WorldWideScience

Sample records for argonne intense pulsed

  1. Investigation of the vertical instability at the Argonne Intense Pulsed Neutron Source

    Science.gov (United States)

    Wang, Shaoheng; Dooling, J. C.; Harkay, K. C.; Kustom, R. L.; McMichael, G. E.

    2009-10-01

    The rapid cycling synchrotron of the intense pulsed neutron source at Argonne National Laboratory normally operates at an average beam current of 14 to 15μA, accelerating protons from 50 to 450 MeV 30 times per second. The beam current is limited by a single-bunch vertical instability that occurs in the later part of the 14 ms acceleration cycle. By analyzing turn-by-turn beam position monitor data, two cases of vertical beam centroid oscillations were discovered. The oscillations start from the tail of the bunch, build up, and develop toward the head of the bunch. The development stops near the bunch center and oscillations remain localized in the tail for a relatively long time (2-4 ms, 1-2×104 turns). This vertical instability is identified as the cause of the beam loss. We compared this instability with a head-tail instability that was purposely induced by switching off sextupole magnets. It appears that the observed vertical instability is different from the classical head-tail instability.

  2. How Argonne's Intense Pulsed Neutron Source came to life and gained its niche : the view from an ecosystem perspective.

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, C.; Office of The Director

    2008-02-25

    At first glance the story of the Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory (ANL) appears to have followed a puzzling course. When researchers first proposed their ideas for an accelerator-driven neutron source for exploring the structure of materials through neutron scattering, the project seemed so promising that both Argonne managers and officials at the laboratory's funding agency, the Department of Energy (DOE), suggested that it be made larger and more expensive. But then, even though prototype building, testing, and initial construction went well a group of prominent DOE reviewers recommended in fall 1980 that it be killed, just months before it had been slated to begin operation, and DOE promptly accepted the recommendation. In response, Argonne's leadership declared the project was the laboratory's top priority and rallied to save it. In late 1982, thanks to another review panel led by the same scientist who had chaired the panel that had delivered the death sentence, the project was granted a reprieve. However, by the late 1980s, the IPNS was no longer top priority within the international materials science community, at Argonne, or within the DOE budget because prospects for another, larger materials science accelerator emerged. At just this point, the facility started to produce exciting scientific results. For the next two decades, the IPNS, its research, and its experts became valued resources at Argonne, within the U.S. national laboratory system, and within the international materials science community. Why did this Argonne project prosper and then almost suffer premature death, even though it promised (and later delivered) good science? How was it saved and how did it go on to have a long, prosperous life for more than a quarter of a century? In particular, what did an expert assessment of the quality of IPNS science have to do with its fate? Getting answers to such questions is important. The U.S. government

  3. Intense pulsed neutron source

    Science.gov (United States)

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and 'in press' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  4. Intense ultrashort terahertz pulses: generation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Matthias C [Max Planck Research Department for Structural Dynamics, University of Hamburg, CFEL, 22607 Hamburg (Germany); Fueloep, Jozsef Andras, E-mail: matthias.c.hoffmann@mpsd.cfel.de, E-mail: fulop@fizika.ttk.pte.hu [Department of Experimental Physics, University of Pecs, Ifjusag u. 6, 7624 Pecs (Hungary)

    2011-03-02

    Ultrashort terahertz pulses derived from femtosecond table-top sources have become a valuable tool for time-resolved spectroscopy during the last two decades. Until recently, the pulse energies and field strengths of these pulses have been generally too low to allow for the use as pump pulses or the study of nonlinear effects in the terahertz range. In this review article we will describe methods of generation of intense single cycle terahertz pulses with emphasis on optical rectification using the tilted-pulse-front pumping technique. We will also discuss some applications of these intense pulses in the emerging field of nonlinear terahertz spectroscopy. (topical review)

  5. Ionization of Atoms by Intense Laser Pulses

    CERN Document Server

    Froehlich, Juerg; Schlein, Benjamin

    2010-01-01

    The process of ionization of a hydrogen atom by a short infrared laser pulse is studied in the regime of very large pulse intensity, in the dipole approximation. Let $A$ denote the integral of the electric field of the pulse over time at the location of the atomic nucleus. It is shown that, in the limit where $|A| \\to \\infty$, the ionization probability approaches unity and the electron is ejected into a cone opening in the direction of $-A$ and of arbitrarily small opening angle. Asymptotics of various physical quantities in $|A|^{-1}$ is studied carefully. Our results are in qualitative agreement with experimental data reported in \\cite{1,2}.

  6. Intense Pulsed Heavy Ion Beam Technology

    Science.gov (United States)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  7. Data acquisition system for the neutron scattering instruments at the intense pulsed neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.K.; Daly, R.T.; Haumann, J.R.; Hitterman, R.L.; Morgan, C.B.; Ostrowski, G.E.; Worlton, T.G.

    1981-01-01

    The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a major new user-oriented facility which is now coming on line for basic research in neutron scattering and neutron radiation damage. This paper describes the data-acquisition system which will handle data acquisition and instrument control for the time-of-flight neutron-scattering instruments at IPNS. This discussion covers the scientific and operational requirements for this system, and the system architecture that was chosen to satisfy these requirements. It also provides an overview of the current system implementation including brief descriptions of the hardware and software which have been developed.

  8. Lasers and Intense Pulsed Light Hidradenitis Suppurativa.

    Science.gov (United States)

    Saunte, Ditte M; Lapins, Jan

    2016-01-01

    Lasers and intense pulsed light (IPL) treatment are useful for the treatment of hidradenitis suppurativa (HS). Carbon dioxide lasers are used for cutting or vaporization of the affected area. It is a effective therapy for the management of severe and recalcitrant HS with persistent sinus tract and scarring, and can be performed under local anesthesia. HS has a follicular pathogenesis. Lasers and IPL targeting the hair have been found useful in treating HS by reducing the numbers of hairs in areas with HS. The methods have few side effects, but the studies are preliminary and need to be repeated.

  9. Generation And Measurement Of High Contrast Ultrashort Intense Laser Pulses

    CERN Document Server

    Konoplev, O A

    2000-01-01

    In this thesis, the generation and measurement of high contrast, intense, ultrashort pulses have been studied. Various factors affecting the contrast and pulse shape of ultrashort light pulses from a chirped pulse amplification (CPA) laser system are identified. The level of contrast resulting from influence of these factors is estimated. Methods for improving and controlling the pulse shape and increasing the contrast are discussed. Ultrahigh contrast, 1-ps pulses were generated from a CPA system with no temporal structure up to eleven orders of magnitude. This is eight orders of magnitude higher contrast than the original pulse. This contrast boost was achieved using two techniques. One is the optical pulse cleaning based on the nonlinear birefringence of the chirping fiber and applied to the pulses before amplification. The other is the fast saturable absorber. The fast saturable absorber was placed after amplification and compression of the pulse. The measurements of high-contrast, ultrashort pulse with h...

  10. Vitiligo following intense pulsed light treatment.

    Science.gov (United States)

    Shin, Jung U; Roh, Mi Ryung; Lee, Ju Hee

    2010-07-01

    Vitiligo is an acquired depigmenting disorder characterized by the progressive loss of melanocytes from the epidermis and epidermal appendages, which results in milky-white macular lesions. Various factors are suspected to affect the induction and progression of vitiligo such as emotional shock, sunburn, pregnancy, physical illness and trauma. The intense pulsed light (IPL) device which mostly affects redness and dyspigmentation has a broad spectrum of emissions of white light with wavelengths between approximately 515 and 1200 nm. Adverse effects such as purpura and pigmentary changes are known to be rare. We present a 41-year-old woman who developed multiple round, hypopigmented macules on both the cheek and mandibular area following the treatment with IPL for lentigines and dyspigmentation. Based on biopsy and Wood's lamp examination, diagnosis as vitiligo was made. She was treated with a 308-nm excimer laser. After 3 months of treatment, almost complete repigmentation was seen but another coin-sized hypopigmented patch was noted after 5 months later. Herein, we report a case of vitiligo which developed after IPL treatment. This is the first case to be reported which vitiligo developed after IPL treatment. Therefore, dermatologists should be aware of unsighted vitiligo lesion before IPL treatment.

  11. Unconventional Use of Intense Pulsed Light

    Directory of Open Access Journals (Sweden)

    D. Piccolo

    2014-01-01

    Full Text Available According to the literature, intense pulsed light (IPL represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne, due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases, port-wine stain (PWS (10 cases, disseminated porokeratosis (10 cases, pilonidal cyst (3 cases, seborrheic keratosis (10 cases, hypertrophic scar (5 cases and keloid scar (5 cases, Becker’s nevus (2 cases, hidradenitis suppurativa (2 cases, and sarcoidosis (1 case. Our results should suggest that IPL could represent a valid therapeutic support and option by providing excellent outcomes and low side effects, even though it should be underlined that the use and the effectiveness of IPL are strongly related to the operator’s experience (acquired by attempting at least one specific course on the use of IPL and one-year experience in a specialized centre. Moreover, the daily use of these devices will surely increase clinical experience and provide new information, thus enhancing long-term results and improving IPL effectiveness.

  12. Intense Pulsed Light (IPL) in Aesthetic Dermatology

    Science.gov (United States)

    Pytras, B.; Drozdowski, P.; Zub, K.

    2011-08-01

    Introduction. Newer and newer technologies have been widely developed in recent years due to increasing need for aesthetic medicine procedures. Less invasive methods of skin imperfection and time-related lesions removal, IPL (Intense Pulse Light) being one of them, are gaining more and more interest. The shorter the "downtime" for the patient is and the more efficient the procedure results, the more popular the method becomes. Materials and methods_Authors analyse the results of treatment of a 571 patients-group (501 women and 70 men) aged 5-72 years in the period: October 2006-August 2010. IPL™ Quantum (Lumenis Ltd.) device with 560 nm. cut-off filter was used. Results. The results were regarded as: very good, good or satisfying (%):Skin photoaging symptomes 37/40/23, Isolated facial dyschromia 30/55/25, Isolated facial erythema 62/34/4, Lower limbs teleangiectasia 12/36/52, Keratosis solaris on hands 100/-/-. Approximately half of the patients developed transitory erythema and 25%- transitory, mild, circumscribed oedema. Following undesirable effects were noted: skin thermal irritation (6,1% of the patients) and skin hypopigmentation (2% of the patients). Discussion. Results and post-treatment management proposed by authors are similar to those reported by other authors. Conclusions. Treatment results of the 571-patients group prove IPL to be a very efficient method of non-ablative skin rejuvenation. It turned out effective also in lower limbs teleangiectasia treatment. It presents low risk of transitory and mild side effects. Futhermore, with short or no downtime, it is well-tolerated by the patients.

  13. Intense Pulsed Neutron Source progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne`s ZING-P and ZING-P` prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and ``in press`` articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  14. Pair production in short intense laser pulses near threshold

    Energy Technology Data Exchange (ETDEWEB)

    Nousch, Tobias; Seipt, Daniel; Kaempfer, Burkhart [Helmholtz-Zentrum Dresden-Rossendorf, POB 510119, 01314 Dresden (Germany); TU Dresden, Institut fuer Theoretische Physik, 01062 Dresden (Germany); Titov, Alexander I. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna 141980 (Russian Federation)

    2013-07-01

    We study finite-size effects in the process of e{sup +}e{sup -} pair production via the non-linear Breit-Wheeler process in ultra short laser pulses. Based on the Nikishov-Ritus method we use laser dressed electron and positron wave functions to derive the differential and total pair production cross section, focusing on the effects of a finite pulse duration. For short laser pulses with very few oscillations of the electromagnetic field we find an increase of the pair production rate below the perturbative weak-field threshold. The strong enhancement below the weak-field threshold is traced back to the finite bandwidth of the laser pulse. A folding model accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  15. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...

  16. Carcinogenesis related to intense pulsed light and UV exposure

    DEFF Research Database (Denmark)

    Hedelund, L; Lerche, C; Wulf, H C;

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...

  17. Thomson scattering in high-intensity chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Holkundkar, Amol R., E-mail: amol.holkundkar@pilani.bits-pilani.ac.in [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 (India); Harvey, Chris, E-mail: christopher.harvey@chalmers.se; Marklund, Mattias, E-mail: mattias.marklund@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  18. Microsecond pulse width, intense, light-ion beam accelerator

    Science.gov (United States)

    Rej, D. J.; Bartsch, R. R.; Davis, H. A.; Faehl, R. J.; Greenly, J. B.; Waganaar, W. J.

    1993-10-01

    A relatively long-pulse width (0.1-1 μs) intense ion beam accelerator has been built for materials processing applications. An applied Br, magnetically insulated extraction ion diode with dielectric flashover ion source is installed directly onto the output of a 1.2 MV, 300-kJ Marx generator. The diode is designed with the aid of multidimensional particle-in-cell simulations. Initial operation of the accelerator at 0.4 MV indicates satisfactory performance without the need for additional pulse shaping. The effect of a plasma opening switch on diode behavior is considered.

  19. Two-photon Compton process in pulsed intense laser fields

    CERN Document Server

    Seipt, D

    2012-01-01

    Based on strong-field QED in the Furry picture we use the Dirac-Volkov propagator to derive a compact expression for the differential emission probability of the two-photon Compton process in a pulsed intense laser field. The relation of real and virtual intermediate states is discussed, and the natural regularization of the on-shell contributions due to the finite laser pulse is highlighted. The inclusive two-photon spectrum is two orders of magnitude stronger than expected from a perturbative estimate.

  20. Intense Pulsed Neutron Source progress report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Schriesheim, Alan

    1991-01-01

    The IPNS Progress Report 10th Anniversary Edition is being published in recognition of the first ten years of successful IPNS operation. To emphasize the significance of this milestone, we wanted this report to stand apart from the previous IPNS Progress Reports, and the best way to do this, we thought, was to make the design and organization of the report significantly different. In their articles, authors were asked to emphasize not only advances made since IPNS began operating but also the groundwork that was laid at its predecessor facilities - Argonne's ZING-P and ZING-P' prototype pulsed neutron sources and CP-5 reactor. Each article stands as a separate chapter in the report, since each represents a particular instrument or class of instruments, system, technique, or area of research. In some cases, contributions were similar to review articles in scientific journals, complete with extensive lists of references. Ten-year cumulative lists of members of IPNS committees and of scientists who have visited or done experiments at IPNS were assembled. A list of published and in press'' articles in journals, books, and conference proceedings, resulting from work done at IPNS during the past ten years, was compiled. And archival photographs of people and activities during the ten-year history of IPNS were located and were used liberally throughout the report. The titles of the chapters in this report are: accelerator; computer; radiation effects; powder; stress; single crystal; superconductivity; amorphous; small angle; reflection; quasielastic; inelastic; inelastic magnetic; deep inelastic; user program; the future; and publications.

  1. Higgs mode excitation in superconductors by intense terahertz pulse

    Science.gov (United States)

    Matsunaga, Ryusuke; Shimano, Ryo

    2016-05-01

    Recent development of intense terahertz (THz) pulse generation technique has offered novel opportunities to reveal ultrafast phenomena in a variety of materials on tabletop experiments and provided a new pathway toward ultrafast control of quantum phases. Here we present our recent study of nonequilibrium dynamics in metallic superconductors NbN excited by intense THz pulse. Since the superconducting gap energy is located in the THz frequency range, the intense THz pulse excitation makes it possible to instantaneously excite high-density quasiparticles at the gap edge without injecting excess energies. It has also become possible to coherently drive the superconducting ground state without exciting incoherent quasiparticles by tuning the pump frequency below the gap energy. The ultrafast dynamics of the order parameter induced by such an intense low energy excitation is directly probed, and the nature of a collective excitation, namely the Higgs amplitude mode, is revealed. Efficient THz higher-harmonic generation from a superconductor is discovered, manifesting the nonlinear coupling between the THz wave and the Higgs mode. We also report the experimental results in a multi-gap superconductor MgB2.

  2. Plasma heating and current drive using intense, pulsed microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.; Bonoli, P.T.; Porkolab, M.

    1988-01-01

    The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulses and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.

  3. SiPM response to long and intense light pulses

    Science.gov (United States)

    Vinogradov, S.; Arodzero, A.; Lanza, R. C.; Welsch, C. P.

    2015-07-01

    Recently Silicon Photomultipliers (SiPMs) have become well recognized as the detector of choice for various applications which demand good photon number resolution and time resolution of short weak light pulses in the nanosecond time scale. In the case of longer and more intensive light pulses, SiPM performance gradually degrades due to dark noise, afterpulsing, and non-instant cell recovering. Nevertheless, SiPM benefits are expected to overbalance their drawbacks in applications such as X-ray cargo inspection using Scintillation-Cherenkov detectors and accelerator beam loss monitoring with Cherenkov fibres, where light pulses of a microsecond time scale have to be detected with good amplitude and timing resolution in a wide dynamic range of 105-106. This report is focused on transient characteristics of a SiPM response on a long rectangular light pulse with special attention to moderate and high light intensities above the linear dynamic range. An analytical model of the transient response and an initial consideration of experimental results in comparison with the model are presented.

  4. Coherent combs in ionization by intense and short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Krajewska, K., E-mail: Katarzyna.Krajewska@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland); Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588-0299 (United States); Kamiński, J.Z., E-mail: Jerzy.Kaminski@fuw.edu.pl [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa (Poland)

    2016-03-22

    Photoionization of positive ions by a train of intense, short laser pulses is investigated within the relativistic strong field approximation, using the velocity gauge. The formation of broad peak structures in the high-energy domain of photoelectrons is observed and interpreted. The emergence of coherent photoelectron energy combs within these structures is demonstrated, and it is interpreted as the consequence of the Fraunhofer-type interference/diffraction of probability amplitudes of ionization from individual pulses comprising the train. Extensions to the coherent angular combs are also studied, and effects related to the radiation pressure are presented. - Highlights: • We develop relativistic Strong-Field Approximation for ionization by intense and short laser pulses of arbitrary spectral compositions. • We show that the consistent interpretation of results is provided by the Keldysh-type saddle point analysis of probability amplitudes. • We derive a general Fraunhofer-type interference/diffraction formula for finite train of pulses. • We study the coherent combs in photoelectron probability distributions.

  5. Propagation of Plasma Generated by Intense Pulsed Ion Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    WU Di; GONG Ye; LIU Jin-Yuan; WANG Xiao-Gang; LIU Yue; MA Teng-Cai

    2006-01-01

    @@ Taking the calculation results based on the established two-dimensional ablation model of the intense-pulsed-ion-beam (IPIB) irradiation process as initial conditions, we build a two-dimensional hydrodynamic ejection model of plasma produced by an IPIB-irradiated metal titanium target into ambient gas. We obtain the conclusions that shock waves generate when the background pressure is around 133 mTorr and also obtain the plume splitting phenomenon that has been observed in the experiments.

  6. Short-pulse high intensity laser thin foil interaction

    Science.gov (United States)

    Audebert, Patrick

    2003-10-01

    The technology of ultrashort pulse laser generation has progressed to the point that optical pulses larger than 10 J, 300 fs duration or shorter are routinely produced. Such pulses can be focused to intensities exceeding 10^18 W/cm^2. With high contrast pulses, these focused intensities can be used to heat solid matter to high temperatures with minimal hydrodynamic expansion, producing an extremely high energy-density state of matter for a short period of time. This high density, high temperature plasma can be studied by x-ray spectroscopy. We have performed experiments on thin foils of different elements under well controlled conditions at the 100 Terawatt laser at LULI to study the characteristics X-ray emission of laser heated solids. To suppress the ASE effect, the laser was frequency doubled. S-polarized light with a peak intensity of 10^19W/cm^2 was used to minimize resonance absorption. To decrease the effect of longitudinal temperature gradients very thin (800 μ) aluminum foil targets were used. We have also studied the effect of radial gradient by limiting the measured x-ray emission zone using 50μ or 100μ pinhole on target. The spectra, in the range 7-8Å, were recorded using a conical crystal spectrometer coupled to a 800 fs resolution streak camera. A Fourier Domain Interferometry (FDI) of the back of the foil was also performed providing a measurement of the hydrodynamic expansion as function of time for each shot. To simulate the experiment, we used the 1D hydrodynamic code FILM with a given set of plasma parameter (ρ, Te) as initial conditions. The X-ray emission was calculated by post processing hydrodynamic results with a collisional-radiative model which uses super-configuration average atomic data. The simulation reproduces the main features of the experimental time resolved spectrum.

  7. Timing control of an intense picosecond pulse laser to the SPring-8 synchrotron radiation pulses

    Science.gov (United States)

    Tanaka, Yoshihito; Hara, Toru; Kitamura, Hideo; Ishikawa, Tetsuya

    2000-03-01

    We have developed a control system to synchronize intense picosecond laser pulses to the hard x-ray synchrotron radiation (SR) pulses of SPring-8. A regeneratively amplified mode-locked Ti:sapphire laser is synchronized to 40 ps SR pulses by locking the laser to the radio frequency of the ring. The synchronization of the pulses is monitored by detecting both beams simultaneously on a gold photocathode of a streak camera. This method enabled us to make a precise measurement of the time interval between the beams, even if the trigger of the streak camera drifts. Synchronization between the laser and the SR pulses has been achieved with a precision of ±2 ps for some hours. The stable timing control ensures the possibility of making two-photon excitation and pump-probe experiments with time resolution of a few tens of ps (limited by the pulse duration of the SR). We have used this system to show that closing undulator gaps in the storage ring shifts the arrival time of the SR pulses, in accord with expectations for the increased power loss.

  8. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, Christine Ann [Univ. of California, Davis, CA (United States)

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 1016 W/cm2 laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by Lplasma ≥ 2LRayleigh > cτ. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (no ≤ 0.05ncr). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in ω-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  9. The interaction of intense subpicosecond laser pulses with underdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Coverdale, C.A.

    1995-05-11

    Laser-plasma interactions have been of interest for many years not only from a basic physics standpoint, but also for their relevance to numerous applications. Advances in laser technology in recent years have resulted in compact laser systems capable of generating (psec), 10{sup 16} W/cm{sup 2} laser pulses. These lasers have provided a new regime in which to study laser-plasma interactions, a regime characterized by L{sub plasma} {ge} 2L{sub Rayleigh} > c{tau}. The goal of this dissertation is to experimentally characterize the interaction of a short pulse, high intensity laser with an underdense plasma (n{sub o} {le} 0.05n{sub cr}). Specifically, the parametric instability known as stimulated Raman scatter (SRS) is investigated to determine its behavior when driven by a short, intense laser pulse. Both the forward Raman scatter instability and backscattered Raman instability are studied. The coupled partial differential equations which describe the growth of SRS are reviewed and solved for typical experimental laser and plasma parameters. This solution shows the growth of the waves (electron plasma and scattered light) generated via stimulated Raman scatter. The dispersion relation is also derived and solved for experimentally accessible parameters. The solution of the dispersion relation is used to predict where (in k-space) and at what frequency (in {omega}-space) the instability will grow. Both the nonrelativistic and relativistic regimes of the instability are considered.

  10. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  11. Generation of Intense THz Pulsed Lasers Pumped Strongly by CO2 Pulsed Lasers

    Institute of Scientific and Technical Information of China (English)

    QI Chun-Chao; CHENG Zu-Hai

    2009-01-01

    A theoretical method dealing with two intense laser fields interacting with a three-level molecular system is proposed.A discussion is presented on the properties of the solutions for time-independent and time-dependent absorption coefficients and gain coemcient on resonance for strong laser fields,based on analytic evaluation of the rate equations for a homogeneously broadened,three-level molecular system.The pump intensity range can be estimated according to the analytic expression of pump saturation intensity.The effects of pulse width,gas pressure and path length on the energy absorbed from pump light are studied theoretically.The results can be applied to the analysis of pulsed,optically pumped terahertz lasers.

  12. Atomistic Simulations of High-intensity XFEL Pulses on Diffractive Imaging of Nano-sized System Dynamics

    Science.gov (United States)

    Ho, Phay; Knight, Christopher; Bostedt, Christoph; Young, Linda; Tegze, Miklos; Faigel, Gyula

    2016-05-01

    We have developed a large-scale atomistic computational method based on a combined Monte Carlo and Molecular Dynamics (MC/MD) method to simulate XFEL-induced radiation damage dynamics of complex materials. The MD algorithm is used to propagate the trajectories of electrons, ions and atoms forward in time and the quantum nature of interactions with an XFEL pulse is accounted for by a MC method to calculate probabilities of electronic transitions. Our code has good scalability with MPI/OpenMP parallelization, and it has been run on Mira, a petascale system at the Argonne Leardership Computing Facility, with particle number >50 million. Using this code, we have examined the impact of high-intensity 8-keV XFEL pulses on the x-ray diffraction patterns of argon clusters. The obtained patterns show strong pulse parameter dependence, providing evidence of significant lattice rearrangement and diffuse scattering. Real-space electronic reconstruction was performed using phase retrieval methods. We found that the structure of the argon cluster can be recovered with atomic resolution even in the presence of considerable radiation damage. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

  13. Pulsed spallation Neutron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.M. [Argonne National Lab., IL (United States)

    1994-12-31

    This paper reviews the early history of pulsed spallation neutron source development at Argonne and provides an overview of existing sources world wide. A number of proposals for machines more powerful than currently exist are under development, which are briefly described. The author reviews the status of the Intense Pulsed Neutron Source, its instrumentation, and its user program, and provides a few examples of applications in fundamental condensed matter physics, materials science and technology.

  14. Carcinogenesis related to intense pulsed light and UV exposure

    DEFF Research Database (Denmark)

    Hedelund, L; Lerche, C; Wulf, H C;

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...... observation period. Side effects were evaluated clinically. No tumors appeared in untreated control mice or in just IPL-treated mice. Skin tumors developed in UV-exposed mice independently of IPL treatments. The time it took for 50% of the mice to first develop skin tumor ranged from 47 to 49 weeks...

  15. Semi-classical beam cooling in an intense laser pulse

    CERN Document Server

    Yoffe, Samuel R; Noble, Adam; Jaroszynski, Dino A

    2014-01-01

    We present a novel technique for studying the evolution of a particle distribution using single particle dynamics such that the distribution can be accurately reconstructed using fewer particles than existing approaches. To demonstrate this, the Landau-Lifshiftz description of radiation reaction is adapted into a semi-classical model, for which the Vlasov equation is intractable. Collision between an energetic electron bunch and high-intensity laser pulses are then compared using the two theories. Reduction in beam cooling is observed for the semi-classical case.

  16. Ionization of molecular hydrogen in ultrashort intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Vanne, Yulian V.

