fluorescence granules in the cytoplasm.The positive expression of ARMS2 protein also was seen in the cytoplasm of RPE cells,appearing the red fluorescence.Conclusions ARMS2 protein mainly distribute and locate retinal and choroidal vessels,RPE cells and Bruch membrane in normal eye.%背景 研究表

  5. Yeast flocculation: what brewers should know.

    Science.gov (United States)

    Verstrepen, K J; Derdelinckx, G; Verachtert, H; Delvaux, F R

    2003-05-01

    For many industrial applications in which the yeast Saccharomyces cerevisiae is used, e.g. beer, wine and alcohol production, appropriate flocculation behaviour is certainly one of the most important characteristics of a good production strain. Yeast flocculation is a very complex process that depends on the expression of specific flocculation genes such as FLO1, FLO5, FLO8 and FLO11. The transcriptional activity of the flocculation genes is influenced by the nutritional status of the yeast cells as well as other stress factors. Flocculation is also controlled by factors that affect cell wall composition or morphology. This implies that, during industrial fermentation processes, flocculation is affected by numerous parameters such as nutrient conditions, dissolved oxygen, pH, fermentation temperature, and yeast handling and storage conditions. Theoretically, rational use of these parameters offers the possibility of gaining control over the flocculation process. However, flocculation is a very strain-specific phenomenon, making it difficult to predict specific responses. In addition, certain genes involved in flocculation are extremely variable, causing frequent changes in the flocculation profile of some strains. Therefore, both a profound knowledge of flocculation theory as well as close monitoring and characterisation of the production strain are essential in order to gain maximal control over flocculation. In this review, the various parameters that influence flocculation in real-scale brewing are critically discussed. However, many of the conclusions will also be useful in various other industrial processes where control over yeast flocculation is desirable.

  6. Star Formation in Spiral Arms

    CERN Document Server

    Elmegreen, Bruce G

    2011-01-01

    The origin and types of spiral arms are reviewed with an emphasis on the connections between these arms and star formation. Flocculent spiral arms are most likely the result of transient instabilities in the gas that promote dense cloud formation, star formation, and generate turbulence. Long irregular spiral arms are usually initiated by gravitational instabilities in the stars, with the gas contributing to and following these instabilities, and star formation in the gas. Global spiral arms triggered by global perturbations, such as a galaxy interaction, can be wavemodes with wave reflection in the inner regions. They might grow and dominate the disk for several rotations before degenerating into higher-order modes by non-linear effects. Interstellar gas flows through these global arms, and through the more transient stellar spiral arms as well, where it can reach a high density and low shear, thereby promoting self-gravitational instabilities. The result is the formation of giant spiral arm cloud complexes,...

  7. Modernization of African Armed Forces

    DEFF Research Database (Denmark)

    Mandrup, Thomas

    2015-01-01

    Concept paper framing the debate at the Dakar Forum Workshop on Modernization of Armed forces in Africa.......Concept paper framing the debate at the Dakar Forum Workshop on Modernization of Armed forces in Africa....

  8. Transcription of lncRNA prt, clustered prt RNA sites for Mmi1 binding, and RNA polymerase II CTD phospho-sites govern the repression of pho1 gene expression under phosphate-replete conditions in fission yeast.

    Science.gov (United States)

    Chatterjee, Debashree; Sanchez, Ana M; Goldgur, Yehuda; Shuman, Stewart; Schwer, Beate

    2016-07-01

    Expression of fission yeast Pho1 acid phosphatase is repressed during growth in phosphate-rich medium. Repression is mediated by transcription of the prt locus upstream of pho1 to produce a long noncoding (lnc) prt RNA. Repression is also governed by RNA polymerase II CTD phosphorylation status, whereby inability to place a Ser7-PO4 mark (as in S7A) derepresses Pho1 expression, and inability to place a Thr4-PO4 mark (as in T4A) hyper-represses Pho1 in phosphate replete cells. Here we find that basal pho1 expression from the prt-pho1 locus is inversely correlated with the activity of the prt promoter, which resides in a 110-nucleotide DNA segment preceding the prt transcription start site. CTD mutations S7A and T4A had no effect on the activity of the prt promoter or the pho1 promoter, suggesting that S7A and T4A affect post-initiation events in prt lncRNA synthesis that make it less and more repressive of pho1, respectively. prt lncRNA contains clusters of DSR (determinant of selective removal) sequences recognized by the YTH-domain-containing protein Mmi1. Altering the nucleobase sequence of two DSR clusters in the prt lncRNA caused hyper-repression of pho1 in phosphate replete cells, concomitant with increased levels of the prt transcript. The isolated Mmi1 YTH domain binds to RNAs with single or tandem DSR elements, to the latter in a noncooperative fashion. We report the 1.75 Å crystal structure of the Mmi1 YTH domain and provide evidence that Mmi1 recognizes DSR RNA via a binding mode distinct from that of structurally homologous YTH proteins that recognize m(6)A-modified RNA.

  9. ARM User Survey Report

    Energy Technology Data Exchange (ETDEWEB)

    Roeder, LR

    2010-06-22

    The objective of this survey was to obtain user feedback to, among other things, determine how to organize the exponentially growing data within the Atmospheric Radiation Measurement (ARM) Climate Research Facility, and identify users’ preferred data analysis system. The survey findings appear to have met this objective, having received approximately 300 responses that give insight into the type of work users perform, usage of the data, percentage of data analysis users might perform on an ARM-hosted computing resource, downloading volume level where users begin having reservations, opinion about usage if given more powerful computing resources (including ability to manipulate data), types of tools that would be most beneficial to them, preferred programming language and data analysis system, level of importance for certain types of capabilities, and finally, level of interest in participating in a code-sharing community.

  10. Kiikuv maja / Anu Arm

    Index Scriptorium Estoniae

    Arm, Anu

    2006-01-01

    Eesti Kunstiakadeemia esimese kursuse arhitektuuriüliõpilaste II semestri töö. Juhendaja arhitekt Andres Alver, ehitamise Pedaspeale organiseeris suvepraktika juhendaja arhitekt Jaan Tiidemann. Autor Anu Arm, kaasa töötasid ja valmis ehitasid: Ott Alver, Maarja Elm, Mari Hunt, Alvin Järving, Marten Kaevats, Riho Kerge, Reedik Poopuu, Anu Põime, Helen Rebane, Kaisa Saarva, Martin Tago, Reet Volt. Valmis: 19. VIII 2006

  11. JPRS Report, Arms Control

    Science.gov (United States)

    2007-11-02

    SINMUN in Korean 19 Jan 90 p 2 [ Editorial : "Arms Reduction Amid East-West Reconcil- iation"] [Text] It appears that with the end of cold-war, the...Navigation Radar Deployment PY1701143090 La Paz La Red Panamericana in Spanish 1130 GMT 17 Jan 90 [Text] Aeronautics Minister Luis Gonzales...airspace and that it can guarantee our sovereignty. Aeronautics Military Under Secretary Installed PY1701125290 La Paz La Red Panamericana in

  12. Worldwide Report, Arms Control.

    Science.gov (United States)

    2007-11-02

    Soviet violations, the Pentagon and the White House ended up in mush . Nevertheless, armed with mush as evidence, the American secretary of...YORK TIMES calling anti-Soviet charges mush is out- numbered by thousands of statements on radio and television, speeches before various...audiences, and articles in newspapers and magazines where that same mush is used as a serious argument. USSR Complying Treaties LD120557 Moscow

  13. Worldwide Report, Arms Control

    Science.gov (United States)

    2007-11-02

    Service, Springfield, Virginia 22161. In order- ing, it is recommended that the JPRS number, title, date and author, if applicable, of publication be...Road, Arlington, Virginia 22201. JPRS-TAC-86-025 14 March 1986 WORLDWIDE REPORT ARMS CONTROL CONTENTS U.S.-USSR GENEVA TALKS, USSR: Possibility for...34Vreyma" newscast] [Excerpts] A Moscow premiere. Our correspondent reports: The audience is hurrying to a premiere at the Moscow Satire Theater. What

  14. Effect of salt hyperosmotic stress on yeast cell viability

    Directory of Open Access Journals (Sweden)

    Logothetis Stelios

    2007-01-01

    Full Text Available During fermentation for ethanol production, yeasts are subjected to different kinds of physico-chemical stresses such as: initially high sugar concentration and low temperature; and later, increased ethanol concentrations. Such conditions trigger a series of biological responses in an effort to maintain cell cycle progress and yeast cell viability. Regarding osmostress, many studies have been focused on transcriptional activation and gene expression in laboratory strains of Saccharomyces cerevisiae. The overall aim of this present work was to further our understanding of wine yeast performance during fermentations under osmotic stress conditions. Specifically, the research work focused on the evaluation of NaCl-induced stress responses of an industrial wine yeast strain S. cerevisiae (VIN 13, particularly with regard to yeast cell growth and viability. The hypothesis was that osmostress conditions energized specific genes to enable yeast cells to survive under stressful conditions. Experiments were designed by pretreating cells with different sodium chloride concentrations (NaCl: 4%, 6% and 10% w/v growing in defined media containing D-glucose and evaluating the impact of this on yeast growth and viability. Subsequent fermentation cycles took place with increasing concentrations of D-glucose (20%, 30%, 40% w/v using salt-adapted cells as inocula. We present evidence that osmostress induced by mild salt pre-treatments resulted in beneficial influences on both cell viability and fermentation performance of an industrial wine yeast strain.

  15. A Unified Approach for Reporting ARM Measurement Uncertainties Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Campos, E [Argonne National Laboratory; Sisterson, DL [Argonne National Laboratory

    2015-10-01

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility is observationally based, and quantifying the uncertainty of its measurements is critically important. With over 300 widely differing instruments providing over 2,500 datastreams, concise expression of measurement uncertainty is quite challenging. The ARM Facility currently provides data and supporting metadata (information about the data or data quality) to its users through a number of sources. Because the continued success of the ARM Facility depends on the known quality of its measurements, the Facility relies on instrument mentors and the ARM Data Quality Office (DQO) to ensure, assess, and report measurement quality. Therefore, an easily-accessible, well-articulated estimate of ARM measurement uncertainty is needed.

  16. The European Union and armed drones: framing the debate

    DEFF Research Database (Denmark)

    Martins, Bruno Oliveira

    2015-01-01

    Armed drones are an issue extremely relevant for the EU. The recent emergence of targeted killings as a common counter-terrorism technique, the existence of several EU member states using armed and surveillance drones in military scenarios, the presence of member states troops in areas where armed...... drones have been active, the US use of European-originated intelligence to execute targeted killings, and the broader status of international law, are developments that illustrate the importance of the topic. Yet, the EU still does not have an official position on armed drones. In 2014 the European...... Parliament recognized that this is problematic, adopting a Resolution that expressed “grave concern over the use of armed drones outside the international legal framework” and that urged the EU to “develop an appropriate policy response at both European and global level”. This Forum answers to the European...

  17. [Fructose transporter in yeasts].

    Science.gov (United States)

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Małgorzata

    2014-01-01

    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells.

  18. 石斑鱼β-防御素的酵母表达及其产物抗菌活性分析%THE YEAST EXPRESSION OF GROUPER β-DEFENSIN AND ANTIBACTERIAL ACTIVITY OF THE RECOMBINANT PROTEIN

    Institute of Scientific and Technical Information of China (English)

    金俊琰; 周莉; 桂建芳

    2011-01-01

    防御素是一类阳离子抗菌肽.研究从石斑鱼垂体SMART cDNA文库中扩增出129 bp石斑鱼β-防御素成熟肽序列,将其克隆到毕赤酵母表达载体pPCIZαA中,构建了石斑鱼β-防御素的真核表达载体,电击转化毕赤酵母GS115.Western Blot分析表明石斑鱼β-防御素在酵母菌中获得了表达.体外抗菌实验表明纯化的重组蛋白具有抑制大肠杆菌以及嗜水气单胞菌的作用,但是对革兰氏阳性菌,如金黄色葡萄球菌和藤黄微球菌的生长没有抑制作用.实验结果表明酵母表达的石斑鱼β-防御素能够特异地抑制革兰氏阴性菌的生长.%Defensin, a small cationic peptide, is an antimicrobial peptide, exhibit broad-spectrum antibacterial activity. They spread widely in plants, invertebrate and vertebrate animals, which can rapidly kill bacteria, fungi and viruses etc. Bacteria and viruses limited the production of grouper (Epinephelus coioides). In this study, we cloned grouper P-defensin open reading frame, to express in the Pichia pastoris, and detect the bioactive of recombinant protein against bacteria. First, grouper P-defensin cDNA was amplified by polymerase chain reaction (PCR) from pituitary cDNA library of a protogynous hermaphroditic orange-spotted grouper. The 129 bp DNA fragment encoding mature grouper P-defensin peptide was subcloned into vector PMD18-T, then inserted into the yeast expression vector pPClZaA and transfected into Pichia pastoris GS115 expression host by electroporation. The genome of Pichia pastoris clone was extracted as template for screened the positive clone by using PCR. After grouper p-defensin was secreted by GS 115 by small-scale culture, the recombinant grouper P-defensin was induced by methanol for large scale. The supernatant was collected in 24h, 48h and 72h post induction for the recombinant protein detection. Subsequently, the grouper p-defensin peptide was detected in the supernatant of transfected yeast by Western Blot

  19. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast

    DEFF Research Database (Denmark)

    Kampranis, S C; Damianova, R; Atallah, M;

    2000-01-01

    The mammalian inducer of apoptosis Bax is lethal when expressed in yeast and plant cells. To identify potential inhibitors of Bax in plants we transformed yeast cells expressing Bax with a tomato cDNA library and we selected for cells surviving after the induction of Bax. This genetic screen allo...

  20. Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain.

    Directory of Open Access Journals (Sweden)

    Reza Saberianfar

    Full Text Available In Schizosaccharomyces pombe the nuclear-localized Lsk1p-Lsc1p cyclin dependent kinase complex promotes Ser-2 phosphorylation of the heptad repeats found within the RNA pol II carboxy terminal domain (CTD. Here, we first provide evidence supporting the existence of a third previously uncharacterized Ser-2 CTD kinase subunit, Lsg1p. As expected for a component of the complex, Lsg1p localizes to the nucleus, promotes Ser-2 phosphorylation of the CTD, and physically interacts with both Lsk1p and Lsc1p in vivo. Interestingly, we also demonstrate that lsg1Δ mutants--just like lsk1Δ and lsc1Δ strains--are compromised in their ability to faithfully and reliably complete cytokinesis. Next, to address whether kinase mediated alterations in CTD phosphorylation might selectively alter the expression of genes with roles in cytokinesis and/or the cytoskeleton, global gene expression profiles were analyzed. Mutants impaired in Ser-2 phosphorylation display little change with respect to the level of transcription of most genes. However, genes affecting cytokinesis--including the actin interacting protein gene, aip1--as well as genes with roles in meiosis, are included in a small subset that are differentially regulated. Significantly, genetic analysis of lsk1Δ aip1Δ double mutants is consistent with Lsk1p and Aip1p acting in a linear pathway with respect to the regulation of cytokinesis.

  1. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    Science.gov (United States)

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter.

  2. AES i ARM procesori

    Directory of Open Access Journals (Sweden)

    Danijela D. Protić

    2013-12-01

    Full Text Available Potreba za zaštitom informacija dovodi do velikih problema u izradi prenosivih uređaja kojima su limitirani snaga, memorija i energija. Ukoliko se takvim uređajima dodaju koprocesori, koji treba da obavljaju funkcije kriptozaštite, njihove se dimenzije povećavaju, pojavljuje se nefleksibilnost pa cena uređaja raste i do nekoliko puta. Na drugoj strani, algoritmi za zaštitu podataka su često memorijski zahtevni, a zbog velikog broja operacija koje je potrebno izvršavati u procesima šifrovanja i dešifrovanja, koprocesori često uspore rad osnovnog procesora. Za jedan od standarda za kriptozaštitu, AES, NIST je prihvatio Rijndaelov blokovski algoritam sa dužinom ulaznog i izlaznog bloka od 128 b, i dužinama šifarskog ključa od 128 b, 192 b i 256 b. Zbog karakteristika male potrošnje, 32-bitske arhitekture i brzog izvršavanja instrukcija, ARM procesori mogu da realizuju kriptozaštitu podataka, između ostalog i AES-om, a da ne opterete glavne procese u sistemima u kojima se koriste. Tehnologija ARM-a zaštićena je kao intelektualna svojina, pa je veliki broj proizvođača koristi za razvoj sopstvenih proizvoda, što je rezultovalo činjenicom da je u svetu proizvedeno preko 2 milijarde čipova koji su bazirani na ovoj tehnologiji. U radu su prikazane mogućnosti za poboljšanja u izvršenju algoritma AES primenom najnovijih verzija ARM procesora.

  3. Worldwide Report, Arms Control

    Science.gov (United States)

    2007-11-02

    put their feet on the table.... But that Is not the USSR’s problem. It is not for the USSR to teach the rules of etiquette vh~nh are broken in the...34 /12858 CSO: 5200/2634 • 138 - RELATED ISSUES LABOR PARTY DISTRICT CONGRESS: BAN NUCLEAR ARMED SHIPS Oslo AFTENPOSTEN in Norwegian 27 Jan 86 p 3 [Article...that countries which send warships into Norwegian ports should guarantee that these ships are not carry- ing nuclear weapons. The requirement would

  4. Immunogenicity and antigenicity of the recombinant EMA-1 protein of Theileria equi expressed in the yeast Pichia pastoris Imunogenicidade e antigenicidade da proteína recombinante EMA-1 de Theileria equi expressa em Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Leandro Q. Nizoli

    2009-06-01

    Full Text Available The equine piroplasmosis caused by Theileria equi is one of the most important parasitic diseases of the equine, causing damage to animal health and economic losses. In T. equi, 2 merozoite surface proteins, equi merozoite antigen EMA-1 and EMA-2, have been identified as the most immunodominant antigens. This suggests that these antigens might be used as immunobiological tools. The EMA-1 of Theileria equi was cloned and expressed in the yeast Pichia pastoris. The transformed yeast was grown at high cell density, expressing up to 389 mg.L-1 of recombinant protein. The protein was concentrated and detected in Dot blot. The recombinant product was antigenically similar to the native protein as determined using monoclonal antibodies, and polyclonal antibodies obtained from equines naturally infected with T. equi. The immunogenicity of rEMA-1 protein was demonstrated by IFAT using sera from recombinant-protein-immunized mice using aluminum hydroxide as adjuvant. All animals vaccinated with rEMA-1 developed a high specific antibody response. This results suggest that rEMA-1expressed in P. pastoris might be a strong candidate to be used as an antigen for immune diagnostics as well as a vaccine antigen.A piroplasmose equina causada por Theileria equi é uma das mais importantes doenças parasitárias de equídeos, causando danos a saúde animal e perdas econômicas. Em T. equi, 2 proteínas de superfície de merozoítos, equi merozoite antigen EMA-1 e EMA-2, têm sido identificadas como antígenos imunodominantes. Sugerindo que estes antígenos possam ser usados como produtos imunobiológicos. O gene EMA-1 de T. equi foi clonado e expressado na levedura Pichia pastoris. As leveduras transformadas foram cultivadas a altas densidades celulares expressando 389 mg.L-1 de proteína recombinante. A proteína foi concentrada e detectada em Dot blot. O produto recombinante foi antigenicamente similar à proteína nativa quando determinado usando anticorpo

  5. Proteolytic activities in yeast.

    Science.gov (United States)

    Saheki, T; Holzer, H

    1975-03-28

    Studies on the mechanism and time course of the activation of proteinases A (EC 3.4.23.8), B (EC 3.4.22.9) and C (EC 3.4.12.--) in crude yeast extracts at pH 5.1 and 25 degrees C showed that the increase in proteinase B activity is paralleled with the disappearance of proteinase B inhibitor. Addition of purified proteinase A to fresh crude extracts accelerates the inactivation of the proteinase B inhibitor and the appearance of maximal activities of proteinases B and C. The decrease of proteinase B inhibitor activity and the increase of proteinase B activity are markedly retarded by the addition of pepstatin. Because 10-minus 7 M pepstatin completely inhibits proteinase A without affecting proteinase B activity, this is another indication for the role of proteinase A during the activation of proteinase B. Whereas extracts of yeast grown on minimal medium reached maximal activation of proteinases B and C after 20 h of incubation at pH 5.1 and 25 degrees C, extracts of yeast grown on complete medium had to be incubated for about 100 h. In the latter case, the addition of proteinas A results in maximal activation of proteinases B and C and disappearance of proteinase B inhibitor activity only after 10--20 h of incubation. With the optimal conditions, the maximal activities of proteinases A, B and C, as well as of the proteinase B inhibitor, were determined in crude extracts of yeast that had been grown batchwise for different lengths of time either on minimal or on complete medium. Upon incubation, all three proteinases were activated by several times their initial activity. This reflects the existence of proteolytically degradable inhibitors of the three proteinases and together with the above mentioned observations it demonstrates that the "activation" of yeast proteinases A, B and C upon incubation results from the proteolytic digestion of inhibitors rather than from activation of inactive zymogens by limited proteolysis.

  6. Biochemical characterization and growth patterns of new yeast isolates.

    Science.gov (United States)

    Djegui, Kadjogbé Y; Gachomo, Emma W; Hounhouigan, Djidjoho J; Kayodé, Adéchola P P; Kotchoni, Simeon O

    2014-08-01

    African sorghum opaque beers play a vital role in the diet of millions of consumers. In the current study we investigated the growth profiles of yeast strains isolated from kpete-kpete, a traditional starter used to produce tchoukoutou, an opaque sorghum beer in Benin. 10 yeast strains were isolated from sorghum beer starters and cultivated under both liquid and solid media for phenotypic growth characterization. All yeast isolates were able to grow both on solid and liquid media. Based on their growth profiles, the isolates were clustered into three groups: (i) the aggressive growth pattern (30%), (ii) the moderate growth pattern (50%), and (iii) the slow growth pattern (20%). Based on gene expression pattern, absorbance (A(600 nm)) and diameter of growth in both liquid and solid media respectively, yeast strains YK34, YK15 and YK48 were clustered in the first group, and referred to as the most aggressive growth strains, followed by group 2 (YK24, YK5, YK12, YK20, YK2) and group 3 (YK37, YK41). This growth pattern was confirmed by Invertase gene expression profiling of the yeasts showing group 1 with high level of Invertase gene expression followed by group 2 and group 3 respectively. Our results suggest that YK34, YK15 and YK48 and YK2 yeast strains constitute the best candidates in fermentation of sorghum beer production based on growth rate and assimilation of carbon and nitrogen sources.

  7. Stiffened yeast telomerase RNA supports RNP function in vitro and in vivo.

    Science.gov (United States)

    Lebo, Kevin J; Zappulla, David C

    2012-09-01

    The 1157-nt Saccharomyces cerevisiae telomerase RNA, TLC1, in addition to providing a 16-nt template region for reverse transcription, has been proposed to act as a scaffold for protein subunits. Although accessory subunits of the telomerase ribonucleoprotein (RNP) complex function even when their binding sites are relocated on the yeast telomerase RNA, the physical nature of the RNA scaffold has not been directly analyzed. Here we explore the structure-function organization of the yeast telomerase RNP by extensively stiffening the three long arms of TLC1, which connect essential and important accessory protein subunits Ku, Est1, and Sm(7), to its central catalytic hub. This 956-nt triple-stiff-arm TLC1 (TSA-T) reconstitutes active telomerase with TERT (Est2) in vitro. Furthermore, TSA-T functions in vivo, even maintaining longer telomeres than TLC1 on a per RNA basis. We also tested functional contributions of each stiffened arm within TSA-T and found that the stiffened Est1 and Ku arms contribute to telomere lengthening, while stiffening the terminal arm reduces telomere length and telomerase RNA abundance. The fact that yeast telomerase tolerates significant stiffening of its RNA subunit in vivo advances our understanding of the architectural and functional organization of this RNP and, more broadly, our conception of the world of lncRNPs.

