WorldWideScience

Sample records for arizona forest ecosystem

  1. Tree canopy types constrain plant distributions in ponderosa pine-Gambel oak forests, northern Arizona

    Science.gov (United States)

    Scott R. Abella

    2009-01-01

    Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...

  2. Coarse woody debris assay in northern Arizona mixed-conifer and ponderosa pine forests

    Science.gov (United States)

    Joseph L. Ganey; Scott C. Vojta

    2010-01-01

    Coarse woody debris (CWD) provides important ecosystem services in forests and affects fire behavior, yet information on amounts and types of CWD typically is limited. To provide such information, we sampled logs and stumps in mixed-conifer and ponderosa pine (Pinus ponderosa) forests in north-central Arizona. Spatial variability was prominent for all CWD parameters....

  3. Potential Carbon Stock Changes in Arizona's Ecosystems Due to Projected Climate Change

    Science.gov (United States)

    Finley, B. K.; Ironside, K.; Hungate, B. A.; Hurteau, M.; Koch, G. W.

    2011-12-01

    Climate change can alter the role of plants and soils as sources or sinks of atmospheric carbon dioxide and result in changes in long-term carbon storage. To understand the sensitivity of Arizona's ecosystems to climate change, we quantified the present carbon stocks in Arizona's major ecosystem types using the NASA-CASA (Carnegie Ames Stanford Approach) model. Carbon stocks for each vegetation type included surface mineral soil, dead wood litter, standing wood and live leaf biomass. The total Arizona ecosystem carbon stock is presently 1775 MMtC, 545 MMtC of which is in Pinus ponderosa and Pinus edulis forests and woodlands. Evergreen forest vegetation, predominately Pinus ponderosa, has the largest current C density at 11.3 kgC/m2, while Pinus edulis woodlands have a C density of 6.0 kgC/m2. A change in climate will impact the suitable range for each tree species, and consequentially the amount of C stored. Present habitat ranges for these tree species are projected to have widespread mortality and likely will be replaced by herbaceous species, resulting in a loss of C stored. We evaluated the C storage implications over the 2010 to 2099 period of climate change based on output from GCMs with contrasting projections for the southwestern US: MPI-ECHAM5, which projects warming and reduced precipitation, and UKMO-HadGEM, which projects warming and increased precipitation. These projected changes are end points of a spectrum of possible future climate scenarios. The vegetation distribution models used describe potential suitable habitat, and we assumed that the growth rate for each vegetation type would be one-third of the way to full C density for each 30 year period up to 2099. With increasing temperature and decreasing precipitation predictions under the MPI-ECHAM5 model, P. ponderosa and P. edulis vegetation show a decrease in carbon stored from 545 MMtC presently to 116 MMtC. With the combined increase in temperature and precipitation, C storage in these

  4. Phenological response of an Arizona dryland forest to short-term climatic extremes

    Science.gov (United States)

    Walker, Jessica; de Beurs, Kirsten; Wynne, Randolph

    2015-01-01

    Baseline information about dryland forest phenology is necessary to accurately anticipate future ecosystem shifts. The overarching goal of our study was to investigate the variability of vegetation phenology across a dryland forest landscape in response to climate alterations. We analyzed the influence of site characteristics and climatic conditions on the phenological patterns of an Arizona, USA, ponderosa pine (Pinus ponderosa) forest during a five-year period (2005 to 2009) that encompassed extreme wet and dry precipitation regimes. We assembled 80 synthetic Landsat images by applying the spatial and temporal adaptive reflectance fusion method (STARFM) to 500 m MODIS and 30 m Landsat-5 Thematic Mapper (TM) data. We tested relationships between site characteristics and the timing of peak Normalized Difference Vegetation Index (NDVI) to assess the effect of climatic stress on the green-up of individual pixels during or after the summer monsoon. Our results show that drought-induced stress led to a fragmented phenological response that was highly dependent on microsite parameters, as both the spatial autocorrelation of peak timing and the number of significant site variables increased during the drought year. Pixels at lower elevations and with higher proportions of herbaceous vegetation were more likely to exhibit dynamic responses to changes in precipitation conditions. Our study demonstrates the complexity of responses within dryland forest ecosystems and highlights the need for standardized monitoring of phenology trends in these areas. The spatial and temporal variability of phenological signals may provide a quantitative solution to the problem of how to evaluate dryland land surface trends across time.

  5. Phenological Response of an Arizona Dryland Forest to Short-Term Climatic Extremes

    Directory of Open Access Journals (Sweden)

    Jessica Walker

    2015-08-01

    Full Text Available Baseline information about dryland forest phenology is necessary to accurately anticipate future ecosystem shifts. The overarching goal of our study was to investigate the variability of vegetation phenology across a dryland forest landscape in response to climate alterations. We analyzed the influence of site characteristics and climatic conditions on the phenological patterns of an Arizona, USA, ponderosa pine (Pinus ponderosa forest during a five-year period (2005 to 2009 that encompassed extreme wet and dry precipitation regimes. We assembled 80 synthetic Landsat images by applying the spatial and temporal adaptive reflectance fusion method (STARFM to 500 m MODIS and 30 m Landsat-5 Thematic Mapper (TM data. We tested relationships between site characteristics and the timing of peak Normalized Difference Vegetation Index (NDVI to assess the effect of climatic stress on the green-up of individual pixels during or after the summer monsoon. Our results show that drought-induced stress led to a fragmented phenological response that was highly dependent on microsite parameters, as both the spatial autocorrelation of peak timing and the number of significant site variables increased during the drought year. Pixels at lower elevations and with higher proportions of herbaceous vegetation were more likely to exhibit dynamic responses to changes in precipitation conditions. Our study demonstrates the complexity of responses within dryland forest ecosystems and highlights the need for standardized monitoring of phenology trends in these areas. The spatial and temporal variability of phenological signals may provide a quantitative solution to the problem of how to evaluate dryland land surface trends across time.

  6. The Forest Service, Rocky Mountain Research Station's Southwestern Borderlands Ecosystem Management Project: building on ten years of success [Abstract

    Science.gov (United States)

    Gerald J. Gottfried; Carleton B. Edminster

    2005-01-01

    The USDA Forest Service initiated the Southwestern Borderlands Ecosystem Management Project in 1994. The Project concentrates on the unique, relatively unfragmented landscape of exceptional biological diversity in southeastern Arizona and southwestern New Mexico. Its mission is to: "Contribute to the scientific basis for developing and implementing a comprehensive...

  7. Ecoregions of Arizona (poster)

    Science.gov (United States)

    Griffith, Glenn E.; Omernik, James M.; Johnson, Colleen Burch; Turner, Dale S.

    2014-01-01

    Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources; they are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance. These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and nongovernment organizations that are responsible for different types of resources within the same geographical areas. The Arizona ecoregion map was compiled at a scale of 1:250,000. It revises and subdivides an earlier national ecoregion map that was originally compiled at a smaller scale. The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity. These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels of ecological regions. Level I is the coarsest level, dividing North America into 15 ecological regions. Level II divides the continent into 50 regions. At level III, the continental United States contains 105 ecoregions and the conterminous United States has 85 ecoregions. Level IV is a further subdivision of level III ecoregions. Arizona contains arid deserts and canyonlands, semiarid shrub- and grass-covered plains, woodland- and shrubland-covered hills, lava fields and volcanic plateaus, forested mountains, glaciated

  8. Changes in forest species composition and structure after stand-replacing wildfire in the mountains of southeastern Arizona

    Science.gov (United States)

    Ronald D. Quinn; Lin Wu

    2005-01-01

    A wildfire in the Chiricahua Mountains of southeastern Arizona apparently altered the long-term structure of the forest. The pre-fire canopy forest, which had not burned for 100 years, was an even mixture of Arizona pines and Rocky Mountain Douglas-firs. A decade later the new forest was numerically dominated by quaking aspen seedlings in clumps separated by persistent...

  9. Interannual Variations in Ecosystem Oxidative Ratio in Croplands, Deciduous Forest, Coniferous Forest, and Early Successional Forest Ecosystems

    Science.gov (United States)

    Masiello, C. A.; Hockaday, W. C.; Gallagher, M. E.; Calligan, L.

    2009-12-01

    Ecosystem net primary productivity (NPP) can vary significantly with annual variations in precipitation and temperature. These climate variations can also drive changes in plant carbon allocation patterns. Shifting allocation patterns can lead to variation in net ecosystem biochemical stocks (e.g. kg cellulose, lignin, protein, and lipid/ha), which can in turn lead to shifts in ecosystem oxidative ratio (OR). OR is the molar ratio of O2 released : CO2 fixed during biosynthesis. Major plant biochemicals vary substantially in oxidative ratio, ranging from average organic acid OR values of 0.75 to average lipid OR values of 1.37 (Masiello et al., 2008). OR is a basic property of ecosystem biochemistry, and is also an essential variable needed to constrain the size of the terrestrial biospheric carbon sink (Keeling et al., 1996). OR is commonly assumed to be 1.10 (e.g. Prentice et al., 2001), but small variations in net ecosystem OR can drive large errors in estimates of the size of the terrestrial carbon sink (Randerson et al., 2006). We hypothesized that interannual changes in climate may drive interannual variation in ecosystem OR values. Working at Kellogg Biological Station NSF LTER, we measured the annual average OR of coniferous and deciduous forests, an early successional forest, and croplands under both corn and soy. There are clear distinctions between individual ecosystems (e.g., the soy crops have a higher OR than the corn crops, and the coniferous forests have a higher OR than the deciduous forests), but the ecosystems themselves retained remarkably constant annual OR values between 1998 and 2008.

  10. Forest restoration, biodiversity and ecosystem functioning

    Science.gov (United States)

    2011-01-01

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but

  11. Forest Ecosystem services: Water resources

    Science.gov (United States)

    Thomas P. Holmes; James Vose; Travis Warziniack; Bill Holman

    2017-01-01

    Since the publication of the Millennium Ecosystem Assessment (MEA 2005), awareness has steadily grown regarding the importance of maintaining natural capital. Forest vegetation is a valuable source of natural capital, and the regulation of water quantity and quality is among the most important forest ecosystem services in many regions around the world. Changes in...

  12. Carbon allocation in forest ecosystems

    Science.gov (United States)

    Creighton M. Litton; James W. Raich; Michael G. Ryan

    2007-01-01

    Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit...

  13. Effect of industrial pollution on behaviour of radionuclides in forest ecosystems; Forests ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Outola, I. (STUK-Radiation and Nuclear Safety Authority, Helsinki (Finland))

    2009-06-15

    To investigate how and to what extent industrial pollution affects the behaviour of radionuclides in forest ecosystems, studies were conducted in the vicinity of two Cu-Ni smelters: one in a pine forest at Harjavalta, Finland, and the other in a spruce forest at Monchegorsk, Russia. Industrial pollution had significant effects on the distribution of radionuclides in soil horizons. With the increase in pollution towards the smelter, radionuclides were accumulated more in the litter layer because the conversion of litter into organic material was diminished due to inhibited microbial activity. As a result, the organic layer contained less radionuclides towards the smelter. The effect of industrial pollution on soil-to-plant transfer was complex. The effect varied with radionuclide, plant species and also on forest type. For 137Cs, soil-to-plant transfer decreased significantly as industrial pollution increased in pine forest, whereas the decrease was less pronounced in spruce forest. Root uptake of 239,240Pu by plants is extremely small, and plant contamination by resuspended soil is an important factor in considering the soil-to-plant transfer of this radionuclide. In spruce forest, more plutonium was transferred into plants when pollution load increased due to resuspension of litter particles, which contained higher concentrations of plutonium in the vicinity of the smelter. Soil-to-plant transfer of plutonium was much less affected in pine forests contaminated with industrial pollution. This research clearly indicates the sensitivity of the northern forest ecosystem to inorganic pollutants. Prediction of the soil-to-plant transfer of radionuclides in industrially polluted forest ecosystems requires detailed information on the total deposition, vertical distribution of radionuclides in soil, soil microbiological factors, other soil parameters as well as the rooting depths of the plants. (LN)

  14. Forest ecosystem services: Provisioning of non-timber forest products

    Science.gov (United States)

    James L. Chamberlain; Gregory E. Frey; C. Denise Ingram; Michael G. Jacobson; Cara Meghan Starbuck Downes

    2017-01-01

    The purpose of this chapter is to describe approaches to calculate a conservative and defensible estimate of the marginal value of forests for non-timber forest products (NTFPs). 'Provisioning" is one of four categories of benefits, or services that ecosystems provide to humans and was described by the Millennium Ecosystem Assessment as 'products...

  15. Forest ecosystems: Vegetation, disturbance, and economics: Chapter 5

    Science.gov (United States)

    Littell, Jeremy S.; Hicke, Jeffrey A.; Shafer, Sarah L.; Capalbo, Susan M.; Houston, Laurie L.; Glick, Patty

    2013-01-01

    Forests cover about 47% of the Northwest (NW–Washington, Oregon, and Idaho) (Smith et al. 2009, fig. 5.1, table 5.1). The impacts of current and future climate change on NW forest ecosystems are a product of the sensitivities of ecosystem processes to climate and the degree to which humans depend on and interact with those systems. Forest ecosystem structure and function, particularly in relatively unmanaged forests where timber harvest and other land use have smaller effects, is sensitive to climate change because climate has a strong influence on ecosystem processes. Climate can affect forest structure directly through its control of plan physiology and life history (establishment, individual growth, productivity, and morality) or indirectly through its control of disturbance (fire, insects, disease). As climate changes, many forest processes will be affected, altering ecosystem services such as timber production and recreation. These changes have socioeconomic implications (e.g. for timber economies) and will require changes to current management of forests. Climate and management will interact to determine the forests of the future, and the scientific basis for adaptation to climate change in forests thus depends significantly on how forests will be affected.

  16. [Evaluation of economic forest ecosystem services in China].

    Science.gov (United States)

    Wang, Bing; Lu, Shao-Wei

    2009-02-01

    This paper quantitatively evaluated the economic forest ecosystem services in the provinces of China in 2003, based on the long-term and continuous observations of economic forest ecosystems in this country, the sixth China national forest resources inventory data, and the price parameter data from the authorities in the world, and by applying the law of market value, the method of substitution of the expenses, and the law of the shadow project. The results showed that in 2003, the total value of economic forest ecosystem services in China was 11763.39 x 10(8) yuan, and the total value of the products from economic forests occupied 19.3% of the total ecosystem services value, which indicated that the economic forests not only provided society direct products, but also exhibited enormous eco-economic value. The service value of the functions of economic forests was in the order of water storage > C fixation and O2 release > biodiversity conservation > erosion control > air quality purification > nutrient cycle. The spatial pattern of economic forest ecosystem services in the provinces of China had the same trend with the spatial distribution of water and heat resources and biodiversity. To understand the differences of economic forest ecosystem services in the provinces of China was of significance in alternating the irrational arrangement of our present forestry production, diminishing the abuses of forest management, and establishing high grade, high efficient, and modernized economic forests.

  17. Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments

    Science.gov (United States)

    Roesch-McNally, Gabrielle E.; Rabotyagov, Sergey S.

    2016-03-01

    The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at 217.59 per household/year under a mandatory tax mechanism and 160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different.

  18. Paying for Forest Ecosystem Services: Voluntary Versus Mandatory Payments.

    Science.gov (United States)

    Roesch-McNally, Gabrielle E; Rabotyagov, Sergey S

    2016-03-01

    The emergence of new markets for forest ecosystem services can be a compelling opportunity for market diversification for private forest landowners, while increasing the provision of public goods from private lands. However, there is limited information available on the willingness-to-pay (WTP) for specific forest ecosystem services, particularly across different ecosystem market mechanisms. We utilize survey data from Oregon and Washington households to compare marginal WTP for forest ecosystem services and the total WTP for cost-effective bundles of forest ecosystem services obtained from a typical Pacific Northwest forest across two value elicitation formats representing two different ecosystem market mechanisms: an incentive-compatible choice experiment involving mandatory tax payments and a hypothetical private provision scenario modeled as eliciting contributions to the preferred forest management alternative via a provision point mechanism with a refund. A representative household's total WTP for the average forest management program was estimated at $217.59 per household/year under a mandatory tax mechanism and $160.44 per household/per year under a voluntary, crowdfunding-style, contribution mechanism; however, these estimates are not statistically different. Marginal WTP estimates were assessed for particular forest ecosystem service attributes including water quality, carbon storage, mature forest habitat, and public recreational access. This study finds that survey respondents place significant economic value on forest ecosystem services in both elicitation formats and that the distributions of the marginal WTP are not statistically significantly different.

  19. [Forest ecosystem service and its evaluation in China].

    Science.gov (United States)

    Fang, Jin; Lu, Shaowei; Yu, Xinxiao; Rao, Liangyi; Niu, Jianzhi; Xie, Yuanyuan; Zhag, Zhenming

    2005-08-01

    Facing the relative lag of forest ecosystem service and estimation in China, this paper proposed to quickly carry out the research on the evaluation of forest ecosystem service. On the basis of the classification of forest ecosystem types in China, the service of artificial and semi-artificial forest ecosystems was investigated, which was divided into eight types, i.e., timber and other products, recreation and eco-tourism, water storage, C fixation and O2 release, nutrient cycling, air quality purifying, erosion control, and habitat provision. According to the assessment index system for global ecosystem service proposed by Costanza et al., a series of assessment index system suitable for Chinese forest ecosystem service was set up, by which, the total value of forest ecosystem service in China was estimated to be 30 601.20 x 10(8) yuan x yr(-1), including direct and indirect economic value about 1 920.23 x 10(8) and 28 680.97 x 10(8) yuan x yr(-1), respectively. The indirect value was as 14.94 times as the direct one. The research aimed to bring natural resources and environment factors into the account system of national economy quickly, and to realize the green GDP at last, which would be helpful to realize sustainable development and environment protection.

  20. Ecosystem services capacity across heterogeneous forest types: understanding the interactions and suggesting pathways for sustaining multiple ecosystem services.

    Science.gov (United States)

    Alamgir, Mohammed; Turton, Stephen M; Macgregor, Colin J; Pert, Petina L

    2016-10-01

    As ecosystem services supply from tropical forests is declining due to deforestation and forest degradation, much effort is essential to sustain ecosystem services supply from tropical forested landscapes, because tropical forests provide the largest flow of multiple ecosystem services among the terrestrial ecosystems. In order to sustain multiple ecosystem services, understanding ecosystem services capacity across heterogeneous forest types and identifying certain ecosystem services that could be managed to leverage positive effects across the wider bundle of ecosystem services are required. We sampled three forest types, tropical rainforests, sclerophyll forests, and rehabilitated plantation forests, over an area of 32,000m(2) from Wet Tropics bioregion, Australia, aiming to compare supply and evaluate interactions and patterns of eight ecosystem services (global climate regulation, air quality regulation, erosion regulation, nutrient regulation, cyclone protection, habitat provision, energy provision, and timber provision). On average, multiple ecosystem services were highest in the rainforests, lowest in sclerophyll forests, and intermediate in rehabilitated plantation forests. However, a wide variation was apparent among the plots across the three forest types. Global climate regulation service had a synergistic impact on the supply of multiple ecosystem services, while nutrient regulation service was found to have a trade-off impact. Considering multiple ecosystem services, most of the rehabilitated plantation forest plots shared the same ordination space with rainforest plots in the ordination analysis, indicating that rehabilitated plantation forests may supply certain ecosystem services nearly equivalent to rainforests. Two synergy groups and one trade-off group were identified. Apart from conserving rainforests and sclerophyll forests, our findings suggest two additional integrated pathways to sustain the supply of multiple ecosystem services from a

  1. Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA

    Science.gov (United States)

    Joseph L. Ganey; Scott C. Vojta

    2011-01-01

    We monitored tree mortality in northern Arizona (USA) mixed-conifer and ponderosa pine (Pinus ponderosa Dougl. ex Laws) forests from 1997 to 2007, a period of severe drought in this area. Mortality was pervasive, occurring on 100 and 98% of 53 mixed-conifer and 60 ponderosa pine plots (1-ha each), respectively. Most mortality was attributable to a suite of forest...

  2. Forest operations for ecosystem management

    Science.gov (United States)

    Robert B. Rummer; John Baumgras; Joe McNeel

    1997-01-01

    The evolution of modern forest resource management is focusing on ecologically sensitive forest operations. This shift in management strategies is producing a new set of functional requirements for forest operations. Systems to implement ecosystem management prescriptions may need to be economically viable over a wider range of piece sizes, for example. Increasing...

  3. Biological invasions in forest ecosystems

    Science.gov (United States)

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Susan Kalisz; Martin A. Nuñez; David A. Wardle; Michael J. Wingfield

    2017-01-01

    Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of...

  4. Opportunity costs of implementing forest plans

    Science.gov (United States)

    Fox, Bruce; Keller, Mary Anne; Schlosberg, Andrew J.; Vlahovich, James E.

    1989-01-01

    Intellectual concern with the National Forest Management Act of 1976 has followed a course emphasizing the planning aspects of the legislation associated with the development of forest plans. Once approved, however, forest plans must be implemented. Due to the complex nature of the ecological systems of interest, and the multiple and often conflicting desires of user clientele groups, the feasibility and costs of implementing forest plans require immediate investigation. For one timber sale on the Coconino National Forest in Arizona, forest plan constraints were applied and resulting resource outputs predicted using the terrestrial ecosystem analysis and modeling system (TEAMS), a computer-based decision support system developed at the School of Forestry, Northern Arizona University, With forest plan constraints for wildlife habitat, visual diversity, riparian area protection, and soil and slope harvesting restrictions, the maximum timber harvest obtainable was reduced 58% from the maximum obtainable without plan constraints.

  5. Supplementing forest ecosystem health projects on the ground

    Science.gov (United States)

    Cathy Barbouletos; Lynette Z. Morelan

    1995-01-01

    Understanding the functions and processes of ecosystems is critical before implementing forest ecosystem health projects on the landscape. Silvicultural treatments such as thinning, prescribed fire, and reforestation can simulate disturbance regimes and landscape patterns that have regulated forest ecosystems for centuries. As land managers we need to understand these...

  6. Biomass estimation in forest ecosystems - a review | Wakawa ...

    African Journals Online (AJOL)

    Forest ecosystems plays an important role in global warming serving as both sink and source of one of the prominent green house gases, carbon dioxide (CO2). Biomass estimation in forest ecosystems is an important aspect of forest management processes aimed at ensuring sustainability. The choice of appropriate ...

  7. 75 FR 18145 - Eastern Arizona Counties Resource Advisory Committee

    Science.gov (United States)

    2010-04-09

    ... DEPARTMENT OF AGRICULTURE Forest Service Eastern Arizona Counties Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Eastern Arizona Counties Resource... Rivera, Coordinator, Eastern Arizona Counties Resource Advisory Committee, c/o Forest Service, USDA, P.O...

  8. ASPECTS REGARDING LEGAL PROTECTION OF FOREST ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    Cristian Popescu

    2012-12-01

    Full Text Available The first legislative concerns for the protection and exploitation of forests are occurring since the eighteenth century. Forest of the country has always been a priority for environmental policy. The institutional framework for forestry organization in Romania is represented mainly by the Ministry of Environment and National Administration of Forests – Romsilva. First Romanian Forest Code was adopted on 19 June 1881. In present, the main law governing the forest is given by Law No. 46 of March 19, 2008 (Forest Code. Forests are resources of interest economic, social, recreational, ecological and biological. Biodiversity conservation of forest ecosystems involves the sustainable management by applying intensive treatments that promote natural regeneration of species of fundamental natural forest type and forest conservation and quasi virgin. The main way to conserve forest ecosystems is represented by the establishment of protected areas of national interest.

  9. Radionuclides in forest ecosystems

    International Nuclear Information System (INIS)

    Strebl, F.; Bossew, P.; Kienzl, K.; Hiesel, E.

    2000-01-01

    Some regions within Austria were highly contaminated (> 50 kBq m -2 ) with radiocaesium by the deposition event following the Chernobyl reactor accident in 1986. Monitoring carried out by several Austrian institutions showed that in contrast to agricultural products radiocaesium levels in wild berries, mushrooms and game meat from forest ecosystems remained considerably higher over the years. To find reasons for this contrasting radioecological behavior and for the derivation of model input parameters, an extended study about the distribution of 137 Cs within three Austrian forest stands was carried out between 1987 and 1997. Results of this and subsequent studies are summarized and include the following ecosystem compartments: forest soils, litter, trees, bilberry, mushrooms, mosses, ferns, lichen, other vegetation, insects, small mammals, game animals and surface water. Besides the investigation of radioecological behavior an estimation of pool sizes and transfer rates as well as radioecological residence half times for 137 Cs in different forest species was used to compile a radiocaesium balance for the years 1988 and 1996. Soil proved to be an effective sink for radiocaesium contamination, but in long-term perspective it can act as a source for the contamination of vegetation and higher levels of the food-chain as well. Due to the high standing biomass trees represent the largest 'living' radiocaesium pool within the investigated forest stand. Dose estimations based on average consume habits gave no significant increase (less than 0.4 %) of the annual average population radiation dose due to the ingestion of forest products from the investigated forest stands. (author)

  10. Non-linear Feedbacks Between Forest Mortality and Climate Change: Implications for Snow Cover, Water Resources, and Ecosystem Recovery in Western North America (Invited)

    Science.gov (United States)

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Gochis, D. J.; Litvak, M. E.; Ewers, B. E.; Broxton, P. D.; Reed, D. E.

    2013-12-01

    Unprecedented levels of tree mortality from insect infestation and wildfire are dramatically altering forest structure and composition in Western North America. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how these changes in forest structure will interact with ongoing climate change to affect snowmelt water resources either for society or for ecosystem recovery following mortality. Because surface discharge, groundwater recharge, and ecosystem productivity all depend on seasonal snowmelt, a critical knowledge gap exists not only in predicting discharge, but in quantifying spatial and temporal variability in the partitioning of snowfall into abiotic vapor loss, plant available water, recharge, and streamflow within the complex mosaic of forest disturbance and topography that characterizes western mountain catchments. This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a climate gradient from Arizona to Wyoming; including undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input in a warming climate will increase only in topographically sheltered areas. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. Empirical analyses and modeling are being developed to identify landscapes most sensitive to

  11. The impact of forest thinning on the reliability of water supply in central Arizona.

    Directory of Open Access Journals (Sweden)

    Silvio Simonit

    Full Text Available Economic growth in Central Arizona, as in other semiarid systems characterized by low and variable rainfall, has historically depended on the effectiveness of strategies to manage water supply risks. Traditionally, the management of supply risks includes three elements: hard infrastructures, landscape management within the watershed, and a supporting set of institutions of which water markets are frequently the most important. In this paper we model the interactions between these elements. A forest restoration initiative in Central Arizona (the Four Forest Restoration Initiative, or 4FRI will result in thinning of ponderosa pine forests in the upper watershed, with potential implications for both sedimentation rates and water delivery to reservoirs. Specifically, we model the net effect of ponderosa pine forest thinning across the Salt and Verde River watersheds on the reliability and cost of water supply to the Phoenix metropolitan area. We conclude that the sediment impacts of forest thinning (up to 50% of canopy cover are unlikely to compromise the reliability of the reservoir system while thinning has the potential to increase annual water supply by 8%. This represents an estimated net present value of surface water storage of $104 million, considering both water consumption and hydropower generation.

  12. The Impact of Forest Thinning on the Reliability of Water Supply in Central Arizona

    Science.gov (United States)

    Simonit, Silvio; Connors, John P.; Yoo, James; Kinzig, Ann; Perrings, Charles

    2015-01-01

    Economic growth in Central Arizona, as in other semiarid systems characterized by low and variable rainfall, has historically depended on the effectiveness of strategies to manage water supply risks. Traditionally, the management of supply risks includes three elements: hard infrastructures, landscape management within the watershed, and a supporting set of institutions of which water markets are frequently the most important. In this paper we model the interactions between these elements. A forest restoration initiative in Central Arizona (the Four Forest Restoration Initiative, or 4FRI) will result in thinning of ponderosa pine forests in the upper watershed, with potential implications for both sedimentation rates and water delivery to reservoirs. Specifically, we model the net effect of ponderosa pine forest thinning across the Salt and Verde River watersheds on the reliability and cost of water supply to the Phoenix metropolitan area. We conclude that the sediment impacts of forest thinning (up to 50% of canopy cover) are unlikely to compromise the reliability of the reservoir system while thinning has the potential to increase annual water supply by 8%. This represents an estimated net present value of surface water storage of $104 million, considering both water consumption and hydropower generation. PMID:25835003

  13. Forest Ecosystem Services and Eco-Compensation Mechanisms in China

    Science.gov (United States)

    Deng, Hongbing; Zheng, Peng; Liu, Tianxing; Liu, Xin

    2011-12-01

    Forests are a major terrestrial ecosystem providing multiple ecosystem services. However, the importance of forests is frequently underestimated from an economic perspective because of the externalities and public good properties of these services. Forest eco-compensation is a transfer mechanism that serves to internalize the externalities of forest ecosystem services by compensating individuals or companies for the losses or costs resulting from the provision of these services. China's current forest eco-compensation system is centered mainly on noncommercial forest. The primary measures associated with ecosystem services are (1) a charge on destructive activities, such as indiscriminate logging, and (2) compensation for individual or local activities and investments in forest conservation. The Compensation Fund System for Forest Ecological Benefits was first listed in the Forest Law of the People's Republic of China in 1998. In 2004, the Central Government Financial Compensation Fund, an important source for the Compensation Fund for Forest Ecological Benefits, was formally established. To improve the forest eco-compensation system, it is crucial to design and establish compensation criteria for noncommercial forests. These criteria should take both theoretical and practical concerns into account, and they should be based on the quantitative valuation of ecosystem services. Although some initial headway has been made on this task, the implementation of an effective forest eco-compensation system in China still has deficiencies and still faces problems. Implementing classification-based and dynamic management for key noncommercial forests and establishing an eco-compensation mechanism with multiple funding sources in the market economy are the key measures needed to conquer these problems and improve the forest eco-compensation system and China's forestry development in sequence.

  14. Forest ecosystem services and eco-compensation mechanisms in China.

    Science.gov (United States)

    Deng, Hongbing; Zheng, Peng; Liu, Tianxing; Liu, Xin

    2011-12-01

    Forests are a major terrestrial ecosystem providing multiple ecosystem services. However, the importance of forests is frequently underestimated from an economic perspective because of the externalities and public good properties of these services. Forest eco-compensation is a transfer mechanism that serves to internalize the externalities of forest ecosystem services by compensating individuals or companies for the losses or costs resulting from the provision of these services. China's current forest eco-compensation system is centered mainly on noncommercial forest. The primary measures associated with ecosystem services are (1) a charge on destructive activities, such as indiscriminate logging, and (2) compensation for individual or local activities and investments in forest conservation. The Compensation Fund System for Forest Ecological Benefits was first listed in the Forest Law of the People's Republic of China in 1998. In 2004, the Central Government Financial Compensation Fund, an important source for the Compensation Fund for Forest Ecological Benefits, was formally established. To improve the forest eco-compensation system, it is crucial to design and establish compensation criteria for noncommercial forests. These criteria should take both theoretical and practical concerns into account, and they should be based on the quantitative valuation of ecosystem services. Although some initial headway has been made on this task, the implementation of an effective forest eco-compensation system in China still has deficiencies and still faces problems. Implementing classification-based and dynamic management for key noncommercial forests and establishing an eco-compensation mechanism with multiple funding sources in the market economy are the key measures needed to conquer these problems and improve the forest eco-compensation system and China's forestry development in sequence.

  15. Dynamics of radionuclides in forest ecosystems

    International Nuclear Information System (INIS)

    Steiner, M.

    2004-01-01

    The unique physiology and the layered structure of forest ecosystems result in dynamic transport and transfer processes which greatly differ from those in agricultural ecosystems. Radionuclides are retained in the upper organic horizons of forest soil for several decades and remain highly available for uptake by fungi and green plants. Contamination levels of mushrooms and game may therefore by far exceed those of agricultural produce. The efficient cycling of nutrients and radionuclides, which is characteristic for ecosystems poor in nutrients, can largely be attributed to forest soil with its complex and multi-layered structure and fungal activity. Fungi directly affect dynamic processes, playing a key role in the mobilization, uptake and translocation of nutrients and radionuclides. Fungal fruit bodies may be highly contaminated foodstuff and fodder. They are most likely the cause of the surprising trend of increasing contamination of wild boar which has been observed in the last few years in Germany. This paper is intended to give a qualitative survey of dynamic transport processes in forests and their relevance for radiation exposure to man. (orig.)

  16. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices

    International Nuclear Information System (INIS)

    Escobedo, Francisco J.; Kroeger, Timm; Wagner, John E.

    2011-01-01

    The purpose of this paper is to integrate the concepts of ecosystem services and disservices when assessing the efficacy of using urban forests for mitigating pollution. A brief review of the literature identifies some pollution mitigation ecosystem services provided by urban forests. Existing ecosystem services definitions and typologies from the economics and ecological literature are adapted and applied to urban forest management and the concepts of ecosystem disservices from natural and semi-natural systems are discussed. Examples of the urban forest ecosystem services of air quality and carbon dioxide sequestration are used to illustrate issues associated with assessing their efficacy in mitigating urban pollution. Development of urban forest management alternatives that mitigate pollution should consider scale, contexts, heterogeneity, management intensities and other social and economic co-benefits, tradeoffs, and costs affecting stakeholders and urban sustainability goals. - Environmental managers should analyze ecosystem services and disservices when developing urban forest management alternatives for mitigating urban pollution.

  17. Community occupancy responses of small mammals to restoration treatments in ponderosa pine forests, northern Arizona, USA.

    Science.gov (United States)

    Kalies, E L; Dickson, B G; Chambers, C L; Covington, W W

    2012-01-01

    In western North American conifer forests, wildfires are increasing in frequency and severity due to heavy fuel loads that have accumulated after a century of fire suppression. Forest restoration treatments (e.g., thinning and/or burning) are being designed and implemented at large spatial and temporal scales in an effort to reduce fire risk and restore forest structure and function. In ponderosa pine (Pinus ponderosa) forests, predominantly open forest structure and a frequent, low-severity fire regime constituted the evolutionary environment for wildlife that persisted for thousands of years. Small mammals are important in forest ecosystems as prey and in affecting primary production and decomposition. During 2006-2009, we trapped eight species of small mammals at 294 sites in northern Arizona and used occupancy modeling to determine community responses to thinning and habitat features. The most important covariates in predicting small mammal occupancy were understory vegetation cover, large snags, and treatment. Our analysis identified two generalist species found at relatively high occupancy rates across all sites, four open-forest species that responded positively to treatment, and two dense-forest species that responded negatively to treatment unless specific habitat features were retained. Our results indicate that all eight small mammal species can benefit from restoration treatments, particularly if aspects of their evolutionary environment (e.g., large trees, snags, woody debris) are restored. The occupancy modeling approach we used resulted in precise species-level estimates of occupancy in response to habitat attributes for a greater number of small mammal species than in other comparable studies. We recommend our approach for other studies faced with high variability and broad spatial and temporal scales in assessing impacts of treatments or habitat alteration on wildlife species. Moreover, since forest planning efforts are increasingly focusing on

  18. Aquatic biodiversity in forests: A weak link in ecosystem services resilience

    Science.gov (United States)

    Penaluna, Brooke E.; Olson, Deanna H.; Flitcroft, Rebecca L; Weber, Matthew A.; Bellmore, J. Ryan; Wondzell, Steven M.; Dunham, Jason B.; Johnson, Sherri L.; Reeves, Gordon H.

    2017-01-01

    The diversity of aquatic ecosystems is being quickly reduced on many continents, warranting a closer examination of the consequences for ecological integrity and ecosystem services. Here we describe intermediate and final ecosystem services derived from aquatic biodiversity in forests. We include a summary of the factors framing the assembly of aquatic biodiversity in forests in natural systems and how they change with a variety of natural disturbances and human-derived stressors. We consider forested aquatic ecosystems as a multi-state portfolio, with diverse assemblages and life-history strategies occurring at local scales as a consequence of a mosaic of habitat conditions and past disturbances and stressors. Maintaining this multi-state portfolio of assemblages requires a broad perspective of ecosystem structure, various functions, services, and management implications relative to contemporary stressors. Because aquatic biodiversity provides multiple ecosystem services to forests, activities that compromise aquatic ecosystems and biodiversity could be an issue for maintaining forest ecosystem integrity. We illustrate these concepts with examples of aquatic biodiversity and ecosystem services in forests of northwestern North America, also known as Northeast Pacific Rim. Encouraging management planning at broad as well as local spatial scales to recognize multi-state ecosystem management goals has promise for maintaining valuable ecosystem services. Ultimately, integration of information from socio-ecological ecosystems will be needed to maintain ecosystem services derived directly and indirectly from forest aquatic biota.

  19. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    Science.gov (United States)

    B. D. Amiro; A. G. Barr; J. G. Barr; T. A. Black; R. Bracho; al. et.

    2010-01-01

    [1] Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included standreplacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon...

  20. An ecosystem carbon database for Canadian forests

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, C.H.; Bhatti, J.S.; Sabourin, K.J.

    2005-07-01

    The forest ecosystem carbon database (FECD) is a compilation of data from more than 700 plots from different forest ecosystems in Canada. It includes more than 60 variables for site, stand and soil characteristics. It is intended for large-scale modelers and analysts working with the carbon budget and dynamics of forest ecosystems, particularly those interested in the response of forest carbon stocks and fluxes to changes in climate and site characteristics. The database includes totals for organic and mineral soil horizons for each plot along with total soil carbon content, tree biomass carbon content by component and total ecosystem carbon content. It is complete for site description information, soil chemistry, stand-level estimates of live tree biomass and carbon components and their totals. Soil carbon content by horizon was also included. The compilation targeted data collected at single points in space, where above ground and below ground carbon levels were measured simultaneously. It was noted that one of the important information gaps lies in the fact that no data was available for the natural disturbance or management histories of the stands where the plots were located. Estimates did not include detrital carbon or root biomass, which can influence the estimates for total ecosystem carbon in some forest types. The preliminary analysis reveals that ecozones can be grouped according to low and high average total biomass carbon content. The groups correlate to ecozones with low and high average total ecosystem carbon. Mineral soil carbon within each group contributes the highest proportion of carbon to the average total ecosystem carbon. It is correlated with a gradient in ecozone climate from cold and dry to warm and wet. 42 refs., 13 tabs., 16 figs.

  1. Managing forests as ecosystems: A success story or a challenge ahead?

    Energy Technology Data Exchange (ETDEWEB)

    Dale, V.H. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1997-10-01

    To manage forests as ecosystems, the many values they hold for different users must be recognized, and they must be used so that those assets are not destroyed. Important ecosystem features of forests include nutrient cycling, habitat, succession, and water quality. Over time, the ways in which humans value forests have changed as forest uses have altered and as forests have declined in size and quality. Both ecosystem science and forest ecology have developed approaches that are useful to manage forests to retain their value. A historical perspective shows how changes in ecology, legislation, and technology have resulted in modern forest-management practices. However, current forest practices are still a decade or so behind current ecosystem science. Ecologists have done a good job of transferring their theories and approaches to the forest manager classroom but have done a poor job of translating these concepts into practice. Thus, the future for ecosystem management requires a closer linkage between ecologists and other disciplines. For example, the changing ways in which humans value forests are the primary determinant of forest-management policies. Therefore, if ecologists are to understand how ecosystem science can influence these policies, they must work closely with social scientists trained to assess human values.

  2. 77 FR 51966 - Eastern Arizona Resource Advisory Committee

    Science.gov (United States)

    2012-08-28

    ... DEPARTMENT OF AGRICULTURE Forest Service Eastern Arizona Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Eastern Arizona Resource Advisory Committee...

  3. 76 FR 41755 - Eastern Arizona Counties Resource Advisory; Meeting

    Science.gov (United States)

    2011-07-15

    ... DEPARTMENT OF AGRICULTURE Forest Service Eastern Arizona Counties Resource Advisory; Meeting AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Eastern Arizona Counties Resource... FURTHER INFORMATION CONTACT: Julia Faith Rivera, RAC Program Manager, Eastern Arizona Counties Resource...

  4. Disturbance dynamics and ecosystem-based forest management

    Science.gov (United States)

    Kalev Jogiste; W. Keith Moser; Malle. Mandre

    2005-01-01

    Ecosystem-based management is intended to balance ecological, social and economic values of sustainable resource management. The desired future state of forest ecosystem is usually defined through productivity, biodiversity, stability or other terms. However, ecosystem-based management may produce an unbalanced emphasis on different components. Although ecosystem-based...

  5. Modelling natural disturbances in forest ecosystems: a review

    OpenAIRE

    Seidl, Rupert; Fernandes, Paulo M.; Fonseca, Teresa F.; Gillet, François; Jönsson, Anna Maria; Merganičová, Katarína; Netherer, Sigrid; Arpaci, Alexander; Bontemps, Jean-Daniel; Bugmann, Harald

    2011-01-01

    Natural disturbances play a key role in ecosystem dynamics and are important factors for sustainable forest ecosystem management. Quantitative models are frequently employed to tackle the complexities associated with disturbance processes. Here we review the wide variety of approaches to modelling natural disturbances in forest ecosystems, addressing the full spectrum of disturbance modelling from single events to integrated disturbance regimes. We applied a general, process-based framework f...

  6. 76 FR 28210 - Eastern Arizona Counties Resource Advisory Committee

    Science.gov (United States)

    2011-05-16

    ... DEPARTMENT OF AGRICULTURE Forest Service Eastern Arizona Counties Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of meeting. SUMMARY: The Eastern Arizona Counties will meet...: Julia Faith Rivera, RAC Program Manager, Eastern Arizona Counties Resource Advisory Committee, Apache...

  7. Modelling radiocesium fluxes in forest ecosystems

    International Nuclear Information System (INIS)

    Shaw, G.; Kliashtorin, A.; Mamikhin, S.; Shcheglov, A.; Rafferty, B.; Dvornik, A.; Zhuchenko, T.; Kuchma, N.

    1996-01-01

    Monitoring of radiocesium inventories and fluxes has been carried out in forest ecosystems in Ukraine, Belarus and Ireland to determine distributions and rates of migration. This information has been used to construct and calibrate mathematical models which are being used to predict the likely longevity of contamination of forests and forest products such as timber following the Chernobyl accident

  8. Managing Forests for Water in the Anthropocene—The Best Kept Secret Services of Forest Ecosystems

    Directory of Open Access Journals (Sweden)

    Irena F. Creed

    2016-03-01

    Full Text Available Water and forests are inextricably linked. Pressures on forests from population growth and climate change are increasing risks to forests and their aquatic ecosystem services (AES. There is a need to incorporate AES in forest management but there is considerable uncertainty about how to do so. Approaches that manage forest ecosystem services such as fiber, water and carbon sequestration independently ignore the inherent complexities of ecosystem services and their responses to management actions, with the potential for unintended consequences that are difficult to predict. The ISO 31000 Risk Management Standard is a standardized framework to assess risks to forest AES and to prioritize management strategies to manage risks within tolerable ranges. The framework consists of five steps: establishing the management context, identifying, analyzing, evaluating and treating the risks. Challenges to implementing the framework include the need for novel models and indicators to assess forest change and resilience, quantification of linkages between forest practice and AES, and the need for an integrated systems approach to assess cumulative effects and stressors on forest ecosystems and AES. In the face of recent international agreements to protect forests, there are emerging opportunities for international leadership to address these challenges in order to protect both forests and AES.

  9. Valuation of Non-Market Ecosystem Services of Forests

    DEFF Research Database (Denmark)

    Taye, Fitalew Agimass

    Forests provide a multitude of ecosystem services to society. However, not all such services are being reflected in market prices and that leads to underestimation of their economic values and suboptimal management schemes. Therefore, non-market valuation is required to provide complementary...... information for better forest management that underpins the concept of total economic values. In this thesis, the non-market ecosystem services of forests are evaluated with a focus on showing the impact of forest management. The thesis consists of four papers that address three main research questions: 1......) Which forest structural characteristics and features affect recreational preferences? 2) Does childhood forest experience determine forest visiting habit in adulthood? And 3) How does environmental attitude influence individuals’ willingness to pay for forest management initiatives designed to enhance...

  10. Governing Forest Ecosystem Services for Sustainable Environmental Governance: A Review

    Directory of Open Access Journals (Sweden)

    Shankar Adhikari

    2018-05-01

    Full Text Available Governing forest ecosystem services as a forest socio-ecological system is an evolving concept in the face of different environmental and social challenges. Therefore, different modes of ecosystem governance such as hierarchical, scientific–technical, and adaptive–collaborative governance have been developed. Although each form of governance offers important features, no one form on its own is sufficient to attain sustainable environmental governance (SEG. Thus, the blending of important features of each mode of governance could contribute to SEG, through a combination of both hierarchical and collaborative governance systems supported by scientifically and technically aided knowledge. This should be further reinforced by the broad engagement of stakeholders to ensure the improved well-being of both ecosystems and humans. Some form of governance and forest management measures, including sustainable forest management, forest certification, and payment for ecosystem services mechanisms, are also contributing to that end. While issues around commodification and putting a price on nature are still contested due to the complex relationship between different services, if these limitations are taken into account, the governance of forest ecosystem services will serve as a means of effective environmental governance and the sustainable management of forest resources. Therefore, forest ecosystem services governance has a promising future for SEG, provided limitations are tackled with due care in future governance endeavors.

  11. Different cesium-137 transfers to forest and stream ecosystems

    International Nuclear Information System (INIS)

    Sakai, Masaru; Gomi, Takashi; Negishi, Junjiro N.; Iwamoto, Aimu; Okada, Kengo

    2016-01-01

    Understanding the mechanisms of "1"3"7Cs movement across different ecosystems is crucial for projecting the environmental impact and management of nuclear contamination events. Here, we report differential movement of "1"3"7Cs in adjacent forest and stream ecosystems. The food webs of the forest and stream ecosystems in our study were similar, in that they were both dominated by detrital-based food webs and the basal energy source was terrestrial litter. However, the concentration of "1"3"7Cs in stream litter was significantly lower than in forest litter, the result of "1"3"7Cs leaching from litter in stream water. The difference in "1"3"7Cs concentrations between the two types of litter was reflected in the "1"3"7Cs concentrations in the animal community. While the importance of "1"3"7Cs fallout and the associated transfer to food webs has been well studied, research has been primarily limited to cases in a single ecosystem. Our results indicate that there are differences in the flow of "1"3"7Cs through terrestrial and aquatic ecosystems, and that "1"3"7Cs concentrations are reduced in both basal food resources and higher trophic animals in aquatic systems, where primary production is subsidized by a neighboring terrestrial ecosystem. - Highlights: • Detrital-based food web structure was observed in both forest and stream ecosystems. • The "1"3"7Cs concentration in litter was 4 times lower in stream than in forest. • The difference of "1"3"7Cs concentration in litter reflected in animal contamination. • "1"3"7Cs leaching from litter decreases contamination level of stream food web. - Leaching from litter in stream decreases "1"3"7Cs concentration in litter, and the contamination level of food web in stream ecosystem is lower than that in adjacent forest ecosystem.

  12. Assessing ecosystem carbon stocks of Indonesia's threatened wetland forests

    Science.gov (United States)

    Warren, M.; Kauffman, B.; Murdiyarso, D.; Kurnianto, S.

    2011-12-01

    Over millennia, atmospheric carbon dioxide has been sequestered and stored in Indonesia's tropical wetland forests. Waterlogged conditions impede decomposition, allowing the formation of deep organic soils. These globally significant C pools are highly vulnerable to deforestation, degradation and climate change which can potentially switch their function as C sinks to long term sources of greenhouse gas (GHG) emissions. Also at risk are critical ecosystem services which sustain millions of people and the conservation of unique biological communities. The multiple benefits derived from wetland forest conservation makes them attractive for international C offset programs such as the proposed Reduced Emissions from Deforestation and Degradation (REDD+) mechanism. Yet, ecosystem C pools and fluxes in wetland forests remain poorly quantified. Significant knowledge gaps exist regarding how land use changes impact C dynamics in tropical wetlands, and very few studies have simultaneously assessed above- and belowground ecosystem C pools in Indonesia's freshwater peat swamps and mangroves. In addition, most of what is known about Indonesia's tropical wetland forests is derived from few geographic locations where long-standing research has focused, despite their broad spatial distribution. Here we present results from an extensive survey of ecosystem C stocks across several Indonesian wetland forests. Ecosystem C stocks were measured in freshwater peat swamp forests in West Papua, Central Kalimantan, West Kalimantan, and Sumatra. Carbon storage was also measured for mangrove forests in W. Papua, W. Kalimantan, and Sumatra. One overarching goal of this research is to support the development of REDD+ for tropical wetlands by informing technical issues related to carbon measuring, monitoring, and verification (MRV) and providing baseline data about the variation of ecosystem C storage across and within several Indonesian wetland forests.

  13. Ecological Values of Mangrove Forest Ecosystem

    OpenAIRE

    Kusmana, Cecep

    1996-01-01

    Research on quantification of ecological values of mangrove forest ecosystem are urgently needed, due to its importance as the basics for utilization and management of resources. From the ecological point of vlew, the main prohlem of mangrove ecosystem is rarity and inconsistency of data and limited accurate methods inquantifying ecological values of that ecosystem. Results show that mangrove has the significant ecological values on coastal ecosystem. However, there must be further research t...

  14. Advances of Air Pollution Science: From Forest Decline to Multiple-Stress Effects on Forest Ecosystem Services

    Science.gov (United States)

    E. Paoletti; M. Schaub; R. Matyssek; G. Wieser; A. Augustaitis; A. M. Bastrup-Birk; A. Bytnerowicz; M. S. Gunthardt-Goerg; G. Muller-Starck; Y. Serengil

    2010-01-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of...

  15. Vegetation and environmental features of forest and range ecosystems

    Science.gov (United States)

    George A. Garrison; Ardell J. Bjugstad; Don A. Duncan; Mont E. Lewis; Dixie R. Smith

    1977-01-01

    This publication describes the 34 ecosystems into which all the land of the 48 contiguous states has been classified in the Forest-Range Environmental Study (FRES) of the Forest Service, U.S. Department of Agriculture. The description of each ecosystem discusses physiography, climate, vegetation, fauna, soils, and land use. For a number of the ecosystems, the...

  16. Butterfly response and successional change following ecosystem restoration

    Science.gov (United States)

    Amy E. M. Waltz; W. Wallace Covington

    2001-01-01

    The Lepidoptera (butterflies and moths) can be useful indicators of ecosystem change as a result of a disturbance event. We monitored changes in butterfly abundance in two restoration treatment units paired with adjacent untreated forest at the Mt. Trumbull Resource Conservation Area in northern Arizona. Restoration treatments included thinning trees to density levels...

  17. The 2002 Rodeo-Chediski Wildfire's impacts on southwestern ponderosa pine ecosystems, hydrology, and fuels

    Science.gov (United States)

    Peter F. Ffolliott; Cody L. Stropki; Hui Chen; Daniel G. Neary

    2011-01-01

    The Rodeo-Chediski Wildfire burned nearly 462,600 acres in north-central Arizona in the summer of 2002. The wildfire damaged or destroyed ecosystem resources and disrupted the hydrologic functioning within the impacted ponderosa pine (Pinus ponderosa) forests in a largely mosaic pattern. Impacts of the wildfire on ecosystem resources, factors important to hydrologic...

  18. Balancing trade-offs between ecosystem services in Germany’s forests under climate change

    Science.gov (United States)

    Gutsch, Martin; Lasch-Born, Petra; Kollas, Chris; Suckow, Felicitas; Reyer, Christopher P. O.

    2018-04-01

    Germany’s forests provide a variety of ecosystem services. Sustainable forest management aims to optimize the provision of these services at regional level. However, climate change will impact forest ecosystems and subsequently ecosystem services. The objective of this study is to quantify the effects of two alternative management scenarios and climate impacts on forest variables indicative of ecosystem services related to timber, habitat, water, and carbon. The ecosystem services are represented through nine model output variables (timber harvest, above and belowground biomass, net ecosystem production, soil carbon, percolation, nitrogen leaching, deadwood, tree dimension, broadleaf tree proportion) from the process-based forest model 4C. We simulated forest growth, carbon and water cycling until 2045 with 4C set-up for the whole German forest area based on National Forest Inventory data and driven by three management strategies (nature protection, biomass production and a baseline management) and an ensemble of regional climate scenarios (RCP2.6, RCP 4.5, RCP 8.5). We provide results as relative changes compared to the baseline management and observed climate. Forest management measures have the strongest effects on ecosystem services inducing positive or negative changes of up to 40% depending on the ecosystem service in question, whereas climate change only slightly alters ecosystem services averaged over the whole forest area. The ecosystem services ‘carbon’ and ‘timber’ benefit from climate change, while ‘water’ and ‘habitat’ lose. We detect clear trade-offs between ‘timber’ and all other ecosystem services, as well as synergies between ‘habitat’ and ‘carbon’. When evaluating all ecosystem services simultaneously, our results reveal certain interrelations between climate and management scenarios. North-eastern and western forest regions are more suitable to provide timber (while minimizing the negative impacts on remaining

  19. Monitoring of radioactive pollution of forest ecosystems after accident on Chernobyl NPP. Rehabilitation with mushrooms harvesting in forest ecosystem

    International Nuclear Information System (INIS)

    Zarubina, Nataliia

    2016-01-01

    The project main objective was to forecast the behavior and redistribution of 137 Cs in the contaminated areas, using mathematical and statistical analysis of the data and the model. This forecast can help to develop recommendations for the use of different parts of forest ecosystems. Data on content of 137 Cs in the fruit bodies of mushrooms of different species and weight of different species of mushrooms per 1 sq. km is to be obtained in different forest ecosystems of Fukushima Prefecture. These data enable us to determine species of mushrooms-concentrators of this radionuclide in the forests of Japan and to forecast the expediency of remediation of forest soils in Japan with the help of mushrooms. Advantages of mycoextraction (harvesting of fungi fruit bodies) are as follows. (1) Minimum influence on the forest ecosystem. (2) High specific activity of the fungi fruit bodies allows extracting considerable amount of 137 Cs from contaminated territories. (3) During rich years, 0.5 -2 % and more of the total 137 Cs content in soil could be extracted using the fungi fruit bodies at contaminated territories and so on. But disadvantages of mycoextraction are somewhat. (N.T.)

  20. Global warming considerations in northern Boreal forest ecosystems

    International Nuclear Information System (INIS)

    Slaughter, C.W.

    1993-01-01

    The northern boreal forests of circumpolar lands are of special significance to questions of global climate change. Throughout its range, these forests are characterized by a relatively few tree species, although they may exhibit great spatial heterogeneity. Their ecosystems are simpler than temperate systems, and ecosystem processes are strongly affected by interactions between water, the landscape, and the biota. Northern boreal forest vegetation patterns are strongly influenced by forest fires, and distribution of forest generally coincides with occurrence of permafrost. Boreal forest landscapes are extremely sensitive to thermal disruption; global warming may result in lasting thermal and physical degradation of soils, altered rates and patterns of vegetation succession, and damage to engineered structures. A change in fire severity and frequency is also a significant concern. The total carbon pool of boreal forests and their associated peatlands is significant on a global scale; this carbon may amount to 10-20% of the global carbon pool. A change in latitudinal or elevational treeline has been suggested as a probable consequence of global warming. More subtle aspects of boreal forest ecosystems which may be affected by global warming include the depth of the active soil layer, the hydrologic cycle, and biological attributes of boreal stream systems. 48 refs., 2 figs

  1. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    Directory of Open Access Journals (Sweden)

    M. Zhang

    2010-02-01

    Full Text Available Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS and a subtropical evergreen broad-leaved forest at Dinghushan (DHS, based on the flux data obtained during June–August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max at CBS under cloudy skies during mid-growing season (from June to August increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP and greater increase in ecosystem respiration (Re at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in

  2. Dynamics of Ecosystem Services during Forest Transitions in Reventazón, Costa Rica.

    Science.gov (United States)

    Vallet, Améline; Locatelli, Bruno; Levrel, Harold; Brenes Pérez, Christian; Imbach, Pablo; Estrada Carmona, Natalia; Manlay, Raphaël; Oszwald, Johan

    2016-01-01

    The forest transition framework describes the temporal changes of forest areas with economic development. A first phase of forest contraction is followed by a second phase of expansion once a turning point is reached. This framework does not differentiate forest types or ecosystem services, and describes forests regardless of their contribution to human well-being. For several decades, deforestation in many tropical regions has degraded ecosystem services, such as watershed regulation, while increasing provisioning services from agriculture, for example, food. Forest transitions and expansion have been observed in some countries, but their consequences for ecosystem services are often unclear. We analyzed the implications of forest cover change on ecosystem services in Costa Rica, where a forest transition has been suggested. A review of literature and secondary data on forest and ecosystem services in Costa Rica indicated that forest transition might have led to an ecosystem services transition. We modeled and mapped the changes of selected ecosystem services in the upper part of the Reventazón watershed and analyzed how supply changed over time in order to identify possible transitions in ecosystem services. The modeled changes of ecosystem services is similar to the second phase of a forest transition but no turning point was identified, probably because of the limited temporal scope of the analysis. Trends of provisioning and regulating services and their tradeoffs were opposite in different spatial subunits of our study area, which highlights the importance of scale in the analysis of ecosystem services and forest transitions. The ecosystem services transition framework proposed in this study is useful for analyzing the temporal changes of ecosystem services and linking socio-economic drivers to ecosystem services demand at different scales.

  3. Modeling carbon and nitrogen biogeochemistry in forest ecosystems

    Science.gov (United States)

    Changsheng Li; Carl Trettin; Ge Sun; Steve McNulty; Klaus Butterbach-Bahl

    2005-01-01

    A forest biogeochemical model, Forest-DNDC, was developed to quantify carbon sequestration in and trace gas emissions from forest ecosystems. Forest-DNDC was constructed by integrating two existing moels, PnET and DNDC, with several new features including nitrification, forest litter layer, soil freezing and thawing etc, PnET is a forest physiological model predicting...

  4. 75 FR 9388 - Prescott National Forest, Bradshaw Ranger District; Arizona; Bradshaw Vegetation Management Project

    Science.gov (United States)

    2010-03-02

    ...; Arizona; Bradshaw Vegetation Management Project AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: This project is a proposal to improve the health of.... The project area encompasses about 55,554 acres. Within the project area, the proposal is to...

  5. Neighbourhood-scale urban forest ecosystem classification.

    Science.gov (United States)

    Steenberg, James W N; Millward, Andrew A; Duinker, Peter N; Nowak, David J; Robinson, Pamela J

    2015-11-01

    Urban forests are now recognized as essential components of sustainable cities, but there remains uncertainty concerning how to stratify and classify urban landscapes into units of ecological significance at spatial scales appropriate for management. Ecosystem classification is an approach that entails quantifying the social and ecological processes that shape ecosystem conditions into logical and relatively homogeneous management units, making the potential for ecosystem-based decision support available to urban planners. The purpose of this study is to develop and propose a framework for urban forest ecosystem classification (UFEC). The multifactor framework integrates 12 ecosystem components that characterize the biophysical landscape, built environment, and human population. This framework is then applied at the neighbourhood scale in Toronto, Canada, using hierarchical cluster analysis. The analysis used 27 spatially-explicit variables to quantify the ecosystem components in Toronto. Twelve ecosystem classes were identified in this UFEC application. Across the ecosystem classes, tree canopy cover was positively related to economic wealth, especially income. However, education levels and homeownership were occasionally inconsistent with the expected positive relationship with canopy cover. Open green space and stocking had variable relationships with economic wealth and were more closely related to population density, building intensity, and land use. The UFEC can provide ecosystem-based information for greening initiatives, tree planting, and the maintenance of the existing canopy. Moreover, its use has the potential to inform the prioritization of limited municipal resources according to ecological conditions and to concerns of social equity in the access to nature and distribution of ecosystem service supply. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of wildfire on densities of secondary cavity-nesting birds in ponderosa pine forests of northern Arizona

    Science.gov (United States)

    Jill K. Dwyer; William M. Block

    2000-01-01

    Many catastrophic wildfires burned throughout forests in Arizona during the spring and summer of 1996 owing to severely dry conditions. One result of these fires was a loss of preexisting tree cavities for reproduction. In ponderosa pine (Pinus ponderosa) forests most cavities are found in dead trees; therefore, snags are a very important habitat...

  7. Monitoring of radioactive pollution of forest ecosystems after accident on Chernobyl NPP. Rehabilitation with mushrooms harvesting in forest ecosystem

    International Nuclear Information System (INIS)

    Zarubina, Nataliia

    2016-01-01

    The project main objective was to forecast the behavior and redistribution of "1"3"7Cs in the contaminated areas, using mathematical and statistical analysis of the data and the model. This forecast can help to develop recommendations for the use of different parts of forest ecosystems. Data on content of "1"3"7Cs in the fruit bodies of mushrooms of different species and weight of different species of mushrooms per 1 sq. km is to be obtained in different forest ecosystems of Fukushima Prefecture. These data enable us to determine species of mushrooms-concentrators of this radionuclide in the forests of Japan and to forecast the expediency of remediation of forest soils in Japan with the help of mushrooms. Advantages of mycoextraction (harvesting of fungi fruit bodies) are as follows. (1) Minimum influence on the forest ecosystem. (2) High specific activity of the fungi fruit bodies allows extracting considerable amount of "1"3"7Cs from contaminated territories. (3) During rich years, 0.5 -2% and more of the total "1"3"7Cs content in soil could be extracted using the fungi fruit bodies at contaminated territories and so on. But disadvantages of mycoextraction are somewhat. (N.T.)

  8. Carbon-nitrogen interactions in forest ecosystems

    DEFF Research Database (Denmark)

    Gundersen, Per; Berg, Bjørn; Currie, W.S.

    This report is a summary of the main results from the EU project “Carbon – Nitrogen Interactions in Forest Ecosystems” (CNTER). Since carbon (C) and nitrogen (N) are bound together in organic matter we studied both the effect of N deposition on C cycling in forest ecosystems, and the effect of C ...