    2010-03-18

    A novel ab initio numerical approach is developed and applied that solves the time-dependent Schroedinger equation describing two-electron diatomic molecules (e.g. molecular hydrogen) exposed to an intense ultrashort laser pulse. The method is based on the fixed-nuclei and the non-relativistic dipole approximations and aims to accurately describe both correlated electrons in full dimensionality. The method is applicable for a wide range of the laser pulse parameters and is able to describe both few-photon and many-photon single ionization processes, also in a non-perturbative regime. A key advantage of the method is its ability to treat the strong-field response of the molecules with arbitrary orientation of the molecular axis with respect to the linear-polarized laser field. Thus, this work reports on the first successful orientation-dependent analysis of the multiphoton ionization of H{sub 2} performed by means of a full-dimensional numerical treatment. Besides the investigation of few-photon regime, an extensive numerical study of the ionization by ultrashort frequency-doubled Ti:sapphire laser pulses (400 nm) is presented. Performing a series of calculations for different internuclear separations, the total ionization yields of H{sub 2} and D{sub 2} in their ground vibrational states are obtained for both parallel and perpendicular orientations. A series of calculations for 800 nm laser pulses are used to test a popular simple interference model. Besides the discussion of the ab initio numerical method, this work considers different aspects related to the application of the strong-field approximation (SFA) for investigation of a strong-field response of an atomic and molecular system. Thus, a deep analysis of the gauge problem of SFA is performed and the quasistatic limit of the velocity-gauge SFA ionization rates is derived. The applications of the length-gauge SFA are examined and a recently proposed generalized Keldysh theory is criticized. (orig.)

  17. Understanding Cavitation Intensity through Pitting and Pressure Pulse Analysis

    Science.gov (United States)

    Jayaprakash, A.; Singh, S.; Choi, J.-K.; Chahine, G.

    2011-11-01

    Cavitation erosion is of interest to the designers of ship propulsion devices because of its detrimental effects. One of the difficulties of predicting cavitation erosion is that the intensity of cavitation is not well predicted or defined. In this work we attempt to define the intensity of a cavitation erosion field through analysis of cavitation induced erosion pits and pressure pulses. In the pitting tests, material samples were subjected to cavitation field for a short duration of time selected within the test sample's incubation period, so that the test sample undergoes plastic deformation only. The sample material reacts to these cavitation events by undergoing localized permanent deformation, called pits. The resulting pitted sample surfaces were then optically scanned and analyzed. The pressure signals under cavitating jets and ultrasonic horns, for different conditions, were experimentally recorded using high frequency response pressure transducers. From the analysis of the pitting data and recorded pressure signals, we propose a model that describes the statistics, which in the future can be used to define the cavitation field intensity. Support for this work was provided by Office of Naval Research (ONR) under contract number N00014-08-C-0450, monitored by Dr. Ki-Han Kim.

  18. A transparent vacuum window for high-intensity pulsed beams

    CERN Document Server

    Monteil, M; Veness, R

    2011-01-01

    The HiRadMat (High-Radiation to Materials) facility Ill will allow testing of accelerator components, in particular those of the Large Hadron Collider (LHC) at CERN, under the impact of high-intensity pulsed beams. To reach this intensity range, the beam will be focused on a focal point where the target to be tested is located. A 60 mm aperture vacuum window will separate the vacuum of the beam line which is kept under high vacuum 10(-8) mbar, from the test area which is at atmospheric pressure. This window has to resist collapse due to beam passage. The high-intensity of the beam means that typical materials used for standard vacuum windows (such as stainless steel, aluminium and titanium alloy) cannot endure the energy deposition induced by the beam passage. Therefore, a vacuum window has been designed to maintain the differential pressure whilst resisting collapse due to the beam impact on the window. In this paper, we will present calculations of the energy transfer from beam to window, the design of the ...

  19. Granulomatous tattoo reaction induced by intense pulse light treatment.

    Science.gov (United States)

    Tourlaki, Athanasia; Boneschi, Vinicio; Tosi, Diego; Pigatto, Paolo; Brambilla, Lucia

    2010-10-01

    Cosmetic tattooing involves implantation of pigments into the dermis in order to create a permanent makeup. Here, we report a case of sarcoidal granulomatous reaction to old cosmetic tattoos after an intense pulsed light (IPL) treatment for facial skin rejuvenation. We consider this case as a peculiar example of photo-induced reaction to tattoo. In addition, we hypothesize that an underlying immune dysfunction was present, and acted as a predisposing factor for this unusual response, as the patient had suffered from an episode of acute pulmonary sarcoidosis 15 years before. Overall, our observation suggests that IPL treatment should be used cautiously in patients with tattoos, especially when a history of autoimmune disease is present.

  20. Evanescent-wave proton postaccelerator driven by intense THz pulse

    Science.gov (United States)

    Pálfalvi, L.; Fülöp, J. A.; Tóth, Gy.; Hebling, J.

    2014-03-01

    Hadron therapy motivates research dealing with the production of particle beams with ˜100 MeV/nucleon energy and relative energy fluctuation on the order of 1%. Laser-driven accelerators produce ion beams with only tens of MeV /nucleon energy and an extremely broad spectra. Here, a novel method is proposed for postacceleration and monochromatization of particles, leaving the laser-driven accelerator, by using intense THz pulses. It is based on further developing the idea of using the evanescent field of electromagnetic waves between a pair of dielectric crystals. Simple model calculations show that the energy of a proton bunch can be increased from 40 to 56 MeV in five stages and its initially broad energy distribution can be significantly narrowed down.

  1. Intense neutron pulse generation in dense Z-pinch

    Science.gov (United States)

    Bystritskii, V. M.; Glusko, Yu. A.; Mesyats, G. A.; Ratakhin, N. A.

    1989-12-01

    The problem of intense neutron pulse generation with fast dense Z-pinches (ZP) is analyzed for a modified approach. The analysis pertains to the interaction of a High Power Deuterium Beam (HPDB) with hot (Te≂1 keV) deuterium target formed by a ZP. The considerable decrease of the Coulomb ion-electron scattering cross-sections gives a corresponding increase of the deuterium range and neutron yield in the hot target. The generation of HPDB and ZP formation takes place at the same terawatt accelerator, by using in series with the ZP a plasma opening switch (POS), which is at the same time the Ion Plasma Filled Diode (IPFD). During the front of the current pulse the stable z-pinch implosion heats the ZP up to the keV temperature range with several kJ of energy input. Near the end of the current front the energy flow is being switched to HPDB generation due to the opening of the POS. The HPDB is focused ballistically at the axis of the ZP and transported along it in the azimutal magnetic field, producing a neutron burst. The analysis of ZP formation and heating, HPDB generation, its transport and neutron production is given.

  2. Infrared imaging diagnostics for intense pulsed electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao; Shen, Jie; Liu, Wenbin; Zhong, Haowen; Zhang, Jie; Zhang, Gaolong; Le, Xiaoyun, E-mail: xyle@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); International Research Center for Nuclei and Particles in the Cosmos, Beihang University, Beijing 100191 (China); Qu, Miao; Yan, Sha [Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China)

    2015-08-15

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-μm-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm{sup 2} and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung γ photons and the functional extensibility of the method were discussed in this work.

  3. Infrared imaging diagnostics for intense pulsed electron beam.

    Science.gov (United States)

    Yu, Xiao; Shen, Jie; Qu, Miao; Liu, Wenbin; Zhong, Haowen; Zhang, Jie; Yan, Sha; Zhang, Gaolong; Le, Xiaoyun

    2015-08-01

    Infrared imaging diagnostic method for two-dimensional calorimetric diagnostics has been developed for intense pulsed electron beam (IPEB). By using a 100-μm-thick tungsten film as the infrared heat sink for IPEB, the emitting uniformity of the electron source can be analyzed to evaluate the efficiency and stability of the diode system. Two-dimensional axisymmetric finite element method heat transfer simulation, combined with Monte Carlo calculation, was performed for error estimation and optimization of the method. The test of the method was finished with IPEB generated by explosive emission electron diode with pulse duration (FWHM) of 80 ns, electron energy up to 450 keV, and a total beam current of over 1 kA. The results showed that it is possible to measure the cross-sectional energy density distribution of IPEB with energy sensitivity of 0.1 J/cm(2) and spatial resolution of 1 mm. The technical details, such as irradiation protection of bremsstrahlung γ photons and the functional extensibility of the method were discussed in this work.

  4. The Effect of Chirped Intense Femtosecond Laser Pulses on the Argon Cluster

    Directory of Open Access Journals (Sweden)

    H. Ghaforyan

    2016-01-01

    Full Text Available The interaction of intense femtosecond laser pulses with atomic Argon clusters has been investigated by using nanoplasma model. Based on the dynamic simulations, ionization process, heating, and expansion of a cluster after irradiation by femtosecond laser pulses at intensities up to 2 × 1017 Wcm−2 are studied. The analytical calculation provides ionization rate for different mechanisms and time evolution of the density of electrons for different pulse shapes. In this approach, the strong dependence of laser intensity, pulse duration, and laser shape on the electron energy, the electron density, and the cluster size is presented using the intense chirped laser pulses. Based on the presented theoretical modifications, the effect of chirped laser pulse on the complex dynamical process of the interaction is studied. It is found that the energy of electrons and the radius of cluster for the negatively chirped pulses are improved up to 20% in comparison to the unchirped and positively chirped pulses.

  5. Generating long sequences of high-intensity femtosecond pulses

    CERN Document Server

    Bitter, Martin

    2015-01-01

    We present an approach to create pulse sequences extending beyond 150~picoseconds in duration, comprised of $100~\\mu$J femtosecond pulses. A quarter of the pulse train is produced by a high-resolution pulse shaper, which allows full controllability over the timing of each pulse. Two nested Michelson interferometers follow to quadruple the pulse number and the sequence duration. To boost the pulse energy, the long train is sent through a multi-pass Ti:Sapphire amplifier, followed by an external compressor. A periodic sequence of 84~pulses of 120~fs width and an average pulse energy of 107~$\\mu$J, separated by 2~ps, is demonstrated as a proof of principle.

  6. The effect of chirped intense femtosecond laser pulses on the Argon cluster

    CERN Document Server

    Ghaforyan, H; Irani, E

    2016-01-01

    The interaction of intense femtosecond laser pulses with atomic Argon clusters has been investigated by using nano-plasma model. Based on the dynamic simulations, ionization process, heating and expansion of a cluster after irradiation by femtosecond laser pulses at intensities up to 2*1017 Wcm-2 are studied. The analytical calculation provides ionization ratefor different mechanisms and time evolution of the density of electrons for different pulse shapes. In this approach the strong dependence of laser intensity, pulse duration and laser shape on the electron energy, the electron density and the cluster size are presented using the intense chirped laser pulses. Based on the presented theoretical modifications, the effect of chirped laser pulse on the complex dynamical process of the interaction is studied. It is found that the energy of electrons and the radius of cluster for the negatively chirped pulsesare improved up to 20% in comparison to the unchirped and positively chirped pulses.

  7. Kr photoionized plasma induced by intense extreme ultraviolet pulses

    Science.gov (United States)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.

    2016-04-01

    Irradiation of any gas with an intense EUV (extreme ultraviolet) radiation beam can result in creation of photoionized plasmas. The parameters of such plasmas can be significantly different when compared with those of the laser produced plasmas (LPP) or discharge plasmas. In this work, the photoionized plasmas were created in a krypton gas irradiated using an LPP EUV source operating at a 10 Hz repetition rate. The Kr gas was injected into the vacuum chamber synchronously with the EUV radiation pulses. The EUV beam was focused onto a Kr gas stream using an axisymmetrical ellipsoidal collector. The resulting low temperature Kr plasmas emitted electromagnetic radiation in the wide spectral range. The emission spectra were measured either in the EUV or an optical range. The EUV spectrum was dominated by emission lines originating from Kr III and Kr IV ions, and the UV/VIS spectra were composed from Kr II and Kr I lines. The spectral lines recorded in EUV, UV, and VIS ranges were used for the construction of Boltzmann plots to be used for the estimation of the electron temperature. It was shown that for the lowest Kr III and Kr IV levels, the local thermodynamic equilibrium (LTE) conditions were not fulfilled. The electron temperature was thus estimated based on Kr II and Kr I species where the partial LTE conditions could be expected.

  8. Low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments affect degeneration of cultured articular cartilage explants

    NARCIS (Netherlands)

    Tan, Lijun; Ren, Yijin; Kooten, van Theo G.; Grijpma, Dirk W.; Kuijer, Roel

    2015-01-01

    Purpose: Articular cartilage has some capacity for self-repair. Clinically used low-intensity pulsed ultrasound (LIPUS) and pulsed electromagnetic field (PEMF) treatments were compared in their potency to prevent degeneration using an explant model of porcine cartilage. Methods: Explants of porcine

  9. Optoelectronics Generation and Detection of Intense Terahertz Electromagnetic Pulses.

    Science.gov (United States)

    2007-11-02

    GaAs p-i-n diodes 19 C. Study of the physical mechanism of THz generation in bulk GaAs 19 D. Observation of Gunn Oscillation by triggering a vertical... Gunn diode with 25 femtosecond optical pulses IV. Tunable narrowband THz radiation 26 A. Chirped pulse beating 27 1. Optical cross-correlation...appropriately biased vertical transferred electron device ( Gunn diode ) with femtosecond optical pulses. " Investigation of the dynamics of photoinjected

  10. Forward acceleration and generation of femtosecond, megaelectronvolt electron beams by an ultrafast intense laser pulse

    Institute of Scientific and Technical Information of China (English)

    Xiaofang wang(王晓方); Quandong Wang(汪权东); Baifei Shen(沈百飞)

    2003-01-01

    We present a new mechanism of energy gain of electrons accelerated by a laser pulse. It is shown that when the intensity of an ultrafast intense laser pulse decreases rapidly along the direction of propagation, electrons leaving the pulse experience an action of ponderomotive deceleration at the descending part of a lower-intensity laser field than acceleration at the ascending part of a high-intensity field, thus gain net energy from the pulse and move directly forward. By means of such a mechanism, a megaelectronvolt electron beam with a bunch length shorter than 100 fs could be realized with an ultrafast (≤30 fs),intense (>1019 W/cm2) laser pulse.

  11. Pulsed-low intensity ultrasound enhances extracellular matrix production by fibroblasts encapsulated in alginate

    Directory of Open Access Journals (Sweden)

    Siti PM Bohari

    2012-12-01

    Full Text Available In this study, the effect of pulsed-low intensity ultrasound on cell proliferation, collagen production and glycosaminoglycan deposition by 3T3 fibroblasts encapsulated in alginate was evaluated. Hoechst 33258 assay for cell number, hydroxyproline assay for collagen content and dimethylamine blue assay for glycosaminoglycan content were performed on samples from cell cultures treated with pulsed-low intensity ultrasound and a control group. Pulsed-low intensity ultrasound shows no effect on cell proliferation, while collagen and glycosaminoglycan contents were consistently higher in the samples treated with pulsed-low intensity ultrasound, showing a statistically significant difference (p < 0.05 on day 10. Alcian blue staining showed that glycosaminoglycans were deposited around the cells in both groups. These results suggest that pulsed-low intensity ultrasound shows no effect on cell proliferation but has potential for inducing collagen and glycosaminoglycan production in cells cultured in alginate gels.

  12. Ramsey-comb spectroscopy with intense ultrashort laser pulses

    CERN Document Server

    Morgenweg, Jonas; Eikema, Kjeld S E

    2014-01-01

    Optical frequency combs based on mode-locked lasers have revolutionised the field of metrology and precision spectroscopy by providing precisely calibrated optical frequencies and coherent pulse trains. Amplification of the pulsed output from these lasers is very desirable, as nonlinear processes can then be employed to cover a much wider range of transitions and wavelengths for ultra-high precision, direct frequency comb spectroscopy. Therefore full repetition rate laser amplifiers and enhancement resonators have been employed to produce up to microjoule-level pulse energies. Here we show that the full frequency comb accuracy and resolution can be obtained by using only two frequency comb pulses amplified to the millijoule pulse energy level, orders of magnitude more energetic than what has previously been possible. The novel properties of this approach, such as cancellation of optical light-shift effects, is demonstrated on weak two-photon transitions in atomic rubidium and caesium, thereby improving the fr...

  13. Dopant induced ignition of helium nanodroplets in intense few-cycle laser pulses

    CERN Document Server

    Krishnan, S R; Kremer, M; Sharma, V; Fischer, B; Camus, N; Jha, J; Krishnamurthy, M; Pfeifer, T; Moshammer, R; Ullrich, J; Stienkemeier, F; Mudrich, M; Mikaberidze, A; Saalmann, U; Rost, J -M

    2011-01-01

    We demonstrate ultrafast resonant energy absorption of rare-gas doped He nanodroplets from intense few-cycle (~10 fs) laser pulses. We find that less than 10 dopant atoms "ignite" the droplet to generate a non-spherical electronic nanoplasma resulting ultimately in complete ionization and disintegration of all atoms, although the pristine He droplet is transparent for the laser intensities applied. Our calculations at those intensities reveal that the minimal pulse length required for ignition is about 9 fs.

  14. Measurement and compensation schemes for the pulse front distortion of ultra-intensity ultra-short laser pulses

    Science.gov (United States)

    Wu, Fenxiang; Xu, Yi; Yu, Linpeng; Yang, Xiaojun; Li, Wenkai; Lu, Jun; Leng, Yuxin

    2016-11-01

    Pulse front distortion (PFD) is mainly induced by the chromatic aberration in femtosecond high-peak power laser systems, and it can temporally distort the pulse in the focus and therefore decrease the peak intensity. A novel measurement scheme is proposed to directly measure the PFD of ultra-intensity ultra-short laser pulses, which can work not only without any extra struggle for the desired reference pulse, but also largely reduce the size of the required optical elements in measurement. The measured PFD in an experimental 200TW/27fs laser system is in good agreement with the calculated result, which demonstrates the validity and feasibility of this method effectively. In addition, a simple compensation scheme based on the combination of concave lens and parabolic lens is also designed and proposed to correct the PFD. Based on the theoretical calculation, the PFD of above experimental laser system can almost be completely corrected by using this compensator with proper parameters.

  15. Fifty Cases of Chloasma Treated by Acupuncture plus Intensive Pulse Light Irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To observe the clinical therapeutic effect of acupuncture plus intensive pulse light irradiation on chloasma. Methods: Ninety-six cases of chloasma were randomly divided into two groups, the control group of 46 cases treated by simple acupuncture and the treatment group of 50 cases treated by acupuncture and intensive pulse light irradiation. Results: The total effective rate was 89.1% and 98.0% in the control group and treatment group respectively, with a significant difference between the two groups (P<0.05). Conclusion: For chloasma, the effect of treatment with acupuncture plus intensive pulse light irradiation is superior to that with simple acupuncture.

  16. Long-pulse operation of an intense negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Takeiri, Yasuhiko; Osakabe, Masaki; Tsumori, Katsuyoshi; Kaneko, Osamu; Oka, Yoshihide; Asano, Eiji; Kawamoto, Toshikazu; Akiyama, Ryuichi; Kuroda, Tsutomu [National Inst. for Fusion Science, Nagoya (Japan)

    1997-02-01

    In the National Institute for Fusion Science, as the heating system for the Large Helical Device (LHD), the negative ion NBI system of 20 MW incident power has been planned, and the development of a large current, large size negative ion source has been advanced. Based on the results obtained so far, the design of the LHD-NBI system was reconsidered, and the specification of the actual negative ion source was decided as 180 KeV-40A. This time, the grounding electrode with heightened heat removal capacity was made, and the long pulse operation was attempted, therefore, its results are reported. The structure of the external magnetic filter type large negative ion source used for the long pulse experiment is explained. In order to form the negative ion beam of long pulses, it is necessary to form stable are discharge plasma for long time, and variable resistors were attached to the output side of arc power sources of respective filament systems. By adjusting the resistors, uniform are discharge was able to be caused for longer than 10 s stably. The results of the long pulse experiment are reported. The dependence of the characteristics of negative ion beam on plasma electrode temperature was small, and the change of the characteristics of negative ion beam due to beam pulse width was not observed. (K.I.)

  17. Application of High Intensity THz Pulses for Gas High Harmonic Generation

    CERN Document Server

    Balogh, Emeric; Hebling, János; Dombi, Péter; Farkas, Győző; Varjú, Katalin

    2013-01-01

    The main effects of an intense THz pulse on gas high harmonic generation are studied via trajectory analysis on the single atom level. Spectral and temporal modifications to the generated radiation are highlighted.

  18. Difference frequency generation of femtosecond mid infrared pulses employing intense Stokes pulses excitation in a photonic crystal fiber.

    Science.gov (United States)

    Yao, Yuhong; Knox, Wayne H

    2012-11-05

    We demonstrate a novel method of generating milli-watt level mid-IR (MIR) pulses based on difference frequency mixing of the output from a 40 MHz Yb fiber Chirped Pulse Amplifier (CPA) and the intense Stokes pulses generated in a photonic crystal fiber (PCF) with two closely spaced zero dispersion wavelengths (ZDW). By taking advantage of the unique dispersion profile of the fiber, high power narrowband Stokes pulses are selectively generated in the normal dispersion region of the PCF with up to 1.45 nJ of pulse energy. Mixing with 12 nJ of pump pulses at 1035 nm in a type-II AgGaS(2) crystal yields MIR pulses around 5.5 µm wavelength with up to 3 mW of average power and 75 pJ of pulse energy. The reported method can be extended to generation of other MIR wavelengths by selecting PCFs with different second ZDWs or engineering the fiber dispersion profile via longitudinal tapering.

  19. Pondermotive absorption of a short intense laser pulse in a non-uniform plasma

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.A.; Platonov, K.Yu. [Inst. for Laser Physics, SC `Vavilov State Optical Inst.` 12, Birzhevaya line, St Petersburg (Russian Federation); Tanaka, K.A.

    1998-03-01

    An analytical description of the pondermotive absorption mechanism at a short high intense laser pulse interaction with a strong inhomogeneous plasma is presented. The optimal conditions for the maximum of resonance absorption of laser pulse interaction with non-uniform plasma at normal incidence are founded. (author)

  20. Modulation of ionization on laser frequency in ultra-short pulse intense laser-gas-target

    Institute of Scientific and Technical Information of China (English)

    Hu Qiang-Lin; Liu Shi-Bing

    2006-01-01

    Based on the dispersion relation of intense laser pulse propagating in gradually ionized plasma, this paper discusses the frequency modulation induced by ionization of an ultra-short intense laser pulse interacting with a gas target.The relationship between the frequency modulation and the ionization rate, the plasmas frequency variation, and the polarization of atoms (ions) is analysed. The numerical results indicate that, at high frequency, the polarization of atoms (ions) plays a more important role than plasma frequency variation in modulating the laser frequency, and the laser frequency variation is different at different positions of the laser pulse.

  1. Nonlinear Characteristics of an Intense Laser Pulse Propagating in Partially Stripped Plasmas

    Institute of Scientific and Technical Information of China (English)

    HU Qiang-Lin; LIU Shi-Bing; CHEN Tao; JIANG Yi-Jian

    2005-01-01

    The nonlinear optic characteristics of an intense laser pulse propagating in partially stripped plasmas are investigated analytically. The phase and group velocity of the laser pulse propagation as well as the three general expressions governing the nonlinear optic behavior, based on the photon number conservation, are obtained by considering the partially stripped plasma as a nonlinear optic medium. The numerical result shows that the presence of the bound electrons in partially stripped plasma can significantly change the propagating property of the intense laser pulse.

  2. Phase Determination Method to Directly Measure Intensity and Frequency of Temporal Profiles of Attosecond EUV Pulses

    Institute of Scientific and Technical Information of China (English)

    GE Yu-Cheng

    2005-01-01

    @@ A new method of phase determination is presented to directly measure the intensity and frequency temporalprofiles of attosecond EUV pulses. The profiles can be reconstructed from the photoelectron energy spectra measured with two different laser intensities at 0° and 180° with respect to the linear laser polarization using a cross correlation between the femtosecond laser and the attosecond EUV. The method has a temporal measurement range from a quarter to about half of a laser oscillation period. The time resolution depends on the jitter and control precision of laser and EUV pulses. This method improves the time resolution in measuring attosecond EUV pulses.

  3. Intense ultrashort pulse generation using the JAERI far-infrared free electron laser

    CERN Document Server

    Nagai, R; Nishimori, N; Kikuzawa, N; Sawamura, M; Minehara, E J

    2002-01-01

    An intense ultrashort optical pulse has been quasi-continuously generated using a superconducting RF linac-based free-electron laser at a wavelength of 22.5 mu m. The pulse shape and width are measured by second-order optical autocorrelation with a birefringent Te crystal. At synchronism of the optical resonator, the pulse shape is a smooth single pulse with an FWHM width of 255 fs and energy of 74 mu J. A train of subpulses is developed by increasing the desynchronism of the optical resonator. The measured results are in good agreement with numerical simulation.

  4. Rotational excitation of molecules with long sequences of intense femtosecond pulses

    CERN Document Server

    Bitter, M

    2016-01-01

    We investigate the prospects of creating broad rotational wave packets by means of molecular interaction with long sequences of intense femtosecond pulses. Using state-resolved rotational Raman spectroscopy of oxygen, subject to a sequence of more than 20 laser pulses with peak intensities exceeding $10^{13}$ W/cm$^{2}$ per pulse, we show that the centrifugal distortion is the main obstacle on the way to reaching high rotational states. We demonstrate that the timing of the pulses can be optimized to partially mitigate the centrifugal limit. The cumulative effect of a long pulse sequence results in high degree of rotational coherence, which is shown to cause an efficient spectral broadening of probe light via cascaded Raman transitions.

  5. Wakefield Resonant Excitation by Intense Laser Pulse in Capillary Plasma%Wakefield Resonant Excitation by Intense Laser Pulse in Capillary Plasma

    Institute of Scientific and Technical Information of China (English)

    周素云; 袁孝; 刘明萍

    2012-01-01

    The laser-induced plasma wakefield in a capillary is investigated on the basis of a simple two-dimensional analytical model. It is shown that as an intense laser pulse reshaped by the capillary wall propagates in capillary plasma, it resonantly excites a strong wakefield if a suitable laser pulse width and capillary radius are chosen for a certain plasma density. The dependence of the laser width and capillary radius on the plasma density for resonance conditions is considered. The wakefield amplitude and longitudinal scale of bubbles in capillary plasma are much larger than those in unbounded plasma, so the capillary guided plasma wakefield is more favorable to electron acceleration.

  6. Ionization Induced Scattering of Femtosecond Intense Laser Pulses in Cluster Plasmas

    Institute of Scientific and Technical Information of China (English)

    Wang Xiangxin; Wang Cheng; Liu Jiansheng; Li Shaohui; Ni Guoquan

    2005-01-01

    The 45° scattering of a femtosecond (60 fs) intense laser pulse with a 20 nm FWHM (the full width at half maximum) spectrum centered at 790 nm has been studied experimentally while focused in argon clusters at intensity ~ 1016 W/cra2. Scattering spectra under different backing pressures and laser-plasma interaction lengths were obtained, which showed spectral blueshifting, beam refraction and complex modulation. These ionization-induced effects reveal the modulation of laser pulses propagating in plasmas and the existing obstacle in laser cluster interaction at high laser intensity and high electron density.

  7. Experimental verification of the ablation pressure dependence upon the laser intensity at pulsed irradiation of metals

    Science.gov (United States)

    Krasyuk, I. K.; Semenov, A. Yu; Stuchebryukhov, I. A.; Khishchenko, K. V.