  8. 莱茵衣藻酰基辅酶A合成酶cDNA克隆及其酵母表达%cDNA Cloning and Yeast Expression of Acyl-CoA Synthetase of Chlamydomonas reinhardtii

    Institute of Scientific and Technical Information of China (English)

    宋燕子; 贾彬; 林柏成; 胡章立; 黄瑛

    2015-01-01

    This work aims to predict and clone cDNA of Chlamydomonas reinhardtii acyl-CoA synthetase(gene cracs), and analyze its function in yeast Saccharomyces cerevisiae YB525. The cracs sequence was cloned by RT-PCR, its conserved sequence of encoded protein and phylogenetic tree were analyzed with ClustalW and MEGA6.0, then the substrate specificity in YB525 of expressed gene was analyzed. As the results, a cracs was cloned for the first time with sequence of 2 004 bp and encoded a 72.3 kD protein crACS of 667 amino acids containing two conserved regions of including acyl-CoA synthetase:the AMP-binding domain and the FACS motif. The phylogenetic tree analysis indicated that crACS shared high homology with LACs of Arabidopsis thaliana. Yeast expression experiments showed that crACS restored acyl-CoA synthetase deficient phenotype of YB525 and assimilated foreign palmitoleic acid and myristic acid. Conclusively, cracs of C. reinhardtii can activate exogenous fatty acid and belongs to acyl-CoA synthetase family.%旨在预测并克隆莱茵衣藻酰基辅酶A合成酶cDNA(cracs),分析其在酵母中的功能。RT-PCR克隆cracs序列, ClustalW和MEGA6.0软件分别分析其编码蛋白保守序列和进化树,表达并分析其在酵母YB525中的底物偏好性。结果表明,首次在莱茵衣藻中克隆获得一个cracs,测序表明其序列大小为2004 bp,编码667个氨基酸,编码蛋白crACS的预测分子量为72.3 kD,包含酰基辅酶A合成酶的两个保守区:AMP-binding区和FACS区。进化树比对显示,crACS与拟南芥的长链酰基辅酶A合成酶LACSs具有较高的同源性。酵母表达显示cracs编码蛋白能互补酵母YB525 LACS的缺陷表型,活化并优先利用C16∶1和C14∶0。莱茵衣藻cracs编码蛋白可活化外源脂肪酸,属于酰基辅酶A合成酶家族。

  9. The study of differentially expressed proteins in yeast and mycelial phases of Malassiza furfur%糠秕马拉色菌酵母态和菌丝态蛋白差异表达的研究

    Institute of Scientific and Technical Information of China (English)

    向耘; 冉玉平; 仝爱平; 勾蓝图; 王伟; 代亚玲

    2014-01-01

    目的:通过双向电泳及串联质谱技术鉴定糠秕马拉色菌酵母态及菌丝态差异蛋白,在蛋白水平探讨两态转化机制及致病机理。方法分别诱导糠秕马拉色菌标准株酵母态和菌丝态菌体,利用玻璃珠研磨和超声波破碎细胞壁,三氯乙酸/丙酮沉淀获取总蛋白。双向电泳分离蛋白,PDQuest软件比对找出差异蛋白点。电喷雾串联质谱对差异点进行肽段测序,用Mascot和NCBI的Blast软件经蛋白质数据库鉴定蛋白质。结果经双向电泳分离的糠秕马拉色菌酵母态、菌丝态蛋白各有800多个蛋白点、64个蛋白点表达量有3倍以上差异,其中11个为酵母态特有,9个菌丝态特有。在选取的40个差异点中,成功鉴定出22个点,共16个蛋白。经Mascot和Blast软件检索,有明确功能的蛋白中,肌动蛋白、丝切蛋白等9个蛋白在菌丝态上调,谷胱甘肽转移酶、细胞支架信号蛋白等5个蛋白下调。结论鉴定出16个蛋白分别与细胞代谢、运动、氧化应激等功能相关,为了解糠秕马拉色菌表型转换机制和致病机理提供重要信息。%Objectives To identify differential proteins in the yeast and mycelial phases of Malassezia furfur by using the two-di-mensional electrophoresis(2-DE)protocol and tandem spectrum( MS/MS),and to understand the pathogenic mechanism of M. furfur and its morphological switching mechanism at protein level as well Methods The type strain of M. furfur was inoculated in the yeast and mycelial phase media respectively Vortexing with glass beads and ultrasonication were used to break up the cell wall into pieces,and trichloroacetate/acetone precipitation was applied to obtain the total proteins These proteins were separated and vis-ualized by 2-DE,analyzed by PDQuest soft to detect the differentially expressed protein spots Electrospray-tandem spectrum analy-sis combined with homology search by Mascot and NCBIˊs Blast was used to

  10. An engineered yeast efficiently secreting penicillin.

    Directory of Open Access Journals (Sweden)

    Loknath Gidijala

    Full Text Available This study aimed at developing an alternative host for the production of penicillin (PEN. As yet, the industrial production of this beta-lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceuticals, represents an attractive alternative. Introduction of the P. chrysogenum gene encoding the non-ribosomal peptide synthetase (NRPS delta-(L-alpha-aminoadipyl-L-cysteinyl-D-valine synthetase (ACVS in H. polymorpha, resulted in the production of active ACVS enzyme, when co-expressed with the Bacillus subtilis sfp gene encoding a phosphopantetheinyl transferase that activated ACVS. This represents the first example of the functional expression of a non-ribosomal peptide synthetase in yeast. Co-expression with the P. chrysogenum genes encoding the cytosolic enzyme isopenicillin N synthase as well as the two peroxisomal enzymes isopenicillin N acyl transferase (IAT and phenylacetyl CoA ligase (PCL resulted in production of biologically active PEN, which was efficiently secreted. The amount of secreted PEN was similar to that produced by the original P. chrysogenum NRRL1951 strain (approx. 1 mg/L. PEN production was decreased over two-fold in a yeast strain lacking peroxisomes, indicating that the peroxisomal localization of IAT and PCL is important for efficient PEN production. The breakthroughs of this work enable exploration of new yeast-based cell factories for the production of (novel beta-lactam antibiotics as well as other natural and semi-synthetic peptides (e.g. immunosuppressive and cytostatic agents, whose production involves NRPS's.

  11. An engineered yeast efficiently secreting penicillin.

    Science.gov (United States)

    Gidijala, Loknath; Kiel, Jan A K W; Douma, Rutger D; Seifar, Reza M; van Gulik, Walter M; Bovenberg, Roel A L; Veenhuis, Marten; van der Klei, Ida J

    2009-12-15

    This study aimed at developing an alternative host for the production of penicillin (PEN). As yet, the industrial production of this beta-lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceuticals, represents an attractive alternative. Introduction of the P. chrysogenum gene encoding the non-ribosomal peptide synthetase (NRPS) delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) in H. polymorpha, resulted in the production of active ACVS enzyme, when co-expressed with the Bacillus subtilis sfp gene encoding a phosphopantetheinyl transferase that activated ACVS. This represents the first example of the functional expression of a non-ribosomal peptide synthetase in yeast. Co-expression with the P. chrysogenum genes encoding the cytosolic enzyme isopenicillin N synthase as well as the two peroxisomal enzymes isopenicillin N acyl transferase (IAT) and phenylacetyl CoA ligase (PCL) resulted in production of biologically active PEN, which was efficiently secreted. The amount of secreted PEN was similar to that produced by the original P. chrysogenum NRRL1951 strain (approx. 1 mg/L). PEN production was decreased over two-fold in a yeast strain lacking peroxisomes, indicating that the peroxisomal localization of IAT and PCL is important for efficient PEN production. The breakthroughs of this work enable exploration of new yeast-based cell factories for the production of (novel) beta-lactam antibiotics as well as other natural and semi-synthetic peptides (e.g. immunosuppressive and cytostatic agents), whose production involves NRPS's.

  12. Robotic Arm Biobarrier Cable

    Science.gov (United States)

    2008-01-01

    This image, taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander on the 14th Martian day of the mission (June 7, 2008), shows the cable that held the Robotic Arm's biobarrier in place during flight has snapped. The cable's springs retracted to release the biobarrier right after landing. To the lower right of the image a spring is visible. Extending from that spring is a length of cable that snapped during the biobarrier's release. A second spring separated from the cable when it snapped and has been photographed on the ground under the lander near one of the legs. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. The Neanderthal lower arm.

    Science.gov (United States)

    De Groote, Isabelle

    2011-10-01

    Neanderthal forearms have been described as being very powerful. Different individual features in the lower arm bones have been described to distinguish Neanderthals from modern humans. In this study, the overall morphology of the radius and ulna is considered, and morphological differences among Neanderthals, Upper Paleolithic Homo sapiens and recent H. sapiens are described. Comparisons among populations were made using a combination of 3D geometric morphometrics and standard multivariate methods. Comparative material included all available complete radii and ulnae from Neanderthals, early H. sapiens and archaeological and recent human populations, representing a wide geographical and lifestyle range. There are few differences among the populations when features are considered individually. Neanderthals and early H. sapiens fell within the range of modern human variation. When the suite of measurements and shapes were analyzed, differences and similarities became apparent. The Neanderthal radius is more laterally curved, has a more medially placed radial tuberosity, a longer radial neck, a more antero-posteriorly ovoid head and a well-developed proximal interosseous crest. The Neanderthal ulna has a more anterior facing trochlear notch, a lower M. brachialis insertion, larger relative mid-shaft size and a more medio-lateral and antero-posterior sinusoidal shaft. The Neanderthal lower arm morphology reflects a strong cold-adapted short forearm. The forearms of H. sapiens are less powerful in pronation and supination. Many differences between Neanderthals and H. sapiens can be explained as a secondary consequence of the hyper-polar body proportions of the Neanderthals, but also as retentions of the primitive condition of other hominoids.

  14. Comparison of the carbohydrate moieties of recombinant soluble Fc epsilon receptor (sFc epsilon RII/sCD23) expressed in Saccharomyces cerevisiae and Chinese hamster ovary cells. Different O-glycosylation sites are used by yeast and mammalian cells.

    Science.gov (United States)

    Kalsner, I; Schneider, F J; Geyer, R; Ahorn, H; Maurer-Fogy, I

    1992-08-01

    Recombinant human soluble low affinity receptor for the Fc portion of IgE (sFc epsilon RII/sCD23) was produced in Saccharomyces cerevisiae or Chinese hamster ovary cells and subjected to carbohydrate analysis. Applied methods included analytical SDS-PAGE, reversed phase HPLC, methylation analysis and sequential degradation with exoglycosidases. The results revealed that sFc epsilon RII derived from Chinese hamster ovary cells is glycosylated exclusively at Ser-147, containing mainly the trisaccharide Sia(alpha 2-3)Gal(beta 1-3)GalNAc, whereas the yeast derived glycoprotein was glycosylated at Ser-167 and contained only alpha-mannosyl residues. It is shown here for the first time that different amino acids of a given protein can be O-glycosylated when expressed in yeast or Chinese hamster ovary cells.

  15. Yeast Methylotrophy and Autophagy in a Methanol-Oscillating Environment on Growing Arabidopsis thaliana Leaves

    OpenAIRE

    Kosuke Kawaguchi; Hiroya Yurimoto; Masahide Oku; Yasuyoshi Sakai

    2011-01-01

    The yeast Candida boidinii capable of growth on methanol proliferates and survives on the leaves of Arabidopsis thaliana. The local methanol concentration at the phyllosphere of growing A. thaliana exhibited daily periodicity, and yeast cells responded by altering both the expression of methanol-inducible genes and peroxisome proliferation. Even under these dynamically changing environmental conditions, yeast cells proliferated 3 to 4 times in 11 days. Among the C1-metabolic enzymes, enzymes ...

  16. Youth Armed Groups in Colombia

    Directory of Open Access Journals (Sweden)

    Linda Dale

    2014-09-01

    Full Text Available For the many years of Colombia’s civil war, youth have been trying to find their way in complicated and dangerous situations. A central component of this is their relationship with armed groups, something that has evolved considerably over the past ten years. This practice note examines the context within which these connections are formed and the implications this has for self/social identity and meaningful resistance. The ideas in this practice note are based on consultations with young Colombians, particularly those displaced from 2000-2013. These sessions included art activities, focus groups and individual interviews. Art activities involved descriptive and expressive projects so that participants could explore their feelings and memories of situations and experiences. This provided a base for group discussions where youth exchanged information and debated issues. A total of 34 workshops were held over a twelve year period. These consultations revealed how war flows all over young people, touching every aspect of their identity. The boundaries between the personal and political no longer exist in today’s civil wars, if indeed they every truly did. Young people growing up inside Colombia’s war understand this at a deep level. An acknowledgement of this pain – showing the connections between the personal and political dimensions of war – is, they would maintain, the basis for their personal healing as well as an important tool for the building of sustainable peace.

  17. Arménie

    Directory of Open Access Journals (Sweden)

    François Verdier

    2012-04-01

    Full Text Available L’Arménie est une petite république du Caucase, à la limite sud–est de l’Europe, qui a gagné son autonomie en 1990 après l’ouverture du bloc soviétique. Le nouveau Ministère du Patrimoine a sollicité la coopération de la France pour mettre en place une nouvelle politique culturelle. Tout d’abord, une évaluation sur place de la situation dans les domaines des monuments historiques, de l’archéologie et de l’Inventaire a permis d’envisager les réponses à proposer. Pour la demande d’informatisation des dossiers d’inventaire déjà réalisés sous l’autorité de l’Académie de Saint–Petersbourg, nous avons proposé de former des chercheurs arméniens aux méthodes et techniques de l’Inventaire général. L’accueil d’une stagiaire pendant trois mois au service régional de l’Inventaire de Haute–Normandie a été suivi par la mise en place d’un équipement informatique à Yérévan, puis par l’accueil et la formation de techniciens informaticiens et photographes arméniens. De retour dans leur pays ils ont commencé à remettre en place un service d’inventaire dont le programme comprend la création d’une base de données patrimoniales, le recensement de la ville de Yérévan, la numérisation d’images pour la publication d’un indicateur du patrimoine et la préparation de dossiers de protection au titre du patrimoine mondial.The Armenian heritage comprises both archaeological remains of towns destroyed by never–ending wars and a number of old churches from the eleventh and twelfth centuries. Yerevan, the capital of Armenia, was founded three thousand years ago and is one of Europe’s oldest capitals. From 1925 it has developed according to an ambitious urban planning project. After the major political upheavals of 1991, a special ministry was created to look after the architectural and movable heritage of the country and to promote the Armenian national identity. A mission in Yerevan was

  18. Yeast as a model system for mammalian seven-transmembrane segment receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jeansonne, N.E. [East Carolina Univ. Medical School, Greenville, NC (United States)

    1994-05-01

    Investigators have used the budding yeast Saccharomyces cerevisiae as a model system in which to study the {beta}-adrenergic receptor, the T-cell receptor pathway, initiation of mammalian DNA replication, initiation of mammalian transcription, secretion, the CDC2 kinase system, cell cycle control, and aging, as well as the function of oncogenes. This list continues to growth with the discovery of an immunoglobulin heavy-chain binding homologue in yeast, an Rb binding protein homologue, and a possible yeast arrestin. Yeast is relatively easy to maintain, to grow, and to genetically manipulate. A single gene can be overexpressed, selectively mutated or deleted from its chromosomal location. In this way, the in vivo function of a gene can be studied. It has become reasonable to consider yeast as a model system for studying the seven transmembrane segments (7-TMS) receptor family. Currently, subtypes of the {beta}-adrenergic receptor are being studied in yeast. The receptor and its G{sub {alpha}}-G-protein, trigger the mating pheromone receptor pathway. This provides a powerful assay for determining receptor function. Studies expressing the muscarinic cholinergic receptor in yeast are underway. The yeast pheromone receptor belongs to this receptor family, sharing sequences and secondary structure homology. An effective strategy has been to identify a yeast pathway or process which is homologous to a mammalian system. The pathway is delineated in yeast, identifying other genetic components. Then yeast genes are used to screen for human homologues of these components. The putative human homologues are then expressed in yeast and in mammalian cells to determine function. When this type of {open_quotes}mixing and matching{close_quotes} works, yeast genetics can be a powerful tool. 115 refs.

  19. ARM Soc Based Enotebook

    Directory of Open Access Journals (Sweden)

    Pranita C Bawankar

    2014-05-01

    Full Text Available In recent years, electronic media has grown very fast replacing papers, tape devices, books, etc. The new technologies provide large number of data into single device, fast searching options and more readability than ever. As eBooks are replacing books; we are proposing ENotebook system in which user can write as he did in notebook, save, searches and then reread content. This paper presents design and development of ENotebook using ARM7. The system uses touch screen to get input data and operations like save, delete, open & close of data file. All data sensed by touch screen is digitized by internal ADCs of LPC2148 microcontroller which gives low power platform with fast execution. The output is shown on graphical LCD. Whatever user writes on screen it may need to save for future use. The content of such hand written data will be in graphical/pictorial form hence required large of memory for storage. We can provide external memory using pen drive, memory card, EEPROM etc. in this system we are using SD card interfacing through SPI port.

  20. Genomics and the making of yeast biodiversity

    Science.gov (United States)

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  1. ARM Lead Mentor Selection Process

    Energy Technology Data Exchange (ETDEWEB)

    Sisterson, DL

    2013-03-13

    The ARM Climate Research Facility currently operates more than 300 instrument systems that provide ground-based observations of the atmospheric column. To keep ARM at the forefront of climate observations, the ARM infrastructure depends heavily on instrument scientists and engineers, also known as Instrument Mentors. Instrument Mentors must have an excellent understanding of in situ and remote-sensing instrumentation theory and operation and have comprehensive knowledge of critical scale-dependent atmospheric processes. They also possess the technical and analytical skills to develop new data retrievals that provide innovative approaches for creating research-quality data sets.

  2. Taxation, stateness and armed groups

    DEFF Research Database (Denmark)

    Hoffmann, Kasper; Vlassenroot, Koen; Marchais, Gauthier

    2016-01-01

    rackets, to the material reciprocation of the recognition of rights. Focusing on the taxation practices of armed groups, the article argues that taxation is at the core of armed groups’ production of public authority and citizenship, and that their modes of taxation are based on long-standing registers...... of authority and practices of rule that originate in the colonial era. In particular, the article shows that by appealing to both local customary and national forms of political community and citizenship, armed groups are able to assume public authority to tax civilians. However, their public authority may...

  3. A new highly androgen specific yeast biosensor, enabling optimisation of (Q)SAR model approaches

    NARCIS (Netherlands)

    Bovee, T.F.H.; Lommerse, J.P.M.; Peijnenburg, A.A.C.M.; Fernandes, E.A.; Nielen, M.W.F.

    2008-01-01

    Recently we constructed recombinant yeast cells that express the human androgen receptor (hAR) and yeast enhanced green fluorescent protein (yEGFP), the latter in response to androgens. When exposed to 17ß-testosterone, the concentration where half-maximal activation is reached (EC50) was 50 nM. Rel

  4. Ethanol tolerance in yeasts.

    Science.gov (United States)

    Casey, G P; Ingledew, W M

    1986-01-01

    It is now certain that the inherent ethanol tolerance of the Saccharomyces strain used is not the prime factor regulating the level of ethanol that can be produced in a high sugar brewing, wine, sake, or distillery fermentation. In fact, in terms of the maximum concentration that these yeasts can produce under batch (16 to 17% [v/v]) or fed-batch conditions, there is clearly no difference in ethanol tolerance. This is not to say, however, that under defined conditions there is no difference in ethanol tolerance among different Saccharomyces yeasts. This property, although a genetic determinant, is clearly influenced by many factors (carbohydrate level, wort nutrition, temperature, osmotic pressure/water activity, and substrate concentration), and each yeast strain reacts to each factor differently. This will indeed lead to differences in measured tolerance. Thus, it is extremely important that each of these be taken into consideration when determining "tolerance" for a particular set of fermentation conditions. The manner in which each alcohol-related industry has evolved is now known to have played a major role in determining traditional thinking on ethanol tolerance in Saccharomyces yeasts. It is interesting to speculate on how different our thinking on ethanol tolerance would be today if sake fermentations had not evolved with successive mashing and simultaneous saccharification and fermentation of rice carbohydrate, if distillers' worts were clarified prior to fermentation but brewers' wort were not, and if grape skins with their associated unsaturated lipids had not been an integral part of red wine musts. The time is now ripe for ethanol-related industries to take advantage of these findings to improve the economies of production. In the authors' opinion, breweries could produce higher alcohol beers if oxygenation (leading to unsaturated lipids) and "usable" nitrogen source levels were increased in high gravity worts. White wine fermentations could also, if

  5. Propranolol hydroxylation and N-desisopropylation by cytochrome P4502D6: studies using the yeast-expressed enzyme and NADPH/O2 and cumene hydroperoxide-supported reactions.

    Science.gov (United States)

    Bichara, N; Ching, M S; Blake, C L; Ghabrial, H; Smallwood, R A

    1996-01-01

    We have studied the enantioselectivity and regioselectivity of ring-hydroxylation and N-desisopropylation of R(+)- and S(-)-propranolol in microsomes from yeast expressing cytochrome P4502D6 (CYP2D6), using both NADPH and molecular oxygen (NADPH/O2) and cumene hydroperoxide-supported reactions. With NADPH/O2-supported reactions, CYP2D6 catalyzed 4- and 5-ring-hydroxylation, as well as N-desisopropylation of propranolol, although Vmax was considerably greater for ring-hydroxylation, compared with N-desisopropylation. The R/S ratios for KM and Vmax were less than unity for all three pathways. In contrast, using cumene hydroperoxide-supported reactions, CYP2D6 catalyzed 4- and 5-ring-hydroxylation, and there was negligible N-desisopropylation of propranolol. The R/S ratio for KM was less than unity, but the R/S ratio for Vmax was close to unity. The cumyl group of cumene hydroperoxide did not seem to be a selective inhibitor of N-desisopropylation, because i) cumyl alcohol (a nonalkylhydroperoxide analog of cumene hydroperoxide) did not inhibit N-desisopropylation in NADPH/O2-supported reactions, and ii) the use of t-butyl hydroperoxide (a noncumyl alkylhydroperoxide) to support CYP2D6 catalysis resulted in ring-hydroxylation, but not N-desisopropylation. At a propranolol concentration near KM, quinidine inhibited both ring-hydroxylation and N-desisopropylation in an equipotent manner in NADPH/O2-supported reactions. However, in cumene hydroperoxide-supported reactions, the IC50 of inhibition of ring-hydroxylation by quinidine was an order of magnitude less potent than in NADPH/O2-supported reactions. Our study shows that recombinant CYP2D6 cannot only catalyze 4- and 5-ring-hydroxylation of propranolol, but also N-desisopropylation. The lack of propranolol N-desisopropylation observed in cumene hydroperoxide-supported reactions highlights the need for caution when using alkyhydroperoxides to study CYP2D6 catalysis.

  6. Construction, expression and identification of yeast two-hybrid bait vector pGBKT7-tH of peste des petits ruminants virus%小反刍兽疫病毒酵母双杂交诱饵载体pGBKT7-tH的构建、表达和鉴定

    Institute of Scientific and Technical Information of China (English)

    蒙学莲; 朱学亮; 翟军军; 窦永喜; 才学鹏

    2011-01-01

    The fragment of tH was amplified by PCR,and was cloned into the bait expression vector pGBKT7. After being verified by restriction digestion and sequencing, the bait vector was transformed into yeast cells AH109. The toxicity,leakage and self-transcriptional activation of PPRV-tH protein were firstly detected. Then the expression of was analyzed by Western blotting. Results showed that PPRV-tH was amplified and cloned into pGBKT7 successfully. The bait protein vector was transformed into AH109 as well and the toxicity,leakage and self- transcriptional activation of PPRV-tH protein were not observed. The PPRV-tH protein could be effectively expressed in transformed yeast. It plays a critical part in works of screening receptor gene by yeast two-hybrid system.%利用PCR技术扩增获得PPRV-tH基因片段,将其克隆至酵母双杂交系统诱饵载体pGBKT7中,经酶切、测序验证其正确插入后,将重组诱饵质粒转化酵母菌AH109中,检测其在酵母中有无渗漏、自我激活作用和毒性.利用western blotting分析诱饵蛋白在酵母中的表达情况,以鉴定其作为诱饵蛋白的可行性.结果表明,成功扩增到了PPRV-tH,并正确构建了pGBKT7-tH诱饵表达载体,此载体在酵母细胞AH109中无毒性、渗漏和自我激活能力,且能正确表达tH蛋白.