  9. The consequences of radioactive contamination of forest ecosystems due to Chernobyl accident

    International Nuclear Information System (INIS)

    Tikhomirov, F.A.; Shcheglova, A.I.

    1997-01-01

    The effect of forests on the radionuclide primary distribution in different components of the contaminated ecosystems is considered by the example of Chernobyl accident. A basic mathematical model is developed describing 137 Cs biogeochemical cycling under conditions of quasi-steady state radionuclide redistribution in the ecosystem. Forest ecosystems are proved to diminish radionuclide migration in the environment, and forest should be regarded as an important sanitary factor. The contribution of contaminated forests and forest products to the total irradiation dose to local population is estimated. Special countermeasures are elaborated in order to diminish unfavorable consequences of forest radioactive contamination. A long-term dynamics of radioactive situation in the forest ecosystems in forecasted and further studies on the subject are drafted

  10. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.

    Science.gov (United States)

    Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y

    2010-06-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. The hidden treasures of long-term paired watershed monitoring in the forests and grasslands of Arizona, USA

    Science.gov (United States)

    B. Poff; D. G. Neary; V. Henderson; A. Tecle

    2012-01-01

    Beginning in the 1950s, researchers of the United States Department of Agriculture Forest Service established a series of paired watershed studies throughout north-central and eastern Arizona. A total of nine experimental watershed areas were established in the pinyon-juniper and chaparral woodlands, as well as the ponderosa pine and mixed conifer forests. While most...

  12. Effects of prescribed fire intervals on carbon and nitrogen in forest soils of the Mogollon Rim, Arizona

    Science.gov (United States)

    Daniel G. Neary; Steven T. Overby; Sally M. Haase

    2003-01-01

    The pre-European settlement ponderosa pine forests of the Mogollon Rim consisted of open stands of uneven-aged trees with a significant grass-forb understory. Light surface-fires occurred on an average interval of 2 to 12 years in Arizona and New Mexico (Dietrich 1980). These fires consumed forest floor material, burned most of the young regeneration, and promoted...

  13. Bioecological principles of maintaining stability in mountain forest ecosystems of the Ukrainian Carpathians

    Directory of Open Access Journals (Sweden)

    T. V. Parpan

    2016-09-01

    Full Text Available The forest cover of the Carpathians has been deeply transformed by productive activities over the past centuries. The forest cover, age and species structure of its ecosystems have been changed. Beech and fir forests were replaced by spruce monocultures. Consequently, nitrogen and mineral elements cycles changed, the genetic and population structures altered and the eco-stabilizing function of forests decreased. These negative trends make it desirable to process the bioecological principles of maintenance the stability of mountain forest ecosystems. The proposed bioecological principles of support and recovery of stability of forest ecosystems are part of the paradigm of mountain dendrology and silviculture. The strategy is based on maintaining bio-ecological and population-genetical features of the main forest forming species, evolutionary typological classification of the forests, landscape and environmental specifics of the mountain part of the Ukrainian Carpathians, features of virgin, old growth and anthropogenically disturbed forest structures, as well as performing the functional role of forest ecosystems. Support for landscape ecosystem stability involves the conservation, selective, health and gradual cutting, formation of forest stands which are close to natural conditions and focusing on natural regeneration (a basis for stable mountain forest ecosystems.

  14. Impacts of elevated atmospheric CO2 on forest trees and forest ecosystems: knowledge gaps

    International Nuclear Information System (INIS)

    Karnosky, D.F.

    2003-06-01

    Atmospheric CO 2 is rising rapidly, and options for slowing the CO 2 rise are politically charged as they largely require reductions in industrial CO 2 emissions for most developed countries. As forests cover some 43% of the Earth's surface, account for some 70% of terrestrial net primary production (NPP), and are being bartered for carbon mitigation, it is critically important that we continue to reduce the uncertainties about the impacts of elevated atmospheric CO 2 on forest tree growth, productivity, and forest ecosystem function. In this paper, 1 review knowledge gaps and research needs on the effects of elevated atmospheric CO 2 on forest above- and below-ground growth and productivity, carbon sequestration, nutrient cycling, water relations, wood quality, phonology, community dynamics and biodiversity, antioxidants and stress tolerance, interactions with air pollutants, heterotrophic interactions, and ecosystem functioning. Finally, 1 discuss research needs regarding modelling of the impacts of elevated atmospheric CO 2 on forests. Even though there has been a tremendous amount of research done with elevated CO 2 and forest trees, it remains difficult to predict future forest growth and productivity under elevated atmospheric CO 2 . Likewise, it is not easy to predict how forest ecosystem processes will respond to enriched CO 2 . The more we study the impacts of increasing CO 2 , the more we realize that tree and forest responses are yet largely uncertain due to differences in responsiveness by species, genotype, and functional group, and the complex interactions of elevated atmospheric CO 2 with soil fertility, drought, pests, and co-occurring atmospheric pollutants such as nitrogen deposition and O 3 . Furthermore, it is impossible to predict ecosystem-level responses based on short-term studies of young trees grown without interacting stresses and in small spaces without the element of competition. Long-term studies using free-air CO 2 enrichment (FACE

  15. Model of plutonium dynamics in a deciduous forest ecosystem

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Gardner, R.H.; Dahlman, R.C.

    1980-01-01

    A linear compartment model with donor-controlled flows between compartments was designed to describe and simulate the behavior of plutonium ( 239 240 Pu) in a contaminated forest ecosystem at Oak Ridge, TN. At steady states predicted by the model, less than 0.25% of the plutonium in the ecosystem resides in biota. Soil is the major repository of plutonium in the forest, and exchanges of plutonium between soil and litter or soil and tree roots were dominant transfers affecting the ecosystem distribution of plutonium. Variation in predicted steady-state amounts of plutonium in the forest, given variability in the model parameters, indicates that our ability to develop models of plutonium transport in ecosystems should improve with greater precision in data from natural environments and a better understanding of sources of variation in plutonium data

  16. Cycling of radiocesium in forest ecosystems

    International Nuclear Information System (INIS)

    Myttenaere, C.; Sombre, L.; Thiry, Y.; De brouwer, S.; Ronneau, C.

    1993-01-01

    The behaviour of 137 Cs in forest ecosystems following an atmospheric contamination presents certain peculiarities which make these ecosystems an important compartment to consider in the framework of the protection of man and populations. Among these properties, the very high filtering capacity of the forest cover and the increased deposition velocities justify a higher contamination level of the forest green surfaces after an atmospheric release. In these conditions the forest management thus requires a good understanding of the cycle of the deposited radiocesium. To a certain extent comparing the behaviour of K that may be analogous to Cs may help the radioecologist in its understanding of the 137 Cs behaviour. Such a conclusion may also be drawn for other radionuclides and we surely have to regret that the mineral nutrition principles are often ignored in radioecology. The results of the observations in field and controlled conditions which are described in this paper are in favor of a good analogy between these two elements as soon as they are cycling in the plant

  17. Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest

    Science.gov (United States)

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the

  18. The Hardwood Ecosystem Experiment: a framework for studying responses to forest management

    Science.gov (United States)

    Robert K. Swihart; Michael R. Saunders; Rebecca A. Kalb; G. Scott Haulton; Charles H., eds. Michler

    2013-01-01

    Conditions in forested ecosystems of southern Indiana are described before initiation of silvicultural treatments for the Hardwood Ecosystem Experiment (HEE). The HEE is a 100-year study begun in 2006 in Morgan-Monroe and Yellowwood State Forests to improve the sustainability of forest resources and quality of life of Indiana residents by understanding ecosystem and...

  19. Post-Fire Evapotranspiration and Net Ecosystem Exchange over A Semi-Arid Grassland in Arizona

    Science.gov (United States)

    Krishnan, P.; Meyers, T. P.; Heuer, M.

    2015-12-01

    The seasonal and interannual variability of evapotranspiration (E) and net ecosystem exchange (NEE) following a fire disturbance over a semi -arid grassland located on the Audubon Research Ranch in south western Arizona (31.5907N, 110.5104W, elevation 1496 m), USA, and their relationships to environmental variables were examined using continuous measurements of water vapour and CO2 fluxes made from first week of June 2002 to 2009 using the eddy covariance technique. The research ranch was established in 1969 as an ecological research preserve and it is now one of the largest ungrazed, privately managed grassland sites in Arizona. A wild fire occurred in April - May 2002, and burned all the standing vegetation and litter on in research ranch (~38,000 acres) including 500 acres of grassland. The mean annual temperature and precipitation (P) at this site were ~16 deg C and ~370 mm, respectively. More than 60% of the annual P was received during the North American monsoon period (July-September) with the lowest annual P in the drought years of 2004 and 2009. Drastic changes in albedo, vegetation growth and evapotranspiration occurred following the onset of the monsoon season in July. The ecosystem was mostly a carbon sink during monsoon period. Daily total evapotranspiration during July-August increased from 2 mm d-1 in 2002 to >3 mm d-1 in 2007. The mean annual E over the site was during 2003 -2009 was 352 ±75 mm. With the onset of monsoon the ecosystem turned to carbon sink in 2002, with daily total net ecosystem exchange (NEE) varying up to ~vegetation index, longest monsoon growing season and the highest annual and July-September P. The interannual variations in annual E and NEE were mostly controlled by annual P, July-September NDVI and growing season length during 2002-2009.

  20. Tree diversity does not always improve resistance of forest ecosystems to drought.

    Science.gov (United States)

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia; Bouriaud, Olivier; Bruelheide, Helge; Chećko, Ewa; Forrester, David Ian; Dawud, Seid Muhie; Finér, Leena; Pollastrini, Martina; Scherer-Lorenzen, Michael; Valladares, Fernando; Bonal, Damien; Gessler, Arthur

    2014-10-14

    Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, biodiversity is known to support a wide range of forest ecosystem functions and services. However, whether biodiversity also improves the resistance of these ecosystems to drought remains unclear. We compared soil drought exposure levels in a total of 160 forest stands within five major forest types across Europe along a gradient of tree species diversity. We assessed soil drought exposure in each forest stand by calculating the stand-level increase in carbon isotope composition of late wood from a wet to a dry year (Δδ(13)CS). Δδ(13)CS exhibited a negative linear relationship with tree species diversity in two forest types, suggesting that species interactions in these forests diminished the drought exposure of the ecosystem. However, the other three forest types were unaffected by tree species diversity. We conclude that higher diversity enhances resistance to drought events only in drought-prone environments. Managing forest ecosystems for high tree species diversity does not necessarily assure improved adaptability to the more severe and frequent drought events predicted for the future.

  1. Forests planted for ecosystem restoration or conservation.

    Science.gov (United States)

    Constance A. Harrington

    1999-01-01

    Although the phrase, "planting for ecosystem restoration," is of recent origin, many of the earliest large-scale tree plantings were made for what we now refer to as "'restoration" or "conservation" goals. Forest restoration activities may be needed when ecosystems are disturbed by either natural or anthropogenic forces. Disturbances...

  2. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Science.gov (United States)

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  3. Forest disturbance by an ecosystem engineer: beaver in boreal forest landscapes

    OpenAIRE

    Nummi, Petri; Kuuluvainen, Timo

    2013-01-01

    Natural disturbances are important for forest ecosystem dynamics and maintenance of biodiversity. In the boreal forest, large-scale disturbances such as wildfires and windstorms have been emphasized, while disturbance agents acting at smaller scales have received less attention. Especially in Europe beavers have long been neglected as forest disturbance agents because they were extirpated from most of their range centuries ago. However, now they are returning to many parts of their former dis...

  4. A framework for developing urban forest ecosystem services and goods indicators

    Science.gov (United States)

    Cynnamon Dobbs; Francisco J. Escobedo; Wayne C. Zipperer

    2011-01-01

    The social and ecological processes impacting on urban forests have been studied at multiple temporal and spatial scales in order to help us quantify, monitor, and value the ecosystem services that benefit people. Few studies have comprehensively analyzed the full suite of ecosystem services, goods (ESG), and ecosystem disservices provided by an urban forest....

  5. A compartment model of plutonium dynamics in a deciduous forest ecosystem

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Gardner, R.H.; Dahlman, R.C.

    1978-01-01

    A linear compartment donor-controlled model was designed to describe and simulate the behaviour of plutonium ( 239 , 240 Pu) in a contaminated deciduous forest ecosystem at Oak Ridge, Tennessee. At steady states predicted by the model, less than 0.25% of the Pu in the ecosystem resides in forest biota. Soil is the major repository of Pu in the forest, and reciprocal exchanges of Pu between soil and litter or soil and tree roots were dominant transfers affecting the ecosystem distribution of Pu. Variation in predicted steady state amounts of Pu in the forest, given variability in the model parameters, indicated that ones ability to develop reliable models of Pu transport in ecosystems will improve with greater precision in data from natural environments and a better understanding of sources of variation in Pu data. (author)

  6. Comparative behavior of three long-lived radionuclides in forest ecosystems

    International Nuclear Information System (INIS)

    Auerbach, S.I.

    1986-01-01

    This paper deals with studies in three forest ecosystems in eastern Tennessee, an area of rich temperate deciduous forests, sometimes referred to as mixed mesophytic forests. Two of these forest ecosystems were contaminated as a result of waste disposal operations. The third was experimentally tagged with millicurie quantities of 137 Cs. One of these ecosystems is a floodplain forest that is typical of this region. This forest has been growing on alluvial soils since 1944. Prior to that time the area was a temporary holding pond within White Oak Creek which received radioactive effluents from ORNL. Radiocesium was deposited in the pond sediments as were 90 Sr, 239 Pu, 241 Am, and other radionuclides. The dam which created the pond failed in late 1944, and the area was allowed to revert to natural conditions. The result was the development of a floodplain forest consisting of three different forest communities. The soils are fertile alluvials representative of bottomlands. The overstory tree species are principally ash, sycamore, boxelder, willow, and sweetgum (Fraxinus americana L., Plantanus occidentalis L., Acer negundo L., Salix nigra Marsh, and Liquidambar styraciflua L., respectively)

  7. The Kings River Sustainable Forest Ecosystems Project: inception, objectives, and progress

    Science.gov (United States)

    Jared Verner; Mark T. Smith

    2002-01-01

    The Kings River Sustainable Forest Ecosystems Project, a formal administrative study involving extensive and intensive collaboration between Forest Service managers and researchers, is a response to changes in the agency’s orientation in favor of ecosystem approaches and to recent concern over issues associated with maintenance of late successional forest attributes...

  8. Studies on Interpretive Structural Model for Forest Ecosystem Management Decision-Making

    Science.gov (United States)

    Liu, Suqing; Gao, Xiumei; Zen, Qunying; Zhou, Yuanman; Huang, Yuequn; Han, Weidong; Li, Linfeng; Li, Jiping; Pu, Yingshan

    Characterized by their openness, complexity and large scale, forest ecosystems interweave themselves with social system, economic system and other natural ecosystems, thus complicating both their researches and management decision-making. According to the theories of sustainable development, hierarchy-competence levels, cybernetics and feedback, 25 factors have been chosen from human society, economy and nature that affect forest ecosystem management so that they are systematically analyzed via developing an interpretive structural model (ISM) to reveal their relationships and positions in the forest ecosystem management. The ISM consists of 7 layers with the 3 objectives for ecosystem management being the top layer (the seventh layer). The ratio between agricultural production value and industrial production value as the bases of management decision-making in forest ecosystems becomes the first layer at the bottom because it has great impacts on the values of society and the development trends of forestry, while the factors of climatic environments, intensive management extent, management measures, input-output ratio as well as landscape and productivity are arranged from the second to sixth layers respectively.

  9. Barrier island forest ecosystem: role of meteorologic nutrient inputs.

    Science.gov (United States)

    Art, H W; Bormann, F H; Voigt, G K; Woodwell, G M

    1974-04-05

    The Sunken Forest, located on Fire Island, a barrier island in the Atlantic Ocean off Long Island, New York, is an ecosystem in which most of the basic cation input is in the form of salt spray. This meteorologic input is sufficient to compensate for the lack of certain nutrients in the highly weathered sandy soils. In other ecosystems these nutrients are generally supplied by weathering of soil particles. The compensatory effect of meteorologic input allows for primary production rates in the Sunken Forest similar to those of inland temperate forests.

  10. Parameterisation of Biome BGC to assess forest ecosystems in Africa

    Science.gov (United States)

    Gautam, Sishir; Pietsch, Stephan A.

    2010-05-01

    African forest ecosystems are an important environmental and economic resource. Several studies show that tropical forests are critical to society as economic, environmental and societal resources. Tropical forests are carbon dense and thus play a key role in climate change mitigation. Unfortunately, the response of tropical forests to environmental change is largely unknown owing to insufficient spatially extensive observations. Developing regions like Africa where records of forest management for long periods are unavailable the process-based ecosystem simulation model - BIOME BGC could be a suitable tool to explain forest ecosystem dynamics. This ecosystem simulation model uses descriptive input parameters to establish the physiology, biochemistry, structure, and allocation patterns within vegetation functional types, or biomes. Undocumented parameters for larger-resolution simulations are currently the major limitations to regional modelling in African forest ecosystems. This study was conducted to document input parameters for BIOME-BGC for major natural tropical forests in the Congo basin. Based on available literature and field measurements updated values for turnover and mortality, allometry, carbon to nitrogen ratios, allocation of plant material to labile, cellulose, and lignin pools, tree morphology and other relevant factors were assigned. Daily climate input data for the model applications were generated using the statistical weather generator MarkSim. The forest was inventoried at various sites and soil samples of corresponding stands across Gabon were collected. Carbon and nitrogen in the collected soil samples were determined from soil analysis. The observed tree volume, soil carbon and soil nitrogen were then compared with the simulated model outputs to evaluate the model performance. Furthermore, the simulation using Congo Basin specific parameters and generalised BIOME BGC parameters for tropical evergreen broadleaved tree species were also

  11. Modelling of radionuclide migration in forest ecosystems. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Avila, R.; Moberg, L.; Hubbard, L.

    1998-03-01

    The Chernobyl accident has clearly shown the long-term effects of a radioactive contamination of forest ecosystems. This report is based on a literature review of models which describe the migration of radionuclides, radioactive caesium in particular, in forest ecosystems. The report describes the particularities of the forest ecosystem, the time dynamics of the contamination, the transfer processes and factors influencing caesium migration. This provides a basis for a discussion of different approaches for modelling caesium migration in the forest. It is concluded that the studied dynamic models include the most relevant transfer processes both for the acute and the long-term phase after a radioactive deposition. However, most models are site specific and do not consider some of the factors responsible for the differences in radionuclide behaviour and distribution in different types of forests. Although model improvements are constrained by the availability of experimental data and by the lack of knowledge of the migration mechanisms some possible improvements are discussed. This report is part of the LANDSCAPE project. -An integrated approach to radionuclide flow in the semi-natural ecosystems underlying exposure pathways to man. 42 refs, 3 tabs, 9 figs.

  12. Modelling of radionuclide migration in forest ecosystems. A literature review

    International Nuclear Information System (INIS)

    Avila, R.; Moberg, L.; Hubbard, L.

    1998-03-01

    The Chernobyl accident has clearly shown the long-term effects of a radioactive contamination of forest ecosystems. This report is based on a literature review of models which describe the migration of radionuclides, radioactive caesium in particular, in forest ecosystems. The report describes the particularities of the forest ecosystem, the time dynamics of the contamination, the transfer processes and factors influencing caesium migration. This provides a basis for a discussion of different approaches for modelling caesium migration in the forest. It is concluded that the studied dynamic models include the most relevant transfer processes both for the acute and the long-term phase after a radioactive deposition. However, most models are site specific and do not consider some of the factors responsible for the differences in radionuclide behaviour and distribution in different types of forests. Although model improvements are constrained by the availability of experimental data and by the lack of knowledge of the migration mechanisms some possible improvements are discussed. This report is part of the LANDSCAPE project. -An integrated approach to radionuclide flow in the semi-natural ecosystems underlying exposure pathways to man

  13. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.

    Science.gov (United States)

    Vogt, D J; Vogt, K A; Gmur, S J; Scullion, J J; Suntana, A S; Daryanto, S; Sigurðardóttir, R

    2016-01-01

    Energy captured by and flowing through a forest ecosystem can be indexed by its total Net Primary Productivity (NPP). This forest NPP can also be a reflection of its sensitivity to, and its ability to adapt to, any climate change while also being harvested by humans. However detecting and identifying the vulnerability of forest and human ecosystems to climate change requires information on whether these coupled social and ecological systems are able to maintain functionality while responding to environmental variability. To better understand what parameters might be representative of environmental variability, we compiled a metadata analysis of 96 tropical forest sites. We found that three soil textural classes (i.e., sand, sandy loam and clay) had significant but different relationships between NPP and precipitation levels. Therefore, assessing the vulnerability of forests and forest dependent communities to drought was carried out using data from those sites that had one of those three soil textural classes. For example, forests growing on soil textures of sand and clay had NPP levels decreasing as precipitation levels increased, in contrast to those forest sites that had sandy loam soils where NPP levels increased. Also, forests growing on sandy loam soil textures appeared better adapted to grow at lower precipitation levels compared to the sand and clay textured soils. In fact in our tropical database the lowest precipitation level found for the sandy loam soils was 821 mm yr(-1) compared to sand at 1739 mm yr(-1) and clay at 1771 mm yr(-1). Soil texture also determined the level of NPP reached by a forest, i.e., forest growing on sandy loam and clay reached low-medium NPP levels while higher NPP levels (i.e., medium, high) were found on sand-textured soils. Intermediate precipitation levels (>1800-3000 mm yr(-1)) were needed to grow forests at the medium and high NPP levels. Low thresholds of NPP were identified at both low (∼750 mm) and high precipitation

  14. Non-market forest ecosystem services and decision support in Nordic countries

    DEFF Research Database (Denmark)

    Filyushkina, Anna; Strange, Niels; Löf, Magnus

    2016-01-01

    The need to integrate non-market ecosystem services into decision-making is widely acknowledged. Despite the exponentially growing body of literature, trade-offs between services are still poorly understood. We conducted a systematic review of published literature in the Nordic countries (Denmark......, Norway, Sweden and Finland) on the integration of non-market forest ecosystem services into decision-making. The aim of the review was two-fold: (1) to provide an overview of coverage of biophysical and socio-economic assessments of non-market ecosystem services in relation to forest management; (2......) to determine the extent of the integration of biophysical and socio-economic models of these services into decision support models. Our findings reveal the need for wider coverage of non-market ecosystem services and evidence-based modelling of how forest management regimes affect ecosystem services...

  15. Satellite Image-based Estimates of Snow Water Equivalence in Restored Ponderosa Pine Forests in Northern Arizona

    Science.gov (United States)

    Sankey, T.; Springer, A. E.; O'Donnell, F. C.; Donald, J.; McVay, J.; Masek Lopez, S.

    2014-12-01

    The U.S. Forest Service plans to conduct forest restoration treatments through the Four Forest Restoration Initiative (4FRI) on hundreds of thousands of acres of ponderosa pine forest in northern Arizona over the next 20 years with the goals of reducing wildfire hazard and improving forest health. The 4FRI's key objective is to thin and burn the forests to create within-stand openings that "promote snowpack accumulation and retention which benefit groundwater recharge and watershed processes at the fine (1 to 10 acres) scale". However, little is known about how these openings created by restoration treatments affect snow water equivalence (SWE) and soil moisture, which are key parts of the water balance that greatly influence water availability for healthy trees and for downstream water users in the Sonoran Desert. We have examined forest canopy cover by calculating a Normalized Difference Vegetation Index (NDVI), a key indicator of green vegetation cover, using Landsat satellite data. We have then compared NDVI between treatments at our study sites in northern Arizona and have found statistically significant differences in tree canopy cover between treatments. The control units have significantly greater forest canopy cover than the treated units. The thinned units also have significantly greater tree canopy cover than the thin-and-burn units. Winter season Landsat images have also been analyzed to calculate Normalized Difference Snow Index (NDSI), a key indicator of snow water equivalence and snow accumulation at the treated and untreated forests. The NDSI values from these dates are examined to determine if snow accumulation and snow water equivalence vary between treatments at our study sites. NDSI is significantly greater at the treated units than the control units. In particular, the thinned forest units have significantly greater snow cover than the control units. Our results indicate that forest restoration treatments result in increased snow pack

  16. Modelling natural disturbances in forest ecosystems: a review

    NARCIS (Netherlands)

    Seidl, R.; Fernandes, P.M.; Fonseca, T.F.; Gillet, F.; Jöhnsson, A.M.; Merganičová, K.; Netherer, S.; Arpaci, A.; Bontemps, J.D.; Bugmann, H.; González-Olabarria, J.R.; Lasch, P.; Meredieu, C.; Moreira, F.; Schelhaas, M.; Mohren, G.M.J.

    2011-01-01

    Natural disturbances play a key role in ecosystem dynamics and are important factors for sustainable forest ecosystem management. Quantitative models are frequently employed to tackle the complexities associated with disturbance processes. Here we review the wide variety of approaches to modelling

  17. Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA

    Science.gov (United States)

    Jenkins, S.E.; Hull, Sieg C.; Anderson, D.E.; Kaufman, D.S.; Pearthree, P.A.

    2011-01-01

    Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area. Radiocarbon ages indicate that stand-replacing fire has been an important phenomenon in late Holocene ponderosa pine (Pinus ponderosa) and ponderosa pine-mixed conifer forests on steep slopes. Fires have occurred on centennial scales during this period, although temporal hiatuses between recorded fires vary widely and appear to have decreased during the past 2000 years. Steep slopes and complex terrain may be responsible for localised crown fire behaviour through preheating by vertical fuel arrangement and accumulation of excessive fuels. Holocene wildfire-induced debris flow events occurred without a clear relationship to regional climatic shifts (decadal to millennial), suggesting that interannual moisture variability may determine fire year. Fire-debris flow sequences are recorded when (1) sufficient time has passed (centuries) to accumulate fuels; and (2) stored sediment is available to support debris flows. The frequency of reconstructed debris flows should be considered a minimum for severe events in the study area, as fuel production may outpace sediment storage. ?? IAWF 2011.

  18. Calcium constrains plant control over forest ecosystem nitrogen cycling.

    Science.gov (United States)

    Groffman, Peter M; Fisk, Melany C

    2011-11-01

    Forest ecosystem nitrogen (N) cycling is a critical controller of the ability of forests to prevent the movement of reactive N to receiving waters and the atmosphere and to sequester elevated levels of atmospheric carbon dioxide (CO2). Here we show that calcium (Ca) constrains the ability of northern hardwood forest trees to control the availability and loss of nitrogen. We evaluated soil N-cycling response to Ca additions in the presence and absence of plants and observed that when plants were present, Ca additions "tightened" the ecosystem N cycle, with decreases in inorganic N levels, potential net N mineralization rates, microbial biomass N content, and denitrification potential. In the absence of plants, Ca additions induced marked increases in nitrification (the key process controlling ecosystem N losses) and inorganic N levels. The observed "tightening" of the N cycle when Ca was added in the presence of plants suggests that the capacity of forests to absorb elevated levels of atmospheric N and CO2 is fundamentally constrained by base cations, which have been depleted in many areas of the globe by acid rain and forest harvesting.

  19. Spatial complementarity of forests and farms: accounting for ecosystem services

    Science.gov (United States)

    Subhrendu K. Pattanayak; David T. Butry

    2006-01-01

    Our article considers the economic contributions of forest ecosystem services, using a case study from Flores, Indonesia, in which forest protection in upstream watersheds stabilize soil and hydrological flows in downstream farms. We focus on the demand for a weak complement to the ecosystem services--farm labor-- and account for spatial dependence due to economic...

  20. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    Science.gov (United States)

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  1. Learning in Virtual Forest: A Forest Ecosystem in the Web-Based Learning Environment

    Science.gov (United States)

    Jussila, Terttu; Virtanen, Viivi

    2014-01-01

    Virtual Forest is a web-based, open-access learning environment about forests designed for primary-school pupils between the ages of 10 and 13 years. It is pedagogically designed to develop an understanding of ecology, to enhance conceptual development and to give a holistic view of forest ecosystems. Various learning tools, such as concept maps,…

  2. Spatial and temporal patterns of carbon storage in forest ecosystems on Hainan island, southern China.

    Science.gov (United States)

    Ren, Hai; Li, Linjun; Liu, Qiang; Wang, Xu; Li, Yide; Hui, Dafeng; Jian, Shuguang; Wang, Jun; Yang, Huai; Lu, Hongfang; Zhou, Guoyi; Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993-2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices.

  3. Forest-land conversion, ecosystem services, and economic issues for policy: a review

    Science.gov (United States)

    Robert A. Smail; David J. Lewis

    2009-01-01

    The continued conversion and development of forest land pose a serious threat to the ecosystem services derived from forested landscapes. We argue that developing an understanding of the full range of consequences from forest conversion requires understanding the effects of such conversion on both components of ecosystem services: products and processes....

  4. Geospatial technology perspectives for mining vis-a-vis sustainable forest ecosystems

    Directory of Open Access Journals (Sweden)

    Goparaju Laxmi

    2017-06-01

    Full Text Available Forests, the backbone of biogeochemical cycles and life supporting systems, are under severe pressure due to varied anthropogenic activities. Mining activities are one among the major reasons for forest destruction questioning the survivability and sustainability of flora and fauna existing in that area. Thus, monitoring and managing the impact of mining activities on natural resources at regular intervals is necessary to check the status of their depleted conditions, and to take up restoration and conservative measurements. Geospatial technology provides means to identify the impact of different mining operations on forest ecosystems and helps in proposing initiatives for safeguarding the forest environment. In this context, the present study highlights the problems related to mining in forest ecosystems and elucidates how geospatial technology can be employed at various stages of mining activities to achieve a sustainable forest ecosystem. The study collates information from various sources and highlights the role of geospatial technology in mining industries and reclamation process.

  5. Forest ecosystem services and livelihood of communities around ...

    African Journals Online (AJOL)

    A study on the potential of forest ecosystem services to the livelihood of communities around Shume-Magamba Forest Reserve in Lushoto District, Tanzania was conducted. Questionnaire survey, focus group discussion and participant's observation were used. Qualitatively and quantitatively data were analysed using the ...

  6. [Carbon sequestration status of forest ecosystems in Ningxia Hui Autonomous Region].

    Science.gov (United States)

    Gao, Yang; Jin, Jing-Wei; Cheng, Ji-Min; Su, Ji-Shuai; Zhu, Ren-Bin; Ma, Zheng-Rui; Liu, Wei

    2014-03-01

    Based on the data of Ningxia Hui Autonomous Region forest resources inventory, field investigation and laboratory analysis, this paper studied the carbon sequestration status of forest ecosystems in Ningxia region, estimated the carbon density and storage of forest ecosystems, and analyzed their spatial distribution characteristics. The results showed that the biomass of each forest vegetation component was in the order of arbor layer (46.64 Mg x hm(-2)) > litterfall layer (7.34 Mg x hm(-2)) > fine root layer (6.67 Mg x hm(-2)) > shrub-grass layer (0.73 Mg x hm(-2)). Spruce (115.43 Mg x hm(-2)) and Pinus tabuliformis (94.55 Mg x hm(-2)) had higher vegetation biomasses per unit area than other tree species. Over-mature forest had the highest arbor carbon density among the forests with different ages. However, the young forest had the highest arbor carbon storage (1.90 Tg C) due to its widest planted area. Overall, the average carbon density of forest ecosystems in Ningxia region was 265.74 Mg C x hm(-2), and the carbon storage was 43.54 Tg C. Carbon density and storage of vegetation were 27.24 Mg C x hm(-2) and 4.46 Tg C, respectively. Carbon storage in the soil was 8.76 times of that in the vegetation. In the southern part of Ningxia region, the forest carbon storage was higher than in the northern part, where the low C storage was mainly related to the small forest area and young forest age structure. With the improvement of forest age structure and the further implementation of forestry ecoengineering, the forest ecosystems in Ningxia region would achieve a huge carbon sequestration potential.

  7. Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines

    Science.gov (United States)

    Zipper, Carl E.; Burger, James A.; Skousen, Jeffrey G.; Angel, Patrick N.; Barton, Christopher D.; Davis, Victor; Franklin, Jennifer A.

    2011-05-01

    Surface coal mining in Appalachia has caused extensive replacement of forest with non-forested land cover, much of which is unmanaged and unproductive. Although forested ecosystems are valued by society for both marketable products and ecosystem services, forests have not been restored on most Appalachian mined lands because traditional reclamation practices, encouraged by regulatory policies, created conditions poorly suited for reforestation. Reclamation scientists have studied productive forests growing on older mine sites, established forest vegetation experimentally on recent mines, and identified mine reclamation practices that encourage forest vegetation re-establishment. Based on these findings, they developed a Forestry Reclamation Approach (FRA) that can be employed by coal mining firms to restore forest vegetation. Scientists and mine regulators, working collaboratively, have communicated the FRA to the coal industry and to regulatory enforcement personnel. Today, the FRA is used routinely by many coal mining firms, and thousands of mined hectares have been reclaimed to restore productive mine soils and planted with native forest trees. Reclamation of coal mines using the FRA is expected to restore these lands' capabilities to provide forest-based ecosystem services, such as wood production, atmospheric carbon sequestration, wildlife habitat, watershed protection, and water quality protection to a greater extent than conventional reclamation practices.

  8. Detecting forest cover and ecosystem service change using ...

    African Journals Online (AJOL)

    Natural forests in Uganda have experienced both spatial and temporal modifications from different drivers which need to be monitored to assess the impacts of such changes on ecosystems and prevent related risks of reduction in ecosystem service benefits. Ground investigations may be complex because of dual ...

  9. Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy)

    International Nuclear Information System (INIS)

    Loppi, Stefano; Pirintsos, S.A.

    2003-01-01

    Epiphytic lichens were useful as an early warning system for changes in forest ecosystems. - The results of a study using epiphytic lichens (Parmelia caperata) as sentinels for heavy metal deposition at six selected forest ecosystems of central Italy are reported. The woods investigated are characterized by holm oak (Quercus ilex), turkey oak (Quercus cerris) and beech (Fagus sylvatica) and represent the typical forest ecosystems of central Italy at low, medium and high elevations, respectively. The results showed that levels of heavy metals in lichens were relatively low and consequently no risk of heavy metal air pollution is expected for the six forest ecosystems investigated. However, for two of them there are indications of a potential risk: the beech forest of Vallombrosa showed signs of contamination by Pb as a consequence of vehicle traffic due to the rather high touristic pressure in the area, and the holm oak forest of Cala Violina showed transboundary pollution by Mn, Cr and Ni originating from the steel industry in Piombino. Epiphytic lichens proved to be very effective as an early warning system to detect signs of a changing environment at forest ecosystems

  10. Considerations on forest ecosystems evolution in the Republic of Moldova

    Directory of Open Access Journals (Sweden)

    Petru COCÎRȚĂ

    2011-01-01

    Full Text Available Certain statistical data on forest ecosystems evolution in Republic of Moldova’s territory in 200 years period are analyzed in the article.  The history of forest fund and ecosystems’ development on the territory between Prut andNistru Rivers and of data presentation methods during different periods of territories’social economical development is summarized. Forest ecosystems development issues instudy and specifically those of forests’ continuity and conservation are extremely important for Republic of Moldova, which is a country with high population density, oldtraditions in agricultural branch and with a major negative attitude towards biological diversity maintaining and forest ecosystems’ viable development. Goals and objectives of the present work are to analyze forest evolution and to identifyhigher priority issues in order to rectify the situation in forest sector in Republic of Moldova. Basic characteristics of forest ecosystems are presented and causes of differences in datainterpretation were described on the basis of statistical data study and analysis during different periods and from different sources, as well as maps dated 1910 and 2004. Certainbasic elements of ecological management in forestry that exist in Republic of Moldova in present are described, such as legal normative base, infrastructure and others. The final part of work contains conclusions and some suggestions on forest ecosystems’viable development in Republic of Moldova according to European and internationalrequirements.

  11. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project

    Science.gov (United States)

    Ewers, Robert M.; Didham, Raphael K.; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D.; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L.; Turner, Edgar C.

    2011-01-01

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification. PMID:22006969

  12. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project.

    Science.gov (United States)

    Ewers, Robert M; Didham, Raphael K; Fahrig, Lenore; Ferraz, Gonçalo; Hector, Andy; Holt, Robert D; Kapos, Valerie; Reynolds, Glen; Sinun, Waidi; Snaddon, Jake L; Turner, Edgar C

    2011-11-27

    Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.

  13. Biodiversity, ecosystem function and forest management. Part I

    International Nuclear Information System (INIS)

    Le Tacon, F.; Selosse, M-A.; Gosselin, F.

    2000-01-01

    In part one, the authors dealt first with the foundations of biodiversity and its role in forest ecosystems. They then go on to the problems relating to its level of expression and the measurements and indicators for assessing it. Following a section on ethical considerations, the authors explore the possible impact of factors involving human activities other than forest management on biodiversity - fragmentation and structuring of space, forest occupancy, picking, disappearance of carnivorous species, depositions and pollution, global warming and forest fires. (authors)

  14. Environmental effects of ash application in forest ecosystems

    DEFF Research Database (Denmark)

    Hansen, Mette

    of ashes being produced and the export of nutrients from the forests. This PhD project aims at investigating how ash application in forest ecosystems affects soil and soil solution properties and whether ash application can be used in a Danish context without environmental harm but with positive effects...

  15. Integrating forest products with ecosystem services: a global perspective

    Science.gov (United States)

    Robert L. Deal; Rachel. White

    2012-01-01

    Around the world forests provide a broad range of vital ecosystem services. Sustainable forest management and forest products play an important role in global carbon management, but one of the major forestry concerns worldwide is reducing the loss of forestland from development. Currently, deforestation accounts for approximately 20% of total greenhouse gas emissions....

  16. Cryptic Methane Emissions from Upland Forest Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Megonigal, Patrick [Smithsonian Institution, Washington, DC (United States); Pitz, Scott [Johns Hopkins Univ., Baltimore, MD (United States); Smithsonian Institution, Washington, DC (United States)

    2016-04-19

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) develop the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.

  17. Environmental controls on the carbon isotope composition of ecosystem-respired CO{sub 2} in contrasting forest ecosystems in Canada and the USA

    Energy Technology Data Exchange (ETDEWEB)

    Alstad, K.P. [Lethbridge Univ., Lethbridge, AB (Canada). Dept. of Biological Sciences; Toledo Univ., Toledo, OH (United States). Dept. of Environmental Sciences; Flanagan, L.B. [Lethbridge Univ., Lethbridge, AB (Canada). Dept. of Biological Sciences; Lai, C.T. [Utah Univ., Salt Lake City, UT (United States); San Diego State Univ., San Diego, CA (United States); Ehleringer, J.R. [Utah Univ., Salt Lake City, UT (United States)

    2007-10-15

    Eleven forest ecosystems in Canada and the United States were compared in order to test for differences among forest {delta}{sup 13} carbon (C) responses to seasonal variations in environmental conditions from May to October 2004. Carbon isotope composition of ecosystem-respired carbon dioxide (CO{sub 2}) was considered as a proxy for short-term changes in photosynthetic discrimination. The study compared coniferous and deciduous forests, as well as forests in boreal and coastal environments. It was hypothesized that the carbon isotope composition of ecosystem-respired CO{sub 2} varied in a manner consistent with results obtained in leaf-level studies. Results of the study showed that higher R{sup 2} values were obtained for coastal ecosystems. The relationships between {delta}{sup 13}C{sub R} and environmental conditions were consistent with results obtained from leaf-level studies. Vapour pressure deficits and soil temperatures were significant determinants of variations in {delta}{sup 13}C{sub R} in the boreal forest ecosystem. Variations in {delta}{sup 13}C{sub R} in the coastal forest ecosystem correlated with changes in photosynthetic photon flux (PPF). It was concluded that {delta}{sup 13}C{sub R} measurements can be used to assess yearly variations in ecosystem physiological responses to changing environmental conditions. 59 refs., 7 tabs., 6 figs.

  18. Forecasting Urban Forest Ecosystem Structure, Function, and Vulnerability

    Science.gov (United States)

    James W. N. Steenberg; Andrew A. Millward; David J. Nowak; Pamela J. Robinson; Alexis Ellis

    2016-01-01

    The benefits derived from urban forest ecosystems are garnering increasing attention in ecological research and municipal planning. However, because of their location in heterogeneous and highly-altered urban landscapes, urban forests are vulnerable and commonly suffer disproportionate and varying levels of stress and disturbance. The objective of this study is to...

  19. Ecosystem carbon density and allocation across a chronosequence of longleaf pine forests.

    Science.gov (United States)

    Samuelson, Lisa J; Stokes, Thomas A; Butnor, John R; Johnsen, Kurt H; Gonzalez-Benecke, Carlos A; Martin, Timothy A; Cropper, Wendell P; Anderson, Pete H; Ramirez, Michael R; Lewis, John C

    2017-01-01

    Forests can partially offset greenhouse gas emissions and contribute to climate change mitigation, mainly through increases in live biomass. We quantified carbon (C) density in 20 managed longleaf pine (Pinus palustris Mill.) forests ranging in age from 5 to 118 years located across the southeastern United States and estimated above- and belowground C trajectories. Ecosystem C stock (all pools including soil C) and aboveground live tree C increased nonlinearly with stand age and the modeled asymptotic maxima were 168 Mg C/ha and 80 Mg C/ha, respectively. Accumulation of ecosystem C with stand age was driven mainly by increases in aboveground live tree C, which ranged from ecosystem C. Live root C (sum of below-stump C, ground penetrating radar measurement of lateral root C, and live fine root C) increased with stand age and represented 4-22% of ecosystem C. Soil C was related to site index, but not to stand age, and made up 39-92% of ecosystem C. Live understory C, forest floor C, downed dead wood C, and standing dead wood C were small fractions of ecosystem C in these frequently burned stands. Stand age and site index accounted for 76% of the variation in ecosystem C among stands. The mean root-to-shoot ratio calculated as the average across all stands (excluding the grass-stage stand) was 0.54 (standard deviation of 0.19) and higher than reports for other conifers. Long-term accumulation of live tree C, combined with the larger role of belowground accumulation of lateral root C than in other forest types, indicates a role of longleaf pine forests in providing disturbance-resistant C storage that can balance the more rapid C accumulation and C removal associated with more intensively managed forests. Although other managed southern pine systems sequester more C over the short-term, we suggest that longleaf pine forests can play a meaningful role in regional forest C management. © 2016 by the Ecological Society of America.

  20. A conceptual framework of urban forest ecosystem vulnerability

    Science.gov (United States)

    James W.N. Steenberg; Andrew A. Millward; David J. Nowak; Pamela J. Robinson

    2017-01-01

    The urban environment is becoming the most common setting in which people worldwide will spend their lives. Urban forests, and the ecosystem services they provide, are becoming a priority for municipalities. Quantifying and communicating the vulnerability of this resource are essential for maintaining a consistent and equitable supply of these ecosystem services. We...

  1. Modelling of 137Cs behaviour in forest ecosystems and prediction of its accumulation in forest products

    International Nuclear Information System (INIS)

    Spiridonov, S.I.; Fesenko, S.V.; Gontarenko, I.A.; Avila, R.

    2001-01-01

    A mathematical model of 137 Cs migration in forest ecosystem contaminated due to the Chernobyl accident presented, which describes the behaviour of this radionuclide in the forest litter-soil system, tress, and forest animals. The model's parameters for different types of forest ecosystems are estimated and model's adequacy is tested through the use of independent experimental data. The sensitivity of the model's output variables is analyzed to variations in the most significant parameters. The differences in the seasonal and mean annual dynamics of 137 Cs concentration in muscles of roe deers and mooses are shown to be defined by specific features of the diets of these animals and variations in 137 Cs content in the main diet components [ru

  2. Forest and Chernobyl: forest ecosystems after the Chernobyl nuclear power plant accident: 1986-1994

    International Nuclear Information System (INIS)

    Ipatyev, V.; Bulavik, I.; Baginsky, V.; Goncharenko, G.; Dvornik, A.

    1999-01-01

    This paper reports basic features of radionuclide migration and the prediction of the radionuclide redistribution and accumulation by forest phytocoenoses after the Chernobyl Nuclear Power Plant (CNPP) accident. The current ecological condition of forest ecosystems is evaluated and scientific aspects of forest management in the conditions of the large-scale radioactive contamination are discussed. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Temporal-Spatial Pattern of Carbon Stocks in Forest Ecosystems in Shaanxi, Northwest China.

    Directory of Open Access Journals (Sweden)

    Gaoyang Cui

    Full Text Available The precise and accurate quantitative evaluation of the temporal and spatial pattern of carbon (C storage in forest ecosystems is critical for understanding the role of forests in the global terrestrial C cycle and is essential for formulating forest management policies to combat climate change. In this study, we examined the C dynamics of forest ecosystems in Shaanxi, northwest China, based on four forest inventories (1989-1993, 1994-1998, 1999-2003, and 2004-2008 and field-sampling measurements (2012. The results indicate that the total C storage of forest ecosystems in Shaanxi increased by approximately 29.3%, from 611.72 Tg in 1993 to 790.75 Tg in 2008, partially as a result of ecological restoration projects. The spatial pattern of C storage in forest ecosystems mainly exhibited a latitude-zonal distribution across the province, increasing from north (high latitude to south (low latitude generally, which signifies the effect of environmental conditions, chiefly water and heat related factors, on forest growth and C sequestration. In addition, different data sources and estimation methods had a significant effect on the results obtained, with the C stocks in 2008 being considerably overestimated (864.55 Tg and slightly underestimated (778.07 Tg when measured using the mean C density method and integrated method, respectively. Overall, our results demonstrated that the forest ecosystem in Shaanxi acted as a C sink over the last few decades. However, further studies should be carried out with a focus on adaption of plants to environmental factors along with forest management for vegetation restoration to maximize the C sequestration potential and to better cope with climate change.

  4. Net ecosystem CO2 exchange over a larch forest in Hokkaido, Japan

    International Nuclear Information System (INIS)

    Huimin Wang; Saigusa, Nobuko; Yamamoto, Susumu; Kondo, Hiroaki; Hirano, Takashi; Toriyama, Atsushi; Fujinuma, Yasumi

    2004-01-01

    Larch forests are distributed extensively in the east Eurasian continent and are expected to play a significant role in the terrestrial ecosystem carbon cycling process. In view of the fact that studies on carbon exchange for this important biome have been very limited, we have initiated a long-term flux observation in a larch forest ecosystem in Hokkaido in northern Japan since 2000. The net ecosystem CO 2 exchange (NEE) showed large seasonal and diurnal variation. Generally, the larch forest ecosystem released CO 2 in nighttime and assimilated CO 2 in daytime during the growing season from May to October. The ecosystem started to become a net carbon sink in May, reaching a maximum carbon uptake as high as 186 g C m -2 month -1 in June. With the yellowing, senescing and leaf fall, the ecosystem turned into a carbon source in November. During the non-growing season, the larch forest ecosystem became a net source of CO 2 , releasing an average of 16.7 g C m -2 month -1 . Overall, the ecosystem sequestered 141-240 g C m -2 yr -1 in 2001. The NEE was significantly influenced by environmental factors. Respiration of the ecosystem, for example, was exponentially dependent on air temperature, while photosynthesis was related to the incident PAR in a manner consistent with the Michaelis-Menten model. Although the vapor pressure deficit (VPD) was scarcely higher than 15 hPa, the CO 2 uptake rate was also depressed when VPD surpassed 10 hPa (Author)

  5. Plant hydraulic diversity buffers forest ecosystem responses to drought

    Science.gov (United States)

    Anderegg, W.; Konings, A. G.; Trugman, A. T.; Pacala, S. W.; Yu, K.; Sulman, B. N.; Sperry, J.; Bowling, D. R.

    2017-12-01

    Drought impacts carbon, water, and energy cycles in forests and may pose a fundamental threat to forests in future climates. Plant hydraulic transport of water is central to tree drought responses, including curtailing of water loss and the risk of mortality during drought. The effect of biodiversity on ecosystem function has typically been examined in grasslands, yet the diversity of plant hydraulic strategies may influence forests' response to drought. In a combined analysis of eddy covariance measurements, remote-sensing data of plant water content variation, model simulations, and plant hydraulic trait data, we test the degree to which plant water stress schemes influence the carbon cycle and how hydraulic diversity within and across ecosystems affects large-scale drought responses. We find that current plant functional types are not well-suited to capture hydraulic variation and that higher hydraulic diversity buffers ecosystem variation during drought. Our results demonstrate that tree functional diversity, particularly hydraulic diversity, may be critical to simulate in plant functional types in current land surface model projections of future vegetation's response to climate extremes.

  6. Challenges for tree officers to enhance the provision of regulating ecosystem services from urban forests.

    Science.gov (United States)

    Davies, Helen J; Doick, Kieron J; Hudson, Malcolm D; Schreckenberg, Kate

    2017-07-01

    Urbanisation and a changing climate are leading to more frequent and severe flood, heat and air pollution episodes in Britain's cities. Interest in nature-based solutions to these urban problems is growing, with urban forests potentially able to provide a range of regulating ecosystem services such as stormwater attenuation, heat amelioration and air purification. The extent to which these benefits are realized is largely dependent on urban forest management objectives, the availability of funding, and the understanding of ecosystem service concepts within local governments, the primary delivery agents of urban forests. This study aims to establish the extent to which British local authorities actively manage their urban forests for regulating ecosystem services, and identify which resources local authorities most need in order to enhance provision of ecosystem services by Britain's urban forests. Interviews were carried out with staff responsible for tree management decisions in fifteen major local authorities from across Britain, selected on the basis of their urban nature and high population density. Local authorities have a reactive approach to urban forest management, driven by human health and safety concerns and complaints about tree disservices. There is relatively little focus on ensuring provision of regulating ecosystem services, despite awareness by tree officers of the key role that urban forests can play in alleviating chronic air pollution, flood risk and urban heat anomalies. However, this is expected to become a greater focus in future provided that existing constraints - lack of understanding of ecosystem services amongst key stakeholders, limited political support, funding constraints - can be overcome. Our findings suggest that the adoption of a proactive urban forest strategy, underpinned by quantified and valued urban forest-based ecosystem services provision data, and innovative private sector funding mechanisms, can facilitate a change to a

  7. Soil microbial community successional patterns during forest ecosystem restoration.

    Science.gov (United States)

    Banning, Natasha C; Gleeson, Deirdre B; Grigg, Andrew H; Grant, Carl D; Andersen, Gary L; Brodie, Eoin L; Murphy, D V

    2011-09-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables.

  8. Dominance and Diversity of Bird Community in Floodplain Forest Ecosystem

    Directory of Open Access Journals (Sweden)

    Karel Poprach

    2015-01-01

    Full Text Available The paper is aimed to assessment of diversity and structure of bird community in floodplain forest ecosystem. Authors present results of analyses data on bird communities obtained at two transects in the Litovelské Pomoraví Protected Landscape Area (Czech Republic in the period 1998–2012. Research of bird communities was carried out using the point-count method. The article deals with qualitative and quantitative representation of breeding bird species, including their relation to habitat type (closed floodplain forest, ecotone. Altogether 63 breeding species were recorded at the Vrapač transect and 67 at the Litovelské luhy transect, respectively. To be able to detect all recorded species, 11 out of 14 years of monitoring were needed at the Vrapač transect and all 8 years of monitoring at the Litovelské luhy transect, respectively. Authors show that the values in dominant bird species change significantly among the particular census dates within one season, mainly with respect to their activity and detectability. Results are discussed in the frame of sustainable forest management in floodplain forest ecosystems. The presented article can promote to discussion aimed to management strategy for floodplain forest ecosystems, which ranks among natural habitat types of Community interest protected under the Natura 2000 European network.

  9. Evaluating the Impact of Modern Copper Mining on Ecosystem Services in Southern Arizona

    Science.gov (United States)

    Virgone, K.; Brusseau, M. L.; Ramirez-Andreotta, M.; Coeurdray, M.; Poupeau, F.

    2014-12-01

    Historic mining practices were conducted with little environmental forethought, and hence generated a legacy of environmental and human-health impacts. However, an awareness and understanding of the impacts of mining on ecosystem services has developed over the past few decades. Ecosystem services are defined as benefits that humans obtain from ecosystems, and upon which they are fundamentally dependent for their survival. Ecosystem services are divided into four categories including provisioning services (i.e., food, water, timber, and fiber); regulating services (i.e., climate, floods, disease, wastes, and water quality); supporting services (i.e., soil formation, photosynthesis, and nutrient cycling) and cultural services (i.e., recreational, aesthetic, and spiritual benefits) (Millennium Ecosystem Assessment, 2005). Sustainable mining practices have been and are being developed in an effort to protect and preserve ecosystem services. This and related efforts constitute a new generation of "modern" mines, which are defined as those that are designed and permitted under contemporary environmental legislation. The objective of this study is to develop a framework to monitor and assess the impact of modern mining practices and sustainable mineral development on ecosystem services. Using the sustainability performance indicators from the Global Reporting Initiative (GRI) as a starting point, we develop a framework that is reflective of and adaptive to specific local conditions. Impacts on surface and groundwater water quality and quantity are anticipated to be of most importance to the southern Arizona region, which is struggling to meet urban and environmental water demands due to population growth and climate change. We seek to build a more comprehensive and effective assessment framework by incorporating socio-economic aspects via community engaged research, including economic valuations, community-initiated environmental monitoring, and environmental human

  10. Assessing exergy of forest ecosystem using airborne and satellite data

    Science.gov (United States)

    Brovkina, Olga; Fabianek, Tomas; Lukes, Petr; Zemek, Frantisek

    2017-04-01

    Interactions of the energy flows of forest ecosystem with environment are formed by a suite of forest structure, functions and pathways of self-control. According to recent thermodynamic theory for open systems, concept of exergy of solar radiation has been applied to estimate energy consumptions on evapotranspiration and biomass production in forest ecosystem or to indicate forest decline and human land use impact on ecosystem stability. However, most of the methods for exergy estimation in forest ecosystem is not stable and its physical meaning remains on the surface. This study was aimed to contribute to understanding the exergy of forest ecosystem using combination of remote sensing (RS) and eddy covariance technologies, specifically: 1/to explore exergy of solar radiation depending on structure of solar spectrum (number of spectral bands of RS data), and 2/to explore the relationship between exergy and flux tower eddy covariance measurements. Two study forest sites were located in Western Beskids in the Czech Republic. The first site was dominated by young Norway spruce, the second site was dominated by mature European beech. Airborne hyperspectral data in VNIR, SWIR and TIR spectral regions were acquired 9 times for study sites during a vegetation periods in 2015-2016. Radiometric, geometric and atmospheric corrections of airborne data were performed. Satellite multispectral Landsat-8 cloud-free 21 scenes were downloaded and atmospherically corrected for the period from April to November 2015-2016. Evapotranspiration and latent heat fluxes were collected from operating flux towers located on study sites according to date and time of remote sensing data acquisition. Exergy was calculated for each satellite and airborne scene using various combinations of spectral bands as: Ex=E^out (K+ln E^out/E^in )+R, where Ein is the incoming solar energy, Eout is the reflected solar energy, R = Ein-Eout is absorbed energy, Eout/Ein is albedo and K is the Kullback increment

  11. The dynamics of radionuclides in forest ecosystems

    International Nuclear Information System (INIS)

    Steiner, M.

    2003-01-01

    Foodstuff from forests, notably mushrooms and game, is still much higher contaminated than agricultural products. The dynamic transport and transfer processes relevant to radiocesium in forest ecosystems will be discussed. Fungi, notably their mycelia, and migration processes in forest soil play a key role. In the first phase after deposition, radiocesium is very mobile and infiltrates forest soil after direct deposition or weathering from the canopy, where it is quickly immobilized. Subsequently, it moves to deeper soil layers due to decomposition and mineralization of organic matter. This downward migration of radiocesium is almost completely compensated by an upward transport in fungal mycelia. Whereas the specific activities in the uppermost organic horizons decrease comparatively fast, the radiocesium content in deeper horizons may remain almost constant or even increase at the beginning. Fungi which specific to their species take up nutrients from different soil layers, reflect the different trends with time in their fruit bodies. Fungal mycelia play an important role not only in the vertical migration, but also in the horizontal transport of radiocesium in forest soil and the uptake by green plants. Most green plants of the forest ecosystem poor in nutrients take up nutrients and radiocesium through symbiotic fungi. The fruit bodies of Deer Truffle which grow below ground can exhibit activity levels one order of magnitude higher than those of edible mushrooms. At present there is a debate, whether highly contaminated Deer Truffle eaten by wild boar as a delicacy, can explain the trend of increasing contamination of wild boar which has been observed in the last few years in different regions of Germany. (orig.)

  12. Forest ecosystems functioning of and conducting of forestry in the zones of absolute alienation

    International Nuclear Information System (INIS)

    Yirklyienko, S.P.; Buzun, V.O.; Dmitrenko, O.G.; Turchak, F.M.

    2001-01-01

    The main regularities of forest ecosystems functioning in the zone of absolute alienation were shown. The radio contamination mozaicity of forest ecosystems was underlined. Regularities of 137 Cs accumulation in the wood of the main arboreous species were analyzed. The detailed measures of forestry conducting and forests rehabilitation were proposed

  13. A Practical Decision-Analysis Process for Forest Ecosystem Management

    Science.gov (United States)

    H. Michael Rauscher; F. Thomas Lloyd; David L. Loftis; Mark J. Twery

    2000-01-01

    Many authors have pointed out the need to firm up the 'fuzzy' ecosystem management paradigm and develop operationally practical processes to allow forest managers to accommodate more effectively the continuing rapid change in societal perspectives and goals. There are three spatial scales where clear, precise, practical ecosystem management processes are...

  14. Current net ecosystem exchange of CO2 in a young mixed forest: any heritage from the previous ecosystem?

    Science.gov (United States)

    Violette, Aurélie; Heinesch, Bernard; Erpicum, Michel; Carnol, Monique; Aubinet, Marc; François, Louis

    2013-04-01

    For 15 years, networks of flux towers have been developed to determine accurate carbon balance with the eddy-covariance method and determine if forests are sink or source of carbon. However, for prediction of the evolution of carbon cycle and climate, major uncertainties remain on the ecosystem respiration (Reco, which includes the respiration of above ground part of trees, roots respiration and mineralization of the soil organic matter), the gross primary productivity (GPP) and their difference, the net ecosystem exchange (NEE) of forests. These uncertainties are consequences of spatial and inter-annual variability, driven by previous and current climatic conditions, as well as by the particular history of the site (management, diseases, etc.). In this study we focus on the carbon cycle in two mixed forests in the Belgian Ardennes. The first site, Vielsalm, is a mature stand mostly composed of beeches (Fagus sylvatica) and douglas fir (Pseudotsuga menziesii) from 80 to 100 years old. The second site, La Robinette, was covered before 1995 with spruces. After an important windfall and a clear cutting, the site was replanted, between 1995 and 2000, with spruces (Piceas abies) and deciduous species (mostly Betula pendula, Aulnus glutinosa and Salix aurita). The challenge here is to highlight how initial conditions can influence the current behavior of the carbon cycle in a growing stand compared to a mature one, where initial conditions are supposed to be forgotten. A modeling approach suits particularly well for sensitivity tests and estimation of the temporal lag between an event and the ecosystem response. We use the forest ecosystem model ASPECTS (Rasse et al., Ecological Modelling 141, 35-52, 2001). This model predicts long-term forest growth by calculating, over time, hourly NEE. It was developed and already validated on the Vielsalm forest. Modelling results are confronted to eddy-covariance data on both sites from 2006 to 2011. The main difference between both

  15. Assessing Urban Forest Structure, Ecosystem Services, and Economic Benefits on Vacant Land

    Directory of Open Access Journals (Sweden)

    Gunwoo Kim

    2016-07-01

    Full Text Available An urban forest assessment is essential for developing a baseline from which to measure changes and trends. The most precise way to assess urban forests is to measure and record every tree on a site, but although this may work well for relatively small populations (e.g., street trees, small parks, it is prohibitively expensive for large tree populations. Thus, random sampling offers a cost-effective way to assess urban forest structure and the associated ecosystem services for large-scale assessments. The methodology applied to assess ecosystem services in this study can also be used to assess the ecosystem services provided by vacant land in other urban contexts and improve urban forest policies, planning, and the management of vacant land. The study’s findings support the inclusion of trees on vacant land and contribute to a new vision of vacant land as a valuable ecological resource by demonstrating how green infrastructure can be used to enhance ecosystem health and promote a better quality of life for city residents.

  16. Biogeochemical modelling vs. tree-ring data - comparison of forest ecosystem productivity estimates

    Science.gov (United States)

    Zorana Ostrogović Sever, Maša; Barcza, Zoltán; Hidy, Dóra; Paladinić, Elvis; Kern, Anikó; Marjanović, Hrvoje

    2017-04-01

    Forest ecosystems are sensitive to environmental changes as well as human-induce disturbances, therefore process-based models with integrated management modules represent valuable tool for estimating and forecasting forest ecosystem productivity under changing conditions. Biogeochemical model Biome-BGC simulates carbon, nitrogen and water fluxes, and it is widely used for different terrestrial ecosystems. It was modified and parameterised by many researchers in the past to meet the specific local conditions. In this research, we used recently published improved version of the model Biome-BGCMuSo (BBGCMuSo), with multilayer soil module and integrated management module. The aim of our research is to validate modelling results of forest ecosystem productivity (NPP) from BBGCMuSo model with observed productivity estimated from an extensive dataset of tree-rings. The research was conducted in two distinct forest complexes of managed Pedunculate oak in SE Europe (Croatia), namely Pokupsko basin and Spačva basin. First, we parameterized BBGCMuSo model at a local level using eddy-covariance (EC) data from Jastrebarsko EC site. Parameterized model was used for the assessment of productivity on a larger scale. Results of NPP assessment with BBGCMuSo are compared with NPP estimated from tree ring data taken from trees on over 100 plots in both forest complexes. Keywords: Biome-BGCMuSo, forest productivity, model parameterization, NPP, Pedunculate oak

  17. Nitrogen Dynamics in European Forest Ecosystems: Considerations regarding Anthropogenic Nitrogen Depositions

    OpenAIRE

    Agren, G.I.; Kauppi, P.