    2016-11-01

    Experiments for verification of a functional dependence of the ablation pressure on the irradiated surface of a target upon the laser intensity in a range from 1.2 to 350 TW/cm2 have been carried out. For that, at some intensities of the laser irradiation, time intervals between the laser pulse maximum and the moment of the shock-wave front arrival to the rear surface of the target were measured, which are dependent on the ablation pressure. Two schemes of the measurements were used. At the first scheme, at higher laser intensities, the front arrival moment is determined via an electron-optical camera when the rear surface begins glowing. At the second scheme, the front arrival moment is recorded when a probe laser pulse changes the character of the reflection by the rear surface of the irradiated target. Results of measurements are in agreement with the ablation pressure dependence upon the laser pulse intensity within 20%.

  8. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    Science.gov (United States)

    Kotaki, Hideyuki; Kando, Masaki; Oketa, Takatsugu; Masuda, Shinichi; Koga, James K.; Kondo, Shuji; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa

    2002-10-01

    We investigate a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 1018 cm-3 is measured with a time-resolved frequency domain interferometer (FDI). The results show an accelerating wakefield excitation of 20 GeV/m with good coherency. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results agree with the simulation results and linear theory. The pump-probe interferometer system of FDI will be modified to the optical injection system as a relativistic electron beam injector. In 1D particle in cell simulation we obtain results of high quality intense electron beam generation.

  9. Detection of vacuum birefringence using intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Luiten, Andre N. [School of Physics M013, University of Western Australia, Nedlands, Western Australia 6009 (Australia)]. E-mail: andre@physics.uwa.edu.au; Petersen, Jesse C. [School of Physics M013, University of Western Australia, Nedlands, Western Australia 6009 (Australia)

    2004-10-04

    We propose a novel technique that promises hope of being the first to directly detect a polarization of the quantum electrodynamic (QED) vacuum. The technique exploits the high fields associated with ultra-short pulses of light stored in low dispersion optical resonators. We show that the technique circumvents the need for large-scale liquid helium cooled magnets, and more importantly avoids the experimental pitfalls that plague existing experimental approaches that use these magnets. The new technique has a predicted birefringence measurement sensitivity of {delta}n{approx}10-20 in a 1 s measurement. Currently available optics and lasers will enable observation of vacuum polarization in an experiment of only a few days in duration.

  10. Detection of vacuum birefringence using intense laser pulses

    Science.gov (United States)

    Luiten, Andre N.; Petersen, Jesse C.

    2004-10-01

    We propose a novel technique that promises hope of being the first to directly detect a polarization of the quantum electrodynamic (QED) vacuum. The technique exploits the high fields associated with ultra-short pulses of light stored in low dispersion optical resonators. We show that the technique circumvents the need for large-scale liquid helium cooled magnets, and more importantly avoids the experimental pitfalls that plague existing experimental approaches that use these magnets. The new technique has a predicted birefringence measurement sensitivity of Δn∼10 in a 1 s measurement. Currently available optics and lasers will enable observation of vacuum polarization in an experiment of only a few days in duration.

  11. Spatiotemporal reshaping and compression of high intensity femtosecond pulses

    Science.gov (United States)

    Trunov, V. I.; Pestryakov, E. V.; Petrov, V. V.; Kirpichnikov, A. V.; Frolov, S. A.; Harenko, D. S.; Bagayev, S. N.

    2007-06-01

    Experimental results of self-compression of femtosecond pulses under filamentation in argon and xenon are presented. The mode of a self-compression in xenon is realized for the first time. The dependence of the spectrum broadening from pressure of these gases, input energy and focusing parameters are studied in detail. The spectral and temporary profiles of the first and the second filaments at multiple filamentation are analyzed. Features of multiple filamentation are revealed in xenon. For the first time experimentally the effect of restriction a number of filaments and effective swapping of energy from one filament to another (more than 70 % of energy in two-filament mode without increasing of their amount is founded). The possible mechanism of the phenomenon related with the saturation of the third order nonlinearity in xenon and influence of the higher fifth-order susceptibility χ (5) are discussed.

  12. Generation, shaping, compression, characterization and application of intense ultrashort laser pulses

    CERN Document Server

    Cheng, Z

    2001-01-01

    Recently, the development of intense ultrashort laser pulses has attracted much interest because of their significant applications in many fields of science and technology. This thesis contributes to the generation, shaping, compression, characterization and application of intense ultrashort laser pulses as follows: 1. Laser pulses of 17.5-fs with a peak power of 0.1-TW at 1-kHz repetition rate have been generated by a compact single-stage ten-pass Ti:sapphire amplifier system with a high-order-dispersion-mirror compensator and a spectral shaping for the first time. The experimental results are in reasonable agreement with numerical calculations. 2. The first experimental study on arbitrary shaping of intense ultrashort pulses has been conducted in a kHz amplifier system capable of generating 27 fs pulses by using an acousto-optic programmable dispersive filter (AOPDF). 17-fs transform-limited pulses have been achieved and arbitrary shaping of these 17-fs pulses has been demonstrated both in the temporal and ...

  13. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    CERN Document Server

    Kotaki, H

    2002-01-01

    We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. We need to understand and further employ some of these phenomena for our purposes. We measure self-focusing, filamentation, and the anomalous blueshift of the laser pulse. The ionization of gas with the self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We, however, have found different phenomenon. The laser spectrum shifts to fixed wavelength independent of the laser power and gas pressure above some critical power. We call the phenomenon 'anomalous blueshift'. The results are explained by the formation of filaments. An intense laser pulse can excite a laser wakefield in plasma. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 10 sup 1 sup 8 cm sup - sup 3 is mea...

  14. Intense pulsed light treatment of hirsutism: case reports of skin phototypes V and VI.

    Science.gov (United States)

    Johnson, F; Dovale, M

    1999-12-01

    Removal of unwanted hair is a common cosmetic concern. For hirsute women, treatment often requires drug therapy and various methods to physically remove the hair. Traditional methods of hair removal include shaving, waxing, tweezing, depilatory creams and electrolysis. Hair removal methods based on light technology, such as lasers and intense pulsed light systems, are alternative methods for longer-term hair removal. Intense pulsed light has been used in our clinic during the past 2 years to treat light-to-dark skinned patients, including skin types V and VI. We present here the treatment, using an intense pulsed light source, of three dark skinned patients with hirsutism. Patients were treated during multiple sessions (five to seven) for unwanted facial hair. Sessions were conducted monthly and patients were evaluated at follow-up sessions 2-7 months after the final treatment. Successful clearance of unwanted hair was achieved in all three patients with no pigmentary changes observed during the final follow-up sessions. Folliculitis and hyperpigmentation from tweezing were also treated by the intense pulsed light source. These results suggest that intense pulsed light is an effective source for hair removal and may, with proper parameter selection, be useful in the treatment of very dark skin types.

  15. The use of lasers and intense pulsed light sources for the treatment of pigmentary lesions.

    Science.gov (United States)

    Chan, H H L; Kono, T

    2004-10-01

    Lasers and intense pulsed light sources are frequently used for the treatment of pigmented lesions, and the appropriate selection of devices for different lesions is vital to achieving satisfactory clinical outcomes. In dark-skinned patients, the risk of post-inflammatory hyperpigmentation is of particular importance. In general, long-pulse laser and intense pulsed light sources can be effective with a low risk of post-inflammatory hyperpigmentation (PIH) when used for the treatment of lentigines. However, for dermal pigmentation and tattoo, Q-switched lasers are effective, with a lower risk of complications. In the removal of melanocytic nevi, a combined approach with a long-pulse pigmented laser and a Q-switched laser is particularly applicable.

  16. Pulse width effect on the dissociation probability of CH4+ in the intense femtosecond laser field

    Institute of Scientific and Technical Information of China (English)

    WANG Gao; SONG Di; LIU Yuyan; KONG Fan'ao

    2006-01-01

    The laser pulse width effect on the dissociation probability of CH4+ irradiated by an ultrafast laser has been investigated experimentally and theoretically. The femtosecond laser at 800 nm with an intensity of 8.0 × 1013 W/cm2 was used. The observed relative yield of the primary fragment ion CH3+ increases with increasing pulse width and tends to saturate when the pulse width is longer than 120 fs. The field-assisted dissociation (FAD) model and quasi-classical trajectory (QCT) calculation were applied to predicting the dissociation probability of CH4+.The calculated probability is corrected with the molecular orientation effect and the spatial distribution of laser intensity. The modified results show that the dissociation requires at least 23 fs and saturates with long pulse widths (≥100 rs). The result is approximately consistent with the experimental observation.

  17. High harmonic generation in underdense plasmas by intense laser pulses with orbital angular momentum

    Energy Technology Data Exchange (ETDEWEB)

    Mendonça, J. T., E-mail: josetitomend@gmail.com [IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal and Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP (Brazil); Vieira, J., E-mail: jorge.vieira@ist.utl.pt [GoLP, IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-12-15

    We study high harmonic generation produced by twisted laser pulses, with orbital angular momentum in the relativistic regime, for pulse propagation in underdense plasma. We consider fast time scale processes associated with an ultra-short pulse, where the ion motion can be neglected. We use both analytical models and numerical simulations using a relativistic particle-in-cell code. The present description is valid for relativistic laser intensities, when the normalized field amplitude is much larger than one, a ≫ 1. We also discuss two distinct processes associated with linear and circular polarization. Using both analytical solutions and particle-in-cell simulations, we are able to show that, for laser pulses in a well defined Laguerre-Gauss mode, angular momentum conservation is observed during the process of harmonic generation. Intensity modulation of the harmonic spectrum is also verified, as imposed by the nonlinear time-scale for energy transfer between different harmonics.

  18. Argonne Tandem Linac Accelerator System (ATLAS)

    Data.gov (United States)

    Federal Laboratory Consortium — ATLAS is a national user facility at Argonne National Laboratory in Argonne, Illinois. The ATLAS facility is a leading facility for nuclear structure research in the...

  19. Effects of low-intensity pulsed ultrasound in repairing injured articular cartilage

    Institute of Scientific and Technical Information of China (English)

    JIA Xiao-lin; CHEN Wen-zhi; ZHOU Kun; WANG Zhi-biao

    2005-01-01

    Objective: To investigate the effects of low-intensity pulsed ultrasound in repairing injured articular cartilage. Methods: Ten adult New Zealand rabbits with bilateral full-thickness osteochondral defects on the cartilage surface of intercondylar fossas were used in this study. The wounds in the left knees were treated with low-intensity pulsed ultrasound as the experimental group. The right knees received no treatment as the control group. All the animals were killed at 8 weeks after injury and the tissues in the wounds were collected for gross appearance grading, histological grading and proteoglycan quantity. Results: The scores of the gross appearance grades, histological grades and the optical density of toluidine blue of the tissues in the experimental group were significantly higher than those of the controls at 8 weeks after injury (P<0.05). Conclusions: Low-intensity pulsed ultrasound can accelerate the repair of injured articular cartilage.

  20. The role of lasers and intense pulsed light technology in dermatology

    Directory of Open Access Journals (Sweden)

    Husain Z

    2016-02-01

    Full Text Available Zain Husain,1 Tina S Alster1,2 1Department of Dermatology, Georgetown University Hospital, 2Washington Institute of Dermatologic Laser Surgery, Washington, DC, USA Abstract: The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. Keywords: laser, intense pulsed light, treatment, dermatology, technology

  1. Self-organization of high intensity laser pulses propagating in gases

    Energy Technology Data Exchange (ETDEWEB)

    Koga, James [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment

    2001-10-01

    In recent years the development of high intensity short pulse lasers has opened up wide fields of science which had previously been difficult to study. Recent experiments of short pulse lasers propagating in air have shown that these laser pulses can propagate over very long distances (up to 12 km) with little or no distortion of the pulse. Here we present a model of this propagation using a modified version of the self-organized criticality model developed for sandpiles by Bak, Tang, and Weisenfeld. The additions to the sandpile model include the formation of plasma which acts as a threshold diffusion term and self-focusing by the nonlinear index of refraction which acts as a continuous inverse diffusion. Results of this simple model indicate that a strongly self-focusing laser pulse shows self-organized critical behavior. (author)

  2. The role of lasers and intense pulsed light technology in dermatology

    Science.gov (United States)

    Husain, Zain; Alster, Tina S

    2016-01-01

    The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. PMID:26893574

  3. High-Energy Ions Emitted from Ar Clusters Irradiated by Intense Femtosecond Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    LI Zhong; LEI An-Le; NI Guo-Quan; XU Zhi-Zhan

    2000-01-01

    We have experimentally studied the energy spectra of Ar ions emitted from Ar clusters irradiated by intense femtosecond laser pulses. The Ar clusters were produced in the adiabatic expansion of Ar gas into vacuum at high backing pressures. The laser peak intensity was about 2×106 W/cm2 with a pulse duration of 45 fs. The maximum and the average energies of Ar ions are 0.2 MeV and 15kev at a backing pressure of 2. S MPa, respectively. They are almost independent of the backing pressures in the range of 0.6 to 4.5 MPa.

  4. Resonant femtosecond stimulated Raman spectroscopy with an intense actinic pump pulse: Application to conical intersections

    Science.gov (United States)

    Rao, B. Jayachander; Gelin, Maxim F.; Domcke, Wolfgang

    2017-02-01

    We theoretically investigate the feasibility of characterizing conical intersections with time-resolved resonant femtosecond stimulated Raman spectroscopy (FSRS) using an intense actinic pump pulse. We perform nonperturbative numerical simulations of FSRS signals for a three-electronic-state two-vibrational-mode model, which is inspired by the S 2 ( π π * )- S 1 ( n π * ) conical intersection in pyrazine. Our results show that moderately strong actinic pulses increase the intensity of vibrational fingerprint lines in FSRS transients. They facilitate the extraction of useful spectroscopic information by enhancing peaks revealing the coupling and tuning modes of the conical intersection.

  5. Enhancement of High-Intensity Focused Ultrasound Heating by Short-Pulse Generated Cavitation

    Directory of Open Access Journals (Sweden)

    Shin Yoshizawa

    2017-03-01

    Full Text Available A target tissue can be thermally coagulated in high-intensity focused ultrasound (HIFU treatment noninvasively. HIFU thermal treatments have been clinically applied to various solid tumors. One of the problems in HIFU treatments is a long treatment time. Acoustically driven microbubbles can accelerate the ultrasonic heating, resulting in the significant reduction of the treatment time. In this paper, a method named “trigger HIFU exposure” which employs cavitation microbubbles is introduced and its results are reviewed. A trigger HIFU sequence consists of high-intensity short pulses followed by moderate-intensity long bursts. Cavitation bubbles induced in a multiple focal regions by rapidly scanning the focus of high-intensity pulses enhanced the temperature increase significantly and produced a large coagulation region with high efficiency.

  6. Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles.

    Science.gov (United States)

    Sazgarnia, Ameneh; Shanei, Ahmad; Shanei, Mohammad Mahdi

    2014-01-01

    One of the most important challenges in medical treatment is invention of a minimally invasive approach in order to induce lethal damages to cancer cells. Application of high intensity focused ultrasound can be beneficial to achieve this goal via the cavitation process. Existence of the particles and vapor in a liquid decreases the ultrasonic intensity threshold required for cavitation onset. In this study, synergism of intense pulsed light (IPL) and gold nanoparticles (GNPs) has been investigated as a means of providing nucleation sites for acoustic cavitation. Several approaches have been reported with the aim of cavitation monitoring. We conducted the experiments on the basis of sonochemiluminescence (SCL) and chemical dosimetric methods. The acoustic cavitation activity was investigated by determining the integrated SCL signal acquired over polyacrylamide gel phantoms containing luminol in the presence and absence of GNPs in the wavelength range of 400-500 nm using a spectrometer equipped with cooled charged coupled devices (CCD) during irradiation by different intensities of 1 MHz ultrasound and IPL pulses. In order to confirm these results, the terephthalic acid chemical dosimeter was utilized as well. The SCL signal recorded in the gel phantoms containing GNPs at different intensities of ultrasound in the presence of intense pulsed light was higher than the gel phantoms without GNPs. These results have been confirmed by the obtained data from the chemical dosimetry method. Acoustic cavitation in the presence of GNPs and intense pulsed light has been suggested as a new approach designed for decreasing threshold intensity of acoustic cavitation and improving targeted therapeutic effects.

  7. Third-Order Harmonic Generation in Atmospheric Air with Focused Intense Femtosecond Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    朱长军; 秦元东; 杨宏; 王树峰; 龚旗煌

    2001-01-01

    Generation of third-order harmonics at 800 nm of femtosecond laser pulses is studied in neutral atmospheric air and in plasma of optical breakdown in air. Its efficiency is measured at different fundamental laser intensities. A maximum efficiency is observed at the intensity when optical breakdown in atmospheric air starts. The factors that exhibit the main effects on the harmonic generation, including self-focusing in a neutral air and self-focusing in plasma, are discussed.

  8. Interaction of intense femtosecond laser pulses with high-Z solids

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, A.; Sasaki, Akira; Utsumi, Takayuki; Fukumoto, Ichirou; Tajima, Toshiki [Advanced Photon Research Center, Kansai Research Establishment, Japan Atomic Energy Research Institute, Neyagawa, Osaka (Japan); Yoshida, Masatake [National Institute of Material and Chemical Research, Tsukuba, Ibaraki (Japan); Kondo, Kenichi [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama, Kanagawa (Japan)

    2000-03-01

    A plasma irradiated by an intense very short pulse laser can be an ultimate high brightness source of incoherent inner-shell X-ray emission of 1-30 keV. The recently developed 100 TW, 20 fs laser facility in JAERI can make considerable enhancement here. To show this a hybrid model combining hydrodynamics and collisional particle-in-cell simulations is applied. Effect of laser prepulse on the interaction of an intense s-polarized femtosecond, {approx}20/40 fs, laser pulse with high-Z solid targets is studied. A new absorption mechanism originating from the interaction of the laser pulse with plasma waves excited by the relativistic component of the Lorentz force is found to increase the absorption rate over 30% even for a very short laser pulse. The obtained hot electron temperature exceeds 0.5-1 MeV at optimal conditions for absorption. Results of the simulation for lower laser pulse intensities are in good agreement with the experimental measurements of the hot electron energy distribution. (author)

  9. Performance of Variable Duration STUD Pulses with Fixed Peal Intensity and their Compliments

    Science.gov (United States)

    Hüller, Stefan; Afeyan, Bedros

    2015-11-01

    The simplest approach to STUD pulse implementation, given the requisite bandwidth of the laser is to keep the peak spike intensities fixed while modulating the lasers on and off on a 1-10 ps time scale. To what extent spatial scrambling is required in this case is compared to cases where the peak spike intensity varies with the duty cycle at fixed pulse width, to preserve the energy of the overall laser pulse. We compare RPP/CPP, SSD and STUD pulses at fixed energy with both variable pulse width and fixed peak intensity configurations and vice versa. This allows us to highlight the effects of speckle statistics, memory accumulation and pump depletion in setting gain saturation levels from the ideal democratized, incoherent sums of small growth spurts equally from all regions of the plasma, vs localized and highly nonlinear growth and re-amplification due to the unchanging or much too slowly changing nature of the illumination strategy, such as RPP/CPP or SSD. Work supported by the DOE NNSA-OFES Joint Program on HEDLP.

  10. Low-intensity pulsed ultrasound affects RUNX2 immunopositive osteogenic cells in delayed clinical fracture healing

    NARCIS (Netherlands)

    Rutten, S.; Nolte, P.A.; Korstjens, C.M.; Klein-Nulend, J.

    2009-01-01

    Introduction: Osteogenic cell proliferation and differentiation play an important role in adequate fracture healing, and is target for osteoinductive therapies in delayed fracture healing. The aim of this study was to investigate whether low-intensity pulsed ultrasound enhances fracture healing at t

  11. The intense pulsed light systems : new treatment possibilities for vascular, pigmented lesions and hair removal

    NARCIS (Netherlands)

    C.A. Schroeter (Careen)

    2004-01-01

    textabstractGiven all of the differences in between laser and IPLS devices and the need for additional information in IPLS treatment applications, the aim of this study was to evaluate new treatment possibilities using Intense Pulsed Light Sources and to address the following questions: 1. What are

  12. Excitation of coherent oscillations in underdoped cuprate superconductors by intense THz pulses

    Science.gov (United States)

    Hoffmann, Matthias C.; Lee, Wei-Sheng; Dakovski, Georgi L.; Turner, Joshua J.; Gerber, Simon M.; Bonn, Doug; Hardy, Walter; Liang, Ruixing; Salluzzo, Marco

    2016-05-01

    We use intense broadband THz pulses to excite the cuprate superconductors YBCO and NBCO in their underdoped phase, where superconducting and charge density wave ground states compete. We observe pronounced coherent oscillations at attributed to renormalized low-energy phonon modes. These oscillation features are much more prominent than those observed in all-optical pump-probe measurements, suggesting a different excitation mechanism.

  13. Intense pulsed light therapy (IPL) induced iritis following treatment for a medial canthal capillary malformation.

    Science.gov (United States)

    Crabb, Matthew; Chan, Weng Onn; Taranath, Deepa; Huilgol, Shyamala C

    2014-11-01

    The popularity of intense pulsed light (IPL) therapy continues to increase due to its relative safety, high skin coverage rate and ability to treat both vascular and pigmented lesions. An often-overlooked risk is the potential for IPL-induced ocular damage. The damage sustained can cause significant, persistent morbidity and can occur even with very limited IPL exposure to the eye.

  14. Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, Alexei; Sasaki, Akira; Utsumi, Takayuki; Fukumoto, Ichirou; Tajima, Toshiki; Saito, Fumikazu; Hironaka, Yoichiro; Nakamura, Kazutaka G.; Kondo, Ken-ichi; Yoshida, Masatake

    2000-11-01

    K{alpha} emission of high-Z solid targets irradiated by an intense, short (<100 fs) laser pulse in the 10 keV region is shown to be sensitive to the electron energy cutoff, which is strongly dependent on the density gradient of the plasma corona formed by a long prepulse. The absorption rate of short laser pulses, the hot electron distribution, and x-ray emission from a Cu slab target are studied via a hybrid model, which combines the hydrodynamics, collisional particle-in-cell, and Monte Carlo simulation techniques, and via a direct spectroscopic measurement. An absorption mechanism originating from the interaction of the laser pulse with plasma waves is found to increase the absorption rate by over 30% even for a very short, s-polarized laser pulse. Calculated and measured x-ray spectra are in good agreement, confirming the electron energy cutoff.

  15. Measurement of high-power microwave pulse under intense electromagnetic noise

    Indian Academy of Sciences (India)

    Amitava Roy; S K Singh; R Menon; D Senthil Kumar; R Venkateswaran; M R Kulkarni; P C Saroj; K V Nagesh; K C Mittal; D P Chakravarthy

    2010-01-01

    KALI-1000 pulse power system has been used to generate single pulse nanosecond duration high-power microwaves (HPM) from a virtual cathode oscillator (VIRCATOR) device. HPM power measurements were carried out using a transmitting–receiving system in the presence of intense high frequency (a few MHz) electromagnetic noise. Initially, the diode detector output signal could not be recorded due to the high noise level persisting in the ambiance. It was found that the HPM pulse can be successfully detected using wide band antenna, RF cable and diode detector set-up in the presence of significant electromagnetic noise. Estimated microwave peak power was ∼ 59.8 dBm (∼ 1 kW) at 7 m distance from the VIRCATOR window. Peak amplitude of the HPM signal varies on shot-to-shot basis. Duration of the HPM pulse (FWHM) also varies from 52 ns to 94 ns for different shots.

  16. Coherent population transfer in molecules coupled with a dissipative environment by an intense ultrashort chirped pulse

    Science.gov (United States)

    Fainberg, B. D.; Gorbunov, V. A.

    2002-10-01

    We have studied the intense chirped pulse excitation of a molecule coupled with a dissipative environment taking into account electronic coherence effects. We considered a two-state electronic system with relaxation treated as a diffusion on electronic potential energy surfaces. This relaxation model enables us to trace continuously the transition from a coherent population transfer to incoherent one. An inhomogeneously broadened system with frozen nuclear motion is invoked to model a purely coherent transfer. We show that the type of population transfer (coherent or incoherent) strongly depends on the pulse chirp, its sign, and the detunings of the exciting pulse carrier frequency with respect to the frequency of the Franck-Condon transition. For positive chirped pulses and moderate detunings, relaxation does not hinder a coherent population transfer. Moreover, under these conditions the relaxation favors more efficient population transfer with respect to the "coherent" system with frozen nuclear motion.

  17. Intense terahertz pulses from SLAC electron beams using coherent transition radiation.

    Science.gov (United States)

    Wu, Ziran; Fisher, Alan S; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Hogan, Mark; Loos, Henrik; Lindenberg, Aaron

    2013-02-01

    SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/Å) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.

  18. The design and construction of a pulsed beam generation system based on high intensity cyclotron

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In order to perform the studies on a pulsed beam generation system based on a high intensity cyclotron, a test beam line with a pulsed beam generation for a 10 MeV compact cyclotron (CYCIAE-10) has been designed and constructed at China Institute of Atomic Energy (CIAE). A 70 MHz continuous H- beam can be pulsed to the pulse length of less than 10 ns with a repetition rate of 4.4 MHz. The sine waveform with a frequency of 2.2 MHz is adopted for the chopper and a mesh structure with single drift and dual gaps is used for the 70 MHz buncher. A helical resonator is designed and constructed based on simulations and experiments on the RF matching for the chopper. A helical inductance loop that is exceptionally large of its kind and equipped with water cooling for the resonator has been successfully wound and a 500 W solid RF amplifier has been manufactured. A special measuring device has been designed, which can be used to measure both the DC beam and the pulsed beam. The required pulsed beam was obtained after pulsed beam tuning.

  19. Two electron response to an intense x-ray free electron laser pulse

    Science.gov (United States)

    Moore, L. R.; Parker, J. S.; Meharg, K. J.; Armstrong, G. S. J.; Taylor, K. T.

    2009-11-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne8+ and Ar16+ exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 1017 to 1022 W/cm2.

  20. Phase Noise and Intensity Noise of the Pulse Train Generated from Mode-locked Lasers in the Demodulation Measurement

    OpenAIRE

    Kan WU; Shum, Ping

    2010-01-01

    The phase noise and intensity noise of a pulse train are theoretically analyzed in the demodulation measurement. The effect of pulse asymmetry is discussed for the first time using Fourier series. Experimentally, photodetectors with different bandwidth and incident power levels are compared to achieve minimum pulse distortion.

  1. Radiation from high-intensity ultrashort-laser-pulse and gas-jet magnetized plasma interaction.

    Science.gov (United States)

    Dorranian, Davoud; Starodubtsev, Mikhail; Kawakami, Hiromichi; Ito, Hiroaki; Yugami, Noboru; Nishida, Yasushi

    2003-08-01

    Using a gas-jet flow, via the interaction between an ultrashort high-intensity laser pulse and plasma in the presence of a perpendicular external dc magnetic field, the short pulse radiation from a magnetized plasma wakefield has been observed. Different nozzles are used in order to generate different densities and gas profiles. The neutral density of the gas-jet flow measured with a Mach-Zehnder interferometer is found to be proportional to back pressure of the gas jet in the range of 1 to 8 atm. Strength of the applied dc magnetic field varies from 0 to 8 kG at the interaction region. The frequency of the emitted radiation with the pulse width of 200 ps (detection limit) is in the millimeter wave range. Polarization and spatial distributions of the experimental data are measured to be in good agreement with the theory based on the V(p)xB radiation scheme, where V(p) is the phase velocity of the electron plasma wave and B is the steady magnetic field intensity. Characteristics of the radiation are extensively studied as a function of plasma density and magnetic field strength. These experiments should contribute to the development of a new kind of millimeter wavelength radiation source that is tunable in frequency, pulse duration, and intensity.