  7. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  8. Yeast two-hybrid screen.

    Science.gov (United States)

    Makuch, Lauren

    2014-01-01

    Yeast two-hybrid is a method for screening large numbers of gene products (encoded by cDNA libraries) for their ability to interact with a protein of interest. This system can also be used for characterizing and manipulating candidate protein: protein interactions. Interactions between proteins are monitored by the growth of yeast plated on selective media.

  9. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast.

    Directory of Open Access Journals (Sweden)

    Chao Ran

    Full Text Available Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A or low in fishmeal and high in soybean (diet B, which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05, and tended to improve FCR (P = 0.06 of fish compared to the control (no yeast. No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001 and density (P < 0.05 while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05 but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05, tgfβ (P < 0.05 under diet A and il1β (P = 0.08. Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001, indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut

  10. Bistable Head Positioning Arm Latch

    Science.gov (United States)

    Wasson, Ken; Endo, Juro; Mita, Masahiro; Abelein, Nathan

    A simple, low cost, yet effective device has been developed for immobilizing the head-arm assembly in a disk drive or similar mechanism during power-off conditions. The latching scheme also provides a consistent means of releasing the head-arm assembly from the immobilized position upon power up of the disk drive. The latch uses no electrical power in either immobilized or released state. This design is immune to extreme torque and linear shock forces applied to the disk drive case. The latch system can use the energy stored in the spinning disks to drive the head-arm assembly toward a safe position while simultaneously arming the latch mechanism to secure the head-arm assembly in the safe position upon arrival. A low energy five msec pulse of current drives the latch from one state to the other. Solenoids as presently used in latch mechanisms are bulky, expensive, have variable force characteristics, and often generate contaminants. The latch described in this paper is expected to replace such solenoids. It may also replace small magnet latches, which have limited latch force and apply unwanted torque to a proximate head positioning arm.

  11. Unequal-Arms Michelson Interferometers

    Science.gov (United States)

    Tinto, Massimo; Armstrong, J. W.

    2000-01-01

    Michelson interferometers allow phase measurements many orders of magnitude below the phase stability of the laser light injected into their two almost equal-length arms. If, however, the two arms are unequal, the laser fluctuations can not be removed by simply recombining the two beams. This is because the laser jitters experience different time delays in the two arms, and therefore can not cancel at the photo detector. We present here a method for achieving exact laser noise cancellation, even in an unequal-arm interferometer. The method presented in this paper requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam. By linearly combining the two data sets with themselves, after they have been properly time shifted, we show that it is possible to construct a new data set that is free of laser fluctuations. An application of this technique to future planned space-based laser interferometer detector3 of gravitational radiation is discussed.

  12. Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Jun Ishii

    Full Text Available G-protein-coupled receptors (GPCRs regulate a wide variety of physiological processes and are important pharmaceutical targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP strategy. In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to identify eligible peptides with agonistic activity for target human GPCRs.

  13. Worldwide Report, Arms Control.

    Science.gov (United States)

    2007-11-02

    and chemist Isaac Asimov : »This is a piece of cheap, lousy science fiction in the spirit of Hollywood »star warriors.» It is P^Gise1^ thosev...writer Isaac Asimov . He considers the Soviet-U.S. summit in Geneva to have been the most portentous event of the old year, and expresses the hope that in

  14. Worldwide Report Arms Control

    Science.gov (United States)

    1987-02-04

    believes that in the coming 10 to 20 years gene engineering can help resolve the problems facing the world today, such as the combatting of cancer , the...ratify them and the Reagan administration is as afraid of these treaties as, if one can so express oneself, the Devil fears incense . If these treaties

  15. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  16. Analysis of chloroquine resistance transporter (CRT) isoforms and orthologues in S. cerevisiae yeast.

    Science.gov (United States)

    Baro, Nicholas K; Pooput, Chaya; Roepe, Paul D

    2011-08-01

    Previous work from our laboratory optimized MeOH-inducible expression of the P. falciparum malarial parasite transporter PfCRT in P. pastoris yeast. These strains are useful for many experiments but do not allow for inducible protein expression under ambient growth conditions. We have therefore optimized galactose-inducible expression of PfCRT in S. cerevisiae yeast. We find that expression of PfCRT confers CQ hypersensitivity to growing yeast and that this is due to plasma membrane localization of the transporter. We use quantitative analyses of growth rates to compare hypersensitivity for yeast expressing various PfCRT isoforms. We also report successful high level inducible expression of the P. vivax orthologue, PvCRT, and compare CQ hypersensitivity for PvCRT vs PfCRT expressing yeast. We test the hypothesis that hypersensitivity is due to increased transport of CQ into yeast expressing the transporters via direct (3)H-CQ transport experiments and analyze the effect that membrane potential has on transport. The data suggest important new tools for rapid functional screening of PfCRT and PvCRT isoforms and provide further evidence for a model wherein membrane potential promotes charged CQ transport by PfCRT. Data also support our previous conclusion that wild type PfCRT is capable of CQ transport and provide a basis for understanding the lack of correspondence between PvCRT mutations and resistance to CQ in the important malarial parasite P. vivax.

  17. The interaction between the yeast telomerase RNA and the Est1 protein requires three structural elements.

    Science.gov (United States)

    Lubin, Johnathan W; Tucey, Timothy M; Lundblad, Victoria

    2012-09-01

    In the budding yeast Saccharomyces cerevisiae, the telomerase enzyme is composed of a 1.3-kb TLC1 RNA that forms a complex with Est2 (the catalytic subunit) and two regulatory proteins, Est1 and Est3. Previous work has identified a conserved 5-nt bulge, present in a long helical arm of TLC1, which mediates binding of Est1 to TLC1. However, increased expression of Est1 can bypass the consequences of removal of this RNA bulge, indicating that there are additional binding site(s) for Est1 on TLC1. We report here that a conserved single-stranded internal loop immediately adjacent to the bulge is also required for the Est1-RNA interaction; furthermore, a TLC1 variant that lacks this internal loop but retains the bulge cannot be suppressed by Est1 overexpression, arguing that the internal loop may be a more critical element for Est1 binding. An additional structural feature consisting of a single-stranded region at the base of the helix containing the bulge and internal loop also contributes to recognition of TLC1 by Est1, potentially by providing flexibility to this helical arm. Association of Est1 with each of these TLC1 motifs was assessed using a highly sensitive biochemical assay that simultaneously monitors the relative levels of the Est1 and Est2 proteins in the telomerase complex. The identification of three elements of TLC1 that are required for Est1 association provides a detailed view of this particular protein-RNA interaction.

  18. Analysis of Arabidopsis glutathione-transferases in yeast.

    Science.gov (United States)

    Krajewski, Matthias P; Kanawati, Basem; Fekete, Agnes; Kowalski, Natalie; Schmitt-Kopplin, Philippe; Grill, Erwin

    2013-07-01

    The genome of Arabidopsis thaliana encodes 54 functional glutathione transferases (GSTs), classified in seven clades. Although plant GSTs have been implicated in the detoxification of xenobiotics, such as herbicides, extensive redundancy within this large gene family impedes a functional analysis in planta. In this study, a GST-deficient yeast strain was established as a system for analyzing plant GSTs that allows screening for GST substrates and identifying substrate preferences within the plant GST family. To this end, five yeast genes encoding GSTs and GST-related proteins were simultaneously disrupted. The resulting yeast quintuple mutant showed a strongly reduced conjugation of the GST substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl). Consistently, the quintuple mutant was hypersensitive to CDNB, and this phenotype was complemented by the inducible expression of Arabidopsis GSTs. The conjugating activity of the plant GSTs was assessed by in vitro enzymatic assays and via analysis of exposed yeast cells. The formation of glutathione adducts with dinitrobenzene was unequivocally verified by stable isotope labeling and subsequent accurate ultrahigh-resolution mass spectrometry (ICR-FTMS). Analysis of Arabidopsis GSTs encompassing six clades and 42 members demonstrated functional expression in yeast by using CDNB and NBD-Cl as model substrates. Subsequently, the established yeast system was explored for its potential to screen the Arabidopsis GST family for conjugation of the fungicide anilazine. Thirty Arabidopsis GSTs were identified that conferred increased levels of glutathionylated anilazine. Efficient anilazine conjugation was observed in the presence of the phi, tau, and theta clade GSTs including AtGSTF2, AtGSTF4, AtGSTF6, AtGSTF8, AtGSTF10, and AtGSTT2, none of which had previously been known to contribute to fungicide detoxification. ICR-FTMS analysis of yeast extracts allowed the simultaneous detection and

  19. Algorithms for Unequal-Arm Michelson Interferometers

    Science.gov (United States)

    Giampieri, Giacomo; Hellings, Ronald W.; Tinto, Massimo; Bender, Peter L.; Faller, James E.

    1994-01-01

    A method of data acquisition and data analysis is described in which the performance of Michelson-type interferometers with unequal arms can be made nearly the same as interferometers with equal arms. The method requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam.

  20. Worldwide Report, Arms Control.

    Science.gov (United States)

    2007-11-02

    noteworthy for htPr abundance of factual materia characterising the ap nrSrh of the West the USA first and formost, to the militarisation of oX space...Soviet program has been drawn up with due consideration for the fact that the currently prevailing balance of forces in the world is to be...side have promoted a balance in trade exchange between the two countries. The Soviet side expressed a readiness to further boost the commodity

  1. Bioprotective Role of Yeasts

    Directory of Open Access Journals (Sweden)

    Serena Muccilli

    2015-10-01

    Full Text Available The yeasts constitute a large group of microorganisms characterized by the ability to grow and survive in different and stressful conditions and then to colonize a wide range of environmental and human ecosystems. The competitive traits against other microorganisms have attracted increasing attention from scientists, who proposed their successful application as bioprotective agents in the agricultural, food and medical sectors. These antagonistic activities rely on the competition for nutrients, production and tolerance of high concentrations of ethanol, as well as the synthesis of a large class of antimicrobial compounds, known as killer toxins, which showed clearly a large spectrum of activity against food spoilage microorganisms, but also against plant, animal and human pathogens. This review describes the antimicrobial mechanisms involved in the antagonistic activity, their applications in the processed and unprocessed food sectors, as well as the future perspectives in the development of new bio-drugs, which may overcome the limitations connected to conventional antimicrobial and drug resistance.

  2. BIOSYNTHESIS OF YEAST CAROTENOIDS

    Science.gov (United States)

    Simpson, Kenneth L.; Nakayama, T. O. M.; Chichester, C. O.

    1964-01-01

    Simpson, Kenneth L. (University of California, Davis), T. O. M. Nakayama, and C. O. Chichester. Biosynthesis of yeast carotenoids. J. Bacteriol. 88:1688–1694. 1964.—The biosynthesis of carotenoids was followed in Rhodotorula glutinis and in a new strain, 62-506. The treatment of the growing cultures by methylheptenone, or ionone, vapors permitted observations of the intermediates in the biosynthetic pathway. On the basis of concentration changes and accumulation in blocked pathways, the sequence of carotenoid formation is postulated as phytoene, phytofluene, ζ-carotene, neurosporene, β-zeacarotene, γ-carotene, torulin, a C40 aldehyde, and torularhodin. Torulin and torularhodin were established as the main carotenoids of 62-506. PMID:14240958

  3. Method for using a yeast alpha-amylase promoter

    Science.gov (United States)

    Gao, Johnway; Skeen, Rodney S.; Hooker, Brian S.; Anderson, Daniel B.

    2003-04-22

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  4. The yeast Ski complex is a hetero-tetramer

    NARCIS (Netherlands)

    Synowsky, S.A.; Heck, A.J.R.

    2008-01-01

    The yeast Ski complex assists the exosome in the degradation of mRNA. The Ski complex consists of three components; Ski2, Ski3, and Ski8, believed to be present in a 1:1:1 stoichiometry. Measuring the mass of intact isolated endogenously expressed Ski complexes by native mass spectrometry we unambig

  5. Yeasts: from genetics to biotechnology.

    Science.gov (United States)

    Russo, S; Berkovitz Siman-Tov, R; Poli, G

    1995-01-01

    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the "biotechnological revolution" by virtue of both their features and their very long and safe use in human nutrition and industry.

  6. Proprioceptive Interaction between the Two Arms in a Single-Arm Pointing Task.

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Kigawa

    Full Text Available Proprioceptive signals coming from both arms are used to determine the perceived position of one arm in a two-arm matching task. Here, we examined whether the perceived position of one arm is affected by proprioceptive signals from the other arm in a one-arm pointing task in which participants specified the perceived position of an unseen reference arm with an indicator paddle. Both arms were hidden from the participant's view throughout the study. In Experiment 1, with both arms placed in front of the body, the participants received 70-80 Hz vibration to the elbow flexors of the reference arm (= right arm to induce the illusion of elbow extension. This extension illusion was compared with that when the left arm elbow flexors were vibrated or not. The degree of the vibration-induced extension illusion of the right arm was reduced in the presence of left arm vibration. In Experiment 2, we found that this kinesthetic interaction between the two arms did not occur when the left arm was vibrated in an abducted position. In Experiment 3, the vibration-induced extension illusion of one arm was fully developed when this arm was placed at an abducted position, indicating that the brain receives increased proprioceptive input from a vibrated arm even if the arm was abducted. Our results suggest that proprioceptive interaction between the two arms occurs in a one-arm pointing task when the two arms are aligned with one another. The position sense of one arm measured using a pointer appears to include the influences of incoming information from the other arm when both arms were placed in front of the body and parallel to one another.

  7. 21 CFR 172.896 - Dried yeasts.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dried yeasts. 172.896 Section 172.896 Food and... Multipurpose Additives § 172.896 Dried yeasts. Dried yeast (Saccharomyces cerevisiae and Saccharomyces fragilis) and dried torula yeast (Candida utilis) may be safely used in food provided the total folic...

  8. Simultaneous screening and validation of effective zinc finger nucleases in yeast.

    Directory of Open Access Journals (Sweden)

    Ling Wang

    Full Text Available Zinc finger nucleases (ZFNs have been successfully used for genome modification in various cell types and species. However, construction of an effective ZFN remained challenging. Previous studies all focused on obtaining specific zinc finger proteins (ZFPs first via bacterial 2-hybrid approach, and then fusing selected ZFPs to FokI nuclease domain. These assembled ZFNs have high rate of failing to cleave target sites in vivo. In this study, we developed a simultaneous screening and validation system to obtain effective ZFNs directly in yeast AH109. This system is based on Gal4 reporter system carrying a unique intermediate reporter plasmid with two 30-bp Gal4 homology arms and a ZFN target site. DNA double strand breaks introduced on target sequence by ZFNs were repaired by single strand annealing (SSA mechanism, and the restored Gal4 drove reporter genes expression. Taking the advantage of OPEN (Oligomerized Pool ENgineering selection, we constructed 3 randomized ZFNs libraries and 9 reporter strains for each target gene. We tested this system by taking goat α s1-casein as target gene following three-step selection. Consequently, 3 efficient pairs of ZFNs were obtained from positive colonies on selective medium. The ZFNs achieved a 15.9% disruption frequency in goat mammary epithelial cells. In conclusion, we created a novel system to obtain effective ZFNs directly with simultaneous screening and validation.

  9. Novel Kidins220/ARMS Splice Isoforms: Potential Specific Regulators of Neuronal and Cardiovascular Development.

    Directory of Open Access Journals (Sweden)

    Nathalie Schmieg

    Full Text Available Kidins220/ARMS is a transmembrane protein playing a crucial role in neuronal and cardiovascular development. Kidins220/ARMS is a downstream target of neurotrophin receptors and interacts with several signalling and trafficking factors. Through computational modelling, we found two potential sites for alternative splicing of Kidins220/ARMS. The first is located between exon 24 and exon 29, while the second site replaces exon 32 by a short alternative terminal exon 33. Here we describe the conserved occurrence of several Kidins220/ARMS splice isoforms at RNA and protein levels. Kidins220/ARMS splice isoforms display spatio-temporal regulation during development with distinct patterns in different neuronal populations. Neurotrophin receptor stimulation in cortical and hippocampal neurons and neuroendocrine cells induces specific Kidins220/ARMS splice isoforms and alters the appearance kinetics of the full-length transcript. Remarkably, alternative terminal exon splicing generates Kidins220/ARMS variants with distinct cellular localisation: Kidins220/ARMS containing exon 32 is targeted to the plasma membrane and neurite tips, whereas Kidins220/ARMS without exon 33 mainly clusters the full-length protein in a perinuclear intracellular compartment in PC12 cells and primary neurons, leading to a change in neurotrophin receptor expression. Overall, this study demonstrates the existence of novel Kidins220/ARMS splice isoforms with unique properties, revealing additional complexity in the functional regulation of neurotrophin receptors, and potentially other signalling pathways involved in neuronal and cardiovascular development.

  10. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length.

    Science.gov (United States)

    Schott, Daniel H; Collins, Ruth N; Bretscher, Anthony

    2002-01-01

    Myosins are molecular motors that exert force against actin filaments. One widely conserved myosin class, the myosin-Vs, recruits organelles to polarized sites in animal and fungal cells. However, it has been unclear whether myosin-Vs actively transport organelles, and whether the recently challenged lever arm model developed for muscle myosin applies to myosin-Vs. Here we demonstrate in living, intact yeast that secretory vesicles move rapidly toward their site of exocytosis. The maximal speed varies linearly over a wide range of lever arm lengths genetically engineered into the myosin-V heavy chain encoded by the MYO2 gene. Thus, secretory vesicle polarization is achieved through active transport by a myosin-V, and the motor mechanism is consistent with the lever arm model.

  11. Scanning ARM Cloud Radar Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  12. Comparison of melibiose utilizing baker's yeast strains produced by genetic engineering and classical breeding.

    Science.gov (United States)

    Vincent, S F; Bell, P J; Bissinger, P; Nevalainen, K M

    1999-02-01

    Yeast strains currently used in the baking industry cannot fully utilize the trisaccharide raffinose found in beet molasses due to the absence of melibiase (alpha-galactosidase) activity. To overcome this deficiency, the MEL1 gene encoding melibiase enzyme was introduced into baker's yeast by both classical breeding and recombinant DNA technology. Both types of yeast strains were capable of vigorous fermentation in the presence of high levels of sucrose, making them suitable for the rapidly developing Asian markets where high levels of sugar are used in bread manufacture. Melibiase expression appeared to be dosage-dependent, with relatively low expression sufficient for complete melibiose utilization in a model fermentation system.

  13. Oxidative stress response pathways: Fission yeast as archetype.

    Science.gov (United States)

    Papadakis, Manos A; Workman, Christopher T

    2015-01-01

    Schizosaccharomyces pombe is a popular model eukaryotic organism to study diverse aspects of mammalian biology, including responses to cellular stress triggered by redox imbalances within its compartments. The review considers the current knowledge on the signaling pathways that govern the transcriptional response of fission yeast cells to elevated levels of hydrogen peroxide. Particular attention is paid to the mechanisms that yeast cells employ to promote cell survival in conditions of intermediate and acute oxidative stress. The role of the Sty1/Spc1/Phh1 mitogen-activated protein kinase in regulating gene expression at multiple levels is discussed in detail.

  14. LIPASES PRODUCED BY YEASTS: POWERFUL BIOCATALYSTS FOR INDUSTRIAL PURPOSES

    Directory of Open Access Journals (Sweden)

    Luiza Lux Lock

    2007-12-01

    Full Text Available The term “lipolytic enzymes” refers to the lipases and carboxylic ester hydrolases. Lipase production is widespread among yeasts, but few are capable of producing lipases with interesting characteristics and in sufficient amounts to be industrially useful. The literature concerning lipases produced by Candida rugosa, Yarrowia (Candida lipolytica, Candida antarctica and other emerging lipase-producing yeasts is reviewed. The use of recombinant lipases is discussed, with emphasis on the utilization of heterologous expression systems and design of chimeras. Finally, the three approaches that aim the improvement of lipase production or the modification of the substrate selectivity of the enzyme (medium engineering, biocatalyst engineering, and protein engineering are discussed.

  15. How does yeast respond to pressure?

    Directory of Open Access Journals (Sweden)

    P.M.B. Fernandes

    2005-08-01

    Full Text Available The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.

  16. Applications of yeast flocculation in biotechnological processes

    OpenAIRE

    Domingues, Lucília; Vicente, A.A.; Lima, Nelson; Teixeira, J. A.

    2000-01-01

    A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects – the basics of yeast flocculation, the development of “new” flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The const...

  17. Marine Yeasts and Their Applications in Mariculture

    Institute of Scientific and Technical Information of China (English)

    CHI Zhenming; LIU Zhiqiang; GAO Lingmei; GONG Fang; MA Chunling; WANG Xianghong; LI Haifeng

    2006-01-01

    The terrestrial yeasts have been receiving great attention in science and industry for over one hundred years because they can produce many kinds of bioactive substances. However, little is known about the bioactive substances of marine yeasts. In recent years, it has been found that marine yeasts have wide applications in mariculture and other fields.Therefore, marine yeasts, the bioactive substances from them and the applications of marine yeasts themselves and the bioactive substances they produced are reviewed in this paper.

  18. Assimilation of nitrate by yeasts.

    Science.gov (United States)

    Siverio, José M

    2002-08-01

    Nitrate assimilation has received much attention in filamentous fungi and plants but not so much in yeasts. Recently the availability of classical genetic and molecular biology tools for the yeast Hansenula polymorpha has allowed the advance of the study of this metabolic pathway in yeasts. The genes YNT1, YNR1 and YNI1, encoding respectively nitrate transport, nitrate reductase and nitrite reductase, have been cloned, as well as two other genes encoding transcriptional regulatory factors. All these genes lie closely together in a cluster. Transcriptional regulation is the main regulatory mechanism that controls the levels of the enzymes involved in nitrate metabolism although other mechanisms may also be operative. The process involved in the sensing and signalling of the presence of nitrate in the medium is not well understood. In this article the current state of the studies of nitrate assimilation in yeasts as well as possible venues for future research are reviewed.

  19. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation) a...

  20. Engineering antibodies by yeast display.

    Science.gov (United States)

    Boder, Eric T; Raeeszadeh-Sarmazdeh, Maryam; Price, J Vincent

    2012-10-15

    Since its first application to antibody engineering 15 years ago, yeast display technology has been developed into a highly potent tool for both affinity maturing lead molecules and isolating novel antibodies and antibody-like species. Robust approaches to the creation of diversity, construction of yeast libraries, and library screening or selection have been elaborated, improving the quality of engineered molecules and certainty of success in an antibody engineering campaign and positioning yeast display as one of the premier antibody engineering technologies currently in use. Here, we summarize the history of antibody engineering by yeast surface display, approaches used in its application, and a number of examples highlighting the utility of this method for antibody engineering.

  1. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and {beta}-glucosidase

    Energy Technology Data Exchange (ETDEWEB)

    Apiwatanapiwat, Waraporn; Rugthaworn, Prapassorn [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Kasetsart Univ., Bangkok (Thailand). Nanotechnology and Biotechnology Div.; Murata, Yoshinori; Kosugi, Akihiko; Arai, Takamitsu; Mori, Yutaka [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Yamada, Ryosuke; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2011-04-15

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying {alpha}-amylase ({alpha}-AM), glucoamylase, endoglucanase, cellobiohydrase, and {beta}-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley {beta}-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes. (orig.)