    1983-01-01

    This study deals with the nutrient cycle of forest ecosystems over large geographic regions in Europe as affected by nitrogen deposition. The view is taken that the nitrogen cycle of a forest ecosystem has a maximum capacity for circulating nitrogen. Two different cases are defined: case (1) in which the nutrient cycle functions below its maximum capacity, and case (2) in which the circulation operates at the maximum level.

  18. [The concentration and distribution of 137Cs in soils of forest and agricultural ecosystems of Tula Region].

    Science.gov (United States)

    Lipatov, D N; Shcheglov, A I; Tsvetnova, O B

    2007-01-01

    The paper deals with a comparative study of 137Cs contamination in forest, old arable and cultivated soils of Tula Region. Initial interception of Chernobyl derived 137Cs is higher in forest ecosystems: oak-forest > birch-forest > pine-forest > agricultural ecosystems. Vertical migration of 137Cs in deeper layers of soils was intensive in agricultural ecosystems: cultivated soils > old arable soils > birch-forest soils > oak-forest soils > pine-forest soils. In study have been evaluated spatial variability of 137Cs in soil and asymmetrical distribution, that is a skew to the right. Spatial heterogeneity of 137Cs in agricultural soils is much lower than in forest soils. For cultivated soil are determined the rate of resuspension, which equal to 6.1 x 10(-4) day(-1). For forest soils are described the 137Cs concentration in litter of different ecosystems. The role of main accumulation and barrier of 137Cs retain higher layers of soils (horizon A1(A1E) in forest, horizon Ap in agricultural ecosystems) in long-term forecast after Chernobyl accident.

  19. The experimental design of the Missouri Ozark Forest Ecosystem Project

    Science.gov (United States)

    Steven L. Sheriff; Shuoqiong. He

    1997-01-01

    The Missouri Ozark Forest Ecosystem Project (MOFEP) is an experiment that examines the effects of three forest management practices on the forest community. MOFEP is designed as a randomized complete block design using nine sites divided into three blocks. Treatments of uneven-aged, even-aged, and no-harvest management were randomly assigned to sites within each block...

  20. Forest Ecosystem Processes at the Watershed Scale: Ecosystem services, feedback and evolution in developing mountainous catchments

    Science.gov (United States)

    Band, Larry

    2010-05-01

    Mountain watersheds provide significant ecosystem services both locally and for surrounding regions, including the provision of freshwater, hydropower, carbon sequestration, habitat, forest products and recreational/aesthetic opportunities. The hydrologic connectivity along hillslopes in sloping terrain provides an upslope subsidy of water and nutrients to downslope ecosystem patches, producing characteristic ecosystem patterns of vegetation density and type, and soil biogeochemical cycling. Recent work suggests that optimal patterns of forest cover evolve along these flowpaths which maximize net primary productivity and carbon sequestration at the hillslope to catchment scale. These watersheds are under significant pressure from potential climate change, changes in forest management, increasing population and development, and increasing demand for water export. As water balance and flowpaths are altered by shifting weather patterns and new development, the spatial distribution and coupling of water, carbon and nutrient cycling will spur the evolution of different ecosystem patterns. These issues have both theoretical and practical implications for the coupling of water, carbon and nutrient cycling at the landscape level, and the potential to manage watersheds for bundled ecosystem services. If the spatial structure of the ecosystem spontaneously adjusts to maximize landscape level use of limiting resources, there may be trade-offs in the level of services provided. The well known carbon-for-water tradeoff reflects the growth of forests to maximize carbon uptake, but also transpiration which limits freshwater availability in many biomes. We provide examples of the response of bundled ecosystem services to climate and land use change in the Southern Appalachian Mountains of the United States. These mountains have very high net primary productivity, biodiversity and water yields, and provide significant freshwater resources to surrounding regions. There has been a

  1. Assemblages of braconidae (Hymenoptera) at agricultural and secondary forest ecosystem

    Science.gov (United States)

    Razali, Rabibah; Din, Abdullah Muhaimin Mohammad; Yaakop, Salmah

    2016-11-01

    Braconids are parasitoid insects which parasitize other insects by injecting their eggs into the larvae and eventually killing the hosts. Due to this character, braconids play an important role in stabilizing the natural and human-made environment. The objective of this study was to evaluate the diversity and distribution of braconids in two ecosystems. Nine Malaise traps were installed in each ecosystem for 30 days at five sampling sites, namely Bukit Rupa (BR), Bukit Fraser (BF), Ladang Zamrud (LZ), Felda Lui Muda (FLM) and Cherating (Ch). Samples were collected and kept in 75% alcohol for identification process. Two types of ecosystem were selected namely forest (secondary forest) and agricultural (oil palm plantation, star fruit orchard) ecosystems. A total of 1201 individuals were collected in 18 subfamilies and 137 morphospecies. From the results, BR showed the highest H', as it was a natural habitat for the braconids. FLM and LZ also showed high H' values, while Ch was the lowest. Based on the cluster analysis, the clade was divided into two groups; the oil palm plantation (LZ, FLM) and forest ecosystem (BF, BR). Ch was considered an outgroup because the braconid spesies found there were specific to Bactocera spp. Based on the rarefaction curve, LZ had the most stable curve compared to the others due to high sample size.

  2. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions.

    Science.gov (United States)

    Thom, Dominik; Rammer, Werner; Seidl, Rupert

    2017-01-01

    The rates of anthropogenic climate change substantially exceed those at which forest ecosystems - dominated by immobile, long-lived organisms - are able to adapt. The resulting maladaptation of forests has potentially detrimental effects on ecosystem functioning. Furthermore, as many forest-dwelling species are highly dependent on the prevailing tree species, a delayed response of the latter to a changing climate can contribute to an extinction debt and mask climate-induced biodiversity loss. However, climate change will likely also intensify forest disturbances. Here, we tested the hypothesis that disturbances foster the reorganization of ecosystems and catalyze the adaptation of forest composition to climate change. Our specific objectives were (i) to quantify the rate of autonomous forest adaptation to climate change, (ii) examine the role of disturbance in the adaptation process, and (iii) investigate spatial differences in climate-induced species turnover in an unmanaged mountain forest landscape (Kalkalpen National Park, Austria). Simulations with a process-based forest landscape model were performed for 36 unique combinations of climate and disturbance scenarios over 1000 years. We found that climate change strongly favored European beech and oak species (currently prevailing in mid- to low-elevation areas), with novel species associations emerging on the landscape. Yet, it took between 357 and 706 years before the landscape attained a dynamic equilibrium with the climate system. Disturbances generally catalyzed adaptation and decreased the time needed to attain equilibrium by up to 211 years. However, while increasing disturbance frequency and severity accelerated adaptation, increasing disturbance size had the opposite effect. Spatial analyses suggest that particularly the lowest and highest elevation areas will be hotspots of future species change. We conclude that the growing maladaptation of forests to climate and the long lead times of autonomous

  3. Assessing impacts of intensified biomass production and biodiversity protection on ecosystem services provided by European forests

    NARCIS (Netherlands)

    Verkerk, P.J.; Mavsar, R.; Giergiczny, M.; Lindner, M.; Edwards, D.; Schelhaas, M.J.

    2014-01-01

    To develop viable strategies for intensifying the use of forest biomass and for increasing forest protection, impacts on ecosystem services need to be assessed. We investigated the biophysical and economic impacts of increased forest biomass production and biodiversity protection on forest ecosystem

  4. Forest Ecosystem services and development pressures

    Science.gov (United States)

    David N. Wear

    2006-01-01

    Ecosystem services from forests on private lands are often under-produced because landowners bear the cost of restoring, preserving, and managing their lands to produce ecological services that benefit all members of the community or larger society. Over the last two decades, a variety of federal and state programs have applied a combination of regulations, extension,...

  5. Vegetation indicators of transformation in the urban forest ecosystems of "Kuzminki-Lyublino" Park

    Science.gov (United States)

    Buyvolova, Anna; Trifonova, Tatiana; Bykova, Elena

    2017-04-01

    Forest ecosystems in the city are at the same time a component of its natural environment and part of urban developmental planning. It imposes upon urban forests a large functional load, both environmental (formation of environment, air purification, noise pollution reducing, etc.) and social (recreational, educational) which defines the special attitude to their management and study. It is not a simple task to preserve maximum accessibility to the forest ecosystems of the large metropolises with a minimum of change. The urban forest vegetates in naturally formed soil, it has all the elements of a morphological structure (canopy layers), represented by natural species of the zonal vegetation. Sometimes it is impossible for a specialist to distinguish between an urban forest and a rural one. However, the urban forests are changing, being under the threat of various negative influences of the city, of which pollution is arguably the most significant. This article presents some indicators of structural changes to the plant communities, which is a response of forest ecosystems to an anthropogenic impact. It is shown that the indicators of the transformation of natural ecosystems in the city can be a reduction of the projective cover of moss layer, until its complete absence (in the pine forest), increasing the role of Acer negundo (adventive species) in the undergrowth, high variability of floristic indicators of the ground herbaceous vegetation, and a change in the spatial arrangement of adventive species. The assessment of the impact of the urban environment on the state of vegetation in the "Kuzminki-Lyublino" Natural-Historical Park was conducted in two key areas least affected by anthropogenic impacts under different plant communities represented by complex pine and birch forests and in similar forest types in the Prioksko-Terrasny Biosphere Reserve. The selection of pine forests as a model is due to the fact that, according to some scientists, pine (Pinus

  6. Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock.

    Science.gov (United States)

    Morford, Scott L; Houlton, Benjamin Z; Dahlgren, Randy A

    2011-08-31

    Nitrogen (N) limits the productivity of many ecosystems worldwide, thereby restricting the ability of terrestrial ecosystems to offset the effects of rising atmospheric CO(2) emissions naturally. Understanding input pathways of bioavailable N is therefore paramount for predicting carbon (C) storage on land, particularly in temperate and boreal forests. Paradigms of nutrient cycling and limitation posit that new N enters terrestrial ecosystems solely from the atmosphere. Here we show that bedrock comprises a hitherto overlooked source of ecologically available N to forests. We report that the N content of soils and forest foliage on N-rich metasedimentary rocks (350-950 mg N kg(-1)) is elevated by more than 50% compared with similar temperate forest sites underlain by N-poor igneous parent material (30-70 mg N kg(-1)). Natural abundance N isotopes attribute this difference to rock-derived N: (15)N/(14)N values for rock, soils and plants are indistinguishable in sites underlain by N-rich lithology, in marked contrast to sites on N-poor substrates. Furthermore, forests associated with N-rich parent material contain on average 42% more carbon in above-ground tree biomass and 60% more carbon in the upper 30 cm of the soil than similar sites underlain by N-poor rocks. Our results raise the possibility that bedrock N input may represent an important and overlooked component of ecosystem N and C cycling elsewhere.

  7. Towards integration of research and monitoring at forest ecosystems in Europe

    DEFF Research Database (Denmark)

    Danielewska, A; Paoletti, E.; Clarke, N.

    2013-01-01

    identified. Thereafter, the access to the network database, available quality assurance/quality control procedures and publication were described. Finally, the so-called “Supersites” concept, defined as a “highly instrumented research infrastructure, for both research and monitoring of soil-plant-atmosphere...... interactions” was discussed. Main results: The result of the survey indicate that the vast majority of the Action FP0903 countries participate in the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forest (ICP Forest). The multi-disciplinary International...... Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICPIM) is the second most widespread forest programme. Research highlights: To fully understand biochemical cycles in forest ecosystems, long-term monitoring is needed. Hence, a network of “Supersites”, is proposed...

  8. Ecosystem-Level Carbon Stocks in Costa Rican Mangrove Forests

    Science.gov (United States)

    Cifuentes, M.

    2012-12-01

    Tropical mangroves provide a wide variety of ecosystem services, including atmospheric carbon sequestration. Because of their high rates of carbon accumulation, the large expected size of their total stocks (from 2 to 5 times greater than those of upland tropical forests), and the alarming rates at which they are being converted to other uses (releasing globally from 0.02 to 0.12 Pg C yr-1), mangroves are receiving increasing attention as additional tools to mitigate climate change. However, data on whole ecosystem-level carbon in tropical mangroves is limited. Here I present the first estimate of ecosystem level carbon stocks in mangrove forests of Central America. I established 28, 125 m-long, sampling transects along the 4 main rivers draining the Térraba-Sierpe National Wetland in the southern Pacific coast of Costa Rica. This area represents 39% of all remaining mangroves in the country (48300 ha). A circular nested plot was placed every 25 m along each transect. Carbon stocks of standing trees, regeneration, the herbaceous layer, litter, and downed wood were measured following internationally-developed methods compatible with IPCC "Good Practice Guidelines". In addition, total soil carbon stocks were determined down to 1 m depth. Together, these carbon estimates represent the ecosystem-carbon stocks of these forests. The average aboveground carbon stocks were 72.5 ± 3.2 MgC ha-1 (range: 9 - 241 MgC ha-1), consistent with results elsewhere in the world. Between 74 and 92% of the aboveground carbon is stored in trees ≥ 5cm dbh. I found a significant correlation between basal area of trees ≥ 5cm dbh and total aboveground carbon. Soil carbon stocks to 1 m depth ranged between 141 y 593 MgC ha-1. Ecosystem-level carbon stocks ranged from 391 MgC ha-1 to 438 MgC ha-1, with a slight increase from south to north locations. Soil carbon stocks represent an average 76% of total ecosystem carbon stocks, while trees represent only 20%. These Costa Rican mangroves

  9. Effect of ecosystems substitutions and CO2 increase of the atmosphere on the microbial ecosystems of forests

    International Nuclear Information System (INIS)

    Martin, F.

    2007-01-01

    Biological diversity is often exclusively considered at the level of plants and animals, whereas the bulk of global biodiversity is in fact at the microbial level. Although it is clear that the ecology of our planet is driven by microbial ecosystems, we are severely hampered by our limited understanding of the diversity and function of such microbial ecosystems. In the present project, teams in the disciplines of geochemistry, soil microbiology, genomics and ecosystem processes are assembled to study the relationship between environmental change, land use changes, biodiversity, and functioning of forest ecosystems. The network has a strong focus on developing and applying biochemical and genotyping methodologies to address key scientific issues in soil microbial ecology. These include assessing the impact of environmental- and land use changes on microbial diversity and function and exploring the evolutionary and mechanistic links between biological diversity and ecosystem function. In the present study, we have shown that: (1) The native mixed forest showed the highest microbial diversity (2) The mono specific plantations of tree species (e.g., oak, beech, pine, spruce) strikingly alter genetic and functional diversities of soil bacterial and fungal species. (3) Bacterial denitrification rates were dramatically modified by the planted species. Only by taking into account the impact of forest management on below-ground microbial diversity can one hope to get a full ecosystem-based understanding, and this must be addressed via modelling in order to provide relevant and useful information for conservation and policy making. (author)

  10. Forest products cluster development in central Arizona—implications for landscape-scale forest restoration

    Science.gov (United States)

    David. Nicholls

    2014-01-01

    Since 2004, close to 50,000 ac of hazardous fuels have been mechanically treated in east-central Arizona as part of the USDA Forest Service's first 10-year stewardship project on national forest lands. The need for coordinated wood products and biomass utilization in Arizona is likely to increase as broad-scale restoration treatments across Arizona's national...

  11. Forest type effects on the retention of radiocesium in organic layers of forest ecosystems affected by the Fukushima nuclear accident

    Science.gov (United States)

    Koarashi, Jun; Atarashi-Andoh, Mariko; Matsunaga, Takeshi; Sanada, Yukihisa

    2016-12-01

    The Fukushima Daiichi nuclear power plant disaster caused serious radiocesium (137Cs) contamination of forest ecosystems over a wide area. Forest-floor organic layers play a key role in controlling the overall bioavailability of 137Cs in forest ecosystems; however, there is still an insufficient understanding of how forest types influence the retention capability of 137Cs in organic layers in Japanese forest ecosystems. Here we conducted plot-scale investigations on the retention of 137Cs in organic layers at two contrasting forest sites in Fukushima. In a deciduous broad-leaved forest, approximately 80% of the deposited 137Cs migrated to mineral soil located below the organic layers within two years after the accident, with an ecological half-life of approximately one year. Conversely, in an evergreen coniferous forest, more than half of the deposited 137Cs remained in the organic layers, with an ecological half-life of 2.1 years. The observed retention behavior can be well explained by the tree phenology and accumulation of 137Cs associated with litter materials with different degrees of degradation in the organic layers. Spatial and temporal patterns of gamma-ray dose rates depended on the retention capability. Our results demonstrate that enhanced radiation risks last longer in evergreen coniferous forests than in deciduous broad-leaved forests.

  12. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest.

    Science.gov (United States)

    Brookshire, E N Jack; Thomas, Steven A

    2013-01-01

    Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N). In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy); the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.

  13. Ecosystem consequences of tree monodominance for nitrogen cycling in lowland tropical forest.

    Directory of Open Access Journals (Sweden)

    E N Jack Brookshire

    Full Text Available Understanding how plant functional traits shape nutrient limitation and cycling on land is a major challenge in ecology. This is especially true for lowland forest ecosystems of the tropics which can be taxonomically and functionally diverse and rich in bioavailable nitrogen (N. In many tropical regions, however, diverse forests occur side-by-side with monodominant forest (one species >60% of canopy; the long-term biogeochemical consequences of tree monodominance are unclear. Particularly uncertain is whether the monodominant plant-soil system modifies nutrient balance at the ecosystem level. Here, we use chemical and stable isotope techniques to examine N cycling in old-growth Mora excelsa and diverse watershed rainforests on the island of Trinidad. Across 26 small watershed forests and 4 years, we show that Mora monodominance reduces bioavailable nitrate in the plant-soil system to exceedingly low levels which, in turn, results in small hydrologic and gaseous N losses at the watershed-level relative to adjacent N-rich diverse forests. Bioavailable N in soils and streams remained low and remarkably stable through time in Mora forests; N levels in diverse forests, on the other hand, showed high sensitivity to seasonal and inter-annual rainfall variation. Total mineral N losses from diverse forests exceeded inputs from atmospheric deposition, consistent with N saturation, while losses from Mora forests did not, suggesting N limitation. Our measures suggest that this difference cannot be explained by environmental factors but instead by low internal production and efficient retention of bioavailable N in the Mora plant-soil system. These results demonstrate ecosystem-level consequences of a tree species on the N cycle opposite to cases where trees enhance ecosystem N supply via N2 fixation and suggest that, over time, Mora monodominance may generate progressive N draw-down in the plant-soil system.

  14. Modelling carbon cycle of agro-forest ecosystems in Lombardy (Italy

    Directory of Open Access Journals (Sweden)

    Colombo R

    2009-09-01

    Full Text Available In this paper we present a methodology for the estimation of Gross Primary Production (GPP, Net Primary Production (NPP and Net Ecosystem Production (NEP for the main agricultural and forest ecosystems of the Lombardia Region (Italy. The MOD17 model was parameterized according to the different agro-forestry ecosystems and applied at regional scale by using satellite data with a spatial resolution of 250m. The high spatial resolution along with fine classification agro-forestry ecosystems has allowed to accurately analyze the carbon budget of an extremely fragmented and complex environment such as the Lombardia Region. Modeling results showed the role of the forests in the carbon budget at regional scale and represent important information layer for the spatial analysis and for inferring the inter-annual variability of carbon sequestration due to impacts of extreme events and recent climate change (e.g., drought, heat wave, flooding, fires.

  15. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India

    Science.gov (United States)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km2 (4.4 %) of India, whereas according to the MODIS fire product about 2200 km2 (1.4 %) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  16. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India.

    Science.gov (United States)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km(2) (4.4%) of India, whereas according to the MODIS fire product about 2200 km(2) (1.4%) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  17. Urban Forest Ecosystem Service Optimization, Tradeoffs, and Disparities

    Science.gov (United States)

    Bodnaruk, E.; Kroll, C. N.; Endreny, T. A.; Hirabayashi, S.; Yang, Y.

    2014-12-01

    Urban land area and the proportion of humanity living in cities is growing, leading to increased urban air pollution, temperature, and stormwater runoff. These changes can exacerbate respiratory and heat-related illnesses and affect ecosystem functioning. Urban trees can help mitigate these threats by removing air pollutants, mitigating urban heat island effects, and infiltrating and filtering stormwater. The urban environment is highly heterogeneous, and there is no tool to determine optimal locations to plant or protect trees. Using spatially explicit land cover, weather, and demographic data within biophysical ecosystem service models, this research expands upon the iTree urban forest tools to produce a new decision support tool (iTree-DST) that will explore the development and impacts of optimal tree planting. It will also heighten awareness of environmental justice by incorporating the Atkinson Index to quantify disparities in health risks and ecosystem services across vulnerable and susceptible populations. The study area is Baltimore City, a location whose urban forest and environmental justice concerns have been studied extensively. The iTree-DST is run at the US Census block group level and utilizes a local gradient approach to calculate the change in ecosystem services with changing tree cover across the study area. Empirical fits provide ecosystem service gradients for possible tree cover scenarios, greatly increasing the speed and efficiency of the optimization procedure. Initial results include an evaluation of the performance of the gradient method, optimal planting schemes for individual ecosystem services, and an analysis of tradeoffs and synergies between competing objectives.

  18. Faunal impact on vegetation structure and ecosystem function in mangrove forests

    DEFF Research Database (Denmark)

    Cannicci, S.; Burrows, Damien; Fratini, Sara

    2008-01-01

    The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic...... processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon...... to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about...

  19. A Evaluation of Effects on a Ecosystem and Countermeasures in accordance with Climate Change I- Forest Ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Ha; Jeon, Seong Woo; Choi, Jae Yong; Jeong Hwi Chol; Kim, Jeong Won [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    Climate change requests a lot of changes in the existing life style and economic developing system, which form the foundation of modern culture and economic/social development. Especially, in Korea, whose economic basis is mainly dependent on fossil energy, it is expected that the change of policies on climate change have a bigger effect on many-sided fields including ecosystem than other nations. Therefore, even though all of the Government, academic organizations, and private organizations have made efforts to estimate effects of climate change and to prepare countermeasures, the focus has been on forecast and evaluation of the mutual effect between industrial/economic activities and climate change. Forecast of ecosystem change and preservation of ecosystem according to climate change is another political field to promote. However, such a field has not been promoted systematically in Korea. The Institute recognizing such a current state, as part of the policy on ecosystem preservation according to climate change, forecasted the effect on forest ecosystem, analyzed the economic effects according to the effect of forest ecosystem, and started this study to prepare the countermeasures of the Government-level. This study collected and analyzed international trend and necessary data to develop the model, which would be executed in future, and then suggested the selection and development of the model fitted to Korea. There could be differences between Institute's view and the Government/other institutes. However, such differences are caused by the different methods in capturing the effects of various ecosystems. Such various approaching methods will be of great help to estimate the correct effects and to establish the Government's policies as base data. I hope that this study cannot only be applied to analyze the effects of forest ecosystem according to climate change but contribute to enlarging the understanding of various problems according to climate

  20. Effect of industrial pollution on behaviour of radionuclides in forest ecosystems

    International Nuclear Information System (INIS)

    Outola, I.

    2009-01-01

    To investigate how and to what extent industrial pollution affects the behaviour of radionuclides in forest ecosystems, studies were conducted in the vicinity of two Cu-Ni smelters: one in a pine forest at Harjavalta, Finland, and the other in a spruce forest at Monchegorsk, Russia. Industrial pollution had significant effects on the distribution of radionuclides in soil horizons. With the increase in pollution towards the smelter, radionuclides were accumulated more in the litter layer because the conversion of litter into organic material was diminished due to inhibited microbial activity. As a result, the organic layer contained less radionuclides towards the smelter. The effect of industrial pollution on soil-to-plant transfer was complex. The effect varied with radionuclide, plant species and also on forest type. For 137 Cs, soil-to-plant transfer decreased significantly as industrial pollution increased in pine forest, whereas the decrease was less pronounced in spruce forest. Root uptake of 239,240 Pu by plants is extremely small, and plant contamination by resuspended soil is an important factor in considering the soil-to-plant transfer of this radionuclide. In spruce forest, more plutonium was transferred into plants when pollution load increased due to resuspension of litter particles, which contained higher concentrations of plutonium in the vicinity of the smelter. Soil-to-plant transfer of plutonium was much less affected in pine forests contaminated with industrial pollution. This research clearly indicates the sensitivity of the northern forest ecosystem to inorganic pollutants. Prediction of the soil-to-plant transfer of radionuclides in industrially polluted forest ecosystems requires detailed information on the total deposition, vertical distribution of radionuclides in soil, soil microbiological factors, other soil parameters as well as the rooting depths of the plants. (LN)

  1. Evaluation of a cut-to-length system implementing fuel reduction treatments on the Coconino National Forest in Arizona

    Science.gov (United States)

    John Klepac; Bob Rummer; Jason Thompson

    2006-01-01

    A Cut-to-Length (CTL) system was evaluated for production and cost while implementing fuel reduction treatments in two stands on the Coconino National Forest in Arizona. Product recovery and fire behavior within each stand after treatment were also examined. Only trees less than 16 inches diameter breast height (DBH) were harvested. After logs were forwarded to a...

  2. A review of impacts by invasive exotic plants on forest ecosystem services

    Science.gov (United States)

    Kevin Devine; Songlin. Fei

    2011-01-01

    Many of our forest ecosystems are at risk due to the invasion of exotic invasive plant species. Invasive plant species pose numerous threats to ecosystems by decreasing biodiversity, deteriorating ecosystem processes, and degrading ecosystem services. Literature on Kentucky's most invasive exotic plant species was examined to understand their potential impacts on...

  3. Methods for calculating forest ecosystem and harvested carbon with standard estimates for forest types of the United States

    Science.gov (United States)

    James E. Smith; Linda S. Heath; Kenneth E. Skog; Richard A. Birdsey

    2006-01-01

    This study presents techniques for calculating average net annual additions to carbon in forests and in forest products. Forest ecosystem carbon yield tables, representing stand-level merchantable volume and carbon pools as a function of stand age, were developed for 51 forest types within 10 regions of the United States. Separate tables were developed for...

  4. Influence of elevation on bark beetle (Coleoptera: Curculionidae, Scolytinae) community structure and flight periodicity in ponderosa pine forests of Arizona

    Science.gov (United States)

    Kelly K. Williams; Joel D. McMillin; Tom E. DeGomez; Karen M. Clancy; Andy Miller

    2008-01-01

    We examined abundance and flight periodicity of five Ips and six Dendroctonus species (Coleoptera: Curculionidae, Scolytinae) among three different elevation bands in ponderosa pine (Pinus ponderosa Douglas ex. Lawson) forests of northcentral Arizona. Bark beetle populations were monitored at 10 sites in each of three elevation...

  5. Analysis of litter mesofauna of Poltava region forest ecosystems

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2007-08-01

    Full Text Available On the basis of research of litter mesofauna of 48 forest biogeocenoses the regularities of invertebrate communities formation on the species and families levels are determined. The degree of similarity of test plots are analysed by taxonomic structure of the communities. The factors of the litter invertebrate communities formation in forest ecosystems of the Poltava region are revealed.

  6. A new estimate of carbon for Bangladesh forest ecosystems with their spatial distribution and REDD+ implications

    DEFF Research Database (Denmark)

    Mukul, Sharif A.; Biswas, Shekhar R.; Rashid, A. Z. M. Manzoor

    2014-01-01

    In tropical developing countries, reducing emissions from deforestation and forest degradation (REDD+) is becoming an important mechanism for conserving forests and protecting biodiversity. A key prerequisite for any successful REDD+ project, however, is obtaining baseline estimates of carbon...... in forest ecosystems. Using available published data, we provide here a new and more reliable estimate of carbon in Bangladesh forest ecosystems, along with their geo-spatial distribution. Our study reveals great variability in carbon density in different forests and higher carbon stock in the mangrove...... ecosystems, followed by in hill forests and in inland Sal (Shorea robusta) forests in the country. Due to its coverage, degraded nature, and diverse stakeholder engagement, the hill forests of Bangladesh can be used to obtain maximum REDD+ benefits. Further research on carbon and biodiversity in under...

  7. Forest owners' willingness to accept contracts for ecosystem service provision is sensitive to additionality

    DEFF Research Database (Denmark)

    Vedel, Suzanne Elizabeth; Jacobsen, Jette Bredahl; Thorsen, Bo Jellesmark

    2015-01-01

    A key prerequisite to ensure that payment for ecosystem services is effective is that the management measures landowners are paid to undertake are in fact additional to the status quo and hence bring about a change in provision. We investigated Danish forest owners' preferences for conditional...... owners may already provide some of these, e.g., if they derive private benefits from them, in which case additionality becomes an issue. This study investigates the link between forest owners' current management and their willingness to accept (WTA) payments for providing specific ecosystem services...... contracts for the provision of ecosystem services in Natura 2000 policies in a sample covering 12.5% of the total private forest area. This involves allowing old trees to decay naturally, setting aside forest areas, accepting a fixed percentage of broadleaves and increasing access for the public. Forest...

  8. Ecosystem carbon stocks in Pinus palustris forests

    Science.gov (United States)

    Lisa Samuelson; Tom Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Pete Anderson; Jason Jackson; Lorenzo Ferrari; Tim A. Martin; Wendell P. Cropper

    2014-01-01

    Longleaf pine (Pinus palustris Mill.) restoration in the southeastern United States offers opportunities for carbon (C) sequestration. Ecosystem C stocks are not well understood in longleaf pine forests, which are typically of low density and maintained by prescribed fire. The objectives of this research were to develop allometric equations for...

  9. TOWARDS THE LEGAL RECOGNITION AND GOVERNANCE OF FOREST ECOSYSTEM SERVICES IN MOZAMBIQUE

    Directory of Open Access Journals (Sweden)

    S Norfolk

    2013-06-01

    Full Text Available Within the context of Mozambique, this paper examines the state of forest ecosystem services, the dependency of the population on these systems for their well-being, if an adaptive governance regime is being created which will ensure the resilience of the forest ecosystem services including the legal framework, the institutions operating within this framework, the tools available and their functioning, and how cooperative governance is operating.

  10. Newtonian boreal forest ecology: The Scots pine ecosystem as an example.

    Directory of Open Access Journals (Sweden)

    Pertti Hari

    Full Text Available Isaac Newton's approach to developing theories in his book Principia Mathematica proceeds in four steps. First, he defines various concepts, second, he formulates axioms utilising the concepts, third, he mathematically analyses the behaviour of the system defined by the concepts and axioms obtaining predictions and fourth, he tests the predictions with measurements. In this study, we formulated our theory of boreal forest ecosystems, called NewtonForest, following the four steps introduced by Newton. The forest ecosystem is a complicated entity and hence we needed altogether 27 concepts to describe the material and energy flows in the metabolism of trees, ground vegetation and microbes in the soil, and to describe the regularities in tree structure. Thirtyfour axioms described the most important features in the behaviour of the forest ecosystem. We utilised numerical simulations in the analysis of the behaviour of the system resulting in clear predictions that could be tested with field data. We collected retrospective time series of diameters and heights for test material from 6 stands in southern Finland and five stands in Estonia. The numerical simulations succeeded to predict the measured diameters and heights, providing clear corroboration with our theory.

  11. Exploring the willingness to pay for forest ecosystem services by residents of the Veneto Region

    Directory of Open Access Journals (Sweden)

    Paola Gatto

    2014-05-01

    Full Text Available Forests produce a wide array of goods, both private and public. The demand for forest ecosystem services is increasing in many European countries, yet there is still a scarcity of data on values at regional scale for Alpine areas. A Choice Experiment survey has been conducted in order to explore preferences, uses and the willingness of the Veneto population to pay for ecosystem services produced by regional mountain forests. The results show that willingness to pay is significant for recreation and C-sequestration but not for biodiversity conservation, landscape and other ecosystem services. These findings question the feasibility of developing market-based mechanisms in Veneto at present and cast light on the possible role of public institutions in promoting policy actions to increase the general awareness of forest-related ecosystem services.

  12. FORECO. Countermeasures applied in forest ecosystems and their secondary effects. A review of literature

    International Nuclear Information System (INIS)

    Rafferty, B.; Synnot, H.

    1998-01-01

    The present document reports a literature review of the countermeasures applied in forest ecosystems and their secondary effects. The review has been prepared as a deliverable for the FORECO research Project. FORECO (Forest Ecosystems: Classification of Restoration Options, Considering Dose Reduction, Long-Term Ecological Quality and Economic Factors) is a project funded by the European Commission (Research Contract n. ERBIC-CT96-0202) in the frame of the Cooperation with third countries and international organizations (INCO-COPERNICUS) and coordinated by the National Environmental Protection Agency of Italy. The main aim of FORECO activities with respect to forest ecosystems is the classification of countermeasure options in different forest types, considering the balance between dose reduction, long-term ecological quality and economical factors

  13. FORECO. Countermeasures applied in forest ecosystems and their secondary effects: a review of literature

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, B.; Synnot, H. [Radiological Protection Institute of Ireland, (Ireland)

    1998-12-31

    The present document reports a literature review of the countermeasures applied in forest ecosystems and their secondary effects. The review has been prepared as a deliverable for the FORECO research Project. FORECO (Forest Ecosystems: Classification of Restoration Options, Considering Dose Reduction, Long-Term Ecological Quality and Economic Factors) is a project funded by the European Commission (Research Contract n. ERBIC-CT96-0202) in the frame of the Cooperation with third countries and international organizations (INCO-COPERNICUS) and coordinated by the National Environmental Protection Agency of Italy. The main aim of FORECO activities with respect to forest ecosystems is the classification of countermeasure options in different forest types, considering the balance between dose reduction, long-term ecological quality and economical factors.

  14. Application of artificial intelligence to risk analysis for forested ecosystems

    Science.gov (United States)

    Daniel L. Schmoldt

    2001-01-01

    Forest ecosystems are subject to a variety of natural and anthropogenic disturbances that extract a penalty from human population values. Such value losses (undesirable effects) combined with their likelihoods of occurrence constitute risk. Assessment or prediction of risk for various events is an important aid to forest management. Artificial intelligence (AI)...

  15. Exploratory analysis of atmospheric pollution in a coastal forest ecosystem in central Italy

    Directory of Open Access Journals (Sweden)

    Rita Aromolo

    2015-02-01

    Full Text Available Exploratory analysis of atmospheric pollution in a coastal forest ecosystem in central Italy - The study of spatial and temporal distribution of heavy metals in the atmosphere through the continuous assessment of deposition is of great interest for the analysis of anthropogenic pressure on the environment and the potential toxicity to humans and other living organisms. Information based on reliable estimates of heavy metals is therefore crucial for the evaluation of environmental quality. Trends in heavy metal concentration in atmospheric depositions on a coastal forest ecosystem (Castelporziano, Rome are analyzed in the present study based on a three-year monitoring field survey over three sites representative of different woodland characteristics in the area. Our results highlight both the influence of transportation processes in the short and medium distance based on the human pressure reflecting urban expansion and infrastructure development on the fringe of Castelporziano pristine forest. Further studies investigating the latent correlation with meteorological variables at various temporal scales are needed to provide a comprehensive picture of environmental conditions in a forest ecosystem subjected to increasing human pressure. Analysis of runoff water quality and the determination of other heavy metals, such as arsenic, may identify additional sources of pollution impacting soil and forest ecosystem.

  16. Intensive monitoring of forest ecosystems in Europe; 1 objectives, set-up and evaluation strategy

    NARCIS (Netherlands)

    Vries, de W.; Vel, E.M.; Reinds, G.J.; Deelstra, H.; Klap, J.M.; Leeters, E.E.J.M.; Hendriks, C.M.A.; Kerkvoorden, M.; Landmann, G.; Herkendell, J.; Haussmann, T.; Erisman, J.W.

    2003-01-01

    In order to contribute to a better understanding of the impact of air pollution and other environmental factors on forest ecosystems, a Pan-European Programme for Intensive and Continuous Monitoring of Forest Ecosystems has been implemented in 1994. Results of the Programme must contribute to a

  17. Effects of roads on elk: implications for management in forested ecosystems.

    Science.gov (United States)

    Mary M. Rowland; Michael J. Wisdom; Bruce K. Johnson; Mark A. Penninger

    2004-01-01

    The effects of roads on both habitat and population responses of elk (Cervus elaphus) have been of keen interest to foresters and ungulate biologists for the last half century. Increased timber harvest in national forests, beginning in the 1960s, led to a proliferation of road networks in forested ecosystems inhabited by elk (Hieb 1976, Lyon and...

  18. Emerging Diseases in European Forest Ecosystems and Responses in Society

    Directory of Open Access Journals (Sweden)

    Johanna B. Boberg

    2011-04-01

    Full Text Available New diseases in forest ecosystems have been reported at an increasing rate over the last century. Some reasons for this include the increased disturbance by humans to forest ecosystems, changed climatic conditions and intensified international trade. Although many of the contributing factors to the changed disease scenarios are anthropogenic, there has been a reluctance to control them by legislation, other forms of government authority or through public involvement. Some of the primary obstacles relate to problems in communicating biological understanding of concepts to the political sphere of society. Relevant response to new disease scenarios is very often associated with a proper understanding of intraspecific variation in the challenging pathogen. Other factors could be technical, based on a lack of understanding of possible countermeasures. There are also philosophical reasons, such as the view that forests are part of the natural ecosystems and should not be managed for natural disturbances such as disease outbreaks. Finally, some of the reasons are economic or political, such as a belief in free trade or reluctance to acknowledge supranational intervention control. Our possibilities to act in response to new disease threats are critically dependent on the timing of efforts. A common recognition of the nature of the problem and adapting vocabulary that describe relevant biological entities would help to facilitate timely and adequate responses in society to emerging diseases in forests.

  19. Carbon Budget and its Dynamics over Northern Eurasia Forest Ecosystems

    Science.gov (United States)

    Shvidenko, Anatoly; Schepaschenko, Dmitry; Kraxner, Florian; Maksyutov, Shamil

    2016-04-01

    The presentation contains an overview of recent findings and results of assessment of carbon cycling of forest ecosystems of Northern Eurasia. From a methodological point of view, there is a clear tendency in understanding a need of a Full and Verified Carbon Account (FCA), i.e. in reliable assessment of uncertainties for all modules and all stages of FCA. FCA is considered as a fuzzy (underspecified) system that supposes a system integration of major methods of carbon cycling study (land-ecosystem approach, LEA; process-based models; eddy covariance; and inverse modelling). Landscape-ecosystem approach 1) serves for accumulation of all relevant knowledge of landscape and ecosystems; 2) for strict systems designing the account, 3) contains all relevant spatially distributed empirical and semi-empirical data and models, and 4) is presented in form of an Integrated Land Information System (ILIS). The ILIS includes a hybrid land cover in a spatially and temporarily explicit way and corresponding attributive databases. The forest mask is provided by utilizing multi-sensor remote sensing data, geographically weighed regression and validation within GEO-wiki platform. By-pixel parametrization of forest cover is based on a special optimization algorithms using all available knowledge and information sources (data of forest inventory and different surveys, observations in situ, official statistics of forest management etc.). Major carbon fluxes within the LEA (NPP, HR, disturbances etc.) are estimated based on fusion of empirical data and aggregations with process-based elements by sets of regionally distributed models. Uncertainties within LEA are assessed for each module and at each step of the account. Within method results of LEA and corresponding uncertainties are harmonized and mutually constrained with independent outputs received by other methods based on the Bayesian approach. The above methodology have been applied to carbon account of Russian forests for 2000

  20. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    International Nuclear Information System (INIS)

    Yang, Qichun; Zhang, Xuesong

    2016-01-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio-E), large leaf to biomass fraction (Bio-LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT's performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests. - Graphical abstract: Evaluating and improving SWAT simulations of water and carbon cycling over ten AmeriFlux sites across the United States. - Highlights: • The default forest parameterization in SWAT results in inadequate simulations of water and carbon. • Radiation use efficiency, leaf to biomass fraction, and parent material weathering processes are modified. • Revised SWAT provides improved simulations of evapotranspiration and net ecosystem exchange

  1. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qichun [Joint Global Change Research Institute, Pacific Northwest National Lab, College Park, MD 20740 (United States); Zhang, Xuesong, E-mail: xuesong.zhang@pnnl.gov [Joint Global Change Research Institute, Pacific Northwest National Lab, College Park, MD 20740 (United States); Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI 48824 (United States)

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio-E), large leaf to biomass fraction (Bio-LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT's performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests. - Graphical abstract: Evaluating and improving SWAT simulations of water and carbon cycling over ten AmeriFlux sites across the United States. - Highlights: • The default forest parameterization in SWAT results in inadequate simulations of water and carbon. • Radiation use efficiency, leaf to biomass fraction, and parent material weathering processes are modified. • Revised SWAT provides improved simulations of evapotranspiration and net ecosystem exchange.

  2. How forest management affects ecosystem services, including timber production and economic return

    DEFF Research Database (Denmark)

    Duncker, Philipp S.; Raulund-Rasmussen, Karsten; Gundersen, Per

    2012-01-01

    and services. By use of virtual but realistic datasets, we quantified, for multiple services, the effects of five forest management alternatives that form an intensity gradient. Our virtual forest management units represented Central European forest ecosystems in the submontane vegetation zone under a humid......–temperate climate with acidic soils. In this zone the European beech (Fagus sylvatica L.) is the dominant tree species. In order to assess the effects on ecosystem services, the untouched natural forest reserve served as a reference. Wherever possible, response functions were deduced to couple the various services...... via stand-level data to demonstrate trade-offs between the services. Management units comprised all development phases in the sense of a "normal forest". It was clearly illustrated that maximizing the rates of biomass production and carbon sequestration may conflict with protection of authentic...

  3. Ecosystem services to enhance sustainable forest management in the US: moving from forest service national programmes to local projects in the Pacific Northwest

    Science.gov (United States)

    Robert L. Deal; Nikola Smith; Joe Gates

    2017-01-01

    Ecosystem services are increasingly recognized as a way of framing and describing the broad suite of benefits that people receive from forests. The USDA Forest Service has been exploring use of an ecosystem services framework to describe forest values provided by federal lands and to attract and build partnerships with stakeholders to implement projects. Recently, the...

  4. FOREST ECOSYSTEM DYNAMICS ASSESSMENT AND PREDICTIVE MODELLING IN EASTERN HIMALAYA

    Directory of Open Access Journals (Sweden)

    S. P. S. Kushwaha

    2012-09-01

    Full Text Available This study focused on the forest ecosystem dynamics assessment and predictive modelling deforestation and forest cover prediction in a part of north-eastern India i.e. forest areas along West Bengal, Bhutan, Arunachal Pradesh and Assam border in Eastern Himalaya using temporal satellite imagery of 1975, 1990 and 2009 and predicted forest cover for the period 2028 using Cellular Automata Markov Modedel (CAMM. The exercise highlighted large-scale deforestation in the study area during 1975–1990 as well as 1990–2009 forest cover vectors. A net loss of 2,334.28 km2 forest cover was noticed between 1975 and 2009, and with current rate of deforestation, a forest area of 4,563.34 km2 will be lost by 2028. The annual rate of deforestation worked out to be 0.35 and 0.78% during 1975–1990 and 1990–2009 respectively. Bamboo forest increased by 24.98% between 1975 and 2009 due to opening up of the forests. Forests in Kokrajhar, Barpeta, Darrang, Sonitpur, and Dhemaji districts in Assam were noticed to be worst-affected while Lower Subansiri, West and East Siang, Dibang Valley, Lohit and Changlang in Arunachal Pradesh were severely affected. Among different forest types, the maximum loss was seen in case of sal forest (37.97% between 1975 and 2009 and is expected to deplete further to 60.39% by 2028. The tropical moist deciduous forest was the next category, which decreased from 5,208.11 km2 to 3,447.28 (33.81% during same period with further chances of depletion to 2,288.81 km2 (56.05% by 2028. It noted progressive loss of forests in the study area between 1975 and 2009 through 1990 and predicted that, unless checked, the area is in for further depletion of the invaluable climax forests in the region, especially sal and moist deciduous forests. The exercise demonstrated high potential of remote sensing and geographic information system for forest ecosystem dynamics assessment and the efficacy of CAMM to predict the forest cover change.

  5. Forest Ecosystem Dynamics Assessment and Predictive Modelling in Eastern Himalaya

    Science.gov (United States)

    Kushwaha, S. P. S.; Nandy, S.; Ahmad, M.; Agarwal, R.

    2011-09-01

    This study focused on the forest ecosystem dynamics assessment and predictive modelling deforestation and forest cover prediction in a part of north-eastern India i.e. forest areas along West Bengal, Bhutan, Arunachal Pradesh and Assam border in Eastern Himalaya using temporal satellite imagery of 1975, 1990 and 2009 and predicted forest cover for the period 2028 using Cellular Automata Markov Modedel (CAMM). The exercise highlighted large-scale deforestation in the study area during 1975-1990 as well as 1990-2009 forest cover vectors. A net loss of 2,334.28 km2 forest cover was noticed between 1975 and 2009, and with current rate of deforestation, a forest area of 4,563.34 km2 will be lost by 2028. The annual rate of deforestation worked out to be 0.35 and 0.78% during 1975-1990 and 1990-2009 respectively. Bamboo forest increased by 24.98% between 1975 and 2009 due to opening up of the forests. Forests in Kokrajhar, Barpeta, Darrang, Sonitpur, and Dhemaji districts in Assam were noticed to be worst-affected while Lower Subansiri, West and East Siang, Dibang Valley, Lohit and Changlang in Arunachal Pradesh were severely affected. Among different forest types, the maximum loss was seen in case of sal forest (37.97%) between 1975 and 2009 and is expected to deplete further to 60.39% by 2028. The tropical moist deciduous forest was the next category, which decreased from 5,208.11 km2 to 3,447.28 (33.81%) during same period with further chances of depletion to 2,288.81 km2 (56.05%) by 2028. It noted progressive loss of forests in the study area between 1975 and 2009 through 1990 and predicted that, unless checked, the area is in for further depletion of the invaluable climax forests in the region, especially sal and moist deciduous forests. The exercise demonstrated high potential of remote sensing and geographic information system for forest ecosystem dynamics assessment and the efficacy of CAMM to predict the forest cover change.

  6. EnviroAtlas - Ecosystem Service Market and Project Locations, U.S., 2015, Forest Trends' Ecosystem Marketplace

    Science.gov (United States)

    This EnviroAtlas dataset contains points depicting the location of market-based programs, referred to herein as markets, and projects addressing ecosystem services protection in the United States. The data were collected via surveys and desk research conducted by Forest Trends' Ecosystem Marketplace from 2008 to 2016 on biodiversity (i.e., imperiled species/habitats; wetlands and streams), carbon, and water markets. Additional biodiversity data were obtained from the Regulatory In-lieu Fee and Bank Information Tracking System (RIBITS) database in 2015. Points represent the centroids (i.e., center points) of market coverage areas, project footprints, or project primary impact areas in which ecosystem service markets or projects operate. National-level markets are an exception to this norm with points representing administrative headquarters locations. Attribute data include information regarding the methodology, design, and development of biodiversity, carbon, and water markets and projects. This dataset was produced by Forest Trends' Ecosystem Marketplace for EnviroAtlas in order to support public access to and use of information related to environmental markets. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) o

  7. Forest ecosystem services in the context of climate change: A new concept for forestry in the Republic of Serbia

    OpenAIRE

    Trudić, Branislav; Orlović, Saša; Stojnić, Srđan; Pilipović, Andrej; Matović, Bratislav; Novčić, Zoran

    2015-01-01

    Ecosystem services are a relatively new concept in forestry. While the current forestry practice still describes non-timber forest products as secondary, the concept of ecosystem services originating from FAO and researchers of ecosystem services equally emphasises the economic significance of non-timber products and services forest ecosystems provide as of those primary products - timber biomass. Forest ecosystem services are only a segment of the overall context of ecosystem services in whi...

  8. The roles of a decision support system in applying forest ecosystem management in Northeast China

    Institute of Scientific and Technical Information of China (English)

    DAI; Limin; ZHENG; Bofu; Guofan; Shao; ZHOU; Li

    2006-01-01

    Forest ecosystems provide a variety of services and forest ecosystem management (FEM) is an effective approach to maximize the services. Because of the complexity of forest ecosystems, the applications of FEM can be facilitated with decision support systems (DSS) that recognize and incorporate ecological and socio-economic variables. With the rapid development of computation and information technologies, DSS have been advanced in many ways. Traditional forest management within a forestry unit in China is planned on a yearly basis. The planning itself remains primarily a verbal concept as there are no quantitative decision-support tools available to translate the concept into forest management actions. For the purposes of FEM at the management level, a forest management DFF, FORESTAR(R), has been developed under a framework of geographic information system (GIS) and forest models. The paper explained the intelligent modeling mechanisms and demonstrated how the applications of FEM can be strengthened with the applications of FORESTAR(R).

  9. Changes in biodiversity and ecosystem function during the restoration of a tropical forest in south China

    Institute of Scientific and Technical Information of China (English)

    REN Hai; LI ZhiAn; SHEN WeiJun; YU ZuoYue; PENG ShaoLin; LIAO ChongHui; DING MingMao; WU JianGuo

    2007-01-01

    Tropical forests continue to vanish rapidly, but few long-term studies have ever examined if and how the lost forests can be restored. Based on a 45-year restoration study in south China, we found that a tropical rain forest, once completely destroyed, could not recover naturally without deliberate restoration efforts. We identified two kinds of thresholds that must be overcome with human ameliorative measures before the ecosystem was able to recover. The first threshold was imposed primarily by extreme physical conditions such as exceedingly high surface temperature and impoverished soil, while the second was characterized by a critical level of biodiversity and a landscape context that accommodates dispersal and colonization processes. Our three treatment catchments (un-restored barren land, single-species plantation, and mixed-forest stand) exhibited dramatically different changes in biodiversity and ecosystem functioning over 4 decades. The mixed forest, having the highest level of biodiversity and ecosystem functioning, possesses several major properties of tropical rain forest.These findings may have important implications for the restoration of many severely degraded or lost tropical forest ecosystems.

  10. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    2010-09-01

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  11. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    2011-02-01

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  12. Water stress and harmful insects in agri-forest ecosystems

    Directory of Open Access Journals (Sweden)

    Mario Solinas

    Full Text Available Present knowledge on ecological services supplied by insects to natural terrestrial ecosystems, allow us to identify many homeostatic mechanisms regulating biological balance as well as life perpetuation of the said ecosystems; at the same time, that knowledge represents a sound referring point to understanding how those mechanisms do work so as to manage them in the anthropized ecosystems (i.e., agriculture and forests, and especially in order to identify in the latter the natural meaning of the so called insect outbreaks, so as to forecast and possibly prevent them; as well as, when needed, to conceive and formulate efficient control strategies having minimal environmental impact. Water factor is crucial with genesis, configuration and conservation of a terrestrial ecosystem (both natural or anthropized as a whole or in its individual components, but especially concerning plant life as well as plant interactions with phytophagous invertebrates, mainly insects. Insect-plant trophic interactions are principally influenced by the water conditions in the ecosystem, and the impact of phytophagous insects on crops is markedly affected. Extremely severe water stress, especially if prolonged, prevent insect life just like plant’s life but a moderate and not so prolonged water stress, while depressing plant vigour, paradoxically can improve development and multiplication of phytophagous arthropods, with severe consequences on woody plants especially, and forest trees markedly.

  13. Radiocesium in a Danish pine forest ecosystem

    International Nuclear Information System (INIS)

    Strandberg, Morten

    1994-01-01

    During the autumn of 1991, a Scots pine forest, Tisvilde Hegn, was investigated with respect to the distribution of radiocesium on compartments in the forest ecosystem. The sandy acidic soil is poor, with a circa 5-cm thick layer of organic soil, and clay content is very low, between 0 and 2%. Cesium from Chernobyl is still totally in the upper 5 cm, while almost half of the fallout cesium has penetrated to depths lower than 5 cm. More than 95% of the total amount of 137 Cs is in the soil compartment. The rest is mainly in the trees (3.4%) and vegetation (0.4%), moss and lichen included. The concentrations of radiocesium are highest in the endshoots of the pine trees, and lowest in the hardwood. There are indications that the Chernobyl cesium is mainly distributed in the parts of the trees that have been formed since 1986. Observed Ratios (OR) were used to characterize the ability of the different components of the forest ecosystem to accumulate radiocesium. OR is defined as the ratio between the content of 137 Cs kg -1 (dry wt.) and the deposition per meter square. In vascular plants, mosses and lichens, OR varied between 0.01 and 0.1 m 2 /kg. In fungi, it varied between 0.05 and 4.5 m 2 /kg, though generally it was between 0.2 and 1 m 2 /kg. OR ( 137 Cs kg -1 /dry wt. of meat x 137 Cs m -2 ) levels in three roe deer samples varied between 0.016 and 0.21 kg -1 /dry wt. With an annual harvest of around 70,000 animals, this might be the most important pathway of this radionuclide to man from semi-natural ecosystems in Denmark

  14. Soil-plant transfer factors in forest ecosystems

    International Nuclear Information System (INIS)

    Strebl, F.; Gerzabek, M.H.

    1995-04-01

    Within scope of an extended study about 137 Cs behaviour in forest ecosystems several parameters were found to influence soil-plant transfer factors. TF-values of different plant species cover a range of two magnitudes. This is partly due to variations in rooting depth of plants and specific physiological adaptations of nutrient supply. Perrenial plants like trees (Picea abies) and dwarf shrubs (Vaccinium myrtillus) showed a distinct age - dependency of 137 Cs - transfer factors. In young plant parts caesium concentration is higher than in old, more signified twigs. A correlation analysis of physico-chemical soil parameters and TF-values to forest vegetation showed, that soil organic matter, especially the degree of humification and the ratio between extractable fulvic to humic acids are important influencing factors of 137 Cs transfer from forest soils to plants. (author)

  15. Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†

    OpenAIRE

    Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.

    2011-01-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mini...

  16. Biogeochemistry of vertebrate decomposition in a forest ecosystem

    Science.gov (United States)

    Decomposing plants and animals provide critical nutrients for ecosystems, including forests. During vertebrate decay, the rapid release of limiting nutrients, including N, P, C, and S fundamentally transforms the soil environment by stimulating endogenous organisms. The goal of this study was t...

  17. Assessment of vulnerability of forest ecosystems to climate change and adaptation planning in Nepal

    Science.gov (United States)

    Matin, M. A.; Chitale, V. S.

    2016-12-01

    Understanding ecosystem level vulnerability of forests and dependence of local communities on these ecosystems is a first step towards developing effective adaptation strategies. As forests are important components of livelihoods system for a large percentage of the population in the Himalayan region, they offer an important basis for creating and safeguarding more climate-resilient communities. Increased frequency, duration, and/or severity of drought and heat stress, changes in winter ecology, and pest and fire outbreaksunder climate change scenarios could fundamentally alter the composition, productivity and biogeography of forests affecting the potential ecosystem services offered and forest-based livelihoods. Hence, forest ecosystem vulnerability assessment to climate change and the development of a knowledgebase to identify and support relevant adaptation strategies is identified as an urgent need. Climate change vulnerability is measured as a function of exposure, sensitivity and the adaptive capacity of the system towards climate variability and extreme events. Effective adaptation to climate change depends on the availability of two important prerequisites: a) information on what, where, and how to adapt, and b) availability of resources to implement the adaptation measures. In the present study, we introduce the concept of two way multitier approach, which can support effective identification and implementation of adaptation measures in Nepal and the framework can be replicated in other countries in the HKH region. The assessment of overall vulnerability of forests comprises of two components: 1) understanding the relationship between exposure and sensitivity and positive feedback from adaptive capacity of forests; 2) quantifying the dependence of local communities on these ecosystems. We use climate datasets from Bioclim and biophysical products from MODIS, alongwith field datasets. We report that most of the forests along the high altitude areas and few

  18. Linear compartment model of plutonium dynamics in a deciduous forest ecosystem

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.; Gardner, R.H.; Dahlman, R.C.

    1977-01-01

    Systems ecology techniques have been useful in simulating the fate and dynamics of radionuclides in forest ecosystems. The applications of systems models in this context are twofold: projection of the time-dependent distribution of radioisotopes among various ecosystems components, and manipulation of the modeled system to determine the sensitivity of components to variation in transfer coefficients and, thereby, identify critical fluxes affecting system behavior. The present paper describes a systems model that projects the possible fate of plutonium in a deciduous forest ecosystem. The isotopes of interest are 239 Pu and 240 Pu which have physical half lives of 2.44 x 10 4 and 6540 years, respectively. These isotopes are indistinguishable by alpha spectrometry hence 239 Pu is used to refer to both

  19. An ecosystem model for tropical forest disturbance and selective logging

    Science.gov (United States)

    Maoyi Huang; Gregory P. Asner; Michael Keller; Joseph A. Berry

    2008-01-01

    [1] A new three-dimensional version of the Carnegie-Ames-Stanford Approach (CASA) ecosystem model (CASA-3D) was developed to simulate regional carbon cycling in tropical forest ecosystems after disturbances such as logging. CASA-3D has the following new features: (1) an alternative approach for calculating absorbed photosynthetically active radiation (APAR) using new...

  20. Evaluating the ecological economic success of riparian restoration projects in Arizona (Abstract)

    Science.gov (United States)

    Gary B. Snider

    2000-01-01

    The past 4 years the Arizona Water Protection Fund provided more than $25 million to individuals and organizations for stream and riparian restoration projects in Arizona. Information which increases the awareness of the value of Arizona's riparian systems is crucial to the incorporation of ecosystem services into decision-making frameworks, which are largely...

  1. [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review].

    Science.gov (United States)

    Liu, Wei-wei; Wang, Xiao-ke; Lu, Fei; Ouyang, Zhi-yun

    2015-09-01

    As a dominant part of terrestrial ecosystems, forest ecosystem plays an important role in absorbing atmospheric CO2 and global climate change mitigation. From the aspects of zonal climate and geographical distribution, the present carbon stocks and carbon sequestration capacity of forest ecosystem were comprehensively examined based on the review of the latest literatures. The influences of land use change on forest carbon sequestration were analyzed, and factors that leading to the uncertainty of carbon sequestration assessment in forest ecosystem were also discussed. It was estimated that the current forest carbon stock was in the range of 652 to 927 Pg C and the carbon sequestration capacity was approximately 4.02 Pg C · a(-1). In terms of zonal climate, the carbon stock and carbon sequestration capacity of tropical forest were the maximum, about 471 Pg C and 1.02-1.3 Pg C · a(-1) respectively; then the carbon stock of boreal forest was about 272 Pg C, while its carbon sequestration capacity was the minimum, approximately 0.5 Pg C · a(-1); for temperate forest, the carbon stock was minimal, around 113 to 159 Pg C and its carbon sequestration capacity was 0.8 Pg C · a(-1). From the aspect of geographical distribution, the carbon stock of forest ecosystem in South America was the largest (187.7-290 Pg C), then followed by European (162.6 Pg C), North America (106.7 Pg C), Africa (98.2 Pg C) and Asia (74.5 Pg C), and Oceania (21.7 Pg C). In addition, carbon sequestration capacity of regional forest ecosystem was summed up as listed below: Tropical South America forest was the maximum (1276 Tg C · a(-1)), then were Tropical Africa (753 Tg C · a(-1)), North America (248 Tg C · a(-1)) and European (239 Tg C · a(-1)), and East Asia (98.8-136.5 Tg C · a(-1)) was minimum. To further reduce the uncertainty in the estimations of the carbon stock and carbon sequestration capacity of forest ecosystem, comprehensive application of long-term observation, inventories

  2. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests

    Energy Technology Data Exchange (ETDEWEB)

    Gough, Christopher; Curtis, Peter; Hardiman, Brady; Scheuermann, Cynthia; Bond-Lamberty, Benjamin

    2016-06-29

    Century-old forests in the U.S. upper Midwest and Northeast power much of North Amer- ica’s terrestrial carbon (C) sink, but these forests’ production and C sequestration capacity are expected to soon decline as fast-growing early successional species die and are replaced by slower growing late successional species. But will this really happen? Here we marshal empirical data and ecological theory to argue that substantial declines in net ecosystem production (NEP) owing to reduced forest growth, or net primary production (NPP), are not imminent in regrown temperate deciduous forests over the next several decades. Forest age and production data for temperate deciduous forests, synthesized from published literature, suggest slight declines in NEP and increasing or stable NPP during middle successional stages. We revisit long-held hypotheses by EP Odum and others that suggest low-severity, high-frequency disturbances occurring in the region’s aging forests will, against intuition, maintain NEP at higher-than- expected rates by increasing ecosystem complexity, sustaining or enhancing NPP to a level that largely o sets rising C losses as heterotrophic respiration increases. This theoretical model is also supported by biological evidence and observations from the Forest Accelerated Succession Experiment in Michigan, USA. Ecosystems that experience high-severity disturbances that simplify ecosystem complexity can exhibit substantial declines in production during middle stages of succession. However, observations from these ecosystems have exerted a disproportionate in uence on assumptions regarding the trajectory and magnitude of age-related declines in forest production. We conclude that there is a wide ecological space for forests to maintain NPP and, in doing so, lessens the declines in NEP, with signi cant implications for the future of the North American carbon sink. Our intellectual frameworks for understanding forest C cycle dynamics and resilience need to

  3. Cycling of radiocesium in forest ecosystems

    International Nuclear Information System (INIS)

    Myttenaere, C.; Sombre, L.; Thiry, Y.; Brouwer, S. de; Ronneau, C.

    1993-01-01

    A review is given of results on 137 Cs and potassium behavior in forest ecosystems following an atmospheric contamination after an accidental release. Data are given on the correlation coefficients 137 Cs versus K in the Belgian Ardennes forest in the period December 1988 to March 1990. Experiments were performed in Norwegian spruce and oak stands. Data are also given on 137 Cs distribution in soil layers of Bourakovka and Novo-Shepelichi polygons in the Chernobyl-contaminated area, and on radiocesium contamination of the red pine stand in Bourakovka. A correlation was found in the behavior of both elements in plants. Observations and studies of their behavior in multilayer soils, however, showed some discrepancies. (J.B.) 4 tabs., 2 figs., 20 refs

  4. Influence of spring and autumn phenological transitions on forest ecosystem productivit

    NARCIS (Netherlands)

    Richardson, A.D.; Black, T.A.; Ciais, P.; Delbart, N.; Moors, E.J.