  2. Radiation Reaction Effects in Cascade Scattering of Intense, Tightly Focused Laser Pulses by Relativistic Electrons

    CERN Document Server

    Zhidkov, A; Bulanov, S S; Hosokai, T; Koga, J; Kodama, R

    2013-01-01

    Non-linear cascade scattering of intense, tightly focused laser pulses by relativistic electrons is studied numerically in the classical approximation including the radiation damping for the quantum parameter hwx-ray/E<1 and an arbitrary radiation parameter Kai. The electron energy loss, along with its side scattering by the ponderomotive force, makes the scattering in the vicinity of high laser field nearly impossible at high electron energies. The use of a second, co-propagating laser pulse as a booster is shown to solve this problem.

  3. Role of pre-pulses in the interaction of intense, ultrashort lasers with structured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rajeev, P.P.; Kahaly, S.; Bagchi, S.; Bose, S.; Kiran, P.P.; Ayyub, P.; Ravindra Kumar, G. [Tata Institute of Fundamental Research, Mumbai (India)

    2006-06-15

    We examine enhanced hard X-ray emission (20 - 200 keV) from plasmas produced on nano-particles coated optically polished copper surface under different prepulse conditions. We observe that enhancement reduces with increasing prepulse intensity. The dynamics of the process is seen to be in the picosecond regime. We attribute this to pre-plasma formation on nano-particles and subsequent modification/destruction of the nano-structure layer before the arrival of the main pulse. It is suggested that high-contrast ultrashort pulses are essential for nano-particles to function as yield enhancer. (authors)

  4. Short Intense Laser Pulse Depletion and Scattering in Under-Dense Plasma

    CERN Document Server

    Yazdanpanah, Jam; Khalilzadeh, Elnaz; Chakhmachi, Amir

    2016-01-01

    Nonlinear evolutions of an ultra-intense, short laser pulse due to the wake excitation inside the plasma are studied by means of detailed particle-in-cell simulations and comprehensive analyses. Pulse lengths both longer and shorter than the plasma wavelength are considered. A new adiabatic regime of the interaction is identified in connection with the quasi-static being of the plasma in the pulse commoving frame. This situation occurs when radiation back-reactions are ignorable in the commoving frame against the measured high plasma momentum. By formulating this regime in terms of the local conservation laws, we calculate the overall pulse depletion and more importantly the global pulse group velocity. The outcome for the group velocity shows non-explicit density dependency and, strangely, remains above the linear value over a long time period. Further, we examine the model adequacy at different applied parameters via comparison with simulations. It is turned out that for pulse lengths larger than the plasma...

  5. Cooling of relativistic electron beams in intense laser pulses: Chirps and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoffe, S.R., E-mail: sam.yoffe@strath.ac.uk; Noble, A., E-mail: adam.noble@strath.ac.uk; Macleod, A.J., E-mail: alexander.macleod@strath.ac.uk; Jaroszynski, D.A., E-mail: d.a.jaroszynski@strath.ac.uk

    2016-09-01

    Next-generation high-power laser facilities (such as the Extreme Light Infrastructure) will provide unprecedented field intensities, and will allow us to probe qualitatively new physical regimes for the first time. One of the important fundamental questions which will be addressed is particle dynamics when radiation reaction and quantum effects play a significant role. Classical theories of radiation reaction predict beam cooling in the interaction of a relativistic electron bunch and a high-intensity laser pulse, with final-state properties only dependent on the laser fluence. The observed quantum suppression of this cooling instead exhibits a dependence on the laser intensity directly. This offers the potential for final-state properties to be modified or even controlled by tailoring the intensity profile of the laser pulse. In addition to beam properties, quantum effects will be manifest in the emitted radiation spectra, which could be manipulated for use as radiation sources. We compare predictions made by classical, quasi-classical and stochastic theories of radiation reaction, and investigate the influence of chirped laser pulses on the observed radiation spectra. - Highlights: • Classical theories of radiation reaction predict electron beam cooling in high fields. • Quantum effects lead to a reduction in electron beam cooling. • Quasi-classical model agrees with predictions from a single-emission stochastic model. • Negative frequency chirp found to increase photon emission, but not maximum energy.

  6. Clinical use of new-generation pulse oximeters in the neonatal intensive care unit.

    Science.gov (United States)

    Workie, Fegegta A; Rais-Bahrami, K; Short, Billie L

    2005-10-01

    Continuous monitoring by pulse oximetry is a common practice for preterm and critically ill newborns. A new generation of motion-tolerant pulse oximeters have been designed for improved clinical performance with a substantial reduction in alarm frequency. However, little is known about the differences among these new-generation pulse oximeters in the neonatal intensive care unit (NICU). The purpose of this study is to assess the clinical performance of two new-generation pulse oximeters in the NICU. Two new-generation pulse oximeters were used simultaneously to monitor 36 patients in the NICU. The two devices studied were the Philips FAST and the Masimo SET. Patients were randomly assigned for their digit selection and data were collected only when waveforms were of good quality and/or the pulse oximeter's pulse rate (PR) correlated with the electrocardiogram heart rate (HR). The data for oxygen saturation measurements, number of true and false alarms, and number of dropouts as well as the duration of dropouts for each pulse oximeter were recorded by the primary investigator at 5-minute intervals for a period of 2 hours on each patient. Dropouts are instances when the pulse oximeter alarm sounds due to its inability to identify the arterial pulse and provide an oxygen saturation reading. The mean gestational age for the study group was 32 weeks (rang, 24 to 42 weeks). Repeated-measures analysis of variance indicated no difference between the two devices across all time measurements (p=0.357). In addition, paired t-tests for true alarms and false alarms were not significant, with p-values of 0.151 and 0.869, respectively. There was a difference in the number of data dropouts (pMasimo 38). The duration of dropouts was also significant; the Philips device had three times longer duration of dropouts. Physiologic monitoring in the critical care setting requires accurate data measurements. The two new-generation pulse oximeters, the Philips FAST and Masimo SET, are

  7. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs.

  8. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required.

  9. Argonne National Laboratory 1985 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A. (ED.); Hale, M.R. (comp.)

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  10. Multipass relativistic high-order-harmonic generation for intense attosecond pulses

    Science.gov (United States)

    Edwards, Matthew R.; Mikhailova, Julia M.

    2016-02-01

    We demonstrate that the total reflected field produced by the interaction of a moderately relativistic laser with dense plasma is itself an efficient driver of high-order-harmonic generation. A system of two or more successive interactions of an incident laser beam on solid targets may therefore be an experimentally realizable method of optimizing conversion of laser energy to high-order harmonics. Particle-in-cell simulations suggest that attosecond pulse intensity may be increased by up to four orders of magnitude in a multipass system, with decreased duration of the attosecond pulse train. We discuss high-order-harmonic wave-form engineering for enhanced attosecond pulse generation with an electron trajectory model, present the behavior of multipass systems over a range of parameters, and offer possible routes towards experimental implementation of a two-pass system.

  11. Non-dissociative and dissociative ionization of a CO+ beam in intense ultrashort laser pulses

    Science.gov (United States)

    Gaire, B.; Ablikim, U.; Zohrabi, M.; Roland, S.; Carnes, K. D.; Ben-Itzhak, I.

    2011-05-01

    We have investigated the ionization of CO+ beams in intense ultrashort laser pulses. With the recent upgrades to our coincidence three-dimensional momentum imaging method we are able to measure both non-dissociative and dissociative ionization of the molecular-ion beam targets. Using CO+ as an example, we have found that non-dissociative ionization (leading to the metastable dication CO2+) involves a direct transition, i.e. the molecule is ionized with little or no internuclear distance stretch. Dissociative ionization (C+ + O+) occurs both directly and indirectly, stretching first and then ionizing. Our results show that the yield of dissociative ionization is higher than that of non-dissociative ionization and can be manipulated with the laser pulse duration by suppressing the indirect ionization path using ultrashort pulses (Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  12. Intense two-cycle laser pulses induce time-dependent bond hardening in a polyatomic molecule.

    Science.gov (United States)

    Dota, K; Garg, M; Tiwari, A K; Dharmadhikari, J A; Dharmadhikari, A K; Mathur, D

    2012-02-17

    A time-dependent bond-hardening process is discovered in a polyatomic molecule (tetramethyl silane, TMS) using few-cycle pulses of intense 800 nm light. In conventional mass spectrometry, symmetrical molecules such as TMS do not exhibit a prominent molecular ion (TMS(+)) as unimolecular dissociation into [Si(CH(3))(3)](+) proceeds very fast. Under a strong field and few-cycle conditions, this dissociation channel is defeated by time-dependent bond hardening: a field-induced potential well is created in the TMS(+) potential energy curve that effectively traps a wave packet. The time dependence of this bond-hardening process is verified using longer-duration (≥100 fs) pulses; the relatively slower falloff of optical field in such pulses allows the initially trapped wave packet to leak out, thereby rendering TMS(+) unstable once again.

  13. 2015 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  14. 2014 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  15. Quantum beats in the polarization response of a dielectric to intense few-cycle laser pulses

    CERN Document Server

    Korbman, Michael; Yakovlev, Vladislav S

    2012-01-01

    We have investigated the polarization response of a dielectric to intense few-cycle laser pulses with a focus on interband tunnelling. Once charge carriers are created in an initially empty conduction band, they make a significant contribution to the polarization response. In particular, the coherent superposition of conduction- and valence-band states results in quantum beats. We investigate how the quantum-beat part of the polarization response is affected by excitation dynamics and the attosecond-scale motion of charge carriers in an intense laser field. We find that, with the onset of tunnelling and Bloch oscillations, the nonlinear polarization response becomes sensitive to the carrier-envelope phase of a laser pulse.

  16. Chronic neuropathic facial pain after intense pulsed light hair removal. Clinical features and pharmacological management

    Science.gov (United States)

    Párraga-Manzol, Gabriela; Sánchez-Torres, Alba; Moreno-Arias, Gerardo

    2015-01-01

    Intense Pulsed Light (IPL) photodepilation is usually performed as a hair removal method. The treatment is recommended to be indicated by a physician, depending on each patient and on its characteristics. However, the use of laser devices by medical laypersons is frequent and it can suppose a risk of damage for the patients. Most side effects associated to IPL photodepilation are transient, minimal and disappear without sequelae. However, permanent side effects can occur. Some of the complications are laser related but many of them are caused by an operator error or mismanagement. In this work, we report a clinical case of a patient that developed a chronic neuropathic facial pain following IPL hair removal for unwanted hair in the upper lip. The specific diagnosis was painful post-traumatic trigeminal neuropathy, reference 13.1.2.3 according to the International Headache Society (IHS). Key words:Neuropathic facial pain, photodepilation, intense pulse light. PMID:26535105

  17. Electromagnetic cascade in high energy electron, positron, and photon interactions with intense laser pulses

    CERN Document Server

    Bulanov, S S; Esarey, E; Leemans, W P

    2013-01-01

    The interaction of high energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when 3D effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and...

  18. Probe beam-free detection of terahertz wave by electroluminescence induced by intense THz pulse

    Science.gov (United States)

    Shin, J.; Jin, Z.; Nosaka, Y.; Nakazawa, T.; Kodama, R.

    2016-03-01

    Recently, a table-top fs laser system can generate MW terahertz (THz) pulse with its electric field higher than 100 kV/cm can be generated by several schemes. Such a strong THz field can directly drive electrons inside various materials. Here, we demonstrated a direct THz electric field detection method by measuring the electroluminescence induced by intense THz pulse inside commonly available light emitting diode. An intense THz wave obtained by the two-color laser scheme was focused onto LED along with an external DC bias to induce luminescence which we found proportional to the amplitude of the incident THz field. The scheme can be useful to realize a low-cost, probe-free THz detection and imaging system.

  19. Optimisation extraction of chondroitin sulfate from fish bone by high intensity pulsed electric fields.

    Science.gov (United States)

    He, Guidan; Yin, Yongguang; Yan, Xiaoxia; Yu, Qingyu

    2014-12-01

    High intensity pulsed electric fields (PEF) was used to extract chondroitin sulphate (CS) from fish bone. Results show that PEF extraction speed is much faster, and the content of CS is much higher compared with traditional methods. Variation of PEF parameters and the content of CS were determined by single factor experiments. The processing conditions were optimised by quadratic general rotary unitised design experiments. The maximum yield of 6.92 g/L was achieved under the following conditions: material-liquid ratio of 1:15 g/mL, electric field intensity of 16.88 kV/cm, pulse number of 9, and NaOH concentration of 3.24%. The purity of CS was analysed by agarose gel electrophoresis. CS purity was high, and the extract did not contain any other glycosaminoglycans. PEF can be widely used to extract CS with non-thermal performance, high speed, and low pollution.

  20. A comparative study of hair removal at an NHS hospital: Luminette intense pulsed light versus electrolysis.

    Science.gov (United States)

    Harris, Karen; Ferguson, Janice; Hills, Samantha

    2014-04-01

    Twenty-five women, referred for hair removal by electrolysis, were enrolled in a split face study to treat facial hirsutism. Each patient was treated on six occasions: one-half of the face with electrolysis and the other side with an intense pulsed light source. Patients were evaluated with respect to reduction in hair counts, side effects and discomfort during treatment. Re-growth was assessed at 3, 6 and 9 months following treatment. All patients, except one with very sparse, fair hair growth, preferred treatment with the Intense Pulsed Light and rated their average hair reduction with this method as 77% after five treatments. The overall patient satisfaction rates as determined by visual analogue scales were 8.3 out of 10 for IPL and 5.4 out of 10 for electrolysis.

  1. Intense pulsed light vs. long-pulsed dye laser treatment of telangiectasia after radiotherapy for breast cancer: a randomized split-lesion trial of two different treatments

    DEFF Research Database (Denmark)

    Nymann, P.; Hedelund, L.; Hædersdal, Merete

    2009-01-01

    Background Chronic radiodermatitis is a common sequela of treatment for breast cancer and potentially a psychologically distressing factor for the affected women. Objectives To evaluate the efficacy and adverse effects of treatments with a long-pulsed dye laser (LPDL) vs. intense pulsed light (IPL...

  2. Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses

    CERN Document Server

    Mondal, S; Ding, W J; Hafez, H A; Fareed, M A; Laramée, A; Ropagnol, X; Zhang, G; Sun, S; Sheng, Z M; Zhang, J; Ozaki, T

    2016-01-01

    We demonstrate an intense broadband terahertz (THz) source based on the interaction of relativistic-intensity femtosecond lasers with aligned copper nanorod array targets. For copper nanorod targets with length 5 \\mu m, a maximum 13.8 times enhancement in the THz pulse energy (in $\\leq$ 20 THz spectral range) is measured as compared to that with a thick plane copper target under the same laser conditions. A further increase in the nanorod length leads to a decrease in the THz pulse energy at medium frequencies ($\\leq$ 20THz) and increase of the electromagnetic pulse energy in the high-frequency range (from 20 - 200 THz). For the latter, we measure a maximum energy enhancement of 28 times for the nanorod targets of length 60 \\mu m . Particle-in-cell simulations reveal that THz pulses are mostly generated by coherent transition radiation of laser produced hot electrons, which are efficiently enhanced with the use of nanorod targets. Good agreement is found between the simulation and experimental results.

  3. Intensity interferometry of single x-ray pulses from a synchrotron storage ring

    CERN Document Server

    Singer, A; Marras, A; Klyuev, A; Becker, J; Schlage, K; Skopintsev, P; Gorobtsov, O; Shabalin, A; Wille, H -C; Franz, H; Graafsma, H; Vartanyants, I A

    2014-01-01

    We report on measurements of second-order intensity correlations at the high brilliance storage ring PETRA III using a prototype of the newly developed Adaptive Gain Integrating Pixel Detector (AGIPD). The detector recorded individual synchrotron radiation pulses with an x-ray photon energy of 14.4 keV and repetition rate of about 5 MHz. The second-order intensity correlation function was measured simultaneously at different spatial separations that allowed to determine the transverse coherence length at these x-ray energies. The measured values are in a good agreement with theoretical simulations based on the Gaussian Schell-model.

  4. Simultaneous electronic and the magnetic excitation of a ferromagnet by intense THz pulses

    CERN Document Server

    Shalaby, Mostafa; Hauri, Christoph P

    2015-01-01

    The speed of magnetization reversal is a key feature in magnetic data storage. Magnetic fields from intense THz pulses have been recently shown to induce small magnetization dynamics in Cobalt thin film on the sub-picosecond time scale. Here, we show that at higher field intensities, the THz electric field starts playing a role, strongly changing the dielectric properties of the cobalt thin film. Both the electronic and magnetic responses are found to occur simultaneously, with the electric field response persistent on a time scale orders of magnitude longer than the THz stimulus

  5. Influence of Turbid Medium Parameters on Back Scattered Intensity and Pulsewidth of Picosecond Pulse

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, we simulate a practical in vivo technique in which is produced influence of turbid medium parameters on backscattered intensity and pulsewidth of picosecond for turbid tissue surface of a semiinfinite medium by a small narrow linewidth laser beams. It is shown that the interaction of the ultra short pulse and the turbid tissue is very used as researching the optical parameters of the turbid medium.

  6. Radiation reaction effects on the interaction of an electron with an intense laser pulse.

    Science.gov (United States)

    Kravets, Yevgen; Noble, Adam; Jaroszynski, Dino

    2013-07-01

    Radiation reaction effects will play an important role in near-future laser facilities, yet their theoretical description remains obscure. We explore the Ford-O'Connell equation for radiation reaction, and discuss its relation to other commonly used treatments. By analyzing the interaction of a high energy electron in an intense laser pulse, we find that radiation reaction effects prevent the particle from accessing a regime in which the Landau-Lifshitz approximation breaks down.

  7. Non-thermal ablation of expanded polytetrafluoroethylene with an intense femtosecond-pulse laser

    OpenAIRE

    Hashida, M.; Mishima, H.; Tokita, S.; Sakabe, S.

    2009-01-01

    Ablation of expanded polytetrafluoroethylene without disruption of the fine porous structure is demonstrated using an intense femtosecond-pulse laser. As a result of laser-matter interactions near ablation threshold fluence, high-energy ions are emitted, which cannot be produced by thermal dissociation of the molecules. The ion energy is produced by Coulomb explosion of the elements of (-CF_{2}-CF_{2-})n and the energy spectra of the ions show contributions from the Coulomb explosions of the ...

  8. Acceleration of injected electron beam by ultra-intense laser pulses with phase disturbances

    CERN Document Server

    Nakamura, T; Kato, S; Tanimoto, M; Koyama, K; Koga, J

    2003-01-01

    Acceleration of an injected electron beam by ultra-intense laser pulses with phase disturbances is investigated. The energy gain of the beam electrons depends on the initial energy of the injected electrons in the stochastic acceleration process. The effect is larger for electrons with some injection energy as opposed to electrons with no initial energy. The corresponding accelerating field for electrons having certain amounts of initial energy becomes larger than that of the standard wakefield. (author)

  9. A search for the sulphur hexafluoride cation with intense, few cycle laser pulses.

    Science.gov (United States)

    Dota, Krithika; Dharmadhikari, Aditya K; Dharmadhikari, Jayashree A; Patra, Kaustuv; Tiwari, Ashwani K; Mathur, Deepak

    2013-11-21

    It is well established that upon ionization of sulphur hexafluoride, the SF6(+) ion is never observed in mass spectra. Recent work with ultrashort intense laser pulses has offered indications that when strong optical field are used, the resulting "bond hardening" can induce changes in the potential energy surfaces of molecular cations such that molecular ions that are normally unstable may, indeed, become metastable enough to enable their detection by mass spectrometry. Do intense, ultrashort laser pulses permit formation of SF6(+)? We have utilized intense pulses of 5 fs, 11 fs, and 22 fs to explore this possibility. Our results are negative: no evidence is discovered for SF6(+). However, multiply charged sulphur and fluorine ions from highly charged SF6(q+) ions are observed that enable us to resolve the controversy regarding the kinetic energy release accompanying formation of F(+) fragment ions. Quantum chemical computations of field-distorted potential energy curves of SF6 and its molecular ion enable us to rationalize our non-observation of SF6(+). Our findings have implications for high harmonic generation from SF6 in the few-cycle regime.

  10. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    Science.gov (United States)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  11. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse.

    Science.gov (United States)

    Kuramitsu, Y; Nakanii, N; Kondo, K; Sakawa, Y; Mori, Y; Miura, E; Tsuji, K; Kimura, K; Fukumochi, S; Kashihara, M; Tanimoto, T; Nakamura, H; Ishikura, T; Takeda, K; Tampo, M; Kodama, R; Kitagawa, Y; Mima, K; Tanaka, K A; Hoshino, M; Takabe, H

    2011-02-01

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.

  12. Tumour Cell Membrane Poration and Ablation by Pulsed Low-Intensity Electric Field with Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2015-03-01

    Full Text Available Electroporation is a physical method to increase permeabilization of cell membrane by electrical pulses. Carbon nanotubes (CNTs can potentially act like “lighting rods” or exhibit direct physical force on cell membrane under alternating electromagnetic fields thus reducing the required field strength. A cell poration/ablation system was built for exploring these effects of CNTs in which two-electrode sets were constructed and two perpendicular electric fields could be generated sequentially. By applying this system to breast cancer cells in the presence of multi-walled CNTs (MWCNTs, the effective pulse amplitude was reduced to 50 V/cm (main field/15 V/cm (alignment field at the optimized pulse frequency (5 Hz of 500 pulses. Under these conditions instant cell membrane permeabilization was increased to 38.62%, 2.77-fold higher than that without CNTs. Moreover, we also observed irreversible electroporation occurred under these conditions, such that only 39.23% of the cells were viable 24 h post treatment, in contrast to 87.01% cell viability without presence of CNTs. These results indicate that CNT-enhanced electroporation has the potential for tumour cell ablation by significantly lower electric fields than that in conventional electroporation therapy thus avoiding potential risks associated with the use of high intensity electric pulses.

  13. Non-constant ponderomotive energy in above threshold ionization by intense short laser pulses

    CERN Document Server

    Della Picca, Renata; Garibotti, Carlos Roberto; López, Sebastián David; Arbó, Diego

    2015-01-01

    We analyze the contribution of the quiver kinetic energy acquired by an electron in an oscillating electric field to the energy balance in atomic ionization processes by a short laser pulse. Due to the time dependence of this additional kinetic energy, a temporal average is assumed to maintain a stationary energy conservation rule. This rule is used to predict the position of the peaks observed in the photo electron spectra (PE). For a flat top pulse envelope, the mean value of the quiver energy over the whole pulse leads to the concept of ponderomotive energy $U_{p}$. However for a short pulse with a fast changing field intensity a stationarity approximation could not be precise. We check these concepts by studying first the photoelectron (PE) spectrum within the Semiclassical Model (SCM) for a multiple steps pulses. The SCM offers the possibility to establish a connection between emission times and the PE spectrum in the energy domain. We show that PE substructures stem from ionization at different times ma...

  14. Double ionization effect in electron accelerations by high-intensity laser pulse interaction with a neutral gas

    Science.gov (United States)

    Nandan Gupta, Devki

    2013-11-01

    We study the effect of laser-induced double-ionization of a helium gas (with inhomogeneous density profile) on vacuum electron acceleration. For enough laser intensity, helium gas can be found doubly ionized and it strengthens the divergence of the pulse. The double ionization of helium gas can defocus the laser pulse significantly, and electrons are accelerated by the front of the laser pulse in vacuum and then decelerated by the defocused trail part of the laser pulse. It is observed that the electrons experience a very low laser-intensity at the trailing part of the laser pulse. Hence, there is not much electron deceleration at the trailing part of the pulse. We found that the inhomogeneity of the neutral gas reduced the rate of tunnel ionization causing less defocusing of the laser pulse and thus the electron energy gain is reduced.

  15. Double ionization effect in electron accelerations by high-intensity laser pulse interaction with a neutral gas

    Directory of Open Access Journals (Sweden)

    Gupta Devki Nandan

    2013-11-01

    Full Text Available We study the effect of laser-induced double-ionization of a helium gas (with inhomogeneous density profile on vacuum electron acceleration. For enough laser intensity, helium gas can be found doubly ionized and it strengthens the divergence of the pulse. The double ionization of helium gas can defocus the laser pulse significantly, and electrons are accelerated by the front of the laser pulse in vacuum and then decelerated by the defocused trail part of the laser pulse. It is observed that the electrons experience a very low laser-intensity at the trailing part of the laser pulse. Hence, there is not much electron deceleration at the trailing part of the pulse. We found that the inhomogeneity of the neutral gas reduced the rate of tunnel ionization causing less defocusing of the laser pulse and thus the electron energy gain is reduced.

  16. Growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field

    Directory of Open Access Journals (Sweden)

    Yuan-yuan HUA

    2011-07-01

    Full Text Available Objective To investigate the growth and apoptosis of HeLa cells induced by intense picosecond pulsed electric field(PEF in vitro.Methods HeLa cells cultured in vitro were divided into experimental group and control group(with or without intense picosecond PEF.With constant pulse width,frequency and voltage,the cells in experimental group were divided into 6 sub-groups according to the number of pulse(100,200,500,1000,1500,2000,the growth inhibition of HeLa cells by PEF and the dose-effect relationship were analyzed by MTT.Caspase 3 protein activity was detected in the cells in 500,1000 and 2000 sub-groups.Mitochondrial transmembrane potential was detected by rhodamine 123 staining with the cells in 2000 sub-groups.Results MTT assay demonstrated that intense picosecond PEF significantly inhibited the proliferation of HeLa cells in dose-dependent manner.The survival rates of cells declined along with the increase in pulse number,and were 96.23%±0.76%,94.11%±2.42%,90.31%±1.77%,64.59%±1.59%,32.95%±0.73%,23.85%±2.38% and 100%,respectively,in 100,200,500,1000,1500,2000 sub-groups and control group(P < 0.01.The Caspase 3 protein activity was significantly enhanced by intense picosecond PEF,and the absorbancy indexes(A were 0.174±0.012,0.232±0.017,0.365±0.016 and 0.122±0.011,respectively,in 500,1000,2000 sub-groups and control group(P < 0.05.The mitochondrial transmembrane potential of HeLa cells was significantly inhibited by intense picosecond PEF,and the fluorescence intensity in 2000 sub-group(76.66±13.38 was much lower than that in control group(155.81±2.33,P < 0.05.Conclusion Intense picosecond PEF may significantly inhibit the growth of HeLa cells,and induce cell apoptosis via mitochondrial pathway.

  17. Reflectivity of plasmas created by high-intensity, ultra-short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Gold, D.M.