  2. Genetically engineered yeast

    DEFF Research Database (Denmark)

    2014-01-01

    A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate semialde......A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate...

  3. Sociobiology of the budding yeast

    Indian Academy of Sciences (India)

    Dominika M Wloch-Salamon

    2014-04-01

    Social theory has provided a useful framework for research with microorganisms. Here I describe the advantages and possible risks of using a well-known model organism, the unicellular yeast Saccharomyces cerevisiae, for sociobiological research. I discuss the problems connected with clear classification of yeast behaviour based on the fitness-based Hamilton paradigm. Relevant traits include different types of communities, production of flocculins, invertase and toxins, and the presence of apoptosis.

  4. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications.

    Science.gov (United States)

    Chi, Zhenming; Chi, Zhe; Zhang, Tong; Liu, Guanglei; Li, Jing; Wang, Xianghong

    2009-01-01

    In this review article, the extracellular enzymes production, their properties and cloning of the genes encoding the enzymes from marine yeasts are overviewed. Several yeast strains which could produce different kinds of extracellular enzymes were selected from the culture collection of marine yeasts available in this laboratory. The strains selected belong to different genera such as Yarrowia, Aureobasidium, Pichia, Metschnikowia and Cryptococcus. The extracellular enzymes include cellulase, alkaline protease, aspartic protease, amylase, inulinase, lipase and phytase, as well as killer toxin. The conditions and media for the enzyme production by the marine yeasts have been optimized and the enzymes have been purified and characterized. Some genes encoding the extracellular enzymes from the marine yeast strains have been cloned, sequenced and expressed. It was found that some properties of the enzymes from the marine yeasts are unique compared to those of the homologous enzymes from terrestrial yeasts and the genes encoding the enzymes in marine yeasts are different from those in terrestrial yeasts. Therefore, it is of very importance to further study the enzymes and their genes from the marine yeasts. This is the first review on the extracellular enzymes and their genes from the marine yeasts.

  5. Reconstitution of the mitochondrial calcium uniporter in yeast.

    Science.gov (United States)

    Kovács-Bogdán, Erika; Sancak, Yasemin; Kamer, Kimberli J; Plovanich, Molly; Jambhekar, Ashwini; Huber, Robert J; Myre, Michael A; Blower, Michael D; Mootha, Vamsi K

    2014-06-17

    The mitochondrial calcium uniporter is a highly selective calcium channel distributed broadly across eukaryotes but absent in the yeast Saccharomyces cerevisiae. The molecular components of the human uniporter holocomplex (uniplex) have been identified recently. The uniplex consists of three membrane-spanning subunits--mitochondrial calcium uniporter (MCU), its paralog MCUb, and essential MCU regulator (EMRE)--and two soluble regulatory components--MICU1 and its paralog MICU2. The minimal components sufficient for in vivo uniporter activity are unknown. Here we consider Dictyostelium discoideum (Dd), a member of the Amoebazoa outgroup of Metazoa and Fungi, and show that it has a highly simplified uniporter machinery. We show that D. discoideum mitochondria exhibit membrane potential-dependent calcium uptake compatible with uniporter activity, and also that expression of DdMCU complements the mitochondrial calcium uptake defect in human cells lacking MCU or EMRE. Moreover, expression of DdMCU in yeast alone is sufficient to reconstitute mitochondrial calcium uniporter activity. Having established yeast as an in vivo reconstitution system, we then reconstituted the human uniporter. We show that coexpression of MCU and EMRE is sufficient for uniporter activity, whereas expression of MCU alone is insufficient. Our work establishes yeast as a powerful in vivo reconstitution system for the uniporter. Using this system, we confirm that MCU is the pore-forming subunit, define the minimal genetic elements sufficient for metazoan and nonmetazoan uniporter activity, and provide valuable insight into the evolution of the uniporter machinery.

  6. Genetic Analysis of Haploids from Industrial Strains of Baker's Yeast.

    Science.gov (United States)

    Oda, Y; Ouchi, K

    1989-07-01

    Strains of baker's yeast conventionally used by the baking industry in Japan were tested for the ability to sporulate and produce viable haploid spores. Three isolates which possessed the properties of baker's yeasts were obtained from single spores. Each strain was a haploid, and one of these strains, YOY34, was characterized. YOY34 fermented maltose and sucrose, but did not utilize galactose, unlike its parental strain. Genetic analysis showed that YOY34 carried two MAL genes, one functional and one cryptic; two SUC genes; and one defective gal gene. The genotype of YOY34 was identified as MATalpha MAL1 MAL3g SUC2 SUC4 gall. The MAL1 gene from this haploid was constitutively expressed, was dominant over other wild-type MAL tester genes, and gave a weak sucrose fermentation. YOY34 was suitable for both bakery products, like conventional baker's yeasts, and for genetic analysis, like laboratory strains.

  7. Red Yeast Rice

    Science.gov (United States)

    Nguyen, Thu; Karl, Mitchell; Santini, Antonello

    2017-01-01

    Red yeast rice (RYR), produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterol-reducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, non-augmented, standardized amount of monacolins. PMID:28257063

  8. Red Yeast Rice

    Directory of Open Access Journals (Sweden)

    Thu Nguyen

    2017-03-01

    Full Text Available Red yeast rice (RYR, produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterolreducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, nonaugmented, standardized amount of monacolins.

  9. Nuclear physicist, arms control advocate

    CERN Multimedia

    Chang, K

    2002-01-01

    Victor F. Weisskopf, a nuclear physicist who worked on the Manhattan Project to build the first atomic bomb in World War II and later became an ardent advocate of arms control, died Monday at his home in Newton, MA, USA. He was 93 (1 page).

  10. Hand/Wrist/Arm Problems

    Science.gov (United States)

    ... your doctor right away.Start OverDiagnosisYou may have TENDINITIS, inflammation of a tendon.Self CareUse an over- ... OverDiagnosisYour may have TENNIS ELBOW, a type of TENDINITIS.Self CareRest the arm, apply ice packs to ...

  11. Mutational analysis of yeast profilin.

    Science.gov (United States)

    Haarer, B K; Petzold, A S; Brown, S S

    1993-12-01

    We have mutated two regions within the yeast profilin gene in an effort to functionally dissect the roles of actin and phosphatidylinositol 4,5-bisphosphate (PIP2) binding in profilin function. A series of truncations was carried out at the C terminus of profilin, a region that has been implicated in actin binding. Removal of the last three amino acids nearly eliminated the ability of profilin to bind polyproline in vitro but had no dramatic in vivo effects. Thus, the extreme C terminus is implicated in polyproline binding, but the physiological relevance of this interaction is called into question. More extensive truncation, of up to eight amino acids, had in vivo effects of increasing severity and resulted in changes in conformation and expression level of the mutant profilins. However, the ability of these mutants to bind actin in vitro was not eliminated, suggesting that this region cannot be solely responsible for actin binding. We also mutagenized a region of profilin that we hypothesized might be involved in PIP2 binding. Alteration of basic amino acids in this region produced mutant profilins that functioned well in vivo. Many of these mutants, however, were unable to suppress the loss of adenylate cyclase-associated protein (Cap/Srv2p [A. Vojtek, B. Haarer, J. Field, J. Gerst, T. D. Pollard, S. S. Brown, and M. Wigler, Cell 66:497-505, 1991]), indicating that a defect could be demonstrated in vivo. In vitro assays demonstrated that the inability to suppress loss of Cap/Srv2p correlated with a defect in the interaction with actin, independently of whether PIP2 binding was reduced. Since our earlier studies of Acanthamoeba profilins suggested the importance of PIP2 binding for suppression, we conclude that both activities are implicated and that an interplay between PIP2 binding and actin binding may be important for profilin function.

  12. Yeast methylotrophy and autophagy in a methanol-oscillating environment on growing Arabidopsis thaliana leaves.

    Directory of Open Access Journals (Sweden)

    Kosuke Kawaguchi

    Full Text Available The yeast Candida boidinii capable of growth on methanol proliferates and survives on the leaves of Arabidopsis thaliana. The local methanol concentration at the phyllosphere of growing A. thaliana exhibited daily periodicity, and yeast cells responded by altering both the expression of methanol-inducible genes and peroxisome proliferation. Even under these dynamically changing environmental conditions, yeast cells proliferated 3 to 4 times in 11 days. Among the C1-metabolic enzymes, enzymes in the methanol assimilation pathway, but not formaldehyde dissimilation or anti-oxidizing enzymes, were necessary for yeast proliferation at the phyllosphere. Furthermore, both peroxisome assembly and pexophagy, a selective autophagy pathway that degrades peroxisomes, were necessary for phyllospheric proliferation. Thus, the present study sheds light on the life cycle and physiology of yeast in the natural environment at both the molecular and cellular levels.

  13. Preservation of cell viability and protein conformation on immobilization within nanofibers via electrospinning functionalized yeast.

    Science.gov (United States)

    Canbolat, M Fatih; Gera, Nimish; Tang, Christina; Monian, Brinda; Rao, Balaji M; Pourdeyhimi, Behnam; Khan, Saad A

    2013-10-09

    We investigate the immobilization of a model system of functionalized yeast that surface-display enhanced green fluorescent protein (eGFP) within chemically crosslinked polyvinyl alcohol (PVA) nanofibers. Yeast is incorporated into water insoluble nanofibrous materials by direct electrospinning with PVA followed by vapor phase chemical crosslinking of the polymer. Incorporation of yeast into the fibers is confirmed by elemental analysis and the viability is indicated by live/dead staining. Following electrospinning and crosslinking, we confirm that the yeast maintains its viability as well as the ability to express eGFP in the correct conformation. This method of processing functionalized yeast may thus be a powerful tool in the direct immobilization of properly folded, active enzymes within electrospun nanofibers with potential applications in biocatalysis.

  14. Combinatorial Mutagenesis and Selection to Understand and Improve Yeast Promoters

    Directory of Open Access Journals (Sweden)

    Laila Berg

    2013-01-01

    Full Text Available Microbial promoters are important targets both for understanding the global gene expression and developing genetic tools for heterologous expression of proteins and complex biosynthetic pathways. Previously, we have developed and used combinatorial mutagenesis methods to analyse and improve bacterial expression systems. Here, we present for the first time an analogous strategy for yeast. Our model promoter is the strong and inducible promoter in methylotrophic Pichia pastoris. The Zeocin resistance gene was applied as a valuable reporter for mutant promoter activity, and we used an episomal plasmid vector to ensure a constant reporter gene dosage in the yeast host cells. This novel design enabled direct selection for colonies of recombinant cells with altered Zeocin tolerance levels originating solely from randomly introduced point mutations in the promoter DNA sequence. We demonstrate that this approach can be used to select for promoter variants with abolished glucose repression in large mutant libraries. We also selected promoter variants with elevated expression level under induced conditions. The properties of the selected promoter variants were confirmed by expressing luciferase as an alternative reporter gene. The tools developed here should be useful for effective screening, characterization, and improvement of any yeast promoters.

  15. Multiple Identifications in Multi-Armed Bandits

    CERN Document Server

    Bubeck, Sébastien; Viswanathan, Nitin

    2012-01-01

    We study the problem of identifying the top $m$ arms in a multi-armed bandit game. Our proposed solution relies on a new algorithm based on successive rejects of the seemingly bad arms, and successive accepts of the good ones. This algorithmic contribution allows to tackle other multiple identifications settings that were previously out of reach. In particular we show that this idea of successive accepts and rejects applies to the multi-bandit best arm identification problem.

  16. The F130S point mutation in the Arabidopsis high-affinity K+ transporter AtHAK5 increases K+ over Na+ and Cs+ selectivity and confers Na+ and Cs+ tolerance to yeast under heterologous expression

    Directory of Open Access Journals (Sweden)

    Fernando eAleman

    2014-09-01

    Full Text Available Potassium (K+ is an essential macronutrient required for plant growth, development and high yield production of crops. Members of group I of the KT/HAK/KUP family of transporters, such as HAK5, are key components for K+ acquisition by plant roots at low external K+ concentrations. Certain abiotic stress conditions such as salinity or Cs+-polluted soils may jeopardize plant K+ nutrition because HAK5-mediated K+ transport is inhibited by Na+ and Cs+. Here, by screening in yeast a randomly-mutated collection of AtHAK5 transporters, a new mutation in AtHAK5 sequence is identified that greatly increases Na+ tolerance. The single point mutation F130S, affecting an amino acid residue conserved in HAK5 transporters from several species, confers high salt tolerance, as well as Cs+ tolerance. This mutation increases more than 100-fold the affinity of AtHAK5 for K+ and reduces the Ki values for Na+ and Cs+, suggesting that the F130 residue may contribute to the structure of the pore region involved in K+ binding. In addition, this mutation increases the Vmax for K+. All this changes occur without increasing the amount of the AtHAK5 protein in yeast and support the idea that this residue is contributing to shape the selectivity filter of the AtHAK5 transporter.

  17. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens

    2015-06-01

    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

  18. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  19. PGASO: A synthetic biology tool for engineering a cellulolytic yeast

    Directory of Open Access Journals (Sweden)

    Chang Jui-Jen

    2012-07-01

    Full Text Available Abstract Background To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO, that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei, a beta-glucosidase (from a cow rumen fungus, a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools.

  20. Screening of hepatocyte proteins binding to NS5ABP37 protein by yeast-two hybrid system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the biological function of NS5ABP37 and to look for proteins interacting with NS5ABP37 protein in hepatocytes.Methods We constructed bait plasmid expressing NS5ABP37 protein of hepatitis C virus(HCV)by cloning the gene of NS5ABP37 protein into pGBKT7,then the recombinant plasmid DNA was transformed into yeast AH109(α type).The transformed yeast AH109 was mated with yeast Y187(α type)containing liver cDNA library plasmid in 2×YPDA medium.Diploid yeast was plated on synthetic dropout ...

  1. Simple and reliable procedure for PCR amplification of genomic DNA from yeast cells using short sequencing primers

    DEFF Research Database (Denmark)

    Haaning, J; Oxvig, C; Overgaard, Michael Toft;

    1997-01-01

    Yeast is widely used in molecular biology. Heterologous expression of recombinant proteins in yeast involves screening of a large number of recombinants. We present an easy and reliable procedure for amplifying genomic DNA from freshly grown cells of the methylotrophic yeast Pichia pastoris...... by means of PCR without any prior DNA purification steps. This method involves a simple boiling step of whole yeast cells in the presence of detergent, and subsequent amplification of genomic DNA using short sequencing primers in a polymerase chain reaction assay with a decreasing annealing temperature...

  2. Regenerator cross arm seal assembly

    Science.gov (United States)

    Jackman, Anthony V.

    1988-01-01

    A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.

  3. Dual arm master controller concept

    Energy Technology Data Exchange (ETDEWEB)

    Kuban, D.P.; Perkins, G.S.

    1984-01-01

    The Advanced Servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. 6 references, 3 figures.

  4. The DOE ARM Aerial Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  5. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L.

    Science.gov (United States)

    Sun, Pei-Feng; Fang, Wei-Ta; Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture.

  6. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L.

    Directory of Open Access Journals (Sweden)

    Pei-Feng Sun

    Full Text Available Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture.

  7. Emulsifying activity of hydrocarbonoclastic marine yeasts

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, R.

    Marine yeast growth on four petroleum hydrocarbons induced the production of extracellular emulsifying agents (biosurfactants). Out of the 17 marine yeast isolates tested, 7 isolates, i.e., Candida parapsilosis, C. cantarelli, C. membranae...

  8. Use of whey protein beads as a new carrier system for recombinant yeasts in human digestive tract.

    Science.gov (United States)

    Hébrard, Géraldine; Blanquet, Stéphanie; Beyssac, Eric; Remondetto, Gabriel; Subirade, Muriel; Alric, Monique

    2006-12-15

    A new immobilizing protocol using whey protein isolates was developed to entrap recombinant Saccharomyces cerevisiae. The model yeast strain expresses the heterologous P45073A1 that converts trans-cinnamic acid into p-coumaric acid. Beads resulted from a cold-induced gelation of a whey protein solution (10%) containing yeasts (7.5 x 10(7)cells ml(-1)) into 0.1M CaCl(2). The viability and growth capability of yeasts were not altered by our entrapment process. The release and activity of immobilized yeasts were studied in simulated human gastric conditions. During the first 60 min of digestion, 2.2+/-0.9% (n=3) of initial entrapped yeasts were recovered in the gastric medium suggesting that beads should cross the gastric barrier in human. The P45073A1 activity of entrapped yeasts remained significantly higher (pwhey protein beads. The main potential medical applications include biodetoxication or the correction of digestive enzyme deficiencies.

  9. High precision detector robot arm system

    Science.gov (United States)

    Shu, Deming; Chu, Yong

    2017-01-31

    A method and high precision robot arm system are provided, for example, for X-ray nanodiffraction with an X-ray nanoprobe. The robot arm system includes duo-vertical-stages and a kinematic linkage system. A two-dimensional (2D) vertical plane ultra-precision robot arm supporting an X-ray detector provides positioning and manipulating of the X-ray detector. A vertical support for the 2D vertical plane robot arm includes spaced apart rails respectively engaging a first bearing structure and a second bearing structure carried by the 2D vertical plane robot arm.

  10. Advances in yeast genome engineering.

    Science.gov (United States)

    David, Florian; Siewers, Verena

    2015-02-01

    Genome engineering based on homologous recombination has been applied to yeast for many years. However, the growing importance of yeast as a cell factory in metabolic engineering and chassis in synthetic biology demands methods for fast and efficient introduction of multiple targeted changes such as gene knockouts and introduction of multistep metabolic pathways. In this review, we summarize recent improvements of existing genome engineering methods, the development of novel techniques, for example for advanced genome redesign and evolution, and the importance of endonucleases as genome engineering tools.

  11. Saccharomyces cerevisiae expressing Gp43 protects mice against Paracoccidioides brasiliensis infection.

    Directory of Open Access Journals (Sweden)

    Mariana Aprigio Assis-Marques

    Full Text Available The dimorphic fungus Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis (PCM. It is believed that approximately 10 million people are infected with the fungus and approximately 2% will eventually develop the disease. Unlike viral and bacterial diseases, fungal diseases are the ones against which there is no commercially available vaccine. Saccharomyces cerevisiae may be a suitable vehicle for immunization against fungal infections, as they require the stimulation of different arms of the immune response. Here we evaluated the efficacy of immunizing mice against PCM by using S. cerevisiae yeast expressing gp43. When challenged by inoculation of P. brasiliensis yeasts, immunized animals showed a protective profile in three different assays. Their lung parenchyma was significantly preserved, exhibiting fewer granulomas with fewer fungal cells than found in non-immunized mice. Fungal burden was reduced in the lung and spleen of immunized mice, and both organs contained higher levels of IL-12 and IFN-γ compared to those of non-vaccinated mice, a finding that suggests the occurrence of Th1 immunity. Taken together, our results indicate that the recombinant yeast vaccine represents a new strategy to confer protection against PCM.

  12. Development of a yeast cell factory for production of aromatic secondary metabolites

    DEFF Research Database (Denmark)

    Rodriguez Prado, Edith Angelica

    secondary metabolites in cell factories. In this research project, we developed a yeast platform strain for the production of p-coumaric acid an intermediate compound for the synthesis of aromatic secondary metabolites. Subsequently, we performed a systems biology analysis of the strain and finally we...... developed an array of yeast strains expressing flavonoid metabolic pathways containing up to ten heterologous genes. The platform strain was capable of producing 1.93 ± 0.26 g L-1 of p-coumaric acid in fed-batch fermentation, which is the highest titer that has been reported for a yeast cell factory so far...

  13. 21 CFR 73.355 - Phaffia yeast.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells of a nonpathogenic and nontoxicogenic strain of...

  14. Comparative Evaluation of the BD Phoenix Yeast ID Panel and Remel RapID Yeast Plus System for Yeast Identification

    OpenAIRE

    Michelle L. Grant; Shobha Parajuli; Raquel Deleon-Gonsalves; Raghava Potula; Truant, Allan L.

    2016-01-01

    Becton Dickinson Phoenix Yeast ID Panel was compared to the Remel RapID Yeast Plus System using 150 recent clinical yeast isolates and the API 20C AUX system to resolve discrepant results. The concordance rate between the Yeast ID Panel and the RapID Yeast Plus System (without arbitration) was 93.3% with 97.3% (146/150) and 95.3% (143/150) of the isolates correctly identified by the Becton Dickinson Phoenix and the Remel RapID, respectively, with arbitration.

  15. Transcriptional robustness and protein interactions are associated in yeast

    Directory of Open Access Journals (Sweden)

    Conant Gavin C

    2011-05-01

    Full Text Available Abstract Background Robustness to insults, both external and internal, is a characteristic feature of life. One level of biological organization for which noise and robustness have been extensively studied is gene expression. Cells have a variety of mechanisms for buffering noise in gene expression, but it is not completely clear what rules govern whether or not a given gene uses such tools to maintain appropriate expression. Results Here, we show a general association between the degree to which yeast cells have evolved mechanisms to buffer changes in gene expression and whether they possess protein-protein interactions. We argue that this effect bears an affinity to epistasis, because yeast appears to have evolved regulatory mechanisms such that distant changes in gene copy number for a protein-protein interaction partner gene can alter a gene's expression. This association is not unexpected given recent work linking epistasis and the deleterious effects of changes in gene dosage (i.e., the dosage balance hypothesis. Using gene expression data from artificial aneuploid strains of bakers' yeast, we found that genes coding for proteins that physically interact with other proteins show less expression variation in response to aneuploidy than do other genes. This effect is even more pronounced for genes whose products interact with proteins encoded on aneuploid chromosomes. We further found that genes targeted by transcription factors encoded on aneuploid chromosomes were more likely to change in expression after aneuploidy. Conclusions We suggest that these observations can be best understood as resulting from the higher fitness cost of misexpression in epistatic genes and a commensurate greater regulatory control of them.

  16. The Asteroid Redirect Mission (ARM)

    Science.gov (United States)

    Abell, Paul; Gates, Michele; Johnson, Lindley; Chodas, Paul; Mazanek, Dan; Reeves, David; Ticker, Ronald

    2016-07-01

    To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth-Moon system, which will require weeks, months, or even years of transit time. In addition, NASA has been given a Grand Challenge to find all asteroid threats to human populations and know what to do about them. Obtaining knowledge of asteroid physical properties combined with performing technology demonstrations for planetary defense provide much needed information to address the issue of future asteroid impacts on Earth. Hence the combined objectives of human exploration and planetary defense give a rationale for the Asteroid Re-direct Mission (ARM). Mission Description: NASA's ARM consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), the first robotic mission to visit a large (greater than ~100 m diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, demonstrate a planetary defense technique, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will take the Orion capsule to rendezvous and dock with the robotic vehicle, conduct multiple extravehicular activities to explore the boulder, and return to Earth with samples. NASA's proposed

  17. Combinatorial Regulation in Yeast Transcription Networks

    Science.gov (United States)

    Li, Hao

    2006-03-01

    Yeast has evolved a complex network to regulate its transcriptional program in response to changes in environment. It is quite common that in response to an external stimulus, several transcription factors will be activated and they work in combinations to control different subsets of genes in the genome. We are interested in how the promoters of genes are designed to integrate signals from multiple transcription factors and what are the functional and evolutionary constraints. To answer how, we have developed a number of computational algorithms to systematically map the binding sites and target genes of transcription factors using sequence and gene expression data. To analyze the functional constraints, we have employed mechanistic models to study the dynamic behavior of genes regulated by multiple factors. We have also developed methods to trace the evolution of transcriptional networks via comparative analysis of multiple species.