    2010-01-01

    We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to

  5. Insects, Fires, and Climate Change: Implications for Snow Cover, Water Resources and Ecosystem Recovery in Western North America

    Science.gov (United States)

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Litvak, M. E.; Broxton, P. D.; Gochis, D.; Molotch, N. P.; Troch, P. A.; Ewers, B. E.

    2012-12-01

    Unprecedented levels of insect induced tree mortality and massive wildfires both have spread through the forests of Western North America over the last decade. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how simultaneous changes in forest structure and climate will interact to affect either downstream water resources or the regeneration and recovery of forested ecosystems. Because both streamflow and ecosystem productivity depend on seasonal snowmelt, a critical knowledge gap exists in how these disturbances will interact with a changing climate to control to the amount, timing, and the partitioning of seasonal snow cover This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a gradient of snow depth and duration from Arizona to Montana. These include undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input likely will not increase under a warming climate. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. These observations suggest that the ecosystem services of water provision and carbon storage may be very different in the forests that regenerate after disturbance.

  6. Anthropogenic Effects on Forest Ecosystems at Various Spatio-Temporal Scales

    Directory of Open Access Journals (Sweden)

    Michael Bredemeier

    2002-01-01

    Full Text Available The focus in this review of long-term effects on forest ecosystems is on human impact. As a classification of this differentiated and complex matter, three domains of long-term effects with different scales in space and time are distinguished: 1- Exploitation and conversion history of forests in areas of extended human settlement 2- Long-range air pollution and acid deposition in industrialized regions 3- Current global loss of forests and soil degradation.

  7. Evaluating the Contribution of Climate Forcing and Forest Dynamics to Accelerating Carbon Sequestration by Forest Ecosystems in the Northeastern U.S.: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Munger, J. William [Harvard University, SEAS; Foster, David R. [Harvard University, Harvard Forest; Richardson, Andrew D. [Harvard University, OEB

    2014-10-01

    This report summarizes work to improve quantitative understanding of the terrestrial ecosystem processes that control carbon sequestration in unmanaged forests It builds upon the comprehensive long-term observations of CO2 fluxes, climate and forest structure and function at the Harvard Forest in Petersham, MA. This record includes the longest CO2 flux time series in the world. The site is a keystone for the AmeriFlux network. Project Description The project synthesizes observations made at the Harvard Forest HFEMS and Hemlock towers, which represent the dominant mixed deciduous and coniferous forest types in the northeastern United States. The 20+ year record of carbon uptake at Harvard Forest and the associated comprehensive meteorological and biometric data, comprise one of the best data sets to challenge ecosystem models on time scales spanning hourly, daily, monthly, interannual and multi-decadal intervals, as needed to understand ecosystem change and climate feedbacks.

  8. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession

    NARCIS (Netherlands)

    Lohbeck, M.W.M.; Poorter, L.; Martinez-Ramos, M.; Bongers, F.

    2015-01-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity,

  9. Long-term trends from ecosystem research at the Hubbard Brook Experimental Forest

    Science.gov (United States)

    John L. Campbell; Charles T. Driscoll; Christopher Eagar; Gene E. Likens; Thomas G. Siccama; Chris E. Johnson; Timothy J. Fahey; Steven P. Hamburg; Richard T. Holmes; Amey S. Bailey; Donald C. Buso

    2007-01-01

    Summarizes 52 years of collaborative, long-term research conducted at the Hubbard Brook (NH) Experimental Forest on ecosystem response to disturbances such as air pollution, climate change, forest disturbance, and forest management practices. Also provides explanations of some of the trends and lists references from scientific literature for further reading.

  10. Achieving sustainable ese of environment: a framework for payment for protected forest ecosystem service

    Science.gov (United States)

    Widicahyono, A.; Awang, S. A.; Maryudi, A.; Setiawan, M. A.; Rusdimi, A. U.; Handoko, D.; Muhammad, R. A.

    2018-04-01

    Over the last decade, deforestation in Indonesia has reduced the forest area down to more than 6 million hectares. There is conflict that the protected forest ecosystem service is still often perceived as public goods. Many of them went unrecognized in planning process and continue to be undervalued. The challenge lies in maintaining socioeconomic development and ecosystem services sustainability without overlooking the people’s opportunities and improving their livelihoods over the long term. An integrated approach is required to understand the comprehensive concept of protected forest ecosystem service. This research aims to formulate a scheme of payment for ecosystem service (PES) in a protected forest. It is a first step towards the attempt for the value of ecosystem services to be reflected in decision-making. Literatures, previous researches and secondary data are reviewed thoroughly to analyze the interrelated components by looking at the environment as a whole and recognize their linkages that have consequences to one another both positive and negative. The framework of implementation of PES schemes outlines the complexity of human-environment interconnecting relationships. It evaluates the contributing actors of different interest i.e. long term use and short term use. The concept of PES accommodates the fulfillment of both conservation and exploitation with an incentive scheme to the contributing parties who are willing to implement conservation and issuance of compensation expense for any exploitation means. The most crucial part in this concept is to have a good and effective communication between every policy makers concerning the forest ecosystem and local communities.

  11. Radiocaesium in the fungal compartment of forest ecosystems

    International Nuclear Information System (INIS)

    Vinichuk, Mykhaylo

    2003-01-01

    Fungi in forest ecosystems are major contributors to accumulation and cycling of radionuclides, especially radiocaesium. However, relatively little is known about uptake and retention of 137 Cs by fungal mycelia. This thesis comprises quantitative estimates of manually prepared mycelia of mainly ectomycorrhizal fungi and their possible role in the retention, turnover and accumulation of radiocaesium in contaminated forest ecosystems. The studies were conducted in two forests during 1996-1998 and 2000-2003. One was in Ovruch district, Zhytomyr region of Ukraine (51 deg 30 min N, 28 deg 95 min E), and the other at two Swedish forest sites: the first situated about 35 km northwest of Uppsala (60 deg 05 min N, 17 deg 25 min E) and the second at Hille in the vicinity of Gaevle (60 deg 85 min N, 17 deg 15 min E). The 137 Cs activity concentration was measured in prepared mycelia and corresponding soil layers. Various extraction procedures were used to study the retention and binding of 137 Cs in Of/Oh and Ah/B horizons of forest soil. 137 Cs was also extracted from the fruit bodies and mycelia of fungi. The fungal mycelium biomass was estimated and the percentage of the total inventory of 137 Cs bound in mycelia in the Ukrainian and Swedish forests was calculated. The estimated fungal biomass in Ukrainian forests varied from 0.07 to 70.4 mg/g soil, in Swedish forests between 3.6 and 19. 4 mg/g soil. Between 0.5 to 50 % of the total 137 Cs activity in the 0-10 cm soil profile was retained in the fungal mycelia. The 137 Cs activity concentration in mycelia was thus higher than that found in soil, and 137 Cs activity concentrations in the fruit bodies was higher than that in the mycelium. The survey study revealed that a major part, around 50 % of the plant-available 137 Cs in forest soil, was retained in the fungal mycelium. The most probable sources of 137 Cs for fungal mycelia and fruit bodies of fungi were found to be water soluble substances, humic matter

  12. Role of Forest Resources to Local Livelihoods: The Case of East Mau Forest Ecosystem, Kenya

    Directory of Open Access Journals (Sweden)

    D. K. Langat

    2016-01-01

    Full Text Available Forests in Kenya are threatened by unsustainable uses and conversion to alternative land uses. In spite of the consequences of forest degradation and biodiversity loss and reliance of communities on forests livelihoods, there is little empirical data on the role of forest resources in livelihoods of the local communities. Socioeconomic, demographic, and forest use data were obtained by interviewing 367 households. Forest product market survey was undertaken to determine prices of various forest products for valuation of forest use. Forest income was significant to households contributing 33% of total household income. Fuel wood contributed 50%, food (27%, construction material (18%, and fodder, and thatching material 5% to household forest income. Absolute forest income and relative forest income (% were not significantly different across study locations and between ethnic groups. However, absolute forest income and relative forest income (% were significantly different among wealth classes. Poor households were more dependent on forests resources. However, in absolute terms, the rich households derived higher forest income. These results provide valuable information on the role of forest resources to livelihoods and could be applied in developing forest conservation policies for enhanced ecosystem services and livelihoods.

  13. Ecosystem Carbon Emissions from 2015 Forest Fires in Interior Alaska

    Science.gov (United States)

    Potter, Christopher S.

    2018-01-01

    In the summer of 2015, hundreds of wildfires burned across the state of Alaska, and consumed more than 1.6 million ha of boreal forest and wetlands in the Yukon-Koyukuk region. Mapping of 113 large wildfires using Landsat satellite images from before and after 2015 indicated that nearly 60% of this area was burned at moderate-to-high severity levels. Field measurements near the town of Tanana on the Yukon River were carried out in July of 2017 in both unburned and 2015 burned forested areas (nearly adjacent to one-another) to visually verify locations of different Landsat burn severity classes (low, moderate, or high). Results: Field measurements indicated that the loss of surface organic layers in boreal ecosystem fires is a major factor determining post-fire soil temperature changes, depth of thawing, and carbon losses from the mineral topsoil layer. Measurements in forest sites showed that soil temperature profiles to 30 cm depth at burned forest sites increased by an average of 8o - 10o C compared to unburned forest sites. Sampling and laboratory analysis indicated a 65% reduction in soil carbon content and a 58% reduction in soil nitrogen content in severely burned sample sites compared to soil mineral samples from nearby unburned spruce forests. Conclusions: Combined with nearly unprecedented forest areas severely burned in the Interior region of Alaska in 2015, total ecosystem fire emission of carbon to the atmosphere exceeded most previous estimates for the state.

  14. Improving SWAT for simulating water and carbon fluxes of forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Qichun; Zhang, Xuesong

    2016-11-01

    As a widely used watershed model for assessing impacts of anthropogenic and natural disturbances on water quantity and quality, the Soil and Water Assessment Tool (SWAT) has not been extensively tested in simulating water and carbon fluxes of forest ecosystems. Here, we examine SWAT simulations of evapotranspiration (ET), net primary productivity (NPP), net ecosystem exchange (NEE), and plant biomass at ten AmeriFlux forest sites across the U.S. We identify unrealistic radiation use efficiency (Bio_E), large leaf to biomass fraction (Bio_LEAF), and missing phosphorus supply from parent material weathering as the primary causes for the inadequate performance of the default SWAT model in simulating forest dynamics. By further revising the relevant parameters and processes, SWAT’s performance is substantially improved. Based on the comparison between the improved SWAT simulations and flux tower observations, we discuss future research directions for further enhancing model parameterization and representation of water and carbon cycling for forests.

  15. Validation of 3D-CMCC Forest Ecosystem Model (v.5.1) against eddy covariance data for 10 European forest sites

    DEFF Research Database (Denmark)

    Collalti, A.; Marconi, S.; Ibrom, Andreas

    2016-01-01

    This study evaluates the performances of the new version (v.5.1) of 3D-CMCC Forest Ecosystem Model (FEM) in simulating gross primary productivity (GPP), against eddy covariance GPP data for 10 FLUXNET forest sites across Europe. A new carbon allocation module, coupled with new both phenological...... over Europe without a site-related calibration, the model has been deliberately parametrized with a single set of species-specific parametrizations for each forest ecosystem. The model consistently reproduces both in timing and in magnitude daily and monthly GPP variability across all sites...... sites we evaluate whether a more accurate representation of forest structural characteristics (i.e. cohorts, forest layers) and species composition can improve model results. In two of the three sites results reveal that model slightly increases its performances although, statistically speaking...

  16. Importance of Forest Ecosystem Services to Secondary School Students: a Case from the North-West Slovenia

    Directory of Open Access Journals (Sweden)

    Gregor Torkar

    2014-06-01

    Full Text Available Background and Purpose: Forest managers are facing challenges in balancing the demands for forest social services raised by the general public and forest productive services. Knowing local people’s attitudes, taking into account their needs and respecting their opinions, introducing social aspects should become a management priority to ensure success of conservational activities and sustainable use of natural resources. This study investigates the attitudes of one category from the general public which is secondary school students related to forest ecosystem services in order to determine and present a useful basis for further research of people’s attitudes towards forests and forest management. Materials and Methods: In 2013 and 2014 410 Slovenian students from secondary schools in the Vipava valley and Goriška area in northwestern Slovenia completed a questionnaire testing for the influence of gender and frequency of forest experiences on attitudes to forest ecosystem services. Students’ attitudes to forest ecosystem services were investigated via 15 statements about provisioning, regulating, cultural and supporting services. The gathered data was analysed by the Statistical Package for the Social Sciences (SPSS, using ANOVA, Tukey post-hoc test, Spearman’s product moment correlation and the nonparametric Mann–Whitney (U test. Results and Conclusions: Students acknowledged the high benefits of ecosystem services provided by forests, though not all forest ecosystem services hold the same importance to secondary school students. Students placed the highest importance on supporting services; especially on the value of forests as habitats for animal and plant species. Also the importance of forests for clean air production was emphasized. Students with more frequent experiences in the forest environment placed more importance on cultural services as well as regulating services, especially for clean water and air production. Gender

  17. Distribution and transfer of radiocesium in two forest eco-systems in Rhineland-Palatinate especially after lime- and sodium fertilisation

    International Nuclear Information System (INIS)

    Block, J.

    1993-01-01

    Behaviour of radiocesium in ecosystems is described for two forest ecosystems in the Federal State of Rhineland-Palatinate. The patterns of distribution of radiocesium in forest ecosystem, mobility and availability of radiocesium in forest ecosystems and the role of different flows and processes of radiocesium transfer in forest ecosystems are given special attention. Eventual correlations of distribution patterns and transfers of radiocesium and the closely related bioelement sodium are checked. The study also investigates in howfar soil liming has an influence on the bio-availability of radiocesium and whether sodium fertilization can reduce radiocesium fallout after accidents and thus reduce contamination of forest fruit, mushrooms and game. Studies were conducted in a pine stand on quartzite under clay in the upper regions of the Hunsrueck mountains and in an oak Quercus petraea stand with beech undercrop on medium vanegated sandstone. Both forest ecosystems are typical for the Rhineland-Palatinate in terms of site, stocking, and immission. (MG)

  18. FOREST ECOSYSTEMS AND GLOBAL CHANGE: THE CASE STUDY OF INSUBRIA

    Directory of Open Access Journals (Sweden)

    M. Pautasso

    2013-03-01

    Full Text Available Forest ecosystems face multiple challenges due to climate change, invasive species, urbanization, land use change and the interactions between these global change drivers. This review provides an overview of such challenges for the case study of Insubria. Insubria is a region on the Southern side of the European Alps, famous for its stunning lakes (e.g., Como, Garda, Lugano, Maggiore, blessed by a relatively mild and humid climate, and shaped by the geologic fault line between the African and European plates. Global change impacts in Insubria pose a threat to its biodiversity and chestnut woodlands, particularly through modified winter forest fire regimes. Insubric biodiversity conservation, in turn, is essential to counteract the effects of climate change. Sustainable management of Insubric forests is made more difficult by rural abandonment, air pollution and invasive exotic species. There is a need to develop reliable long-term bio-indicators and to predict the shift of Insubric species, ecosystems and tree-lines due to rapid climate changes. Insubric studies on forests and global change call for enhanced international collaboration in forest management and research. Interdisciplinary approaches are needed to move from studies of single global change drivers to experiments, scenarios and models taking into account their combination and our responses to global change.

  19. Carbon exchanges and their responses to temperature and precipitation in forest ecosystems in Yunnan, Southwest China.

    Science.gov (United States)

    Fei, Xuehai; Song, Qinghai; Zhang, Yiping; Liu, Yuntong; Sha, Liqing; Yu, Guirui; Zhang, Leiming; Duan, Changqun; Deng, Yun; Wu, Chuansheng; Lu, Zhiyun; Luo, Kang; Chen, Aiguo; Xu, Kun; Liu, Weiwei; Huang, Hua; Jin, Yanqiang; Zhou, Ruiwu; Li, Jing; Lin, Youxing; Zhou, Liguo; Fu, Yane; Bai, Xiaolong; Tang, Xianhui; Gao, Jinbo; Zhou, Wenjun; Grace, John

    2018-03-01

    Forest ecosystems play an increasingly important role in the global carbon cycle. However, knowledge on carbon exchanges, their spatio-temporal patterns, and the extent of the key controls that affect carbon fluxes is lacking. In this study, we employed 29-site-years of eddy covariance data to observe the state, spatio-temporal variations and climate sensitivity of carbon fluxes (gross primary productivity (GPP), ecosystem respiration (R eco ), and net ecosystem carbon exchange (NEE)) in four representative forest ecosystems in Yunnan. We found that 1) all four forest ecosystems were carbon sinks (the average NEE was -3.40tCha -1 yr -1 ); 2) contrasting seasonality of the NEE among the ecosystems with a carbon sink mainly during the wet season in the Yuanjiang savanna ecosystem (YJ) but during the dry season in the Xishuangbanna tropical rainforest ecosystem (XSBN), besides an equivalent NEE uptake was observed during the wet/dry season in the Ailaoshan subtropical evergreen broad-leaved forest ecosystem (ALS) and Lijiang subalpine coniferous forest ecosystem (LJ); 3) as the GPP increased, the net ecosystem production (NEP) first increased and then decreased when the GPP>17.5tCha -1 yr -1 ; 4) the precipitation determines the carbon sinks in the savanna ecosystem (e.g., YJ), while temperature did so in the tropical forest ecosystem (e.g., XSBN); 5) overall, under the circumstances of warming and decreased precipitation, the carbon sink might decrease in the YJ but maybe increase in the ALS and LJ, while future strength of the sink in the XSBN is somewhat uncertain. However, based on the redundancy analysis, the temperature and precipitation combined together explained 39.7%, 32.2%, 25.3%, and 29.6% of the variations in the NEE in the YJ, XSBN, ALS and LJ, respectively, which indicates that considerable changes in the NEE could not be explained by variations in the temperature and precipitation. Therefore, the effects of other factors (e.g., CO 2 concentration, N

  20. Ecosystem services: foundations, opportunities, and challenges for the forest products sector

    Science.gov (United States)

    Trista M. Patterson; Dana L. Coelho

    2009-01-01

    The ecosystem service concept has been proposed as a meaningful framework for natural resource management. In theory, it holds concomitant benefit and consequence for the forest product sector. However, numerous barriers impede practitioners from developing concrete and enduring responses to emerging ecosystem service markets, policies, and initiatives. Principal among...

  1. Gamma-ray irradiation of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Guthrie, J.E.; Dugle, J.R.

    1983-01-01

    A long-term radiation ecology research project called Field Irradiator - Gamma (FIG) began at the Whiteshell Nuclear Research Establishment in 1968. The experimental area is in southeastern Manitoba and is located on the western edge of the Precambrian shield. The project studies the ecological effects continuous exposure to a gradient of gamma radiation has on a mixed boreal forest ecosystem. The gradient ranges from 1 to 460,000 times the natural background radiation level. This paper describes the forest, the gamma irradiator and its radiation field, and the research program

  2. Potential climate change impacts on temperate forest ecosystem processes

    Science.gov (United States)

    Peters, Emily B.; Wythers, Kirk R.; Zhang, Shuxia; Bradford, John B.; Reich, Peter B.

    2013-01-01

    Large changes in atmospheric CO2, temperature and precipitation are predicted by 2100, yet the long-term consequences for carbon, water, and nitrogen cycling in forests are poorly understood. We applied the PnET-CN ecosystem model to compare the long-term effects of changing climate and atmospheric CO2 on productivity, evapotranspiration, runoff, and net nitrogen mineralization in current Great Lakes forest types. We used two statistically downscaled climate projections, PCM B1 (warmer and wetter) and GFDL A1FI (hotter and drier), to represent two potential future climate and atmospheric CO2 scenarios. To separate the effects of climate and CO2, we ran PnET-CN including and excluding the CO2 routine. Our results suggest that, with rising CO2 and without changes in forest type, average regional productivity could increase from 67% to 142%, changes in evapotranspiration could range from –3% to +6%, runoff could increase from 2% to 22%, and net N mineralization could increase 10% to 12%. Ecosystem responses varied geographically and by forest type. Increased productivity was almost entirely driven by CO2 fertilization effects, rather than by temperature or precipitation (model runs holding CO2 constant showed stable or declining productivity). The relative importance of edaphic and climatic spatial drivers of productivity varied over time, suggesting that productivity in Great Lakes forests may switch from being temperature to water limited by the end of the century.

  3. Integrating ecosystem services into national Forest Service policy and operations

    Science.gov (United States)

    Robert Deal; Lisa Fong; Erin Phelps; Emily Weidner; Jonas Epstein; Tommie Herbert; Mary Snieckus; Nikola Smith; Tania Ellersick; Greg Arthaud

    2017-01-01

    The ecosystem services concept describes the many benefits people receive from nature. It highlights the importance of managing public and private lands sustainably to ensure these benefits continue into the future, and it closely aligns with the U.S. Forest Service (USFS) mission to “sustain the health, diversity, and productivity of the Nation’s forests and...

  4. Detecting Forest Cover and Ecosystem Service Change Using ...

    African Journals Online (AJOL)

    user

    Mpigi, than in Butambala by 5.99%, disturbed forest was 3%, farm land ... climate change impacts on ecosystem services requires more attention and ... While these conceptual models usually assume relatively a causal-effect ... images with relatively low cloud cover or free-cloud imagery during the time period of interest.

  5. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    Science.gov (United States)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  6. Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems

    DEFF Research Database (Denmark)

    Clarke, Nicholas; Gundersen, Per; Jönsson-Belyazid, Ulrika

    2015-01-01

    ) stocks. This paper reviews the findings in the scientific literature concerning the effects of harvesting of different intensities on SOC stocks and fluxes in boreal and northern temperate forest ecosystems to evaluate the evidence for significant SOC losses following biomass removal. An overview...... on SOC stocks in boreal and northern temperate forest ecosystems, which is in any case species-, site- and practice-specific. Properly conducted long-term experiments are therefore necessary to enable us to clarify the relative importance of different harvesting practices on the SOC stores, the key...

  7. Nitrate in shallow groundwater in typical agricultural and forest ecosystems in China, 2004-2010.

    Science.gov (United States)

    Zhang, Xinyu; Xu, Zhiwei; Sun, Xiaomin; Dong, Wenyi; Ballantine, Deborah

    2013-05-01

    The nitrate-nitrogen (NO3(-)-N) concentrations from shallow groundwater wells situated in 29 of the Chinese Ecosystem Research Network field stations, representing typical agro- and forest ecosystems, were assessed using monitoring data collected between 2004 and 2010. Results from this assessment permit a national scale assessment of nitrate concentrations in shallow groundwater, and allow linkages between nitrate concentrations in groundwater and broad land use categories to be made. Results indicated that most of the NO3(-)-N concentrations in groundwater from the agro- and forest ecosystems were below the Class 3 drinking water standard stated in the Chinese National Standard: Quality Standard for Ground Water (ecosystems (4.1 +/- 0.33 mg/L) than in forest ecosystems (0.5 +/- 0.04 mg/L). NO3(-)-N concentrations were relatively higher (> 10 mg N /L) in 10 of the 43 wells sampled in the agricultural ecosystems. These elevated concentrations occurred mainly in the Ansai, Yucheng, Linze, Fukang, Akesu, and Cele field sites, which were located in arid and semi-arid areas where irrigation rates are high. We suggest that improvements in N fertilizer application and irrigation management practices in the arid and semi-arid agricultural ecosystems of China are the key to managing groundwater nitrate concentrations.

  8. Human influences on forest ecosystems: the southern wildland-urban interface assessment

    Science.gov (United States)

    Edward A. Macie; L. Annie Hermansen; [Editors

    2002-01-01

    This publication provides a review of critical wildland-urban interface issues, challenges, and needs for the Southern United States. Chapter topics include population and demographic trends; economic and tax issues; land use planning and policy; urban effects on forest ecosystems; challenges for forest resource management and conservation; social consequences of...

  9. Ecosystem services as a framework for forest stewardship: Deschutes National Forest overview

    Science.gov (United States)

    Nikola Smith; Robert Deal; Jeff Kline; Dale Blahna; Trista Patterson; Thomas A. Spies; Karen. Bennett

    2011-01-01

    The concept of ecosystem services has emerged as a way of framing and describing the comprehensive set of benefits that people receive from nature. These include commonly recognized goods like timber and fresh water, as well as processes like climate regulation and water purification, and aesthetic, spiritual, and cultural benefits. The USDA Forest Service has been...

  10. Tropical and Highland Temperate Forest Plantations in Mexico: Pathways for Climate Change Mitigation and Ecosystem Services Delivery

    Directory of Open Access Journals (Sweden)

    Vidal Guerra-De la Cruz

    2017-12-01

    Full Text Available Forest plantations are a possible way of increasing forest productivity in temperate and tropical forests, and therefore also increasing above- and belowground carbon pools. In the context of climate change, monospecific plantations might become an alternative to mitigate global warming; however, their contribution to the structural complexity, complementarity, and biodiversity of forests has not been addressed. Mixed forest plantations can ensure that objectives of climate change mitigation are met through carbon sequestration, while also delivering anticipated ecosystem services (e.g., nutrient cycling, erosion control, and wildlife habitat. However, mixed forest plantations pose considerable operational challenges and research opportunities. For example, it is essential to know how many species or functional traits are necessary to deliver a set of benefits, or what mixture of species and densities are key to maintaining productive plantations and delivering multiple ecosystem services. At the same time, the establishment of forest plantations in Mexico should not be motivated solely by timber production. Forest plantations should also increase carbon sequestration, maintain biodiversity, and provide other ecosystem services. This article analyzes some matters that affect the development of planted forests in the Mexican national context, and presents alternatives for forest resources management through the recommendation of mixed forest plantations as a means of contributing to climate change mitigation and the delivery of ecosystem services.

  11. Soil Microbial Community Successional Patterns during Forest Ecosystem Restoration ▿†

    Science.gov (United States)

    Banning, Natasha C.; Gleeson, Deirdre B.; Grigg, Andrew H.; Grant, Carl D.; Andersen, Gary L.; Brodie, Eoin L.; Murphy, D. V.

    2011-01-01

    Soil microbial community characterization is increasingly being used to determine the responses of soils to stress and disturbances and to assess ecosystem sustainability. However, there is little experimental evidence to indicate that predictable patterns in microbial community structure or composition occur during secondary succession or ecosystem restoration. This study utilized a chronosequence of developing jarrah (Eucalyptus marginata) forest ecosystems, rehabilitated after bauxite mining (up to 18 years old), to examine changes in soil bacterial and fungal community structures (by automated ribosomal intergenic spacer analysis [ARISA]) and changes in specific soil bacterial phyla by 16S rRNA gene microarray analysis. This study demonstrated that mining in these ecosystems significantly altered soil bacterial and fungal community structures. The hypothesis that the soil microbial community structures would become more similar to those of the surrounding nonmined forest with rehabilitation age was broadly supported by shifts in the bacterial but not the fungal community. Microarray analysis enabled the identification of clear successional trends in the bacterial community at the phylum level and supported the finding of an increase in similarity to nonmined forest soil with rehabilitation age. Changes in soil microbial community structure were significantly related to the size of the microbial biomass as well as numerous edaphic variables (including pH and C, N, and P nutrient concentrations). These findings suggest that soil bacterial community dynamics follow a pattern in developing ecosystems that may be predictable and can be conceptualized as providing an integrated assessment of numerous edaphic variables. PMID:21724890

  12. Ca isotopic fractionation patterns in forest ecosystems

    Science.gov (United States)

    Kurtz, A. C.; Takagi, K.

    2012-12-01

    Calcium stable isotope ratios are an emerging tracer of the biogeochemical cycle of Ca that are just beginning to see significant application to forest ecosystems. The primary source of isotopic fractionation in these systems is discrimination against light Ca during uptake by plant roots. Cycling of vegetation-fractionated Ca establishes isotopically distinct Ca pools within a forest ecosystem. In some systems, the shallow soil exchangeable Ca pool is isotopically heavy relative to Ca inputs. This has been explained by preferential removal of light Ca from the soil. In other systems, the soil exchange pool is isotopically light relative to inputs, which is explained by recycling of plant-fractionated light Ca back into soil. Thus vegetation uptake of light Ca has been called on to account for both isotopically heavy and light Ca in the shallow soil exchange pools. We interpret patterns in ecosystem δ44Ca with the aid of a simple box model of the forest Ca cycle. We suggest that the δ44Ca of exchangeable Ca in the shallow soil pool primarily reflects the relative magnitude of three key fluxes in a forest Ca cycle, 1) the flux of external Ca into the system via weathering or atmospheric deposition, 2) the uptake flux of Ca from soils into the vegetation pool, and 3) the return flux of Ca to shallow soils via remineralization of leaf litter. Two observations that emerge from our model may aid in the application of Ca isotopes to provide insight into the forest Ca cycle. First, regardless of the magnitude of both vegetation Ca uptake and isotopic fractionation, the δ44Ca of the soil exchange pool will equal the input δ44Ca unless the plant uptake and remineralization fluxes are out of balance. A second observation is that the degree to which the shallow soil exchange pool δ44Ca can differ from the input ratio is controlled by the relative rates of biological uptake and external Ca input. Significant differences between soil exchange and input δ44Ca are seen only

  13. Rapid increase in log populations in drought-stressed mixed-conifer and ponderosa pine forests in northern Arizona

    Science.gov (United States)

    Joseph L. Ganey; Scott C. Vojta

    2012-01-01

    Down logs provide important ecosystem services in forests and affect surface fuel loads and fire behavior. Amounts and kinds of logs are influenced by factors such as forest type, disturbance regime, forest man-agement, and climate. To quantify potential short-term changes in log populations during a recent global- climate-change type drought, we sampled logs in mixed-...

  14. Photosynthesis and carbon isotope discrimination in boreal forest ecosystems: A comparison of functional characteristics in plants from three mature forest types

    Science.gov (United States)

    Flanagan, Lawrence B.; Brooks, J. Renee; Ehleringer, James R.

    1997-12-01

    In this paper we compare measurements of photosynthesis and carbon isotope discrimination characteristics among plants from three mature boreal forest types (Black spruce, Jack pine, and aspen) in order to help explain variation in ecosystem-level gas exchange processes. Measurements were made at the southern study area (SSA) and northern study area (NSA) of the boreal forest in central Canada as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). In both the NSA and the SSA there were significant differences in photosynthesis among the major tree species, with aspen having the highest CO2 assimilation rates and spruce the lowest. Within a species, photosynthetic rates in the SSA were approximately twice those measured in the NSA, and this was correlated with similar variations in stomatal conductance. Calculations of the ratio of leaf intercellular to ambient CO2 concentration (ci/ca) from leaf carbon isotope discrimination (Δ) values indicated a relatively low degree of stomatal limitation of photosynthesis, despite the low absolute values of stomatal conductance in these boreal tree species. Within each ecosystem, leaf Δ values were strongly correlated with life-form groups (trees, shrubs, forbs, and mosses), and these differences are maintained between years. Although we observed significant variation in the 13C content of tree rings at the old Jack pine site in the NSA during the past decade (indicating interannual variation in the degree of stomatal limitation), changes in summer precipitation and temperature accounted for only 44% of the isotopic variance. We scaled leaf-level processes to the ecosystem level through analyses of well-mixed canopy air. On average, all three forest types had similar ecosystem-level Δ values (average value ± standard deviation, 19.1‰±0.5‰), calculated from measurements of change in the concentration and carbon isotope ratio of atmospheric CO2 during a diurnal cycle within a forest canopy. However, there were

  15. Process Network Approach to Understanding How Forest Ecosystems Adapt to Changes

    Science.gov (United States)

    Kim, J.; Yun, J.; Hong, J.; Kwon, H.; Chun, J.

    2011-12-01

    Sustainability challenges are transforming science and its role in society. Complex systems science has emerged as an inevitable field of education and research, which transcends disciplinary boundaries and focuses on understanding of the dynamics of complex social-ecological systems (SES). SES is a combined system of social and ecological components and drivers that interact and give rise to results, which could not be understood on the basis of sociological or ecological considerations alone. However, both systems may be viewed as a network of processes, and such a network hierarchy may serve as a hinge to bridge social and ecological systems. As a first step toward such effort, we attempted to delineate and interpret such process networks in forest ecosystems, which play a critical role in the cycles of carbon and water from local to global scales. These cycles and their variability, in turn, play an important role in the emergent and self-organizing interactions between forest ecosystems and their environment. Ruddell and Kumar (2009) define a process network as a network of feedback loops and the related time scales, which describe the magnitude and direction of the flow of energy, matter, and information between the different variables in a complex system. Observational evidence, based on micrometeorological eddy covariance measurements, suggests that heterogeneity and disturbances in forest ecosystems in monsoon East Asia may facilitate to build resilience for adaptation to change. Yet, the principles that characterize the role of variability in these interactions remain elusive. In this presentation, we report results from the analysis of multivariate ecohydrologic and biogeochemical time series data obtained from temperate forest ecosystems in East Asia based on information flow statistics.

  16. 76 FR 41753 - Sierra National Forest, Bass Lake Ranger District, California, Grey's Mountain Ecosystem...

    Science.gov (United States)

    2011-07-15

    ..., California, Grey's Mountain Ecosystem Restoration Project AGENCY: Forest Service, USDA. ACTION: Notice of...: Background Information: The Grey's Mountain Ecosystem Restoration Project (Madera County, California) lies... vegetation. Currently, vegetation within the Grey's Mountain Ecosystem Restoration Project has changed from...

  17. ADVANCED EARTH OBSERVATION APPROACH FOR MULTISCALE FOREST ECOSYSTEM SERVICES MODELING AND MAPPING (MIMOSE

    Directory of Open Access Journals (Sweden)

    G. Chirici

    2014-04-01

    Full Text Available In the last decade ecosystem services (ES have been proposed as a method for quantifying the multifunctional role of forest ecosystems. Their spatial distribution on large areas is frequently limited by the lack of information, because field data collection with traditional methods requires much effort in terms of time and cost.  In this contribution we propose a methodology (namely, MultIscale Mapping Of ecoSystem servicEs - MIMOSE based on the integration of remotely sensed images and field observation to produce a wall-to-wall geodatabase of forest parcels accompanied with several information useful as a basis for future trade-off analysis of different ES. Here, we present the application of the MIMOSE approach to a study area of 443,758 hectares  coincident with administrative Molise Region in Central Italy. The procedure is based on a local high resolution forest types map integrated with information on the main forest management approaches. Through the non-parametric k-Nearest Neighbors techniques, we produced a growing stock volume map integrating a local forest inventory with a multispectral satellite IRS LISS III imagery. With the growing stock volume map we derived a forest age map for even-aged forest types. Later these information were used to automatically create a vector forest parcels map by multidimensional image segmentation that were finally populated with a number of information useful for ES spatial estimation. The contribution briefly introduce to the MIMOSE methodology presenting the preliminary results we achieved which constitute the basis for a future implementation of ES modeling.

  18. Human Influences on Tree Diversity and Composition of a Coastal Forest Ecosystem: The Case of Ngumburuni Forest Reserve, Rufiji, Tanzania

    Directory of Open Access Journals (Sweden)

    J. Kimaro

    2013-01-01

    Full Text Available This paper reports on the findings of an ecological survey conducted in Ngumburuni Forest Reserve, a biodiversity rich forest reserve within the coastal forests of Tanzania. The main goal of this study was to determine the influence of uncontrolled anthropogenic activities on tree species diversity and composition within the forest ecosystem. It was revealed that economic activities including logging, charcoaling, and shifting cultivation were the most important disturbing activities affecting ecological functioning and biodiversity integrity of the forest. Further to this, we noted that the values of species diversity, composition, and regeneration potential within the undisturbed forest areas were significantly different from those in heavily disturbed areas. These observations confirm that the ongoing human activities have already caused size quality degradation of useful plants, enhanced species diversification impacts to the forest ecosystem, and possibly negatively affected the livelihoods of the adjacent local communities. Despite these disturbances, Ngumburuni forest reserve still holds important proportions of both endemic and threatened animal and plant species. The study suggests urgent implementation of several conservation measures in order to limit accessibility to the forest resources so as to safeguard the richness and abundance of useful biodiversity stocks in the reserve.

  19. Whole-ecosystem experimental manipulations of tropical forests

    OpenAIRE

    Fayle, Tom M; Turner, Edgar Clive; Basset, Yves; Ewers, Robert M; Reynolds, Glen; Novotny, Vojtech

    2015-01-01

    Tropical forests are highly diverse systems involving extraordinary numbers of interactions between species, with each species responding in a different way to the abiotic environment. Understanding how these systems function and predicting how they respond to anthropogenic global change is extremely challenging. We argue for the necessity of ‘whole-ecosystem’ experimental manipulations, in which the entire ecosystem is targeted, either to reveal the functioning of the...

  20. A tool for assessing ecological status of forest ecosystem

    Science.gov (United States)

    Rahman Kassim, Abd; Afizzul Misman, Muhammad; Azahari Faidi, Mohd; Omar, Hamdan

    2016-06-01

    Managers and policy makers are beginning to appreciate the value of ecological monitoring of artificially regenerated forest especially in urban areas. With the advent of more advance technology in precision forestry, high resolution remotely sensed data e.g. hyperspectral and LiDAR are becoming available for rapid and precise assessment of the forest condition. An assessment of ecological status of forest ecosystem was developed and tested using FRIM campus forest stand. The forest consisted of three major blocks; the old growth artificially regenerated native species forests, naturally regenerated forest and recent planted forest for commercial timber and other forest products. Our aim is to assess the ecological status and its proximity to the mature old growth artificially regenerated stand. We used airborne LiDAR, orthophoto and thirty field sampling quadrats of 20x20m for ground verification. The parameter assessments were grouped into four broad categories: a. forest community level-composition, structures, function; landscape structures-road network and forest edges. A metric of parameters and rating criteria was introduced as indicators of the forest ecological status. We applied multi-criteria assessment to categorize the ecological status of the forest stand. The paper demonstrates the application of the assessment approach using FRIM campus forest as its first case study. Its potential application to both artificially and naturally regenerated forest in the variety of Malaysian landscape is discussed

  1. MOSSES AND LICHENS – BIOINDICATORS OF HEAVY METALS POLLUTION OF FOREST ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    BEGU A.

    2014-03-01

    Full Text Available This study is a comparative investigation of the content of heavy metals (Pb, Cu, Ni, Zn and Cr in mosses and lichens recorded in ten deciduous forests in the Republic of Moldova included in a transnational grid (16x16 km of forest monitoring throughout Europe. The content of heavy metals doesn’t differ significant by depending on the location of studied forest ecosystems. The trends of larger accumulation are observed near the local stationary and mobile sources of pollution. Mosses were confirmed as good indicators of air pollution with heavy metals to forest ecosystems located near sources of pollution and lichens show good bio-indicators particularities for background pollution. The good correlation between the concentrations of moss and lichen were Cr, Cu and Ni, and the low correlation between Pb and Zn, which are considered to be metals which are amenable to long-distance dispersal.

  2. Density-dependent vulnerability of forest ecosystems to drought

    Science.gov (United States)

    Alessandra Bottero; Anthony W. D' Amato; Brian J. Palik; John B. Bradford; Shawn Fraver; Mike A. Battaglia; Lance A. Asherin; Harald Bugmann

    2017-01-01

    Climate models predict increasing drought intensity and frequency for many regions, which may have negative consequences for tree recruitment, growth and mortality, as well as forest ecosystem services. Furthermore, practical strategies for minimizing vulnerability to drought are limited. Tree population density, a metric of tree abundance in a given area, is a primary...

  3. Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review

    DEFF Research Database (Denmark)

    Cannicci, S.; Burows, D.; Fratini, S.

    2008-01-01

    The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic...... processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon...... to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about...

  4. The role of remote sensing in process‐scaling studies of managed forest ecosystems

    Science.gov (United States)

    Jeffrey G. Masek; Daniel J. Hayes; M. Joseph Hughes; Sean P. Healey; David P. Turner

    2015-01-01

    Sustaining forest resources requires a better understanding of forest ecosystem processes, and how management decisions and climate change may affect these processes in the future. While plot and inventory data provide our most detailed information on forest carbon, energy, and water cycling, applying this understanding to broader spatial and temporal domains...

  5. The complete nitrogen cycle of an N-saturated spruce forest ecosystem.

    Science.gov (United States)

    Kreutzer, K; Butterbach-Bahl, K; Rennenberg, H; Papen, H

    2009-09-01

    Long-term nitrogen deposition into forest ecosystems has turned many forests in Central Europe and North America from N-limited to N-saturated systems, with consequences for climate as well as air and groundwater quality. However, complete quantification of processes that convert the N deposited and contributed to ecosystem N cycling is scarce. In this study, we provide the first complete quantification of external and internal N fluxes in an old-growth spruce forest, the Höglwald, Bavaria, Germany, exposed to high chronic N deposition. In this forest, N cycling is dominated by high rates of mineralisation of soil organic matter, nitrification and immobilisation of ammonium and nitrate into microbial biomass. The amount of ammonium available is sufficient to cover the entire N demand of the spruce trees. The data demonstrate the existence of a highly dynamic internal N cycle within the soil, driven by growth and death of the microbial biomass, which turns over approximately seven times each year. Although input and output fluxes are of high environmental significance, they are low compared to the internal fluxes mediated by microbial activity.

  6. Extended benefit cost analysis as an instrument of economic valuated in Petungkriyono forest ecosystem services

    Science.gov (United States)

    Damayanti, Irma; Nur Bambang, Azis; Retnaningsih Soeprobowati, Tri

    2018-05-01

    Petungkriyono is the last tropical forest in Java and provides biodiversity including rare flora and fauna that must be maintained, managed and utilized in order to give meaning for humanity and sustainability. Services of Forest Ecosystem in Petungkriyono are included such as goods supply, soil-water conservation, climate regulation, purification environment and flora fauna habitats. The approach of this study is the literature review from various studies before perceiving the influenced of economic valuation in determining the measurement conservation strategies of Petungkriyono Natural Forest Ecosystem in Pekalongan Regency. The aims of this study are to analyzing an extended benefit cost of natural forest ecosystems and internalizing them in decision making. The method of quantification and valuation of forest ecosystem is Cost and Benefit Analysis (CBA) which is a standard economic appraisal tools government in development economics. CBA offers the possibility capturing impact of the project. By using productivity subtitution value and extended benefit cost analysis any comodity such as Backwoods,Pine Woods, Puspa woods and Pine Gum. Water value, preventive buildings of landslide and carbon sequestration have total economic value of IDR.163.065.858.080, and the value of Extended Benefit Cost Ratio in Petungkriyono is 281.35 %. However, from the result is expected the local government of Pekalongan to have high motivation in preserve the existence of Petungkriyono forest.

  7. A walk on the wild side: Disturbance dynamics and the conservation and management of European mountain forest ecosystems.

    Science.gov (United States)

    Kulakowski, Dominik; Seidl, Rupert; Holeksa, Jan; Kuuluvainen, Timo; Nagel, Thomas A; Panayotov, Momchil; Svoboda, Miroslav; Thorn, Simon; Vacchiano, Giorgio; Whitlock, Cathy; Wohlgemuth, Thomas; Bebi, Peter

    2017-03-15

    Mountain forests are among the most important ecosystems in Europe as they support numerous ecological, hydrological, climatic, social, and economic functions. They are unique relatively natural ecosystems consisting of long-lived species in an otherwise densely populated human landscape. Despite this, centuries of intensive forest management in many of these forests have eclipsed evidence of natural processes, especially the role of disturbances in long-term forest dynamics. Recent trends of land abandonment and establishment of protected forests have coincided with a growing interest in managing forests in more natural states. At the same time, the importance of past disturbances highlighted in an emerging body of literature, and recent increasing disturbances due to climate change are challenging long-held views of dynamics in these ecosystems. Here, we synthesize aspects of this Special Issue on the ecology of mountain forest ecosystems in Europe in the context of broader discussions in the field, to present a new perspective on these ecosystems and their natural disturbance regimes. Most mountain forests in Europe, for which long-term data are available, show a strong and long-term effect of not only human land use but also of natural disturbances that vary by orders of magnitude in size and frequency. Although these disturbances may kill many trees, the forests themselves have not been threatened. The relative importance of natural disturbances, land use, and climate change for ecosystem dynamics varies across space and time. Across the continent, changing climate and land use are altering forest cover, forest structure, tree demography, and natural disturbances, including fires, insect outbreaks, avalanches, and wind disturbances. Projected continued increases in forest area and biomass along with continued warming are likely to further promote forest disturbances. Episodic disturbances may foster ecosystem adaptation to the effects of ongoing and future

  8. Foliar and ecosystem respiration in an old-growth tropical rain forest

    Science.gov (United States)

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2008-01-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI).A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (...

  9. Disturbance and net ecosystem production across three climatically distinct forest landscapes

    Science.gov (United States)

    John L. Campbell; O.J. Sun; B.E. Law

    2004-01-01

    Biometric techniques were used to measure net ecosystem production (NEP) across three climatically distinct forest chronosequences in Oregon. NEP was highly negative immediately following stand-replacing disturbance in all forests and recovered to positive values by 10, 20, and 30 years of age for the mild mesic Coast Range, mesic West Cascades, and semi-arid East...

  10. Cellulose Dynamics during Foliar Litter Decomposition in an Alpine Forest Meta-Ecosystem

    Directory of Open Access Journals (Sweden)

    Kai Yue

    2016-08-01

    Full Text Available To investigate the dynamics and relative drivers of cellulose degradation during litter decomposition, a field experiment was conducted in three individual ecosystems (i.e., forest floor, stream, and riparian zone of an alpine forest meta-ecosystem on the eastern Tibetan Plateau. Four litter species (i.e., willow: Salix paraplesia, azalea: Rhododendron lapponicum, cypress: Sabina saltuaria, and larch: Larix mastersiana that had varying initial litter chemical traits were placed separately in litterbags and then incubated on the soil surface of forest floor plots or in the water of the stream and riparian zone plots. Litterbags were retrieved five times each year during the two-year experiment, with nine replicates each time for each treatment. The results suggested that foliar litter lost 32.2%–89.2% of the initial dry mass depending on litter species and ecosystem type after two-year’s incubation. The cellulose lost 60.1%–96.8% of the initial mass with degradation rate in the order of stream > riparian zone > forest floor. Substantial cellulose degradation occurred at the very beginning (i.e., in the first pre-freezing period of litter decomposition. Litter initial concentrations of phosphorus (P and lignin were found to be the dominant chemical traits controlling cellulose degradation regardless of ecosystems type. The local-scale environmental factors such as temperature, pH, and nutrient availability were important moderators of cellulose degradation rate. Although the effects of common litter chemical traits (e.g., P and lignin concentrations on cellulose degradation across different individual ecosystems were identified, local-scale environmental factors such as temperature and nutrient availability were found to be of great importance for cellulose degradation. These results indicated that local-scale environmental factors should be considered apart from litter quality for generating a reliable predictive framework for the drivers

  11. An individual-based process model to simulate landscape-scale forest ecosystem dynamics

    Science.gov (United States)

    Rupert Seidl; Werner Rammer; Robert M. Scheller; Thomas Spies

    2012-01-01

    Forest ecosystem dynamics emerges from nonlinear interactions between adaptive biotic agents (i.e., individual trees) and their relationship with a spatially and temporally heterogeneous abiotic environment. Understanding and predicting the dynamics resulting from these complex interactions is crucial for the sustainable stewardship of ecosystems, particularly in the...

  12. Quantifying resilience of multiple ecosystem services and biodiversity in a temperate forest landscape.

    Science.gov (United States)

    Cantarello, Elena; Newton, Adrian C; Martin, Philip A; Evans, Paul M; Gosal, Arjan; Lucash, Melissa S

    2017-11-01

    Resilience is increasingly being considered as a new paradigm of forest management among scientists, practitioners, and policymakers. However, metrics of resilience to environmental change are lacking. Faced with novel disturbances, forests may be able to sustain existing ecosystem services and biodiversity by exhibiting resilience, or alternatively these attributes may undergo either a linear or nonlinear decline. Here we provide a novel quantitative approach for assessing forest resilience that focuses on three components of resilience, namely resistance, recovery, and net change, using a spatially explicit model of forest dynamics. Under the pulse set scenarios, we explored the resilience of nine ecosystem services and four biodiversity measures following a one-off disturbance applied to an increasing percentage of forest area. Under the pulse + press set scenarios, the six disturbance intensities explored during the pulse set were followed by a continuous disturbance. We detected thresholds in net change under pulse + press scenarios for the majority of the ecosystem services and biodiversity measures, which started to decline sharply when disturbance affected >40% of the landscape. Thresholds in net change were not observed under the pulse scenarios, with the exception of timber volume and ground flora species richness. Thresholds were most pronounced for aboveground biomass, timber volume with respect to the ecosystem services, and ectomycorrhizal fungi and ground flora species richness with respect to the biodiversity measures. Synthesis and applications . The approach presented here illustrates how the multidimensionality of stability research in ecology can be addressed and how forest resilience can be estimated in practice. Managers should adopt specific management actions to support each of the three components of resilience separately, as these may respond differently to disturbance. In addition, management interventions aiming to deliver resilience

  13. Analysis of the changes in forest ecosystem functions, structure and composition in the Black Sea region of Turkey

    Institute of Scientific and Technical Information of China (English)

    Sedat Kele(s); (I)dris Durusoy; Günay Çakir

    2017-01-01

    We used geographical information system to analyze changes in forest ecosystem functions, structure and composition in a typical department of forest man-agement area consisting of four forest management plan-ning units in Turkey. To assess these effects over a 25 year period we compiled data from three forest management plans that were made in 1986, 2001 and 2011. Temporal changes in forest ecosystem functions were estimated based on the three pillars of forest sustainability: eco-nomics, ecology and socio-culture. We assessed a few indicators such as land-use and forest cover, forest types, tree species, development stage, stand age classes, crown closure, growing stock and its increment, and timber bio-mass. The results of the case study suggested a shift in forest values away from economic values toward ecologi-cal and socio-cultural values over last two planning peri-ods. Forest ecosystem structure improved, due mainly to increasing forest area, decreasing non-forest areas (espe-cially in settlement and agricultural areas), forestation on forest openings, rehabilitation of degraded forests, con-version of even-aged forests to uneven-aged forests and conversion of coppice forests to high forests with greater growing stock increments. There were also favorable changes in forest management planning approaches.

  14. Bulgarian Rila mountain forest ecosystems study site: site description and SO42-, NO3- deposition

    Science.gov (United States)

    Karl Zeller; Christo Bojinov; Evgeny Donev; Nedialko Nikolov

    1998-01-01

    Bulgaria's forest ecosystems (31 percent of the country's area) are considered vulnerable to dry and wet pollution deposition. Coniferous forests that cover one-third of the total forest land are particularly sensitive to pollution loads. The USDA Forest Service, Sofia University, and the Bulgarian Forest Research Institute (FRI) established a cooperative...

  15. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.

    Science.gov (United States)

    Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans

    2015-05-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of

  16. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks

    Science.gov (United States)

    Bradford, John B.; Jensen, Nicholas R.; Domke, Grant M.; D’Amato, Anthony W.

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior National Forest, in northern Minnesota. Forest inventory data from the USDA Forest Service, Forest Inventory and Analysis program were used to characterize current forest age structure and quantify the relationship between age and carbon stocks for eight forest types. Using these findings, we simulated the impact of alternative management scenarios and natural disturbance rates on forest-wide terrestrial carbon stocks over a 100-year horizon. Under low natural mortality, forest-wide total ecosystem carbon stocks increased when 0% or 40% of planned harvests were implemented; however, the majority of forest-wide carbon stocks decreased with greater harvest levels and elevated disturbance rates. Our results suggest that natural disturbance has the potential to exert stronger influence on forest carbon stocks than timber harvesting activities and that maintaining carbon stocks over the long-term may prove difficult if disturbance frequency increases in response to climate change.

  17. Eutrophication of an Urban Forest Ecosystem: Causes and Effects

    Science.gov (United States)

    Bednova, O. V.; Kuznetsov, V. A.; Tarasova, N. P.

    2018-01-01

    The combined use of methods of passive dosimetry of the status of atmospheric air, phytoindication, and cartographic visualization of data made it possible to elaborate and substantiate approaches to evaluation of the effect of atmospheric air contamination on the eutrophication of forest ecosystems under urban conditions.

  18. A review of malaria transmission dynamics in forest ecosystems

    Science.gov (United States)

    2014-01-01

    Malaria continues to be a major health problem in more than 100 endemic countries located primarily in tropical and sub-tropical regions around the world. Malaria transmission is a dynamic process and involves many interlinked factors, from uncontrollable natural environmental conditions to man-made disturbances to nature. Almost half of the population at risk of malaria lives in forest areas. Forests are hot beds of malaria transmission as they provide conditions such as vegetation cover, temperature, rainfall and humidity conditions that are conducive to distribution and survival of malaria vectors. Forests often lack infrastructure and harbor tribes with distinct genetic traits, socio-cultural beliefs and practices that greatly influence malaria transmission dynamics. Here we summarize the various topographical, entomological, parasitological, human ecological and socio-economic factors, which are crucial and shape malaria transmission in forested areas. An in-depth understanding and synthesis of the intricate relationship of these parameters in achieving better malaria control in various types of forest ecosystems is emphasized. PMID:24912923

  19. The encyclopedia of southern Appalachian forest ecosystems: A prototype of an online scientific knowledge management system

    Science.gov (United States)

    Deborah K. Kennard; H. Michael Rauscher; Patricia A. Flebbe; Daniel L. Schmoldt; William G. Hubbard; J. Bryan Jordin; William Milnor

    2003-01-01

    The Encyclopedia of Southern Appalachian Forest Ecosystems (ESAFE), a hyperdocument-based encyclopedia system available on the Internet, provides an organized synthesis of existing research on the management and ecology of Southern Appalachian forests ecosystems. The encyclopedia is dynamic, so that new or revised content can be submitted directly through the Internet...

  20. The importance and conservation of ectomycorrizal fungal diversity in forest ecosystems: lessons from Europe and the Pacific Northwest.

    Science.gov (United States)

    Michael P. Amaranthus

    1998-01-01

    Ectomycorrhizal fungi (EMF) consist of about 5,000 species and profoundly affect forest ecosystems by mediating nutrient and water uptake, protecting roots from pathogens and environmental extremes, and maintaining soil structure and forest food webs. Diversity of EMF likely aids forest ecosystem resilience in the face of changing environmental factors such as...

  1. DEPENDENCE OF GRASS COVER TAXONOMIC AND ECOLOGICAL STRUCTURE ON THE ANTHROPOGENIC IMPACT IN FOREST ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    N. V. Miroshnik

    2016-01-01

    Full Text Available Pine forests Chigirinsky Bor grow on fresh sod-podzolic soils formed on ancient alluvial deposits. Pine forests are characterized by stringent moisture regimes and constantly suffer from lack of productive moisture in soil.  Industrial development of Cherkasy in 60th years of ХХ century leaded air pollution and emissions of SO2, NOx, NH3, and dust. This contributed to significant negative influence on the surrounding forest ecosystems from enterprises of  Cherkassy industrial agglomeration. The grass cover in pine stands of Chigirinsky Bor transforms into xerophytic grasses and ruderal communities under the impact of negative biotic and abiotic factors. They are namely the anthropogenic violation of forest conditions, stands decline, recreational and industrial tree crowns understocking, xerophytic and heliophytic transformations of forest conditions. All the above mentioned caused strong ruderal and adventive transformation of grass cover. We registered the changes in nitrophilous plant spread regards the Cherkasy industrial agglomeration approaching which emits toxic with nitrogen-containing gases. Adventive and other non-forest species displace ferns and mosses, the ratio of ecomorfs is also changes due to increase of the quantity and development activation of annuals, xerophytic, ruderal, and nitrofil plants. The Asteraceae/Brassicaceae 3:1 ratio indicates significant anthropogenic violations in the region. We fixed the xerophytic, ruderal, and adventive transformation of grass cover in forest ecosystems. It is also founded the tendency of expanding the fraction of mesophilic plant species due to alterations in water regime (creation of Kremenchug reservoir and draining of floodplain Tyasmyn. When approaching the Cherkasy industrial agglomeration the grass cover degradation is clearly observed on the environmental profile. All this causes the forest ecosystem degradation and gradual loss of forest vegetation typical characteristics. We

  2. Integrating Science and Management to Assess Forest Ecosystem Vulnerability to Climate Change

    Science.gov (United States)

    Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; Maria K. Janowiak; P. Danielle Shannon; Christopher W. Swanston

    2017-01-01

    We developed the ecosystem vulnerability assessment approach (EVAA) to help inform potential adaptation actions in response to a changing climate. EVAA combines multiple quantitative models and expert elicitation from scientists and land managers. In each of eight assessment areas, a panel of local experts determined potential vulnerability of forest ecosystems to...

  3. Assessing Ecosystem Model Performance in Semiarid Systems

    Science.gov (United States)

    Thomas, A.; Dietze, M.; Scott, R. L.; Biederman, J. A.

    2017-12-01

    In ecosystem process modelling, comparing outputs to benchmark datasets observed in the field is an important way to validate models, allowing the modelling community to track model performance over time and compare models at specific sites. Multi-model comparison projects as well as models themselves have largely been focused on temperate forests and similar biomes. Semiarid regions, on the other hand, are underrepresented in land surface and ecosystem modelling efforts, and yet will be disproportionately impacted by disturbances such as climate change due to their sensitivity to changes in the water balance. Benchmarking models at semiarid sites is an important step in assessing and improving models' suitability for predicting the impact of disturbance on semiarid ecosystems. In this study, several ecosystem models were compared at a semiarid grassland in southwestern Arizona using PEcAn, or the Predictive Ecosystem Analyzer, an open-source eco-informatics toolbox ideal for creating the repeatable model workflows necessary for benchmarking. Models included SIPNET, DALEC, JULES, ED2, GDAY, LPJ-GUESS, MAESPA, CLM, CABLE, and FATES. Comparison between model output and benchmarks such as net ecosystem exchange (NEE) tended to produce high root mean square error and low correlation coefficients, reflecting poor simulation of seasonality and the tendency for models to create much higher carbon sources than observed. These results indicate that ecosystem models do not currently adequately represent semiarid ecosystem processes.

  4. Long-term nitrogen addition decreases carbon leaching in a nitrogen-rich forest ecosystem

    Directory of Open Access Journals (Sweden)

    X. Lu

    2013-06-01

    Full Text Available Dissolved organic carbon (DOC plays a critical role in the carbon (C cycle of forest soils, and has been recently connected with global increases in nitrogen (N deposition. Most studies on effects of elevated N deposition on DOC have been carried out in N-limited temperate regions, with far fewer data available from N-rich ecosystems, especially in the context of chronically elevated N deposition. Furthermore, mechanisms for excess N-induced changes of DOC dynamics have been suggested to be different between the two kinds of ecosystems, because of the different ecosystem N status. The purpose of this study was to experimentally examine how long-term N addition affects DOC dynamics below the primary rooting zones (the upper 20 cm soils in typically N-rich lowland tropical forests. We have a primary assumption that long-term continuous N addition minimally affects DOC concentrations and effluxes in N-rich tropical forests. Experimental N addition was administered at the following levels: 0, 50, 100 and 150 kg N ha−1 yr−1, respectively. Results showed that seven years of N addition significantly decreased DOC concentrations in soil solution, and chemo-physical controls (solution acidity change and soil sorption rather than biological controls may mainly account for the decreases, in contrast to other forests. We further found that N addition greatly decreased annual DOC effluxes from the primary rooting zone and increased water-extractable DOC in soils. Our results suggest that long-term N deposition could increase soil C sequestration in the upper soils by decreasing DOC efflux from that layer in N-rich ecosystems, a novel mechanism for continued accumulation of soil C in old-growth forests.

  5. Human radiation dose resulting from forests contaminated by radionuclides: generic model and applications to the Chernobyl ecosystems

    International Nuclear Information System (INIS)

    Linkov, I.; Harvard Univ., Cambridge, MA; Schell, W.R.

    1996-01-01

    Forest ecosystems have been found to contribute significantly to the human radiation dose in the intermediate and long teens following radionuclide releases. Evaluation of the internal and external radiation dose for these critical population groups requires knowledge of radionuclide transport processes in forest ecosystems, as well as the extent of forest utilization by these populations. The high complexity of the problem requires the use of models to define and analyze the properties of the forest as well as to evaluate the ecosystem response to possible human intervention. A generic FORESTPATH model is used to calculate the internal and external radiation doses for different critical groups of consumers at different times following radionuclide release. The model is tested using the information available for contaminated forests in Belarus. Uncertainty of the model predictions are estimated by means of Monte-Carlo simulations. (author)

  6. Ecosystem Services and Disservices of Mangrove Forests: Insights from Historical Colonial Observations

    OpenAIRE

    Daniel A. Friess

    2016-01-01

    Ecosystem services are now strongly applied to mangrove forests, though they are not a new way of viewing mangrove-people interactions; the benefits provided by such habitats, and the negative interactions (ecosystem disservices) between mangroves and people have guided perceptions of mangroves for centuries. This study quantified the ecosystem services and disservices of mangroves as written by colonial explorers from 1823–1883 through a literature survey of 96 expedition reports and studies...