    1994-06-01

    Experiments were performed to characterize the creation and evolution of high-temperature (T{sub e}{approximately}100eV), high-density (n{sub e}>10{sup 22}cm{sup {minus}3}) plasmas created with intense ({approximately}10{sup 12}-10{sup 16}W/cm{sup 2}), ultra-short (130fs) laser pulses. The principle diagnostic was plasma reflectivity at optical wavelengths (614nm). An array of target materials (Al, Au, Si, SiO{sub 2}) with widely differing electronic properties tested plasma behavior over a large set of initial states. Time-integrated plasma reflectivity was measured as a function of laser intensity. Space- and time-resolved reflectivity, transmission and scatter were measured with a spatial resolution of {approximately}3{mu}m and a temporal resolution of 130fs. An amplified, mode-locked dye laser system was designed to produce {approximately}3.5mJ, {approximately}130fs laser pulses to create and nonintrusively probe the plasmas. Laser prepulse was carefully controlled to suppress preionization and give unambiguous, high-density plasma results. In metals (Al and Au), it is shown analytically that linear and nonlinear inverse Bremsstrahlung absorption, resonance absorption, and vacuum heating explain time-integrated reflectivity at intensities near 10{sup 16}W/cm{sup 2}. In the insulator, SiO{sub 2}, a non-equilibrium plasma reflectivity model using tunneling ionization, Helmholtz equations, and Drude conductivity agrees with time-integrated reflectivity measurements. Moreover, a comparison of ionization and Saha equilibration rates shows that plasma formed by intense, ultra-short pulses can exist with a transient, non-equilibrium distribution of ionization states. All targets are shown to approach a common reflectivity at intensities {approximately}10{sup 16}W/cm{sup 2}, indicating a material-independent state insensitive to atomic or solid-state details.

  18. Ultra Intense Laser Pulse Interactions with Planer and Spherical Plasmas for Fast Ignitor

    Science.gov (United States)

    Tanaka, Kazuo A.

    1999-11-01

    The fast ignitor concept requires the guiding or penetration of an ultra-intense laser close to a highly compressed (1000 times solid density) core and the generation of energetic electrons (MeV). Ultra-intense laser plasma interactions have been intensively studied using the Peta Watt Module (PWM) laser system synchronized with the GEKKO XII laser system. The ultra-intense laser pulse of 50J energy, 0.5-1 psec pulse width and 1053 nm laser wavelength could be focused onto a preformed plasma created on a solid target at an intensity of 1e19 W/cm2. The preformed plasma had a cut-off density surface at around 100 micron from the surface. Changing the focus position of this 100 TW laser pulse relative to the preformed plasma, we found an anomalous mode. Side view of x-ray pinhole camera showed that there was a local tiny spot almost at the surface of the solid target which indicates the propagation of the pulse in the long scale-length plasma into an over-dense region for over 100 micorn distance. The erergy spectrum and angular distribution of more than MeV electrons were measured. Its energy transport was studied with K-a spectroscopy. The backscattered light of the ultra-intense laser light was spectrally and spatially resolved. The backscattered light image showed several hot spots within the focused region. The spatilally resolved spectra of the backscattered light were totally different at the hot spots and surrounding regions. The details of neutron spectra were measured using ``MANDALA" neutron spectormeters with a total of 841 channel photo-multiplier detectors. The data indicates that deuterium ions were accelerated by the hot electrons up to 100 keV and created beam fusion reactions within solid CD targets. Guiding channels were created utilizing a ponderomotive self-focusing in preformed plasmas created on a solid target. The self-focus channel was measured by both UV and x-ray laser probes. The details of the experiment as well as the theoretical

  19. Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes.

    Science.gov (United States)

    Vallverdú-Queralt, Anna; Odriozola-Serrano, Isabel; Oms-Oliu, Gemma; Lamuela-Raventós, Rosa M; Elez-Martínez, Pedro; Martín-Belloso, Olga

    2013-12-01

    The effect of pulsed electric fields (PEF) on the carotenoid content of tomato juices was studied. First, moderate-intensity PEF (MIPEF) was applied to raw tomatoes. Afterwards, MIPEF-treated and untreated tomatoes were immediately refrigerated at 4 °C for 24 h and then, they were separately ground to produce tomato juices. Juices were treated by heat treatments or by high-intensity PEF (HIPEF) and stored under refrigeration for 56 days. MIPEF treatment of tomatoes increased the content of carotenoid compounds in tomato juices. An enhancement of 63-65% in 15-cis-lycopene was observed in juices prepared with MIPEF-treated tomatoes. A slight increase in cis-lycopene isomers was observed over time, whereas other carotenoids slightly decreased. However, HIPEF treated tomato juices maintained higher carotenoid content (10-20%) through the storage time than thermally and untreated juices. The combination of MIPEF and HIPEF treatments could be used not only to produce tomato juices with high carotenoid content but also, to maintain higher the carotenoid content during storage time.

  20. Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering

    CERN Document Server

    Vieira, J; Alves, E P; Fonseca, R A; Mendonça, J T; Bingham, R; Norreys, P; Silva, L O

    2016-01-01

    Twisted Laguerre-Gaussian lasers, with orbital angular momentum and characterised by doughnut shaped intensity profiles, provide a transformative set of tools and research directions in a growing range of fields and applications, from super-resolution microcopy and ultra-fast optical communications to quantum computing and astrophysics. The impact of twisted light is widening as recent numerical calculations provided solutions to long-standing challenges in plasma-based acceleration by allowing for high gradient positron acceleration. The production of ultrahigh intensity twisted laser pulses could then also have a broad influence on relativistic laser-matter interactions. Here we show theoretically and with ab-initio three-dimensional particle-in-cell simulations, that stimulated Raman backscattering can generate and amplify twisted lasers to Petawatt intensities in plasmas. This work may open new research directions in non-linear optics and high energy density science, compact plasma based accelerators and ...

  1. Classical Dynamics of Harmonic Generation of the Hydrogen Molecular Ion Interacting with Ultrashort Intense Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    LI Chao-Hong; DUAN Yi-Wu; Wing-Ki Liu; Jian-Min Yuan

    2001-01-01

    Within Born-Oppenheimer approximation, by using the classical trajectory theory, a description for the high order harmonic generation of the hydrogen molecular ion interacting with ultrashort laser pulses has been pre sented. The Coulomb singularities have been remedied by the regularization. The action-angle variables have been used to generate the initial inversion symmetry microcanonical distribution. Within a proper intensity range, a harmonic plateau with only odd harmonics appears. For a larger intensity, because of the existence of chaos, the harmonic spectra become noisier. For a large enough intensity, the ionization takes place and the harmonics disappear. So the chaos causes the noises, the ionization suppresses the harmonic generation, and the onset of the ionization follows the onset of chaos.

  2. Production of intense attosecond vector beam pulse trains based on harmonics

    Institute of Scientific and Technical Information of China (English)

    韩玉晶; 廖国前; 陈黎明; 李玉同; 王伟民; 张杰

    2015-01-01

    We provide the first report on the harmonics generated by an intense femtosecond vector beam that is normally incident on a solid target. By using 2D particle-in-cell (PIC) codes, we observe the third and the fifth harmonic signals with the same vector structure as the driving beam, and obtain an attosecond vector beam pulse train. We also show that the conversion efficiencies of the third and the fifth harmonics reach their maxima for a plasma density of four times the critical density due to the plasma resonating with the driving force. This method provides a new means of generating intense extreme ultraviolet (XUV) vector beams via ultra-intense laser-driven harmonics.

  3. Inactivation of Saccharomyces cerevisiae suspended in orange juice using high-intensity pulsed electric fields.

    Science.gov (United States)

    Elez-Martínez, Pedro; Escolà-Hernández, Joan; Soliva-Fortuny, Robert C; Martín-Belloso, Olga

    2004-11-01

    Saccharomyces cerevisiae is often associated with the spoilage of fruit juices. The purpose of this study was to evaluate the effect of high-intensity pulsed electric field (HIPEF) treatment on the survival of S. cerevisiae suspended in orange juice. Commercial heat-sterilized orange juice was inoculated with S. cerevisiae (CECT 1319) (10(8) CFU/ml) and then treated by HIPEFs. The effects of HIPEF parameters (electric field strength, treatment time, pulse polarity, frequency, and pulse width) were evaluated and compared to those of heat pasteurization (90 degrees C/min). In all of the HIPEF experiments, the temperature was kept below 39 degrees C. S. cerevisiae cell damage induced by HIPEF treatment was observed by electron microscopy. HIPEF treatment was effective for the inactivation of S. cerevisiae in orange juice at pasteurization levels. A maximum inactivation of a 5.1-log (CFU per milliliter) reduction was achieved after exposure of S. cerevisiae to HIPEFs for 1,000 micros (4-micros pulse width) at 35 kV/cm and 200 Hz in bipolar mode. Inactivation increased as both the field strength and treatment time increased. For the same electric field strength and treatment time, inactivation decreased when the frequency and pulse width were increased. Electric pulses applied in the bipolar mode were more effective than those in the monopolar mode for destroying S. cerevisiae. HIPEF processing inactivated S. cerevisiae in orange juice, and the extent of inactivation was similar to that obtained during thermal pasteurization. HIPEF treatments caused membrane damage and had a profound effect on the intracellular organization of S. cerevisiae.

  4. Argonne National Laboratory 1986 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  5. Suppression of Repeat-Intensive False Targets Based on Temporal Pulse Diversity

    Directory of Open Access Journals (Sweden)

    Gang Lu

    2013-01-01

    Full Text Available This paper considers the problem of suppressing the repeat-intensive false targets produced by a deception electronic attack (EA system equipped with a Digital Radio Frequency Memory (DRFM device. Different from a conventional repeat jammer, this type of jamming intensively retransmits the intercepted signal stored in a DRFM to the victim radar in a very short time-delay interval relative to a radar pulse wide. A multipeak matched-filtering output is then produced other than the merely expected true target. An electronic protection (EP algorithm based on the space time block code (STBC is proposed to suppress the adverse effects of this jammer. By transmitting a pulse sequence generated from the STBC in succession and the following cancellation process applied upon the received signal, this algorithm performs successfully in a single antenna system provided that the target models are nonfluctuating or slow fluctuating and the pulse repetition frequency (PRF is comparatively high. The performance in white and correlated Gaussian disturbance is evaluated by means of Monte Carlo simulations.

  6. Short intense ion pulses for materials and warm dense matter research

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Peter A., E-mail: PASeidl@lbl.gov [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Persaud, Arun; Waldron, William L. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Barnard, John J. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Davidson, Ronald C. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Friedman, Alex [Lawrence Livermore National Laboratory, Livermore, CA (United States); Gilson, Erik P. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Greenway, Wayne G. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Grote, David P. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Kaganovich, Igor D. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas [Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2015-11-11

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10{sup 10} ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li{sup +} ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  7. The interaction of intense ultrashort laser pulses with cryogenic He jets

    CERN Document Server

    Shihab, M; Redmer, R

    2016-01-01

    We study the interaction of intense ultrashort laser pulses with cryogenic He jets using 2d/3v relativistic Particle-in-Cell simulations (XOOPIC). Of particular interest are laser intensities $(10^{15}-10^{20})$ W/cm$^2$, pulse lengths $\\le 100$ fs, and the frequency regime $\\sim 800$ nm for which the jets are initially transparent and subsequently not homogeneously ionized. Pulses $\\ge 10^{16}$ W/cm$^2$ are found to drive ionization along the jet and outside the laser spot, the ionization-front propagates along the jet at a fraction of the speed of light. Within the ionized region, there is a highly transient field, which may be interpreted as two-surface wave decay and as a result of the charge-neutralizing disturbance at the jet-vacuum interface. The ionized region has solid-like densities and temperatures of few to hundreds of eV, i.e., warm and hot dense matter regimes. Such extreme conditions are relevant for high-energy densities as found, e.g., in shock-wave experiments and inertial confinement fusion...

  8. Short intense ion pulses for materials and warm dense matter research

    CERN Document Server

    Seidl, Peter A; Lidia, Steven M; Persaud, Arun; Stettler, Matthew; Takakuwa, Jeffrey H; Waldron, William L; Schenkel, Thomas; Barnard, John J; Friedman, Alex; Grote, David P; Davidson, Ronald C; Gilson, Erik P; Kaganovich, Igor D

    2015-01-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r < 1 mm within 2 ns FWHM and approximately 10^10 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accel...

  9. Rate equations for nitrogen molecules in ultrashort and intense x-ray pulses

    CERN Document Server

    Liu, Ji-Cai; Cederbaum, Lorenz S; Cryan, James P; Glownia, James M; Schafer, Kenneth J; Buth, Christian

    2015-01-01

    We study theoretically the molecular dynamics of nitrogen molecules (N$_2$) exposed to x rays at a wavelength of 1.1 nm (1100 eV photon energy) from the Linac Coherent Light Source (LCLS) free electron laser. Molecular rate equations are derived to describe the intertwined photoionization, decay, and dissociation processes occurring for N2 in intense and ultrafast x rays from LCLS. This model complements our earlier phenomenological approaches, the single-atom, symmetric-sharing, and fragmentation-matrix models of J. Chem. Phys. $\\mathbf{136}$, 214310 (2012). Our rate-equations are used to obtain the effective pulse energy at the sample and the time scale for the dissociation of the metastable dication N$_2^{2+}$. This leads to a very good agreement between the theoretically and experimentally obtained ion yields and, consequently, the average charge states. The effective pulse energy is found to decrease with shortening pulse duration. This variation in the effective pulse energy together with a change in th...

  10. Morphologic Changes of Zebrafish Melanophore after Intense Pulsed Light and Q-Switched Nd:YAG Laser Irradiation

    Science.gov (United States)

    Ryu, Hwa Jung; Lee, Ji Min; Jang, Hee Won; Park, Hae Chul; Rhyu, Im Joo

    2016-01-01

    Background Recently, the pulse-in-pulse mode of intense pulsed light (IPL) has been used increasingly for the treatment of melasma. Objective To observe the morphologic changes in the melanophore in adult zebrafish after irradiation with conventional and pulse-in-pulse IPL and Q-switched Nd:YAG (QSNY) laser. Methods Adult zebrafish were irradiated with conventional and pulse-in-pulse mode of IPL. The conditions for conventional IPL were 3 mJ/cm2, 560 nm filter, and pulse widths of 7, 20, and 35 msec. The pulse-in-pulse conditions were 3 mJ/cm2 and on-time 1/off-time 2. The QSNY laser was used with the settings of 1,064 nm, 0.4 J/cm2, a 7 mm spot size, and one shot. Specimens were observed using a light microscope, a transmission electron microscope (TEM), a scanning electron microscope (SEM) and a confocal microscope. Results After conventional IPL irradiation with a 7 msec pulse width, melanophore breakage was observed using light microscopy. Under TEM, irradiation with conventional IPL for 7 msec and pulse-in-pulse IPL induced melanophore thermolysis with vacuolization. However, changes in the melanophore were not observed with 35 msec IPL. Under SEM, unlike the control and QSNY groups, IPL-irradiated zebrafish showed finger-like fusion in the protein structure of scales. Specimens examined by a confocal microscope after conventional IPL irradiation showed a larger green-stained area on TUNEL staining than that after pulse-in-pulse mode IPL irradiation. Conclusion Zebrafish irradiated with long pulse-IPL showed no morphologic changes using light microscopy, while morphological changes in melanophores were evident with use of TEM. Pulse-in-pulse mode IPL caused less damage than conventional IPL. PMID:27904270

  11. Longitudinal and transverse cooling of relativistic electron beams in intense laser pulses

    CERN Document Server

    Yoffe, Samuel R; Noble, Adam; Jaroszynski, Dino A

    2015-01-01

    With the emergence in the next few years of a new breed of high power laser facilities, it is becoming increasingly important to understand how interacting with intense laser pulses affects the bulk properties of a relativistic electron beam. A detailed analysis of the radiative cooling of electrons indicates that, classically, equal contributions to the phase space contraction occur in the transverse and longitudinal directions. In the weakly quantum regime, in addition to an overall reduction in beam cooling, this symmetry is broken, leading to significantly less cooling in the longitudinal than the transverse directions. By introducing an efficient new technique for studying the evolution of a particle distribution, we demonstrate the quantum reduction in beam cooling, and find that it depends on the distribution of energy in the laser pulse, rather than just the total energy as in the classical case.

  12. Intense Pulsed Light Sintering of CH3NH3PbI3 Solar Cells.

    Science.gov (United States)

    Lavery, Brandon W; Kumari, Sudesh; Konermann, Hannah; Draper, Gabriel L; Spurgeon, Joshua; Druffel, Thad

    2016-04-06

    Perovskite solar cells utilizing a two-step deposited CH3NH3PbI3 thin film were rapidly sintered using an intense pulsed light source. For the first time, a heat treatment has shown the capability of sintering methylammonium lead iodide perovskite and creating large crystal sizes approaching 1 μm without sacrificing surface coverage. Solar cells with an average efficiency of 11.5% and a champion device of 12.3% are reported. The methylammonium lead iodide perovskite was subjected to 2000 J of energy in a 2 ms pulse of light generated by a xenon lamp, resulting in temperatures significantly exceeding the degradation temperature of 150 °C. The process opens up new opportunities in the manufacturability of perovskite solar cells by eliminating the rate-limiting annealing step, and makes it possible to envision a continuous roll-to-roll process similar to the printing press used in the newspaper industry.

  13. Interrogation of orbital structure by elliptically polarized intense femtosecond laser pulses

    DEFF Research Database (Denmark)

    Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2011-01-01

    We solve the three-dimensional time-dependent Schrödinger equation and present investigations of the imprint of the orbital angular node in photoelectron momentum distributions of an aligned atomic p-type orbital following ionization by an intense elliptically polarized laser pulse of femtosecond...... duration. We investigate the role of light ellipticity and the alignment angle of the major polarization axis of the external field relative to the probed orbital by studying radial and angular momentum distributions, the latter at a fixed narrow interval of final momenta close to the peak...... of the photoelectron momentum distribution. In general only the angular distributions carry a clear signature of the orbital symmetry. Our study shows that circular polarization gives the most clear imprints of orbital nodes. These findings are insensitive to pulse duration....

  14. Improving anti-corrosion property of thermal barrier coatings by intense pulsed ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, S., E-mail: syan@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Shang, Y.J., E-mail: shangyijun@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Xu, X.F., E-mail: reandy123@126.com [State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing 100871 (China); Yi, X., E-mail: xyle@buaa.edu.com [Department of Applied Physics, School of Science, Beihang University, Beijing 100083 (China); Le, X.Y., E-mail: xyle@buaa.edu.cn [Department of Applied Physics, School of Science, Beihang University, Beijing 100083 (China)

    2012-02-01

    Anticorrosion behavior is an important factor for the reliability and durability of thermal barrier coatings (TBCs). Intense pulsed ion beam (ion species: 70% H{sup +} + 30% C{sup +}; current density: 150 A/cm{sup 2} and 250 A/cm{sup 2}; accelerate voltage: 300 kV; pulse duration: 65 ns) irradiation were used to improve the anticorrosion behavior of the Y{sub 2}O{sub 3}-stabilized ZrO{sub 2} (YSZ) /NiCoCrAlY thermal barrier coating. The anticorrosion property of the TBCs was evaluated with polarization curves method. A quite good result was obtained. Further analysis show that IPIB irradiation can seal the pores in YSZ layer, and block the penetration channels of corrosive fluid, therefore, improves the anticorrosion behavior.

  15. Bond-selective fragmentation of water molecules with intense, ultrafast, carrier envelope phase stabilized laser pulses

    CERN Document Server

    Mathur, D; Dharmadhikari, J A; Dharmadhikari, A K

    2013-01-01

    Carrier envelope phase (CEP) stabilized pulses of intense 800 nm light of 5 fs duration are used to probe the dissociation dynamics of dications of isotopically-substituted water, HOD. HOD$^{2+}$ dissociates into either H$^+$ + OD$^+$ or D$^+$ + OH$^+$. The branching ratio for these two channels is CEP-dependent; the OD$^+$/OH$^+$ ratio (relative to that measured with CEP-unstabilized pulses) varies from 150% to over 300% at different CEP values, opening prospects of isotope-dependent control over molecular bond breakage. The kinetic energy released as HOD$^{2+}$ Coulomb explodes is also CEP-dependent. Formidable theoretical challenges are identified for proper insights into the overall dynamics which involve non-adiabatic field ionization from HOD to HOD$^+$ and, thence, to HOD$^{2+}$ via electron rescattering.

  16. High Harmonic Radiation Generation and Attosecond pulse generation from Intense Laser-Solid Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Alexander Roy [Univ. of Michigan, Ann Arbor, MI (United States); Krushelnick, Karl [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-09-08

    We have studied ion motion effects in high harmonic generation, including shifts to the harmonics which result in degradation of the attosecond pulse train, and how to mitigate them. We have examined the scaling with intensity of harmonic emission. We have also switched the geometry of the interaction to measure, for the first time, harmonics from a normal incidence interaction. This was performed by using a special parabolic reflector with an on axis hole and is to allow measurements of the attosecond pulses using standard techniques. Here is a summary of the findings: First high harmonic generation in laser-solid interactions at 1021 Wcm-2, demonstration of harmonic focusing, study of ion motion effects in high harmonic generation in laser-solid interactions, and demonstration of harmonic amplification.

  17. Investigating the Inverse Faraday Effect with an intense short pulse laser

    Science.gov (United States)

    Najmudin, Zulfikar; Tatarakis, Michealis; Krushelnick, Karl; Clark, Eugene; Santala, Marko; Dangor, Bucker; Clarke, Robert; Neely, David; Faure, Jerome; Malka, Victor

    2000-10-01

    A circularly polarised laser beam traversing through a plasma can generate an azimuthal electron current, due to their combined quiver motion. This will generate a solenoidal magnetic field in the plasma colinear with the laser propagation. This phenomena is known as the Inverse Faraday Effect (IFE), and can result in sizeable magnetic field strength for an ultra-intense laser pulses traversing through sufficiently dense plasmas. We present here measurements of the IFE field generated by the ultra-intense Vulcan:CPA laser travelling through underdense plasmas. The Vulcan:CPA laser can be focused to greater than 5 × 10^18 Wcm-2, and can generate IFE magnetic fields in excess of 2 MG. We present here the variation of the field with intensity and density, as well as measurements of its temporal and spatial behaviour. Noticeably the field is only observed for the time duration of the driver pulse, and decreases in spatial extent with increasing strength of magnetic field.

  18. Transition from coherent to incoherent acceleration of nonthermal relativistic electron induced by an intense light pulse

    Science.gov (United States)

    Liu, Y. L.; Kuramitsu, Y.; Moritaka, T.; Chen, S. H.

    2017-03-01

    Nonthermal acceleration of relativistic electrons due to the wakefield induced by an intense light pulse is investigated. The spectra of the cosmic rays are well represented by power-law. Wakefield acceleration has been considered as a candidate for the origins of cosmic rays. The wakefield can be excited by an intense laser pulse as large-amplitude precursor waves in collisionless shocks in the universe. National Central University (NCU) 100-TW laser facility in Taiwan is able to provide high-repetition rate and short intense laser. To experimentally study the wakefield acceleration for the spectrum of the cosmic rays, particle-in-cell simulations are performed to calculate the energy distribution functions of electrons in fixed laser conditions with various plasma densities. The transitions of wakefields from coherent to inherent are observed as the plasma density increases. The distribution functions indicate that the smooth nonthermal power-law spectra with an index of -2 appear when the incoherent wakefields are excited. In contrast, the mono-peak appear in the spectra when the coherent wakefields are excited. The incoherent wakefields yielding the power-law spectra imply the stochastic accelerating of electrons. To explain the universal nonthermal power-law spectra with an index of -2, we described and extended the stochastic acceleration model based on Fokker-Planck equation by assuming the transition rate as an exponential function.

  19. Ionization and Coulomb explosion of Xenon clusters by intense, few-cycle laser pulses

    CERN Document Server

    Mathur, D

    2010-01-01

    Intense, ultrashort pulses of 800 nm laser light (12 fs, $\\sim$4 optical cycles) of peak intensity 5$\\times$10$^{14}$ W cm$^{-2}$ have been used to irradiate gas-phase Xe$_n$ clusters ($n$=500-25,000) so as to induce multiple ionization and subsequent Coulomb explosion. Energy distributions of exploding ions are measured in the few-cycle domain that does not allow sufficient time for the cluster to undergo Coulomb-driven expansion. This results in overall dynamics that appear to be significantly different to those in the many-cycle regime. One manifestation is that the maximum ion energies are measured to be much lower than those obtained when longer pulses of the same intensity are used. Ion yields are cluster-size independent but polarization dependent in that they are significantly larger when the polarization is perpendicular to the detection axis than along it. This unexpected behavior is qualitatively rationalized in terms of a spatially anisotropic shielding effect induced by the electronic charge clou...

  20. Basic study on pulse-intensity-domain depth-controlled photodynamic therapy for transurethral prostate cancer

    Science.gov (United States)

    Ohmori, Sayaka; Masuda, Kensuke; Yamakawa, Yuko; Arai, Tsunenori

    2006-02-01

    Photodynamic therapy (PDT) is promising modality for cancer. Prostate cancer is the most common cancer in USA. We proposed transurethral prostate cancer treatment using the pulse-intensity-domain depth-controlled PDT to preserve urethra wall. We have found that photocytotoxicity has been suppressed under high-intensity pulsed excitation with the second generation photosensitizers. We aim to apply this effect to form intact portion on the surface of the irradiated field. Irradiation condition dependence of photocytotoxicity of rat prostate cancer cell line R3327-AT-1 was investigated with two clinical photosensitizers, Porfimer sodium and Talaporfin sodium. A pulsed laser was irradiated with the power energy density ranging from 1.25 to 10 mJ/cm2. Near-infrared luminescence from singlet oxygen in the solution of those two photosensitizers was measured transiently. We performed PDT against a rat subcutaneous prostate tumor mode with Talaporfin sodium (2mg/kg) injected intravenously 1 h prior to the irradiation. The laser was irradiated with the power energy density 2.5 or 10 mW/cm2, with the total fluence of 50 J/cm2. Photocytotoxicity in vitro and the singlet oxygen generation were both suppressed with the 10mJ/cm2 irradiation with Talaporfin sodium, while these with Porfimer sodium were kept relatively constant. The surface of the irradiated field of 1mm in thickness remained intact, while the tumor damaged layer of 1.3 mm in thickness was obtained in the case of 10mJ/cm2 irradiation. We think Talaporfin sodium has high sensitivity to the pulse energy density, which might be useful to realize urethra preserved PDT for prostate cancer.

  1. Physics of Neutralization of Intense Charged Particle Beam Pulses by a Background Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.A.; Startsev, E.A.; Sefkow, A.B; Friedman, A.F.; Lee, E.P.

    2009-09-03

    Neutralization and focusing of intense charged particle beam pulses by a background plasma forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self-magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating

  2. Physics of Neutralization of Intense High-Energy Ion Beam Pulses by Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, I. D.; Davidson, R. C.; Dorf, M. A.; Startsev, E. A.; Sefkow, A. B.; Lee, E. P.; Friedman, A.