  18. Construction of yeast strains expressing long-acting glucagon-like peptide-1 (GLP-1) and their therapeutic effects on type 2 diabetes mellitus mouse model%长效促胰岛素降糖酵母的构建及其对糖尿病模型小鼠的治疗效果

    Institute of Scientific and Technical Information of China (English)

    吴日; 李淼; 尼钢钢; 马百成; 李明刚; 马超; 李晓丹; 段会坤; 姬艳丽; 王宇; 姜苹哲; 王海松; 屠培培

    2015-01-01

    Probiotics, i.e., bacteria expressing therapeutic peptides (protein), are used as a new type of orally ad-ministrated biologic drugs to treat diseases. To develop yeast strains which could effectively prevent and treat type 2 diabetes mellitus, we firstly constructed the yeast integrating plasmid pNK1-PGK which could successfully express green fluorescent protein (GFP) in Saccharomyces cerevisiae. The gene encoding ten tandem repeats of glucagon-like peptide-1(10×GLP-1) was cloned into the vector pNK1-PGK and the resulting plasmids were then transformed into the S. cerevisiae INVSc1. The long-acting GLP-1 hypoglycemic yeast (LHY) which grows rapidly and expresses 10×GLP-1 stably was selected by nutrition screening and Western blotting. The amount of 10×GLP-1 produced by LHY reached 1.56 mg per gram of wet cells. Moreover, the oral administration of LHY significantly reduced blood glucose level in type 2 diabetic mice induced by streptozotocin plus high fat and high sugar diet.%益生菌生物药物是指通过口服表达药用多肽(蛋白)的重组益生菌活细胞达到治疗疾病的新型口服给药系统。为了构建一种能有效防治2型糖尿病的酵母生物药物,文章首先构建了酿酒酵母(S.cerevisiae)整合型表达载体pNK1-PGK,并且通过绿色荧光蛋白(GFP)证明其表达功能正常,利用该载体将10×GLP-1(Glucagon-like peptide-1)基因转化到酿酒酵母INVSc1中,通过营养缺陷型和Western blotting成功筛选出表达10×GLP-1的长效促胰岛素降糖酵母(Long-acting GLP-1 hypoglycemic yeast, LHY)。该酵母生长迅速,外源基因10×GLP-1表达稳定,表达量达到1.56 mg/g细胞湿重。通过链脲佐菌素和高脂高糖饮食联合诱导的方法构建了2型糖尿病小鼠模型,用LHY对其进行口服灌胃治疗,证明LHY具有较好疗效,明显降低血糖水平。

  19. Black yeasts in cold habitats

    NARCIS (Netherlands)

    Selbmann, L.; de Hoog, G.S.; Zucconi, L.; Isola, D.; Onofri, S.; Buzzini, B.; Margesin, E.

    2014-01-01

    Black yeasts have already been known since the end of the nineteenth century, but for a number of reasons, only few workers were familiar with them. That was since recently, until the wealth of biodiversity, stunning ecologies and potential applications have become apparent. Some remote and extreme

  20. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  1. Yeast as factory and factotum.

    Science.gov (United States)

    Dixon, B

    2000-02-01

    After centuries of vigorous activity in making fine wines, beers and breads, Saccharomyces cerevisiae is now acquiring a rich new portfolio of skills, bestowed by genetic manipulation. As shown in a recent shop-window of research supported by the European Commission, yeasts will soon be benefiting industries as diverse as fish farming, pharmaceuticals and laundering.

  2. Construction of cDNA subtractive library between yeast and mycelium phase of Sporothrix schenckii and screening of differently expressed genes about dimorphic transition%申克孢子丝菌菌丝相和酵母相cDNA消减文库的构建及差异表达基因的筛选

    Institute of Scientific and Technical Information of China (English)

    周汛; 杨致邦; 肖异珠

    2011-01-01

    The purpose of this study was to screen the differentially expressed genes about dimorphic transition of Sporothrix schenckii by construction of eDNA subtractive library between yeast and mycelium phase.The eDNA subtractive library between yeast and mycelium phase was constructed by suppression subtractive hybridization(SSH)and bioinformatics analysis was performed to profile the relationship between those differently expressed genes and dimorphic transition.Of 751 and 875 ESTs were obtained in M+Y and Y+M library, separately.After splicing of ESTs, 101 and 249 unigenes were obtained in M +Y and Y+ M libraries.During the construction of cDNA subtractive libraries, the distribution of differently expressed genes varied with dimorphic transition.The over expressed genes with diversity and complexity were divided into structural genes,metabolic enzymes, molecule on cell surface and molecule with indistinct function.Results disclose that construction of cDNA subtractive libraries for the dimorphic transition and bioinformatics analysis for those differently expressed genes lay the foundation for screening the related genes involved in the pathogenesis of Sporothrix schenckii infection.%目的 构建申克孢子丝菌双相cDNA消减文库,筛选与双相转换相关的差异表达基因.方法 运用抑制性消减杂交技术,构建申克孢子丝菌菌丝相(Mycelium,M)和酵母相(Yeast,Y)的正反cDNA消减文库,并对其差异表达的基因进行生物信息学分析.结果 M+Y文库获得751条表达序列标签(Expressed Sequence Tags,ESTs),经拼接后获得101条unigenes;Y+M文库获得875条ESTs,拼接获得249条unigenes.申克孢子丝菌酵母相菌丝相的转换伴随着不同菌相细胞差异基因的高表达,这些高表达的差异基因可分为结构基因类、代谢酶类、细胞表面分子类及功能不明的细胞分子.结论 成功构建了申克孢子丝菌双相转换相关的cDNA消减文库基础上,筛选出部分差异表达基

  3. Functional coupling of a nematode chemoreceptor to the yeast pheromone response pathway.

    Science.gov (United States)

    Tehseen, Muhammad; Dumancic, Mira; Briggs, Lyndall; Wang, Jian; Berna, Amalia; Anderson, Alisha; Trowell, Stephen

    2014-01-01

    Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm's simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1) of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ) triple mutant ("Cyb") with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors.

  4. Functional coupling of a nematode chemoreceptor to the yeast pheromone response pathway.

    Directory of Open Access Journals (Sweden)

    Muhammad Tehseen

    Full Text Available Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm's simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1 of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ triple mutant ("Cyb" with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors.

  5. Dual arm master controller development

    Energy Technology Data Exchange (ETDEWEB)

    Kuban, D.P.; Perkins, G.S.

    1985-01-01

    The advanced servomanipulator (ASM) slave was designed with an anthropomorphic stance, gear/torque tube power drives, and modular construction. These features resulted in increased inertia, friction, and backlash relative to tape-driven manipulators. Studies were performed which addressed the human factors design and performance trade-offs associated with the corresponding master controller best suited for the ASM. The results of these studies, as well as the conceptual design of the dual arm master controller, are presented. This work was performed as part of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory. 5 refs., 7 figs., 1 tab.

  6. Arms Race in Maghreb Region

    Institute of Scientific and Technical Information of China (English)

    EL AMOURI ALLAL

    2016-01-01

    Maghreb countries competitive altitude towards each other’ s has reached a higher level by entering an arms race.Morocco and Al ̄geria have dominated more than 50 percent of the Africa’ s imported weapons,mainly because of inherited cold war mentality of competi ̄tion and hostility. Maghreb countries competition has drugged the re ̄gion into a chaos that threatens regional stability obviously which af ̄fect the domestic political stability,since military spending weakens the financial capacity of states.

  7. Effect of chromosome tethering on nuclear organization in yeast.

    Directory of Open Access Journals (Sweden)

    Barış Avşaroğlu

    Full Text Available Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML on chromosome III in wild-type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination.

  8. 'Yeast mail': a novel Saccharomyces application (NSA) to encrypt messages.

    Science.gov (United States)

    Rosemeyer, Helmut; Paululat, Achim; Heinisch, Jürgen J

    2014-09-01

    The universal genetic code is used by all life forms to encode biological information. It can also be used to encrypt semantic messages and convey them within organisms without anyone but the sender and recipient knowing, i.e., as a means of steganography. Several theoretical, but comparatively few experimental, approaches have been dedicated to this subject, so far. Here, we describe an experimental system to stably integrate encrypted messages within the yeast genome using a polymerase chain reaction (PCR)-based, one-step homologous recombination system. Thus, DNA sequences encoding alphabetical and/or numerical information will be inherited by yeast propagation and can be sent in the form of dried yeast. Moreover, due to the availability of triple shuttle vectors, Saccharomyces cerevisiae can also be used as an intermediate construction device for transfer of information to either Drosophila or mammalian cells as steganographic containers. Besides its classical use in alcoholic fermentation and its modern use for heterologous gene expression, we here show that baker's yeast can thus be employed in a novel Saccharomyces application (NSA) as a simple steganographic container to hide and convey messages.

  9. Construction of a lactose-assimilating strain of baker's yeast.

    Science.gov (United States)

    Adam, A C; Prieto, J A; Rubio-Texeira, M; Polaina, J

    1999-09-30

    A recombinant strain of baker's yeast has been constructed which can assimilate lactose efficiently. This strain has been designed to allow its propagation in whey, the byproduct resulting from cheese-making. The ability to metabolize lactose is conferred by the functional expression of two genes from Kluyveromyces lactis, LAC12 and LAC4, which encode a lactose permease and a beta-galactosidase, respectively. To make the recombinant strain more acceptable for its use in bread-making, the genetic transformation of the host baker's yeast was carried out with linear fragments of DNA of defined sequence, carrying as the only heterologous material the coding regions of the two K. lactis genes. Growth of the new strain on cheese whey affected neither the quality of bread nor the yeast gassing power. The significance of the newly developed strain is two-fold: it affords a cheap alternative to the procedure generally used for the propagation of baker's yeast, and it offers a profitable use for cheese whey.

  10. 中国虎纹捕鸟蛛神经毒素肽基因的克隆及在酵母中的表达%Clonging and Expression of a Neurotoxin Peptide Gene from Chinese Bird Spider (Selenocosmia huwena) in Yeast

    Institute of Scientific and Technical Information of China (English)

    李敏; 聂东宋

    2006-01-01

    Huwentoxin- Ⅰ ( HWTX- Ⅰ ) is a 33 amino acids peptide purified from the venom of the Chinese bird spider Selenocosmia huwena. HWTX- Ⅰ acts as a presynaptic toxin that blocks the high-voltage activated calcium channel. HWTX- Ⅰ can also affect the release of acetylcholine and adrenalin of sympathetic-vagus nerve terminal by electrical stimulation. The result indicates that HWTX- Ⅰ is a potential analgesic drug candidate. In this report, the sequence of cDNA of HWTX- Ⅰ was identified by RT-PCR and further successfully expressed HWTX-1 peptide in Pichia pastoris expression vector pPIC9K using his4 mutant yeast GS115. The His+ Mut8 clones were screened and recombinant HWTX- Ⅰ was secreted into the culture media using methanol as an inducer. The expressed HWTX-1 product was further analyzed and its biological activities were confirmed by some biological assays. Similar physiological activity was observed in the yeast-expressed HWTX-1 compared with the native HWTX- Ⅰ . Fig 4, Ref 10%从中国珍稀毒蜘蛛种虎纹捕鸟蛛的粗毒中分离纯化的虎纹捕鸟蛛毒素-Ⅰ(HWTX-Ⅰ)是含33个氨基酸的多肽.有关实验已证实,HWTX-Ⅰ是一种作用于突触前膜的神经毒素和高阈值钙通道抑制剂,在电刺激时HWTX-Ⅰ也影响交感神经释放肾上腺素和迷走神经释放乙酰胆碱,这些结果表明,HWTX-Ⅰ具有潜在的镇痛活性.本文报道通过RT-PCR方法克隆、测定了HWTX-Ⅰ的cDNA序列.在此基础上,以pPIC9K为表达载体和GS115为宿主,筛选His+Muts克隆,以甲醇为诱导剂,成功地构建并在毕赤酵母系统分泌表达HWTX-Ⅰ基因.进一步分析HWTX-Ⅰ表达产物,生物活性实验观察到酵母表达体系所获得的HWTX-Ⅰ产物具有与天然HWTX-Ⅰ相似的生理活性.图4参10

  11. Bacterial toxin-antitoxin gene system as containment control in yeast cells

    DEFF Research Database (Denmark)

    Kristoffersen, P.; Jensen, G. B.; Gerdes, K.;

    2000-01-01

    The potential of a bacterial toxin-antitoxin gene system for use in containment control in eukaryotes was explored. The Escherichia coli relE and relB genes were expressed in the yeast Saccharomyces cerevisiae, Expression of the relE gene was highly toxic to yeast cells. However, expression...... of the relB gene counteracted the effect of relE to some extent, suggesting that toxin-antitoxin interaction also occurs in S. cerevisiae, Thus, bacterial toxin-antitoxin gene systems also have potential applications in the control of cell proliferation in eukaryotic cells, especially in those industrial...

  12. The wine and beer yeast Dekkera bruxellensis.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history.

  13. Production of Dengue 2 Envelope Protein in the Yeast Saccharomyces Cerevisiae. Phase 1

    Science.gov (United States)

    1990-02-15

    developing subunit dengue vaccines or recombinant live viral vaccines. Subunit vaccines may eventually include synthetic dengue peptides or recombinant... dengue proteins expressed in microorganisms, and live viral vectors such as vaccinia may express in vivo immunogenic dengue peptides . Durin...PRODUCTION OF DENGUE 2 ENVELOPE PROTEIN IN THE YEAST SACCHAROMYCES CEREVISIAE FINAL, PHASE I REPORT JOHN M. IVY KATHY HOUTCHENS FEBRUARY 15, 1990

  14. Metabolic regulation rather than de novo enzyme synthesis dominates the osmo-adaptation of yeast

    NARCIS (Netherlands)

    Bouwman, J; Kiewiet, J; Lindenbergh, A; Eunen, K, van; Siderius, M; Bakker, BM

    2011-01-01

    Intracellular accumulation of glycerol is essential for yeast cells to survive hyperosmotic stress. Upon hyperosmotic stress the gene expression of enzymes in the glycerol pathway is strongly induced. Recently, however, it was shown that this gene-expression response is not essential for survival of

  15. Introduction to Reading and Visualizing ARM Data

    Energy Technology Data Exchange (ETDEWEB)

    Mather, James [Pacific Northwest National Laboratory

    2014-02-18

    Atmospheric Radiation Measurement (ARM) Program standard data format is NetCDF 3 (Network Common Data Form). The object of this tutorial is to provide a basic introduction to NetCDF with an emphasis on aspects of the ARM application of NetCDF. The goal is to provide basic instructions for reading and visualizing ARM NetCDF data with the expectation that these examples can then be applied to more complex applications.

  16. A Three-Dimensional Model of the Yeast Genome

    Science.gov (United States)

    Noble, William; Duan, Zhi-Jun; Andronescu, Mirela; Schutz, Kevin; McIlwain, Sean; Kim, Yoo Jung; Lee, Choli; Shendure, Jay; Fields, Stanley; Blau, C. Anthony

    Layered on top of information conveyed by DNA sequence and chromatin are higher order structures that encompass portions of chromosomes, entire chromosomes, and even whole genomes. Interphase chromosomes are not positioned randomly within the nucleus, but instead adopt preferred conformations. Disparate DNA elements co-localize into functionally defined aggregates or factories for transcription and DNA replication. In budding yeast, Drosophila and many other eukaryotes, chromosomes adopt a Rabl configuration, with arms extending from centromeres adjacent to the spindle pole body to telomeres that abut the nuclear envelope. Nonetheless, the topologies and spatial relationships of chromosomes remain poorly understood. Here we developed a method to globally capture intra- and inter-chromosomal interactions, and applied it to generate a map at kilobase resolution of the haploid genome of Saccharomyces cerevisiae. The map recapitulates known features of genome organization, thereby validating the method, and identifies new features. Extensive regional and higher order folding of individual chromosomes is observed. Chromosome XII exhibits a striking conformation that implicates the nucleolus as a formidable barrier to interaction between DNA sequences at either end. Inter-chromosomal contacts are anchored by centromeres and include interactions among transfer RNA genes, among origins of early DNA replication and among sites where chromosomal breakpoints occur. Finally, we constructed a three-dimensional model of the yeast genome. Our findings provide a glimpse of the interface between the form and function of a eukaryotic genome.

  17. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2014-08-01

    The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains.

  18. Human yeast-specific CD8 T lymphocytes show a nonclassical effector molecule profile.

    Science.gov (United States)

    Breinig, Tanja; Scheller, Nicoletta; Glombitza, Birgit; Breinig, Frank; Meyerhans, Andreas

    2012-05-01

    Pathogenic yeast and fungi represent a major group of human pathogens. The consequences of infections are diverse and range from local, clinically uncomplicated mycosis of the skin to systemic, life-threatening sepsis. Despite extensive MHC class I-restricted frequencies of yeast-specific CD8 T lymphocytes in healthy individuals and the essential role of the cell-mediated immunity in controlling infections, the characteristics and defense mechanisms of antifungal effector cells are still unclear. Here, we describe the direct analysis of yeast-specific CD8 T lymphocytes in whole blood from healthy individuals. They show a unique, nonclassical phenotype expressing granulysin and granzyme K in lytic granules instead of the major effector molecules perforin and granzyme B. After stimulation in whole blood, yeast-specific CD8 T cells degranulated and, upon cultivation in the presence of IL-2, their granula were refilled with granulysin rather than with perforin and granzyme B. Moreover, yeast-specific stimulation through dendritic cells but not by yeast cells alone led to degranulation of the effector cells. As granulysin is the only effector molecule in lytic granules known to have antifungal properties, our data suggest yeast-specific CD8 T cells to be a nonclassical effector population whose antimicrobial effector machinery seems to be tailor-made for the efficient elimination of fungi as pathogens.

  19. Dynamical analysis of yeast protein interaction network during the sake brewing process.

    Science.gov (United States)

    Mirzarezaee, Mitra; Sadeghi, Mehdi; Araabi, Babak N

    2011-12-01

    Proteins interact with each other for performing essential functions of an organism. They change partners to get involved in various processes at different times or locations. Studying variations of protein interactions within a specific process would help better understand the dynamic features of the protein interactions and their functions. We studied the protein interaction network of Saccharomyces cerevisiae (yeast) during the brewing of Japanese sake. In this process, yeast cells are exposed to several stresses. Analysis of protein interaction networks of yeast during this process helps to understand how protein interactions of yeast change during the sake brewing process. We used gene expression profiles of yeast cells for this purpose. Results of our experiments revealed some characteristics and behaviors of yeast hubs and non-hubs and their dynamical changes during the brewing process. We found that just a small portion of the proteins (12.8 to 21.6%) is responsible for the functional changes of the proteins in the sake brewing process. The changes in the number of edges and hubs of the yeast protein interaction networks increase in the first stages of the process and it then decreases at the final stages.

  20. Atmospheric Radiation Measurement Climate Research (ARM)

    Data.gov (United States)

    Federal Laboratory Consortium — With heavily instrumented field sites around the globe, the ARM Climate Research Facility provides the world's most comprehensive outdoor laboratory and data archive...

  1. 申克孢子丝菌酵母相与白念珠菌诱导中性粒细胞活性氧簇的差异性表达%Differential expression of reactive oxygen species in human neutrophils stimulated by the yeast phase of Sporothrix Schenckii and Candida albicans

    Institute of Scientific and Technical Information of China (English)

    董碧麟; 李东升; 柳卫凰; 童中胜; 陈柳青; 段逸群

    2013-01-01

    Objective To compare the reactive oxygen species (ROS) expression in human neutrophils phagocytizing Sporothrix Schenckii and Candida albicans yeast cells,and to compare the fungicidal activity of human neutrophils against Sporothrix Schenckii and Candida albicans.Methods Human neutrophils were isolated from peripheral blood by using density gradient centrifugation method,and cultured with the presence of the yeast phase of a Sporothrix Schenckii clinical isolate and a standard strain of Candida albicans (ATCC 90028)at a multiplicity of infection of 10 or 1 for 60-210 minutes.Subsequently,flow cytometry with ROS probe (2',7'-dichlorofluorescein diacetate,DCFH-DA) was carried out to for the real time detection of intracellular ROS level,confocal laser scanning microscopy (CLSM) for the observation of ROS distribution.In addition,the fungicidal efficiency of neutrophils against Sporothrix Schenckii and Candida albicans was estimated by the number of colonies after additional culture of neutrophil lysates on brain-heart infusion agar (BHIA) medium.Statistical analysis was done by using univariate analysis of variance and LSD-t test.Results The intracellular ROS level peaked at 60 minutes in neutrophils incubated with Sporothrix Schenckii yeast cells,then decreased rapidly from 60 minutes to 210 minutes.Compared with the neutrophils incubated with Candida albicans yeast cells,those with Sporothrix Schenckii yeast cells showed a higher ROS level (expressed as mean fluorescence intensity) at 60minutes (159.67 ± 11.34 vs.112.22 ± 9.66,P< 0.01),but a lower ROS level at 120 minutes (89.01 ± 9.81 vs.110.25 ± 7.28,P< 0.05) and 180 minutes (57.63 ± 8.46 vs.109.98 ± 9.00,P< 0.01).CLSM revealed that ROS was mainly distributed in neutrophils with phagocytized fungal spores,and especially on the surface of phagocytized spores.Furthermore,the percentage of yeast cells killed by neutrophils was significantly lower for Sporothrix Schenckii than for Candida albicans at 180

  2. Surplus yeast tank failing catastrophically

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2016-01-01

    GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air. T....... The accident described in this article serves to illustrate that care should be taken if a tank originally designed for atmospheric pressure is modified to operate at slight overpressure.......GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air...

  3. Mycotoxins - prevention and decontamination by yeasts.

    Science.gov (United States)

    Pfliegler, Walter P; Pusztahelyi, Tünde; Pócsi, István

    2015-07-01

    The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less-toxic or even non-toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast-mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here.

  4. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.

    Science.gov (United States)

    Dura-Bernal, Salvador; Zhou, Xianlian; Neymotin, Samuel A; Przekwas, Andrzej; Francis, Joseph T; Lytton, William W

    2015-01-01

    Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm. This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuroprosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility for finer control of

  5. Cortical spiking network interfaced with virtual musculoskeletal arm and robotic arm

    Directory of Open Access Journals (Sweden)

    Salvador eDura-Bernal

    2015-11-01

    Full Text Available Embedding computational models in the physical world is a critical step towards constraining their behavior and building practical applications. Here we aim to drive a realistic musculoskeletal arm model using a biomimetic cortical spiking model, and make a robot arm reproduce the same trajectories in real time. Our cortical model consisted of a 3-layered cortex, composed of several hundred spiking model-neurons, which display physiologically realistic dynamics. We interconnected the cortical model to a two-joint musculoskeletal model of a human arm, with realistic anatomical and biomechanical properties. The virtual arm received muscle excitations from the neuronal model, and fed back proprioceptive information, forming a closed-loop system. The cortical model was trained using spike timing-dependent reinforcement learning to drive the virtual arm in a 2D reaching task. Limb position was used to simultaneously control a robot arm using an improved network interface. Virtual arm muscle activations responded to motoneuron firing rates, with virtual arm muscles lengths encoded via population coding in the proprioceptive population. After training, the virtual arm performed reaching movements which were smoother and more realistic than those obtained using a simplistic arm model. This system provided access to both spiking network properties and to arm biophysical properties, including muscle forces. The use of a musculoskeletal virtual arm and the improved control system allowed the robot arm to perform movements which were smoother than those reported in our previous paper using a simplistic arm.This work provides a novel approach consisting of bidirectionally connecting a cortical model to a realistic virtual arm, and using the system output to drive a robotic arm in real time. Our techniques are applicable to the future development of brain neuro-prosthetic control systems, and may enable enhanced brain-machine interfaces with the possibility

  6. Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+].