  7. Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems

    Science.gov (United States)

    Seidl, Rupert; Albrich, Katharina; Thom, Dominik; Rammer, Werner

    2018-01-01

    In order to prevent irreversible impacts of climate change on the biosphere it is imperative to phase out the use of fossil fuels. Consequently, the provisioning of renewable resources such as timber and biomass from forests is an ecosystem service of increasing importance. However, risk factors such as changing disturbance regimes are challenging the continuous provisioning of ecosystem services, and are thus a key concern in forest management. We here used simulation modeling to study different risk management strategies in the context of timber production under changing climate and disturbance regimes, focusing on a 8127 ha forest landscape in the Northern Front Range of the Alps in Austria. We show that under a continuation of historical management, disturbances from wind and bark beetles increase by +39.5% on average over 200 years in response to future climate change. Promoting mixed forests and climate-adapted tree species as well as increasing management intensity effectively reduced future disturbance risk. Analyzing the spatial patterns of disturbance on the landscape, we found a highly uneven distribution of risk among stands (Gini coefficients up to 0.466), but also a spatially variable effectiveness of silvicultural risk reduction measures. This spatial variability in the contribution to and control of risk can be used to inform disturbance management: Stands which have a high leverage on overall risk and for which risks can effectively be reduced (24.4% of the stands in our simulations) should be a priority for risk mitigation measures. In contrast, management should embrace natural disturbances for their beneficial effects on biodiversity in areas which neither contribute strongly to landscape-scale risk nor respond positively to risk mitigation measures (16.9% of stands). We here illustrate how spatial heterogeneity in forest landscapes can be harnessed to address both positive and negative effects of changing natural disturbance regimes in

  8. Linking an ecosystem model and a landscape model to study forest species response to climate warming

    Science.gov (United States)

    Hong S. He; David J. Mladenoff; Thomas R. Crow

    1999-01-01

    No single model can address forest change from single tree to regional scales. We discuss a framework linking an ecosystem process model {LINKAGES) with a spatial landscape model (LANDIS) to examine forest species responses to climate warming for a large, heterogeneous landscape in northern Wisconsin, USA. Individual species response at the ecosystem scale was...

  9. Influence of forest planning alternatives on landscape pattern and ecosystem processes in northern Wisconsin, USA

    Science.gov (United States)

    Patrick A. Zollner; L. Jay Roberts; Eric J. Gustafson; Hong S. He; Volker Radeloff

    2008-01-01

    Incorporating an ecosystem management perspective into forest planning requires consideration of the impacts of timber management on a suite of landscape characteristics at broad spatial and long temporal scales. We used the LANDIS forest landscape simulation model to predict forest composition and landscape pattern under seven alternative forest management plans...

  10. The Role of Phytodiversity in Riparian Alder Forests in Supporting the Provision of Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Mariničová Patrícia

    2016-11-01

    Full Text Available Nature, ecosystems and biodiversity provide human society with many benefits known as ecosystem services. Functional diversity is an important aspect of biodiversity. In this paper, we applied inductive approach to the identification, mapping and evaluation of ecosystem services of the Aegopodio-Alnetum glutinosae community in Tribeč Mts. The results from 2015 show that the alder floodplain forest represents one of the most productive forest ecosystems with seasonal maximum production of 59.03 g m−2, species diversity of N0 = 40 and functional diversity of FD = 10. The forage potential of this community is medium, the melliferous potential is high and the therapeutic potential was estimated as extremely rich in medicinal plants. From the functional groups for providing ecosystem services, woody plants and hemicryptophytes play the most significant role.

  11. Mechanisms of carbon, nitrogen and water changes during restoration and succession in tropical and subtropical forest ecosystems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ With the objective of finding answers to some fundamental problems in ecology and forestry,Prof.ZHOU Guoyi and his colleagues from the CAS South China Botanical Garden set out to clarify whether the oldgrowth forests are actually carbon sinks;how the forest ecosystems,either successional or rehabilitative,react to the nitrogen deposition scenarios and whether there are different reactions working as mechanisms between the mature and immature forest ecosystems.

  12. Response of the boreal forest ecosystem to climatic change and its silvicultural implications

    Energy Technology Data Exchange (ETDEWEB)

    Kellomaeki, S; Haenninen, H; Karjalainen, T [Joensuu Univ. (Finland). Faculty of Forestry; and others

    1997-12-31

    During the next 100 years, the mean annual temperature is expected to be 1-6 deg C higher than at present. It is also expected to be accompanied by a lengthening of the thermal growing season and increased precipitation. Consequently, climatic change will increase the uncertainty of the management of forest ecosystems in the future. In this context, this research project aimed to outline the ecological and silvicultural implications of climatic change with regard to (1) how the expected climatic change might modify the functioning and structure of the boreal forest ecosystem, and (2) how the silvicultural management of the forest ecosystem should be modified in order to maintain sustainable forest yield under changing climatic conditions. The experimental component of the project concerned first the effect that elevating temperature and elevating concentration of atmospheric carbon have on the ontogenetic development of Scots pine (Pinus sylvestris L) and on the subsequent increase in frost damage during winter. The second part of the study looked the effect of elevating temperature and elevating concentration of atmospheric carbon on the growth of Scots pine through photosynthesis, respiration, transpiration, nutrient supply, and changes in crown structure. This experiment was utilised in several subprojects of the overall project

  13. Response of the boreal forest ecosystem to climatic change and its silvicultural implications

    Energy Technology Data Exchange (ETDEWEB)

    Kellomaeki, S.; Haenninen, H.; Karjalainen, T. [Joensuu Univ. (Finland). Faculty of Forestry] [and others

    1996-12-31

    During the next 100 years, the mean annual temperature is expected to be 1-6 deg C higher than at present. It is also expected to be accompanied by a lengthening of the thermal growing season and increased precipitation. Consequently, climatic change will increase the uncertainty of the management of forest ecosystems in the future. In this context, this research project aimed to outline the ecological and silvicultural implications of climatic change with regard to (1) how the expected climatic change might modify the functioning and structure of the boreal forest ecosystem, and (2) how the silvicultural management of the forest ecosystem should be modified in order to maintain sustainable forest yield under changing climatic conditions. The experimental component of the project concerned first the effect that elevating temperature and elevating concentration of atmospheric carbon have on the ontogenetic development of Scots pine (Pinus sylvestris L) and on the subsequent increase in frost damage during winter. The second part of the study looked the effect of elevating temperature and elevating concentration of atmospheric carbon on the growth of Scots pine through photosynthesis, respiration, transpiration, nutrient supply, and changes in crown structure. This experiment was utilised in several subprojects of the overall project

  14. Effects of disturbance and climate change on ecosystem performance in the Yukon River Basin boreal forest

    Science.gov (United States)

    Wylie, Bruce K.; Rigge, Matthew B.; Brisco, Brian; Mrnaghan, Kevin; Rover, Jennifer R.; Long, Jordan

    2014-01-01

    A warming climate influences boreal forest productivity, dynamics, and disturbance regimes. We used ecosystem models and 250 m satellite Normalized Difference Vegetation Index (NDVI) data averaged over the growing season (GSN) to model current, and estimate future, ecosystem performance. We modeled Expected Ecosystem Performance (EEP), or anticipated productivity, in undisturbed stands over the 2000–2008 period from a variety of abiotic data sources, using a rule-based piecewise regression tree. The EEP model was applied to a future climate ensemble A1B projection to quantify expected changes to mature boreal forest performance. Ecosystem Performance Anomalies (EPA), were identified as the residuals of the EEP and GSN relationship and represent performance departures from expected performance conditions. These performance data were used to monitor successional events following fire. Results suggested that maximum EPA occurs 30–40 years following fire, and deciduous stands generally have higher EPA than coniferous stands. Mean undisturbed EEP is projected to increase 5.6% by 2040 and 8.7% by 2070, suggesting an increased deciduous component in boreal forests. Our results contribute to the understanding of boreal forest successional dynamics and its response to climate change. This information enables informed decisions to prepare for, and adapt to, climate change in the Yukon River Basin forest.

  15. [Effect of seasonal high temperature and drought on carbon flux of bamboo forest ecosystem in subtropical region].

    Science.gov (United States)

    Chen, Xiao-feng; Jiang, Hong; Niu, Xiao-dong; Zhang, Jin-meng; Liu, Yu-li; Fang, Cheng-yuan

    2016-02-01

    The carbon flux of subtropical bamboo forest ecosystem was continuously measured using eddy covariance technique in Anji County of Zhejiang Province, China. The monthly net ecosystem productivity (NEP), ecosystem respiration (Re) and gross ecosystem productivity (GEP) data from 2011 to 2013 were selected to analyze the impacts of seasonal high temperature and drought on the carbon flux of bamboo forest ecosystem. The results showed that there were big differences among annual NEP of bamboo forest from 2011 to 2013. Because of the asynchronization of precipitation and heat, the seasonal high temperature and drought in July and August of 2013 caused significant decline in NEP by 59.9% and 80.0% when compared with the same months in 2011. Correlation analysis of the NEP, Re, GEP and environmental factors suggested that the atmosphere temperatures were significantly correlated with Re and GEP in 2011 and 2013 (P<0.05). However, to air and soil moisture, Re and GEP had different responses, that was, GEP was more vulnerable by the decrease of the soil moisture compared with Re. Besides, the raising of saturation vapour pressure promoted the Re modestly but inhibited the GEP, which was supposed to be the main reason for NEP decrease of bamboo forest ecosystem in Anji, from July to August in 2013.

  16. An index for the assessment of degraded Mediterranean forest ecosystems

    Directory of Open Access Journals (Sweden)

    Giuseppe Modica

    2015-12-01

    Full Text Available Aim of study: Diagnosing the degradation degree of forest ecosystems is the basis for restoration strategies. However, there is no literature documenting how to quantify the forest degradation degree by using synthetic indicators, also because there is not a widely accepted definition for "forest degradation" and "degraded forest". Although there are many definitions of forest degradation that converge on the loss of ecosystem services, still today there are no largely accepted methods that give operational guidance to help in defining it. In the present research, with the aim to assess the degree of forest degradation, an integrated index - FDI, Forest Degradation Index - was developed.Area of study: In this first application, the FDI was applied and validated at stand level in two different Mediterranean forest types in two different case studies: Madonie and Nedrodi regional Parks (Sicily, Italy. The first dominated by sessile oak [Quercus petraea (Matt. Liebl. subsp. austrotyrrhenica Brullo, Guarino & Siracusa], the second dominated by cork oak (Quercus suber L..Material and methods: FDI is a synthetic index structured starting from representative and relatively easily detectable parameters. Here, we propose a set of six indicators that should be assessed to determine the forest degradation: Structural Index (SI, Canopy Cover (CC, Natural Regeneration Density (NRD, Focal Species of Degradation (FSD, Coarse Woody Debris (CWD, and Soil Depth (SD. FDI, here proposed and discussed, has been based on a MCDA (Multi-Criteria Decision Analysis approach using the Analytic Hierarchy Process (AHP technique, and implemented in order to contribute in finding simple indicators useful for forest restoration purposes that have an eco-functional basis.Main results: An integrated index of forest degradation has been defined. FDI values are comprised in the closed interval [0, 10], ranging from class I (Higher ecological functionality to class IV (Lower

  17. Estimating Gross Primary Productivity of a tropical forest ecosystem ...

    Indian Academy of Sciences (India)

    37

    forest ecosystem over north-east India using LAI and meteorological ... water and Greenhouse Gas (GHG) fluxes between the biosphere and the at- mosphere ..... calculated from these by internal algorithms of LAI-2200 and stored in its in-built ..... 2007). As a result of these enhanced CO2 emission could be observed from.

  18. Feedback of global warming to soil carbon cycling in forest ecosystems

    International Nuclear Information System (INIS)

    Nakane, Kaneyuki

    1993-01-01

    Thus in this study the simulation of soil carbon cycling and dynamics of its storage in several types of mature forests developed from the cool-temperate to the tropics was carried out for quantitatively assessing carbon loss from the soil under several scenarios of global warming, based on the model of soil carbon cycling in forest ecosystems (Nakane et al. 1984, 1987 and Nakane 1992). (J.P.N.)

  19. Biodiversity and ecosystem processes: lessons from nature to improve management of planted forests for REDD-plus

    Science.gov (United States)

    Ian D. Thompson; Kimiko Okabe; John A. Parrotta; David I. Forrester; Eckehard Brockerhoff; Hervé Jactel; Hisatomo Taki

    2014-01-01

    Planted forests are increasingly contributing wood products and other ecosystem services at a global scale. These forests will be even more important as carbon markets develop and REDD-plus forest programs (forests used specifically to reduce atmospheric emissions of CO2 through deforestation and forest degradation) become common. Restoring degraded and deforested...

  20. n-Alkane distributions as indicators of novel ecosystem development in western boreal forest soils

    Science.gov (United States)

    Norris, Charlotte; Dungait, Jennifer; Quideau, Sylvie

    2013-04-01

    Novel ecosystem development is occurring within the western boreal forest of Canada due to land reclamation following surface mining in the Athabasca Oil Sands Region. Sphagnum peat is the primary organic matter amendment used to reconstruct soils in the novel ecosystems. We hypothesised that ecosystem recovery would be indicated by an increasing similarity in the biomolecular characteristics of novel reconstructed soil organic matter (SOM) derived from peat to those of natural boreal ecosystems. In this study, we evaluated the use of the homologous series of very long chain (>C20) n-alkanes with odd-over-even predominance as biomarker signatures to monitor the re-establishment of boreal forests on reconstructed soils. The lipids were extracted from dominant vegetation inputs and SOM from a series of natural and novel ecosystem reference plots. We observed unique very long n-alkane signatures of the source vegetation, e.g. Sphagnum sp. was dominated by C31 and aspen (Populus tremuloides Michx.) leaves by C25. Greater concentrations of very long chain n-alkanes were extracted from natural than novel ecosystem SOM (puse of n-alkanes as biomarkers of ecosystem development is a promising method.

  1. Declining plant nitrogen supply and carbon accumulation in ageing primary boreal forest ecosystems

    Science.gov (United States)

    Högberg, Mona N.; Yarwood, Stephanie A.; Trumbore, Susan; Högberg, Peter

    2016-04-01

    Boreal forest soils are commonly characterized by a low plant nitrogen (N) supply. A high tree below-ground allocation of carbon (C) to roots and soil microorganisms in response to the shortage of N may lead to high microbial immobilisation of N, thus aggravating the N limitation. We studied the N supply at a Swedish boreal forest ecosystem chronosequence created by new land rising out of the sea due to iso-static rebound. The youngest soils develop with meadows by the coast, followed by a zone of dinitrogen fixing alder trees, and primary boreal conifer forest on ground up to 560 years old. With increasing ecosystem age, the proportion of microbial C out of the total soil C pool from the youngest to the oldest coniferous ecosystem was constant (c. 1-1.5%), whereas immobilised N (microbial N out of total soil N) increased and approached the levels commonly observed in similar boreal coniferous forests (c. 6-7 %), whereas gross N mineralization declined. Simultaneously, plant foliar N % decreased and the natural abundance of N-15 in the soil increased. More specifically, the difference in N-15 between plant foliage and soil increased, which is related to greater retention of N-15 relative to N-14 by ectomycorrhizal fungi as N is taken up from the soil and some N is transferred to the plant host. In the conifer forest, where these changes were greatest, we found increased fungal biomass in the F- and H-horizons of the mor-layer, in which ectomycorrhizal fungi are known to dominate (the uppermost horizon with litter and moss is dominated by saprotrophic fungi). Hence, we propose that the decreasing N supply to the plants and the subsequent decline in plant production in ageing boreal forests is linked to high tree belowground C allocation to C limited ectomycorrhizal fungi (and other soil microorganisms), a strong sink for available soil N. Data on organic matter C-14 suggested that the largest input of recently fixed plant C occurred in the younger coniferous forest

  2. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services

    Science.gov (United States)

    Seidl, Rupert; Spies, Thomas A.; Peterson, David L.; Stephens, Scott L.; Hicke, Jeffrey A.

    2016-01-01

    Summary 1. The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resilience-based stewardship is advocated to address these changes in ecosystem management, but its operational implementation has remained challenging. 2. We review observed and expected changes in disturbance regimes and their potential impacts on provisioning, regulating, cultural and supporting ecosystem services, concentrating on temperate and boreal forests. Subsequently, we focus on resilience as a powerful concept to quantify and address these changes and their impacts, and present an approach towards its operational application using established methods from disturbance ecology. 3. We suggest using the range of variability concept – characterizing and bounding the long-term behaviour of ecosystems – to locate and delineate the basins of attraction of a system. System recovery in relation to its range of variability can be used to measure resilience of ecosystems, allowing inferences on both engineering resilience (recovery rate) and monitoring for regime shifts (directionality of recovery trajectory). 4. It is important to consider the dynamic nature of these properties in ecosystem analysis and management decision-making, as both disturbance processes and mechanisms of resilience will be subject to changes in the future. Furthermore, because ecosystem services are at the interface between natural and human systems, the social dimension of resilience (social adaptive capacity and range of variability) requires consideration in responding to changing disturbance regimes in forests. 5. Synthesis and applications. Based on examples from temperate and boreal forests we synthesize principles and pathways for fostering resilience to changing disturbance regimes in ecosystem management. We

  3. Spatial Aspects of the Provision of Forest Ecosystem Services

    DEFF Research Database (Denmark)

    Nielsen, Anne Sofie Elberg

    to the incorporation of spatial factors into cost and benefit evaluation of FES provision. Focus is on assessing where forest ecosystem provision should be undertaken, determinants of private stakeholder provision efforts and welfare consequences of changes in the provision level. Provision of carbon sequestration...... estimates for the U.S. counties of the cost of carbon sequestration from afforestation (conversion of non-forest land to forest), when afforestation is restricted by Holdridge zone climatic conditions. Aside from assessing the overall marginal cost schedule, the spatial distribution of these are examined......, to assess where afforestation should be undertaken for given carbon prices. The second paper investigates the determinants of landowner participation in a Danish voluntary conservation program. Combining contract data of landowners’ actual choices, GIS information on area specific characteristics...

  4. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks.

    Science.gov (United States)

    John B. Bradford; Nicholas R. Jensen; Grant M. Domke; Anthony W. D' Amato

    2013-01-01

    Forested ecosystems contain the majority of the world’s terrestrial carbon, and forest management has implications for regional and global carbon cycling. Carbon stored in forests changes with stand age and is affected by natural disturbance and timber harvesting. We examined how harvesting and disturbance interact to influence forest carbon stocks over the Superior...

  5. Vulnerability to climate-induced changes in ecosystem services of boreal forests

    Science.gov (United States)

    Holmberg, Maria; Rankinen, Katri; Aalto, Tuula; Akujärvi, Anu; Nadir Arslan, Ali; Liski, Jari; Markkanen, Tiina; Mäkelä, Annikki; Peltoniemi, Mikko

    2016-04-01

    Boreal forests provide an array of ecosystem services. They regulate climate, and carbon, water and nutrient fluxes, and provide renewable raw material, food, and recreational possibilities. Rapid climate warming is projected for the boreal zone, and has already been observed in Finland, which sets these services at risk. MONIMET (LIFE12 ENV/FI/000409, 2.9.2013 - 1.9.2017) is a project funded by EU Life programme about Climate Change Indicators and Vulnerability of Boreal Zone Applying Innovative Observation and Modeling Techniques. The coordinating beneficiary of the project is the Finnish Meteorological Institute. Associated beneficiaries are the Natural Resources Institute Finland, the Finnish Environment Institute and the University of Helsinki. In the MONIMET project, we use state-of-the-art models and new monitoring methods to investigate the impacts of a warming climate on the provision of ecosystem services of boreal forests. This poster presents results on carbon storage in soil and assessment of drought indices, as a preparation for assessing the vulnerability of society to climate-induced changes in ecosystem services. The risk of decreasing provision of ecosystem services depends on the sensitivity of the ecosystem as well as its exposure to climate stress. The vulnerability of society, in turn, depends on the risk of decreasing provision of a certain service in combination with society's demand for that service. In the next phase, we will look for solutions to challenges relating to the quantification of the demand for ecosystem services and differences in spatial extent and resolution of the information on future supply and demand.

  6. Assessing and comparing risk to climate changes among forested locations: implications for ecosystem services

    Science.gov (United States)

    Stephen N. Matthews; Louis R. Iverson; Matthew P. Peters; Anantha M. Prasad; Sakthi. Subburayalu

    2014-01-01

    Forests provide key ecosystem services (ES) and the extent to which the ES are realized varies spatially, with forest composition and cultural context, and in breadth, depending on the dominant tree species inhabiting an area. We address the question of how climate change may impact ES within the temperate and diverse forests of the eastern United States. We quantify...

  7. THE EFFECT OF FIRES ON FOREST ECOSYSTEMS CLUSTER PLOT OF ‘PODZAPLOTY’ OF THE RESERVE ‘KHAKASSKY’

    Directory of Open Access Journals (Sweden)

    V. V. Shurkina

    2016-12-01

    Full Text Available In this article the questions of the exposure fires on forest ecosystems cluster plot of ‘Podzaploty’ of the reserve ‘Khakassky’. Identified and analyzed changes occurring in ecosystems as a result of fires. On the basis of experimental materials the changes in the tree layer and forest litter.

  8. 76 FR 46721 - Salmon-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project...

    Science.gov (United States)

    2011-08-03

    ...-Challis National Forest, ID; Upper North Fork HFRA Ecosystem Restoration Project Environmental Impact... improve the health of the ecosystem and reach the desired future condition. DATES: Comments concerning the... Ecosystem Restoration Project EIS, P.O. Box 180, 11 Casey Rd., North Fork, ID 83466. Comments may also be...

  9. Toward a social-ecological theory of forest macrosystems for improved ecosystem management

    Science.gov (United States)

    Kleindl, William J.; Stoy, Paul C.; Binford, Michael W.; Desai, Ankur R.; Dietze, Michael C.; Schultz, Courtney A.; Starr, Gregory; Staudhammer, Christina; Wood, David J. A.

    2018-01-01

    The implications of cumulative land-use decisions and shifting climate on forests, require us to integrate our understanding of ecosystems, markets, policy, and resource management into a social-ecological system. Humans play a central role in macrosystem dynamics, which complicates ecological theories that do not explicitly include human interactions. These dynamics also impact ecological services and related markets, which challenges economic theory. Here, we use two forest macroscale management initiatives to develop a theoretical understanding of how management interacts with ecological functions and services at these scales and how the multiple large-scale management goals work either in consort or conflict with other forest functions and services. We suggest that calling upon theories developed for organismal ecology, ecosystem ecology, and ecological economics adds to our understanding of social-ecological macrosystems. To initiate progress, we propose future research questions to add rigor to macrosystem-scale studies: (1) What are the ecosystem functions that operate at macroscales, their necessary structural components, and how do we observe them? (2) How do systems at one scale respond if altered at another scale? (3) How do we both effectively measure these components and interactions, and communicate that information in a meaningful manner for policy and management across different scales?

  10. Forest canopy temperatures: dynamics, controls, and relationships with ecosystem fluxes

    Science.gov (United States)

    Still, C. J.; Griffith, D.; Kim, Y.; Law, B. E.; Hanson, C. V.; Kwon, H.; Schulze, M.; Detto, M.; Pau, S.

    2017-12-01

    Temperature strongly affects enzymatic reactions, ecosystem biogeochemistry, and species distributions. Although most focus is on air temperature, the radiative or skin temperature of plants is more relevant. Canopy skin temperature dynamics reflect biophysical, physiological, and anatomical characteristics and interactions with the environment, and can be used to examine forest responses to stresses like droughts and heat waves. Thermal infrared (TIR) imaging allows for extensive temporal and spatial sampling of canopy temperatures, particularly compared to spot measurements using thermocouples. We present results of TIR imaging of forest canopies at eddy covariance flux tower sites in the US Pacific Northwest and in Panama. These forests range from an old-growth temperate rainforest to a second growth semi-arid pine forest to a semi-deciduous tropical forest. Canopy temperature regimes at these sites are highly variable. Canopy temperatures at all forest sites displayed frequent departures from air temperature, particularly during clear sky conditions, with elevated canopy temperatures during the day and depressed canopy temperatures at night compared to air temperature. Comparison of canopy temperatures to fluxes of carbon dioxide, water vapor, and energy reveals stronger relationships than those found with air temperature. Daytime growing season net ecosystem exchange at the pine forest site is better explained by canopy temperature (r2 = 0.61) than air temperature (r2 = 0.52). At the semi-deciduous tropical forest, canopy photosynthesis is highly correlated with canopy temperature (r2 = 0.51), with a distinct optimum temperature for photosynthesis ( 31 °C) that agrees with leaf-level measurements. During the peak of one heat wave at an old-growth temperate rainforest, hourly averaged air temperature exceeded 35 °C, 10 °C above average. Peak hourly canopy temperature approached 40 °C, and leaf-to-air vapor pressure deficit exceeded 6 kPa. These extreme

  11. Historical range of variation assessment for wetland and riparian ecosystems, U.S. Forest Service Rocky Mountain Region

    Science.gov (United States)

    Edward Gage; David J. Cooper

    2013-01-01

    This document provides an overview of historical range of variation concepts and explores their application to wetland and riparian ecosystems in the US Forest Service Rocky Mountain Region (Region 2), which includes National Forests and National Grasslands occurring in the states of Colorado, Wyoming, Nebraska, Kansas, and South Dakota. For each of five ecosystem...

  12. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    Science.gov (United States)

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  13. Proceedings of the fourth meeting of the International Union of Forest Research Organizations (IUFRO) Working Party S07.02.09: Phytophthoras in forests and natural ecosystems

    Science.gov (United States)

    E.M. Goheen; S.J. Frankel

    2009-01-01

    The fourth meeting of the International Union of Forest Research Organizations (IUFRO) Working Party S07.02.09, Phytophthoras in Forests and Natural Ecosystems provided a forum for current research on Phytophthora species worldwide. Seventy-eight submissions describing papers and posters on recent developments in Phytophthora diseases of trees and natural ecosystems in...

  14. Cost-effectiveness of dryland forest restoration evaluated by spatial analysis of ecosystem services

    Science.gov (United States)

    Birch, Jennifer C.; Newton, Adrian C.; Aquino, Claudia Alvarez; Cantarello, Elena; Echeverría, Cristian; Kitzberger, Thomas; Schiappacasse, Ignacio; Garavito, Natalia Tejedor

    2010-01-01

    Although ecological restoration is widely used to combat environmental degradation, very few studies have evaluated the cost-effectiveness of this approach. We examine the potential impact of forest restoration on the value of multiple ecosystem services across four dryland areas in Latin America, by estimating the net value of ecosystem service benefits under different reforestation scenarios. The values of selected ecosystem services were mapped under each scenario, supported by the use of a spatially explicit model of forest dynamics. We explored the economic potential of a change in land use from livestock grazing to restored native forest using different discount rates and performed a cost–benefit analysis of three restoration scenarios. Results show that passive restoration is cost-effective for all study areas on the basis of the services analyzed, whereas the benefits from active restoration are generally outweighed by the relatively high costs involved. These findings were found to be relatively insensitive to discount rate but were sensitive to the market value of carbon. Substantial variation in values was recorded between study areas, demonstrating that ecosystem service values are strongly context specific. However, spatial analysis enabled localized areas of net benefits to be identified, indicating the value of this approach for identifying the relative costs and benefits of restoration interventions across a landscape. PMID:21106761

  15. Evidence and implications of recent and projected climate change in Alaska's forest ecosystems

    Science.gov (United States)

    Wolken, Jane M.; Hollingsworth, Teresa N.; Rupp, T. Scott; Chapin, Stuart III; Trainor, Sarah F.; Barrett, Tara M.; Sullivan, Patrick F.; McGuire, A. David; Euskirchen, Eugénie S.; Hennon, Paul E.; Beever, Erik A.; Conn, Jeff S.; Crone, Lisa K.; D'Amore, David V.; Fresco, Nancy; Hanley, Thomas A.; Kielland, Knut; Kruse, James J.; Patterson, Trista; Schuur, Edward A.G.; Verbyla, David L.; Yarie, John

    2011-01-01

    The structure and function of Alaska's forests have changed significantly in response to a changing climate, including alterations in species composition and climate feedbacks (e.g., carbon, radiation budgets) that have important regional societal consequences and human feedbacks to forest ecosystems. In this paper we present the first comprehensive synthesis of climate-change impacts on all forested ecosystems of Alaska, highlighting changes in the most critical biophysical factors of each region. We developed a conceptual framework describing climate drivers, biophysical factors and types of change to illustrate how the biophysical and social subsystems of Alaskan forests interact and respond directly and indirectly to a changing climate. We then identify the regional and global implications to the climate system and associated socio-economic impacts, as presented in the current literature. Projections of temperature and precipitation suggest wildfire will continue to be the dominant biophysical factor in the Interior-boreal forest, leading to shifts from conifer- to deciduous-dominated forests. Based on existing research, projected increases in temperature in the Southcentral- and Kenai-boreal forests will likely increase the frequency and severity of insect outbreaks and associated wildfires, and increase the probability of establishment by invasive plant species. In the Coastal-temperate forest region snow and ice is regarded as the dominant biophysical factor. With continued warming, hydrologic changes related to more rapidly melting glaciers and rising elevation of the winter snowline will alter discharge in many rivers, which will have important consequences for terrestrial and marine ecosystem productivity. These climate-related changes will affect plant species distribution and wildlife habitat, which have regional societal consequences, and trace-gas emissions and radiation budgets, which are globally important. Our conceptual framework facilitates

  16. Ecology and conservation of the cactus ferruginous pygmy-owl in Arizona

    Science.gov (United States)

    Jean-Luc E. Cartron; Deborah M. Finch

    2000-01-01

    This report is the result of a cooperative effort by the Rocky Mountain Research Station and the USDA Forest Service Region 3, with participation by the Arizona Game and Fish Department and the Bureau of Land Management. It assesses the state of knowledge related to the conservation status of the cactus ferruginous pygmy-owl in Arizona. The population decline of this...

  17. Simulating the impacts of land use in northwest Europe on Net Ecosystem Exchange (NEE): the role of arable ecosystems, grasslands and forest plantations in climate change mitigation.

    Science.gov (United States)

    Abdalla, Mohamed; Saunders, Matthew; Hastings, Astley; Williams, Mike; Smith, Pete; Osborne, Bruce; Lanigan, Gary; Jones, Mike B

    2013-11-01

    In this study, we compared measured and simulated Net Ecosystem Exchange (NEE) values from three wide spread ecosystems in the southeast of Ireland (forest, arable and grassland), and investigated the suitability of the DNDC (the DeNitrification-DeComposition) model to estimate present and future NEE. Although, the field-DNDC version overestimated NEE at temperatures >5 °C, forest-DNDC under-estimated NEE at temperatures >5 °C. The results suggest that the field/forest DNDC models can successfully estimate changes in seasonal and annual NEE from these ecosystems. Differences in NEE were found to be primarily land cover specific. The annual NEE was similar for the grassland and arable sites, but due to the contribution of exported carbon, the soil carbon increased at the grassland site and decreased at the arable site. The NEE of the forest site was an order of magnitude larger than that of the grassland or arable ecosystems, with large amounts of carbon stored in woody biomass and the soil. The average annual NEE, GPP and Reco values over the measurement period were -904, 2379 and 1475 g C m(-2) (forest plantations), -189, 906 and 715 g C m(-2) (arable systems) and -212, 1653 and 1444 g C m(-2) (grasslands), respectively. The average RMSE values were 3.8 g C m(-2) (forest plantations), 0.12 g C m(-2) (arable systems) and 0.21 g C m(-2) (grasslands). When these models were run with climate change scenarios to 2060, predictions show that all three ecosystems will continue to operate as carbon sinks. Further, climate change may decrease the carbon sink strength in the forest plantations by up to 50%. This study supports the use of the DNDC model as a valid tool to predict the consequences of climate change on NEE from different ecosystems. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Involving forest communities in identifying and constructing ecosystems services: millennium assessment and place specificity

    Science.gov (United States)

    Stanley T. Asah; Dale J. Blahna; Clare M. Ryan

    2012-01-01

    The ecosystem services (ES) approach entails integrating people into public forest management and managing to meet their needs and wants. Managers must find ways to understand what these needs are and how they are met. In this study, we used small group discussions, in a case study of the Deschutes National Forest, to involve community members and forest staff in...

  19. Impacts of air pollution and climate change on forest ecosystems - emerging research needs

    Science.gov (United States)

    Elena Paoletti; Bytnerowicz; Chris Andersen; Algirdas Augustaitis; Marco Ferretti; Nancy Grulke; Madeleine S. Gunthardt-goerg; John Innes; Dale Johnson; Dave Karnosky; Jessada Luangjame; Rainer Matyssek; Steven McNulty; Gerhard Muller-Starck; Robert Musselman; Kevin Percy

    2007-01-01

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems "Forests under Anthropogenic Pressure – Effects of Air Pollution, Climate Change and Urban Development", September 10–16, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic...

  20. Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest

    Science.gov (United States)

    Melvin, April M.; Mack, Michelle C.; Johnstone, Jill F.; McGuire, A. David; Genet, Helene; Schuur, Edward A.G.

    2015-01-01

    In the boreal forest of Alaska, increased fire severity associated with climate change is expanding deciduous forest cover in areas previously dominated by black spruce (Picea mariana). Needle-leaf conifer and broad-leaf deciduous species are commonly associated with differences in tree growth, carbon (C) and nutrient cycling, and C accumulation in soils. Although this suggests that changes in tree species composition in Alaska could impact C and nutrient pools and fluxes, few studies have measured these linkages. We quantified C, nitrogen, phosphorus, and base cation pools and fluxes in three stands of black spruce and Alaska paper birch (Betula neoalaskana) that established following a single fire event in 1958. Paper birch consistently displayed characteristics of more rapid C and nutrient cycling, including greater aboveground net primary productivity, higher live foliage and litter nutrient concentrations, and larger ammonium and nitrate pools in the soil organic layer (SOL). Ecosystem C stocks (aboveground + SOL + 0–10 cm mineral soil) were similar for the two species; however, in black spruce, 78% of measured C was found in soil pools, primarily in the SOL, whereas aboveground biomass dominated ecosystem C pools in birch forest. Radiocarbon analysis indicated that approximately one-quarter of the black spruce SOL C accumulated prior to the 1958 fire, whereas no pre-fire C was observed in birch soils. Our findings suggest that tree species exert a strong influence over C and nutrient cycling in boreal forest and forest compositional shifts may have long-term implications for ecosystem C and nutrient dynamics.

  1. Using FLUXNET data to improve models of springtime vegetation activity onset in forest ecosystems

    NARCIS (Netherlands)

    Melaas, E.; Richardson, A.; Friedl, M.; Dragoni, D.; Gough, C.; Herbst, M.; Montagnani, L.; Moors, E.J.

    2013-01-01

    Vegetation phenology is sensitive to climate change and variability, and is a first order control on the carbon budget of forest ecosystems. Robust representation of phenology is therefore needed to support model-based projections of how climate change will affect ecosystem function. A variety of

  2. The Transfer and diffusion of Cesium 137 within forest ecosystem in Fukushima after the nuclear power plant accident

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Takahiro; Murakami, Masashi [Community Ecology Lab., Biology Course, Faculty of Science, Chiba University, Chiba, 263-8522 (Japan); Ishii, Nobuyoshi [National Institute of Radiological Sciences, Chiba, 263-8555 (Japan); Tanoi, Keitaro; Hirose, Atsushi; Ohte, Nobuhito [Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 (Japan)

    2014-07-01

    A large amount of radionuclides was released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident after the disastrous earthquake and subsequent tsunami of March 2011. Among the variety of radionuclides released from FDNPP, cesium 137 ({sup 137}Cs) is the most worrying radionuclide in the environment, with a half-life of 30 years. Since most of the Japanese land area is covered by forest, the distribution and transportation of radioactive materials within forest ecosystems should be conscientiously monitored. In Europe, many studies reported that the {sup 137}Cs deposition caused by the Chernobyl accident has still been distributed in the litter and soil layers and has become a source for the soil-to-plant transfer. Most of these studies emphasize the 'stability' of {sup 137}Cs within forest ecosystems, because {sup 137}Cs are considered to be strongly and immediately fixed in clay minerals. Even though there are many studies of the soil-to-plant transfer of {sup 137}Cs in forest after several years of Chernobyl accident, very initial distribution and transfer of {sup 137}Cs in food web within one to two years after the deposition in forest ecosystems have never been examined. The evaluation of the initial dynamics of {sup 137}Cs in forest ecosystems should be quite important because of the increasing stability of {sup 137}Cs after the deposition. The accumulation and transfer of {sup 137}Cs through food web within forest ecosystems were examined by collecting various organisms at forests in Fukushima. The {sup 137}Cs concentrations, natural Cs and K concentrations, and delta {sup 15}N of the specimens were measured to evaluate the occurrence of bioaccumulation or bio-diffusion of {sup 137}Cs through tropic interaction within forest ecosystem. {sup 137}Cs was highly concentrated on leaf litters which had been deposited in autumn 2010, before the accident. This accumulated {sup 137}Cs had transferred to higher trophic organisms mainly through

  3. Analysis of energetic exchange processes within the two different forest ecosystems

    International Nuclear Information System (INIS)

    Pivec, J.

    2002-01-01

    The utilisation of energy within the floodplain forest ecosystem near Lednice - south Moravia, and spruce monoculture ecosystem near Rájec Jestřebí - central Moravia during the years 1988 and 1989 was measured. Net radiation balance, global solar radiation, wet bulb and dry bulb temperatures and soil heat flux directly by instruments and sensors; latent, sensible heat flux and heat flux to the vegetation was calculated. It is possible to say, considering hitherto results, that well watered (groundwater) floodplain forest ecosystem shows greater evapotranspiration and therefore latent heat flux than spruce monoculture. Greater flux of energy was recorded in a daily course of sensible heat flux (65% proportion to net radiation), in contrast with the spruce monoculture. The floodplain forest latent heat flux proportion to net radiation was found to be variable within the growing season; in the middle of the vegetation period (from June to August) it reached the value of about 70%, at the end (in October) of about 20%. The estimation of the floodplain forest actual evapotranspiration was possible almost all over the season, the actual evapotranspiration reached its maximum of about 0.72 mm/square m per h one hour after the maximum of radiation balance. The time lag of about 4 hours was observed when compared the diurnal course of air humidity gradient to the air temperature gradient above the forest canopy. This phenomenon caused the left side asymmetry of the diurnal course of the Bowen ratio. It was not possible to measure the spruce monoculture latent heat flux all over the season, probably due to smaller gradient of the air humidity although it was measured across at greater distance than in the floodplain forest (12 m in comparison with 9 m). The values of the second half of May and the first half of June ones were at our disposal only. The spruce monoculture latent heat flux proportion to radiation balance was found about 25%, the actual evapotranspiration

  4. Reclamation to native forest ecosystems in the oil sands region

    International Nuclear Information System (INIS)

    Tuttle, S.

    1996-01-01

    Suncor's reclamation goal is to achieve maintenance-free, self-sustaining ecosystems with capability equivalent to their pre-disturbed condition. Ecosystem re-establishment includes the following steps: (1) soil reconstruction, (2) revegetation, and (3) growth of primary vegetation communities. To assess the sustainability of re-established ecosystems, vegetation and soil characteristics are monitored each year. This method of reclamation and tree planting results in a diverse herbaceous cover developing within a year of soil amendment application, providing erosion protection along with a source of cover and food for wildlife. Results to date have proven to be very positive, since reconstructed soils have been shown to be equivalent to or better than original soils. Also, reclamation sites are developing into sustainable ecological units comparable to nearby natural forest areas

  5. Ecosystem transformation by emerging infectious disease: loss of large tanoak from California forests

    Science.gov (United States)

    Richard C. Cobb; Joao A.N. Filipe; Ross K. Meentemeyer; Christopher A. Gilligan; David M. Rizzo

    2012-01-01

    1. Few pathogens are the sole or primary cause of species extinctions, but forest disease has caused spectacular declines in North American overstorey trees and restructured forest ecosystems at large spatial scales over the past 100 years. These events threaten biodiversity associated with impacted host trees and other resources valued by human societies even when...

  6. Changes in the forest ecosystems in areas impacted by aridization in south-western Romania.

    Science.gov (United States)

    Pravalie, Remus; Sîrodoev, Igor; Peptenatu, Daniel

    2014-01-06

    In the past few decades, global climate change has accentuated the intensification of aridization in South-Western Romania, with direct and indirect consequences on the quality of forest ecosystems. In addition to qualitative deterioration, the quantitative changes brought about by intensive anthropic deforestation have created the conditions for a decline in the size of forest areas on vast tracts of land. The paper aims to analyze the qualitative and quantitative changes in the forest ecosystems in South-Western Romania, changes due to the synergic context of the global climate changes and the anthropic pressures of the past three decades. In order to capture the evolution of aridization in the study area, specific aridization indexes have been calculated, such as the De Martonne index and the UNEP aridity index. 1990 and 2011 satellite images have been used in order to quantify the qualitative changes. The results obtained indicated that, in the past two decades, the quality of the biomass declined as a result of the increase in the climatic aridity conditions (De Martonne si UNEP aridity index, indicating in the last decades, annual values under 15 mm/°C, and under 0.5 mm/mm, that means that the values situated under these thresholds, describe arid and semi-arid climate conditions). Also, the uncontrolled logging across vast surfaces caused the loss of forest ecosystems by 7% in the overall study area, during the last three decades. The severe effects of aridization meant, first of all, a significant decline in the quality of the ecosystem services supplied by forests. In the absence of viable actions to correct the present situation, the extremely undesirable consequences of an ecological and social nature will arise in the near future.

  7. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems.

    Science.gov (United States)

    Mao, Fangjie; Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Xu, Xiaojun; Shi, Yongjun; Mo, Lufeng; Zhou, Yufeng; Tu, Guoqing

    2016-05-01

    Numerical models are the most appropriate instrument for the analysis of the carbon balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based model BIOME-BGC is widely used in simulation of carbon balance within vegetation, litter and soil of unmanaged ecosystems. For Moso bamboo forests, however, simulations with BIOME-BGC are inaccurate in terms of the growing season and the carbon allocation, due to the oversimplified representation of phenology. Our aim was to improve the applicability of BIOME-BGC for managed Moso bamboo forest ecosystem by implementing several new modules, including phenology, carbon allocation, and management. Instead of the simple phenology and carbon allocation representations in the original version, a periodic Moso bamboo phenology and carbon allocation module was implemented, which can handle the processes of Moso bamboo shooting and high growth during "on-year" and "off-year". Four management modules (digging bamboo shoots, selective cutting, obtruncation, fertilization) were integrated in order to quantify the functioning of managed ecosystems. The improved model was calibrated and validated using eddy covariance measurement data collected at a managed Moso bamboo forest site (Anji) during 2011-2013 years. As a result of these developments and calibrations, the performance of the model was substantially improved. Regarding the measured and modeled fluxes (gross primary production, total ecosystem respiration, net ecosystem exchange), relative errors were decreased by 42.23%, 103.02% and 18.67%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Forest changes since Euro-American settlement and ecosystem restoration in the Lake Tahoe Basin, USA

    Science.gov (United States)

    Alan H. Taylor

    2007-01-01

    Pre Euro-American settlement forest structure and fire regimes for Jeffrey pine-white fir, red fir-western white pine, and lodgepole pine forests were quantified using stumps from trees cut in the 19th century to establish a baseline reference for ecosystem management in the Lake Tahoe Basin. Contemporary forests varied in different ways compared...

  9. Soil and water related forest ecosystem services and resilience of social ecological system in the Central Highlands of Ethiopia

    Science.gov (United States)

    Tekalign, Meron; Muys, Bart; Nyssen, Jan; Poesen, Jean

    2014-05-01

    In the central highlands of Ethiopia, deforestation and forest degradation are occurring and accelerating during the last century. The high population pressure is the most repeatedly mentioned reason. However, in the past 30 years researchers agreed that the absence of institutions, which could define the access rights to particular forest resources, is another underlying cause of forest depletion and loss. Changing forest areas into different land use types is affecting the biodiversity, which is manifested through not proper functioning of ecosystem services. Menagesha Suba forest, the focus of this study has been explored from various perspectives. However the social dimension and its interaction with the ecology have been addressed rarely. This research uses a combined theoretical framework of Ecosystem Services and that of Resilience thinking for understanding the complex social-ecological interactions in the forest and its influence on ecosystem services. For understanding the history and extent of land use land cover changes, in-depth literature review and a GIS and remote sensing analysis will be made. The effect of forest conversion into plantation and agricultural lands on soil and above ground carbon sequestration, fuel wood and timber products delivery will be analyzed with the accounting of the services on five land use types. The four ecosystem services to be considered are Supporting, Provisioning, Regulating, and Cultural services as set by the Millennium Ecosystem Assessment. A resilience based participatory framework approach will be used to analyze how the social and ecological systems responded towards the drivers of change that occurred in the past. The framework also will be applied to predict future uncertainties. Finally this study will focus on the possible interventions that could contribute to the sustainable management and conservation of the forest. An ecosystem services trade-off analysis and an environmental valuation of the water

  10. Caesium-137 in a boreal forest ecosystem. Aspects on the long-term behaviour

    International Nuclear Information System (INIS)

    Bergman, R.; Nylen, T.; Nelin, P.; Palo, T.

    1993-11-01

    Cycling of radioactive caesium, particularly the isotope Cs-137, is studied in boreal forest biotopes mainly located at the Vindeln experimental forest, 60 km NW of Umeaa, Sweden, (64 degrees 16'N, 19 degrees 48'E). The distribution of radioactive caesium in this forest ecosystem, prior to and in different periods after the Chernobyl accident, reflects the existence of fast changes particularly at an early stage after the deposition, superimposed on slow redistribution over long time periods. The definite causes to this complex dynamic behaviour are not yet unambiguously established. In this work we use the specific results from local field studies as a basis to describe the general pattern and time dependence of Cs-137 redistribution in a boreal forest. We raise the hypothesis that: 'Cs-137 present in a boreal forest tends towards a homogenous distribution among the living cells of that system'. This hypothesis is based on physiological characteristics concerning transport over cell membranes and intracellular distribution in comparison to potassium, and the apparently conservative conditions prevailing for caesium in boreal ecosystems - e.g. the facts that very little of the radioactive caesium deposited over the forest area is lost from the system by run off, more than 90% of the total deposition of Cs-137 resides in the upper organic horizon in podzol areas, and that the availability in the ecosystem, as can be seen from the Cs-137 concentration in moose meat, is not significantly different in 1985 (i.e. prior to the Chernobyl accident) in comparison to the period 1986-1990. The aim of this work is to elucidate how predictions, based on our hypothesis about redistribution processes in the boreal forest, corroborates with the main features in the time-dependent change of Cs-137 activity, according to measurements on perennial vegetation from the local sites. In particular the implicit dependence of the dynamics of the redistribution processes on primary

  11. Forest biodiversity, carbon and other ecosystem services: relationships and impacts of deforestation and forest degradation

    Science.gov (United States)

    Ian D. Thompson; Joice Ferreira; Toby Gardner; Manuel Guariguata; Lian Pin Koh; Kimiko Okabe; Yude Pan; Christine B. Schmitt; Jason Tylianakis; Jos Barlow; Valerie Kapos; Werner A. Kurz; John A. Parrotta; Mark D. Spalding; Nathalie van Vliet

    2012-01-01

    REDD+ actions should be based on the best science and on the understanding that forests can provide more than a repository for carbon but also offer a wide range of services beneficial to people. Biodiversity underpins many ecosystem services, one of which is carbon sequestration, and individual species’ functional traits play an important role in determining...

  12. Towards integration of research and monitoring at forest ecosystems in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Danielewsha, A.; Paoletti, E.; Clarke, N.; Olejnik, J.; Urbaniak, M.; Baran, M.; Siedlecki, P.; Hansen, K.; Lundin, L.; Vries, W.; Norgaard Mikkelsen, T.; Dillen, S.; Fischer

    2013-07-01

    Aim of study: The main aim of the work was to summarize availability, quality and comparability of on-going European Research and Monitoring Networks (ERMN), based on the results of a COST FP0903 Action questionnaire carried out in September 2010 and May 2012. Area of study: The COST Action FP0903 involves 29 European countries and 4 non-COST institutions from USA, Morocco and Tunisia. In this study, the total of 22 replies to the questionnaire from 18 countries were included. Materials and methods: Based on the feedback from the Action FP0903 countries, the most popular European Networks were identified. Thereafter, the access to the network database, available quality assurance/quality control procedures and publication were described. Finally, the so-called Supersites concept, defined as a highly instrumented research infrastructure, for both research and monitoring of soil-plant-atmosphere interactions was discussed. Main results: The result of the survey indicate that the vast majority of the Action FP0903 countries participate in the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forest (ICP Forest). The multi-disciplinary International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICPIM) is the second most widespread forest programme. Research highlights: To fully understand biochemical cycles in forest ecosystems, long-term monitoring is needed. Hence, a network of Supersites, is proposed. The application of the above infrastructure can be an effective way to attain a better integration of research and monitoring networks at forest sites in Europe. (Author)

  13. Extreme late-summer drought causes neutral annual carbon balance in southwestern ponderosa pine forests and grasslands

    International Nuclear Information System (INIS)

    Kolb, Thomas; Dore, Sabina; Montes-Helu, Mario

    2013-01-01

    We assessed the impacts of extreme late-summer drought on carbon balance in a semi-arid forest region in Arizona. To understand drought impacts over extremes of forest cover, we measured net ecosystem production (NEP), gross primary production (GPP), and total ecosystem respiration (TER) with eddy covariance over five years (2006–10) at an undisturbed ponderosa pine (Pinus ponderosa) forest and at a former forest converted to grassland by intense burning. Drought shifted annual NEP from a weak source of carbon to the atmosphere to a neutral carbon balance at the burned site and from a carbon sink to neutral at the undisturbed site. Carbon fluxes were particularly sensitive to drought in August. Drought shifted August NEP at the undisturbed site from sink to source because the reduction of GPP (70%) exceeded the reduction of TER (35%). At the burned site drought shifted August NEP from weak source to neutral because the reduction of TER (40%) exceeded the reduction of GPP (20%). These results show that the lack of forest recovery after burning and the exposure of undisturbed forests to late-summer drought reduce carbon sink strength and illustrate the high vulnerability of forest carbon sink strength in the southwest US to predicted increases in intense burning and precipitation variability. (letter)

  14. Extreme late-summer drought causes neutral annual carbon balance in southwestern ponderosa pine forests and grasslands

    Science.gov (United States)

    Kolb, Thomas; Dore, Sabina; Montes-Helu, Mario

    2013-03-01

    We assessed the impacts of extreme late-summer drought on carbon balance in a semi-arid forest region in Arizona. To understand drought impacts over extremes of forest cover, we measured net ecosystem production (NEP), gross primary production (GPP), and total ecosystem respiration (TER) with eddy covariance over five years (2006-10) at an undisturbed ponderosa pine (Pinus ponderosa) forest and at a former forest converted to grassland by intense burning. Drought shifted annual NEP from a weak source of carbon to the atmosphere to a neutral carbon balance at the burned site and from a carbon sink to neutral at the undisturbed site. Carbon fluxes were particularly sensitive to drought in August. Drought shifted August NEP at the undisturbed site from sink to source because the reduction of GPP (70%) exceeded the reduction of TER (35%). At the burned site drought shifted August NEP from weak source to neutral because the reduction of TER (40%) exceeded the reduction of GPP (20%). These results show that the lack of forest recovery after burning and the exposure of undisturbed forests to late-summer drought reduce carbon sink strength and illustrate the high vulnerability of forest carbon sink strength in the southwest US to predicted increases in intense burning and precipitation variability.

  15. Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest

    Science.gov (United States)

    YIQING LI; MING XU; XIAOMING ZOU

    2006-01-01

    Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July...

  16. Effects of active forest fire on terrestrial ecosystem production and greenhouse gas emissions

    Science.gov (United States)

    Sannigrahi, Srikanta; Rahmat, Shahid; Bhatt, Sandeep; Rana, Virendra

    2017-04-01

    The forest fire is one of the most catalysing agents which degrade an ecosystems leading to the loss of net and gross primary productivity (NPP & GPP) and carbon sequestration service. Additionally, it can suppress the efficiency of service providing capacity of an ecosystem throughout the time and space. Remote sensing-based forest fire estimation in a diverse ecosystem is very much essential for mitigating the biodiversity and productivity losses due to the forest fire. Satellite-based Land Surface Temperature (LST) has been calculated for the pre-fire and fire years to identify the burn severity hotspot across all eco-regions in the Lower Himalaya region. Several burn severity indices: Normalized Burn Ratio (NBR), Burnt Area Index (BAI), Normalized Multiband Drought Index (NMDI), Soil Adjusted Vegetation Index (SAVI), Global Environmental Monitoring Index (GEMI), Enhance Vegetation Index (EVI) have been used in this study to quantify the spatial and temporal changes (delta) of the selected indices. Two Light Use Efficiency (LUE) models: Carnegie- Ames-Stanford-Approach (CASA) and Vegetation Photosynthesis Model (VPM) have been used to quantify the terrestrial Net Primary Productivity (NPP) in the pre-fire and fire years across all biomes of the region. A novel approach has been preceded in this field to demonstrate the correlation between forest fire density (FFD) and NPP. A strong positive correlation was found between burn severity indices and predicted NPP: BAI and NPP (r = 0.49), NBR and NPP: (r = 0.58), EVI and NPP: (r = 0.72), SAVI and NPP: (r = 0.67), whereas, a negative association has noted between the NMDI and NPP: (r = -0.36) during the both studied years. Results have shown that the NPP is highly correlated with the forest fire density (R2 = 0.75, RMSE = 5.03 gC m-2 month-1). The estimated LST of the individual fire days has witnessed a sharp temperature increase by > 6oC - 9oC in comparison to the non-fire days clearly indicates high fire risk (in

  17. Human dimensions in ecosystem management: a USDA Forest Service perspective

    Science.gov (United States)

    Deborah S. Carr

    1995-01-01

    For many decades, the natural resource profession has approached the management of public lands as exclusively a natural science endeavor requiring purely technical solutions. With the adoption of an ecosystem management philosophy, the USDA Forest Service has acknowledged the centrality of people in land management policy and decision-making. This paper explores the...

  18. Radioactive cesium in a boreal forest ecosystem. Ecological concepts in radioecology

    International Nuclear Information System (INIS)

    Palo, R.T.

    1991-01-01

    Radioecology is traditionally viewing ecosystems as process functional units while modern ecology focus more on interactions among populations and communities. Taken separately they may lead to incomplete conclusion about radionuclide behaviour and give a too simplified view of the system. I adopt an hierarchical approach by focusing on the forest ecosystem, populations and individuals. I present a theoretical framework commonly used in analysis of herbivore- plant interactions and give an example on how individual behaviour perturbate to higher levels of ecological organizations. (au) (20 refs.)

  19. Assessing the Impacts of forest degradation on water, energy, and carbon budgets in Amazon forest using the Functionally Assembled Terrestrial Ecosystem Simulator

    Science.gov (United States)

    Huang, M.; Xu, Y.; Longo, M.; Keller, M.; Knox, R. G.; Koven, C.; Fisher, R.

    2017-12-01

    Tropical forest degradation from logging, fire, and fragmentation not only alters carbon stocks and carbon fluxes, but also impacts physical land-surface properties such as albedo and roughness length. Such impacts are poorly quantified to date due to difficulties in accessing and maintaining observational infrastructures, and the lack of proper modeling tools for capturing the interactions among biophysical properties, ecosystem demography, and biogeochemical cycling in tropical forests. As a first step to address these limitations, we implemented a selective logging module into the Functional Assembled Terrestrial Ecosystem Simulator (FATES) and parameterized the model to reproduce the selective logging experiment at the Tapajos National Forest in Brazil. The model was spun up until it reached the steady state, and simulations with and without logging were compared with the eddy covariance flux towers located at the logged and intact sites. The sensitivity of simulated water, energy, and carbon fluxes to key plant functional traits (e.g. Vcmax and leaf longevity) were quantified by perturbing their values within their documented ranges. Our results suggest that the model can reproduce water and carbon fluxes in intact forests, although sensible heat fluxes were overestimated. The effects of logging intensity and techniques on fluxes were assessed by specifying different disturbance parameters in the models (e.g., size-dependent mortality rates associated with timber harvest, collateral damage, and mechanical damage for infrastructure construction). The model projections suggest that even though the degraded forests rapidly recover water and energy fluxes compared with old-growth forests, the recovery times for carbon stocks, forest structure and composition are much longer. In addition, the simulated recovery trajectories are highly dependent on choices of values for functional traits. Our study highlights the advantages of an Earth system modeling approach

  20. Hydro-chemical cycle of forest ecosystem in the Norikura Highlands

    Science.gov (United States)

    Muramoto, Michiko; Nara, Maiko; Asari, Tomoko; Suzuki, Keisuke

    Because of precipitation serves as a major vehicle of nutrient input into the forest ecosystem, the accurate measurement of its volume and ion concentration is of prime importance in an evaluation of any bio-geochemical cycle. Therefore, chemistry of the precipitation and throughfall of forest ecosystem was investigated in the Norikura Highlands. The investigation period was from January, 2003 to October, 2006. The throughfall volume in growing season and dormant season were 86 % and 93 % of the precipitation volume. Throughfall pH increased with increasing K+ concentration showed that H+ was held within the canopy by cation exchange reaction. And the concentration level of K+, Mg2+ and Ca2+ in the throughfall was much higher than that in the precipitation. It was the cause of canopy leaching. In growing season, proportions of canopy leaching of K+, Mg2+ and Ca2+ were 95 %, 70 % and 43 % of the throughfall deposition respectively. At Coniferous site, the flux of dry deposition was higher in dormant season than growing season. It is suggested that aerosol of the atmosphere and leaf area might be influenced.

  1. Transfer parameter values in temperate forest ecosystems: a review

    International Nuclear Information System (INIS)

    Calmon, Philippe; Thiry, Yves; Zibold, Gregor; Rantavaara, Aino; Fesenko, Sergei

    2009-01-01

    Compared to agricultural lands, forests are complex ecosystems as they can involve diverse plant species associations, several vegetative strata (overstorey, shrubs, herbaceous and other annual plant layer) and multi-layered soil profiles (forest floor, hemi-organic and mineral layers). A high degree of variability is thus generally observed in radionuclide transfers and redistribution patterns in contaminated forests. In the long term, the soil compartment represents the major reservoir of radionuclides which can give rise to long-term plant and hence food contamination. For practical reasons, the contamination of various specific forest products has commonly been quantified using the aggregated transfer factor (T ag in m 2 kg -1 ) which integrates various environmental parameters including soil and plant type, root distribution as well as nature and vertical distribution of the deposits. Long lasting availability of some radionuclides was shown to be the source of much higher transfer in forest ecosystems than in agricultural lands. This study aimed at reviewing the most relevant quantitative information on radionuclide transfers to forest biota including trees, understorey vegetation, mushrooms, berries and game animals. For both radiocaesium and radiostrontium in trees, the order of magnitude of mean T ag values was 10 -3 m 2 kg -1 (dry weight). Tree foliage was usually 2-12 times more contaminated than trunk wood. Maximum contamination of tree components with radiocaesium was associated with (semi-)hydromorphic areas with thick humus layers. The transfer of radionuclides to mushrooms and berries is high, in comparison with foodstuffs grown in agricultural systems. Concerning caesium uptake by mushrooms, the transfer is characterized by a very large variability of T ag , from 10 -3 to 10 1 m 2 kg -1 (dry weight). For berries, typical values are around 0.01-0.1 m 2 kg -1 (dry weight). Transfer of radioactive caesium to game animals and reindeer and the rate of

  2. Transfer parameter values in temperate forest ecosystems: a review

    Energy Technology Data Exchange (ETDEWEB)

    Calmon, Philippe [Department of Radioecology, Institute of Radioprotection and Nuclear Safety, CE Cadarache, BP 3, 13115 Saint Paul-les-Durance Cedex (France)], E-mail: philippe.calmon@irsn.fr; Thiry, Yves [Biosphere Impact Studies, Belgian Nuclear Research Center (SCK.CEN, Foundation of Public Utility), 2400 Mol (Belgium); Zibold, Gregor [Hochschule Ravensburg-Weingarten, University of Applied Sciences, 88250 Weingarten (Germany); Rantavaara, Aino [Research and Environmental Surveillance, Radiation and Nuclear Safety Authority (STUK), BP 14, FIN-00881 Helsinki (Finland); Fesenko, Sergei [International Atomic Energy Agency (IAEA), 1400 Vienna (Austria)

    2009-09-15

    Compared to agricultural lands, forests are complex ecosystems as they can involve diverse plant species associations, several vegetative strata (overstorey, shrubs, herbaceous and other annual plant layer) and multi-layered soil profiles (forest floor, hemi-organic and mineral layers). A high degree of variability is thus generally observed in radionuclide transfers and redistribution patterns in contaminated forests. In the long term, the soil compartment represents the major reservoir of radionuclides which can give rise to long-term plant and hence food contamination. For practical reasons, the contamination of various specific forest products has commonly been quantified using the aggregated transfer factor (T{sub ag} in m{sup 2} kg{sup -1}) which integrates various environmental parameters including soil and plant type, root distribution as well as nature and vertical distribution of the deposits. Long lasting availability of some radionuclides was shown to be the source of much higher transfer in forest ecosystems than in agricultural lands. This study aimed at reviewing the most relevant quantitative information on radionuclide transfers to forest biota including trees, understorey vegetation, mushrooms, berries and game animals. For both radiocaesium and radiostrontium in trees, the order of magnitude of mean T{sub ag} values was 10{sup -3} m{sup 2} kg{sup -1} (dry weight). Tree foliage was usually 2-12 times more contaminated than trunk wood. Maximum contamination of tree components with radiocaesium was associated with (semi-)hydromorphic areas with thick humus layers. The transfer of radionuclides to mushrooms and berries is high, in comparison with foodstuffs grown in agricultural systems. Concerning caesium uptake by mushrooms, the transfer is characterized by a very large variability of T{sub ag}, from 10{sup -3} to 10{sup 1} m{sup 2} kg{sup -1} (dry weight). For berries, typical values are around 0.01-0.1 m{sup 2} kg{sup -1} (dry weight). Transfer

  3. Proceedings of the International Symposium on Air Pollution and Climate Change Effects on Forest Ecosystems

    Science.gov (United States)

    Andrzej Bytnerowicz; Michael J. Arbaugh; Susan L. Schilling

    1998-01-01

    Industrial air pollution has been identified as one of the primary causes of severe damage to forests of central Europe in the past 30 to 40 years. The mountain forest ecosystems have been affected considerably, resulting in extensive areas of severely deteriorated forest stands (e.g., the Krusne Hory of the Czech Republic or the Izerske and Sudety Mountains along the...