    2010-04-28

    Neutralization and focusing of intense charged particle beam pulses by electrons forms the basis for a wide range of applications to high energy accelerators and colliders, heavy ion fusion, and astrophysics. For example, for ballistic propagation of intense ion beam pulses, background plasma can be used to effectively neutralize the beam charge and current, so that the self-electric and self- magnetic fields do not affect the ballistic propagation of the beam. From the practical perspective of designing advanced plasma sources for beam neutralization, a robust theory should be able to predict the self-electric and self-magnetic fields during beam propagation through the background plasma. The major scaling relations for the self-electric and self-magnetic fields of intense ion charge bunches propagating through background plasma have been determined taking into account the effects of transients during beam entry into the plasma, the excitation of collective plasma waves, the effects of gas ionization, finite electron temperature, and applied solenoidal and dipole magnetic fields. Accounting for plasma production by gas ionization yields a larger self-magnetic field of the ion beam compared to the case without ionization, and a wake of current density and self-magnetic field perturbations is generated behind the beam pulse. A solenoidal magnetic field can be applied for controlling the beam propagation. Making use of theoretical models and advanced numerical simulations, it is shown that even a small applied magnetic field of about 100G can strongly affect the beam neutralization. It has also been demonstrated that in the presence of an applied magnetic field the ion beam pulse can excite large-amplitude whistler waves, thereby producing a complex structure of self-electric and self-magnetic fields. The presence of an applied solenoidal magnetic field may also cause a strong enhancement of the radial self-electric field of the beam pulse propagating through the

  3. Experimental Research of Fast Proton Generation From Ultra-short Intense Laser Pulses Interaction With Different Thickness Al Foils

    Institute of Scientific and Technical Information of China (English)

    LAN; Xiao-fei; LU; Jian-xin; HUANG; Yong-sheng; WANG; Lei-jian; XI; Xiao-feng; TANG; Xiu-zhang

    2012-01-01

    <正>With the development of laser technology, the generation of fast ions by the interaction of ultra-short ultra-intense laser pulses with matters has recently been attracting considerable attention, especially for acceleration of proton. Before performing experiment, we calibrated the CR39 detector using standard proton beams from conventional accelerator. In the field of proton acceleration driven by ultra-short ultra-intense laser pulses,

  4. An exact approach to intensity analysis of optical pulses in nonlinear meta-materials

    Science.gov (United States)

    Nanda, Lipsa

    2016-05-01

    The nonlinear pulse propagation has been analytically studied by solving the nonlinear Schrödinger's equation (NLSE) in bulk media exhibiting frequency dependent dielectric permittivity(ɛ) and magnetic permeability(μ). The exact solutions obtained are shown to be of trigonometric & localized types. The analytical and simulation based method has been further extended to investigate the intensity distribution in a nonlinear meta-material which behaves as a negative refractive medium (NRM), where both ɛ and μ are shown to be dispersive and negative in nature.

  5. Modeling of optical, transport, and thermodynamic properties of Al metal irradiated by intense femtosecond laser pulses

    CERN Document Server

    Khishchenko, Konstantin V; Andreev, Nikolay E; Fortov, Vladimir E; Levashov, Pavel R; Povarnitsyn, Mikhail E

    2008-01-01

    A theoretical model is developed for the interaction of intense femtosecond laser pulses with solid targets on the basis of the two-temperature equation of state for an irradiated substance. It allows the description of the dynamics of the plasma formation and expansion. Comparison of available experimental data on the amplitude and phase of the complex reflection coefficient of aluminum with the simulation results provides new information on the transport coefficients and absorption capacity of the strongly coupled Al plasma over a wide range of temperatures and pressures.

  6. Ion acceleration in a solitary wave by an intense picosecond laser pulse.

    Science.gov (United States)

    Zhidkov, A; Uesaka, M; Sasaki, A; Daido, H

    2002-11-18

    Acceleration of ions in a solitary wave produced by shock-wave decay in a plasma slab irradiated by an intense picosecond laser pulse is studied via particle-in-cell simulation. Instead of exponential distribution as in known mechanisms of ion acceleration from the target surface, these ions accelerated forwardly form a bunch with relatively low energy spread. The bunch is shown to be a solitary wave moving over expanding plasma; its velocity can exceed the maximal velocity of ions accelerated forward from the rear side of the target.

  7. Optimized plasma high harmonics generation from ultra-intense laser pulses

    CERN Document Server

    Tang, Suo; Keitel, Christoph H

    2016-01-01

    Plasma high harmonics generation from extremely intense short-pulse laser is explored by including the effects of ion motion and radiation reaction force in the plasma dynamics. The laser radiation pressure induces plasma ion motion through the hole-boring effect resulting into the frequency shifting and widening of the harmonic spectra thereby constraining the coherence properties of the harmonics. Radiation reaction force slightly mitigates the effects caused by the ion motion. Based on the analytical estimates and particle-in-cell simulation results, an optimum parameter regime of plasma high-harmonics is presented.

  8. A large aperture reflective wave-plate for high-intensity short-pulse laser experiments

    CERN Document Server

    Aurand, Bastian; Zhao, Huanyu; Kuschel, Stephan; Wünsche, Martin; Jäckel, Oliver; Heyer, Martin; Wunderlich, Frank; Kaluza, Malte C; Paulus, Gerhard G; Kuehl, Thomas

    2012-01-01

    We report on a reflective wave-plate system utilizing phase-shifting mirrors (PSM) for a continuous variation of elliptical polarization without changing the beam position and direction. The scalability of multilayer optics to large apertures and the suitability for high-intensity broad-bandwidth laser beams make reflective wave-plates an ideal tool for experiments on relativistic laser-plasma interaction. Our measurements confirm the preservation of the pulse duration and spectrum when a 30-fs Ti:Sapphire laser beam passes the system.

  9. Numerical Simulation on Expansion Process of Ablation Plasma Induced by Intense Pulsed Ion Beam

    Institute of Scientific and Technical Information of China (English)

    TAN Chang; LIU Yue; WANG Xiao-Gang; MA Teng-Cai

    2006-01-01

    We present a one-dimensional time-dependent numerical model for the expansion process of ablation plasmainduced by intense pulsed ion beam(IPIB).The evolutions of density,velocity,temperature,and pressure of theablation plasma of the aluminium target are obtained.The numerical results are well in agreement with therelative experimental data.It is shown that the expansion process of ablation plasma induced by IPIB includesstrongly nonlinear effects and that shock waves appear during the propagation of the ablation plasma.

  10. The RMT method for describing many-electron atoms in intense short laser pulses

    Science.gov (United States)

    Lysaght, M. A.; Moore, L. R.; Nikolopoulos, L. A. A.; Parker, J. S.; van der Hart, H. W.; Taylor, K. T.

    2012-11-01

    We describe how we have developed an ab initio R-Matrix incorporating Time (RMT) method to provide an accurate description of the single ionization of a general many-electron atom exposed to short intense laser pulses. The new method implements the "division-of-space" concept central to R-matrix theory and takes over the sophisticated time-propagation algorithms of the HELIUM code. We have tested the accuracy of the new method by calculating multiphoton ionization rates of He and Ne and have found excellent agreement with other highly accurate and well-established methods.

  11. Ion acceleration in shell cylinders irradiated by a short intense laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A. [Max-Born Institute, Berlin (Germany); ELI-ALPS, Szeged (Hungary); Platonov, K. [St. Petersburg State Polytechnic University, St. Petersburg (Russian Federation); Sharma, A. [ELI-ALPS, Szeged (Hungary); Murakami, M. [ILE, Osaka University, Osaka (Japan)

    2015-09-15

    The interaction of a short high intensity laser pulse with homo and heterogeneous shell cylinders has been analyzed using particle-in-cell simulations and analytical modeling. We show that the shell cylinder is proficient of accelerating and focusing ions in a narrow region. In the case of shell cylinder, the ion energy exceeds the ion energy for a flat target of the same thickness. The constructed model enables the evaluation of the ion energy and the number of ions in the focusing region.

  12. Lie algebraic analysis for the nonlinear transport of intense pulsed beams in electrostatics lenses

    Institute of Scientific and Technical Information of China (English)

    Lu Jian-Qin; Li Jin-Hai

    2004-01-01

    The Lie algebraic method is applied to the analysis of the nonlinear transport of an intense pulsed beam in cylindrically symmetrical electrostatic lenses, and particle orbits in a six-dimensional phase space (x, px, y, py, τ, pτ)are obtained in the second order approximation. They can also be acquired in the third or higher order approximation if needed. In the analysis, we divide the electrostatic lenses into several segments. Each segment is considered as a uniform accelerating field, and each dividing point is treated as a thin lens. The particle distribution in a three-dimensional ellipsoid is of Gaussian type.

  13. Intense, pulsed, charged particle beams and associated applications to materials science

    Energy Technology Data Exchange (ETDEWEB)

    Yatsui, K.; Grigoriu, C.; Masugata, K.; Jiang, W.; Sonegawa, T.; Nakagawa, Y.; Eka Prijono, A.C. [Nagaoka Univ. of Technology, Niigata (Japan)

    1997-03-01

    We have demonstrated successful preparation of thin films and nanosize powders by using the technique of intense pulsed ion beam evaporation. In this paper, we review the experimental results of thin film deposition of ZnS, YBa{sub 2}Cu{sub 3}O{sub 7-x}, BaTiO{sub 3}, cBN, ZrO{sub 2}, ITO, and apatite, as well as the experimental results of the synthesis of nanosize powders of Al{sub 2}O{sub 3}. (author)

  14. Polarization-Dependence of Coulomb Explosion of CO Irradiated with an Intense Femtosecond Laser Pulse

    Institute of Scientific and Technical Information of China (English)

    陈建新; 马日; 任海振; 李霞; 杨宏; 龚旗煌

    2003-01-01

    Laser-induced Coulomb explosion of CO is studied experimentally using differently polarized femtosecond laser pulses of 2 × 1015 W/cm2 intensity at λ = 800 nm. The channels of molecular Coulomb explosion are observed to be independent of the laser polarizations. The critical distance R is deduced to be larger for the circularly polarized light in comparison with the linearly polarized light. The initial emissions of C+, C2+, O+, and O2+ions are anisotropic for linear polarization and isotropic for circular polarization. The suppression of ionization occurs for the elliptically and circularly polarized lasers.

  15. Heating and ionization of metal clusters in the field of an intense femtosecond laser pulse

    Science.gov (United States)

    Kostenko, O. F.; Andreev, N. E.

    2007-06-01

    Inverse bremsstrahlung heating and thermal electron-impact ionization of a metal cluster are analyzed with account for the spatial structure of the electromagnetic field. It is shown that, for a femtosecond IR radiation pulse with an intensity of ˜1018 W/cm2 and for an iron cluster with an optimum radius of ˜25 nm, the electron temperature is higher than 1 keV. In this case, the L shell of the ions is highly stripped. The X-ray bremsstrahlung yield from clusters with a radius greater than the skin depth is estimated.

  16. High harmonic generation from bulk diamond driven by intense femtosecond laser pulse

    CERN Document Server

    Apostolova, Tzveta

    2016-01-01

    We investigate the high-harmonic generation (HHG) from bulk diamond induced by intense 15 fs laser pulse and photon energy 1.55 eV. For laser intensity in the range $I \\in [1,50]$ TW/cm$^2$, we find that HHG spectra from diamond exhibits two plateaus with high harmonics extending beyond the 50th order. Consistently with experimental observations, we find that the cutoff energy of the two plateaus scales linearly with the field strength. The first plateau is due to recombination of electron-hole pairs near the Brillouin zone center. The appearance of weak second plateau region for high field strength with $F \\sim$ 1 V/$\\AA$ results in emission of highly energetic XUV photons.

  17. Unusual electron dynamics in He clusters induced by intense XUV pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharenko, Yevheniy; Moeller, Thomas [IOAP, TU-Berlin (Germany); LaForge, Aaron; Katzy, Raphael; Stienkemeier, Frank [Physikalisches Institut, Universitaet Freiburg (Germany); Lyamayev, Viktor [European XFEL, Hamburg (Germany); O' Keeffe, Patrick [CNR IMIP, Monterotondo Scalo (Italy); Plekan, Oksana; Finetti, Paola; Richter, Robert; Prince, Kevin; Callegari, Carlo [Elettra-Sincrotrone Trieste, Basovizza (Italy); Drabbels, Marcel [EPFL, Lausanne (Switzerland)

    2014-07-01

    The investigation of complex atomic and molecular systems in intense IR and XUV pulses has attracted considerable attention during the last decade, since it leads to a better understanding of light matter interaction. Recently, the first seeded Free Electron Laser FERMI became available for users and now offers unique possibility to perform detailed investigations in such systems due to the narrow bandwidth, fine energy tunability and high intensity in XUV energy range. By using this new source the ionization dynamics in He clusters has been explored with electron spectroscopy in a wide energy range. In addition to the conventional sequential multi-step ionization with a photon energy well above the first ionization potential (IP) a novel ionization process following resonant excitation below IP was observed. It is due to autoionization of two or more electronically excited cluster atoms as predicted recently. The process is very efficient and can exceed the rate of direct photoionization above IP.

  18. Recombination-Enhanced Surface Expansion of Clusters in Intense Soft X-Ray Laser Pulses

    Science.gov (United States)

    Rupp, Daniela; Flückiger, Leonie; Adolph, Marcus; Gorkhover, Tais; Krikunova, Maria; Müller, Jan Philippe; Müller, Maria; Oelze, Tim; Ovcharenko, Yevheniy; Röben, Benjamin; Sauppe, Mario; Schorb, Sebastian; Wolter, David; Mitzner, Rolf; Wöstmann, Michael; Roling, Sebastian; Harmand, Marion; Treusch, Rolf; Arbeiter, Mathias; Fennel, Thomas; Bostedt, Christoph; Möller, Thomas

    2016-10-01

    We studied the nanoplasma formation and explosion dynamics of single large xenon clusters in ultrashort, intense x-ray free-electron laser pulses via ion spectroscopy. The simultaneous measurement of single-shot diffraction images enabled a single-cluster analysis that is free from any averaging over the cluster size and laser intensity distributions. The measured charge state-resolved ion energy spectra show narrow distributions with peak positions that scale linearly with final ion charge state. These two distinct signatures are attributed to highly efficient recombination that eventually leads to the dominant formation of neutral atoms in the cluster. The measured mean ion energies exceed the value expected without recombination by more than an order of magnitude, indicating that the energy release resulting from electron-ion recombination constitutes a previously unnoticed nanoplasma heating process. This conclusion is supported by results from semiclassical molecular dynamics simulations.

  19. X-ray-boosted photoionization for the measurement of an intense laser pulse

    Institute of Scientific and Technical Information of China (English)

    Ge Yu-Cheng; He Hai-Ping

    2013-01-01

    Investigations show that X-ray-boosted photoionization (XBP) has the following advantages for in-situ measurements of ultrahigh laser intensity Ⅰ and field envelope F(t) (time t,pulse duration τL,carrier-envelope-phase Φ):accuracy,dynamic range,and rapidness.The calculated XBP spectra resemble inversely proportional functions of the photoelectron momentum shift.The maximum momentump9 and the observable value Q (defined as a double integration of a normalized photoelectron energy spectrum,PES) linearly depend on I1/2 and τL,respectively.Φ and F(t) can be determined from the PES cut-off energy and peak positions.The measurable laser intensity can be up to and over 1018 W/cm2 by using high energy X-rays and highly charged inert gases.

  20. Limiting the intensity of femtosecond pulses with anti-stokes excitation of organic dye solutions

    Science.gov (United States)

    Svetlichnyi, V. A.; Meshalkin, Yu. P.; Kirpichnikov, A. V.; Pestryakov, E. V.

    2010-08-01

    Results of experimental investigations into the nonlinear absorption of the symmetric polymethine 1-butyl -3,3-dimethyl-2-[5-(1-butyl-3,3-dimethyl-3H-benz[e]indoline-2-uledene)-1,3-pentadienyl]-3H-benz[e]indolium perchlorate dye solution excited by radiation of a femtosecond titanium-sapphire laser (20 fs, 800 nm, 75 MHz, and 300 mW) by the open aperture z-scan method are presented. Record limitation of the femtosecond laser radiation intensity (by 300 times at a 93% linear transmission of the medium) was achieved. The nonlinear absorption mechanisms in organic dyes with anti-Stokes excitation by wideband high-power pulsed radiation to the absorption band edge and the prospects for organic dye application for limitation of the femtosecond laser radiation intensity are discussed.

  1. Attospiral generation upon interaction of circularly polarized intense laser pulses with cone-like targets

    CERN Document Server

    Lécz, Zsolt

    2015-01-01

    Generation of high intensity attopulses is investigated in cylindrical geometry by using 3D particle-in-cell plasma simulation code. Due to the rotation symmetric target, a circularly polarized laser pulse is considered propagating on the axis of a hollow cone-like target. The large incidence angle and constant ponderomotive pressure leads to nano-bunching of relativistic electrons responsible for the laser-driven synchrotron emission. A numerical method is developed to find the source and direction of the coherent radiation that is responsible for the existence of attopulses. The intensity modulation in the harmonic spectrum is well described by the model of coherent synchrotron emission extended to the regime of higher order \\gamma-spikes. The spatial distribution of the higher harmonics resembles a spiral shape which gets focused into a small volume behind the target.

  2. In vivo hyperthermia effect induced by high-intensity pulsed ultrasound

    Institute of Scientific and Technical Information of China (English)

    Cui Wei-Cheng; Tu Juan; Hwang Joo-Ha; Li Qian; Fan Ting-Bo; Zhang Dong; Chen Jing-Hai; Chen Wei-Zhong

    2012-01-01

    Hyperthermia effects (39-44 ℃) induced by pulsed high-intensity focused ultrasound (HIFU) have been regarded as a promising therapeutic tool for boosting immune responses or enhancing drug delivery into a solid tumor.However,previous studies also reported that the cell death occurs when cells are maintained at 43 ℃ for more than 20 minutes.The aim of this study is to investigate thermal responses inside in vivo rabbit auricular veins exposed to pulsed HIFU (1.17 MHz,5300 W/cm2,with relatively low-duty ratios (0.2%-4.3%).The results show that:(1) with constant pulse repetition frequency (PRF) (e.g.,1 Hz),the thermal responses inside the vessel will increase with the increasing duty ratio; (2) a temperature elevation to 43 ℃ can be identified at the duty ratio of 4.3%; (3) with constant duty ratios,the change of PRF will not significantly affect the temperature measurement in the vessel; (4) as the duty ratios lower than 4.3%,the presence of microbubbles will not significantly enhance the thermal responses in the vessel,but will facilitate HIFU-induced inertial cavitation events.

  3. Intense 2-cycle laser pulses induce time-dependent bond-hardening in a polyatomic molecule

    CERN Document Server

    Dota, K; Tiwari, A K; Dharmadhikari, J A; Dharmadhikari, A K; Mathur, D

    2012-01-01

    A time-dependent bond-hardening process is discovered in a polyatomic molecule (tetramethyl silane, TMS) using few-cycle pulses of intense 800 nm light. In conventional mass spectrometry, symmetrical molecules like TMS do not exhibit a prominent molecular ion (TMS$^+$) as unimolecular dissociation into [Si(CH$_3$)$_3]^+$ proceeds very fast. Under strong field and few-cycle conditions, this dissociation channel is defeated by time-dependent bond-hardening: a field-induced potential well is created in the TMS$^+$ potential energy curve that effectively traps a wavepacket. The time-dependence of this bond hardening process is verified using longer-duration ($\\geq$ 100 fs) pulses; the relatively "slower" fall-off of optical field in such pulses allows the initially trapped wavepacket to leak out, thereby rendering TMS$^+$ unstable once again. Our results are significant as they demonstrate (i) optical generation of polyatomic ions that are normally inaccessible and (ii) optical control of dynamics in strong field...

  4. Intense pulsed light treatment of cadmium telluride nanoparticle-based thin films.

    Science.gov (United States)

    Dharmadasa, Ruvini; Lavery, Brandon; Dharmadasa, I M; Druffel, Thad

    2014-04-09

    The search for low-cost growth techniques and processing methods for semiconductor thin films continues to be a growing area of research; particularly in photovoltaics. In this study, electrochemical deposition was used to grow CdTe nanoparticulate based thin films on conducting glass substrates. After material characterization, the films were thermally sintered using a rapid thermal annealing technique called intense pulsed light (IPL). IPL is an ultrafast technique which can reduce thermal processing times down to a few minutes, thereby cutting production times and increasing throughput. The pulses of light create localized heating lasting less than 1 ms, allowing films to be processed under atmospheric conditions, avoiding the need for inert or vacuum environments. For the first time, we report the use of IPL treatment on CdTe thin films. X-ray diffraction (XRD), optical absorption spectroscopy (UV-Vis), scanning electron microscopy (SEM) and room temperature photoluminescence (PL) were used to study the effects of the IPL processing parameters on the CdTe films. The results found that optimum recrystallization and a decrease in defects occurred when pulses of light with an energy density of 21.6 J cm(-2) were applied. SEM images also show a unique feature of IPL treatment: the formation of a continuous melted layer of CdTe, removing holes and voids from a nanoparticle-based thin film.

  5. A two-stage series diode for intense large-area moderate pulsed X rays production

    Science.gov (United States)

    Lai, Dingguo; Qiu, Mengtong; Xu, Qifu; Su, Zhaofeng; Li, Mo; Ren, Shuqing; Huang, Zhongliang

    2017-01-01

    This paper presents a method for moderate pulsed X rays produced by a series diode, which can be driven by high voltage pulse to generate intense large-area uniform sub-100-keV X rays. A two stage series diode was designed for Flash-II accelerator and experimentally investigated. A compact support system of floating converter/cathode was invented, the extra cathode is floating electrically and mechanically, by withdrawing three support pins several milliseconds before a diode electrical pulse. A double ring cathode was developed to improve the surface electric field and emission stability. The cathode radii and diode separation gap were optimized to enhance the uniformity of X rays and coincidence of the two diode voltages based on the simulation and theoretical calculation. The experimental results show that the two stage series diode can work stably under 700 kV and 300 kA, the average energy of X rays is 86 keV, and the dose is about 296 rad(Si) over 615 cm2 area with uniformity 2:1 at 5 cm from the last converter. Compared with the single diode, the average X rays' energy reduces from 132 keV to 88 keV, and the proportion of sub-100-keV photons increases from 39% to 69%.

  6. Enhancement of cardiomyogenesis in stem cells by low intensity pulsed ultrasound

    Science.gov (United States)

    Teo, Ailing; Morshedi, Amir; Wang, Jen-Chieh; Lim, Mayasari; Zhou, Yufeng

    2017-03-01

    Low intensity pulsed ultrasound (LIPUS) has been shown to enhance bone and cartilage regeneration from stem cells. Gene expression of angiotensin II type 1 (AT1) receptor can be increased in LIPUS-treated osteoblasts. The AT1 receptor is a known mechanoreceptor in cardiomyocytes. It suggests that LIPUS may enhance cardiomyogenesis via mechanotransduction by increasing AT1 expression. Murine embryonic stem cells (ESCs) were treated daily by 10-min 1MHz LIPUS at spatial-average temporal-peak acoustic intensities of 30 mW/cm2 and 300 mW/cm2 in both continuous and pulsed wave (20% duty cycle) for 10 days. Polymerase chain reaction (PCR), immunocytochemistry, and beating rate were used to evaluate the cardiac viability quantitatively. After the treatment of LIPUS, beating rate of contractile areas and cardiac gene expression, such as α- and β-myosin heavy chain, were improved. Furthermore, no deleterious effects to the development of cardiac proteins were observed. All results suggest that LIPUS stimulation has the capacity of enhancing cardiomyogenesis from embryonic stem cells. With the benefit and the ease in incorporating LIPUS into various culture platforms, LIPUS has the potential to produce cardiomyocytes for clinical use in the future.

  7. Two-photon double ionization of neon using an intense attosecond pulse train

    CERN Document Server

    Manschwetus, B; Campi, F; Maclot, S; Coudert-Alteirac, H; Lahl, J; Wikmark, H; Rudawski, P; Heyl, C M; Farkas, B; Mohamed, T; L'Huillier, A; Johnsson, P

    2016-01-01

    We present the first demonstration of two-photon double ionization of neon using an intense extreme ultraviolet (XUV) attosecond pulse train (APT) in a photon energy regime where both direct and sequential mechanisms are allowed. For an APT generated through high-order harmonic generation (HHG) in argon we achieve a total pulse energy close to 1 $\\mu$J, a central energy of 35 eV and a total bandwidth of $\\sim30$ eV. The APT is focused by broadband optics in a neon gas target to an intensity of $3\\cdot10^{12} $W$\\cdot$cm$^{-2}$. By tuning the photon energy across the threshold for the sequential process the double ionization signal can be turned on and off, indicating that the two-photon double ionization predominantly occurs through a sequential process. The demonstrated performance opens up possibilities for future XUV-XUV pump-probe experiments with attosecond temporal resolution in a photon energy range where it is possible to unravel the dynamics behind direct vs. sequential double ionization and the asso...

  8. The unsteady regime of intense short-pulse under-dens plasma interactions

    CERN Document Server

    Yazdanpanah, Jam; Chakhmachi, Amir; Khalilzadeh, Elnaz

    2015-01-01

    We have performed a detailed study on the interaction of ultra-intense, short laser pulse with under-dens plasma. The underlying interaction physics is outlined and key topics like laser absorption and electron acceleration are addressed. This study is assisted by the extensive 1D3V particle-in-cell (PIC) simulations over a wide range of initial plasma densities, , ( is the critical density) and laser intensities, . It is noticed that the steady propagation of a short-pulse through a low density plasma is violated in proportion to the expression ( and are electron density laser gamma factor). Accordingly, when the plasma density rises toward the critical value, a new physical regime appears which has not been adequately explored, previously. Using general conservation laws it is demonstrated that due to the radiation pressure, strong wave-breaking (phase mixing) occurs in this regime. The electron acceleration is described in terms of the wave-breaking followed by the direct laser acceleration (DLA). A new ph...

  9. Effect of intense pulsed light on immature burn scars: A clinical study

    Directory of Open Access Journals (Sweden)

    Arindam Sarkar

    2014-01-01

    Full Text Available Introduction: As intense pulsed light (IPL is widely used to treat cutaneous vascular malformations and also used as non-ablative skin rejunuvation to remodel the skin collagen. A study has been undertaken to gauze the effect of IPL on immature burn scars with regard to vascularity, pliability and height. Materials and Methods: This study was conducted between June 2013 and May 2014, among patients with immature burn scars that healed conservatively within 2 months. Photographic evidence of appearance of scars and grading and rating was done with Vancouver Scar Scale parameters. Ratings were done for both case and control scar after the completion of four IPL treatment sessions and were compared. Results: Out of the 19 cases, vascularity, pliability and height improved significantly (P < 0.05 in 13, 14 and 11 scars respectively following IPL treatment. Conclusions: Intense pulsed light was well-tolerated by patients, caused good improvement in terms of vascularity, pliability, and height of immature burn scar.

  10. The interaction of intense ultrashort laser pulses with cryogenic He planar jets

    Science.gov (United States)

    Shihab, M.; Bornath, Th; Redmer, R.