    Science.gov (United States)

    Du, Zhiqiang; Li, Liming

    2014-06-01

    Multiple prion elements, which are transmitted as heritable protein conformations and often linked to distinct phenotypes, have been identified in the budding yeast, Saccharomyces cerevisiae. It has been shown that overproduction of a prion protein Swi1 can promote the de novo conversion of another yeast prion [PSI(+)] when Sup35 is co-overproduced. However, the mechanism underlying this Pin(+) ([PSI(+)] inducible) activity is not clear. Moreover, how the Swi1 prion ([SWI(+)]) interacts with other yeast prions is unknown. Here, we demonstrate that the Pin(+) activity associated with Swi1 overproduction is independent of Rnq1 expression or [PIN(+)] conversion. We also show that [SWI(+)] enhances the appearance of [PSI(+)] and [PIN(+)]. However, [SWI(+)] significantly compromises the Pin(+) activity of [PIN(+)] when they coexist. We further demonstrate that a single yeast cell can harbor three prions, [PSI(+)], [PIN(+)], and [SWI(+)], simultaneously. However, under this condition, [SWI(+)] is significantly destabilized. While the propensity to aggregate underlies prionogenesis, Swi1 and Rnq1 aggregates resulting from overproduction are usually nonheritable. Conversely, prion protein aggregates formed in nonoverexpressing conditions or induced by preexisting prion(s) are more prionogenic. For [PSI(+)] and [PIN(+)] de novo formation, heterologous "facilitators," such as preexisting [SWI(+)] aggregates, colocalize only with the newly formed ring-/rod-shaped Sup35 or Rnq1 aggregates, but not with the dot-shaped mature prion aggregates. Their colocalization frequency is coordinated with their prion inducibility, indicating that prion-prion interactions mainly occur at the early initiation stage. Our results provide supportive evidence for the cross-seeding model of prionogenesis and highlight a complex interaction network among prions in yeast.

  7. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios

    2012-01-01

    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  8. Closed-form inverse kinematics for intra-operative mobile C-arm positioning with six degrees of freedom

    Science.gov (United States)

    Wang, Lejing; Zou, Rui; Weidert, Simon; Landes, Juergen; Euler, Ekkehard; Burschka, Darius; Navab, Nassir

    2011-03-01

    For trauma and orthopedic surgery, maneuvering a mobile C-arm X-ray device into a desired position in order to acquire the right picture is a routine task. The precision and ease of use of the C-arm positioning becomes even more important for more advanced imaging techniques as parallax-free X-ray image stitching, for example. Standard mobile C-arms have only five degrees of freedom (DOF), which definitely restricts their motions that have six DOF in 3D Cartesian space. We have proposed a method to model the kinematics of the mobile Carm and operating table as an integrated 6DOF C-arm X-ray imaging system.1 This enables mobile C-arms to be positioned relative to the patient's table with six DOF in 3D Cartesian space. Moving mobile C-arms to a desired position and orientation requires finding the necessary joint values, which is an inverse kinematics problem. In this paper, we present closed-form solutions, i.e. analytic expressions, obtained in an algebraic way for the inverse kinematics problem of the 6DOF C-arm model. In addition, we implement a 6DOF C-arm system for interactively radiation-free C-arm positioning based on a continuous guidance from C-arm pose estimation. For this we employ a visual marker pattern attached under the operating table and a mobile C-arm system augmented by a video camera and mirror construction. In our experiment, repositioning C-arm to a pre-defined pose in a phantom study demonstrates the practicality and accuracy of our developed 6DOF C-arm system.

  9. Human ribosomal protein L9 is a Bax suppressor that promotes cell survival in yeast.

    Science.gov (United States)

    Eid, Rawan; Sheibani, Sara; Gharib, Nada; Lapointe, Jason F; Horowitz, Avital; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T

    2014-05-01

    The identification of a human ribosomal protein L9 (hRPL9) cDNA as a sequence capable of suppressing the lethal effects of heterologously expressed murine Bax in yeast led us to investigate its antiapoptotic potential. Using growth and viability assays, we show that yeast cells heterologously expressing hRPL9 are resistant to the growth inhibitory and lethal effects of exogenously supplied copper, indicating that it has pro-survival properties. To explore potential mechanisms, we used yeast mutants defective in all three types of programmed cell death (apoptosis, necrosis, and autophagy). The ability to retain pro-survival function in all the mutants suggests that hRPL9 may regulate a common pro-death process. In contrast, the yeast RPL9 orthologues, RPL9A and RPL9B, have opposite effects when overexpressed in yeast. In effect, instead of showing resistance to stress, RPL9A and RPL9B overexpressing cells show reduced cell growth. Further analysis indicates that the effects of overexpressed RPL9A and RPL9B are not in themselves lethal, instead, they serve to increase cell doubling time. Thus, yeast RPL9s are more representative of RPs whose extra-ribosomal function is similar to that of tumor suppressors. Taken together, our results demonstrate that RPL9 represents a species- and sequence-specific regulator of cell growth and survival.

  10. Study on a 7-DOF anthropomorphic weld arm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A kind of new obstacle space expression is proposed in this paper, in which a virtual force field (VFF) is built. Using the torque and joint optimization acted by the virtual force field on the anthropomorphic weld arm, the real-time selection of a redundant join (R-joint) is done and its equivalent virtual torque is obtained, thus the redundant joint can be controlled with whose force feedback. An inverse kinematics solution of a 6-DOF robot is applied to other six joints of the arm. Simulation experiments indicate the new inverse kinematics solution has perfect collision avoidance effect, and it is well simplified. Therefore, it can be applied to a welding task in complex operation space.

  11. Yeast Carbon Catabolite Repression†

    Science.gov (United States)

    Gancedo, Juana M.

    1998-01-01

    Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated. PMID:9618445

  12. Modulation of arm reaching movements during processing of arm/hand-related action verbs with and without emotional connotation.

    Directory of Open Access Journals (Sweden)

    Silvia Spadacenta

    Full Text Available The theory of embodied language states that language comprehension relies on an internal reenactment of the sensorimotor experience associated with the processed word or sentence. Most evidence in support of this hypothesis had been collected using linguistic material without any emotional connotation. For instance, it had been shown that processing of arm-related verbs, but not of those leg-related verbs, affects the planning and execution of reaching movements; however, at present it is unknown whether this effect is further modulated by verbs evoking an emotional experience. Showing such a modulation might shed light on a very debated issue, i.e. the way in which the emotional meaning of a word is processed. To this end, we assessed whether processing arm/hand-related verbs describing actions with negative connotations (e.g. to stab affects reaching movements differently from arm/hand-related verbs describing actions with neutral connotation (e.g. to comb. We exploited a go/no-go paradigm in which healthy participants were required to perform arm-reaching movements toward a target when verbs expressing emotional hand actions, neutral hand actions or foot actions were shown, and to refrain from moving when no-effector-related verbs were presented. Reaction times and percentages of errors increased when the verb involved the same effector as used to give the response. However, we also found that the size of this interference decreased when the arm/hand-related verbs had a negative emotional connotation. Crucially, we show that such modulation only occurred when the verb semantics had to be retrieved. These results suggest that the comprehension of negatively valenced verbs might require the simultaneous reenactment of the neural circuitry associated with the processing of the emotion evoked by their meaning and of the neural circuitry associated with their motor features.

  13. Modulation of arm reaching movements during processing of arm/hand-related action verbs with and without emotional connotation.

    Science.gov (United States)

    Spadacenta, Silvia; Gallese, Vittorio; Fragola, Michele; Mirabella, Giovanni

    2014-01-01

    The theory of embodied language states that language comprehension relies on an internal reenactment of the sensorimotor experience associated with the processed word or sentence. Most evidence in support of this hypothesis had been collected using linguistic material without any emotional connotation. For instance, it had been shown that processing of arm-related verbs, but not of those leg-related verbs, affects the planning and execution of reaching movements; however, at present it is unknown whether this effect is further modulated by verbs evoking an emotional experience. Showing such a modulation might shed light on a very debated issue, i.e. the way in which the emotional meaning of a word is processed. To this end, we assessed whether processing arm/hand-related verbs describing actions with negative connotations (e.g. to stab) affects reaching movements differently from arm/hand-related verbs describing actions with neutral connotation (e.g. to comb). We exploited a go/no-go paradigm in which healthy participants were required to perform arm-reaching movements toward a target when verbs expressing emotional hand actions, neutral hand actions or foot actions were shown, and to refrain from moving when no-effector-related verbs were presented. Reaction times and percentages of errors increased when the verb involved the same effector as used to give the response. However, we also found that the size of this interference decreased when the arm/hand-related verbs had a negative emotional connotation. Crucially, we show that such modulation only occurred when the verb semantics had to be retrieved. These results suggest that the comprehension of negatively valenced verbs might require the simultaneous reenactment of the neural circuitry associated with the processing of the emotion evoked by their meaning and of the neural circuitry associated with their motor features.

  14. ICRESH-ARMS 2015 Conference

    CERN Document Server

    Ahmadi, Alireza; Verma, Ajit; Varde, Prabhakar

    2016-01-01

    Containing selected papers from the ICRESH-ARMS 2015 conference in Lulea, Sweden, collected by editors with years of experiences in Reliability and maintenance modeling, risk assessment, and asset management, this work maximizes reader insights into the current trends in Reliability, Availability, Maintainability and Safety (RAMS) and Risk Management. Featuring a comprehensive analysis of the significance of the role of RAMS and Risk Management in the decision making process during the various phases of design, operation, maintenance, asset management and productivity in Industrial domains, these proceedings discuss key issues and challenges in the operation, maintenance and risk management of complex engineering systems and will serve as a valuable resource for those in the field.

  15. Arms Control and Strategic Stability

    Institute of Scientific and Technical Information of China (English)

    Hu; Yumin

    2014-01-01

    This essay intends to offer a comment on concepts, trends and attitudes concerning arms control and strategic stability with reference to the current international security situation. It also offers observations from two different perspectives about strategic stability: one proceeds from the concept of universal security and aims to prevent conflicts and instability from disrupting regional and international security environment on which nation states depend so much for their peaceful development; the other starts from maintaining the global leadership by a super power and aiming to contain any challenge that sways or is likely to sway its dominating status. If China and the United States commit themselves to the undertaking of a new type of major powers relationship that stresses win-win cooperation, they will be able to contribute greatly to a stable international security architecture that is good for world peaceful development.

  16. Distribution of the trehalase activation response and the regulatory trehalase gene among yeast species.

    Science.gov (United States)

    Soto, T; Fernández, J; Cansado, J; Vicente, J; Gacto, M

    1997-12-01

    In Saccharomyces cerevisiae and other yeasts the activity of regulatory trehalases increases in response to the addition of glucose and to thermal changes in the extracellular medium. We have performed an screening on the extent of this response among different representative yeast species and the results show that this ability is displayed only by a few members of the Saccharomycetaceae family. However, all yeasts examined contain a gene related to that coding for regulatory trehalase in S. cerevisiae. This finding reveals that the operational distinction between regulatory and nonregulatory trehalase in yeasts is not a property of the enzyme by itself but relays on the expression of accompanying mechanisms able to modulate trehalase activity.

  17. Construction of dextrin and isomaltose-assimilating brewer's yeasts for production of low-carbohydrate beer.

    Science.gov (United States)

    Park, Jin-Yeong; Lee, Ja-Yeon; Choi, Seung-Hyun; Ko, Hyun-Mi; Kim, Il-Chul; Lee, Hwanghee Blaise; Bai, Suk

    2014-08-01

    Most Saccharomyces spp. cannot degrade or ferment dextrin, which is the second most abundant carbohydrate in wort for commercial beer production. Dextrin-degrading brewer's bottom and top yeasts expressing the glucoamylase gene (GAM1) from Debaryomyces occidentalis were developed to produce low-carbohydrate (calorie) beers. GAM1 was constitutively expressed in brewer's yeasts using a rDNA-integration system that contained yeast CUP1 gene coding for copper resistance as a selective marker. The recombinants secreted active glucoamylase, displaying both α-1,4- and α-1,6-debranching activities, that degraded dextrin and isomaltose and consequently grew using them as sole carbon source. One of the recombinant strains expressing GAM1 hydrolyzed 96 % of 2 % (w/v) dextrin and 98 % of 2 % (w/v) isomaltose within 5 days of growth. Growth, substrate assimilation, and enzyme activity of these strains were characterized.

  18. Mapping autonomously replicating sequence elements in a 73-kb region of chromosome II of the fission yeast, Schizosaccharomyces pombe

    Indian Academy of Sciences (India)

    Vinay Kumar Srivastava; Dharani Dhar Dubey

    2007-08-01

    Autonomously replicating sequence (ARS) elements are the genetic determinants of replication origin function in yeasts. They can be easily identified as the plasmids containing them transform yeast cells at a high frequency. As the first step towards identifying all potential replication origins in a 73-kb region of the long arm of fission yeast chromosome II, we have mapped five new ARS elements using systematic subcloning and transformation assay. 2D analysis of one of the ARS plasmids that showed highest transformation frequency localized the replication origin activity within the cloned genomic DNA. All the new ARS elements are localized in two clusters in centromere proximal 40 kb of the region. The presence of at least six ARS elements, including the previously reported ars727, is suggestive of a higher origin density in this region than that predicted earlier using a computer based search.

  19. Antisense expression increases gene expression variability and locus interdependency

    OpenAIRE

    Xu, Zhenyu; Wei, Wu; Gagneur, Julien; Clauder-Münster, Sandra; Smolik, Miłosz; Huber, Wolfgang; Steinmetz, Lars M.

    2011-01-01

    Genome-wide transcription profiling has revealed extensive expression of non-coding RNAs antisense to genes, yet their functions, if any, remain to be understood. In this study, we perform a systematic analysis of sense–antisense expression in response to genetic and environmental changes in yeast. We find that antisense expression is associated with genes of larger expression variability. This is characterized by more ‘switching off' at low levels of expression for genes with antisense compa...

  20. Sensory-Feedback Exoskeletal Arm Controller

    Science.gov (United States)

    An, Bin; Massie, Thomas H.; Vayner, Vladimir

    2004-01-01

    An electromechanical exoskeletal arm apparatus has been designed for use in controlling a remote robotic manipulator arm. The apparatus, called a force-feedback exoskeleton arm master (F-EAM) is comfortable to wear and easy to don and doff. It provides control signals from the wearer s arm to a robot arm or a computer simulator (e.g., a virtual-reality system); it also provides force and torque feedback from sensors on the robot arm or from the computer simulator to the wearer s arm. The F-EAM enables the wearer to make the robot arm gently touch objects and finely manipulate them without exerting excessive forces. The F-EAM features a lightweight design in which the motors and gear heads that generate force and torque feedback are made smaller than they ordinarily would be: this is achieved by driving the motors to power levels greater than would ordinarily be used in order to obtain higher torques, and by providing active liquid cooling of the motors to prevent overheating at the high drive levels. The F-EAM (see figure) includes an assembly that resembles a backpack and is worn like a backpack, plus an exoskeletal arm mechanism. The FEAM has five degrees of freedom (DOFs) that correspond to those of the human arm: 1. The first DOF is that of the side-to-side rotation of the upper arm about the shoulder (rotation about axis 1). The reflected torque for this DOF is provided by motor 1 via drum 1 and a planar four-bar linkage. 2. The second DOF is that of the up-and-down rotation of the arm about the shoulder. The reflected torque for this DOF is provided by motor 2 via drum 2. 3. The third DOF is that of twisting of the upper arm about its longitudinal axis. This DOF is implemented in a cable remote-center mechanism (CRCM). The reflected torque for this DOF is provided by motor 3, which drives the upper-arm cuff and the mechanism below it. A bladder inflatable by gas or liquid is placed between the cuff and the wearer s upper arm to compensate for misalignment

  1. Toward low-cost affinity reagents: lyophilized yeast-scFv probes specific for pathogen antigens.

    Directory of Open Access Journals (Sweden)

    Sean A Gray

    Full Text Available The generation of affinity reagents, usually monoclonal antibodies, remains a critical bottleneck in biomedical research and diagnostic test development. Recombinant antibody-like proteins such as scFv have yet to replace traditional monoclonal antibodies in antigen detection applications, in large part because of poor performance of scFv in solution. To address this limitation, we have developed assays that use whole yeast cells expressing scFv on their surfaces (yeast-scFv in place of soluble purified scFv or traditional monoclonal antibodies. In this study, a nonimmune library of human scFv displayed on the surfaces of yeast cells was screened for clones that bind to recombinant cyst proteins of Entamoeba histolytica, an enteric pathogen of humans. Selected yeast-scFv clones were stabilized by lyophilization and used in detection assay formats in which the yeast-scFv served as solid support-bound monoclonal antibodies. Specific binding of antigen to the yeast-scFv was detected by staining with rabbit polyclonal antibodies. In flow cytometry-based assays, lyophilized yeast-scFv reagents retained full binding activity and specificity for their cognate antigens after 4 weeks of storage at room temperature in the absence of desiccants or stabilizers. Because flow cytometry is not available to all potential assay users, an immunofluorescence assay was also developed that detects antigen with similar sensitivity and specificity. Antigen-specific whole-cell yeast-scFv reagents can be selected from nonimmune libraries in 2-3 weeks, produced in vast quantities, and packaged in lyophilized form for extended shelf life. Lyophilized yeast-scFv show promise as low cost, renewable alternatives to monoclonal antibodies for diagnosis and research.

  2. Yeast profilin complements profilin deficiency in transgenic tomato fruits and allows development of hypoallergenic tomato fruits.

    Science.gov (United States)

    Le, Lien Q; Mahler, Vera; Scheurer, Stephan; Foetisch, Kay; Braun, Yvonne; Weigand, Daniela; Enrique, Ernesto; Lidholm, Jonas; Paulus, Kathrin E; Sonnewald, Sophia; Vieths, Stefan; Sonnewald, Uwe

    2010-12-01

    Gene silencing of Lyc e 1 leads to reduced allergenicity of tomato fruits but impaired growth of transgenic tomato plants. The aim of the study was to restore growth of Lyc e 1-deficient tomato plants while retaining reduced allergenicity by simultaneous complementation of profilin deficiency by expression of nonallergenic yeast profilin. Transgenic plants were generated and tested by RT-PCR and immunoblotting; allergenicity of yeast profilin and transgenic fruits was investigated by IgE binding, basophil activation, and skin-prick tests. Lyc e 1 content of transgenic tomato fruits was wild-type plants, causing significantly reduced IgE antibody binding. Simultaneous coexpression of yeast profilin restored growth and biomass production almost to wild-type levels. Yeast profilin, sharing 32.6% amino acid sequence identity with Lyc e 1, displayed low IgE-binding capacity and allergenic potency. Among 16 tomato-allergic patients preselected for sensitization to Lyc e 1, none showed significant reactivity to yeast profilin. Yeast profilin did not induce mediator release, and coexpression of yeast profilin did not enhance the allergenicity of Lyc e 1-reduced fruits. Simultanous coexpression of yeast profilin allows silencing of tomato profilin and generation of viable plants with Lyc e 1-deficient tomato fruits. Therefore, a novel approach to allergen avoidance, genetically modified foods with reduced allergen accumulation, can be generated even if the allergen fulfills an essential cellular function in the plant. In summary, our findings of efficiently complementing profilin-deficient tomato plants by coexpression of low allergenic yeast profilin demonstrate the feasibility of creating low-allergenic food even if the allergen fulfills essential cellular functions.

  3. The human septin7 and the yeast CDC10 septin prevent Bax and copper mediated cell death in yeast.

    Science.gov (United States)

    Horowitz, Avital; Lapointe, Jason F; Eid, Rawan; Sheibani, Sara; Gharib, Nada; Jones, Natalie K; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T

    2013-12-01

    The mechanisms of programmed cell death activate genetically encoded intracellular programs in a controlled manner, the most common form being apoptosis. Apoptosis is carried out through a cascade of caspase mediated proteolytic cleavages initiated by the oligomerization of Bax, a cardinal regulator of mitochondrial-mediated apoptosis. Heterologous expression of Bax in yeast causes cell death that shares a number of similarities to processes that occur in mammalian apoptosis. A screen of a cardiac cDNA library for suppressors of Bax-mediated apoptosis identified human septin7, a protein that belongs to the septin superfamily of conserved GTP-binding proteins that share a conserved cdc/septin domain. Analysis of the amino acid sequence deduced from the septin7 clone as well as the corresponding human septin7 gene revealed that a novel alternatively spliced transcript called septin7 variant4 (v4) was uncovered. Yeast cells overexpressing the human septin7 v4 cDNA were also capable of resisting copper-mediated cell death suggesting that it is not only a Bax suppressor but also an anti-apoptotic sequence. Analysis of septin7 function in a MCA1Δ yeast strain suggests that septin7 inhibits apoptosis in a caspase independent pathway. Overexpression of the yeast septin7 ortholog CDC10 also conferred resistance to the negative effects of copper as well as protecting cells from the overexpression of Bax. In contrast, septin7 was unable to prevent the increase in cell size associated with mutants lacking the endogenous yeast CDC10 gene. Taken together, our analysis suggests that anti-apoptosis is a novel yet evolutionarily conserved property of the septin7 sub-family of septins.

  4. Tracer studies of nitrogen assimilation in yeast.

    Science.gov (United States)

    ABRAMS, R; HAMMARSTEN, E

    1949-01-01

    By using N(15) as a tracer the assimilation of ammonia by the yeast, Torulopsis utilis, has been studied. It has been shown that: 1. There was no measurable incorporation of N in the protein or polynucleotide purine of carbon-starved yeast. 2. When ammonia is added to nitrogen-starved yeast there is a long lag period before division begins during which the yeast rapidly synthesizes protein, this process being accompanied by a turnover of polynucleotide purine. There was no significant dilution of the N(15)H(4) (+) of the medium by ordinary NH(4) (+). 3. When yeast containing N(15) is allowed to divide and grow in ordinary ammonia, the total amount of N(15) in the yeast remains constant. The dicarboxylic amino acids are most diluted, while arginine and nucleic acid guanine are not diluted at all.

  5. [Metabolomics analysis of taxadiene producing yeasts].

    Science.gov (United States)

    Yan, Huifang; Ding, Mingzhu; Yuan, Yingjin

    2014-02-01

    In order to study the inherent difference among terpenes producing yeasts from the point of metabolomics, we selected taxadiene producing yeasts as the model system. The changes of cellular metabolites during fermentation log phase of artificial functional yeasts were determined using metabolomics methods. The results represented that compared to W303-1A as a blank control, the metabolites in glycolysis, tricarboxylic acid cycle (TCA) cycle and several amino acids were influenced. And due to the changes of metabolites, the growth of cells was inhibited to a certain extent. Among the metabolites identified, citric acid content in taxadiene producing yeasts changed the most, the decreasing amplitude reached 90% or more. Therefore, citric acid can be a marker metabolite for the future study of artificial functional yeasts. The metabolomics analysis of taxadiene producing yeasts can provide more information in further studies on optimization of terpenes production in heterologous chassis.

  6. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  7. Beer brewing using a fusant between a sake yeast and a brewer's yeast.

    Science.gov (United States)

    Mukai, N; Nishimori, C; Fujishige, I W; Mizuno, A; Takahashi, T; Sato, K

    2001-01-01

    Beer brewing using a fusant between a sake yeast (a lysine auxotrophic mutant of sake yeast K-14) and a brewer's yeast (a respiratory-deficient mutant of the top fermentation yeast NCYC1333) was performed to take advantage of the beneficial characteristics of sake yeasts, i.e., the high productivity of esters, high tolerance to ethanol, and high osmotolerance. The fusant (F-32) obtained was different from the parental yeasts regarding, for example, the assimilation of carbon sources and tolerance to ethanol. A brewing trial with the fusant was carried out using a 100-l pilot-scale plant. The fusant fermented wort more rapidly than the parental brewer's yeast. However, the sedimentation capacity of the fusant was relatively low. The beer brewed using the fusant contained more ethanol and esters compared to that brewed using the parental brewer's yeast. The fusant also obtained osmotolerance in the fermentation of maltose and fermented high-gravity wort well.

  8. Books in Action: The Armed Services Editions.

    Science.gov (United States)

    Cole, John Y., Ed.

    In an effort to reach a wide audience, the Center for the Book in the Library of Congress presents this book in honor of the 40th anniversary celebration of the Armed Services Editions (ASE), the paperback books distributed during World War II. The titles of the essays and their authors are as follows: "The Armed Services Editions: An…

  9. Gender Integration and the Swedish Armed Forces

    DEFF Research Database (Denmark)

    Gustafsson, Daniel Marcus Sunil

    This paper discusses different gender aspects of the Swedish Armed Forces with specific references to sexual harassment and prostitution. By using the concept of Hegemonic Masculinity, sexual harassment of the women in the Swedish Armed Forces is explained in terms of a need of the men within...