  4. Lessons from native spruce forests in Alaska: managing Sitka spruce plantations worldwide to benefit biodiversity and ecosystem services

    Science.gov (United States)

    Robert L. Deal; Paul Hennon; Richard O' Hanlon; David D' Amore

    2014-01-01

    There is increasing interest worldwide in managing forests to maintain or improve biodiversity, enhance ecosystem services and assure long-term sustainability of forest resources. An important goal of forest management is to increase stand diversity, provide wildlife habitat and improve forest species diversity. We synthesize results from natural spruce forests in...

  5. Repeated wildfires alter forest recovery of mixed-conifer ecosystems.

    Science.gov (United States)

    Stevens-Rumann, Camille; Morgan, Penelope

    2016-09-01

    Most models project warmer and drier climates that will contribute to larger and more frequent wildfires. However, it remains unknown how repeated wildfires alter post-fire successional patterns and forest structure. Here, we test the hypothesis that the number of wildfires, as well as the order and severity of wildfire events interact to alter forest structure and vegetation recovery and implications for vegetation management. In 2014, we examined forest structure, composition, and tree regeneration in stands that burned 1-18 yr before a subsequent 2007 wildfire. Three important findings emerged: (1) Repeatedly burned forests had 15% less woody surface fuels and 31% lower tree seedling densities compared with forests that only experienced one recent wildfire. These repeatedly burned areas are recovering differently than sites burned once, which may lead to alternative ecosystem structure. (2) Order of burn severity (high followed by low severity compared with low followed by high severity) did influence forest characteristics. When low burn severity followed high, forests had 60% lower canopy closure and total basal area with 92% fewer tree seedlings than when high burn severity followed low. (3) Time between fires had no effect on most variables measured following the second fire except large woody fuels, canopy closure and tree seedling density. We conclude that repeatedly burned areas meet many vegetation management objectives of reduced fuel loads and moderate tree seedling densities. These differences in forest structure, composition, and tree regeneration have implications not only for the trajectories of these forests, but may reduce fire intensity and burn severity of subsequent wildfires and may be used in conjunction with future fire suppression tactics. © 2016 by the Ecological Society of America.

  6. COST action FP801- established and emerging Phytophthora: incresasing threats to woodland and forest ecosystems in Europe

    OpenAIRE

    Woodward, S.; Vannini, A.; Werres, S.; Osswald, W.; Bonants, P.J.M.; Jung, T.

    2011-01-01

    With the rapidly growing international trade in plants and ongoing impacts of climate change, impacts of plant pathogens in the genus Phytophthora are increasing, threatening the biodiversity and sustainability of European forest ecosystems. Through the European Cooperation in Science and Technology (COST) framework Action FP0801, scientists and disease-control experts are working on phytophthora in forest ecosystems with the overall aim of increasing understanding of the biology and ecology ...

  7. Preface: long-term response of a forest watershed ecosystem, clearcutting in the Southern Appalachians

    Science.gov (United States)

    Wayne Swank; Jackson Webster

    2014-01-01

    Our North American forests are no longer the wild areas of past centuries; they are an economic and ecological resource undergoing changes from both natural and management disturbances. A watershed-scale and long-term perspective of forest ecosystem responses is requisite to understanding and predicting cause and effect relationships. This book synthesizes...

  8. Habitat creation and biodiversity maintenance in mangrove forests: teredinid bivalves as ecosystem engineers

    Directory of Open Access Journals (Sweden)

    Ian W. Hendy

    2014-09-01

    Full Text Available Substantial amounts of dead wood in the intertidal zone of mature mangrove forests are tunnelled by teredinid bivalves. When the tunnels are exposed, animals are able to use tunnels as refuges. In this study, the effect of teredinid tunnelling upon mangrove forest faunal diversity was investigated. Mangrove forests exposed to long emersion times had fewer teredinid tunnels in wood and wood not containing teredinid tunnels had very few species and abundance of animals. However, with a greater cross-sectional percentage surface area of teredinid tunnels, the numbers of species and abundance of animals was significantly higher. Temperatures within teredinid-attacked wood were significantly cooler compared with air temperatures, and animal abundance was greater in wood with cooler temperatures. Animals inside the tunnels within the wood may avoid desiccation by escaping the higher temperatures. Animals co-existing in teredinid tunnelled wood ranged from animals found in terrestrial ecosystems including centipedes, crickets and spiders, and animals found in subtidal marine ecosystems such as fish, octopods and polychaetes. There was also evidence of breeding within teredinid-attacked wood, as many juvenile individuals were found, and they may also benefit from the cooler wood temperatures. Teredinid tunnelled wood is a key low-tide refuge for cryptic animals, which would otherwise be exposed to fishes and birds, and higher external temperatures. This study provides evidence that teredinids are ecosystem engineers and also provides an example of a mechanism whereby mangrove forests support intertidal biodiversity and nurseries through the wood-boring activity of teredinids.

  9. Armillaria species: Primary drivers of forest ecosystem processes and potential impacts of climate change

    Science.gov (United States)

    Ned B. Klopfenstein; Mee-Sook Kim; John W. Hanna; Amy L. Ross-Davis; Sara M. Ashiglar; Geral I. McDonald

    2012-01-01

    Species of the fungal genus Armillaria are pervasive in forest soils and are associated with widely ranging tree species of diverse forests worldwide (Baumgartner et al., 2011). As primary decay drivers of ecosystem processes, Armillaria species exhibit diverse ecological behaviors, ranging from virulent root and/or butt pathogens of diverse woody hosts, such as timber...

  10. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation.

    Directory of Open Access Journals (Sweden)

    Chengzhang Liao

    Full Text Available Uncertainties remain in the potential of forest plantations to sequestrate carbon (C. We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests. Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha(-1 in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age ( or = 25 years, stand types (broadleaved vs. coniferous and deciduous vs. evergreen, tree species origin (native vs. exotic of plantations, land-use history (afforestation vs. reforestation and site preparation for plantations (unburnt vs. burnt, and study regions (tropic vs. temperate. The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation.

  11. Response of net ecosystem CO2 exchange and evapotranspiration of boreal forest ecosystems to projected future climate changes: results of a modeling study

    Science.gov (United States)

    Olchev, Alexander; Kurbatova, Julia

    2014-05-01

    It is presented the modeling results describing the possible response of net ecosystem exchange of CO2 (NEE), gross (GPP) and net (NPP) primary production, as well as evapotranspiration (ET) of spruce forest ecosystems situated at central part of European part of Russia at the southern boundary of boreal forest community to projected future changes of climatic conditions and forest species composition. A process-based MixFor-SVAT model (Olchev et al 2002, 2008, 2009) has been used to describe the CO2 and H2O fluxes under present and projected future climate conditions. The main advantage of MixFor-SVAT is its ability not only to describe seasonal and daily dynamics of total CO2 and H2O fluxes at an ecosystem level, but also to adequately estimate the contributions of soil, forest understorey, and various tree species in overstorey into total ecosystem fluxes taking into account their individual responses to changes in environmental conditions as well as the differences in structure and biophysical properties. Results of modeling experiments showed that projected changes of climate conditions (moderate scenario A1B IPCC) and forest species composition at the end of 21 century can lead to small increase of annual evapotranspiration as well as to growth of NEE, GPP and NPP of the forests in case if the projected increase in temperature and elevated CO2 in the atmosphere in future will be strictly balanced with growth of available nutrients and water in plant and soil. It is obvious that any deficit of e.g. nitrogen in leaves (due to reduced transpiration, nitrogen availability in soil, etc.) may lead to decreases in the photosynthesis and respiration rates of trees and, as a consequence, to decreases in the GPP and NEE of entire forest ecosystem. Conducted modeling experiments have demonstrated that a 20% reduction of available nitrogen in tree leaves in a monospesific spruce forest stand may result in a 14% decrease in NEE, a 8% decrease in NPP, and a 4% decrease in

  12. A climate sensitive model of carbon transfer through atmosphere, vegetation and soil in managed forest ecosystems

    Science.gov (United States)

    Loustau, D.; Moreaux, V.; Bosc, A.; Trichet, P.; Kumari, J.; Rabemanantsoa, T.; Balesdent, J.; Jolivet, C.; Medlyn, B. E.; Cavaignac, S.; Nguyen-The, N.

    2012-12-01

    For predicting the future of the forest carbon cycle in forest ecosystems, it is necessary to account for both the climate and management impacts. Climate effects are significant not only at a short time scale but also at the temporal horizon of a forest life cycle e.g. through shift in atmospheric CO2 concentration, temperature and precipitation regimes induced by the enhanced greenhouse effect. Intensification of forest management concerns an increasing fraction of temperate and tropical forests and untouched forests represents only one third of the present forest area. Predicting tools are therefore needed to project climate and management impacts over the forest life cycle and understand the consequence of management on the forest ecosystem carbon cycle. This communication summarizes the structure, main components and properties of a carbon transfer model that describes the processes controlling the carbon cycle of managed forest ecosystems. The model, GO+, links three main components, (i) a module describing the vegetation-atmosphere mass and energy exchanges in 3D, (ii) a plant growth module and a (iii) soil carbon dynamics module in a consistent carbon scheme of transfer from atmosphere back into the atmosphere. It was calibrated and evaluated using observed data collected on coniferous and broadleaved forest stands. The model predicts the soil, water and energy balance of entire rotations of managed stands from the plantation to the final cut and according to a range of management alternatives. It accounts for the main soil and vegetation management operations such as soil preparation, understorey removal, thinnings and clearcutting. Including the available knowledge on the climatic sensitivity of biophysical and biogeochemical processes involved in atmospheric exchanges and carbon cycle of forest ecosystems, GO+ can produce long-term backward or forward simulations of forest carbon and water cycles under a range of climate and management scenarios. This

  13. Forest ecosystem vulnerability assessment and synthesis for northern Wisconsin and western Upper Michigan: a report from the Northwoods Climate Change Response Framework project

    Science.gov (United States)

    Maria K. Janowiak; Louis R. Iverson; David J. Mladenoff; Emily Peters; Kirk R. Wythers; Weimin Xi; Leslie A. Brandt; Patricia R. Butler; Stephen D. Handler; P. Danielle Shannon; Chris Swanston; Linda R. Parker; Amy J. Amman; Brian Bogaczyk; Christine Handler; Ellen Lesch; Peter B. Reich; Stephen Matthews; Matthew Peters; Anantha Prasad; Sami Khanal; Feng Liu; Tara Bal; Dustin Bronson; Andrew Burton; Jim Ferris; Jon Fosgitt; Shawn Hagan; Erin Johnston; Evan Kane; Colleen Matula; Ryan O' Connor; Dale Higgins; Matt St. Pierre; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; David Neitzel; Michael Notaro; Adena Rissman; Chadwick Rittenhouse; Robert Ziel

    2014-01-01

    Forest ecosystems across the Northwoods will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems in the Laurentian Mixed Forest Province of northern Wisconsin and western Upper Michigan under a range of future climates. Information on current forest conditions, observed climate...

  14. Ecosystem services and opportunity costs shift spatial priorities for conserving forest biodiversity.

    Directory of Open Access Journals (Sweden)

    Matthias Schröter

    Full Text Available Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone or partially restricted (partial use zone. Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2% and the non-use zone (+3.2%. Furthermore, opportunity costs increased (+6.6%, which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1% of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%.

  15. Ecosystem Services and Opportunity Costs Shift Spatial Priorities for Conserving Forest Biodiversity

    Science.gov (United States)

    Schröter, Matthias; Rusch, Graciela M.; Barton, David N.; Blumentrath, Stefan; Nordén, Björn

    2014-01-01

    Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%. PMID:25393951

  16. Modeling the Effects of Drought Events on Forest Ecosystem Functioning Historically and Under Scenarios of Climate Change

    Science.gov (United States)

    Ren, J.; Hanan, E. J.; Kolden, C.; Abatzoglou, J. T.; Tague, C.; Liu, M.; Adam, J. C.

    2017-12-01

    Drought events have been increasing across the western United States in recent years. Many studies have shown that, in the context of climate change, droughts will continue to be stronger, more frequent, and prolonged in the future. However, the response of forest ecosystems to droughts, particularly multi-year droughts, is not well understood. The objectives of this study are to examine how drought events of varying characteristics (e.g. intensity, duration, frequency, etc.) have affected the functioning of forest ecosystems historically, and how changing drought characteristics (including multi-year droughts) may affect forest functioning in a future climate. We utilize the Regional Hydro-Ecological Simulation System (RHESSys) to simulate impacts of both historical droughts and scenarios of future droughts on forest ecosystems. RHESSys is a spatially-distributed and process-based model that captures the interactions between coupled biogeochemical and hydrologic cycles at catchment scales. Here our case study is the Trail Creek catchment of the Big Wood River basin in Idaho, the Northwestern USA. For historical simulations, we use the gridded meteorological data of 1979 to 2016; for future climate scenarios, we utilize downscaled data from GCMs that have been demonstrated to capture drought events in the Northwest of the USA. From these climate projections, we identify various types of drought in intensity and duration, including multi-year drought events. We evaluate the following responses of ecosystems to these events: 1) evapotranspiration and streamflow; 2) gross primary productivity; 3) the post-drought recovery of plant biomass; and 4) the forest functioning and recovery after multi-year droughts. This research is part of an integration project to examine the roles of drought, insect outbreak, and forest management activities on wildfire activity and its impacts. This project will provide improved information for forest managers and communities in the wild

  17. Towards the integration of research and monitoring at forest ecosystems in Europe

    Directory of Open Access Journals (Sweden)

    A. Danielewska

    2013-12-01

    Full Text Available Aim of study: The main aim of the work was to summarize availability, quality and comparability of on-going European Research and Monitoring Networks (ERMN, based on the results of a COST FP0903 Action questionnaire carried out in September 2010 and May 2012.Area of study: The COST Action FP0903 involves 29 European countries and 4 non-COST institutions from USA, Morocco and Tunisia. In this study, the total of 22 replies to the questionnaire from 18 countries were included.Materials and methods: Based on the feedback from the Action FP0903 countries, the most popular European Networks were identified. Thereafter, the access to the network database, available quality assurance/quality control procedures and publication were described. Finally, the so-called “Supersites” concept, defined as a “highly instrumented research infrastructure, for both research and monitoring of soil-plant-atmosphere interactions” was discussed.Main results: The result of the survey indicate that the vast majority of the Action FP0903 countries participate in the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forest (ICP Forest. The multi-disciplinary International Cooperative Programme on Integrated Monitoring of Air Pollution Effects on Ecosystems (ICPIM is the second most widespread forest programme. Research highlights: To fully understand biochemical cycles in forest ecosystems, long-term monitoring is needed. Hence, a network of “Supersites”, is proposed. The application of the above infrastructure can be an effective way to attain a better integration of research and monitoring networks at forest sites in Europe.Keywords: Supersites; European Research Monitoring Networks; Harmonization; Forest.

  18. Using a Forest Health Index as an Outreach Tool for Improving Public Understanding of Ecosystem Dynamics and Research-Based Management

    Science.gov (United States)

    Osenga, E. C.; Cundiff, J.; Arnott, J. C.; Katzenberger, J.; Taylor, J. R.; Jack-Scott, E.

    2015-12-01

    An interactive tool called the Forest Health Index (FHI) has been developed for the Roaring Fork watershed of Colorado, with the purpose of improving public understanding of local forest management and ecosystem dynamics. The watershed contains large areas of White River National Forest, which plays a significant role in the local economy, particularly for recreation and tourism. Local interest in healthy forests is therefore strong, but public understanding of forest ecosystems is often simplified. This can pose challenges for land managers and researchers seeking a scientifically informed approach to forest restoration, management, and planning. Now in its second iteration, the FHI is a tool designed to help bridge that gap. The FHI uses a suite of indicators to create a numeric rating of forest functionality and change, based on the desired forest state in relation to four categories: Ecological Integrity, Public Health and Safety, Ecosystem Services, and Sustainable Use and Management. The rating is based on data derived from several sources including local weather stations, stream gauge data, SNOTEL sites, and National Forest Service archives. In addition to offering local outreach and education, this project offers broader insight into effective communication methods, as well as into the challenges of using quantitative analysis to rate ecosystem health. Goals of the FHI include its use in schools as a means of using local data and place-based learning to teach basic math and science concepts, improved public understanding of ecological complexity and need for ongoing forest management, and, in the future, its use as a model for outreach tools in other forested communities in the Intermountain West.

  19. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems.

    Science.gov (United States)

    Sicard, Pierre; Augustaitis, Algirdas; Belyazid, Salim; Calfapietra, Carlo; de Marco, Alessandra; Fenn, Mark; Bytnerowicz, Andrzej; Grulke, Nancy; He, Shang; Matyssek, Rainer; Serengil, Yusuf; Wieser, Gerhard; Paoletti, Elena

    2016-06-01

    Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere-biosphere-pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose-response relationships and

  20. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn

    DEFF Research Database (Denmark)

    Wu, Chaoyang; Chen, Xi Jing; Black, T. Andrew

    2013-01-01

    To investigate the importance of autumn phenology in controlling interannual variability of forest net ecosystem productivity (NEP) and to derive new phenological metrics to explain the interannual variability of NEP. North America and Europe. Flux data from nine deciduous broadleaf forests (DBF......, soil water content and precipitation, were also used to explain the phenological variations. We found that interannual variability of NEP can be largely explained by autumn phenology, i.e. the autumn lag. While variation in neither annual gross primary productivity (GPP) nor in annual ecosystem...

  1. Tree diversity does not always improve resistance of forest ecosystems to drought

    DEFF Research Database (Denmark)

    Grossiord, Charlotte; Granier, André; Ratcliffe, Sophia

    2014-01-01

    Climate models predict an increase in the intensity and frequency of drought episodes in the Northern Hemisphere. Among terrestrial ecosystems, forests will be profoundly impacted by drier climatic conditions, with drastic consequences for the functions and services they supply. Simultaneously, b...

  2. The OpenForest Portal as an Open Learning Ecosystem: Co-Developing in the Study of a Multidisciplinary Phenomenon in a Cultural Context

    Science.gov (United States)

    Liljeström, Anu; Enkenberg, Jorma; Vanninen, Petteri; Vartiainen, Henriikka; Pöllänen, Sinikka

    2014-01-01

    This paper discusses the OpenForest portal and its related multidisciplinary learning project. The OpenForest portal is an open learning environment and ecosystem, in which students can participate in co-developing and co-creating practices. The aim of the OpenForest ecosystem is to create an extensive interactive network of diverse learning…

  3. Ozone flux over a Norway spruce forest and correlation with net ecosystem production

    International Nuclear Information System (INIS)

    Zapletal, Milos; Cudlin, Pavel; Chroust, Petr; Urban, Otmar; Pokorny, Radek; Edwards-Jonasova, Magda; Czerny, Radek; Janous, Dalibor; Taufarova, Klara; Vecera, Zbynek; Mikuska, Pavel; Paoletti, Elena

    2011-01-01

    Daily ozone deposition flux to a Norway spruce forest in Czech Republic was measured using the gradient method in July and August 2008. Results were in good agreement with a deposition flux model. The mean daily stomatal uptake of ozone was around 47% of total deposition. Average deposition velocity was 0.39 cm s -1 and 0.36 cm s -1 by the gradient method and the deposition model, respectively. Measured and modelled non-stomatal uptake was around 0.2 cm s -1 . In addition, net ecosystem production (NEP) was measured by using Eddy Covariance and correlations with O 3 concentrations at 15 m a.g.l., total deposition and stomatal uptake were tested. Total deposition and stomatal uptake of ozone significantly decreased NEP, especially by high intensities of solar radiation. - Highlights: → We estimate ozone deposition flux to a Norway spruce forest using the gradient method and model. → The mean stomatal uptake of ozone is approximately 47% of the total deposition. → We measure net ecosystem production (NEP) using Eddy Covariance. → We test whether elevated total deposition and stomatal uptake of O 3 imply a reduction of NEP. → Deposition and stomatal uptake of O 3 decrease NEP, especially by high intensities of solar radiation. - Net ecosystem production of a Norway spruce forest decreases with increasing deposition and stomatal uptake of ozone.

  4. Reclaiming native forest ecosystems in the oilsands region

    International Nuclear Information System (INIS)

    Tuttle, S.

    1997-01-01

    Suncor Energy's land reclamation objectives were reviewed. The general objective is to construct waste dumps and tailings impoundment structures in such a way that they can be transformed into stable landforms with maintenance-free, self-sustaining ecosystems that have at least the same capability to support life as they had during their pre-disturbed condition. In the case of Suncor's current and proposed oilsands mining, this means returning the land to upland forest for the most part. Some of the reclaimed land will become wetlands with some open water areas. Current reclamation and tree planting methods result in a diverse herbaceous cover developing within a year of soil amendment application. These vegetative communities are capable of providing erosion protection, as well as serving as a source of food and cover for wildlife, and generally meeting the reclamation goal of maintenance-free, self-sustaining ecosystems

  5. Benefits of riparian forest for the aquatic ecosystem assessed at a large geographic scale

    Directory of Open Access Journals (Sweden)

    Van Looy K.

    2013-04-01

    Full Text Available Claimed benefits of riparian forest cover for the aquatic ecosystem include purification, thermal control, organic matter input and habitat provision, which may improve physicochemical and biotic quality. However, these beneficial effects might be flawed by multiple stressor conditions of intensive agriculture and urbanization in upstream catchments. We examined the relationship between riparian forest cover and physicochemical quality and biotic integrity indices in extensive large scale datasets. Measurements of hydromorphological conditions and riparian forest cover across different buffer widths for 59 × 103 river stretches covering 230 × 103 km of the French river network were coupled with data for physicochemical and biotic variables taken from the national monitoring network. General linear and quantile regression techniques were used to determine responses of physicochemical variables and biological integrity indices for macroinvertebrates and fish to riparian forest cover in selections of intermediate stress for 2nd to 4th order streams. Significant responses to forest cover were found for the nutrient variables and biological indices. According to these responses a 60% riparian forest cover in the 10 m buffer corresponds to good status boundaries for physicochemical and biotic elements. For the 30 m buffer, the observed response suggests that riparian forest coverage of at least 45% corresponds with good ecological status in the aquatic ecosystem. The observed consistent responses indicate significant potential for improving the quality of the aquatic environment by restoring riparian forest. The effects are more substantial in single-stressor environments but remain significant in multi-stressor environments.

  6. The organic nature and atmosphere-climate dependency of nitrogen loss from forest watershed ecosystems

    OpenAIRE

    Brookshire, E. N. J.

    2006-01-01

    In this dissertation I describe how coupled internal cycling and external forcing from the atmosphere and climate can regulate the dynamics of nitrogen (N) loss from forest watersheds. I address three major gaps in our understanding of the global N cycle: 1) the role of dissolved organic N (DON) in internal N cycling in low-N ecosystems; 2) The influence of atmospheric pollution on DON production and loss from forests; and 3) the inherent climate sensitivity of forest N cycling and loss. In...

  7. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Science.gov (United States)

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  8. A Prospectus on Restoring Late Successional Forest Structure to Eastside Pine Ecosystems Through Large-Scale, Interdisciplinary Research

    Science.gov (United States)

    Steve Zack; William F. Laudenslayer; Luke George; Carl Skinner; William Oliver

    1999-01-01

    At two different locations in northeast California, an interdisciplinary team of scientists is initiating long-term studies to quantify the effects of forest manipulations intended to accelerate andlor enhance late-successional structure of eastside pine forest ecosystems. One study, at Blacks Mountain Experimental Forest, uses a split-plot, factorial, randomized block...

  9. Climatic and pollution influences on ecosystem processes in northern hardwood forests

    Science.gov (United States)

    Kurt S. Pregitzer; David D. Reed; Glenn D. Mroz; Andrew J. Burton; John A. Witter; Donald A. Zak

    1996-01-01

    The Michigan gradient study was established in 1987 to examine the effects of climate and atmospheric deposition on forest productivity and ecosystem processes in the Great Lakes region. Four intensively-monitored northern hardwood study sites are located along a climatic and pollutant gradient extending from southern lower Michigan to northwestern upper Michigan. The...

  10. Simulated carbon and water processes of forest ecosystems in Forsmark and Oskarshamn during a 100-year period

    International Nuclear Information System (INIS)

    Gustafsson, David; Jansson, Per-Erik; Gaerdenaes, Annemieke; Eckersten, Henrik

    2006-12-01

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is currently investigating the Forsmark and Oskarshamn areas for possible localisation of a repository for spent nuclear fuel. Important components of the investigations are characterizations of the land surface ecosystems in the areas with respect to hydrological and biological processes, and their implications for the fate of radionuclide contaminants entering the biosphere from a shallow groundwater contamination. In this study, we simulate water balance and carbon turnover processes in forest ecosystems representative for the Forsmark and Oskarshamn areas for a 100-year period using the ecosystem process model CoupModel. The CoupModel describes the fluxes of water and matter in a one-dimensional soil-vegetation-atmosphere system, forced by time series of meteorological variables. The model has previously been parameterized for many of the vegetation systems that can be found in the Forsmark and Oskarshamn areas: spruce/pine forests, willow, grassland and different agricultural crops. This report presents a platform for further use of models like CoupModel for investigations of radionuclide turnover in the Forsmark and Oskarshamn area based on SKB data, including a data set of meteorological forcing variables for Forsmark 1970-2004, suitable for simulations of a 100-year period representing the present day climate, a hydrological parameterization of the CoupModel for simulations of the forest ecosystems in the Forsmark and Oskarshamn areas, and simulated carbon budgets and process descriptions for Forsmark that correspond to a possible steady state of the soil storage of the forest ecosystem

  11. Simulated carbon and water processes of forest ecosystems in Forsmark and Oskarshamn during a 100-year period

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, David; Jansson, Per-Erik [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Land and Water Resources Engineering; Gaerdenaes, Annemieke [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Soil Sciences; Eckersten, Henrik [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Crop Production Ecology

    2006-12-15

    The Swedish Nuclear Fuel and Waste Management Co (SKB) is currently investigating the Forsmark and Oskarshamn areas for possible localisation of a repository for spent nuclear fuel. Important components of the investigations are characterizations of the land surface ecosystems in the areas with respect to hydrological and biological processes, and their implications for the fate of radionuclide contaminants entering the biosphere from a shallow groundwater contamination. In this study, we simulate water balance and carbon turnover processes in forest ecosystems representative for the Forsmark and Oskarshamn areas for a 100-year period using the ecosystem process model CoupModel. The CoupModel describes the fluxes of water and matter in a one-dimensional soil-vegetation-atmosphere system, forced by time series of meteorological variables. The model has previously been parameterized for many of the vegetation systems that can be found in the Forsmark and Oskarshamn areas: spruce/pine forests, willow, grassland and different agricultural crops. This report presents a platform for further use of models like CoupModel for investigations of radionuclide turnover in the Forsmark and Oskarshamn area based on SKB data, including a data set of meteorological forcing variables for Forsmark 1970-2004, suitable for simulations of a 100-year period representing the present day climate, a hydrological parameterization of the CoupModel for simulations of the forest ecosystems in the Forsmark and Oskarshamn areas, and simulated carbon budgets and process descriptions for Forsmark that correspond to a possible steady state of the soil storage of the forest ecosystem.

  12. Michigan forest ecosystem vulnerability assessment and synthesis: a report from the Northwoods Climate Change Response Framework project

    Science.gov (United States)

    Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Amy Clark Eagle; Joshua G. Cohen; Rich Corner; Peter B. Reich; Tim Baker; Sophan Chhin; Eric Clark; David Fehringer; Jon Fosgitt; James Gries; Christine Hall; Kimberly R. Hall; Robert Heyd; Christopher L. Hoving; Ines Ibáñez; Don Kuhr; Stephen Matthews; Jennifer Muladore; Knute Nadelhoffer; David Neumann; Matthew Peters; Anantha Prasad; Matt Sands; Randy Swaty; Leiloni Wonch; Jad Daley; Mae Davenport; Marla R. Emery; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel

    2014-01-01

    Forests in northern Michigan will be affected directly and indirectly by a changing climate during the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Michigan's eastern Upper Peninsula and northern Lower Peninsula to a range of future climates. Information on current forest conditions, observed climate trends, projected climate...

  13. Interpretation and implementation of Ecosystem Management in international and national forest policy

    NARCIS (Netherlands)

    Dekker, M.; Turnhout, E.; Bauwens, B.M.S.D.L.; Mohren, G.M.J.

    2007-01-01

    Ecosystem Management is a leading approach in forest policy and management. However, the concept lacks a clear definition and this may lead to different interpretations and meanings. Still, some commonalities have been identified in the literature leading not so much to a precise definition but

  14. A review of the ecosystem functions in oil palm plantations, using forests as a reference system.

    Science.gov (United States)

    Dislich, Claudia; Keyel, Alexander C; Salecker, Jan; Kisel, Yael; Meyer, Katrin M; Auliya, Mark; Barnes, Andrew D; Corre, Marife D; Darras, Kevin; Faust, Heiko; Hess, Bastian; Klasen, Stephan; Knohl, Alexander; Kreft, Holger; Meijide, Ana; Nurdiansyah, Fuad; Otten, Fenna; Pe'er, Guy; Steinebach, Stefanie; Tarigan, Suria; Tölle, Merja H; Tscharntke, Teja; Wiegand, Kerstin

    2017-08-01

    Oil palm plantations have expanded rapidly in recent decades. This large-scale land-use change has had great ecological, economic, and social impacts on both the areas converted to oil palm and their surroundings. However, research on the impacts of oil palm cultivation is scattered and patchy, and no clear overview exists. We address this gap through a systematic and comprehensive literature review of all ecosystem functions in oil palm plantations, including several (genetic, medicinal and ornamental resources, information functions) not included in previous systematic reviews. We compare ecosystem functions in oil palm plantations to those in forests, as the conversion of forest to oil palm is prevalent in the tropics. We find that oil palm plantations generally have reduced ecosystem functioning compared to forests: 11 out of 14 ecosystem functions show a net decrease in level of function. Some functions show decreases with potentially irreversible global impacts (e.g. reductions in gas and climate regulation, habitat and nursery functions, genetic resources, medicinal resources, and information functions). The most serious impacts occur when forest is cleared to establish new plantations, and immediately afterwards, especially on peat soils. To variable degrees, specific plantation management measures can prevent or reduce losses of some ecosystem functions (e.g. avoid illegal land clearing via fire, avoid draining of peat, use of integrated pest management, use of cover crops, mulch, and compost) and we highlight synergistic mitigation measures that can improve multiple ecosystem functions simultaneously. The only ecosystem function which increases in oil palm plantations is, unsurprisingly, the production of marketable goods. Our review highlights numerous research gaps. In particular, there are significant gaps with respect to socio-cultural information functions. Further, there is a need for more empirical data on the importance of spatial and temporal

  15. Phosphorus cycling in forest ecosystems: insights from oxygen isotopes in phosphate

    Science.gov (United States)

    Pistocchi, Chiara; Tamburini, Federica; Bünemann, Else; Frossard, Emmanuel

    2015-04-01

    The current view on the phosphorus (P) cycle in forest ecosystems relies mostly on measurements and correlations of pools, and to a lower extent on measurement of fluxes. We have no direct insight into the processes phosphate goes through at the ecosystem level, and into the relative importance of organic and mineral pools in sustaining P nutrition of trees. The analysis of oxygen isotopes associated to P (18Op) is expected to bring this type of information. The German Priority Program SPP 1685 aims to test the overall hypothesis that the P-depletion of soils drives forest ecosystems from P acquiring systems (efficient mobilization of P from the mineral phase) to P recycling systems (highly efficient cycling of P). Our contribution to this project will consist in studying the relative importance of biological and geochemical processes in controlling the P cycle in temperate beech forest ecosystems in Germany along a gradient of decreasing soil P availability. We will follow the fate of phosphate from litter fall to the uptake of P by plants via P release by decomposition of organic matter or after release from P-containing minerals, by using a multi-isotope approach (O in water and phosphate plus 33P). To address our research question we will rely on measurements in experimental forest sites and on laboratory incubations of the organic layer or the mineral soil. We present here the first results issued from the 2014 sampling on three study sites, where we characterized the P pools in surface soil horizons by a sequential extraction (modified after Tiessen and Moir, 2007) and we analysed the 18Op of the resin extractable- and microbial-P fractions. Contrary to what was previously found (e.g. Tamburini et al. 2012) the isotopic composition of these fractions in most of the samples does not reflect the equilibrium value (as the result of the dominance of the pyrophosphatase activity on the other enzymatic processes, Blake et al. 2005). Depending on the P availability

  16. Spatial variability and controls over biomass stocks, carbon fluxes, and resource-use efficiencies across forest ecosystems

    NARCIS (Netherlands)

    Fernández-Martínez, Marcos; Vicca, Sara; Janssens, Ivan A.; Luyssaert, Sebastiaan; Campioli, Matteo; Sardans, Jordi; Estiarte, Marc; Peñuelas, Josep

    2014-01-01

    Key message: Stand age, water availability, and the length of the warm period are the most influencing controls of forest structure, functioning, and efficiency. We aimed to discern the distribution and controls of plant biomass, carbon fluxes, and resource-use efficiencies of forest ecosystems

  17. Intelligent Model Management in a Forest Ecosystem Management Decision Support System

    Science.gov (United States)

    Donald Nute; Walter D. Potter; Frederick Maier; Jin Wang; Mark Twery; H. Michael Rauscher; Peter Knopp; Scott Thomasma; Mayukh Dass; Hajime Uchiyama

    2002-01-01

    Decision making for forest ecosystem management can include the use of a wide variety of modeling tools. These tools include vegetation growth models, wildlife models, silvicultural models, GIS, and visualization tools. NED-2 is a robust, intelligent, goal-driven decision support system that integrates tools in each of these categories. NED-2 uses a blackboard...

  18. Environmental effect studies on a forest ecosystem in Germany

    International Nuclear Information System (INIS)

    Yamamoto, Masayoshi; Bunzl, K.

    1993-01-01

    Long-term acid deposition on a forest ecosystem can have serious impacts on many physicochemical processes in the soil. Since 1984 extensive studies have been carried out in the 'Hoglwald', an old Norway spruce stand near Munich, Germany. In 1986 a variety of radionuclides were deposited in the canopy and on the forest floor of the Hoglwald following the reactor accident at Chernobyl. The amount of 137 Cs from Chernobyl was about 10 times larger than that present in the soil before Chernobyl. Six experimental plots were established in order to study the potential disturbances caused by artificial acid irrigation and compensative liming. Using these fields, investigations on the interception and retention of radionuclides by a coniferous woodland have been done together with the deposition and vertical migration of the radionuclides in the forest. One of the most important results obtained was that 134 Cs deposition velocity in the spruce stand was as high as 5.5 mm/s, and thus higher by a factor of 10 than the corresponding value for the grassland. By evaluating the depth profiles of the Chernobyl-derived 137 Cs in the soil with a compartment model. The fixation of radiocesium in the forest soil was found to be a rather slow process. (author)

  19. Population genetics provides an efficient tool to quantify fragmentation impact in forest ecosystems

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available A method in population genetics (Dutech et al., Am. J. Bot. 92 (2, 252-261, February 2005 is described and discussed as an interesting tool for investigating the effects of fragmentation in forest ecosystems.

  20. Fisher research and the Kings River Sustainable Forest Ecosystem Project: current results and future efforts

    Science.gov (United States)

    Brian B. Boroski; Richard T. Golightly; Amie K. Mazzoni; Kimberly A. Sager

    2002-01-01

    The Kings River Sustainable Forest Ecosystems Project was initiated on the Kings River Ranger District of the Sierra National Forest, California, in 1993, with fieldwork beginning in 1994. Knowledge of the ecology of the fisher (Martes pennanti) in the Project area, and in the Sierra Nevada of California in general, is insufficient to develop...

  1. Effects of ice storm on forest ecosystem of southern China in 2008 Shaoqiang Wang1, Lei Zhou1, Weimin Ju2, Kun Huang1 1Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Beijing, 10010

    Science.gov (United States)

    Wang, Shaoqiang

    2014-05-01

    Evidence is mounting that an increase in extreme climate events has begun to occur worldwide during the recent decades, which affect biosphere function and biodiversity. Ecosystems returned to its original structures and functions to maintain its sustainability, which was closely dependent on ecosystem resilience. Understanding the resilience and recovery capacity of ecosystem to extreme climate events is essential to predicting future ecosystem responses to climate change. Given the overwhelming importance of this region in the overall carbon cycle of forest ecosystems in China, south China suffered a destructive ice storm in 2008. In this study, we used the number of freezing day and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS) to characterize the spatial distribution of ice storm region in southeastern China and explore the impacts on carbon cycle of forest ecosystem over the past decade. The ecosystem variables, i.e. Net primary productivity (NPP), Evapotranspiration (ET), and Water use efficiency (WUE, the ratio of NPP to ET) from the outputs of BEPS models were used to detect the resistance and resilience of forest ecosystem in southern China. The pattern of ice storm-induced forest productivity widespread decline was closely related to the number of freezing day during the ice storm period. The NPP of forest area suffered heavy ice storm returned to normal status after five months with high temperature and ample moisture, indicated a high resilience of subtropical forest in China. The long-term changes of forest WUE remain stable, behaving an inherent sensitivity of ecosystem to extreme climate events. In addition, ground visits suggested that the recovery of forest productivity was attributed to rapid growth of understory. Understanding the variability and recovery threshold of ecosystem following extreme climate events help us to better simulate and predict the variability of ecosystem structure and function under current and

  2. Harnessing Ecosystem Models and Multi-Criteria Decision Analysis for the Support of Forest Management

    Science.gov (United States)

    Wolfslehner, Bernhard; Seidl, Rupert

    2010-12-01

    The decision-making environment in forest management (FM) has changed drastically during the last decades. Forest management planning is facing increasing complexity due to a widening portfolio of forest goods and services, a societal demand for a rational, transparent decision process and rising uncertainties concerning future environmental conditions (e.g., climate change). Methodological responses to these challenges include an intensified use of ecosystem models to provide an enriched, quantitative information base for FM planning. Furthermore, multi-criteria methods are increasingly used to amalgamate information, preferences, expert judgments and value expressions, in support of the participatory and communicative dimensions of modern forestry. Although the potential of combining these two approaches has been demonstrated in a number of studies, methodological aspects in interfacing forest ecosystem models (FEM) and multi-criteria decision analysis (MCDA) are scarcely addressed explicitly. In this contribution we review the state of the art in FEM and MCDA in the context of FM planning and highlight some of the crucial issues when combining ecosystem and preference modeling. We discuss issues and requirements in selecting approaches suitable for supporting FM planning problems from the growing body of FEM and MCDA concepts. We furthermore identify two major challenges in a harmonized application of FEM-MCDA: (i) the design and implementation of an indicator-based analysis framework capturing ecological and social aspects and their interactions relevant for the decision process, and (ii) holistic information management that supports consistent use of different information sources, provides meta-information as well as information on uncertainties throughout the planning process.

  3. Input-output balances of acids, heavy metals and nutrients, and compartments of accumulation and depletion in forest ecosystems

    International Nuclear Information System (INIS)

    Mayer, R.

    1989-01-01

    Forest damage and decline are the consequence of several stress factors acting upon forest ecosystems in various combinations and degrees. Impact of atmospheric pollutants is certainly one of the most prominent of these factors. Regional comparion is facilitated by considering groups of atmospheric substances. We distinguish: 1. Acids and acidifying substances, 2. Heavy metals and 3. Nutrients: N, P, K, Ca, Mg, S. Forest decline has to be recognized as an expression of changes within the forest ecosystem, changes which must be accompanied by a non-steady state of the material balance. The best way to investigate changes in the material balance is to look at input and output of matter to the ecosystems. A positive balance (input > output) over a period of more than one year means accumulation, negative balance (input < output) means depletion of a substance. Based upon several case studies (Subjects I, K), we come to a typification of the material balance at any individual site which is defined by the immission/deposition situation on the one hand, by the geological-pedological site characteristics on the other hand. (orig.VT)

  4. The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change

    Science.gov (United States)

    Khachatryan, S.

    2009-05-01

    Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.

  5. Integrating Expert Knowledge into Mapping Ecosystem Services Trade-offs for Sustainable Forest Management

    Directory of Open Access Journals (Sweden)

    Adrienne Grêt-Regamey

    2013-09-01

    Full Text Available Mountain ecosystems are highly sensitive to global change. In fact, the continued capacity of mountain regions to provide goods and services to society is threatened by the impact of environmental changes on ecosystems. Although mapping ecosystem services values is known to support sustainable resource management, the integration of spatially explicit local expert knowledge on ecosystem dynamics and social responses to global changes has not yet been integrated in the modeling process. This contribution demonstrates the importance of integrating local knowledge into the spatially explicit valuation of ecosystem services. Knowledge acquired by expert surveys flows into a GIS-based Bayesian Network for valuing forest ecosystem services under a land-use and a climate change scenario in a case study in the Swiss Alps. Results show that including expert knowledge in ecosystem services mapping not only reduces uncertainties considerably, but also has an important effect on the ecosystem services values. Particularly the iterative process between integrating expert knowledge into the modeling process and mapping ecosystem services guarantees a continuous improvement of ecosystem services values maps while opening a new way for mutual learning between scientists and stakeholders which might support adaptive resource management.

  6. Liming with powdered oil-shale ash in a heavily damaged forest ecosystem. 1.The effect on forest soil in a pine stand

    International Nuclear Information System (INIS)

    Terasmaa, T.; Sepp, S.

    1994-01-01

    A fertilization and liming experiment with mineral fertilizers and powdered oil-shale ash was carried out in a heavily damaged 50-year-old Scots pine ecosystem in South Estonia. In Estonia, where electric power is produced mainly in big oil-shale-fired power plants, huge quantities of SO 2 are flying into the atmosphere through the chimneys of the plants. However, it is characteristic of Estonia that simultaneously with comparatively high SO 2 pollution the proton load has been quite low because of big amounts of alkali c ash emitted together with SO 2 into the atmosphere through the chimneys of the thermal power plants. Therefore, acid rains are not frequent in Estonia. Acid precipitation here is caused mainly by SO 2 released in the central part of Europe. In Estonia acid rains are most frequently registered in the southern area of the country. At times rains with pH values below 5.1 (even 4.0 and lower) have been registered there. This is also the region where quite severely damaged pine forests can be found. As a rule, these forests grow on acid sandy soils poor in nutrients and bases. The aim of the present study was to investigate the possibility of using oil shale ash as a liming agent in a forest ecosystem for protecting forest soils from acidification and, together with some mineral fertilizers, for improving the health of injured pine stands. In Estonia the most easily available liming agent is powdered oil-shale ash, which has been widely used as a lime fertilizer for agricultural crops but so far has not been tested for liming forests on mineral soils. The comparison of the present study with the liming experiments carried out with limestone in Finland shows that the effect of oil-shale ash treatment of acid sandy soils to raise pH values and to reduce other characteristics of soil acidity was more effective than limestone liming of mineral soils in Finnish forests. The present study demonstrates that powdered oil-shale ash is highly effective in short

  7. Measuring soil frost depth in forest ecosystems with ground penetrating radar

    Science.gov (United States)

    John R. Butnor; John L. Campbell; James B. Shanley; Stanley. Zarnoch

    2014-01-01

    Soil frost depth in forest ecosystems can be variable and depends largely on early winter air temperatures and the amount and timing of snowfall. A thorough evaluation of ecological responses to seasonally frozen ground is hampered by our inability to adequately characterize the frequency, depth, duration and intensity of soil frost events. We evaluated the use of...

  8. Ecosystem services valuation to support decisionmaking on public lands—A case study of the San Pedro River watershed, Arizona

    Science.gov (United States)

    Bagstad, Kenneth J.; Semmens, Darius; Winthrop, Rob; Jaworksi, Delilah; Larson, Joel

    2012-01-01

    This report details the findings of the Bureau of Land Management–U.S. Geological Survey Ecosystem Services Valuation Pilot Study. This project evaluated alternative methods and tools that quantify and value ecosystem services, and it assessed the tools’ readiness for use in the Bureau of Land Management decisionmaking process. We tested these tools on the San Pedro River watershed in northern Sonora, Mexico, and southeast Arizona. The study area includes the San Pedro Riparian National Conservation Area (managed by the Bureau of Land Management), which has been a focal point for conservation activities and scientific research in recent decades. We applied past site-specific primary valuation studies, value transfer, the Wildlife Habitat Benefits Estimation Toolkit, and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) and Artificial Intelligence for Ecosystem Services (ARIES) models to value locally important ecosystem services for the San Pedro River watershed—water, carbon, biodiversity, and cultural values. We tested these approaches on a series of scenarios to evaluate ecosystem service changes and the ability of the tools to accommodate scenarios. A suite of additional tools were either at too early a stage of development to run, were proprietary, or were place-specific tools inappropriate for application to the San Pedro River watershed. We described the strengths and weaknesses of these additional ecosystem service tools against a series of evaluative criteria related to their usefulness for Bureau of Land Management decisionmaking. Using these tools, we quantified gains or losses of ecosystem services under three categories of scenarios: urban growth, mesquite management, and water augmentation. These results quantify tradeoffs and could be useful for decisionmaking within Bureau of Land Management district or field offices. Results are accompanied by a relatively high level of uncertainty associated with model outputs, valuation

  9. Effects of harvesting forest biomass on water and climate regulation services: A synthesis of long-term ecosystem experiments in eastern North America

    Science.gov (United States)

    Caputo, Jesse; Beier, Colin D; Groffman, Peter M; Burns, Douglas A.; Beall, Frederick D; Hazlett, Paul W.; Yorks, Thad E

    2016-01-01

    Demand for woody biomass fuels is increasing amidst concerns about global energy security and climate change, but there may be negative implications of increased harvesting for forest ecosystem functions and their benefits to society (ecosystem services). Using new methods for assessing ecosystem services based on long-term experimental research, post-harvest changes in ten potential benefits were assessed for ten first-order northern hardwood forest watersheds at three long-term experimental research sites in northeastern North America. As expected, we observed near-term tradeoffs between biomass provision and greenhouse gas regulation, as well as tradeoffs between intensive harvest and the capacity of the forest to remediate nutrient pollution. In both cases, service provision began to recover along with the regeneration of forest vegetation; in the case of pollution remediation, the service recovered to pre-harvest levels within 10 years. By contrast to these two services, biomass harvesting had relatively nominal and transient impacts on other ecosystem services. Our results are sensitive to empirical definitions of societal demand, including methods for scaling societal demand to ecosystem units, which are often poorly resolved. Reducing uncertainty around these parameters can improve confidence in our results and increase their relevance for decision-making. Our synthesis of long-term experimental studies provides insights on the social-ecological resilience of managed forest ecosystems to multiple drivers of change.

  10. The role of stoichiometric flexibility in modelling forest ecosystem responses to nitrogen fertilization.

    Science.gov (United States)

    Meyerholt, Johannes; Zaehle, Sönke

    2015-12-01

    The response of the forest carbon (C) balance to changes in nitrogen (N) deposition is uncertain, partly owing to diverging representations of N cycle processes in dynamic global vegetation models (DGVMs). Here, we examined how different assumptions about the degree of flexibility of the ecosystem's C : N ratios contribute to this uncertainty, and which of these assumptions best correspond to the available data. We applied these assumptions within the framework of a DGVM and compared the results to responses in net primary productivity (NPP), leaf N concentration, and ecosystem N partitioning, observed at 22 forest N fertilization experiments. Employing flexible ecosystem pool C : N ratios generally resulted in the most convincing model-data agreement with respect to production and foliar N responses. An intermediate degree of stoichiometric flexibility in vegetation, where wood C : N ratio changes were decoupled from leaf and root C : N ratio changes, led to consistent simulation of production and N cycle responses to N addition. Assuming fixed C : N ratios or scaling leaf N concentration changes to other tissues, commonly assumed by DGVMs, was not supported by reported data. Between the tested assumptions, the simulated changes in ecosystem C storage relative to changes in C assimilation varied by up to 20%. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. Evaluating UAV and LiDAR Retrieval of Snow Depth in a Coniferous Forest in Arizona

    Science.gov (United States)

    Van Leeuwen, W. J. D.; Broxton, P.; Biederman, J. A.

    2017-12-01

    Remote sensing of snow depth and cover in forested environments is challenging. Trees interfere with the remote sensing of snowpack below the canopy and cause large variations in the spatial distribution of the snowpack itself (e.g. between below canopy environments to shaded gaps to open clearings). The distribution of trees and topographic variation make it challenging to monitor the snowpack with in-situ observations. Airborne LiDAR has improved our ability to monitor snowpack over large areas in montane and forested environments because of its high sampling rate and ability to penetrate the canopy. However, these LiDAR flights can be too expensive and time-consuming to process, making it hard to use them for real-time snow monitoring. In this research, we evaluate Structure from Motion (SfM) as an alternative to Airborne LiDAR to generate high-resolution snow depth data in forested environments. This past winter, we conducted a snow field campaign over Arizona's Mogollon Rim where we acquired aerial LiDAR, multi-angle aerial photography from a UAV, and extensive field observations of snow depth at two sites. LiDAR and SFM derived snow depth maps were generated by comparing "snow-on" and "snow-off" LiDAR and SfM data. The SfM- and LiDAR-generated snow depth maps were similar at a site with fewer trees, though there were more discrepancies at a site with more trees. Both compared reasonably well with the field observations at the sparser forested site, with poorer agreement at the denser forested site. Finally, although the SfM produced point clouds with much higher point densities than the aerial LiDAR, the SfM was not able to produce meaningful snow depth estimates directly underneath trees and had trouble in areas with deep shadows. Based on these findings, we are optimizing our UAV data acquisition strategies for this upcoming field season. We are using these data, along with high-resolution hydrological modeling, to gain a better understanding of how

  12. Evaluating and monitoring forest fuel treatments using remote sensing applications in Arizona, U.S.A.

    Science.gov (United States)

    Petrakis, Roy; Villarreal, Miguel; Wu, Zhuoting; Hetzler, Robert; Middleton, Barry R.; Norman, Laura M.

    2018-01-01

    The practice of fire suppression across the western United States over the past century has led to dense forests, and when coupled with drought has contributed to an increase in large and destructive wildfires. Forest management efforts aimed at reducing flammable fuels through various fuel treatments can help to restore frequent fire regimes and increase forest resilience. Our research examines how different fuel treatments influenced burn severity and post-fire vegetative stand dynamics on the San Carlos Apache Reservation, in east-central Arizona, U.S.A. Our methods included the use of multitemporal remote sensing data and cloud computing to evaluate burn severity and post-fire vegetation conditions as well as statistical analyses. We investigated how forest thinning, commercial harvesting, prescribed burning, and resource benefit burning (managed wildfire) related to satellite measured burn severity (the difference Normalized Burn Ratio – dNBR) following the 2013 Creek Fire and used spectral measures of post-fire stand dynamics to track changes in land surface characteristics (i.e., brightness, greenness and wetness). We found strong negative relationships between dNBR and post-fire greenness and wetness, and a positive non-linear relationship between dNBR and brightness, with greater variability at higher severities. Fire severity and post-fire surface changes also differed by treatment type. Our results showed harvested and thinned sites that were not treated with prescribed fire had the highest severity fire. When harvesting was followed by a prescribed burn, the sites experienced lower burn severity and reduced post-fire changes in vegetation greenness and wetness. Areas that had previously experienced resource benefit burns had the lowest burn severities and the highest post-fire greenness measurements compared to all other treatments, except for where the prescribed burn had occurred. These results suggest that fire treatments may be most effective at

  13. Assessing the protection function of Alpine forest ecosystems using BGC modelling theory

    Science.gov (United States)

    Pötzelsberger, E.; Hasenauer, H.; Petritsch, R.; Pietsch, S. A.

    2009-04-01

    The purpose of this study was to assess the protection function of forests in Alpine areas by modelling the flux dynamics (water, carbon, nutrients) within a watershed as they may depend on the vegetation pattern and forest management impacts. The application case for this study was the catchment Schmittenbach, located in the province of Salzburg. Data available covered the hydrology (rainfall measurements from 1981 to 1998 and runoff measurements at the river Schmittenbach from 1981 to 2005), vegetation dynamics (currently 69% forest, predominantly Norway Spruce). The method of simulating the forest growth and water outflow was validated. For simulations of the key ecosystem processes (e.g. photosynthesis, carbon and nitrogen allocation in the different plant parts, litter fall, mineralisation, tree water uptake, transpiration, rainfall interception, evaporation, snow accumulation and snow melt, outflow of spare water) the biogeochemical ecosystem model Biome-BGC was applied. Relevant model extensions were the tree species specific parameter sets and the improved thinning regime. The model is sensitive to site characteristics and needs daily weather data and information on the atmospheric composition, which makes it sensitive to higher CO2-levels and climate change. For model validation 53 plots were selected covering the full range of site quality and stand age. Tree volume and soil was measured and compared with the respective model results. The outflow for the watershed was predicted by combining the simulated forest-outflow (derived from plot-outflow) with the outflow from the non-forest area (calculated with a fixed outflow/rainfall coefficient (OC)). The analysis of production and water related model outputs indicated that mechanistic modelling can be used as a tool to assess the performance of Alpine protection forests. The Water Use Efficiency (WUE), the ratio of Net primary production (NPP) and Transpiration, was found the highest for juvenile stands (

  14. Differential controls on soil carbon density and mineralization among contrasting forest types in a temperate forest ecosystem

    Science.gov (United States)

    You, Ye-Ming; Wang, Juan; Sun, Xiao-Lu; Tang, Zuo-Xin; Zhou, Zhi-Yong; Sun, Osbert Jianxin

    2016-01-01

    Understanding the controls on soil carbon dynamics is crucial for modeling responses of ecosystem carbon balance to global change, yet few studies provide explicit knowledge on the direct and indirect effects of forest stands on soil carbon via microbial processes. We investigated tree species, soil, and site factors in relation to soil carbon density and mineralization in a temperate forest of central China. We found that soil microbial biomass and community structure, extracellular enzyme activities, and most of the site factors studied varied significantly across contrasting forest types, and that the associations between activities of soil extracellular enzymes and microbial community structure appeared to be weak and inconsistent across forest types, implicating complex mechanisms in the microbial regulation of soil carbon metabolism in relation to tree species. Overall, variations in soil carbon density and mineralization are predominantly accounted for by shared effects of tree species, soil, microclimate, and microbial traits rather than the individual effects of the four categories of factors. Our findings point to differential controls on soil carbon density and mineralization among contrasting forest types and highlight the challenge to incorporate microbial processes for constraining soil carbon dynamics in global carbon cycle models. PMID:26925871

  15. Determination of Land Use/ Land Cover Changes in Igneada Alluvial (Longos) Forest Ecosystem, Turkey

    Science.gov (United States)

    Bektas Balcik, F.

    2012-12-01

    Alluvial (Longos) forests are one of the most fragile and threatened ecosystems in the world. Typically, these types of ecosystems have high biological diversity, high productivity, and high habitat dynamism. In this study, Igneada, Kirklareli was selected as study area. The region, lies between latitudes 41° 46' N and 41° 59' N and stretches between longitudes 27° 50' E and 28° 02' E and it covers approximately 24000 (ha). Igneada Longos ecosystems include mixed forests, streams, flooded (alluvial) forests, marshes, wetlands, lakes and coastal sand dunes with different types of flora and fauna. Igneada was classified by Conservation International as one of the world's top 122 Important Plant Areas, and 185 Important Bird Areas. These types of wild forest in other parts of Turkey and in Europe have been damaged due to anthropogenic effects. Remote sensing is very effective tool to monitor these types of sensitive regions for sustainable management. In this study, 1984 and 2011 dated Landsat 5 TM data were used to determine land cover/land use change detection of the selected region by using six vegetation indices such as Tasseled Cap index of greenness (TCG), brightness (TCB), and wetness (TCW), ratios of near-infrared to red image (RVI), normalized difference vegetation index (NDVI), and soil-adjusted vegetation index (SAVI). Geometric and radiometric corrections were applied in image pre-processing step. Selective Principle Component Analysis (PCA) change detection method was applied to the selected vegetation index imagery to generate change imagery for extracting the changed features between the year of 1984 and 2011. Accuracy assessment was applied based on error matrix by calculating overall accuracy and Kappa statistics.

  16. Impact of environmental pollution and climate change on forest ecosystems: the activity of the IUFRO Research Group 7.01

    Directory of Open Access Journals (Sweden)

    Paoletti E

    2007-12-01

    Full Text Available Impact of environmental pollution and climate change on forest ecosystems: the activity of the IUFRO Research Group 7.01. The IUFRO RG 7.01 deals with "Impacts of Air Pollution and Climate Change on Forest Ecosystems". Climate change and air pollution are closely linked, although in applied scientific research and even more in political negotiations they have been largely separated. Many of the traditional air pollutants and greenhouse gases have not only common sources, but may also interact physically and chemically in the atmosphere causing a variety of environmental impacts on the local, regional and global scales. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects of numerous climate change and air pollution factors may significantly differ from a sum of separate effects due to an array of various synergistic or antagonistic interactions. The net effect varies for different ecosystem types and geographic regions, and depends on magnitude of climate or air pollution drivers, and types of interactions between them. This paper reviews the links between air pollution and climate change and their interactive effects on forests. A simultaneous addressing of the air pollution and climate change effects on forests is an opportunity for capturing synergies and avoiding overlaps between two lines of traditional research. This could result in more effective research, monitoring and management as well as better integration of environmental policies.

  17. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    Science.gov (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  18. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    Science.gov (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-03-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  19. Life forms of endemic carabid beetles (Coleoptera, Carabidae in the forest eco-systems of gorgany mountains

    Directory of Open Access Journals (Sweden)

    V. S. Pushkar

    2010-09-01

    Full Text Available In the forest ecosystems of Gorgany Mountains 11 endemic carabids are found. It is about 12.2 % of all ground-beetles fauna of the investigated region. As a result of the morphometric analysis the life forms of endemic carabids are determined. The system of ground beetles’ life forms developed by I. Sharova (1981 is supplemented. All endemics we have rated among 1 class (Zoophages, 2 subclasses (Epigeobionts, Stratobionts and 5 life forms. The analysis of the carabid beetles’ life form spectrum in the forest ecosystems of Gorgany mountains attests to their broad settlement of ecological niches in the investigated region.

  20. Evaluation of radionuclide migration in forest ecosystems in TEMAS project

    International Nuclear Information System (INIS)

    Claver, F.; Vazquez, C.

    1998-01-01

    The applicability study of the best countermeasures for the restoration of environments contaminated by the accidental liberation of radionuclides, requires the assessment of the space and the temporal flow of radionuclides. The objective of the multinational project TEMAS (Techniques and Management Strategies for environmental restoration and their ecological consequences), that is carried out under EU-CIEMAT contract n. TI4-CT95-0021, is the development of management tool that provides the necessary support in the selection of the best strategies of environmental restoration after a nuclear accident, considering all the possible affected environments (urban, agricultural, semi natural and forest). In the forest environment,CIEMAT is working with the University of Lund (Sweden) and the Physical Science Faculty of the University of Seville in the prognosis of the distribution of Cesium and Strontium in forest ecosystems and through the associated production systems. This paper summarizes the study of the response of two different models, FORM and FORESTPATH to predict the radionuclides flow in the event of an accidental contamination of a forest. The comparison of results has been carried out over a period of 100 years after deposition on a coniferous forest. Although the approaches are different, the results obtained (using generic parameters) indicate that either model could to be selected for the analysis of the intervention in TEMAS. (Author) 14 refs

  1. Forest ecosystems and the global climatic change. Background and need to act

    International Nuclear Information System (INIS)

    Bellmann, K.; Grassl, H.; Kaiser, M.; Kuerzinger, J.; Lindner, M.; Mueller-Kraenner, S.; Schmidt, R.; Schuett, P.; Sperber, G.

    1994-01-01

    The consequences of the climatic change and of the depletion of the stratospheric ozone layer are of global significance and can only be controlled through worldwide measures. Mainly fossil fuels which cover most of our energy demand, industrial production, traffic, industrial intensive agriculture, and deforestation are responsible for trace gases which cause the greenhouse effect. The possible effects of the expected climatic change are discussed, and suitable political, social and silvicultural approaches to the maintenance of stable forest ecosystems are pointed out. Emphasis is placed on forestry and on ecosystems research in Central Europe. (MG) [de

  2. Changes in the forest ecosystems in areas impacted by aridization in south-western Romania

    OpenAIRE

    Pravalie, Remus; Sîrodoev, Igor; Peptenatu, Daniel

    2014-01-01

    Background In the past few decades, global climate change has accentuated the intensification of aridization in South-Western Romania, with direct and indirect consequences on the quality of forest ecosystems. In addition to qualitative deterioration, the quantitative changes brought about by intensive anthropic deforestation have created the conditions for a decline in the size of forest areas on vast tracts of land. The paper aims to analyze the qualitative and quantitative changes in the f...