    2017-04-01

    We study the interaction of intense ultrashort laser pulses with cryogenic He planar jets, i.e., slabs, using 2D3V relativistic particle-in-cell simulations. Of particular interest are laser intensities ({10}15{--}{10}20) W cm‑2, pulse lengths ≤100 fs, and the wave length regime ∼800 nm for which the slabs are initially transparent and subsequently inhomogeneously ionized. Pulses ≥slant {10}16 W cm‑2 are found to drive ionization along the slab and outside the laser spot, the ionization front propagates along the slab at a considerable fraction of the speed of light. Within the ionized region, there is a highly transient field which is a result of the charge-neutralizing disturbance at the slab-vacuum interface and which may be interpreted in terms of a two-surface-wave decay. The ionized region is predicted to reach solid-like densities and temperatures of few to hundreds of eV, i.e., it belongs to warm and hot dense matter regimes. Such extreme conditions are relevant for high-energy densities as found, e.g., in shock-wave experiments and inertial confinement fusion studies. The temporal evolution of the ionization is studied considering theoretically a pump–probe x-ray Thomson scattering scheme. We observe plasmon and non-collective modes that are generated in the slab, and their amplitude is proportional to the ionized volume. Our theoretical findings could be tested at free-electron laser facilities such as FLASH and the European XFEL (Hamburg) and the LCLS (Stanford).

  11. Push technology at Argonne National Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Noel, R. E.; Woell, Y. N.

    1999-04-06

    Selective dissemination of information (SDI) services, also referred to as current awareness searches, are usually provided by periodically running computer programs (personal profiles) against a cumulative database or databases. This concept of pushing relevant content to users has long been integral to librarianship. Librarians traditionally turned to information companies to implement these searches for their users in business, academia, and the science community. This paper describes how a push technology was implemented on a large scale for scientists and engineers at Argonne National Laboratory, explains some of the challenges to designers/maintainers, and identifies the positive effects that SDI seems to be having on users. Argonne purchases the Institute for Scientific Information (ISI) Current Contents data (all subject areas except Humanities), and scientists no longer need to turn to outside companies for reliable SDI service. Argonne's database and its customized services are known as ACCESS (Argonne-University of Chicago Current Contents Electronic Search Service).

  12. Thermo chemical stability of cadmium sulfide nanoparticles under intense pulsed light irradiation and high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Colorado, H.A., E-mail: hcoloradolopera@ucla.edu [Materials Science and Engineering Department, University of California, Los Angeles, CA 90095 (United States); Universidad de Antioquia, Mechanical Engineering, Medellin (Colombia); Dhage, S.R. [International Advanced Research Center for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005 (India); Hahn, H.T. [Materials Science and Engineering Department, University of California, Los Angeles, CA 90095 (United States); Mechanical and Aerospace Engineering Department, University of California, Los Angeles (United States)

    2011-09-15

    Highlights: > In this paper is about the thermochemical stability of CdS nanoparticles under Intense Pulsed Light (IPL) irradiation. > After few irradiation shots over the nano-particles, CdS pillars appeared without phase transformation. > No oxidation was observed during the treatment process. > CdS nanoparticles are thermally stable until around 400 deg. C and 600 deg. C for air and argon atmospheres respectively. > It has been studied and demonstrated the stability of CdS nanoparticles under intense pulsed light and under high temperature conditions. - Abstract: Thermo chemical stability of CdS nanoparticles under an Intense Pulsed Light from a xenon flash lamp and high temperature X-ray Diffraction (XRD) were investigated. The CdS nanoparticles were obtained with a chemical bath method. The CdSO{sub 4} (0.16 M) solution was added to an NH{sub 3} (7.5 M) solution under constant stirring. Afterwards, a thiourea (0.6 M) solution was added. The bath temperature and pH were maintained at 65 deg. C and 10, respectively and the mixture was stirred constantly until a solid precipitate of yellow CdS was produced. Its microstructure was investigated with Scanning Electron Microscopy, and its electronic properties were determined by UV-visible and Photo luminescence Spectroscopy. The microstructure of the sintered CdS nanoparticles, obtained the high temperature XRD, was investigated with EDAX and X-ray micro Tomography. In addition, high temperature XRD and Themogravimetric Analysis tests were conducted over the samples. The CdS nanoparticles' crystallinity increased with the irradiation exposure and they were thermally stable until 600 deg. C in argon atmosphere. However new phases start to appear after annealing at 400 deg. C for 30 min in air atmosphere. The main contribution of this paper was to investigate the stability of CdS nanoparticles under intense light and high temperature conditions. It was found that the number of irradiation shots conducted with the

  13. GABAergic inhibition modulates intensity sensitivity of temporally patterned pulse trains in the inferior collicular neurons in big brown bats.

    Science.gov (United States)

    Luan, Rui-Hong; Wu, Fei-Jian; Jen, Philip H-S; Sun, Xin-De

    2007-12-25

    The echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals with duration, amplitude, repetition rate, and sweep structure changing systematically during interception of their prey. In the present study, the sound stimuli of temporally patterned pulse trains at three different pulse repetition rates (PRRs) were used to mimic the sounds received during search, approach, and terminal stages of echolocation. Electrophysiological method was adopted in recordings from the inferior colliculus (IC) of midbrain. By means of iontophoretic application of bicuculline, the effect of GABAergic inhibition on the intensity sensitivity of IC neurons responding to three different PRRs of 10, 30 and 90 pulses per second (pps) was examined. The rate-intensity functions (RIFs) were acquired. The dynamic range (DR) of RIFs was considered as a criterion of intensity sensitivity. Comparing the average DR of RIFs at different PRRs, we found that the intensity sensitivity of some neurons improved, but that of other neurons decayed when repetition rate of stimulus trains increased from 10 to 30 and 90 pps. During application of bicuculline, the number of impulses responding to the different pulse trains increased under all stimulating conditions, while the DR differences of RIFs at different PRRs were abolished. The results indicate that GABAergic inhibition was involved in modulating the intensity sensitivity of IC neurons responding to pulse trains at different PRRs. Before and during bicuculline application, the percentage of changes in responses was maximal in lower stimulus intensity near to the minimum threshold (MT), and decreased gradually with the increment of stimulus intensity. This observation suggests that GABAergic inhibition contributes more effectively to the intensity sensitivity of the IC neurons responding to pulse trains at lower sound level.

  14. Laser Ion Acceleration from the Interaction of Ultra-Intense laser Pulse with thi foils

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Matthew Mark [Univ. of California, Berkeley, CA (United States)

    2004-03-12

    The discovery that ultra-intense laser pulses (I > 1018 W/cm2) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 1018 W/cm2), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by Up = ([1 + Iλ2/1.3 x 1018]1/2 - 1) moc2, where Iλ2 is the irradiance in Wμm2/cm2 and moc2 is the electron rest mass.At laser irradiance of Iλ2 ~ 1018 Wμm2/cm2, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target.

  15. Plasma-based generation of a single few-cycle, high-energy and ultrahigh intensity laser pulse

    CERN Document Server

    Tamburini, M; Liseykina, T V; Keitel, C H

    2012-01-01

    A laser-boosted relativistic solid-density paraboloidal foil is known to efficiently reflect and focus a counterpropagating laser pulse. We show that in the case of an ultrarelativistic counterpropagating pulse, a high-energy and ultrahigh intensity reflected pulse can be more effectively generated by a relatively slow and heavy foil than by a fast and light one. This counterintuitive feature is explained with the larger reflectivity of a heavy foil, which compensates for the lower relativistic Doppler factor. Moreover, since the counterpropagating pulse is ultrarelativistic, the foil is abruptly dispersed and only the first few cycles of the counterpropagating pulse are reflected. Our three-dimensional particle-in-cell simulations show that a single sub-5-femtosecond, multi-petawatt laser pulse with several joule of energy and with peak intensity exceeding 1024 W cm^{-2} can be generated employing laser pulses with peak intensity of the order of 1022 W cm^{-2}. In addition, the carrier envelope phase of the ...

  16. Precise Calculation of Single and Double Ionization of Hydrogen Molecule in Intense Laser Pulses

    CERN Document Server

    Vafaee, Mohsen; Shokri, Babak

    2010-01-01

    In this paper, a new simulation box is introduced for two electronic systems in intense laser pulses. In this box, the region of hydrogen molecule, single ionization and second ionization are precisely recognized and time dependent of population of these regions are reported. In addition, a new regions is introduced and characterized as quasi-double ionization regions and the time dependent population of these regions are calculated and compared at different intensities. The special character of the simulation box is that it is designed in order that to assure the overall second ionization is taken to account. In this study, the dynamics of the electrons and the nuclei of hydrogen molecule are separated based on the adiabatic approximation. The time dependent Schr\\"{o}dinger and Newton equations are solved simultaneously for the electrons and the nuclei respectively. Four different intensities are used in the simulation; $ 1\\times10^{14} $, $ 5\\times10^{14} $, $ 1\\times10^{15} $ and $ 5\\times10^{15} $ W cm$^{...

  17. The upgrade of intense pulsed neutron source (IPNS) through the change of coolant and reflector

    CERN Document Server

    Baek, I C; Iverson, E B

    2002-01-01

    The current intense pulsed neutron source (IPNS) depleted uranium target is cooled by light water. The inner reflector material is graphite and the outer reflector material is beryllium. The presence of H sub 2 O in the target moderates neutrons and leads to a higher absorption loss in the target than is necessary. D sub 2 O coolant in the small quantities required minimizes this effect. We have studied the possible improvement in IPNS beam fluxes that would result from changing the coolant from H sub 2 O to D sub 2 O and the inner reflector from graphite to beryllium. Neutron intensities were calculated for directions normal to the viewed surface of each moderator for four different cases of combinations of target coolant and reflector materials. The simulations reported here were performed using the MCNPX (version 2.1.5) computer program. Our results show that substantial gains in neutron beam intensities can be achieved by appropriate combination of target coolant and reflector materials. The combination o...

  18. High Intensity Femtosecond XUV Pulse Interactions with Atomic Clusters: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Ditmire, Todd [Univ. of Texas, Austin, TX (United States). Center for High Energy Density Science

    2016-10-12

    We propose to expand our recent studies on the interactions of intense extreme ultraviolet (XUV) femtosecond pulses with atomic and molecular clusters. The work described follows directly from work performed under BES support for the past grant period. During this period we upgraded the THOR laser at UT Austin by replacing the regenerative amplifier with optical parametric amplification (OPA) using BBO crystals. This increased the contrast of the laser, the total laser energy to ~1.2 J , and decreased the pulse width to below 30 fs. We built a new all reflective XUV harmonic beam line into expanded lab space. This enabled an increase influence by a factor of 25 and an increase in the intensity by a factor of 50. The goal of the program proposed in this renewal is to extend this class of experiments to available higher XUV intensity and a greater range of wavelengths. In particular we plan to perform experiments to confirm our hypothesis about the origin of the high charge states in these exploding clusters, an effect which we ascribe to plasma continuum lowering (ionization potential depression) in a cluster nano-­plasma. To do this we will perform experiments in which XUV pulses of carefully chosen wavelength irradiate clusters composed of only low-Z atoms and clusters with a mixture of this low-­Z atom with higher Z atoms. The latter clusters will exhibit higher electron densities and will serve to lower the ionization potential further than in the clusters composed only of low Z atoms. This should have a significant effect on the charge states produced in the exploding cluster. We will also explore the transition of explosions in these XUV irradiated clusters from hydrodynamic expansion to Coulomb explosion. The work proposed here will explore clusters of a wider range of constituents, including clusters from solids. Experiments on clusters from solids will be enabled by development we performed during the past grant period in which we constructed and

  19. DISCUSSION ON DEFECTS DISTRIBUTION NEAR THE STEEL SURFACE IRRADIATED BY INTENSE PULSED ION BEAM

    Institute of Scientific and Technical Information of China (English)

    X.Y.Le; S.Yan; W.J.Zhao; B.X.Han; W.Xiang

    2002-01-01

    The surface defect distribution in stainless steel irradiated with intense pulsed ion beam(IPIB) of current density above 60A/cm2 and acceleration voltage 300-500keV wasdiscussed and analyzed. The defects near the surface of stainless steel were generatedin two ways: (1) generated by the bombardment of energetic ions and (2) induced bythe high level stress near the surface. Thus the temperature and stress distributionsnear the steel surface were calculated by means of our STEIPIB code, which treatedwith the thermal-dynamical process in the target irradiated by the IPIB. Based onthese distributions, the generations and movements of these defects were discussedand compared with the experiment results.

  20. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  1. Propagation of an ultrashort, intense laser pulse in a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, B.; Decker, C.D. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    A Maxwell-relativistic fluid model is developed for the propagation of an ultrashort, intense laser pulse through an underdense plasma. The separability of plasma and optical frequencies ({omega}{sub p} and {omega} respectively) for small {omega}{sub p}/{omega} is not assumed; thus the validity of multiple-scales theory (MST) can be tested. The theory is valid when {omega}{sub p}/{omega} is of order unity or for cases in which {omega}{sub p}/{omega} {much_lt} 1 but strongly relativistic motion causes higher-order plasma harmonics to be generated which overlap the region of the first-order laser harmonic, such that MST would not expected to be valid although its principal validity criterion {omega}{sub p}/{omega} {much_lt} 1 holds.

  2. Rapid Melt and Resolidification of Surface Layers Using Intense, Pulsed Ion Beams Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy J.

    1998-10-02

    The emerging technology of pulsed intense ion beams has been shown to lead to improvements in surface characteristics such as hardness and wear resistance, as well as mechanical smoothing. We report hereon the use of this technology to systematically study improvements to three types of metal alloys - aluminum, iron, and titanium. Ion beam tieatment produces a rapid melt and resolidification (RMR) of the surface layer. In the case of a predeposited thin-fihn layer, the beam mixes this layer into the substrate, Ieading to improvements that can exceed those produced by treatment of the alloy alone, In either case, RMR results in both crystal refinement and metastable state formation in the treated surface layer not accessible by conventional alloy production. Although more characterization is needed, we have begun the process of relating these microstructural changes to the surface improvements we discuss in this report.

  3. Clusters in Intense XUV pulses: effects of cluster size on expansion dynamics and ionization

    CERN Document Server

    Ackad, Edward; Briggs, Kyle; Ramunno, Lora

    2010-01-01

    We examine the effect of cluster size on the interaction of Ar$_{55}$-Ar$_{2057}$ with intense extreme ultraviolet (XUV) pulses, using a model we developed earlier that includes ionization via collisional excitation as an intermediate step. We find that the dynamics of these irradiated clusters is dominated by collisions. Larger clusters are more highly collisional, produce higher charge states, and do so more rapidly than smaller clusters. Higher charge states produced via collisions are found to reduce the overall photon absorption, since charge states of Ar$^{2+}$ and higher are no longer photo-accessible. We call this mechanism \\textit{collisionally reduced photoabsorption}, and it decreases the effective cluster photoabsorption cross-section by more than 30% for Ar$_{55}$ and 45% Ar$_{2057}$. compared to gas targets with the same number of atoms. An investigation of the shell structure soon after the laser interaction shows an almost uniformly charged core with a modestly charged outer shell which evolve...

  4. Parallel plate chambers for monitoring the profiles of high-intensity pulsed antiproton beams

    CERN Document Server

    Hori, Masaki

    2004-01-01

    Two types of beam profile monitor with thin parallel-plate electrodes have been used in experiments carried out at the Low Energy Antiproton Ring (LEAR) and Antiproton Decelerator (AD) of CERN. The detectors were used to measure non-destructively the spatial profiles, absolute intensities, and time structures of 100-300-ns- long beam pulses containing between 10**7 and 10**9 antiprotons. The first of these monitors was a parallel plate ionization chamber operated at gas pressure P=65 mbar. The other was a secondary electron emission detector, and was operated in the ultra-high vacuum of the AD. Both designs may be useful in medical and commercial applications. The position-sensitive electrodes in these detectors were manufactured by a novel method in which a laser trimmer was used to cut strip patterns on metallized polyester foils.

  5. Ultrafast dynamics and fragmentation of C60 in intense laser pulses

    CERN Document Server

    Lin, Zheng-Zhe

    2014-01-01

    The radiation-induced fragmentation of the C60 fullerene was investigated by the tight-binding electron-ion dynamics simulations. In intense laser field, the breathing vibrational mode is much more strongly excited than the pentagonal-pinch mode. The fragmentation effect was found more remarkable at long wavelength lambda>800 nm rather than the resonant wavelengths due to the internal laser-induced dipole force, and the production ratio of C and C2 rapidly grows with increasing wavelength. By such fragmentation law, C atoms, C2 dimers or large Cn fragments could be selectively obtained by changing the laser wavelength. And the fragmentation of C60 by two laser pulses like the multi-step atomic photoionization was investigated.

  6. Dependence of core heating properties on heating pulse duration and intensity

    Science.gov (United States)

    Johzaki, Tomoyuki; Nagatomo, Hideo; Sunahara, Atsushi; Cai, Hongbo; Sakagami, Hitoshi; Mima, Kunioki

    2009-11-01

    In the cone-guiding fast ignition, an imploded core is heated by the energy transport of fast electrons generated by the ultra-intense short-pulse laser at the cone inner surface. The fast core heating (˜800eV) has been demonstrated at integrated experiments with GEKKO-XII+ PW laser systems. As the next step, experiments using more powerful heating laser, FIREX, have been started at ILE, Osaka university. In FIREX-I (phase-I of FIREX), our goal is the demonstration of efficient core heating (Ti ˜ 5keV) using a newly developed 10kJ LFEX laser. In the first integrated experiments, the LFEX laser is operated with low energy mode (˜0.5kJ/4ps) to validate the previous GEKKO+PW experiments. Between the two experiments, though the laser energy is similar (˜0.5kJ), the duration is different; ˜0.5ps in the PW laser and ˜ 4ps in the LFEX laser. In this paper, we evaluate the dependence of core heating properties on the heating pulse duration on the basis of integrated simulations with FI^3 (Fast Ignition Integrated Interconnecting) code system.

  7. Reproducible radiation-damage processes in proteins irradiated by intense x-ray pulses

    Science.gov (United States)

    Hau-Riege, Stefan P.; Bennion, Brian J.

    2015-02-01

    X-ray free-electron lasers have enabled femtosecond protein nanocrystallography, a novel method to determine the structure of proteins. It allows time-resolved imaging of nanocrystals that are too small for conventional crystallography. The short pulse duration helps in overcoming the detrimental effects of radiation damage because x rays are scattered before the sample has been significantly altered. It has been suggested that, fortuitously, the diffraction process self-terminates abruptly once radiation damage destroys the crystalline order. Our calculations show that high-intensity x-ray pulses indeed trigger a cascade of damage processes in ferredoxin crystals, a particular metalloprotein of interest. However, we found that the damage process is initially not completely random. Correlations exist among the protein monomers, so that Bragg diffraction still occurs in the damaged crystals, despite significant atomic displacements. Our results show that the damage process is reproducible to a certain degree, which is potentially beneficial for the orientation step in single-molecule imaging.

  8. Formation and fragmentation of quadruply charged molecular ions by intense femtosecond laser pulses.

    Science.gov (United States)

    Yatsuhashi, Tomoyuki; Nakashima, Nobuaki

    2010-07-22

    We investigated the formation and fragmentation of multiply charged molecular ions of several aromatic molecules by intense nonresonant femtosecond laser pulses of 1.4 mum with a 130 fs pulse duration (up to 2 x 10(14) W cm(-2)). Quadruply charged states were produced for 2,3-benzofluorene and triphenylene molecular ion in large abundance, whereas naphthalene and 1,1'-binaphthyl resulted only in up to triply charged molecular ions. The laser wavelength was nonresonant with regard to the electronic transitions of the neutral molecules, and the degree of fragmentation was strongly correlated with the absorption of the singly charged cation radical. Little fragmentation was observed for naphthalene (off-resonant with cation), whereas heavy fragmentation was observed in the case of 1,1'-binaphthyl (resonant with cation). The degree of H(2) (2H) and 2H(2) (4H) elimination from molecular ions increased as the charge states increased in all the molecules examined. A striking difference was found between triply and quadruply charged 2,3-benzofluorene: significant suppression of molecular ions with loss of odd number of hydrogen was observed in the quadruply charged ions. The Coulomb explosion of protons in the quadruply charged state and succeeding fragmentation resulted in the formation of triply charged molecular ions with an odd number of hydrogens. The hydrogen elimination mechanism in the highly charged state is discussed.

  9. Birth of an intense pulsed muon source, J-PARC MUSE

    Science.gov (United States)

    Miyake, Yasuhiro; Shimomura, Koichiro; Kawamura, Naritoshi; Strasser, Patrick; Makimura, Shunsuke; Koda, Akihiro; Fujimori, Hiroshi; Nakahara, Kazutaka; Kadono, Ryosuke; Kato, Mineo; Takeshita, Soshi; Nishiyama, Kusuo; Higemoto, Wataru; Ishida, Katsuhiko; Matsuzaki, Teiichiro; Matsuda, Yasuyuki; Nagamine, Kanetada

    2009-04-01

    The muon science facility (MUSE), along with neutron, hadron, and neutrino facilities, is one of the experimental areas of the J-PARC (Japan Proton Accelerator Research Complex) project, which was approved for construction between 2001 and 2008. The MUSE facility is located in the Materials and Life Science Facility (MLF), which is a building integrated to include both neutron and muon science programs. Construction of the MLF building was started at the beginning of 2004, and was recently completed at the end of the 2006 fiscal year. We have been working on the installation of the beamline components, expecting the first muon beam in the autumn of 2008. For Phase 1, we are planning to install one superconducting decay/surface channel with a modest-acceptance (about 40 mSr) pion injector, with an estimated surface muon (μ+) rate of 3×107/s and a beam size of 25 mm diameter, and a corresponding decay muon (μ+/μ-) rate of 106/s for 60 MeV/ c (up to 107/s for 120 MeV/ c) with a beam size of 50 mm diameter. These intensities correspond to more than 10-times what is available at the RIKEN/RAL muon facility, which currently possess the most intense pulsed muon beams in the world. In addition to Phase 1, we are planning to install, a surface muon channel with a modest-acceptance (about 50 mSr), mainly for experiments related to material sciences, and a super-omega muon channel with a large acceptance of 400 mSr. In the case of the super-omega muon channel, the goal is to extract 4×108 surface muons/s for the generation of ultra-slow muons and 1×107 negative cloud muons/s with a momentum of 30-60 MeV/ c. One of the important goals for this beamline is to generate intense ultra-slow muons at MUSE, utilizing an intense pulsed VUV laser system. 104-106 ultra-slow muons/s are expected, which will allow for an extension of μSR into the area of thin film and surface science. At this symposium, the current status of J-PARC MUSE will be reported.

  10. Photoionization of monocrystalline CVD diamond irradiated with ultrashort intense laser pulse

    Science.gov (United States)

    Lagomarsino, Stefano; Sciortino, Silvio; Obreshkov, Boyan; Apostolova, Tzveta; Corsi, Chiara; Bellini, Marco; Berdermann, Eleni; Schmidt, Christian J.

    2016-02-01

    Direct laser writing of conductive paths in synthetic diamond is of interest for implementation in radiation detection and clinical dosimetry. Unraveling the microscopic processes involved in laser irradiation of diamond below and close to the graphitization threshold under the same conditions as the experimental procedure used to produce three-dimensional devices is necessary to tune the laser parameters to optimal results. To this purpose a transient currents technique has been used to measure laser-induced current signals in monocrystalline diamond detectors in a wide range of laser intensities and at different bias voltages. The current transients vs time and the overall charge collected have been compared with theoretical simulations of the carrier dynamics along the duration and after the conclusion of the 30 fs laser pulse. The generated charge has been derived from the collected charge by evaluation of the lifetime of the carriers. The plasma volume has also been evaluated by measuring the modified region. The theoretical simulation has been implemented in the framework of the empirical pseudopotential method extended to include time-dependent couplings of valence electrons to the radiation field. The simulation, in the low-intensity regime, I ˜1 TW /cm2 , predicts substantial deviation from the traditional multiphoton ionization, due to nonperturbative effects involving electrons from degenerate valence bands. For strong field with intensity of about 50 TW /cm2, nonadiabatic effects of electron-hole pair excitation become prominent with high carrier densities eventually causing the optical breakdown of diamond. The comparison of theoretical prediction with experimental data of laser-generated charge vs laser energy density yields a good quantitative agreement over six orders of magnitude. At the highest intensities the change of slope in the trend is explained taking into account the dependence of the optical parameters and the carrier mobility on plasma

  11. Interband photorefractive effect in beta-BBO crystal due to multiphoton excitation by intense ultrashort optical pulses.

    Science.gov (United States)

    Xu, Shixiang; Cai, Hua; Zeng, Heping

    2007-08-20

    This paper presents the first experimental observation of interband photo- refractive (PR) effects in beta-BBO crystal due to multiphoton excitation with intense ultrashort pulses. In order to fully characterize the PR effects, a sensitive intracavity scheme is developed to magnify the dynamics of nonlinear lenses induced by the PR effects. The reproducible PR phenomena depend strongly on the power, wavelength, and spatial intensity profile of the intense laser pulses and the electro-optic coefficient of the optical materials. Its response time is from tens of seconds to several minutes. The results may be very helpful for us to find a solution to overcome the deleterious influence of multiphoton induced photo-charges on nonlinear optical frequency conversions, e.g. optical parametric chirped pulse amplification.

  12. Is light deflected by light ? A proposal to observe a vacuum refractive index gradient induced by intense laser pulses

    CERN Document Server

    Couchot, F; Guilbaud, O; Kazamias, S; Pittman, M; Sarazin, X; Urban, M

    2016-01-01

    In very intense electromagnetic fields, the vacuum refractive index is expected to be modified due to non linear QED properties. Up to now, these predictions are tested by searching phase shifts in the propagation of polarized light through uniform magnetic fields. We propose a new approach which consists in producing a vacuum index gradient and send a light beam trough it in order to detect its angular deviation. The vacuum index gradient, similar to a "prismatic vacuum", is created by the interaction of two very intense and ultra short laser pulses, used as pump pulses. At the maximum of the index gradient, the deflection angle of the probe pulse is estimated to be $2 \\ 10^{-13} \\times (\\frac{w_0}{10 \\mu\\mathrm{m}})^{-3} \\times \\frac{I}{1 \\mathrm{J}}$ radians, where $I$ is the total energy of the two pump pulses and $w_0$ is the minimum waist (fwhm) at the interaction area of the two pump pulses. Assuming the most intense laser pulses attainable by the LASERIX facility ($I = 25$ J, 30 fs fwhm duration, 800 ...