  10. Homosexuality in the Dutch Armed Forces 2006

    NARCIS (Netherlands)

    Anna Adolfsen; Saskia Keuzenkamp; m.m.v. Linda Mans

    2006-01-01

    Original title: Uniform uit de kast. This study looks at the attitudes of defence personnel to homosexuality. How do members of the military view homosexual colleagues? Can gays and lesbians working in the armed forces be open about their sexual preferences? Do they regard the armed forces as a gay

  11. Why we cannot grow a human arm.

    Science.gov (United States)

    Ricci, John L

    2013-11-01

    There are several significant issues that prevent us from growing a human arm now, or within the next 10-20 years. From a tissue engineering perspective, while we can grow many of the components necessary for construction of a human arm, we can only grow them in relatively small volumes, and when scaled up to large volumes we lack the ability to develop adequate blood/nerve supply. From a genetic engineering perspective, we will probably never be able to turn on the specific genes necessary to "grow an arm" unless it is attached to a fetus and this presents enormous ethical issues related to farming of human organs and structures. Perhaps the most daunting problem facing the transplantation of a tissue engineered or transplanted arm is that of re-innervation of the structure. Since the sensory and motor nerve cells of the arm are located outside of the structure, re-innervation requires those nerves to regenerate over relatively large distances to repopulate the nervous system of the arm. This is something with which we have had little success. We can grow repair parts, but "growing an arm" presents too many insurmountable problems. The best we could possibly do with tissue engineering or genetic engineering would be the equivalent of a fetal arm and the technical problems, costs, and ethical hurdles are enormous. A more likely solution is a functional, permanent, neuroelectronically-controlled prosthesis. These are nearly a reality today.

  12. Design of a biomimetic robotic octopus arm

    Energy Technology Data Exchange (ETDEWEB)

    Laschi, C; Cianchetti, M [Advanced Robotics Technology and Systems Laboratory, Scuola Superiore Sant' Anna, Pisa (Italy); Mazzolai, B; Dario, P [Italian Institute of Technology, Genova (Italy); Mattoli, V [Centre of Research in Microengineering Laboratory, Scuola Superiore Sant' Anna, Pisa (Italy)], E-mail: cecilia.laschi@sssup.it

    2009-03-01

    This paper reports the rationale and design of a robotic arm, as inspired by an octopus arm. The octopus arm shows peculiar features, such as the ability to bend in all directions, to produce fast elongations, and to vary its stiffness. The octopus achieves these unique motor skills, thanks to its peculiar muscular structure, named muscular hydrostat. Different muscles arranged on orthogonal planes generate an antagonistic action on each other in the muscular hydrostat, which does not change its volume during muscle contractions, and allow bending and elongation of the arm and stiffness variation. By drawing inspiration from natural skills of octopus, and by analysing the geometry and mechanics of the muscular structure of its arm, we propose the design of a robot arm consisting of an artificial muscular hydrostat structure, which is completely soft and compliant, but also able to stiffen. In this paper, we discuss the design criteria of the robotic arm and how this design and the special arrangement of its muscular structure may bring the building of a robotic arm into being, by showing the results obtained by mathematical models and prototypical mock-ups.

  13. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast.

    Science.gov (United States)

    Li, Yanran; Smolke, Christina D

    2016-07-05

    Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4'-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery.

  14. Engineering biosynthesis of the anticancer alkaloid noscapine in yeast

    Science.gov (United States)

    Li, Yanran; Smolke, Christina D.

    2016-01-01

    Noscapine is a potential anticancer drug isolated from the opium poppy Papaver somniferum, and genes encoding enzymes responsible for the synthesis of noscapine have been recently discovered to be clustered on the genome of P. somniferum. Here, we reconstitute the noscapine gene cluster in Saccharomyces cerevisiae to achieve the microbial production of noscapine and related pathway intermediates, complementing and extending previous in planta and in vitro investigations. Our work provides structural validation of the secoberberine intermediates and the description of the narcotoline-4′-O-methyltransferase, suggesting this activity is catalysed by a unique heterodimer. We also reconstitute a 14-step biosynthetic pathway of noscapine from the simple alkaloid norlaudanosoline by engineering a yeast strain expressing 16 heterologous plant enzymes, achieving reconstitution of a complex plant pathway in a microbial host. Other engineered yeasts produce previously inaccessible pathway intermediates and a novel derivative, thereby advancing protoberberine and noscapine related drug discovery. PMID:27378283

  15. Assembly of eukaryotic algal chromosomes in yeast

    OpenAIRE

    Karas, Bogumil J.; Molparia, Bhuvan; Jablanovic, Jelena; Hermann, Wolfgang J; Lin, Ying-Chi; Dupont, Christopher L.; Tagwerker, Christian; Yonemoto, Isaac T.; Noskov, Vladimir N.; Chuang, Ray-Yuan; Allen, Andrew E; Glass, John I.; Hutchison, Clyde A; Smith, Hamilton O; Venter, J Craig

    2013-01-01

    Background Synthetic genomic approaches offer unique opportunities to use powerful yeast and Escherichia coli genetic systems to assemble and modify chromosome-sized molecules before returning the modified DNA to the target host. For example, the entire 1 Mb Mycoplasma mycoides chromosome can be stably maintained and manipulated in yeast before being transplanted back into recipient cells. We have previously demonstrated that cloning in yeast of large (> ~ 150 kb), high G + C (55%) prokaryoti...

  16. Design And Implementation Of Anthropomorphic Robotic Arm

    Directory of Open Access Journals (Sweden)

    Ashish Sharma

    2014-01-01

    Full Text Available The report focuses on the design and demonstration of an anthropomorphic robotic arm with seven degrees of freedom using readily available low-cost components to perform different real time human hand applications. The robotic arm consists of a shoulder, elbow, wrist and a five-finger gripper. It can perform different gripping actions, such as lateral, spherical, cylindrical and tip-holding gripping actions; each finger has three movable links. The actuator used for the robotic arm is a high torque dc servo motor and the five-finger gripper consists of five cables placed like tendons in the human arm. Implementation is done using a human hand glove which senses the motion from sensor technology to produce a proportional analog voltage, digitized via the microcontroller Atmel ATmega32. The microcontroller then through the processed signal controls the mechanical structure that is the robotic arm. Keywords –

  17. CyARM: Haptic Sensing Device for Spatial Localization on Basis of Exploration by Arms

    Directory of Open Access Journals (Sweden)

    Junichi Akita

    2009-01-01

    Full Text Available We introduce a new type of perception aid device based on user's exploration action, which is named as CyARM (acronym of “Cyber Arm”. The user holds this device in her/his arm, the extension of the arm is controlled by tension in wires, which are attached to her/his body according to the distance to the object. This user interface has unique characteristics that give users the illusion of an imaginary arm that extends to existing objects. The implementations of CyARM and our two experiments to investigate the efficiency and effectiveness of CyARM are described. The results show that we could confirm that CyARM can be used to recognize the presence of an object in front of the user and to measure the relative distance to the object.

  18. Functional expression of rat VPAC1 receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, M.K.; Tams, J.W.; Fahrenkrug, Jan;

    1999-01-01

    G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide......G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide...

  19. Facile chemical functionalization of proteins through intein-linked yeast display.

    Science.gov (United States)

    Marshall, Carrie J; Agarwal, Nitin; Kalia, Jeet; Grosskopf, Vanessa A; McGrath, Nicholas A; Abbott, Nicholas L; Raines, Ronald T; Shusta, Eric V

    2013-09-18

    Intein-mediated expressed protein ligation (EPL) permits the site-specific chemical customization of proteins. While traditional techniques have used purified, soluble proteins, we have extended these methods to release and modify intein fusion proteins expressed on the yeast surface, thereby eliminating the need for soluble protein expression and purification. To this end, we sought to simultaneously release yeast surface-displayed proteins and selectively conjugate with chemical functionalities compatible with EPL and click chemistry. Single-chain antibodies (scFv) and green fluorescent protein (GFP) were displayed on the yeast surface as fusions to the N-terminus of the Mxe GyrA intein. ScFv and GFP were released from the yeast surface with either a sulfur nucleophile (MESNA) or a nitrogen nucleophile (hydrazine) linked to an azido group. The hydrazine azide permitted the simultaneous release and azido functionalization of displayed proteins, but nonspecific reactions with other yeast proteins were detected, and cleavage efficiency was limited. In contrast, MESNA released significantly more protein from the yeast surface while also generating a unique thioester at the carboxy-terminus of the released protein. These protein thioesters were subsequently reacted with a cysteine alkyne in an EPL reaction and then employed in an azide-alkyne cycloaddition to immobilize the scFv and GFP on an azide-decorated surface with >90% site-specificity. Importantly, the immobilized proteins retained their activity. Since yeast surface display is also a protein engineering platform, these approaches provide a particularly powerful tool for the rapid assessment of engineered proteins.

  20. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii

    Science.gov (United States)

    Douradinha, Bruno; Reis, Viviane CB; Rogers, Matthew B; Torres, Fernando AG; Evans, Jared D; Marques Jr, Ernesto TA

    2014-01-01

    Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (>96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest. PMID:24013355

  1. Specific in vitro toxicity of crude and refined petroleum products: II. Estrogen (alpha and beta) and androgen receptor-mediated responses in yeast assays.

    NARCIS (Netherlands)

    Vrabie, C.M.; Candido, A.; van Duursen, M.B.M.; Jonker, M.T.O.

    2010-01-01

    The present study is the second in a series aiming at a systematic inventory of specific toxic effects of oils. By employing a recombinant yeast stably transfected with human estrogen receptor-alpha (ERalpha) or -beta (ERbeta) or androgen receptor (AR) and expressing yeast enhanced green fluorescent

  2. The arms race between fishers

    Science.gov (United States)

    Rijnsdorp, Adriaan D.; Poos, Jan Jaap; Quirijns, Floor J.; HilleRisLambers, Reinier; De Wilde, Jan W.; Den Heijer, Willem M.

    An analysis of the changes in the Dutch demersal fishing fleet since the 1950s revealed that competitive interactions among vessels and gear types within the constraints imposed by biological, economic and fisheries management factors are the dominant processes governing the dynamics of fishing fleets. Double beam trawling, introduced in the early 1960s, proved a successful fishing method to catch deep burying flatfish, in particular sole. In less than 10 years, the otter trawl fleet was replaced by a highly specialised beam trawling fleet, despite an initial doubling of the loss rate of vessels due to stability problems. Engine power, size of the beam trawl, number of tickler chains and fishing speed rapidly increased and fishing activities expanded into previously lightly fished grounds and seasons. Following the ban on flatfish trawling within the 12 nautical mile zone for vessels of more than 300 hp in 1975 and with the restriction of engine power to 2000 hp in 1987, the beam trawl fleet bifurcated. Changes in the fleet capacity were related to the economic results and showed a cyclic pattern with a period of 6-7 years. The arms race between fishers was fuelled by competitive interactions among fishers: while the catchability of the fleet more than doubled in the ten years following the introduction of the beam trawl, a decline in catchability was observed in reference beam trawlers that remained the same. Vessel performance was not only affected by the technological characteristics but also by the number and characteristics of competing vessels.

  3. Effect of long term selenium yeast intervention on activity and gene expression of antioxidant and xenbiotic metabolising enzymes in healthy elderly volunteers from the Danish Prevention of Cancer by Intervention by Selenium (PRECISE) Pilot Study

    DEFF Research Database (Denmark)

    Ravn-Haren, Gitte; Krath, Britta; Overvad, Kim;

    2008-01-01

    Numerous mechanisms have been proposed to explain the anti-carcinogenic effects of Se, among them altered carcinogen metabolism. We investigated the effect of Se supplementation on activities of glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione S-transferase (GST) in differ...... genes could increase the risk of cancer. However, further studies are needed to establish whether the observed effect in leucocytes reflects a similar expression pattern in target tissues....

  4. A yeast pheromone-based inter-species communication system.

    Science.gov (United States)

    Hennig, Stefan; Clemens, André; Rödel, Gerhard; Ostermann, Kai

    2015-02-01

    We report on a pheromone-based inter-species communication system, allowing for a controlled cell-cell communication between the two species Saccharomyces cerevisiae and Schizosaccharomyces pombe as a proof of principle. It exploits the mating response pathways of the two yeast species employing the pheromones, α- or P-factor, as signaling molecules. The authentic and chimeric pheromone-encoding genes were engineered to code for the P-factor in S. cerevisiae and the α-factor in S. pombe. Upon transformation of the respective constructs, cells were enabled to express the mating pheromone of the opposite species. The supernatant of cultures of S. pombe cells expressing α-factor were able to induce a G1 arrest in the cell cycle, a change in morphology to the typical shmoo effect and expression driven by the pheromone-responsive FIG1 promoter in S. cerevisiae. The supernatant of cultures of S. cerevisiae cells expressing P-factor similarly induced cell cycle arrest in G1, an alteration in morphology typical for mating as well as the activation of the pheromone-responsive promoters of the rep1 and sxa2 genes in a pheromone-hypersensitive reporter strain of S. pombe. Apparently, both heterologous pheromones were correctly processed and secreted in an active form by the cells of the other species. Our data clearly show that the species-specific pheromone systems of yeast species can be exploited for a controlled inter-species communication.

  5. Functional genomics of commercial baker's yeasts that have different abilities for sugar utilization and high-sucrose tolerance under different sugar conditions.

    Science.gov (United States)

    Tanaka-Tsuno, Fumiko; Mizukami-Murata, Satomi; Murata, Yoshinori; Nakamura, Toshihide; Ando, Akira; Takagi, Hiroshi; Shima, Jun

    2007-10-01

    In the modern baking industry, high-sucrose-tolerant (HS) and maltose-utilizing (LS) yeast were developed using breeding techniques and are now used commercially. Sugar utilization and high-sucrose tolerance differ significantly between HS and LS yeasts. We analysed the gene expression profiles of HS and LS yeasts under different sucrose conditions in order to determine their basic physiology. Two-way hierarchical clustering was performed to obtain the overall patterns of gene expression. The clustering clearly showed that the gene expression patterns of LS yeast differed from those of HS yeast. Quality threshold clustering was used to identify the gene clusters containing upregulated genes (cluster 1) and downregulated genes (cluster 2) under high-sucrose conditions. Clusters 1 and 2 contained numerous genes involved in carbon and nitrogen metabolism, respectively. The expression level of the genes involved in the metabolism of glycerol and trehalose, which are known to be osmoprotectants, in LS yeast was higher than that in HS yeast under sucrose concentrations of 5-40%. No clear correlation was found between the expression level of the genes involved in the biosynthesis of the osmoprotectants and the intracellular contents of the osmoprotectants. The present gene expression data were compared with data previously reported in a comprehensive analysis of a gene deletion strain collection. Welch's t-test for this comparison showed that the relative growth rates of the deletion strains whose deletion occurred in genes belonging to cluster 1 were significantly higher than the average growth rates of all deletion strains.

  6. ARM Climate Research Facility Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    J. Voyles

    2005-12-31

    Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

  7. Biofuels. Altered sterol composition renders yeast thermotolerant

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam;

    2014-01-01

    Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We use...

  8. Yeasts are essential for cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics.

  9. The wine and beer yeast Dekkera bruxellensis

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-01-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  10. Yeast cell factories on the horizon

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2015-01-01

    For thousands of years, yeast has been used for making beer, bread, and wine. In modern times, it has become a commercial workhorse for producing fuels, chemicals, and pharmaceuticals such as insulin, human serum albumin, and vaccines against hepatitis virus and human papillomavirus. Yeast has al...

  11. Growth requirements of san francisco sour dough yeasts and bakers' yeast.

    Science.gov (United States)

    Henry, N

    1976-03-01

    The growth requirements of several yeasts isolated from San Francisco sour dough mother sponges were compared with those of bakers' yeast. The sour dough yeasts studied were one strain of Saccharomyces uvarum, one strain of S. inusitatus, and four strains of S. exiguus. S. inusitatus was the only yeast found to have an amino acid requirement, namely, methionine. All of the yeasts had an absolute requirement for pantothenic acid and a partial requirement for biotin. Inositol was stimulatory to all except bakers' yeast. All strains of S. exiguus required niacin and thiamine. Interestingly, S. inusitatus, the only yeast that required methionine, also needed folic acid. For optimal growth of S. exiguus in a molasses medium, supplementation with thiamine was required.

  12. Fermentation performance of lager yeast in high gravity beer fermentations with different sugar supplementations.

    Science.gov (United States)

    Lei, Hongjie; Xu, Huaide; Feng, Li; Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming

    2016-11-01

    The effects of glucose, sucrose and maltose supplementations on the fermentation performance and stress tolerance of lager yeast (Saccharomyces pastorianus) during high gravity (18°P) and very high gravity (24°P) fermentations were studied. Results showed that throughout 18°P wort fermentation, fermentation performance of lager yeast was significantly improved by glucose or sucrose supplementation, compared with maltose supplementation, especially for sucrose supplementation increasing wort fermentability and ethanol production by 6% and 8%, respectively. However, in the later stage of 24°P wort fermentation, fermentation performance of lager yeast was dramatically improved by maltose supplementation, which increased wort fermentability and ethanol production by 14% and 10%, respectively, compared with sucrose supplementation. Furthermore, higher HSP12 expression level and more intracellular trehalose accumulation in yeast cells were observed by maltose supplementation with increase of the wort gravity from 18°P to 24°P, indicating higher stress response of yeast cells. The excretion of Gly and Ala, and the absorption of Pro in the later stage of fermentation were promoted by maltose supplementation. In addition, with increase of the wort gravity from 18°P to 24°P, higher alcohols level was decreased with maltose supplementation, while esters formation was increased significantly with glucose supplementation. This study suggested that the choice of optimal fermentable sugars maintaining better fermentation performance of lager yeast should be based on not only strain specificity, but also wort gravity.

  13. Effect of temperature on replicative aging of the budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Molon, Mateusz; Zadrag-Tecza, Renata

    2016-04-01

    The use of the budding yeast Saccharomyces cerevisiae in gerontological studies was based on the assumption that the reproduction limit of a single cell (replicative aging) is a consequence of accumulation of a hypothetical universal "senescence factor" within the mother cell. However, some evidence suggests that molecules or structures proposed as the "aging factor", such as rDNA circles, oxidatively damaged proteins (with carbonyl groups) or mitochondria, have little effect on replicative lifespan of yeast cells. Our results also suggest that protein aggregates associated with Hsp104, treated as a marker of yeast aging, do not seem to affect the numeric value of replicative lifespan of yeast. What these results indicate, however, is the need for finding a different way of expressing age and longevity of yeast cells instead of the commonly used number of daughters produced over units of time, as in the case of other organisms. In this paper, we show that the temperature has a stronger influence on the time of life (the total lifespan) than on the reproductive potential of yeast cells.

  14. Limitations of yeast surface display in engineering proteins of high thermostability.

    Science.gov (United States)

    Park, Sheldon; Xu, Yao; Stowell, Xiaoran Fu; Gai, Feng; Saven, Jeffery G; Boder, Eric T

    2006-05-01

    Engineering proteins that can fold to unique structures remains a challenge. Protein stability has previously been engineered via the observed correlation between thermal stability and eukaryotic secretion level. To explore the limits of an expression-based approach, variants of the highly thermostable three-helix bundle protein alpha3D were studied using yeast surface display. A library of alpha3D mutants was created to explore the possible correlation of protein stability and fold with expression level. Five efficiently expressed mutants were then purified and further studied biochemically. Despite their differences in stability, most mutants expressed at levels comparable with that of wild-type alpha3D. Two other related sequences (alpha3A and alpha3B) that form collapsed, stable molten globules but lack a uniquely folded structure were similarly expressed at high levels by yeast display. Together these observations suggest that the quality control system in yeast is unable to discriminate between well-folded proteins of high stability and molten globules. The present study, therefore, suggests that an optimization of the surface display efficiency on yeast may yield proteins that are thermally and chemically stable yet are poorly folded.

  15. Genetic constitution of industrial yeast.

    Science.gov (United States)

    Benítez, T; Martínez, P; Codón, A C

    1996-09-01

    Saccharomyces cerevisiae industrial yeast strains are highly heterogeneous. These industrial strains, including bakers', wine, brewing and distillers', have been compared with respect to their DNA content, number and size of chromosomes, homologies between their genes and those of laboratory strains, and restriction fragment lengths of their mitDNA. A high variability, and the presence of multigenic families, were observed in some industrial yeast groups. The occurrence or the lack of chromosomal polymorphism, as well as the presence of multiple copies of some genes, could be related to a selective process occurring under specific industrial conditions. This polymorphism is generated by reorganization events, that take place mainly during meiosis and are mediated by repetitive Y' and Ty elements. These elements give rise to ectopic and asymmetric recombination and to gene conversion. The polymorphism displayed by the mitDNA could also result from specific industrial conditions. However, in enological strains the selective process is masked by the mutagenic effect that ethanol exerts on this DNA.

  16. Comet assay on tetraploid yeast cells

    DEFF Research Database (Denmark)

    Rank, Jette; Syberg, Kristian; Jensen, Klara

    2009-01-01

    Tetraploid yeast cells (Saccharomyces cerevisiae) were used in the comet assay with the intention of developing a new, fast and easy assay for detecting environmental genotoxic agents without using higher organisms. Two DNA-damaging chemicals, H2O2 and acrylamide, together with wastewater from...... three municipal treatment plants were tested for their effect on the yeast-cell DNA. The main problem with using yeast in the comet assay is the necessity to degrade the cell wall. This was achieved by using Zymolase 100 T twice during the procedure, since Zymolase 20 T did not open the cell wall....... Analytical problems that arose due to the small amount of DNA in the yeast nuclei in haploid and diploid cells, which contain 13 Mbp and 26 Mbp DNA per cell, respectively, were solved by using tetraploid yeast cells (52 Mbp) instead. DNA damage was shown after exposure to H2O2 and acrylamide. The lowest dose...

  17. Ceramide Accumulation in Yeast Yarrowia lipolitica

    Institute of Scientific and Technical Information of China (English)

    周全; 陈国强

    2005-01-01

    Ceramides are a class of lipid molecules widely distributed in eukaryotic cells in small amount. To investigate the possibility of ceramide production by yeast, a yeast strain Yarrowia lipolitica was grown under different conditions including changing carbon/nitrogen ratio, and serine concentration, dissolved oxygen and presence of ethanol. It was found that increased dissolved oxygen supply increased the ceramide content in the yeast 2.5 fold of its normal control level. Ethanol treatment could also enhance ceramide accumulation by 3.3 fold compared with the control although the cell growth was negatively affected. Cellular redox potential was shown to affect ceramide accumulation by the yeast. This was possibly related to the cellular reactive oxygen species presented in the yeast.

  18. Cloning, production, and functional expression of the bacteriocin sakacin A (SakA) and two SakA-derived chimeras in lactic acid bacteria (LAB) and the yeasts Pichia pastoris and Kluyveromyces lactis.