  3. Forest Fragmentation in the Lower Amazon Floodplain: Implications for Biodiversity and Ecosystem Service Provision to Riverine Populations

    Directory of Open Access Journals (Sweden)

    Vivian Renó

    2016-10-01

    Full Text Available This article analyzes the process of forest fragmentation of a floodplain landscape of the Lower Amazon over a 30-year period and its implications for the biodiversity and the provision of ecosystem services to the riverine population. To this end, we created a multi-temporal forest cover map based on Landsat images, and then analyzed the fragmentation dynamics through landscape metrics. From the analyses of the landscape and bibliographic information, we made inferences regarding the potential impacts of fragmentation on the biodiversity of trees, birds, mammals and insects. Subsequently, we used data on the local populations’ environmental perception to assess whether the inferred impacts on biodiversity are perceived by these populations and whether the ecosystem services related to the biodiversity of the addressed groups are compromised. The results show a 70% reduction of the forest habitat as well as important changes in the landscape structure that constitute a high degree of forest fragmentation. The perceived landscape alterations indicate that there is great potential for compromise of the biodiversity of trees, birds, mammals and insects. The field interviews corroborate the inferred impacts on biodiversity and indicate that the ecosystem services of the local communities have been compromised. More than 95% of the communities report a decreased variety and/or abundance of animal and plant species, 46% report a decrease in agricultural productivity, and 19% confirm a higher incidence of pests during the last 30 years. The present study provides evidence of an accelerated process of degradation of the floodplain forests of the Lower Amazon and indicate substantial compromise of the ecosystem services provision to the riverine population in recent decades, including reductions of food resources (animals and plants, fire wood, raw material and medicine, as well as lower agricultural productivity due to probable lack of pollination

  4. Effects of long-term use by big game and livestock in the Blue Mountains forest ecosystems.

    Science.gov (United States)

    Larry L. Irwin; John G. Cook; Robert A. Riggs; Jon M. Skovlin

    1994-01-01

    The effects on eastside forest ecosystems from long-term grazing by large mammals are assessed, because long-term herbivory can reduce or increase ecosystem productivity. The assessment emphasizes elk and cattle in the Blue Mountains of northeast Oregon and southeast Washington. Histories of populations of large mammals and their effects in the Blue Mountains are...

  5. Ecosystem Services and Disservices of Mangrove Forests: Insights from Historical Colonial Observations

    Directory of Open Access Journals (Sweden)

    Daniel A. Friess

    2016-08-01

    Full Text Available Ecosystem services are now strongly applied to mangrove forests, though they are not a new way of viewing mangrove-people interactions; the benefits provided by such habitats, and the negative interactions (ecosystem disservices between mangroves and people have guided perceptions of mangroves for centuries. This study quantified the ecosystem services and disservices of mangroves as written by colonial explorers from 1823–1883 through a literature survey of 96 expedition reports and studies. Ecosystem disservices were most commonly discussed (60%, with settlers considering mangroves as reservoirs of diseases such as malaria, with wide-ranging implications, such as the global drainage of wetlands in the 19th–20th centuries. Multiple ecosystem services were discussed, especially provisioning services for export, representing colonial views of new lands as ripe for economic use. Interestingly, regulating services of mangroves such as erosion control and sediment accretion that are a focus of much contemporary research were recognized as early as 1865. This study shows that the ecosystem service paradigm has a long history in mangroves. We should not underestimate mangrove ecosystem disservices, and how contemporary perceptions of mangroves may be influenced by such historical viewpoints. Archival materials provide a rich resource to study human-environment interactions, and how they change through time.

  6. Nutrient limitation on ecosystem productivity and processes of mature and old-growth subtropical forests in China.

    Directory of Open Access Journals (Sweden)

    Enqing Hou

    Full Text Available Nitrogen (N is considered the dominant limiting nutrient in temperate regions, while phosphorus (P limitation frequently occurs in tropical regions, but in subtropical regions nutrient limitation is poorly understood. In this study, we investigated N and P contents and N:P ratios of foliage, forest floors, fine roots and mineral soils, and their relationships with community biomass, litterfall C, N and P productions, forest floor turnover rate, and microbial processes in eight mature and old-growth subtropical forests (stand age >80 yr at Dinghushan Biosphere Reserve, China. Average N:P ratios (mass based in foliage, litter (L layer and mixture of fermentation and humus (F/H layer, and fine roots were 28.3, 42.3, 32.0 and 32.7, respectively. These values are higher than the critical N:P ratios for P limitation proposed (16-20 for foliage, ca. 25 for forest floors. The markedly high N:P ratios were mainly attributed to the high N concentrations of these plant materials. Community biomass, litterfall C, N and P productions, forest floor turnover rate and microbial properties were more strongly related to measures of P than N and frequently negatively related to the N:P ratios, suggesting a significant role of P availability in determining ecosystem production and productivity and nutrient cycling at all the study sites except for one prescribed disturbed site where N availability may also be important. We propose that N enrichment is probably a significant driver of the potential P limitation in the study area. Low P parent material may also contribute to the potential P limitation. In general, our results provided strong evidence supporting a significant role for P availability, rather than N availability, in determining ecosystem primary productivity and ecosystem processes in subtropical forests of China.

  7. Intensive monitoring of forest ecosystems in Europe; 2: atmospheric deposition and its impacts on soil solution chemistry

    NARCIS (Netherlands)

    Vries, de W.; Reinds, G.J.; Vel, E.M.

    2003-01-01

    In order to gain a better understanding of the effects of air pollution and other stress factors on forests, a Pan-European programme for intensive and continuous monitoring of forest ecosystems has been implemented in 1994. Results of this intensive monitoring programme presented in this paper are

  8. The Missouri Ozark Forest Ecosystem Project: the effects of forest management on the forest ecosystem

    Science.gov (United States)

    Brian Brookshire; Carl Hauser

    1993-01-01

    The effects of forest management on non-timber resources are of growing concern to forest managers and the public. While many previous studies have reported effects of stand-level treatments (less than 15 ha) on various stand-level attributes, few studies have attempted to document the influence of forest management on the biotic and abiotic characteristics of entire...

  9. Ecosystem Services and Forest Management in the Nordic Countries

    DEFF Research Database (Denmark)

    Filyushkina, Anna

    The main objective of this thesis is to contribute to the understanding of the impacts of forest management on provision of non-market ecosystem services and identify trade-offs and synergies for forestry decision-making in the Nordic countries. First, existing scientific literature on assessments...... judgment method (the Delphi technique) was applied to preservation of biodiversity and habitat in the boreal zone. Results suggested that management intensity has a negative effect on the potential to preserve biodiversity and habitat. A wide range of estimates was provided by respondents for functional...

  10. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest.

    Science.gov (United States)

    Mikkelson, Kristin M; Brouillard, Brent M; Bokman, Chelsea M; Sharp, Jonathan O

    2017-12-05

    Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert with surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH 4 + concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions. IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique "tree-centric" approach, we were able to delineate plots with various tree mortality levels within the same watershed

  11. Effects of Soil Texture on Belowground Carbon and Nutrient Storage in a Lowland Amazonian Forest Ecosystem.

    Science.gov (United States)

    Whendee L. Silver; Jason Neff; Megan McGroddy; Ed Veldkamp; Michael Keller; Raimundo Cosme

    2000-01-01

    Soil texture plays a key role in belowground C storage in forest ecosystems and strongly influences nutrient availability and retention, particularly in highly weathered soils. We used field data and the Century ecosystem model to explore the role of soil texture in belowground C storage, nutrient pool sizes, and N fluxes in highly weathered soils in an Amazonian...

  12. Forest management type influences diversity and community composition of soil fungi across temperate forest ecosystems

    Directory of Open Access Journals (Sweden)

    Kezia eGoldmann

    2015-11-01

    Full Text Available Fungal communities have been shown to be highly sensitive towards shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L., with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L. or spruce (Picea abies Karst. which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure.We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal OTU richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera.This study extends our knowledge

  13. Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems.

    Science.gov (United States)

    Goldmann, Kezia; Schöning, Ingo; Buscot, François; Wubet, Tesfaye

    2015-01-01

    Fungal communities have been shown to be highly sensitive toward shifts in plant diversity and species composition in forest ecosystems. However, little is known about the impact of forest management on fungal diversity and community composition of geographically separated sites. This study examined the effects of four different forest management types on soil fungal communities. These forest management types include age class forests of young managed beech (Fagus sylvatica L.), with beech stands age of approximately 30 years, age class beech stands with an age of approximately 70 years, unmanaged beech stands, and coniferous stands dominated by either pine (Pinus sylvestris L.) or spruce (Picea abies Karst.) which are located in three study sites across Germany. Soil were sampled from 48 study plots and we employed fungal ITS rDNA pyrotag sequencing to assess the soil fungal diversity and community structure. We found that forest management type significantly affects the Shannon diversity of soil fungi and a significant interaction effect of study site and forest management on the fungal operational taxonomic units richness. Consequently distinct fungal communities were detected in the three study sites and within the four forest management types, which were mainly related to the main tree species. Further analysis of the contribution of soil properties revealed that C/N ratio being the most important factor in all the three study sites whereas soil pH was significantly related to the fungal community in two study sites. Functional assignment of the fungal communities indicated that 38% of the observed communities were Ectomycorrhizal fungi (ECM) and their distribution is significantly influenced by the forest management. Soil pH and C/N ratio were found to be the main drivers of the ECM fungal community composition. Additional fungal community similarity analysis revealed the presence of study site and management type specific ECM genera. This study extends our

  14. Multimodeling Framework for Predicting Water Quality in Fragmented Agriculture-Forest Ecosystems

    Science.gov (United States)

    Rose, J. B.; Guber, A.; Porter, W. F.; Williams, D.; Tamrakar, S.; Dechen Quinn, A.

    2012-12-01

    Both livestock and wildlife are major contributors of nonpoint pollution of surface water bodies. The interactions among them can substantially increase the chance of contamination especially in fragmented agriculture-forest landscapes, where wildlife (e.g. white tailed deer) can transmit diseases between remote farms. Unfortunately, models currently available for predicting fate and transport of microorganisms in these ecosystems do not account for such interactions. The objectives of this study are to develop and test a multimodeling framework that assesses the risk of microbial contamination of surface water caused by wildlife-livestock interactions in fragmented agriculture-forest ecosystems. The framework consists of a modified Soil Water Assessment Tool (SWAT), KINematic Runoff and EROSion model (KINEROS2) with the add-on module STWIR (Microorganism Transport with Infiltration and Runoff), RAMAS GIS, SIR compartmental model and Quantitative Microbial Risk Assessment model (QMRA). The watershed-scale model SWAT simulates plant biomass growth, wash-off of microorganisms from foliage and soil, overland and in-stream microbial transport, microbial growth, and die-off in foliage and soil. RAMAS GIS model predicts the most probable habitat and subsequent population of white-tailed deer based on land use and crop biomass. KINEROS-STWIR simulates overland transport of microorganisms released from soil, surface applied manure, and fecal deposits during runoff events at high temporal and special resolutions. KINEROS-STWIR and RAMAS GIS provide input for an SIR compartmental model which simulates disease transmission within and between deer groups. This information is used in SWAT model to account for transmission and deposition of pathogens by white tailed deer in stream water, foliage and soil. The QMRA approach extends to microorganisms inactivated in forage and water consumed by deer. Probabilities of deer infections and numbers of infected animals are computed

  15. Three decades of research at Flakaliden advancing whole-tree physiology, forest ecosystem and global change research

    Science.gov (United States)

    Michael G. Ryan

    2013-01-01

    Nutrient supply often limits growth in forest ecosystems and may limit the response of growth to an increase in other resources, or to more favorable environmental factors such as temperature and soil water. To explore the consequences and mechanisms of optimum nutrient supply for forest growth, the Flakaliden research site was established in 1986 on a young Norway...

  16. Quantifying Forest Ecosystem Services Tradeoff—Coupled Ecological and Economic Models

    Science.gov (United States)

    Haff, P. K.; Ling, P. Y.

    2015-12-01

    Quantification of the effect of carbon-related forestland management activities on ecosystem services is difficult, because knowledge about the dynamics of coupled social-ecological systems is lacking. Different forestland management activities, such as various amount, timing, and methods of harvesting, and natural disturbances events, such as wind and fires, create shocks and uncertainties to the forest carbon dynamics. A spatially explicit model, Landis-ii, was used to model the forest succession for different harvest management scenarios at the Grandfather District, North Carolina. In addition to harvest, the model takes into account of the impact of natural disturbances, such as fire and insects, and species competition. The result shows the storage of carbon in standing biomass and in wood product for each species for each scenario. In this study, optimization is used to analyze the maximum profit and the number of tree species that each forest landowner can gain at different prices of carbon, roundwood, and interest rates for different harvest management scenarios. Time series of roundwood production of different types were estimated using remote sensing data. Econometric analysis is done to understand the possible interaction and relations between the production of different types of roundwood and roundwood prices, which can indicate the possible planting scheme that a forest owner may make. This study quantifies the tradeoffs between carbon sequestration, roundwood production, and forest species diversity not only from an economic perspective, but also takes into account of the forest succession mechanism in a species-diverse region. The resulting economic impact on the forest landowners is likely to influence their future planting decision, which in turn, will influence the species composition and future revenue of the landowners.

  17. Carbon Stocks and Climate Change: Management Implications in Northern Arizona Ponderosa Pine Forests

    Directory of Open Access Journals (Sweden)

    Benjamin Bagdon

    2014-04-01

    Full Text Available Researchers have observed climate-driven shifts of forest types to higher elevations in the Southwestern US and predict further migration coupled with large-scale mortality events proportional to increases in radiative forcing. Range contractions of forests are likely to impact the total carbon stored within a stand. This study examines the dynamics of Pinus ponderosa stands under three climate change scenarios in Northern Arizona using the Climate Forest Vegetation Simulator (Climate-FVS model to project changes in carbon pools. A sample of 90 stands were grouped according to three elevational ranges; low- (1951 to 2194 m, mid- (2194 to 2499 m, and high- (2499 to 2682 m. elevation stands. Growth, mortality, and carbon stores were simulated in the Climate-FVS over a 100 year timespan. We further simulated three management scenarios for each elevational gradient and climate scenario. Management included (1 a no-management scenario, (2 an intensive-management scenario characterized by thinning from below to a residual basal area (BA of 18 m2/ha in conjunction with a prescribed burn every 10 years, and (3 a moderate-management scenario characterized by a thin-from-below treatment to a residual BA of 28 m2/ha coupled with a prescribed burn every 20 years. Results indicate that any increase in aridity due to climate change will produce substantial mortality throughout the elevational range of ponderosa pine stands, with lower elevation stands projected to experience the most devastating effects. Management was only effective for the intensive-management scenario; stands receiving this treatment schedule maintained moderately consistent levels of basal area and demonstrated a higher level of resilience to climate change relative to the two other management scenarios. The results of this study indicate that management can improve resiliency to climate change, however, resource managers may need to employ more intensive thinning treatments than

  18. Building on Two Decades of Ecosystem Management and Biodiversity Conservation under the Northwest Forest Plan, USA

    Directory of Open Access Journals (Sweden)

    Dominick A. DellaSala

    2015-09-01

    Full Text Available The 1994 Northwest Forest Plan (NWFP shifted federal lands management from a focus on timber production to ecosystem management and biodiversity conservation. The plan established a network of conservation reserves and an ecosystem management strategy on ~10 million hectares from northern California to Washington State, USA, within the range of the federally threatened northern spotted owl (Strix occidentalis caurina. Several subsequent assessments—and 20 years of data from monitoring programs established under the plan—have demonstrated the effectiveness of this reserve network and ecosystem management approach in making progress toward attaining many of the plan’s conservation and ecosystem management goals. This paper (1 showcases the fundamental conservation biology and ecosystem management principles underpinning the NWFP as a case study for managers interested in large-landscape conservation; and (2 recommends improvements to the plan’s strategy in response to unprecedented climate change and land-use threats. Twenty years into plan implementation, however, the U.S. Forest Service and Bureau of Land Management, under pressure for increased timber harvest, are retreating from conservation measures. We believe that federal agencies should instead build on the NWFP to ensure continuing success in the Pacific Northwest. We urge federal land managers to (1 protect all remaining late-successional/old-growth forests; (2 identify climate refugia for at-risk species; (3 maintain or increase stream buffers and landscape connectivity; (4 decommission and repair failing roads to improve water quality; (5 reduce fire risk in fire-prone tree plantations; and (6 prevent logging after fires in areas of high conservation value. In many respects, the NWFP is instructive for managers considering similar large-scale conservation efforts.

  19. Plant-cover influence on the spatial distribution of radiocaesium deposits in forest ecosystems

    International Nuclear Information System (INIS)

    Guillitte, Olivier; Andolina, Jean; Koziol, Michel; Debauche, Antoine

    1990-01-01

    Since the Chernobyl nuclear accident, a major campaign of radioactive deposit measurements has been carried out on forest soils in Belgium and the Grand Duchy of Luxemburg. Three types of forest ecosystems have systematically been taken into account in each region: coniferous forests (mainly spruce stands), deciduous forests (mainly beech stands) and in clearings. Sampling and field measurements have been carried out in different places with regard to the plant cover: near the trunks, under the foliage, in a small gap, on soil with or without herbaceous or moss stratum. The samples have been collected and measured according to the different recognizable soil layers in order to evaluate the vertical deposit distribution. From overall measurements, one may observe a high spatial soil deposit variation which is mainly explained by the nature, structure and age of the forest stands and by the thickness and the nature of holorganic horizons. A particular interest of this study is the identification of the influence of stem flow and impluvium on forest-cover gaps and edges. (author)

  20. Climate change impacts detection in dry forested ecosystem as indicated by vegetation cover change in -Laikipia, of Kenya.

    Science.gov (United States)

    M'mboroki, Kiambi Gilbert; Wandiga, Shem; Oriaso, Silas Odongo

    2018-03-29

    The objective of the study was to detect and identify land cover changes in Laikipia County of Kenya that have occurred during the last three decades. The land use types of study area are six, of which three are the main and the other three are the minor. The main three, forest, shrub or bush land and grassland, changed during the period, of which grasslands reduced by 5864 ha (40%), forest by 3071 ha (24%) and shrub and bush land increased by 8912 ha (43%). The other three minor land use types were bare land which had reduced by 238 ha (45%), river bed vegetation increased by 209 ha (72%) and agriculture increased by 52 ha (600%) over the period decades. Differences in spatiotemporal variations of vegetation could be largely attributed to the effects of climate factors, anthropogenic activities and their interactions. Precipitation and temperature have been demonstrated to be the key climate factors for plant growth and vegetation development where rainfall decreased by 200 mm and temperatures increased by 1.5 °C over the period. Also, the opinion of the community on the change of land use and management was attributed to climate change and also adaptation strategies applied by the community over time. For example unlike the common understanding that forest resources utilisation increases with increasing human population, Mukogodo dry forested ecosystem case is different in that the majority of the respondents (78.9%) reported that the forest resource use was more in that period than now and also a similar majority (74.2%) had the same opinion that forest resource utilisation was low compared to last 30 years. In Yaaku community, change impacts were evidenced and thus mitigation measures suggested to address the impacts which included the following: controlled bush management and indigenous grass reseeding programme were advocated to restore original grasslands, and agricultural (crop farming) activities are carried out in designated areas outside the

  1. Modeling forest ecosystem changes resulting from surface coal mining in West Virginia

    Science.gov (United States)

    John Brown; Andrew J. Lister; Mary Ann Fajvan; Bonnie Ruefenacht; Christine Mazzarella

    2012-01-01

    The objective of this project is to assess the effects of surface coal mining on forest ecosystem disturbance and restoration in the Coal River Subbasin in southern West Virginia. Our approach is to develop disturbance impact models for this subbasin that will serve as a case study for testing the feasibility of integrating currently available GIS data layers, remote...

  2. Complex trophic interactions in kelp forest ecosystems

    Science.gov (United States)

    Estes, J.A.; Danner, E.M.; Doak, D.F.; Konar, B.; Springer, A.M.; Steinberg, P.D.; Tinker, M. Tim; Williams, T.M.

    2004-01-01

    The distributions and abundances of species and populations change almost continuously. Understanding the processes responsible is perhaps ecology’s most fundamental challenge. Kelp-forest ecosystems in southwest Alaska have undergone several phase shifts between alga- and herbivore-dominated states in recent decades. Overhunting and recovery of sea otters caused the earlier shifts. Studies focusing on these changes demonstrate the importance of top-down forcing processes, a variety of indirect food-web interactions associated with the otter-urchin-kelp trophic cascade, and the role of food-chain length in the coevolution of defense and resistance in plants and their herbivores. This system unexpectedly shifted back to an herbivore-dominated state during the 1990s, because of a sea-otter population collapse that apparently was driven by increased predation by killer whales. Reasons for this change remain uncertain but seem to be linked to the whole-sale collapse of marine mammals in the North Pacific Ocean and southern Bering Sea. We hypothesize that killer whales sequentially "fished down" pinniped and sea-otter populations after their earlier prey, the great whales, were decimated by commercial whaling. The dynamics of kelp forests in southwest Alaska thus appears to have been influenced by an ecological chain reaction that encompassed numerous species and large scales of space and time.

  3. A comparative study of transaction costs of payments for forest ecosystem services in Vietnam

    NARCIS (Netherlands)

    Phan, Thu Ha Dang; Brouwer, Roy; Davidson, Marc David; Hoang, Long Phi

    2017-01-01

    Two payments for forest ecosystem services (PFES) schemes under one common legal-institutional coordination mechanism but different historical-institutional background and organizational design are analyzed to measure and explain their transaction costs (TC). Data on TC related to payment

  4. Modeling radionuclide Cs and C dynamics in an artificial forest ecosystem in Japan -FoRothCs ver1.0-

    Directory of Open Access Journals (Sweden)

    Kazuya eNishina

    2015-09-01

    Full Text Available Predicting the environmental fate of Cs radionuclides in forest ecosystems is important for the effective management and assessment of radioactively contaminated forest areas. A large proportion of the radioactively contaminated areas in Japan consist of forest ecosystems, and most of these areas are artificial forests that are used for timber production (e.g., Japanese cedar (Cryptomeria japonica and red pine (Pinus densiflora. Determining the long-term redistribution of 137Cs in forest ecosystems is important for estimating human doses and understanding the ecological impacts and challenges associated with managing contaminated forests. To facilitate the management and 137Cs decontamination of these forests, we developed a new open-source 137Cs cycling model, ForRothCs, that considers C cycling within forests, as well as biomass production and soil decomposition processes. For the 137Cs inventory, this model estimates the dynamics (Bq m−2 and activity (Bq kg−2 of 137Cs on a decadal time scale, primarily in the leaves, branches, stems, litter layer, and the soil. This model is based on the biomass production and the dynamics of the C cycle models. We tested the model by considering a simple scenario of forest management, i.e., thinning and harvesting, for the first five years following a fallout event. The results showed that these activities have a limited impact on the 137Cs inventory due to the rapid migration of 137Cs from vegetation to soil. Our projections also showed the examined forest management practices resulted in reduced litterfall, which in turn reduced C input to the forest floor and increased the concentration of 137Cs in the litterfall and soil organic layer. Although further validation of the ForRothCs model is required using field observation data, the model can be used to evaluate long-term 137Cs dynamics associated with commonly used forest and decontamination management scenarios.

  5. Ecosystem Resilience and Limitations Revealed by Soil Bacterial Community Dynamics in a Bark Beetle-Impacted Forest

    Directory of Open Access Journals (Sweden)

    Kristin M. Mikkelson

    2017-12-01

    Full Text Available Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert with surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH4+ concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions.

  6. Coastal Plain Soil Fertility Degradation And Natural Forest Ecosystem Regeneration

    Science.gov (United States)

    Casagrande, J. C.; Sato, C. A.; Reis-Duarte, R. M.; Soares, M. R.; Galvão Bueno, M. S.

    2009-04-01

    The sand coastal plain vegetation (Restinga Forest) has been described as an ecosystem associated with the Atlantic Forest, constituted of mosaics, which occur in areas of great ecological diversity, particularly the features of the soil which mostly influence the forest, therefore assigned as edaphic community. The Restinga forest is one of the most fragile, showing low resilience to human damage This work was carried out in several points (14) of Restinga Forest (six low - trees from 3 to 10 m high - and eight high forest - trees from 10 to 15 m high) in the litoral coast of the state of São Paulo. Each sample was made of 15 subsamples of each area collected in each depth (one in 0 - 5, 5 - 10, 10 - 15, 15 - 20, and another in 0 - 20, 20 - 40, 40 and 60 cm). Soil characteristics analyzed were pH, P, Na, K, Ca, Mg, S, H + Al, Al, B, Cu, Fe, Mn, Zn contents and base saturation, cation exchange capacity and aluminum saturation. The vegetation physiognomies of Restinga forest (low and high) were associated with soil results and with the history of human occupation. The soils are sandy (2 to 4% of clay), resulting in a low capacity of nutrient retention. Soil fertility analysis to low and high Restinga forest were similar and showed very low contents of phosphorous, calcium and magnesium in all areas investigated. The base saturation was low due to low amounts of Na, K, Ca and Mg. Base saturation presents low level in all cases, less than 10, indicating low nutritional reserve in the soil. The aluminum saturation values varied from 58 to 69%. The level of calcium and magnesium were low in the subsurface soil layer mainly, associate with high aluminum saturation, representing an limiting factor for the root system development in depth. If soil fertility parameters do not show any significant difference between low and high Restinga physiognomy, what make distinction is the recuperation time. In the areas of high Forest can be note a too long time of recuperation

  7. Belowground ecosystems [chapter 9

    Science.gov (United States)

    Carole Coe Klopatek

    1995-01-01

    The USDA Forest Service defined ecosystem management as "an ecological approach to achieve multiple-use management of national forests and grasslands by blending the needs of people and environmental values in such a way that national forests and grasslands represent diverse, healthy, productive, and sustainable ecosystems" (June 4, 1992, letter from Chief FS...

  8. Light Competition and Carbon Partitioning-Allocation in an improved Forest Ecosystem Model

    Science.gov (United States)

    Collalti, Alessio; Santini, Monia; Valentini Valentini, Riccardo

    2010-05-01

    In Italy about 100.000 km2 are covered by forests. This surface is the 30% of the whole national land and this shows how the forests are important both for socio-economic and for environmental aspects. Forests changes affect a delicate balance that involve not only vegetation components but also bio-geochemical cycles and global climate. The knowledge of the amount of Carbon sequestered by forests represents a precious information for their sustainable management in the framework of climate changes. Primary studies in terms of model about this important issue, has been done through Forest Ecosystem Model (FEM), well known and validated as 3PG (Landsberg et Waring, 1997; Sands 2004). It is based on light use efficiency approach at the canopy level. The present study started from the original model 3PG, producing an improved version that uses many of explicit formulations of all relevant ecophysiological processes but makes it able to be applied for natural forests. The mutual interaction of forest growth and light conditions causes vertical and horizontal differentiation in the natural forest mosaic. Only ecophysiological parameters which can be either directly measured or estimates with reasonable certainty are used. The model has been written in C language and has been created considering a tri-dimensional cell structure with different vertical layers depending on the forest type that has to be simulated. This 3PG 'improved' version enable to work on multi-layer and multi-species forests type with cell resolution of one hectare for the typical Italian forest species. The multi-layer version is the result of the implementation and development of Lambert-Beer law for the estimation of intercepted, absorbed and transmitted light through different storeys of the forest. It is possible estimates, for each storey, a Par value (Photosynthetic Active Radiation) through Leaf Area Index (LAI), Light Extinction Coefficient and cell Canopy Cover using a "Big Leaf" approach

  9. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems

    NARCIS (Netherlands)

    Vries, de W.; Du, E.; Butterbach-Bahl, K.

    2014-01-01

    The carbon to nitrogen response of forest ecosystems depends on the possible occurrence of nitrogen limitation versus possible co-limitations by other drivers, such as low temperature or availability of phosphorus. A combination of nitrogen retention estimates and stoichiometric scaling is used to

  10. Impact of global climate change and fire on the occurrence and function of understorey legumes in forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Reverchon, Frederique; Xu, Zhihong; Blumfield, Timothy J.; Chen, Chengrong; Abdullah, Kadum M. [Griffith Univ., Nathan, QLD (Australia). Environmental Futures Centre and School of Biomolecular and Physical Sciences

    2012-02-15

    The objective of this review was to provide a better understanding of how global climate change and fire influence the occurrence of understorey legumes and thereby biological nitrogen (N) fixation rates in forest ecosystems. Legumes are interesting models since they represent an interface between the soil, plant, and microbial compartments, and are directly linked to nutrient cycles through their ability to fix N. As such, they are likely to be affected by environmental changes. Biological N fixation has been shown to increase under enriched CO{sub 2} conditions, but is constrained by the availability of phosphorus and water. Climate change can also influence the species composition of legumes and their symbionts through warming, altered rainfall patterns, or changes in soil physicochemistry, which could modify the effectiveness of the symbiosis. Additionally, global climate change may increase the occurrence and intensity of forest wildfires thereby further influencing the distribution of legumes. The establishment of leguminous species is generally favored by fire, as is N{sub 2} fixation. This fixed N could therefore replenish the N lost through volatilization during the fire. However, fire may also generate shifts in the associated microbial community which could affect the outcome of the symbiosis. Understorey legumes are important functional species, and even when they cannot reasonably be expected to reestablish the nutrient balance in forest soils, they may be used as indicators to monitor nutrient fluxes and the response of forest ecosystems to changing environmental conditions. This would be helpful to accurately model ecosystem N budgets, and since N is often a limiting factor to plant growth and a major constraint on C storage in ecosystems, would allow us to assess more precisely the potential of these forests for C sequestration. (orig.)

  11. Arizona transportation history.

    Science.gov (United States)

    2011-12-01

    The Arizona transportation history project was conceived in anticipation of Arizonas centennial, which will be : celebrated in 2012. Following approval of the Arizona Centennial Plan in 2007, the Arizona Department of : Transportation (ADOT) recog...

  12. Chapter 6 - Links between land cover and lichen species richness at large scales in forested ecosystems across the United States.

    Science.gov (United States)

    Susan Will-Wolf; Randall S. Morin; Mark J. Ambrose; Kurt Riitters; Sarah Jovan

    2014-01-01

    Lichen community composition is well known for exhibiting response to air pollution, and to macroenvironmental and microenvironmental variables. Lichens are useful indicators of air quality impact, forest health, and forest ecosystem integrity across the United States (McCune 2000, reviews in Nimis and others 2002, USDA Forest Service 2007).

  13. How did climate drying reduce ecosystem carbon storage in the forest-steppe ecotone? A case study in Inner Mongolia, China.

    Science.gov (United States)

    Zhang, Yuke; Liu, Hongyan

    2010-07-01

    The projected recession of forests in the forest-steppe ecotone under projected climate drying would restrict the carbon sink function of terrestrial ecosystems. Previous studies have shown that the forest-steppe ecotone in the southeastern Inner Mongolia Plateau originally resulted from climate drying and vegetation shifts during the mid- to late-Holocene, but the interrelated processes of changing soil carbon storage and vegetation and soil shifts remain unclear. A total of 44 forest soil profiles and 40 steppe soil profiles were excavated to determine soil carbon storage in deciduous broadleaf forests (DBF), coniferous forests (CF) and steppe (ST) in this area. Carbon density was estimated to be 106.51 t/hm(2) (DBF), 73.20 t/hm(2) (CF), and 28.14 t/hm(2) (ST) for these ecosystems. Soil organic carbon (SOC) content was negatively correlated with sand content (R = -0.879, P ecotone. Changes in carbon storage caused by climate drying can be divided into two stages: (1) carbon storage of the ecosystem was reduced to 68.7%, mostly by soil coarsening when DBF were replaced by CF at approximately 5,900 (14)C years before present (BP); and (2) carbon storage was reduced to 26.4%, mostly by vegetation shifts when CF were replaced by ST at approximately 2,900 (14)C years BP.

  14. Impacts of Air Pollution and Climate Change on Forest Ecosystems — Emerging Research Needs

    Directory of Open Access Journals (Sweden)

    Elena Paoletti

    2007-01-01

    Full Text Available Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest EcosystemsForests under Anthropogenic Pressure Effects of Air Pollution, Climate Change and Urban Development”, September 1016, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3 is still the phytotoxic air pollutant of major interest. Challenging issues are how to make O3 standards or critical levels more biologically based and at the same time practical for wide use; quantification of plant detoxification processes in flux modeling; inclusion of multiple environmental stresses in critical load determinations; new concept development for nitrogen saturation; interactions between air pollution, climate, and forest pests; effects of forest fire on air quality; the capacity of forests to sequester carbon under changing climatic conditions and coexposure to elevated levels of air pollutants; enhanced linkage between molecular biology, biochemistry, physiology, and morphological traits.

  15. The public water supply protection value of forests: A watershed-scale ecosystem services based upon total organic carbon

    Science.gov (United States)

    We developed a cost-based methodology to assess the value of forested watersheds to improve water quality in public water supplies. The developed methodology is applicable to other source watersheds to determine ecosystem services for water quality. We assess the value of forest land for source wate...

  16. Mercury distribution in two Sierran forest and one desert sagebrush steppe ecosystems and the effects of fire

    International Nuclear Information System (INIS)

    Engle, Mark A.; Sexauer Gustin, Mae; Johnson, Dale W.; Murphy, James F.; Miller, Wally W.; Walker, Roger F.; Wright, Joan; Markee, Melissa

    2006-01-01

    Mercury (Hg) concentration, reservoir mass, and Hg reservoir size were determined for vegetation components, litter, and mineral soil for two Sierran forest sites and one desert sagebrush steppe site. Mercury was found to be held primarily in the mineral soil (maximum depth of 60 to 100 cm), which contained more than 90% of the total ecosystem reservoir. However, Hg in foliage, bark, and litter plays a more dominant role in Hg cycling than the mineral soil. Mercury partitioning into ecosystem components at the Sierran forest sites was similar to that observed for other US forest sites. Vegetation and litter Hg reservoirs were significantly smaller in the sagebrush steppe system because of lower biomass. Data collected from these ecosystems after wildfire and prescribed burns showed a significant decrease in the Hg pool from certain reservoirs. No loss from mineral soil was observed for the study areas but data from fire severity points suggested that Hg in the upper few millimeters of surface soil may be volatilized due to exposure to elevated temperatures. Comparison of data from burned and unburned plots suggested that the only significant source of atmospheric Hg from the prescribed burn was combustion of litter. Differences in unburned versus burned Hg reservoirs at the forest wildfire site demonstrated that drastic reduction in the litter and above ground live biomass Hg reservoirs after burning had occurred. Sagebrush and litter were absent in the burned plots after a wildfire suggesting that both reservoirs were released during the fire. Mercury emissions due to fire from the forest prescribed burn, forest wildfire, and sagebrush steppe wildfire sites were roughly estimated at 2.0 to 5.1, 2.2 to 4.9, and 0.36 ± 0.13 g ha -1 , respectively, with litter and vegetation being the most important sources

  17. New England and northern New York forest ecosystem vulnerability assessment and synthesis: a report from the New England Climate Change Response Framework project

    Science.gov (United States)

    Maria K. Janowiak; Anthony W. D' Amato; Christopher W. Swanston; Louis Iverson; Frank R. Thompson; William D. Dijak; Stephen Matthews; Matthew P. Peters; Anantha Prasad; Jacob S. Fraser; Leslie A. Brandt; Patricia Butler-Leopold; Stephen D. Handler; P. Danielle Shannon; Diane Burbank; John Campbell; Charles Cogbill; Matthew J. Duveneck; Marla R. Emery; Nicholas Fisichelli; Jane Foster; Jennifer Hushaw; Laura Kenefic; Amanda Mahaffey; Toni Lyn Morelli; Nicholas J. Reo; Paul G. Schaberg; K. Rogers Simmons; Aaron Weiskittel; Sandy Wilmot; David Hollinger; Erin Lane; Lindsey Rustad; Pamela H. Templer

    2018-01-01

    Forest ecosystems will face direct and indirect impacts from a changing climate over the 21st century. This assessment evaluates the vulnerability of forest ecosystems across the New England region (Connecticut, Maine, Massachusetts, New Hampshire, northern New York, Rhode Island, and Vermont) under a range of future climates. We synthesized and summarized information...

  18. Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment

    Science.gov (United States)

    Compton, J.E.; Hooker, T.D.; Perakis, S.S.

    2007-01-01

    Stable isotope ratios of terrestrial ecosystem nitrogen (N) pools reflect internal processes and input–output balances. Disturbance generally increases N cycling and loss, yet few studies have examined ecosystem δ15N over a disturbance-recovery sequence. We used a chronosequence approach to examine N distribution and δ15N during forest regrowth after agricultural abandonment. Site ages ranged from 10 to 115 years, with similar soils, climate, land-use history, and overstory vegetation (white pine Pinus strobus). Foliar N and δ15N decreased as stands aged, consistent with a progressive tightening of the N cycle during forest regrowth on agricultural lands. Over time, foliar δ15N became more negative, indicating increased fractionation along the mineralization–mycorrhizal–plant uptake pathway. Total ecosystem N was constant across the chronosequence, but substantial internal N redistribution occurred from the mineral soil to plants and litter over 115 years (>25% of ecosystem N or 1,610 kg ha−1). Temporal trends in soil δ15N generally reflected a redistribution of depleted N from the mineral soil to the developing O horizon. Although plants and soil δ15N are coupled over millennial time scales of ecosystem development, our observed divergence between plants and soil suggests that they can be uncoupled during the disturbance-regrowth sequence. The approximate 2‰ decrease in ecosystem δ15N over the century scale suggests significant incorporation of atmospheric N, which was not detected by traditional ecosystem N accounting. Consideration of temporal trends and disturbance legacies can improve our understanding of the influence of broader factors such as climate or N deposition on ecosystem N balances and δ15N.

  19. Forests tend to cool the land surface in the temperate zone: An analysis of the mechanisms controlling radiometric surface temperature change in managed temperate ecosystems

    Science.gov (United States)

    Stoy, P. C.; Katul, G. G.; Juang, J.; Siqueira, M. B.; Novick, K. A.; Essery, R.; Dore, S.; Kolb, T. E.; Montes-Helu, M. C.; Scott, R. L.

    2010-12-01

    Vegetation is an important control on the surface energy balance and thereby surface temperature. Boreal forests and arctic shrubs are thought to warm the land surface by absorbing more radiation than the vegetation they replace. The surface temperatures of tropical forests tend to be cooler than deforested landscapes due to enhanced evapotranspiration. The effects of reforestation on surface temperature change in the temperate zone is less-certain, but recent modeling efforts suggest forests have a global warming effect. We quantified the mechanisms driving radiometric surface changes following landcover changes using paired ecosystem case studies from the Ameriflux database with energy balance models of varying complexity. Results confirm previous findings that deciduous and coniferous forests in the southeastern U.S. are ca. 1 °C cooler than an adjacent field on an annual basis because aerodynamic/ecophysiological cooling of 2-3 °C outweighs an albedo-related warming of stand-replacing ponderosa pine fire was ca. 1 °C warmer than unburned stands because a 1.5 °C aerodynamic warming offset a slight surface cooling due to greater albedo and soil heat flux. An ecosystem dominated by mesquite shrub encroachment was nearly 2 °C warmer than a native grassland ecosystem as aerodynamic and albedo-related warming outweighed a small cooling effect due to changes in soil heat flux. The forested ecosystems in these case studies are documented to have higher carbon uptake than the non-forested systems. Results suggest that temperate forests tend to cool the land surface and suggest that previous model-based findings that forests warm the Earth’s surface globally should be reconsidered.Changes to radiometric surface temperature (K) following changes in vegetation using paired ecosystem case studies C4 grassland and shrub ecosystem surface temperatures were adjusted for differences in air temperature across sites.

  20. Cordilleran forest scaling dynamics and disturbance regimes quantified by aerial lidar

    Science.gov (United States)

    Swetnam, Tyson L.

    Semi-arid forests are in a period of rapid transition as a result of unprecedented landscape scale fires, insect outbreaks, drought, and anthropogenic land use practices. Understanding how historically episodic disturbances led to coherent forest structural and spatial patterns that promoted resilience and resistance is a critical part of addressing change. Here my coauthors and I apply metabolic scaling theory (MST) to examine scaling behavior and structural patterns of semi-arid conifer forests in Arizona and New Mexico. We conceptualize a linkage to mechanistic drivers of forest assembly that incorporates the effects of low-intensity disturbance, and physiologic and resource limitations as an extension of MST. We use both aerial LiDAR data and field observations to quantify changes in forest structure from the sub-meter to landscape scales. We found: (1) semi-arid forest structure exhibits MST-predicted behaviors regardless of disturbance and that MST can help to quantitatively measure the level of disturbance intensity in a forest, (2) the application of a power law to a forest overstory frequency distribution can help predict understory presence/absence, (3) local indicators of spatial association can help to define first order effects (e.g. topographic changes) and map where recent disturbances (e.g. logging and fire) have altered forest structure. Lastly, we produced a comprehensive set of above-ground biomass and carbon models for five distinct forest types and ten common species of the southwestern US that are meant for use in aerial LiDAR forest inventory projects. This dissertation presents both a conceptual framework and applications for investigating local scales (stands of trees) up to entire ecosystems for diagnosis of current carbon balances, levels of departure from historical norms, and ecological stability. These tools and models will become more important as we prepare our ecosystems for a future characterized by increased climatic variability

  1. Soil fungal communities respond compositionally to recurring frequent prescribed burning in a managed southeastern US forest ecosystem

    Science.gov (United States)

    Alena K. Oliver; Mac A. Callaham; Ari Jumpponen

    2015-01-01

    Prescribed fire is an important management tool to reduce fuel loads, to remove non-fire adapted species and to sustain fire-adapted taxa in many forested ecosystems of the southeastern USA. Yet, the long-term effects of recurring prescribed fires on soil fungi and their communities in these ecosystems remain unclear. We Illumina MiSeq sequenced and analyzed fungal...

  2. The role of fungi in the transfer and cycling of radionuclides in forest ecosystems

    International Nuclear Information System (INIS)

    Steiner, M.; Linkov, I.; Yoshida, S.

    2002-01-01

    Fungi are one of the most important components of forest ecosystems, since they determine to a large extent the fate and transport processes of radionuclides in forests. They play a key role in the mobilization, uptake and translocation of nutrients and are likely to contribute substantially to the long-term retention of radiocesium in organic horizons of forest soil. This paper gives an overview of the role of fungi regarding the transfer and cycling of nutrients and radionuclides, with special emphasis on mycorrhizal symbiosis. Common definitions of transfer factors, soil-fungus and soil-green plant, including their advantages and limitations, are reviewed. Experimental approaches to quantify the bioavailability of radionuclides in soil and potential long-term change are discussed

  3. The role of fungi in the transfer and cycling of radionuclides in forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, M. E-mail: msteiner@bfs.de; Linkov, I.; Yoshida, S

    2002-07-01

    Fungi are one of the most important components of forest ecosystems, since they determine to a large extent the fate and transport processes of radionuclides in forests. They play a key role in the mobilization, uptake and translocation of nutrients and are likely to contribute substantially to the long-term retention of radiocesium in organic horizons of forest soil. This paper gives an overview of the role of fungi regarding the transfer and cycling of nutrients and radionuclides, with special emphasis on mycorrhizal symbiosis. Common definitions of transfer factors, soil-fungus and soil-green plant, including their advantages and limitations, are reviewed. Experimental approaches to quantify the bioavailability of radionuclides in soil and potential long-term change are discussed.

  4. Jack-of-all-trades effects drive biodiversity–ecosystem multifunctionality relationships in European forests

    Science.gov (United States)

    van der Plas, Fons; Manning, Peter; Allan, Eric; Scherer-Lorenzen, Michael; Verheyen, Kris; Wirth, Christian; Zavala, Miguel A.; Hector, Andy; Ampoorter, Evy; Baeten, Lander; Barbaro, Luc; Bauhus, Jürgen; Benavides, Raquel; Benneter, Adam; Berthold, Felix; Bonal, Damien; Bouriaud, Olivier; Bruelheide, Helge; Bussotti, Filippo; Carnol, Monique; Castagneyrol, Bastien; Charbonnier, Yohan; Coomes, David; Coppi, Andrea; Bastias, Cristina C.; Muhie Dawud, Seid; De Wandeler, Hans; Domisch, Timo; Finér, Leena; Gessler, Arthur; Granier, André; Grossiord, Charlotte; Guyot, Virginie; Hättenschwiler, Stephan; Jactel, Hervé; Jaroszewicz, Bogdan; Joly, François-Xavier; Jucker, Tommaso; Koricheva, Julia; Milligan, Harriet; Müller, Sandra; Muys, Bart; Nguyen, Diem; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Selvi, Federico; Stenlid, Jan; Valladares, Fernando; Vesterdal, Lars; Zielínski, Dawid; Fischer, Markus

    2016-01-01

    There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, ‘complementarity' and ‘selection', we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the ‘jack-of-all-trades' effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity–multifunctionality relationships in many of the world's ecosystems. PMID:27010076

  5. Hydrological services in the Atlantic Forest, Brazil: An ecosystem-based adaptation using ecohydrological monitoring

    Directory of Open Access Journals (Sweden)

    Denise Taffarello

    2017-12-01

    Full Text Available Ecosystem-based Adaptation (EbA involves using services on which human well-being depends to help people adapt to the impacts of climate change. Aiming at strengthening ecosystem resilience and reducing ecosystem and people’s vulnerability, EbA has been encouraged worldwide as an option for climate change. Payments for Ecosystem Services (PES are incentives offered to farmers and landowners to provide an ecological service and are currently proposed as a method for EbA and water resources sustainability on a global scale. However, organized information on PES in Brazil is limited. This paper provides a concise review of PES initiatives in the Brazilian Atlantic Forest, where various PES projects on watershed protection (Water-PES have been set up. We found 16 ongoing Water-PES in the Brazilian Atlantic Forest. The first initiative was launched in 2005 and since then these projects have grown rapidly. In spite of the advances made in many of these initiatives, they seldom have baseline hydrologic data and an implemented strategy for ecohydrological monitoring. Thus, we discuss how PES projects could be more effective by implementing hydrological monitoring based on ecohydrological concepts. Special attention has been given to explaining how the recent Impact-Vulnerability-Adaptation idea could be integrated into Water-PES. As can be seen from the review, these projects contribute as EbA options for climate change, thereby carrying practical implications for environmental policy makers.

  6. Seasonal dynamics of water use efficiency of typical forest and grassland ecosystems in China

    CERN Document Server

    Zhu, Xianjin; Wang, Qiufeng; Hu, Zhongmin; Han, Shijie; Yan, Junhua; Wang, Yanfen; Zhao, Liang

    2014-01-01

    We selected four sites of ChinaFLUX representing four major ecosystem types in China-Changbaishan temperate broad-leaved Korean pine mixed forest (CBS), Dinghushan subtropical evergreen broadleaved forest (DHS), Inner Mongolia temperate steppe (NM), and Haibei alpine shrub-meadow (HBGC)-to study the seasonal dynamics of ecosystem water use efficiency (WUE = GPP/ET, where GPP is gross primary productivity and ET is evapotranspiration) and factors affecting it. Our seasonal dynamics results indicated single-peak variation of WUE in CBS, NM, and HBGC, which were affected by air temperature (Ta) and leaf area index (LAI), through their effects on the partitioning of evapotranspiration (ET) into transpiration (T) (i.e., T/ET). In DHS, WUE was higher at the beginning and the end of the year, and minimum in summer. Ta and soil water content affected the seasonal dynamics of WUE through their effects on GPP/T. Our results indicate that seasonal dynamics of WUE were different because factors affecting the seasonal dyn...

  7. Upland Trees Contribute to Exchange of Nitrous Oxide (N2O) in Forest Ecosystems

    Science.gov (United States)

    Tian, H.; Thompson, R.; Canadell, J.; Winiwarter, W.; Machacova, K.; Maier, M.; Halmeenmäki, E.; Svobodova, K.; Lang, F.; Pihlatie, M.; Urban, O.

    2017-12-01

    The increase in atmospheric nitrous oxide (N2O) concentration contributes to the acceleration of the greenhouse effect. However, the role of trees in the N2O exchange of forest ecosystems is still an open question. While the soils of temperate and boreal forests were shown to be a natural source of N2O, trees have been so far overlooked in the forest N2O inventories. We determined N2O fluxes in common tree species of boreal and temperate forests: Scots pine (Pinus sylvestris), Norway spruce (Picea abies), downy and silver birch (Betula pubescens, B. pendula), and European beech (Fagus sylvatica). We investigated (1) whether these tree species exchange N2O with the atmosphere under natural field conditions, (2) how the tree N2O fluxes contribute to the forest N2O balance, and (3) whether these fluxes show seasonal dynamics. The studies were performed in a boreal forest (SMEAR II station, Finland; June 2014 - May 2015) and two temperate mountain forests (White Carpathians, Czech Republic; Black Forest, Germany; June and July 2015). Fluxes of N2O in mature tree stems and forest floor were measured using static chamber systems followed by chromatographic and photo-acoustic analyses of N2O concentration changes. Pine, spruce and birch trees were identified as net annual N2O sources. Spruce was found the strongest emitter (0.27 mg ha-1 h-1) amounting thus up to 2.5% of forest floor N2O emissions. All tree species showed a substantial seasonality in stem N2O flux that was related to their physiological activity and climatic variables. In contrast, stems of beech trees growing at soils consuming N2O may act as a substantial sink of N2O from the atmosphere. Consistent N2O consumption by tree stems ranging between -12.1 and -35.2 mg ha-1 h-1 and contributing by up to 3.4% to the forest floor N2O uptake is a novel finding in contrast to current studies presenting trees as N2O emitters. To understand these fluxes, N2O exchange of photoautotrophic organisms associated with

  8. Contribution of ecosystem services to air quality and climate change mitigation policies: the case of urban forests in Barcelona, Spain.

    Science.gov (United States)

    Baró, Francesc; Chaparro, Lydia; Gómez-Baggethun, Erik; Langemeyer, Johannes; Nowak, David J; Terradas, Jaume

    2014-05-01

    Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change mitigation in the municipality of Barcelona, Spain. We apply the i-Tree Eco model to quantify in biophysical and monetary terms the ecosystem services "air purification," "global climate regulation," and the ecosystem disservice "air pollution" associated with biogenic emissions. Our results show that the contribution of urban forests regulating services to abate pollution is substantial in absolute terms, yet modest when compared to overall city levels of air pollution and GHG emissions. We conclude that in order to be effective, green infrastructure-based efforts to offset urban pollution at the municipal level have to be coordinated with territorial policies at broader spatial scales.

  9. Bioenergy harvest impacts to biodiversity and resilience vary across aspen-dominated forest ecosystems in the Lake States region, USA

    Science.gov (United States)

    Miranda T. Curzon; Anthony W. D' Amato; Brian J. Palik; Kris Verheyen

    2016-01-01

    Questions: Does the increase in disturbance associated with removing harvest residues negatively impact biodiversity and resilience in aspen-dominated forest ecosystems? How do responses of functional diversity measures relate to community recovery and standing biomass? Location: Aspen (Populus tremuloides, Michx.) mixedwood forests in Minnesota...

  10. Amazon forest ecosystem responses to elevated atmospheric CO2 and alterations in nutrient availability: filling the gaps with model-experiment integration

    Directory of Open Access Journals (Sweden)

    Florian eHofhansl

    2016-02-01

    Full Text Available The impacts of elevated CO2 (eCO2 and alterations in nutrient availability on the carbon (C storage capacity and resilience of the Amazon forest remain highly uncertain. Carbon dynamics are controlled by multiple eco-physiological processes responding to environmental change, but we lack solid experimental evidence, hampering theory development and thus representation in ecosystem models. Here, we present two ecosystem-scale manipulation experiments, to be carried out in the Amazon, that examine tropical ecosystem responses to eCO2 and nutrient addition and thus will elucidate the representation of crucial ecological processes by ecosystem models. We highlight current gaps in our understanding of tropical ecosystem responses to projected global changes in light of the eco-physiological assumptions considered by current ecosystem models. We conclude that a more detailed process-based representation of the spatial (e.g. soil type; plant functional type and temporal (seasonal and inter-annual variation diversity of tropical forests is needed to enhance model predictions of ecosystem responses to projected global environmental change.

  11. Recognizing loss of open forest ecosystems by tree densification and land use intensification in the Midwestern USA

    Science.gov (United States)

    Brice B. Hanberry; Marc D. Abrams

    2018-01-01

    Forests and grasslands have changed during the past 200 years in the eastern USA, and it is now possible to quantify loss and conversion of vegetation cover at regional scales. We quantified historical (ca. 1786-1908) and current land cover and determined long-term ecosystem change to either land use or closed forests in eight states of the Great Lakes and Midwest....

  12. Analyzing the ecosystem carbon dynamics of four European coniferous forests using a biogeochemistry model

    NARCIS (Netherlands)

    Churkina, G.; Tenhunen, J.; Thornton, P.; Falge, E.; Elbers, J.A.; Erhard, M.; Grünwald, T.; Kowalski, A.; Rannik, Ü.; Sprinz, D.

    2003-01-01

    This paper provides the first steps toward a regional-scale analysis of carbon (C) budgets. We explore the ability of the ecosystem model BIOME-BGC to estimate the daily and annual C dynamics of four European coniferous forests and shifts in these dynamics in response to changing environmental

  13. Kinetic energy of throughfall in a highly diverse forest ecosystem in the humid subtropics

    Science.gov (United States)

    Geißler, Christian; Kühn, Peter; Scholten, Thomas

    2010-05-01

    After decades of research it is generally accepted that vegetation is a key factor in controlling soil erosion. Therefore, in ecosystems where erosion is a serious problem, afforestation is a common measure against erosion. Most of the studies in the last decades focused on agricultural systems and less attention was paid to natural systems. To understand the mechanisms preventing soil erosion in natural systems the processes have to be studied in detail and gradually. The first step and central research question is on how the canopies of the tree layer alter the properties of rainfall and generate throughfall. Kinetic energy is a widely used parameter to estimate the erosion potential of open field rainfall and throughfall. In the past, numerous studies have shown that vegetation of a certain height enhances the kinetic energy under the canopy (Chapman 1948, Mosley 1982, Vis 1986, Hall & Calder 1993, Nanko et al. 2006, Nanko et al. 2008) in relation to open field rainfall. This is mainly due to a shift in the drop size distribution to less but larger drops possessing a higher amount of kinetic energy. In vital forest ecosystems lower vegetation (shrubs, herbs) as well as a continuous litter layer protects the forest soil from the impact of large drops. The influence of biodiversity, specific forest stands or single species in this process system is still in discussion. In the present study calibrated splash cups (after Ellison 1947, Geißler et al. under review) have been used to detect differences in kinetic energy on the scale of specific species and on the scale of forest stands of contrasting age and biodiversity in a natural forest ecosystem. The splash cups have been calibrated experimentally using a laser disdrometer. The results show that the kinetic energy of throughfall produced by the tree layer increases with the age of the specific forest stand. The average throughfall kinetic energy (J m-2) is about 2.6 times higher in forests than under open field

  14. Modelling of Radionuclides Transfer and Ambient Dose Rates in Fukushima Forest Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Calmon, P.; Gonze, M.A.; Mourlon, C.; Simon-Cornu, M. [Institute of Radiation Protection and Nuclear Safety, CE Cadarache-Bat 153, BP3 - 13115 St-Paul-lez- Durance cedex (France)

    2014-07-01

    The Fukushima nuclear accident led to high atmospheric depositions of volatile fission products such as Caesium, Iodine and Tellurium isotopes, in north-eastern Japan. The radioactive content and ambient radiation level are particularly high in forest ecosystems, partly due to the enhancement of airborne radionuclides capture by forest canopies. The contamination is likely to be dominated in the next decades by Cesium-137, due to its long physical half-life (i.e. 30 years) and its ability to be immobilized and/or recycled within the biotic and abiotic forest components. Thus the long-term management of contaminated forested areas is an environmental, economic and social challenge for Japanese authorities. IRSN developed a forest model ten years ago and implemented it in the ASTRAL software. This model has been tested against measurements in various Fukushima forest stands with varying deposition and meteorological conditions, typical forest ecosystems quite different from those in western Europe, and also with a hilly landscape. This is a great opportunity to test, improve and validate our model. We can take advantage of the expertise gained following the Chernobyl accident fallout, of the data derived from Japanese publications and of the possibility to conduct field measurements. At first, a German scenario in a Norway spruce stand, following the Chernobyl accident has been tested. All deposition and rainfall events were documented. The model could reproduce very closely the dynamics of caesium concentration in soil and input fluxes (e.g. direct vs indirect throughfall, litterfall). For this scenario, deposition occurred mostly with rainfall and 90% of the total deposit was recovered in the soil layer 1 year after the accident. On the opposite, another scenario at Tochigi Prefecture in a Japanese cedar stand, for the Fukushima accident is characterized by 40% of deposition on the soil 1 year after the accident. For this scenario, much uncertainty concerns both

  15. Enhancing early detection of exotic pests in agricultural and forest ecosystems using an urban-gradient framework.

    Science.gov (United States)

    Colunga-Garcia, Manuel; Magarey, Roger A; Haack, Robert A; Gage, Stuart H; Qi, Jiaquo

    2010-03-01

    Urban areas are hubs of international transport and therefore are major gateways for exotic pests. Applying an urban gradient to analyze this pathway could provide insight into the ecological processes involved in human-mediated invasions. We defined an urban gradient for agricultural and forest ecosystems in the contiguous United States to (1) assess whether ecosystems nearer more urbanized areas were at greater risk of invasion, and (2) apply this knowledge to enhance early detection of exotic pests. We defined the gradient using the tonnage of imported products in adjacent urban areas and their distance to nearby agricultural or forest land. County-level detection reports for 39 exotic agricultural and forest pests of major economic importance were used to characterize invasions along the gradient. We found that counties with more exotic pests were nearer the urban end of the gradient. Assuming that the exotic species we analyzed represent typical invaders, then early detection efforts directed at 21-26% of U.S. agricultural and forest land would likely be able to detect 70% of invaded counties and 90% of the selected species. Applying an urban-gradient framework to current monitoring strategies should enhance early detection efforts of exotic pests, facilitating optimization in allocating resources to areas at greater risk of future invasions.

  16. Structural Complexity and Ecosystem Functions in a Natural Mixed Forest under a Single-Tree Selection Silviculture

    Directory of Open Access Journals (Sweden)

    Toshiya Yoshida

    2017-11-01

    Full Text Available The objective of forest management has become broader, and it is essential to harmonize timber production with conservation of the forest ecosystem. Selection cutting is recognized as a major alternative of clear-cutting, because it can maintain the complexity and heterogeneity of a natural forest; however, its long-term evaluations are limited. This study compared various attributes of stand structures, which are indicators of biodiversity and ecosystem carbon stock between managed and unmanaged blocks (12.6 ha area in total in a natural mixed forest in Hokkaido, the northernmost island of Japan. We found that 30 years’ implementation of single-tree selection did not affect the volume, size structure, species diversity nor spatial distribution of overstory trees in the managed stands. Also, the total carbon stock in the managed stands was almost equal to that of the unmanaged stands. In contrast, several structural attributes and indicator elements that are significant for biodiversity (such as large-diameter live trees, dead trees, cavities, epiphytic bryophytes, and some avian guilds showed marked decrease in the managed stands. We conclude that it is required to leave these structures and elements to some extent for deriving the merit of the management as an alternative silvicultural regime in the region.

  17. Blueberries (Vaccinium myrtillus) as an indicator of radioactive pollution of a forest ecosystem

    International Nuclear Information System (INIS)

    Kienzl, K.; Hiesel, E.; Henrich, E.

    1992-01-01

    It was the aim of this project to find indicators within the forest ecosystem for pollution with artificial radionuclides. In the first line, the reference nuclide Cs-137 was examined. These biological indicators could be used quickly and comprehensively for analysis in the case of a possible repeated large-area contamination. In addition to mosses, lichens, ferns, various grasses, spruce needles, bark and wood, in particular bilberrry shrubs (Vaccinium myrtillus) were sampled repeatedly. The bilberry offers itself as a possible indicator plant (high incidence in the entire Austrian federal territory, simple sampling, deer feeding plant) and is also important as forest fruit for humans. (orig./EF) [de

  18. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants

    Directory of Open Access Journals (Sweden)

    Javier Lara-Romero

    2017-08-01

    Full Text Available Carbon nanotubes (CNTs have a broad range of applications and are generally considered human-engineered nanomaterials. However, carbon nanostructures have been found in ice cores and oil wells, suggesting that nature may provide appropriate conditions for CNT synthesis. During forest wildfires, materials such as turpentine and conifer tissues containing iron under high temperatures may create chemical conditions favorable for CNT generation, similar to those in synthetic methods. Here, we show evidence of naturally occurring multiwalled carbon nanotubes (MWCNTs produced from Pinus oocarpa and Pinus pseudostrobus, following a forest wildfire. The MWCNTs showed an average of 10 walls, with internal diameters of ∼2.5 nm and outer diameters of ∼14.5 nm. To verify whether MWCNT generation during forest wildfires has a biological effect on some characteristic plant species of these ecosystems, germination and development of seedlings were conducted. Results show that the utilization of comparable synthetic MWCNTs increased seed germination rates and the development of Lupinus elegans and Eysenhardtia polystachya, two plants species found in the burned forest ecosystem. The finding provides evidence that supports the generation and possible ecological functions of MWCNTs in nature.

  19. Phenology of Succession: Tracking the Recovery of Dryland Forests after Wildfire Events

    Science.gov (United States)

    Walker, J.; Brown, J. F.; Sankey, J. B.; Wallace, C.; Weltzin, J. F.

    2016-12-01

    The frequency, size, and intensity of forest wildfires in the U.S. Southwest have increased over the past 30 years. In the coming decades, burn effects and altered climatic conditions may increasingly divert vegetation recovery trajectories from pre-disturbance forested ecosystems toward grassland or shrub woodlands. Dryland herbaceous and woody vegetation species exhibit different phenological responses to precipitation, resulting in temporal and spatial shifts in landscape phenology patterns as the proportions of plant functional groups change over time. We have developed time series of Normalized Difference Vegetation Index (NDVI) and Soil-Adjusted Vegetation Index (SAVI) greenness measures derived from satellite imagery from 1984 - 2015 to record the phenological signatures that characterize recovery trajectories towards predominantly grassland, shrubland, or forest land cover types. We leveraged the data and computational resources available through the Google Earth Engine cloud-based platform to analyze time series of Landsat Thematic Mapper and Enhanced Thematic Mapper Plus imagery collected over maturing (40 years or more post-fire) dryland forests in Arizona and New Mexico, USA. These time series provided the basis for long-term comparisons of phenology behavior in different successional trajectories and enabled the assessment of climatic influence on the eventual outcomes.