    Science.gov (United States)

    Jiménez, Juan J; Borrero, Juan; Diep, Dzung B; Gútiez, Loreto; Nes, Ingolf F; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2013-09-01

    Mature sakacin A (SakA, encoded by sapA) and its cognate immunity protein (SakI, encoded by sapiA), and two SakA-derived chimeras mimicking the N-terminal end of mature enterocin P (EntP/SakA) and mature enterocin A (EntA/SakA) together with SakI, were fused to different signal peptides (SP) and cloned into the protein expression vectors pNZ8048 and pMG36c for evaluation of their production and functional expression by different lactic acid bacteria. The amount, antimicrobial activity, and specific antimicrobial activity of SakA and its chimeras produced by Lactococcus lactis subsp. cremoris NZ9000 depended on the SP and the expression vector. Only L. lactis NZ9000 (pNUPS), producing EntP/SakA, showed higher bacteriocin production and antimicrobial activity than the natural SakA-producer Lactobacillus sakei Lb706. The lower antimicrobial activity of the SakA-producer L. lactis NZ9000 (pNUS) and that of the EntA/SakA-producer L. lactis NZ9000 (pNUAS) could be ascribed to secretion of truncated bacteriocins. On the other hand, of the Lb. sakei Lb706 cultures transformed with the pMG36c-derived vectors only Lb. sakei Lb706 (pGUS) overproducing SakA showed a higher antimicrobial activity than Lb. sakei Lb706. Finally, cloning of SakA and EntP/SakA into pPICZαA and pKLAC2 permitted the production of SakA and EntP/SakA by recombinant Pichia pastoris X-33 and Kluyveromyces lactis GG799 derivatives although their antimicrobial activity was lower than expected from their production.

  19. Fission yeast CSL proteins function as transcription factors.

    Directory of Open Access Journals (Sweden)

    Martina Oravcová

    Full Text Available BACKGROUND: Transcription factors of the CSL (CBF1/RBP-Jk/Suppressor of Hairless/LAG-1 family are key regulators of metazoan development and function as the effector components of the Notch receptor signalling pathway implicated in various cell fate decisions. CSL proteins recognize specifically the GTG[G/A]AA sequence motif and several mutants compromised in their ability to bind DNA have been reported. In our previous studies we have identified a number of novel putative CSL family members in fungi, organisms lacking the Notch pathway. It is not clear whether these represent genuine CSL family members. METHODOLOGY/PRINCIPAL FINDINGS: Using a combination of in vitro and in vivo approaches we characterized the DNA binding properties of Cbf11 and Cbf12, the antagonistic CSL paralogs from the fission yeast, important for the proper coordination of cell cycle events and the regulation of cell adhesion. We have shown that a mutation of a conserved arginine residue abolishes DNA binding in both CSL paralogs, similar to the situation in mouse. We have also demonstrated the ability of Cbf11 and Cbf12 to activate gene expression in an autologous fission yeast reporter system. CONCLUSIONS/SIGNIFICANCE: Our results indicate that the fission yeast CSL proteins are indeed genuine family members capable of functioning as transcription factors, and provide support for the ancient evolutionary origin of this important protein family.

  20. Metabolic engineering for improved fermentation of pentoses by yeasts.

    Science.gov (United States)

    Jeffries, T W; Jin, Y-S

    2004-02-01

    The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) reductase, xylitol dehydrogenase and moderate levels of xylulokinase enable xylose assimilation and fermentation, but a balanced supply of NAD(P) and NAD(P)H must be maintained to avoid xylitol production. Reducing production of NADPH by blocking the oxidative pentose phosphate cycle can reduce xylitol formation, but this occurs at the expense of xylose assimilation. Respiration is critical for growth on xylose by both native xylose-fermenting yeasts and recombinant S, cerevisiae. Anaerobic growth by recombinant mutants has been reported. Reducing the respiration capacity of xylose-metabolizing yeasts increases ethanol production. Recently, two routes for arabinose metabolism have been engineered in S. cerevisiae and adapted strains of Pichia stipitis have been shown to ferment hydrolysates with ethanol yields of 0.45 g g(-1) sugar consumed, so commercialization seems feasible for some applications.

  1. Yeast prions form infectious amyloid inclusion bodies in bacteria

    Directory of Open Access Journals (Sweden)

    Espargaró Alba

    2012-06-01

    Full Text Available Abstract Background Prions were first identified as infectious proteins associated with fatal brain diseases in mammals. However, fungal prions behave as epigenetic regulators that can alter a range of cellular processes. These proteins propagate as self-perpetuating amyloid aggregates being an example of structural inheritance. The best-characterized examples are the Sup35 and Ure2 yeast proteins, corresponding to [PSI+] and [URE3] phenotypes, respectively. Results Here we show that both the prion domain of Sup35 (Sup35-NM and the Ure2 protein (Ure2p form inclusion bodies (IBs displaying amyloid-like properties when expressed in bacteria. These intracellular aggregates template the conformational change and promote the aggregation of homologous, but not heterologous, soluble prionogenic molecules. Moreover, in the case of Sup35-NM, purified IBs are able to induce different [PSI+] phenotypes in yeast, indicating that at least a fraction of the protein embedded in these deposits adopts an infectious prion fold. Conclusions An important feature of prion inheritance is the existence of strains, which are phenotypic variants encoded by different conformations of the same polypeptide. We show here that the proportion of infected yeast cells displaying strong and weak [PSI+] phenotypes depends on the conditions under which the prionogenic aggregates are formed in E. coli, suggesting that bacterial systems might become useful tools to generate prion strain diversity.

  2. MiniSAR composite gimbal arm development.

    Energy Technology Data Exchange (ETDEWEB)

    Klarer, Paul Richard; Winscott, Mark (Orion International, Albuquerque, NM)

    2005-01-01

    An exploratory effort in the application of carbon epoxy composite structural materials to a multi-axis gimbal arm design is described. An existing design in aluminum was used as a baseline for a functionally equivalent redesigned outer gimbal arm using a carbon epoxy composite material. The existing arm was analyzed using finite element techniques to characterize performance in terms of strength, stiffness, and weight. A new design was virtually prototyped. using the same tools to produce a design with similar stiffness and strength, but reduced overall weight, than the original arm. The new design was prototyped using Rapid Prototyping technology, which was subsequently used to produce molds for fabricating the carbon epoxy composite parts. The design tools, process, and results are discussed.

  3. SREBP controls oxygen-dependent mobilization of retrotransposons in fission yeast.

    Directory of Open Access Journals (Sweden)

    Alfica Sehgal

    2007-08-01

    Full Text Available Retrotransposons are mobile genetic elements that proliferate through an RNA intermediate. Transposons do not encode transcription factors and thus rely on host factors for mRNA expression and survival. Despite information regarding conditions under which elements are upregulated, much remains to be learned about the regulatory mechanisms or factors controlling retrotransposon expression. Here, we report that low oxygen activates the fission yeast Tf2 family of retrotransposons. Sre1, the yeast ortholog of the mammalian membrane-bound transcription factor sterol regulatory element binding protein (SREBP, directly induces the expression and mobilization of Tf2 retrotransposons under low oxygen. Sre1 binds to DNA sequences in the Tf2 long terminal repeat that functions as an oxygen-dependent promoter. We find that Tf2 solo long terminal repeats throughout the genome direct oxygen-dependent expression of adjacent coding and noncoding sequences, providing a potential mechanism for the generation of oxygen-dependent gene expression.

  4. Quantitative Analysis of NF-κB Transactivation Specificity Using a Yeast-Based Functional Assay.

    Directory of Open Access Journals (Sweden)

    Vasundhara Sharma

    Full Text Available The NF-κB transcription factor family plays a central role in innate immunity and inflammation processes and is frequently dysregulated in cancer. We developed an NF-κB functional assay in yeast to investigate the following issues: transactivation specificity of NF-κB proteins acting as homodimers or heterodimers; correlation between transactivation capacity and in vitro DNA binding measurements; impact of co-expressed interacting proteins or of small molecule inhibitors on NF-κB-dependent transactivation. Full-length p65 and p50 cDNAs were cloned into centromeric expression vectors under inducible GAL1 promoter in order to vary their expression levels. Since p50 lacks a transactivation domain (TAD, a chimeric construct containing the TAD derived from p65 was also generated (p50TAD to address its binding and transactivation potential. The p50TAD and p65 had distinct transactivation specificities towards seventeen different κB response elements (κB-REs where single nucleotide changes could greatly impact transactivation. For four κB-REs, results in yeast were predictive of transactivation potential measured in the human MCF7 cell lines treated with the NF-κB activator TNFα. Transactivation results in yeast correlated only partially with in vitro measured DNA binding affinities, suggesting that features other than strength of interaction with naked DNA affect transactivation, although factors such as chromatin context are kept constant in our isogenic yeast assay. The small molecules BAY11-7082 and ethyl-pyruvate as well as expressed IkBα protein acted as NF-κB inhibitors in yeast, more strongly towards p65. Thus, the yeast-based system can recapitulate NF-κB features found in human cells, thereby providing opportunities to address various NF-κB functions, interactions and chemical modulators.

  5. Expression of glycoprotein gp43 in stage-specific forms and during dimorphic differentiation of Paracoccidioides brasiliensis.

    Science.gov (United States)

    Mattar-Filho, R; Azevedo, M O; Pereira, M; Jesuino, R S; Salem-Izacc, S M; Brito, W A; Gesztesi, J L; Soares, R B; Felipe, M S; Soares, C M

    1997-01-01

    Expression of the 43 kDa glycoprotein (gp43) was analysed in several Paracoccidioides brasiliensis isolates. Using one- and two-dimensional analysis of crude cellular extracts, it was shown that protein expression in yeast and mycelium was dependent on the isolate analysed. In two strains, in both yeast and mycelium cells. gp43 was present, whereas expression was restricted to the yeast phase of two other strains. The clinical implications of this phase-specific gp43 expression are uncertain.

  6. The long arms of anencephaly: A refutation.

    Science.gov (United States)

    Barr, Mason

    2009-08-01

    A paper published in 1925 reported that human fetuses with anencephaly have arms that are longer than normal. This finding was accepted as true through the early 1990s. An analysis of body dimensions done in 1996 and enlarged and updated here shows that the arms of human fetuses with anencephaly are appropriate for gestational age and normal in proportion to their leg lengths. A subtle difference in measurement technique was found to explain the discordant findings.

  7. The Geometry of the Galaxy's Spiral Arms

    Science.gov (United States)

    Steiman-Cameron, Thomas Y.; Wolfire, M.; Hollenbach, D.

    2008-05-01

    We present a new model for the spiral structure of the Milky Way based upon an analysis of the essentially all-sky spectral data obtained by the Far Infrared Absolute Spectrophotometer (FIRAS) instrument of the Cosmic Background Explorer (COBE) satellite. The model provides the volume emissivities of the [C II] 128 µm and [N II] 205 µm lines, as a function of position within the Galaxy. These lines are important coolants of the interstellar medium and strong tracers of the spiral structure. Despite decades of work, there is still no full agreement on the number of spiral arms in the Milky Way, much less the details of their geometry. Motivated, in part, by this fact, we conducted a systematic search for 2-arm, 3-arm, and 4-arm models that maximize agreement with the COBE data. We find that only a four-arm model, with arms defined by logarithmic spiral forms and pitch angles ranging from 13.5 to 15.6 degrees, is consistent with the observations. The arms are neither evenly spaced nor identical in form. The resultant volume emissivity models for C+ and N+, when convolved with the FIRAS beam and integrated over the Galaxy, reproduce the COBE [C II] 128 µm and [N II] 205 µm intensity maps extremely well. We also examine all models for the Galaxy's spiral structure that have been proposed over the past half century in the context of the same COBE observations. A significant fraction of these models, including many recent ones, appear to be incompatible with the data. However, several four-arm models from the literature are consistent with the COBE observations.

  8. Regulation of flexible arms under gravity

    Energy Technology Data Exchange (ETDEWEB)

    De Luca, A. [Univ. di Roma, Rome (Italy). Dipt. di Informatica e Sistemistica; Siciliano, B. [Univ. di Napoli Federico, Napoli (Italy). Dipt. di Informatica e Sistemistica

    1993-08-01

    A simple controller is presented for the regulation problem of robot arms with flexible links under gravity. It consists of a joint PD feedback plus a constant feedforward. Global asymptotic stability of the reference equilibrium state is shown under a structural assumption about link elasticity and a mild condition on the proportional gain. The result holds also in the absence of internal damping of the flexible arm. A numerical case study is presented.

  9. Modular assembly of yeast cytochrome oxidase.

    Science.gov (United States)

    McStay, Gavin P; Su, Chen Hsien; Tzagoloff, Alexander

    2013-02-01

    Previous studies of yeast cytochrome oxidase (COX) biogenesis identified Cox1p, one of the three mitochondrially encoded core subunits, in two high-molecular weight complexes combined with regulatory/assembly factors essential for expression of this subunit. In the present study we use pulse-chase labeling experiments in conjunction with isolated mitochondria to identify new Cox1p intermediates and place them in an ordered pathway. Our results indicate that before its assimilation into COX, Cox1p transitions through five intermediates that are differentiated by their compositions of accessory factors and of two of the eight imported subunits. We propose a model of COX biogenesis in which Cox1p and the two other mitochondrial gene products, Cox2p and Cox3p, constitute independent assembly modules, each with its own complement of subunits. Unlike their bacterial counterparts, which are composed only of the individual core subunits, the final sequence in which the mitochondrial modules associate to form the holoenzyme may have been conserved during evolution.

  10. ARM assembly language with hardware experiments

    CERN Document Server

    Elahi, Ata

    2015-01-01

    This book provides a hands-on approach to learning ARM assembly language with the use of a TI microcontroller. The book starts with an introduction to computer architecture and then discusses number systems and digital logic. The text covers ARM Assembly Language, ARM Cortex Architecture and its components, and Hardware Experiments using TILM3S1968. Written for those interested in learning embedded programming using an ARM Microcontroller. ·         Introduces number systems and signal transmission methods   ·         Reviews logic gates, registers, multiplexers, decoders and memory   ·         Provides an overview and examples of ARM instruction set   ·         Uses using Keil development tools for writing and debugging ARM assembly language Programs   ·         Hardware experiments using a Mbed NXP LPC1768 microcontroller; including General Purpose Input/Output (GPIO) configuration, real time clock configuration, binary input to 7-segment display, creating ...

  11. Arm & Interarm Star Formation in Spiral Galaxies

    CERN Document Server

    Foyle, Kelly; Walter, Fabian; Leroy, Adam

    2010-01-01

    We investigate the relationship between spiral arms and star formation in the grand-design spirals NGC 5194 and NGC 628 and in the flocculent spiral NGC 6946. Filtered maps of near-IR (3.6 micron) emission allow us to identify "arm regions" that should correspond to regions of stellar mass density enhancements. The two grand-design spirals show a clear two-armed structure, while NGC 6946 is more complex. We examine these arm and interarm regions, looking at maps that trace recent star formation - far-ultraviolet (GALEX NGS) and 24 micron emission (Spitzer, SINGS) - and cold gas - CO (Heracles) and HI (Things). We find the star formation tracers and CO more concentrated in the spiral arms than the stellar 3.6 micron flux. If we define the spiral arms as the 25% highest pixels in the filtered 3.6 micron images, we find that the majority (60%) of star formation tracers occurs in the interarm regions; this result persists qualitatively even when considering the potential impact of finite data resolution and diffu...

  12. The yeast Ski complex is a hetero-tetramer

    OpenAIRE

    Synowsky, S.A.; Heck, A.J.R.

    2008-01-01

    The yeast Ski complex assists the exosome in the degradation of mRNA. The Ski complex consists of three components; Ski2, Ski3, and Ski8, believed to be present in a 1:1:1 stoichiometry. Measuring the mass of intact isolated endogenously expressed Ski complexes by native mass spectrometry we unambiguously demonstrate that the Ski complex has a hetero-tetrameric stoichiometry consisting of one copy of Ski2 and Ski3 and two copies of Ski8. To validate the stoichiometry of the Ski complex, we pe...

  13. Construction of Yeast Vectors with Resistance to Geneticin

    Institute of Scientific and Technical Information of China (English)

    林会兰; 张广; 周全; 陈国强

    2002-01-01

    Two Escherichia coli-Saccharomyces cerevisiae shuttle vectors containing a resistance marker to geneticin (G418) are constructed. Both vectors contain a kanamycin-resistant marker (KanMX4) module coding aminoglycoside 3'-phosphotransferase (APH) that renders E. coli resistant to kanamycin and S. cerevisiae to geneticin. These vectors overcome the shortage of the conventional yeast vectors bearing HIS3, TRP1, LEU2, and URA3 modules as selection markers, which require hosts to be auxotrophic. Green fluorescent protein (GFP) is used as the reporter to examine the functions of the vectors. The vectors are powerful tools for the convenient cloning and controlled expression of genes in most S. cerevisiae strains.

  14. Yeast surface display for screening combinatorial polypeptide libraries.

    Science.gov (United States)

    Boder, E T; Wittrup, K D

    1997-06-01

    Display on the yeast cell wall is well suited for engineering mammalian cell-surface and secreted proteins (e.g., antibodies, receptors, cytokines) that require endoplasmic reticulum-specific post-translational processing for efficient folding and activity. C-terminal fusion to the Aga2p mating adhesion receptor of Saccharomyces cerevisiae has been used for the selection of scFv antibody fragments with threefold decreased antigen dissociation rate from a randomly mutated library. A eukaryotic host should alleviate expression biases present in bacterially propagated combinatorial libraries. Quantitative flow cytometric analysis enables fine discrimination of kinetic parameters for protein binding to soluble ligands.

  15. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments

    Science.gov (United States)

    Morita, Hironobu; Obata, Koji; Abe, Chikara; Shiba, Dai; Shirakawa, Masaki; Kudo, Takashi; Takahashi, Satoru

    2015-01-01

    To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments. PMID:26221724

  16. Feasibility of a Short-Arm Centrifuge for Mouse Hypergravity Experiments.

    Directory of Open Access Journals (Sweden)

    Hironobu Morita

    Full Text Available To elucidate the pure impact of microgravity on small mammals despite uncontrolled factors that exist in the International Space Station, it is necessary to construct a 1 g environment in space. The Japan Aerospace Exploration Agency has developed a novel mouse habitat cage unit that can be installed in the Cell Biology Experiment Facility in the Kibo module of the International Space Station. The Cell Biology Experiment Facility has a short-arm centrifuge to produce artificial 1 g gravity in space for mouse experiments. However, the gravitational gradient formed inside the rearing cage is larger when the radius of gyration is shorter; this may have some impact on mice. Accordingly, biological responses to hypergravity induced by a short-arm centrifuge were examined and compared with those induced by a long-arm centrifuge. Hypergravity induced a significant Fos expression in the central nervous system, a suppression of body mass growth, an acute and transient reduction in food intake, and impaired vestibulomotor coordination. There was no difference in these responses between mice raised in a short-arm centrifuge and those in a long-arm centrifuge. These results demonstrate the feasibility of using a short-arm centrifuge for mouse experiments.

  17. Caloric restriction extends yeast chronological lifespan by altering a pattern of age-related changes in trehalose concentration

    Directory of Open Access Journals (Sweden)

    Pavlo eKyryakov

    2012-07-01

    Full Text Available The nonreducing disaccharide trehalose has been long considered only as a reserve carbohydrate. However, recent studies in yeast suggested that this osmolyte can protect cells and cellular proteins from oxidative damage elicited by exogenously added reactive oxygen species (ROS. Trehalose has been also shown to affect stability, folding and aggregation of bacterial and firefly proteins heterologously expressed in heat-shocked yeast cells. Our recent investigation of how a lifespan-extending caloric restriction (CR diet alters the metabolic history of chronologically aging yeast suggested that their longevity is programmed by the level of metabolic capacity - including trehalose biosynthesis and degradation - that yeast cells developed prior to entry into quiescence. To investigate whether trehalose homeostasis in chronologically aging yeast may play a role in longevity extension by CR, in this study we examined how single-gene-deletion mutations affecting trehalose biosynthesis and degradation impact 1 the age-related dynamics of changes in trehalose concentration; 2 yeast chronological lifespan under CR conditions; 3 the chronology of oxidative protein damage, intracellular ROS level and protein aggregation; and 4 the timeline of thermal inactivation of a protein in heat-shocked yeast cells and its subsequent reactivation in yeast returned to low temperature. Our data imply that CR extends yeast chronological lifespan in part by altering a pattern of age-related changes in trehalose concentration. We outline a model for molecular mechanisms underlying the essential role of trehalose in defining yeast longevity by modulating protein folding, misfolding, unfolding, refolding, oxidative damage, solubility and aggregation throughout lifespan.

  18. Identification of a novel pathway involving a GATA transcription factor in yeast and possibly in plant Zn uptake and homeostasis

    Institute of Scientific and Technical Information of China (English)

    Matthew J. Milner; Nicole S. Pence; Jiping Liu; Leon V. Kochian

    2014-01-01

    To gain a better understanding of the regulation of Zn homeostasis in plants and the degree of conservation of Zn homeostasis between plants and yeast, a cDNA library from the Zn/Cd hyperaccumulating plant species, Noccaea caerules-cens, was screened for its ability to restore growth under Zn limiting conditions in the yeast mutant zap1D. ZAP1 is a transcription factor that activates the Zn dependent transcrip-tion of yeast genes involved in Zn uptake, including ZRT1, the yeast high affinity Zn transporter. From this screen two members of the E2F family of transcription factors were found to activate ZRT1 expression in a Zn independent manner. The activation of ZRT1 by the plant E2F proteins involves E2F-mediated activation of a yeast GATA transcription factor which in turn activates ZRT1 expression. A ZRT1 promoter region necessary for activation by E2F and GATA proteins is upstream of two zinc responsive elements previously shown to bind ZAP1 in ZRT1. This activation may not involve direct binding of E2F to the ZRT1 promoter. The expression of E2F genes in yeast does not replace function of ZAP1; instead it appears to activate a novel GATA regulatory pathway involved in Zn uptake and homeostasis that is not Zn responsive.

  19. Mammalian ribosomal and chaperone protein RPS3A counteracts α-synuclein aggregation and toxicity in a yeast model system.

    Science.gov (United States)

    De Graeve, Stijn; Marinelli, Sarah; Stolz, Frank; Hendrix, Jelle; Vandamme, Jurgen; Engelborghs, Yves; Van Dijck, Patrick; Thevelein, Johan M

    2013-11-01

    Accumulation of aggregated forms of αSyn (α-synuclein) into Lewy bodies is a known hallmark associated with neuronal cell death in Parkinson's disease. When expressed in the yeast Saccharomyces cerevisiae, αSyn interacts with the plasma membrane, forms inclusions and causes a concentration-dependent growth defect. We have used a yeast mutant, cog6Δ, which is particularly sensitive to moderate αSyn expression, for screening a mouse brain-specific cDNA library in order to identify mammalian proteins that counteract αSyn toxicity. The mouse ribosomal and chaperone protein RPS3A was identified as a suppressor of αSyn [WT (wild-type) and A53T] toxicity in yeast. We demonstrated that the 50 N-terminal amino acids are essential for this function. The yeast homologues of RPS3A were not effective in suppressing the αSyn-induced growth defect, illustrating the potential of our screening system to identify modifiers that would be missed using yeast gene overexpression as the first screening step. Co-expression of mouse RPS3A delayed the formation of αSyn-GFP inclusions in the yeast cells. The results of the present study suggest that the recently identified extraribosomal chaperonin function of RPS3A also acts on the neurodegeneration-related protein αSyn and reveal a new avenue for identifying promising candidate mammalian proteins involved in αSyn functioning.

  20. EasyClone 2.0: expanded toolkit of integrative vectors for stable gene expression in industrial Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Stovicek, Vratislav; Borja, Gheorghe M; Forster, Jochen; Borodina, Irina

    2015-11-01

    Saccharomyces cerevisiae is one of the key cell factories for production of chemicals and active pharmaceuticals. For large-scale fermentations, particularly in biorefinery applications, it is desirable to use stress-tolerant industrial strains. However, such strains are less amenable for metabolic engineering than the standard laboratory strains. To enable easy delivery and overexpression of genes in a wide range of industrial S. cerevisiae strains, we constructed a set of integrative vectors with long homology arms and dominant selection markers. The vectors integrate into previously validated chromosomal locations via double cross-over and result in homogenous stable expression of the integrated genes, as shown for several unrelated industrial strains. Cre-mediated marker rescue is possible for removing markers positioned on different chromosomes. To demonstrate the applicability of the presented vector set for metabolic engineering of industrial yeast, we constructed xylose-utilizing strains overexpressing xylose isomerase, xylose transporter and five genes of the pentose phosphate pathway.