  20. Anthropogenic Decline of Ecosystem Services Threatens the Integrity of the Unique Hyrcanian (Caspian Forests in Northern Iran

    Directory of Open Access Journals (Sweden)

    Ardavan Zarandian

    2016-02-01

    Full Text Available The unique Hyrcanian (Caspian forests of northern Iran provide vital ecosystem services for local and global communities. We assess the status and trends of key ecosystem services in this region where native forest conversion has accelerated to make way for housing and farm development. This is a mountainous forested area that is valuable for both conservation and multiple human uses including recreation and farming. It contains globally significant natural habitats for in situ conservation of biological diversity. A rapid, qualitative, and participatory approach was used including interviews with local households and experts in combination with assessment of land use/cover remote sensing data to identify and map priority ecosystem services in the Geographic Information System (GIS. Based on the interests of the beneficiaries, eight priority services (food production, water supply, raw materials, soil conservation, water regulation, climate regulation, biodiversity, and recreation were identified and mapped. The results indicate the current typical spatial distribution of the provided services based on structural characteristics of the study landscape and their changing trends through a comparison of past, present and future land use, and land cover. Although food production and recreation have greatly increased in recent decades, the other services, in particular timber production, biodiversity, and water purification and supply are being gradually lost. The results of this study and of others elsewhere should raise awareness of ecosystem service status and trends and the value of examining these since they provide much of the information to inform natural resources policy and decision making. The declines in supply of key ecosystem services both within and outside the protected area are creating conflicts within communities as well as impacting on the integrity of the area and careful planning and conservation is required to provide win

  1. Decadal-Scale Reduction in Forest Net Ecosystem Production Following Insect Defoliation Contrasts with Short-Term Impacts of Prescribed Fires

    Science.gov (United States)

    Kenneth L. Clark; Heidi J. Renninger; Nicholas Skowronski; Michael Gallagher; Karina V.R.  Schäfer

    2018-01-01

    Understanding processes underlying forest carbon dynamics is essential for accurately predicting the outcomes of non-stand-replacing disturbance in intermediate-age forests. We quantified net ecosystem production (NEP), aboveground net primary production (ANPP), and the dynamics of major carbon (C) pools before and during the decade following invasive insect...

  2. Climate change science applications and needs in forest ecosystem management: a workshop organized as part of the northern Wisconsin Climate Change Response Framework Project

    Science.gov (United States)

    Leslie Brandt; Chris Swanston; Linda Parker; Maria Janowiak; Richard Birdsey; Louis Iverson; David Mladenoff; Patricia. Butler

    2012-01-01

    Climate change is leading to direct and indirect impacts on forest tree species and ecosystems in northern Wisconsin. Land managers will need to prepare for and respond to these impacts, so we designed a workshop to identify forest management approaches that can enhance the ability of ecosystems in northern Wisconsin to cope with climate change and address how National...

  3. Tradeoffs between Three Forest Ecosystem Services across the State of New Hampshire, USA: Timber, Carbon, and Albedo

    Science.gov (United States)

    Lutz, D. A.; Burakowski, E. A.; Murphy, M. B.; Borsuk, M. E.; Niemiec, R. M.; Howarth, R. B.

    2014-12-01

    Albedo is an important physical property of the land surface which influences the total amount of incoming solar radiation that is reflected back into space. It is a critical ecosystem service that helps regulate the Earth's energy balance and, in the context of climate mitigation, has been shown to have a strong influence on the overall effectiveness of land management schemes designed to counteract climate change. Previously, we demonstrated that incorporating the physical effects of albedo into an ecological economic forest model of locations in the White Mountain National Forest, in New Hampshire, USA, leads to a substantially shorter optimal rotation period for forest harvest than under a carbon- and timber-only approach. In this study, we investigate similar tradeoffs at 565 sites across the entire state of New Hampshire in a variety of different forest types, latitudes, and elevations. Additionally, we use a regression tree approach to calculate the influence of biogeochemical and physical factors on the optimal rotation period. Our results suggest that in many instances, incorporating albedo may lead to optimal rotation times approaching zero, or, perpetual clear-cut. Overall, the difference between growing season and winter-time albedo for forested and harvested states was the most significant variable influencing the rotation period, followed by timber stumpage price, and biomass growth rate. These results provide an initial understanding of tradeoffs amongst these three ecosystem services and provide guidance for forest managers as to the relative important properties of their forests when these three services are incentivized economically.

  4. Ecosystem-Atmosphere Exchange of Carbon, Water and Energy over a Mixed Deciduous Forest in the Midwest

    Energy Technology Data Exchange (ETDEWEB)

    Danilo Dragoni; Hans Peter Schmid; C.S.B. Grimmond; J.C. Randolph; J.R. White

    2012-12-17

    During the project period we continued to conduct long-term (multi-year) measurements, analysis, and modeling of energy and mass exchange in and over a deciduous forest in the Midwestern United States, to enhance the understanding of soil-vegetation-atmosphere exchange of carbon. At the time when this report was prepared, results from nine years of measurements (1998 - 2006) of above canopy CO2 and energy fluxes at the AmeriFlux site in the Morgan-Monroe State Forest, Indiana, USA (see Table 1), were available on the Fluxnet database, and the hourly CO2 fluxes for 2007 are presented here (see Figure 1). The annual sequestration of atmospheric carbon by the forest is determined to be between 240 and 420 g C m-2 a-1 for the first ten years. These estimates are based on eddy covariance measurements above the forest, with a gap-filling scheme based on soil temperature and photosynthetically active radiation. Data gaps result from missing data or measurements that were rejected in qua)lity control (e.g., during calm nights). Complementary measurements of ecological variables (i.e. inventory method), provided an alternative method to quantify net carbon uptake by the forest, partition carbon allocation in each ecosystem components, and reduce uncertainty on annual net ecosystem productivity (NEP). Biometric datasets are available on the Fluxnext database since 1998 (with the exclusion of 2006). Analysis for year 2007 is under completion.

  5. Structuring institutional analysis for urban ecosystems: A key to sustainable urban forest management

    Science.gov (United States)

    Sarah K. Mincey; Miranda Hutten; Burnell C. Fischer; Tom P. Evans; Susan I. Stewart; Jessica M. Vogt

    2013-01-01

    A decline in urban forest structure and function in the United States jeopardizes the current focus on developing sustainable cities. A number of social dilemmas—for example, free-rider problems—restrict the sustainable production of ecosystem services and the stock of urban trees from which they flow. However, institutions, or the rules, norms, and strategies that...

  6. Interacting Factors Driving a Major Loss of Large Trees with Cavities in a Forest Ecosystem

    Science.gov (United States)

    Lindenmayer, David B.; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E.; Franklin, Jerry F.; Laurance, William F.; Stein, John A. R.; Gibbons, Philip

    2012-01-01

    Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia – forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006–2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57–100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide. PMID:23071486

  7. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem.

    Directory of Open Access Journals (Sweden)

    David B Lindenmayer

    Full Text Available Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans. Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009. Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1 the prolonged time required (>120 years for initiation of cavities; and (2 repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide.

  8. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem.

    Science.gov (United States)

    Lindenmayer, David B; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E; Franklin, Jerry F; Laurance, William F; Stein, John A R; Gibbons, Philip

    2012-01-01

    Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia--forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006-2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57-100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide.

  9. Toward an integrated classification of ecosystems: Defining opportunities for managing fish and forest health

    Science.gov (United States)

    Bruce E. Rieman; Danny C. Lee; Russell F. Thurow; Paul F. Hessburg; James R. Sedell

    2000-01-01

    Many of the aquatic and terrestrial ecosystems of the Pacific Northwest United States have been simplified and degraded in part through past land-management activities. Recent listings of fishes under the Endangered Species Act and major new initiatives for the restoration of forest health have precipitated contentious debate among managers and conservation interests...

  10. Assimilation of repeated woody biomass observations constrains decadal ecosystem carbon cycle uncertainty in aggrading forests

    Science.gov (United States)

    Smallman, T. L.; Exbrayat, J.-F.; Mencuccini, M.; Bloom, A. A.; Williams, M.

    2017-03-01

    Forest carbon sink strengths are governed by plant growth, mineralization of dead organic matter, and disturbance. Across landscapes, remote sensing can provide information about aboveground states of forests and this information can be linked to models to estimate carbon cycling in forests close to steady state. For aggrading forests this approach is more challenging and has not been demonstrated. Here we apply a Bayesian approach, linking a simple model to a range of data, to evaluate their information content, for two aggrading forests. We compare high information content analyses using local observations with retrievals using progressively sparser remotely sensed information (repeated, single, and no woody biomass observations). The net biome productivity of both forests is constrained to be a net sink with litter dynamics at one forest, while at the second forest total dead organic matter estimates are within observational uncertainty. The uncertainty of retrieved ecosystem traits in the repeated biomass analysis is reduced by up to 50% compared to analyses with less biomass information. This study quantifies the importance of repeated woody observations in constraining the dynamics of both wood and dead organic matter, highlighting the benefit of proposed remote sensing missions.

  11. Effects of climate variability and accelerated forest thinning on watershed-scale runoff in southwestern USA ponderosa pine forests.

    Directory of Open Access Journals (Sweden)

    Marcos D Robles

    Full Text Available The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres of ponderosa pine (Pinus ponderosa forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment and modest when compared to mean annual runoff from the study watersheds (0-3%. Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.

  12. Effects of climate variability and accelerated forest thinning on watershed-scale runoff in southwestern USA ponderosa pine forests.

    Science.gov (United States)

    Robles, Marcos D; Marshall, Robert M; O'Donnell, Frances; Smith, Edward B; Haney, Jeanmarie A; Gori, David F

    2014-01-01

    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0-3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide.

  13. Effects of Climate Variability and Accelerated Forest Thinning on Watershed-Scale Runoff in Southwestern USA Ponderosa Pine Forests

    Science.gov (United States)

    Robles, Marcos D.; Marshall, Robert M.; O'Donnell, Frances; Smith, Edward B.; Haney, Jeanmarie A.; Gori, David F.

    2014-01-01

    The recent mortality of up to 20% of forests and woodlands in the southwestern United States, along with declining stream flows and projected future water shortages, heightens the need to understand how management practices can enhance forest resilience and functioning under unprecedented scales of drought and wildfire. To address this challenge, a combination of mechanical thinning and fire treatments are planned for 238,000 hectares (588,000 acres) of ponderosa pine (Pinus ponderosa) forests across central Arizona, USA. Mechanical thinning can increase runoff at fine scales, as well as reduce fire risk and tree water stress during drought, but the effects of this practice have not been studied at scales commensurate with recent forest disturbances or under a highly variable climate. Modifying a historical runoff model, we constructed scenarios to estimate increases in runoff from thinning ponderosa pine at the landscape and watershed scales based on driving variables: pace, extent and intensity of forest treatments and variability in winter precipitation. We found that runoff on thinned forests was about 20% greater than unthinned forests, regardless of whether treatments occurred in a drought or pluvial period. The magnitude of this increase is similar to observed declines in snowpack for the region, suggesting that accelerated thinning may lessen runoff losses due to warming effects. Gains in runoff were temporary (six years after treatment) and modest when compared to mean annual runoff from the study watersheds (0–3%). Nonetheless gains observed during drought periods could play a role in augmenting river flows on a seasonal basis, improving conditions for water-dependent natural resources, as well as benefit water supplies for downstream communities. Results of this study and others suggest that accelerated forest thinning at large scales could improve the water balance and resilience of forests and sustain the ecosystem services they provide. PMID

  14. Dynamics of forest ecosystems regenerated on burned and harvested areas in mountain regions of Siberia: characteristics of biological diversity, structure and productivity

    Directory of Open Access Journals (Sweden)

    I. M. Danilin

    2016-12-01

    Full Text Available Complex estimation of forest ecosystems dynamics based on detailing characteristics of structure, growth and productivity of the stands and describing general geographical and biological management options for preserving their biodiversity and sustaining stability are discussed in the paper by describing examples of tree stands restored on burned and logged areas in mountain regions of Siberia. On vast areas in Siberia, characterized as sub-boreal, subarid and with a strongly continental climate, forests grow on seasonally frozen soils and in many cases are surrounded by vast steppe and forest-steppe areas and uplands. Developing criteria for sustainability of mountain forest ecosystems is necessary for forest resource management and conservation. It is therefore important to obtain complex biometric characteristics on forest stands and landscapes and to thoroughly study their structure, biological diversity and productivity. Morphometric methods, Weibull simulation and allometric equations were used to determine the dimensional hierarchies of coenopopulation individuals. Structure and productivity of the aboveground stand components were also studied.

  15. Impacts of elevated carbon dioxide and temperature on a boreal forest ecosystem (CLIMEX project)

    DEFF Research Database (Denmark)

    Breemen, N. van; Jenkins, A.; Wright, R.F.

    1998-01-01

    To evaluate the effects of climate change on boreal forest ecosystems, both atmospheric CO2 (to 560 ppmv) and air temperature (by 3 degrees-5 degrees C above ambient) were increased at a forested headwater catchment in southern Norway. The entire catchment (860 m(2)) is enclosed within...... and the growing season has been prolonged relative to the control area. This has helped to sustain an increase in plant growth relative to the control and has also promoted increased N export in stream water. Photosynthetic capacity and carbon-nitrogen ratio of new leaves of most plant species did not change...

  16. Geologic Map of the House Rock Valley Area, Coconino County, Northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Priest, Susan S.

    2010-01-01

    This geologic map is a cooperative effort of the U.S. Geological Survey (USGS), the Bureau of Land Management, the National Park Service, and the U.S. Forest Service to provide a geologic database for resource management officials and visitor information services. This map was produced in response to information needs related to a proposed withdrawal of three segregated land areas near Grand Canyon National Park, Arizona, from new hard rock mining activity. House Rock Valley was designated as the east parcel of the segregated lands near the Grand Canyon. This map was needed to provide connectivity for the geologic framework of the Grand Canyon segregated land areas. This geologic map of the House Rock Valley area encompasses approximately 280 mi2 (85.4 km2) within Coconino County, northern Arizona, and is bounded by longitude 111 degrees 37'30' to 112 degrees 05' W. and latitude 36 degrees 30' to 36 degrees 50' N. The map area is in the eastern part of the Arizona Strip, which lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The Arizona Strip is the part of Arizona lying north of the Colorado River. The map is bound on the east by the Colorado River in Marble Canyon within Grand Canyon National Park and Glen Canyon National Recreation Area, on the south and west by the Kaibab National Forest and Grand Canyon National Game Preserve, and on the north by the Vermilion Cliffs Natural Area, the Paria Canyon Vermilion Cliffs Wilderness Area, and the Vermilion Cliffs National Monument. House Rock State Buffalo Ranch also bounds the southern edge of the map area. The Bureau of Land Management Arizona Field Office in St. George, Utah, manages public lands of the Vermilion Cliffs Natural Area, Paria Canyon - Vermilion Cliffs Wilderness and Vermilion Cliffs National Monument. The North Kaibab Ranger District in Fredonia, Arizona, manages U.S. Forest Service land along the west edge of the map area and House Rock State Buffalo Ranch

  17. Assessing the Effects of the Urban Forest Restoration Effort of MillionTreesNYC on the Structure and Functioning of New York City Ecosystems

    Directory of Open Access Journals (Sweden)

    P. Timon McPhearson

    2010-01-01

    Full Text Available Current forest restoration practices for New York City’s (NYC MillionTreesNYC Initiative on public parkland include site preparation with extensive invasive species removal and tree and shrub planting with the goal of creating new multi-layered forests. We have launched a long-term investigation of these sites in order to understand the primary physical, chemical, and biological responses of urban ecosystems to MillionTreesNYC forest restoration practices. This research will examine high and low diversity tree and understory planting combinations in permanent experimental forest restoration plots across NYC. The study assesses how the interactions between soil heterogeneity, plant population dynamics, and forest restoration management strategies drive urban forest ecosystem structure and functioning. Working in collaboration with the NYC Department of Parks & Recreation (NYC Parks and the MillionTreesNYC tree planting campaign, we are examining different restoration strategies to assess how restoration practices affect the ecological development trajectories of newly established forests in NYC.

  18. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semiarid forests.

    Science.gov (United States)

    O'Donnell, Frances C; Flatley, William T; Springer, Abraham E; Fulé, Peter Z

    2018-06-25

    Climate change and wildfire are interacting to drive vegetation change and potentially reduce water quantity and quality in the southwestern United States, Forest restoration is a management approach that could mitigate some of these negative outcomes. However, little information exists on how restoration combined with climate change might influence hydrology across large forest landscapes that incorporate multiple vegetation types and complex fire regimes. We combined spatially explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape (335,000 ha) on the Kaibab Plateau in northern Arizona, USA. Our objective was to assess the impacts of climate change and forest restoration on the future fire regime, forest vegetation, and watershed outputs. Our model results predict that the combination of climate change and high-severity fire will drive forest turnover, biomass declines, and compositional change in future forests. Restoration treatments may reduce the area burned in high-severity fires and reduce conversions from forested to non-forested conditions. Even though mid-elevation forests are the targets of restoration, the treatments are expected to delay the decline of high-elevation spruce-fir, aspen, and mixed conifer forests by reducing the occurrence of high-severity fires that may spread across ecoregions. We estimate that climate-induced vegetation changes will result in annual runoff declines of up to 10%, while restoration reduced or reversed this decline. The hydrologic model suggests that mid-elevation forests, which are the targets of restoration treatments, provide around 80% of runoff in this system and the conservation of mid- to high-elevation forests types provides the greatest benefit in terms of water conservation. We also predict that restoration treatments will conserve water quality by reducing patches of high-severity fire that are associated with high sediment yield. Restoration

  19. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region

    Science.gov (United States)

    Yu, Guirui; Chen, Zhi; Piao, Shilong; Peng, Changhui; Ciais, Philippe; Wang, Qiufeng; Li, Xuanran; Zhu, Xianjin

    2014-01-01

    Temperate- and high-latitude forests have been shown to contribute a carbon sink in the Northern Hemisphere, but fewer studies have addressed the carbon balance of the subtropical forests. In the present study, we integrated eddy covariance observations established in the 1990s and 2000s to show that East Asian monsoon subtropical forests between 20°N and 40°N represent an average net ecosystem productivity (NEP) of 362 ± 39 g C m−2 yr−1 (mean ± 1 SE). This average forest NEP value is higher than that of Asian tropical and temperate forests and is also higher than that of forests at the same latitudes in Europe–Africa and North America. East Asian monsoon subtropical forests have comparable NEP to that of subtropical forests of the southeastern United States and intensively managed Western European forests. The total NEP of East Asian monsoon subtropical forests was estimated to be 0.72 ± 0.08 Pg C yr−1, which accounts for 8% of the global forest NEP. This result indicates that the role of subtropical forests in the current global carbon cycle cannot be ignored and that the regional distributions of the Northern Hemisphere's terrestrial carbon sinks are needed to be reevaluated. The young stand ages and high nitrogen deposition, coupled with sufficient and synchronous water and heat availability, may be the primary reasons for the high NEP of this region, and further studies are needed to quantify the contribution of each underlying factor. PMID:24639529

  20. Primates as Predictors of Mammal Community Diversity in the Forest Ecosystems of Madagascar

    Science.gov (United States)

    Muldoon, Kathleen M.; Goodman, Steven M.

    2015-01-01

    The geographic distribution of species is the typical metric for identifying priority areas for conservation. Since most biodiversity remains poorly studied, a subset of charismatic species, such as primates, often stand as surrogates for total biodiversity. A central question is therefore, how effectively do primates predict the pooled species richness of other mammalian taxa? We used lemurs as indicator species to predict total non-primate mammal community richness in the forest ecosystems of Madagascar. We combine environmental and species occurrence data to ascertain the extent to which primate diversity can predict (1) non-primate mammal α-diversity (species richness), (2) non-primate complementarity, and (3) non-primate β-diversity (species turnover). Our results indicate that primates are effective predictors of non-primate mammal community diversity in the forest ecosystems of Madagascar after controlling for habitat. When individual orders of mammals are considered, lemurs effectively predict the species richness of carnivorans and rodents (but not afrosoricids), complementarity of rodents (but not carnivorans or afrosoricids), and all individual components of β-diversity. We conclude that lemurs effectively predict total non-primate community richness. However, surrogate species alone cannot achieve complete representation of biodiversity. PMID:26334525

  1. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests.

    Science.gov (United States)

    Migliavacca, Mirco; Reichstein, Markus; Richardson, Andrew D; Mahecha, Miguel D; Cremonese, Edoardo; Delpierre, Nicolas; Galvagno, Marta; Law, Beverly E; Wohlfahrt, Georg; Black, T Andrew; Carvalhais, Nuno; Ceccherini, Guido; Chen, Jiquan; Gobron, Nadine; Koffi, Ernest; Munger, J William; Perez-Priego, Oscar; Robustelli, Monica; Tomelleri, Enrico; Cescatti, Alessandro

    2015-01-01

    Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy. © 2014 John Wiley & Sons

  2. Storm Effects on Net Ecosystem Productivity in Boreal Forests

    Science.gov (United States)

    Vestin, Patrik; Grelle, Achim; Lagergren, Fredrik; Hellström, Margareta; Langvall, Ola; Lindroth, Anders

    2010-05-01

    Regional carbon budgets are to some extent determined by disturbance in ecosystems. Disturbance is believed to be partly responsible for the large inter-annual variability of the terrestrial carbon balance. When neglecting anthropogenic disturbance, forest fires have been considered the most important kind of disturbance. However, also insect outbreaks and wind-throw may be major factors in regional carbon budgets. The effects of wind-throw on CO2 fluxes in boreal forests are not well known due to lack of data. Principally, the reduced carbon sequestration capacity, increased substrate availability and severe soil perturbation following wind-throw are expected to result in increased CO2 fluxes from the forest to the atmosphere. In January 2005, the storm Gudrun hit Sweden, which resulted in approx. 66 × 106m3storm-felled stem wood distributed over an area of approx. 272 000 ha. Eddy covariance flux measurements started at storm-felled areas in Asa and Toftaholm in central Sweden during summer 2005. Data from the first months suggests increased CO2 fluxes by a factor of 2.5-10, as compared to normal silviculture (clear-cutting). An important question is how long such enhanced CO2 fluxes persist. The BIOME-BGC model will be calibrated against measured CO2 fluxes from both sites for 2005 through 2009. Modeled data will be used to fill gaps in the data sets and annual carbon balances will be calculated. Data from Asa and Toftaholm will be presented at the conference.

  3. Long-term changes in soil pH across major forest ecosystems in China

    Science.gov (United States)

    Yang, Yuanhe; Li, Pin; He, Honglin; Zhao, Xia; Datta, Arindam; Ma, Wenhong; Zhang, Ying; Liu, Xuejun; Han, Wenxuan; Wilson, Maxwell C.; Fang, Jingyun

    2015-02-01

    Atmospheric acidic deposition has been a major environmental problem since the industrial revolution. However, our understanding of the effect of acidic deposition on soil pH is inconclusive. Here we examined temporal variations in topsoil pH and their relationships with atmospheric sulfur and nitrogen deposition across China's forests from the 1980s to the 2000s. To accomplish this goal, we conducted artificial neural network simulations using historical soil inventory data from the 1980s and a data set synthesized from literature published after 2000. Our results indicated that significant decreases in soil pH occurred in broadleaved forests, while minor changes were observed in coniferous and mixed coniferous and broadleaved forests. The magnitude of soil pH change was negatively correlated with atmospheric sulfur and nitrogen deposition. This relationship highlights the need for stringent measures that reduce sulfur and nitrogen emissions so as to maintain ecosystem structure and function.

  4. Integrated research approach to the evaluation of the danger of airborne pollutants to forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F.; Smidt, S. [Federal Forest Research Centre, Vienna (Austria)

    1995-12-31

    The protection of the Alpine area, which, between Vienna and Nice, provides a home to thirteen million people, should be given highest priority not only because of the (commercial and other) benefits that the area offers and that are sometimes over-exploited for tourism, but also because the Alpine area is one of the largest coherent ecoregions of Europe and a Noah`s ark for endangered species and ecosystems. The present report focuses on two aspects of the dangers to forest ecosystems: on the threats caused by the input of ozone and nitrogen. (author)

  5. Integrated research approach to the evaluation of the danger of airborne pollutants to forest ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F; Smidt, S [Federal Forest Research Centre, Vienna (Austria)

    1996-12-31

    The protection of the Alpine area, which, between Vienna and Nice, provides a home to thirteen million people, should be given highest priority not only because of the (commercial and other) benefits that the area offers and that are sometimes over-exploited for tourism, but also because the Alpine area is one of the largest coherent ecoregions of Europe and a Noah`s ark for endangered species and ecosystems. The present report focuses on two aspects of the dangers to forest ecosystems: on the threats caused by the input of ozone and nitrogen. (author)

  6. Net Ecosystem Fluxes of Hydrocarbons from a Ponderosa Pine Forest in Colorado

    Science.gov (United States)

    Rhew, R. C.; Turnipseed, A. A.; Ortega, J. V.; Smith, J. N.; Guenther, A. B.; Shen, S.; Martinez, L.; Koss, A.; Warneke, C.; De Gouw, J. A.; Deventer, M. J.

    2015-12-01

    Light (C2-C4) alkenes, light alkanes and isoprene (C5H8) are non-methane hydrocarbons that play important roles in the photochemical production of tropospheric ozone and in the formation of secondary organic aerosols. Natural terrestrial fluxes of the light hydrocarbons are poorly characterized, with global emission estimates based on limited field measurements. In 2014, net fluxes of these compounds were measured at the Manitou Experimental Forest Observatory, a semi-arid ponderosa pine forest in the Colorado Rocky Mountains and site of the prior BEACHON campaigns. Three field intensives were conducted between June 17 and August 10, 2014. Net ecosystem flux measurements utilized a relaxed eddy accumulation system coupled to an automated gas chromatograph. Summertime average emissions of ethene and propene were up to 90% larger than those observed from a temperate deciduous forest. Ethene and propene fluxes were also correlated to each other, similar to the deciduous forest study. Emissions of isoprene were small, as expected for a coniferous forest, and these fluxes were not correlated with either ethene or propene. Unexpected emissions of light alkanes were also observed, and these showed a distinct diurnal cycle. Understory flux measurements allowed for the partitioning of fluxes between the surface and the canopy. Full results from the three field intensives will be compared with environmental variables in order to parameterize the fluxes for use in modeling emissions.

  7. Effects of climatic changes on carbon dioxide and water vapor fluxes in boreal forest ecosystems of European part of Russia

    International Nuclear Information System (INIS)

    Olchev, A; Kurbatova, J; Novenko, E; Desherevskaya, O; Krasnorutskaya, K

    2009-01-01

    Effects of possible climatic and vegetation changes on H 2 O and CO 2 fluxes in boreal forest ecosystems of the central part of European Russia were quantified using modeling and experimental data. The future pattern of climatic conditions for the period up to 2100 was derived using the global climatic model ECHAM5 (Roeckner et al 2003 The Atmospheric General Circulation Model ECHAM 5. PART I: Model Description, Report 349 (Hamburg: Max-Planck Institute for Meteorology) p 127) with the A1B emission scenario. The possible trends of future vegetation changes were obtained by reconstructions of vegetation cover and paleoclimatic conditions in the Late Pleistocene and Holocene, as provided from pollen and plant macrofossil analysis of profiles in the Central Forest State Natural Biosphere Reserve (CFSNBR). Applying the method of paleoanalogues demonstrates that increasing the mean annual temperature, even by 1-2 deg. C, could result in reducing the proportion of spruce in boreal forest stands by up to 40%. Modeling experiments, carried out using a process-based Mixfor-SVAT model, show that the expected future climatic and vegetation changes lead to a significant increase of net ecosystem exchange (NEE) and gross primary productivity (GPP) of the boreal forests. Despite the expected warming and moistening of the climate, the modeling experiments indicate a relatively weak increase of annual evapotranspiration (ET) and even a reduction of transpiration (TR) rates of forest ecosystems compared to present conditions.

  8. [Simulating of carbon fluxes in bamboo forest ecosystem using BEPS model based on the LAI assimilated with Dual Ensemble Kalman Filter].

    Science.gov (United States)

    Li, Xue Jian; Mao, Fang Jie; Du, Hua Qiang; Zhou, Guo Mo; Xu, Xiao Jun; Li, Ping Heng; Liu, Yu Li; Cui, Lu

    2016-12-01

    LAI is one of the most important observation data in the research of carbon cycle of forest ecosystem, and it is also an important parameter to drive process-based ecosystem model. The Moso bamboo forest (MBF) and Lei bamboo forest (LBF) were selected as the study targets. Firstly, the MODIS LAI time series data during 2014-2015 was assimilated with Dual Ensemble Kalman Filter method. Secondly, the high quality assimilated MBF LAI and LBF LAI were used as input dataset to drive BEPS model for simulating the gross primary productivity (GPP), net ecosystem exchange (NEE) and total ecosystem respiration (TER) of the two types of bamboo forest ecosystem, respectively. The modeled carbon fluxes were evaluated by the observed carbon fluxes data, and the effects of different quality LAI inputs on carbon cycle simulation were also studied. The LAI assimilated using Dual Ensemble Kalman Filter of MBF and LBF were significantly correlated with the observed LAI, with high R 2 of 0.81 and 0.91 respectively, and lower RMSE and absolute bias, which represented the great improvement of the accuracy of MODIS LAI products. With the driving of assimilated LAI, the modeled GPP, NEE, and TER were also highly correlated with the flux observation data, with the R 2 of 0.66, 0.47, and 0.64 for MBF, respectively, and 0.66, 0.45, and 0.73 for LBF, respectively. The accuracy of carbon fluxes modeled with assimilated LAI was higher than that acquired by the locally adjusted cubic-spline capping method, in which, the accuracy of mo-deled NEE for MBF and LBF increased by 11.2% and 11.8% at the most degrees, respectively.

  9. Estimating forest and woodland aboveground biomass using active and passive remote sensing

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.

    2016-01-01

    Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.

  10. Exotic ecosystems: where root disease is not a beneficial component of temperate conifer forests

    Science.gov (United States)

    William J. Otrosina

    2003-01-01

    Forest tree species and ecosystems ahve evolved under climatic, geological, and biological forces over eons of time. The present flora represents the sum of these selective forces that have acted upon ancestral and modern species. Adaptations to climatic factors, soils, insects, diseases, and a host of disturbance events, operating at a variety of scales, ahve forged...

  11. Trees at work: economic accounting for forest ecosystem services in the U.S.South

    Science.gov (United States)

    Erin O. Sills; Susan E. Moore; Frederick W. Cubbage; Kelley D. McCarter; Thomas P. Holmes; D. Evan Mercer

    2017-01-01

    Southern forests provide a variety of critical ecosystem services, from purification of water and air to recreational opportunities for millions of people. Because many of these services are public goods with no observable market value, they are not fully accounted for in land use and policy decisions. There have been several efforts to remedy this by...

  12. Trends in Snag Populations in Drought-Stressed Mixed-Conifer and Ponderosa Pine Forests (1997–2007

    Directory of Open Access Journals (Sweden)

    Joseph L. Ganey

    2012-01-01

    Full Text Available Snags provide important biological legacies, resources for numerous species of native wildlife, and contribute to decay dynamics and ecological processes in forested ecosystems. We monitored trends in snag populations from 1997 to 2007 in drought-stressed mixed-conifer and ponderosa pine (Pinus ponderosa Dougl. ex Laws forests, northern Arizona. Median snag density increased by 75 and 90% in mixed-conifer and ponderosa pine forests, respectively, over this time period. Increased snag density was driven primarily by a large pulse in drought-mediated tree mortality from 2002 to 2007, following a smaller pulse from 1997 to 2002. Decay-class composition and size-class composition of snag populations changed in both forest types, and species composition changed in mixed-conifer forest. Increases in snag abundance may benefit some species of native wildlife in the short-term by providing increased foraging and nesting resources, but these increases may be unsustainable in the long term. Observed changes in snag recruitment and fall rates during the study illustrate the difficulty involved in modeling dynamics of those populations in an era of climate change and changing land management practices.

  13. Possibilities of a Personal Laser Scanning System for Forest Mapping and Ecosystem Services

    Science.gov (United States)

    Liang, Xinlian; Kukko, Antero; Kaartinen, Harri; Hyyppä, Juha; Yu, Xiaowei; Jaakkola, Anttoni; Wang, Yunsheng

    2014-01-01

    A professional-quality, personal laser scanning (PLS) system for collecting tree attributes was demonstrated in this paper. The applied system, which is wearable by human operators, consists of a multi-constellation navigation system and an ultra-high-speed phase-shift laser scanner mounted on a rigid baseplate and consisting of a single sensor block. A multipass-corridor-mapping method was developed to process PLS data and a 2,000 m2 forest plot was utilized in the test. The tree stem detection accuracy was 82.6%; the root mean square error (RMSE) of the estimates of tree diameter at breast height (DBH) was 5.06 cm; the RMSE of the estimates of tree location was 0.38 m. The relative RMSE of the DBH estimates was 14.63%. The results showed, for the first time, the potential of the PLS system in mapping large forest plots. Further research on mapping accuracy in various forest conditions, data correction methods and multi-sensoral positioning techniques is needed. The utilization of this system in different applications, such as harvester operations, should also be explored. In addition to collecting tree-level and plot-level data for forest inventory, other possible applications of PLS for forest ecosystem services include mapping of canopy gaps, measuring leaf area index of large areas, documenting and visualizing forest routes feasible for recreation, hiking and berry and mushroom picking. PMID:24434879

  14. EnviroAtlas - Phoenix, AZ - Ecosystem Services by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset presents environmental benefits of the urban forest in 2,434 block groups in Phoenix, Arizona. Carbon attributes, pollution removal and value, and...

  15. Applying the Ecosystem Approach to Select Priority Areas for Forest Landscape Restoration in the Yungas, Northwestern Argentina

    Science.gov (United States)

    Ianni, Elena; Geneletti, Davide

    2010-11-01

    This paper proposes a method to select forest restoration priority areas consistently with the key principles of the Ecosystem Approach (EA) and the Forest Landscape Restoration (FLR) framework. The methodology is based on the principles shared by the two approaches: acting at ecosystem scale, involving stakeholders, and evaluating alternatives. It proposes the involvement of social actors which have a stake in forest management through multicriteria analysis sessions aimed at identifying the most suitable forest restoration intervention. The method was applied to a study area in the native forests of Northern Argentina (the Yungas). Stakeholders were asked to identify alternative restoration actions, i.e. potential areas implementing FLR. Ten alternative fincas—estates derived from the Spanish land tenure system—differing in relation to ownership, management, land use, land tenure, and size were evaluated. Twenty criteria were selected and classified into four groups: biophysical, social, economic and political. Finca Ledesma was the closest to the economic, social, environmental and political goals, according to the values and views of the actors involved in the decision. This study represented the first attempt to apply EA principles to forest restoration at landscape scale in the Yungas region. The benefits obtained by the application of the method were twofold: on one hand, researchers and local actors were forced to conceive the Yungas as a complex net of rights rather than as a sum of personal interests. On the other hand, the participatory multicriteria approach provided a structured process for collective decision-making in an area where it has never been implemented.

  16. Modelling the ecological vulnerability to forest fires in mediterranean ecosystems using geographic information technologies.

    Science.gov (United States)

    Duguy, Beatriz; Alloza, José Antonio; Baeza, M Jaime; De la Riva, Juan; Echeverría, Maite; Ibarra, Paloma; Llovet, Juan; Cabello, Fernando Pérez; Rovira, Pere; Vallejo, Ramon V

    2012-12-01

    Forest fires represent a major driver of change at the ecosystem and landscape levels in the Mediterranean region. Environmental features and vegetation are key factors to estimate the ecological vulnerability to fire; defined as the degree to which an ecosystem is susceptible to, and unable to cope with, adverse effects of fire (provided a fire occurs). Given the predicted climatic changes for the region, it is urgent to validate spatially explicit tools for assessing this vulnerability in order to support the design of new fire prevention and restoration strategies. This work presents an innovative GIS-based modelling approach to evaluate the ecological vulnerability to fire of an ecosystem, considering its main components (soil and vegetation) and different time scales. The evaluation was structured in three stages: short-term (focussed on soil degradation risk), medium-term (focussed on changes in vegetation), and coupling of the short- and medium-term vulnerabilities. The model was implemented in two regions: Aragón (inland North-eastern Spain) and Valencia (eastern Spain). Maps of the ecological vulnerability to fire were produced at a regional scale. We partially validated the model in a study site combining two complementary approaches that focused on testing the adequacy of model's predictions in three ecosystems, all very common in fire-prone landscapes of eastern Spain: two shrublands and a pine forest. Both approaches were based on the comparison of model's predictions with values of NDVI (Normalized Difference Vegetation Index), which is considered a good proxy for green biomass. Both methods showed that the model's performance is satisfactory when applied to the three selected vegetation types.

  17. Simultaneous reproduction of global carbon exchange and storage of terrestrial forest ecosystems

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2012-12-01

    Understanding the mechanism of the terrestrial carbon cycle is essential for assessing the impact of climate change. Quantification of both carbon exchange and storage is the key to the understanding, but it often associates with difficulties due to complex entanglement of environmental and physiological factors. Terrestrial ecosystem models have been the major tools to assess the terrestrial carbon budget for decades. Because of its strong association with climate change, carbon exchange has been more rigorously investigated by the terrestrial biosphere modeling community. Seeming success of model based assessment of carbon budge often accompanies with the ill effect, substantial misrepresentation of storage. In practice, a number of model based analyses have paid attention solely on terrestrial carbon fluxes and often neglected carbon storage such as forest biomass. Thus, resulting model parameters are inevitably oriented to carbon fluxes. This approach is insufficient to fully reduce uncertainties about future terrestrial carbon cycles and climate change because it does not take into account the role of biomass, which is equivalently important as carbon fluxes in the system of carbon cycle. To overcome this issue, a robust methodology for improving the global assessment of both carbon budget and storage is needed. One potentially effective approach to identify a suitable balance of carbon allocation proportions for each individual ecosystem. Carbon allocations can influence the plant growth by controlling the amount of investment acquired from photosynthesis, as well as carbon fluxes by controlling the carbon content of leaves and litter, both are active media for photosynthesis and decomposition. Considering those aspects, there may exist the suitable balance of allocation proportions enabling the simultaneous reproduction of carbon budget and storage. The present study explored the existence of such suitable balances of allocation proportions, and examines the

  18. How to restore dry forest ecosystems

    OpenAIRE

    Nalvarte, Jaime

    2012-01-01

    AIDER is a Peruvian non-governmental organization working since 1992 on forest management activities, watershed management and urban forest management on tropical humid and dry forest at a national level. AIDER and the José Ignacio Távara Pasapera rural community have been working on dry forest management and recovery since 1992. This paper summarizes the activity of AIDER in the dry forests for the purpose of recovering degraded forest areas and conserve existing forests by developing sustai...

  19. PECULIARITIES OF RADIOACTIVE CONTAMINATION OF THE FOREST ECOSYSTEM AFTER THE CHERNOBYL ACCIDENT

    Directory of Open Access Journals (Sweden)

    K. V. Varfolomeeva

    2008-01-01

    Full Text Available Chernobyl accident has influenced greatly all spheres of life of the affected territories, changing the life-style of the local population. [1, 2]. Investigation of the radionuclides behavior in natural conditions becomes more and more important which is connected with the fact that radionuclides are drawn into substances rotation and are actively accumulated by the plants and animals, that means that they become integral link of the food chains and are of a great importance in the functioning of the ecosystems. Deposition of radionuclides in the forest system is often higher than in agricultural arrears. Specific ecological features of the forests often lead to the high degree of accumulation of contaminating radionuclides. Organic matter high content in the forest soil and its stability increase the transfer of radionuclides from soil into plans which lead to high content of radionuclides in lichens, mosses, mushrooms and berries. Radionuclides transfer to game in such conditions could bring to the situation when some people actively consuming game meet will be highly exposured.

  20. Should we pay, and to whom, for biodiversity enhancement in private forests? An empirical study of attitudes towards payments for forest ecosystem services in Poland

    OpenAIRE

    Anna Bartczak; Katarzyna Metelska-Szaniawska

    2015-01-01

    This paper investigates the possibility of forest policy changes in Poland. The main objective is to investigate whether, and to whom, the society would be willing to pay for providing biodiversity enhancement in private forests. The empirical evidence is derived from a stated preference survey conducted on the national level and analyzed using a multinomial logit model (MNL). Our findings show a rather strong potential for the implementation of payments for ecosystem services (PES) in privat...

  1. Dry deposition of sulfur: a 23-year record for the Hubbard Brook Forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Likens, G E; Eaton, J S [Inst. of Ecosystem Studies, The New York Botanical Garden, NY (US); Bormann, F H [School of Forestry and Environmental Studies Yale Univ., New Haven, CT (US); Hedin, L O [Dept. of Biology, Yale Univ., New Haven, CT (US); Driscoll, C T [Dept. of Civil and Environmental Engineering, Syracuse, NY (US)

    1990-01-01

    Dry deposition of S was estimated for watershed-ecosystems of the Hubbard Brook Experimental Forest from 1964-65 through 1986-87. Two approaches, a regression analysis of bulk precipitation inputs and stream outputs and a mass-balance method, gave similar average values for Watershed 6 430 and 410 eq SO{sub 4}{sup =}/ha-yr, respectively, for this 23-year period. Dry deposition contributed about 37% of total S deposition, varying from 12% in 1964-65 to 61% in 1983-84. Long-term data from 'replicated' watershed-ecosystems showed that temporal variability in estimates of dry deposition was considerably greater than spatial (between watersheds) variability.

  2. Unearthing Secrets of the Forest

    Science.gov (United States)

    Beldin, Sarah I.; Perakis, Steven S.

    2009-01-01

    Forests are a defining feature for large areas of the Pacific northwestern United States from northern California to Alaska. Coniferous temperate rainforests in the western Cascade and coastal mountain ranges are appreciated for their aesthetic value and abundant natural resources. Few people recognize the riches beneath the forest floor; yet, soil is a key ecosystem component that makes each type of forest unique. Soils harbor immense biological diversity and control the release of water and nutrients that support life above ground. Understanding how carbon and nutrients cycle in forests, known as forest biogeochemistry, is crucial for evaluating forest productivity, composition, diversity, and change. At the U.S. Geological Survey (USGS) Forest and Rangeland Ecosystem Science Center, research in the Terrestrial Ecosystems Laboratory focuses on nutrient cycling in five themes: climate change, nutrition and sustainability, fire effects, restoration, and forest-stream linkages. This research is essential to understand the entire forest ecosystem and to use the best science available to make informed policy and management decisions.

  3. Synergy and contradictions between wood production and ecosystem services supplied to society - the case of private forests

    International Nuclear Information System (INIS)

    Picard, Olivier

    2012-01-01

    Today, private foresters earn their income almost exclusively from the sale of wood, with a turnover of 105 Euro/ha. Ecosystem services could generate a value of 970 euros/ha/year, i.e. eight times the forestry income derived from timber. The question therefore arises: can these services supplement forest income or do they interfere with the production of wood? Foresters are faced with choices that are becoming increasingly complex, uncertain, risky and sometimes conflicting. They are of several kinds: legal, economic, environmental, social, technical, climatic, etc. Are they in a position to produce timber using appropriate silvicultural techniques while at the same time providing the services that society is demanding? Faced with these new challenges, what is the guidance that should be given to foresters? To develop messages that make sense to foresters, the 'Forestiers prives de France' (private owners) federation and the CNPF (National Centre for Forest Property) conducted a survey on forest owners called the ReSOFOp. (authors)

  4. Recovery of ponderosa pine ecosystem carbon and water fluxes from thinning and stand-replacing fire.

    Science.gov (United States)

    Dore, Sabina; Montes-Helu, Mario; Hart, Stephen C; Hungate, Bruce A; Koch, George W; Moon, John B; Finkral, Alex J; Kolb, Thomas E

    2012-10-01

    Carbon uptake by forests is a major sink in the global carbon cycle, helping buffer the rising concentration of CO 2 in the atmosphere, yet the potential for future carbon uptake by forests is uncertain. Climate warming and drought can reduce forest carbon uptake by reducing photosynthesis, increasing respiration, and by increasing the frequency and intensity of wildfires, leading to large releases of stored carbon. Five years of eddy covariance measurements in a ponderosa pine (Pinus ponderosa)-dominated ecosystem in northern Arizona showed that an intense wildfire that converted forest into sparse grassland shifted site carbon balance from sink to source for at least 15 years after burning. In contrast, recovery of carbon sink strength after thinning, a management practice used to reduce the likelihood of intense wildfires, was rapid. Comparisons between an undisturbed-control site and an experimentally thinned site showed that thinning reduced carbon sink strength only for the first two posttreatment years. In the third and fourth posttreatment years, annual carbon sink strength of the thinned site was higher than the undisturbed site because thinning reduced aridity and drought limitation to carbon uptake. As a result, annual maximum gross primary production occurred when temperature was 3 °C higher at the thinned site compared with the undisturbed site. The severe fire consistently reduced annual evapotranspiration (range of 12-30%), whereas effects of thinning were smaller and transient, and could not be detected in the fourth year after thinning. Our results show large and persistent effects of intense fire and minor and short-lived effects of thinning on southwestern ponderosa pine ecosystem carbon and water exchanges. © 2012 Blackwell Publishing Ltd.

  5. The behaviour of radioactive caesium in a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Bergman, R.; Nylen, T.; Lidstroem, K.; Palo, T.

    1991-01-01

    The distribution of radioactive caesium (Cs-134 and Cs-137) in a boreal forest ecosystem is studied with focus in the dynamics of the turnover in, and loss from, the system. Measurements of the distribution in soil and vegetation, as well as the loss of radioactive caesium by run-off from a catchment, constitute the basis for an analysis of the caesium budget in the system. Comparisons of the distribution of 'old' Cs-137, i.e. originating from fallout due to the atmospheric nuclear weapons test, and that due to deposition after the accident in Chernobyl 1986 are used for extrapolations to future situations concerning transport of Cs-137 via the food chains over berries and moose to man. The exposure in a long term perspective due to the average intake of Cs-137 in the Swedish population by consumption of meat, milk, and milk products (i.e. of an agricultural origin) is compared to that due to ingestion of the forest products: berries (bilberry, lingonberries, and cloudberries) and moose meat. (au) (34 refs.)

  6. Partitioning of ecosystem respiration in a beech forest

    DEFF Research Database (Denmark)

    Brændholt, Andreas; Ibrom, Andreas; Larsen, Klaus Steenberg

    2018-01-01

    Terrestrial ecosystem respiration (Reco) represents a major component of the global carbon cycle. It consists of many sub-components, such as aboveground plant respiration and belowground root and microbial respiration, each of which may respond differently to abiotic factors, and thus to global...... of Reco in a temperate beech forest at diel, seasonal and annual time scales. Reco was measured by eddy covariance while respiration rates from soil, tree stems and isolated coarse tree roots were measured bi-hourly by an automated closed-chamber system. Soil respiration (Rsoil) was measured in intact...... plots, and heterotrophic Rsoil was measured in trenched plots. Tree stem (Rstem) and coarse root (Rroot) respiration were measured by custom made closed-chambers. We found that the contribution of Rstem to total Reco varied across the year, by only accounting for 6% of Reco during winter and 16% during...

  7. Atmospheric Ozone And Its Biosphere - Atmosphere Exchange In A Mangrove Forest Ecosystem A Case Study From Sundarbans NE Coast Of India

    Directory of Open Access Journals (Sweden)

    Manab Kumar Dutta

    2015-01-01

    Full Text Available ABSTRACT Temporal variation of atmospheric O3 and its biosphere atmosphere exchange were monitored in the Sundarbans mangrove forest from January 2011 to December 2011 on bimonthly basis. O3 mixing ratios at 10 m and 20 m heights over the forest atmosphere ranged between 14.66 1.88 to 37.90 0.91 and 19.32 6.27 to 39.80 10.13 ppbv respectively having maximal premonsoon and minimal monsoon periods. Average daytime O3 mixing ratio was 1.69 times higher than nighttime indicates significant photo chemical production of O3 in forest atmosphere. Annual averaged O3 mixing ratio in 10 m height was 13.2 lower than 20 m height induces exchange of O3 across mangrove biosphere atmosphere interface depending upon micrometeorological conditions of the forest ecosystem. Annual average biosphere atmosphere O3 exchange flux in this mangrove forest environment was 0.441 g m-2 s-1. Extrapolating the value for entire forest surface area the mangrove ecosystem acts as a sink of 58.4GgO3 annually indicating significant contribution of Sundarbans mangroves towards regional atmospheric O3 budget as well as climate change.

  8. The new flora of the northeastern USA: quantifying introduced plant species occupancy in forest ecosystems

    Science.gov (United States)

    Bethany K. Schulz; Andrew N. Gray

    2013-01-01

    Introduced plant species have significant negative impacts in many ecosystems and are found in many forests around the world. Some factors linked to the distribution of introduced species include fragmentation and disturbance, native species richness, and climatic and physical conditions of the landscape. However, there are few data sources that enable the assessment...

  9. Contribution of ecosystem services to air quality and climate change mitigation policies: The case of urban forests in Barcelona, Spain

    Science.gov (United States)

    Francesc Baró; Lydia Chaparro; Erik Gómez-Baggethun; Johannes Langemeyer; David J. Nowak; Jaume. Terradas

    2014-01-01

    Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change...

  10. Methane Fluxes at the Tree Stem, Soil, and Ecosystem-scales in a Cottonwood Riparian Forest

    Science.gov (United States)

    Flanagan, L. B.; Nikkel, D. J.; Scherloski, L. M.; Tkach, R. E.; Rood, S. B.

    2017-12-01

    Trees can emit methane to the atmosphere that is produced by microbes inside their decaying stems or by taking up and releasing methane that is produced by microbes in adjacent, anoxic soil layers. The significance of these two methane production pathways for possible net release to the atmosphere depends on the magnitude of simultaneous oxidation of atmospheric methane that occurs in well-aerated, shallow soil zones. In order to quantify the significance of these processes, we made methane flux measurements using the eddy covariance technique at the ecosystem-scale and via chamber-based methods applied on the soil surface and on tree stems in a riparian cottonwood ecosystem in southern Alberta that was dominated by Populus tree species and their natural hybrids. Tree stem methane fluxes varied greatly among individual Populus trees and changed seasonally, with peak growing season average values of 4 nmol m-2 s-1 (tree surface area basis). When scaled to the ecosystem, the tree stem methane emissions (0.9 nmol m-2 s-1, ground area basis) were slightly higher than average soil surface methane uptake rates (-0.8 nmol m-2 s-1). In addition, we observed regular nighttime increases in methane concentration within the forest boundary layer (by 300 nmol mol-1 on average at 22 m height during July). The majority of the methane concentration build-up was flushed from the ecosystem to the well-mixed atmosphere, with combined eddy covariance and air column storage fluxes reaching values of 70-80 nmol m-2 s-1 for approximately one hour after sunrise. Daily average net methane emission rates at the ecosystem-scale were 4.4 nmol m-2 s-1 during July. Additional lab studies demonstrated that tree stem methane was produced via the CO2-reduction pathway, as tissue in the central stem of living Populus trees was being decomposed. This study demonstrated net methane emission from an upland, cottonwood forest ecosystem, resulting from microbe methane production in tree stems that

  11. Nitrogen leaching from N limited forest ecosystems: the MERLIN model applied to Gårdsjön, Sweden

    Directory of Open Access Journals (Sweden)

    O. J. Kjønaas

    1998-01-01

    Full Text Available Chronic deposition of inorganic nitrogen (N compounds from the atmosphere to forested ecosystems can alter the status of a forest ecosystem from N-limited towards N-rich, which may cause, among other things, increased leaching of inorganic N below the rooting zone. To assess the time aspects of excess N leaching, a process-oriented dynamic model, MERLIN (Model of Ecosystem Retention and Loss of Inorganic Nitrogen, was tested on an N-manipulated catchment at Gårdsjön, Sweden (NITREX project. Naturally generated mature Norway spruce dominates the catchment with Scots pine in drier areas. Since 1991, ammonium nitrate (NH4NO3 solution at a rate of about 35 kg N ha-1 yr-1 (250 mmol m-2 yr-1 has been sprinkled weekly, to simulate increased atmospheric N deposition. MERLIN describes C and N cycles, where rates of uptake and cycling between pools are governed by the C/N ratios of plant and soil pools. The model is calibrated through a hindcast period and then used to predict future trends. A major source of uncertainty in model calibration and prediction is the paucity of good historical information on the specific site and stand history over the hindcast period 1930 to 1990. The model is constrained poorly in an N-limited system. The final calibration, therefore, made use of the results from the 6-year N addition experiment. No independent data set was available to provide a test for the model calibration. The model suggests that most N deposition goes to the labile (LOM and refractory (ROM organic matter pools. Significant leaching is predicted to start as the C/N ratio in LOM is reduced from the 1990 value of 35 to <28. At ambient deposition levels, the system is capable of retaining virtually all incoming N over the next 50 years. Increased decomposition rates, however, could simulate nitrate leaching losses. The rate and capacity of N assimilation as well as the change in carbon dynamics are keys to ecosystem changes. Because the knowledge of

  12. Divergence of ecosystem services in U.S. National Forests and Grasslands under a changing climate.

    Science.gov (United States)

    Duan, Kai; Sun, Ge; Sun, Shanlei; Caldwell, Peter V; Cohen, Erika C; McNulty, Steven G; Aldridge, Heather D; Zhang, Yang

    2016-04-21

    The 170 National Forests and Grasslands (NFs) in the conterminous United States are public lands that provide important ecosystem services such as clean water and timber supply to the American people. This study investigates the potential impacts of climate change on two key ecosystem functions (i.e., water yield and ecosystem productivity) using the most recent climate projections derived from 20 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project phase 5 (CMIP5). We find that future climate change may result in a significant reduction in water yield but an increase in ecosystem productivity in NFs. On average, gross ecosystem productivity is projected to increase by 76 ~ 229 g C m(-2) yr(-1) (8% ~ 24%) while water yield is projected to decrease by 18 ~ 31 mm yr(-1) (4% ~ 7%) by 2100 as a result of the combination of increased air temperature (+1.8 ~ +5.2 °C) and precipitation (+17 ~ +51 mm yr(-1)). The notable divergence in ecosystem services of water supply and carbon sequestration is expected to intensify under higher greenhouse gas emission and associated climate change in the future, posing greater challenges to managing NFs for both ecosystem services.

  13. Maintaining ecosystem resilience: functional responses of tree cavity nesters to logging in temperate forests of the Americas

    OpenAIRE

    Ibarra, Jose Tomas; Martin, Michaela; Cockle, Kristina L; Martin, Kathy

    2017-01-01

    Logging often reduces taxonomic diversity in forest communities, but little is known about how this biodiversity loss affects the resilience of ecosystem functions. We examined how partial logging and clearcutting of temperate forests influenced functional diversity of birds that nest in tree cavities. We used point-counts in a before-after-control-impact design to examine the effects of logging on the value, range, and density of functional traits in bird communities in Canada (21 species) a...

  14. Tropical forest carbon balance in a warmer world: a critical review spanning microbial- to ecosystem-scale processes

    Science.gov (United States)

    Wood, Tana E.; Cavaleri, Molly A.; Reed, Sasha C.

    2012-01-01

    Tropical forests play a major role in regulating global carbon (C) fluxes and stocks, and even small changes to C cycling in this productive biome could dramatically affect atmospheric carbon dioxide (CO2) concentrations. Temperature is expected to increase over all land surfaces in the future, yet we have a surprisingly poor understanding of how tropical forests will respond to this significant climatic change. Here we present a contemporary synthesis of the existing data and what they suggest about how tropical forests will respond to increasing temperatures. Our goals were to: (i) determine whether there is enough evidence to support the conclusion that increased temperature will affect tropical forest C balance; (ii) if there is sufficient evidence, determine what direction this effect will take; and, (iii) establish what steps should to be taken to resolve the uncertainties surrounding tropical forest responses to increasing temperatures. We approach these questions from a mass-balance perspective and therefore focus primarily on the effects of temperature on inputs and outputs of C, spanning microbial- to ecosystem-scale responses. We found that, while there is the strong potential for temperature to affect processes related to C cycling and storage in tropical forests, a notable lack of data combined with the physical, biological and chemical diversity of the forests themselves make it difficult to resolve this issue with certainty. We suggest a variety of experimental approaches that could help elucidate how tropical forests will respond to warming, including large-scale in situ manipulation experiments, longer term field experiments, the incorporation of a range of scales in the investigation of warming effects (both spatial and temporal), as well as the inclusion of a diversity of tropical forest sites. Finally, we highlight areas of tropical forest research where notably few data are available, including temperature effects on: nutrient cycling

  15. Long-term influence of alternative forest management treatments on total ecosystem and wood product carbon storage

    Science.gov (United States)

    Joshua J. Puhlick; Aaron R. Weiskittel; Ivan J. Fernandez; Shawn Fraver; Laura S. Kenefic; Robert S. Seymour; Randall K. Kolka; Lindsey E. Rustad; John C. Brissette

    2016-01-01

    Developing strategies for reducing atmospheric CO2 is one of the foremost challenges facing natural resource professionals today. The goal of this study was to evaluate total ecosystem and harvested wood product carbon (C) stocks among alternative forest management treatments (selection cutting, shelterwood cutting, commercial clearcutting, and...

  16. When does biodiversity matter? Assessing ecosystem services across broad regions using forest inventory and analysis data

    Science.gov (United States)

    Kevin M. Potter; Christopher W. Woodall; Christopher M. Oswalt; Basil V. III Iannone; Songlin Fei

    2015-01-01

    Biodiversity is expected to convey numerous functional benefits to forested ecosystems, including increased productivity and resilience. When assessing biodiversity, however, statistics that account for evolutionary relationships among species may be more ecologically meaningful than traditional measures such as species richness. In three broad-scale studies, we...

  17. Spatial Analysis of Conservation Priorities Based on Ecosystem Services in the Atlantic Forest Region of Misiones, Argentina

    Directory of Open Access Journals (Sweden)

    Matthew L. Clark

    2012-08-01

    Full Text Available Understanding the spatial pattern of ecosystem services is important for effective environmental policy and decision-making. In this study, we use a geospatial decision-support tool (Marxan to identify conservation priorities for habitat and a suite of ecosystem services (storage carbon, soil retention and water yield in the Upper Paraná Atlantic Forest from Misiones, Argentina—an area of global conservation priority. Using these results, we then evaluate the efficiency of existing protected areas in conserving both habitat and ecosystem services. Selected areas for conserving habitat had an overlap of carbon and soil ecosystem services. Yet, selected areas for water yield did not have this overlap. Furthermore, selected areas with relatively high overlap of ecosystem services tended to be inside protected areas; however, other important areas for ecosystem services (i.e., central highlands do not have legal protection, revealing the importance of enforcing existing environmental regulations in these areas.

  18. Recent drought-induced decline of forests along a water-balance tipping point for ecosystems in western Canada

    Science.gov (United States)

    Hogg, E. H.; Michaelian, M.

    2017-12-01

    In western Canada, the forest-prairie boundary corresponds to a hydrologically-defined ecosystem "tipping point" where long-term precipitation is barely sufficient to meet the water use requirements of healthy, closed-canopy forests. In the province of Alberta, the severe subcontinental drought of 2001-2002 heralded the beginning of a 15-year dry period, representing a northward incursion of prairie-like climates into boreal and cordilleran forests. This poses a significant concern for ecosystem functioning of these forests, given GCM projections for continued warming and drying under anthropogenic climate change during this century. Through a multi-scale monitoring approach, we have examined the regional-scale impacts of recent droughts and associated climatic drying on the productivity and health of two important boreal tree species: aspen (Populus tremuloides) and white spruce (Picea glauca). For aspen, the 2016 re-measurement of a regional network of 150 ground plots revealed that tree mortality has escalated, especially in stands exposed to the combined impacts of multi-year drought and insect defoliation. On average, mortality losses exceeded growth gains during 2000-2016 for the 54 aspen plots in Alberta, leading to a net multi-year decline in the aboveground biomass of these stands. For white spruce, tree-ring analysis of 40 stands across Alberta revealed that the prolonged dry period led to a 38% decline in average, tree-level growth in aboveground biomass. In both species, stand age was not a significant factor affecting forest sensitivity to drought and climatic drying, suggesting that these forests are at risk if the trend toward more frequent, severe drought continues in the region.

  19. Relationships between Plant Diversity and the Abundance and α-Diversity of Predatory Ground Beetles (Coleoptera: Carabidae) in a Mature Asian Temperate Forest Ecosystem

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems. PMID:24376582

  20. Relationships between plant diversity and the abundance and α-diversity of predatory ground beetles (Coleoptera: Carabidae) in a mature Asian temperate forest ecosystem.

    Science.gov (United States)

    Zou, Yi; Sang, Weiguo; Bai, Fan; Axmacher, Jan Christoph

    2013-01-01

    A positive relationship between plant diversity and both abundance and diversity of predatory arthropods is postulated by the Enemies Hypothesis, a central ecological top-down control hypothesis. It has been supported by experimental studies and investigations of agricultural and grassland ecosystems, while evidence from more complex mature forest ecosystems is limited. Our study was conducted on Changbai Mountain in one of the last remaining large pristine temperate forest environments in China. We used predatory ground beetles (Coleoptera: Carabidae) as target taxon to establish the relationship between phytodiversity and their activity abundance and diversity. Results showed that elevation was the only variable included in both models predicting carabid activity abundance and α-diversity. Shrub diversity was negatively and herb diversity positively correlated with beetle abundance, while shrub diversity was positively correlated with beetle α-diversity. Within the different forest types, a negative relationship between plant diversity and carabid activity abundance was observed, which stands in direct contrast to the Enemies Hypothesis. Furthermore, plant species density did not predict carabid α-diversity. In addition, the density of herbs, which is commonly believed to influence carabid movement, had little impact on the beetle activity abundance recorded on Changbai Mountain. Our study indicates that in a relatively large and heterogeneous mature forest area, relationships between plant and carabid diversity are driven by variations in environmental factors linked with altitudinal change. In addition, traditional top-down control theories that are suitable in explaining diversity patterns in ecosystems of low diversity appear to play a much less pronounced role in highly complex forest ecosystems.