  13. Improving oxidation resistance and thermal insulation of thermal barrier coatings by intense pulsed electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Mei Xianxiu, E-mail: xxmei@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China); Liu Xiaofei; Wang Cunxia; Wang Younian; Dong Chuang [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Pulsed electron beam was used for sealing ZrO{sub 2} thermal barrier coating prepared by electron beam-physical vapor deposition. Black-Right-Pointing-Pointer At irradiation energy densities above 8 J/cm{sup 2}, ZrO{sub 2} ceramic coating surface was fully re-melted and became smooth, dense and shiny. Black-Right-Pointing-Pointer The thermal diffusion rate of the irradiated coating was decreased. Black-Right-Pointing-Pointer Thermal insulation properties and high temperature oxidation resistance were improved. - Abstract: In this paper, intense pulsed electron beam was used for the irradiation treatment of 6-8% Y{sub 2}O{sub 3}-stablized ZrO{sub 2} thermal barrier coating prepared by electron beam-physical vapor deposition to achieve the 'sealing' of columnar crystals, thus improving their thermal insulation properties and high temperature oxidation resistance. The electron beam parameters used were: pulse duration 200 {mu}s, electron voltage 15 kV, energy density 3, 5, 8, 15, 20 J/cm{sup 2}, and pulsed numbers 30. 1050 Degree-Sign C cyclic oxidation and static oxidation experiments were used for the research on oxidation resistance of the coatings. When the energy density of the electron beam was larger than 8 J/cm{sup 2}, ZrO{sub 2} ceramic coating surface was fully re-melted and became smooth, dense and shiny. The coating changed into a smooth polycrystalline structure, thus achieving the 'sealing' effect of the columnar crystals. After irradiations with the energy density of 8-15 J/cm{sup 2}, the thermally grown oxide coating thickness decreased significantly in comparison with non-irradiated coatings, showing that the re-melted coating improved the oxidation resistance of the coatings. The results of thermal diffusivity test by laser flash method showed that the thermal diffusion rate of the irradiated coating was lower than that of the coating without irradiation treatment, and the thermal

  14. Multiphoton Ionization as a clock to Reveal Molecular Dynamics with Intense Short X-ray Free Electron Laser Pulses

    CERN Document Server

    Fang, L; Murphy, B; Tarantelli, F; Kukk, E; Cryan, J P; Glownia, M; Bucksbaum, P H; Coffee, R N; Chen, M; Buth, C; Berrah, N

    2013-01-01

    We investigate molecular dynamics of multiple ionization in N2 through multiple core-level photoabsorption and subsequent Auger decay processes induced by intense, short X-ray free electron laser pulses. The timing dynamics of the photoabsorption and dissociation processes is mapped onto the kinetic energy of the fragments. Measurements of the latter allow us to map out the average internuclear separation for every molecular photoionization sequence step and obtain the average time interval between the photoabsorption events. Using multiphoton ionization as a tool of multiple-pulse pump-probe scheme, we demonstrate the modi?cation of the ionization dynamics as we vary the x-ray laser pulse duration.

  15. HiRadMat at CERN/SPS - A dedicated facility providing high intensity beam pulses to material samples

    CERN Multimedia

    Charitonidis, N; Efthymiopoulos, I

    2014-01-01

    HiRadMat (High Radiation to Materials), constructed in 2011, is a facility at CERN designed to provide high‐intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies (e.g. vacuum windows, high power beam targets, collimators…) can be tested. The facility uses a 440 GeV proton beam extracted from the CERN SPS with a pulse length of up to 7.2 us, and with a maximum pulse energy of 3.4 MJ (3xE13 proton/pulse). In addition to protons, ion beams with energy of 440 GeV/charge and total pulse energy of 21 kJ can be provided. The beam parameters can be tuned to match the needs of each experiment. HiRadMat is not an irradiation facility where large doses on equipment can be accumulated. It is rather a test area designed to perform single pulse experiments to evaluate the effect of high‐intensity pulsed beams on materials or accelerator component assemblies in a controlled environment. The fa‐ cility is designed for a maximum of 1E16 protons per year, dist...

  16. Molecular dynamics induced by short and intense x-ray pulses from the LCLS

    Science.gov (United States)

    Berrah, Nora

    2016-12-01

    The past six years have led to a wealth of experimental and theoretical data revealing the nature of the interaction between gas-phase molecules and short and intense x-ray pulses, from the Linac coherent light source free electron laser (FEL). We present here a few highlights that describe some of the first photoabsorption measurements of gas-phase molecules. In particular, we report on a three decades long prediction of single-site double core holes (ss-DCH) and two-site double core holes (ts-DCH) in diatomic and triatomic molecules. We also describe recent measurements that validate a simple theory regarding femtosecond intense x-ray induced fragmentation dynamics of C60 as well as photoabsorption measurements of encapsulated fullerenes, Ho3N@C80. The latter investigation opens the way for even more complex molecular studies with FELs. In all of the described highlights, working in close collaboration with theorists enabled the interpretation of, or predicted our measurements, and in some cases our experiments guided the modeling. We conclude this article by describing the potential of new instrumentation for chemical and biological sciences especially in light of new or improved FELs.

  17. Changes of colour and carotenoids contents during high intensity pulsed electric field treatment in orange juices.

    Science.gov (United States)

    Cortés, C; Esteve, M J; Rodrigo, D; Torregrosa, F; Frígola, A

    2006-11-01

    Liquid chromatography (LC) was the method chosen to evaluate the effects of high intensity pulsed electric fields (HIPEF), with different electric field intensities (25, 30, 35 and 40 kV/cm) and different treatment times (30-340 micros), on orange juice cis/trans carotenoid contents. In parallel, a conventional heat treatment (90 degrees C, 20 s) was applied to the orange juice in order to compare the effect on the carotenoid contents. HIPEF processing of orange juice is an alternative to the thermal treatment of pasteurization, provided that it is kept refrigerated, because, when the most extreme conditions of this kind of treatment are applied, the decrease in the concentration of carotenoids with vitamin A activity is very small, and also most of the carotenoids identified have a slightly increased concentration after application of the most intense treatments, although always less than in untreated fresh juice. In any case, pasteurization treatment causes a greater decrease in the concentration of most of the carotenoids identified and the carotenoids with vitamin A activity. The total carotenoid concentration decreased by 12.6% in pasteurized orange juice with respect to untreated fresh orange juice, as opposed to decreases of 9.6%, 6.3% or 7.8% when fields of 25, 30 or 40 kV/cm were applied. Orange juice treated with HIPEF shows a greater tendency towards the colour yellow and a lesser tendency towards red with respect to untreated orange juice, while the luminance of the juice remains practically invariable. This tendency is less than in pasteurized orange juice.

  18. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  19. Spectral splitting of high order harmonics of ionizing gases irradiated with ultrashort intense laser pulses

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    [1]Chang Zenghu,Rundquist,A.,Wang Haiwen et al.,Generation of coherent soft X-rays a 2.7 nm using high harmonics,Phys.Rev.Lett.,1997,79(16): 2967-2970.[2]Schnurer,M.,Spielmann,Ch.,Wobrauschek,P.et al.,Coherent 0.5 keV X-ray emission from Helium driven by a sub-10-fs laser,Phys.Rev.Lett.,1998,80(15): 3236-3239.[3]Corkum,P.B.,Plasma perspective on strong-field multiphoton ionization,Phys.Rev.Lett.,1993,71(13): 1994-1997.[4]Lewenstein,M.,Balcou,Ph.,Yu.M.et al.,Theory of high-harmonic generation by low frequency laser fields,Phys.Rev.A,1994,49(3): 2117-2132.[5]Li,X.F.,L'Huillier,A.L.,Ferray,M.et al.,Multiple-harmonic generation in rare gases at high laser intensity,Phys.Rev.A,1989,39(11): 5751-5761.[6]L'Huillier,A.,Schafer,K.J.,Kulander,K.C.,Theoretical aspects of intense field harmonic generation,J.Phys.B,1991,24(),3315-3341.[7]L'Huillier,A.,Balcou,Ph.,Candel,S.et al.,Calculation of high-order harmonic-generation processin Xeon at 1064 nm,Phys.Rev.A,1992,46(5): 2778-2790.[8]Balcou,Ph.,L'Huillier,A.,Phase-matching effects in strong-field harmonics generation,Phys.Rev.A,1993,47(2): 1447-1459.[9]Race,S.C.,Burnett,K.,Detailed simulation of plasma-induced spectral blueshifting,Phys.Rev.A,1992,46(2): 1084-1090.[10]Wood,W.M.,Siders,C.W.,Downer,M.C.,Measurement of femtosecond ionization dynamics of atmosphere density gases by spectral blueshifting ,Phys.Rev.Lett.,1991,67(25): 3523-3526.[11]Le Blanc S.P.,Sauerbrey,R.,Rae,S.C.et al.,Spectral blue shifting of a femtosecond laser pulse propagating through a high-pressure gas,J.Opt.Soc.Am.B,1993,10(10): 1801-1809.[12]Le Blanc,S.P.,Sauerbrey,R.,Spectral,temporal,and spatial characteristics of plasma-induced spectral blue shifting and its application to femtosecond pulse measurement,J.Opt.Soc.Am.B,1996,[13](1): 72-88.13.Burnett,N.H.,Corkum,P.B.,Cold-plasma production for recombination extreme-ultraviolet lasers by optical-field-induced ionization,J.Opt.Soc.Am.B,1989,6(6): 1195

  20. Intense light pulses decontamination of minimally processed vegetables and their shelf-life.

    Science.gov (United States)

    Gómez-López, V M; Devlieghere, F; Bonduelle, V; Debevere, J

    2005-08-15

    Intense light pulses (ILP) is a new method intended for decontamination of food surfaces by killing microorganisms using short time high frequency pulses of an intense broad spectrum, rich in UV-C light. This work studied in a first step the effect of food components on the killing efficiency of ILP. In a second step, the decontamination of eight minimally processed (MP) vegetables by ILP was evaluated, and thirdly, the effect of this treatment on the shelf-life of MP cabbage and lettuce stored at 7 degrees C in equilibrium modified atmosphere packages was assessed by monitoring headspace gas concentrations, microbial populations and sensory attributes. Proteins and oil decreased the decontamination effect of ILP, whilst carbohydrates and water showed variable results depending on the microorganism. For this reason, high protein and fat containing food products have little potential to be efficiently treated by ILP. Vegetables, on the other hand, do not contain high concentrations of both compounds and could therefore be suitable for ILP treatment. For the eight tested MP vegetables, log reductions up to 2.04 were achieved on aerobic mesophilic counts. For the shelf-life studies, respiration rates at 3% O2 and 7 degrees C were 14.63, 17.89, 9.17 and 16.83 ml O2/h kg produce for control and treated cabbage, and control and treated lettuce respectively; used packaging configurations prevented anoxic conditions during the storage times. Log reductions of 0.54 and 0.46 for aerobic psychrothrophic count (APC) were achieved after flashing MP cabbage and lettuce respectively. APC of treated cabbage became equal than that from control at day 2, and higher at day 7, when the tolerance limit (8 log) was reached and the panel detected the presence of unacceptable levels of off-odours. Control never reached 8 log in APC and were sensory acceptable until the end of the experiment (9 days). In MP lettuce, APC of controls reached rejectable levels at day 2, whilst that of treated

  1. On the feasibility of nanocrystal imaging using intense and ultrashort 1.5 {\\AA} X-ray pulses

    CERN Document Server

    Caleman, C; Maia, F R N C; Ortiz, C; Parak, F G; Hajdu, J; van der Spoel, D; Chapman, H N; Timneanu, N

    2010-01-01

    Structural studies of biological macromolecules are severely limited by radiation damage. Traditional crystallography curbs the effects of damage by spreading damage over many copies of the molecule of interest. X-ray lasers, such as the recently built LINAC Coherent Light Source (LCLS), offer an additional opportunity for limiting damage by out-running damage processes with ultrashort and very intense X-ray pulses. Such pulses may allow the imaging of single molecules, clusters or nanoparticles, but coherent flash imaging will also open up new avenues for structural studies on nano- and micro-crystalline substances. This paper addresses the theoretical potentials and limitations of nanocrystallography with extremely intense coherent X-ray pulses. We use urea nanocrystals as a model for generic biological substances and simulate primary and secondary ionization dynamics in the crystalline sample. Our results establish conditions for ultrafast nanocrystallography diffraction experiments as a function of fluenc...

  2. Laser-energy transfer and enhancement of plasma waves and electron beams by interfering high-intensity laser pulses.

    Science.gov (United States)

    Zhang, P; Saleh, N; Chen, S; Sheng, Z M; Umstadter, D

    2003-11-28

    The effects of interference due to crossed laser beams were studied experimentally in the high-intensity regime. Two ultrashort (400 fs), high-intensity (4 x 10(17) and 1.6 x 10(18) W/cm(2)) and 1 microm wavelength laser pulses were crossed in a plasma of density 4 x 10(19) cm(3). Energy was observed to be transferred from the higher-power to the lower-power pulse, increasing the amplitude of the plasma wave propagating in the direction of the latter. This results in increased electron self-trapping and plasma-wave acceleration gradient, which led to an increased number of hot electrons (by 300%) and hot-electron temperature (by 70%) and a decreased electron-beam divergence angle (by 45%), as compared with single-pulse illumination. Simulations reveal that increased stochastic heating of electrons may have also contributed to the electron-beam enhancement.

  3. Effects of Higher-Order Relativistic Nonlinearity and Wakefield During a Moderately Intense Laser Pulse Propagation in a Plasma Channel

    Institute of Scientific and Technical Information of China (English)

    LIU Ming-Ping; LIU Bing-Bing; LIU San-Qiu; ZHANG Fu-Yang; LIU Jie

    2013-01-01

    Using a variational approach,the propagation of a moderately intense laser pulse in a parabolic preformed plasma channel is investigated.The effects of higher-order relativistic nonlinearity (HRN) and wakefield are included.The effect of HRN serves as an additional defocusing mechanism and has the same order of magnitude in the spot size as that of the transverse wakefield (TWF).The effect of longitudinal wakefield is much larger than those of HRN and TWF for an intense laser pulse with the pulse length equaling the plasma wavelength.The catastrophic focusing of the laser spot size would be prevented in the present of HRN and then it varies with periodic focusing oscillations.

  4. Pulsed x-ray imaging of high-density objects using a ten picosecond high-intensity laser driver

    Science.gov (United States)

    Rusby, D. R.; Brenner, C. M.; Armstrong, C.; Wilson, L. A.; Clarke, R.; Alejo, A.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Mirfayzi, S. R.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-10-01

    Point-like sources of X-rays that are pulsed (sub nanosecond), high energy (up to several MeV) and bright are very promising for industrial and security applications where imaging through large and dense objects is required. Highly penetrating X-rays can be produced by electrons that have been accelerated by a high intensity laser pulse incident onto a thin solid target. We have used a pulse length of 10ps to accelerate electrons to create a bright x-ray source. The bremsstrahlung temperature was measured for a laser intensity from 8.5-12×1018 W/cm2. These x-rays have sequentially been used to image high density materials using image plate and a pixelated scintillator system.

  5. Effect of radiation damping on the interaction of ultra-intense laser pulses with an overdense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, Alexei; Koga, James; Sasaki, Akira; Ueshima, Yutaka [Japan Atomic Energy Research Inst., Advanced Photon Research Center, Neyagawa, Osaka (Japan)

    2001-10-01

    The effect of radiation damping on the interaction of an ultra-intense laser pulse with an overdense plasma is studied via relativistic particle-in-cell simulation. The calculation is performed for a Cu solid slab including ionization. We find a strong effect from radiation damping on the electron energy cut-off at about 150 MeV and on the absorption of a laser pulse with an intensity I=5x10{sup 22} W/cm{sup 2} and duration of 20 fs. Hot electrons reradiate more then 10% of the laser energy during the laser pulse. With the laser intensity, the energy loss due to the radiation damping increases as I{sup 3}. In addition, we observe that the laser pulse may not propagate in the plasma even if {omega}{sub pl}{sup 2}/{omega}{sup 2}{gamma}<1. The increase of skin depth with the laser intensity due to relativistic effects gives rise to the absorption efficiency. (author)

  6. Quasimonoenergetic and low emittance ion bunch generation from ultrathin targets by counterpropagating laser pulses of ultrarelativistic intensities

    CERN Document Server

    Avetissian, H K; Mkrtchian, G F; Sedrakian, Kh V

    2011-01-01

    A new method for generation of quasimonoenergetic and low emittance fast ion/nuclei bunches of solid densities from nanotargets by two counterpropagating laser pulses of ultrarelativistic intensities is proposed, based on the threshold phenomenon of particles "reflection" due to induced nonlinear Compton scattering. Particularly, a setup is considered which provides generation of ion bunches with parameters that are required in hadron therapy.

  7. Long-pulsed dye laser versus intense pulsed light for photodamaged skin: A randomized split-face trial with blinded response evaluation

    DEFF Research Database (Denmark)

    Jorgensen, G.F.; Hedelund, L.; Haedersdal, M.

    2008-01-01

    Objective: In a randomized controlled split-face trial to evaluate efficacy and adverse effects from rejuvenation with long-pulsed dye laser (LPDL) versus intense pulsed light (IPL). Materials and Methods: Twenty female volunteers with Fitzpatrick skin types I-III, classes I-II rhytids, and symme......Objective: In a randomized controlled split-face trial to evaluate efficacy and adverse effects from rejuvenation with long-pulsed dye laser (LPDL) versus intense pulsed light (IPL). Materials and Methods: Twenty female volunteers with Fitzpatrick skin types I-III, classes I-II rhytids...... assigned to left and right sides. Primary end-points were telangiectasias, irregular pigmentation and preferred treatment. Secondary end-points were skin texture, rhytids, pain, and adverse effects. Efficacy was evaluated by patient self-assessments and by blinded clinical on-site and photographic.......031, 3, 6 months). Irregular pigmentation and skin texture improved from both treatments with no significant side-to-side differences. No reduction was seen of rhytides on LPDL- or IPL-treated sides. Treatment-related pain scores were significantly higher after IPL (medians 7-8) than LPDL (4...

  8. Spectral Compression of Intense Femtosecond Pulses by Self Phase Modulation in Silica Glass

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zhou, Binbin; Bache, Morten

    2012-01-01

    We experimentally demonstrate spectral compression of mJ fs pulses by self phase modulation in silica glass. Spectral narrowing by factor 2.4 of near-transform-limited pulses is shown, with good agreement between experiment and numerical simulation.......We experimentally demonstrate spectral compression of mJ fs pulses by self phase modulation in silica glass. Spectral narrowing by factor 2.4 of near-transform-limited pulses is shown, with good agreement between experiment and numerical simulation....

  9. Daily low-intensity pulsed ultrasound-mediated osteogenic differentiation in rat osteoblasts

    Institute of Scientific and Technical Information of China (English)

    Akito Suzuki; Tadahiro Takayama; Naoto Suzuki; Michitomo Sato; Takeshi Fukuda; Koichi Ito

    2009-01-01

    There were few studies investigating the effects of the mechanical stimulation provided by daily low-intensity pulsed ultrasound (LIPUS) treatment. LIPUS is known to accelerate bone mineralization and regeneration; however, the precise cellular mechanism is unclear. Our purpose was to determine how daily LIPUS treat-ment affected cell viability, alkaline phosphatase activity, osteogenesis-related gene expression, and mineralized nodule formation in osteoblasts. The typical osteoblastic cell line ROS 17/2.8 cells were cul-tured in the absence or presence of LIPUS stimulation. Daily LIPUS treatments (1.5 MHz; 20 min) were admi-nistered at an intensity of 30 mW/cm2 for 14 days. Expression of osteogenesis-related genes was examined at mRNA levels using real-time polymerase chain reac-tion and at protein levels using western blotting analy-sis. LIPUS stimulation did not affect the rate of cell viability. Alkaline phosphatase activity was increased after 10 days of culture with daily LIPUS stimulation. LIPUS significantly increased the expression of mRNAs encoding Runx2, Msx2, DIx5, osterix, bone sialoprotein,and bone morphogenetic protein-2, whereas it signifi-cantly reduced the expression of mRNA encoding the transcription factor AJ18. Mineralized nodule for-mation was markedly increased on Day 14 of LIPUS stimulation. LIPUS stimulation directly affected osteo-genic cells, leading to mineralized nodule formation. LIPUS is likely to have a fundamental influence on key functional activities of osteoblasts in alveolar bone.

  10. Effects of low-intensity pulsed ultrasound on injured skeletal muscle

    Directory of Open Access Journals (Sweden)

    Camila S. Montalti

    2013-08-01

    Full Text Available BACKGROUND: Low-intensity pulsed ultrasound (LIPUS has been shown to stimulate tissue metabolism and accelerate muscle healing. However, the optimal parameters in the use of LIPUS are still not clear. OBJECTIVE: The aim of this study was to analyze the effects of LIPUS on muscle healing in rats subjected to a cryolesion. METHOD: Twenty rats were divided into the following groups: an injured control group (CG and an injured treated group (TG. Both groups were divided into 2 sub-groups (n=5 each that were sacrificed 7 and 13 days post-surgery. Treatments were started 24 hours after the surgical procedure and consisted of 3 or 6 sessions. After euthanasia, the muscles were submitted to standard histological procedures. RESULTS: Qualitative analyses were based on morphological assessments of the muscle. The histopathological analysis on day 7 revealed that the muscles in the CG and the TG presented an intense inflammatory infiltrate, a large necrotic area and a disorganized tissue structure. After 13 days, both the CG and the TG had granulation tissue and newly formed fibers. The TG presented a more organized tissue structure. The quantitative analysis of collagen indicated similar findings among the groups, although the qualitative analysis revealed a better organization of collagen fibers in the TG at 13 days. The immunohistochemical analysis indicated that, at both time points, the expression of cyclooxygenase-2 was upregulated in the TG compared to the CG. CONCLUSIONS: LIPUS used as a treatment for muscle injury induced a more organized tissue structure at the site of the injury and stimulated the expression of COX-2 and the formation of new muscle fibers.

  11. Wire chamber degradation at the Argonne ZGS

    Energy Technology Data Exchange (ETDEWEB)

    Haberichter, W.; Spinka, H.

    1986-01-01

    Experience with multiwire proportional chambers at high rates at the Argonne Zero Gradient Synchrotron is described. A buildup of silicon on the sense wires was observed where the beam passed through the chamber. Analysis of the chamber gas indicated that the density of silicon was probably less than 10 ppM.

  12. Bremsstrahlung measurements for characterization of intense short-pulse, laser produced fast electrons with OMEGA EP

    Science.gov (United States)

    Daykin, Tyler; Sawada, Hiroshi; Sentoku, Yasuhiko; Pandit, Rishi; Chen, Cliff; Beg, Farhat; Chen, Hui; McLean, Harry; Patel, Pravesh; Tommasini, Riccardo

    2016-10-01

    Understanding relativistic fast electron generation and transport inside solids is important for applications such as generation of high energy x-ray sources and fast ignition. An experiment was carried out to study the scaling of the fast electron spectrum and bremsstrahlung generation in multi-pico second laser interactions using 1 ps and 10 ps OMEGA EP short-pulse beam to generate fast electrons at a similar peak intensity of 5x1018 W/cm2. The bremsstrahlung produced by collisions of the fast electrons with background ions was recorded using differential filter stacked spectrometers. A preliminary analysis with a Monte Carlo Code ITS shows that the electrons injection having an electron slope 1.8 MeV matched well with the high energy component of the 1 ps and 10 ps bremsstrahlung measurements. Details of the data analysis and modeling with Monte Carlo and a hybrid particle-in-cell codes will be presented at the conference. Work supported by the UNR Office of the Provost and by DOE/OFES under Contract No. DE-SC0008827. This collaborative work was partially supported under the auspices of the US DOE by LLNL under Contracts No. DE-AC52-07NA27344 and No. DE-FG-02-05ER54834.

  13. Selective breaking of bonds in water with intense, 2-cycle, infrared laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, D., E-mail: atmol1@tifr.res.in; Dharmadhikari, A. K. [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005 (India); Dota, K. [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005 (India); Centre for Atomic and Molecular Physics, Manipal University, Manipal 576 104 (India); Dey, D.; Tiwari, A. K. [Indian Institute of Science Education and Research Kolkata, Mohanpur 741 246 (India); Dharmadhikari, J. A. [Centre for Atomic and Molecular Physics, Manipal University, Manipal 576 104 (India); De, S. [Saha Institute of Nuclear Physics, Bidhan Nagar, Kolkata 700 064 (India); Vasa, P. [Department of Physics, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2015-12-28

    One of the holy grails of contemporary science has been to establish the possibility of preferentially breaking one of several bonds in a molecule. For instance, the two O–H bonds in water are equivalent: given sufficient energy, either one of them is equally likely to break. We report bond-selective molecular fragmentation upon application of intense, 2-cycle pulses of 800 nm laser light: we demonstrate up to three-fold enhancement for preferential bond breaking in isotopically substituted water (HOD). Our experimental observations are rationalized by means of ab initio computations of the potential energy surfaces of HOD, HOD{sup +}, and HOD{sup 2+} and explorations of the dissociation limits resulting from either O–H or O–D bond rupture. The observations we report present a formidable theoretical challenge that need to be taken up in order to gain insights into molecular dynamics, strong field physics, chemical physics, non-adiabatic processes, mass spectrometry, and time-dependent quantum chemistry.

  14. The Retrospective Evaluation of the Efficacy and Safety of IPL (Intense Pulse Light in Hair Removal

    Directory of Open Access Journals (Sweden)

    İlgen Ertam

    2012-06-01

    Full Text Available Background and Design: There are numerous therapeutic methods for hair removal with various success rates. The aim of this study was to evaluate the efficacy of Intense Pulse Light (IPL method for hair removal.Materials and Methods: Ninety patients, who applied for their unwanted hair, were included in the study. IPL was applied to the face, neck, axillary areas, bikini line, sternal area, periareolar areas, and upper and lower extremities. An IPL device (L900 A&M, France was used for hair removal. The results were evaluated according to the clinical improvement (0-25%, 25-50%, 50-75%, 75% and more and patients? satisfaction (very satisfied, satisfied, less satisfied, not satisfied. All results were analyzed using Chi-square test and statistical analysis was performed by SPSS 15.0 for Windows. Results: There were eighty-eight female (97.8% and two male (2.2% patients. The mean age of the patients was 33.62±11.11 (15- 55 years. 13.3% of patients had polycystic ovary syndrome. The mean number of treatments was 6.5 (min-max= 2-11. 53.2% of patients had 50-75% clinical response and 53.2% of patients were satisfied. There were no side effects except mild erythema. Conclusion: We observed that IPL for hair removal was safe and moderately effective in our patients.

  15. Effect of intense pulsed ion beams irradiation on the oxidation behavior of gamma sup ' -based superalloy

    CERN Document Server

    Zhang Hong Tao; Han Bao Xi; Yan Sha; Zhao Wei Jiang; Han Ya Fan

    2002-01-01

    Intense pulsed ion beams (IPIB) with three different power densities (25, 37.5 and 50 MW/cm sup 2) are employed for the surface treatment of gamma sup ' -based superalloy IC6. The influence of IPIB irradiation on the oxidation behavior of IC6 at 1100 degree sign C for up to 100 h is investigated. It is found that the phase states of IC6 are dramatically changed after IPIB irradiation and the oxidation behavior of the irradiated coupons depends greatly on the power density of IPIB. IPIB irradiation with a power density of 25 or 37.5 MW/cm sup 2 significantly reduces the oxidation rate with respect to the unirradiated coupon. The improvement of the oxidation resistance can be attributed to a change in the oxidation products from a three-layered scale of Ni-rich oxides for the unirradiated coupon to a two-layered scale of Mo- and Al-rich oxides. In contrast, IPIB irradiation with a power density of 50 MW/cm sup 2 proves to be detrimental, causing a higher oxidation rate. The oxidation mechanism for IPIB irradiat...

  16. Selective breaking of bonds in water with intense, 2-cycle, infrared laser pulses.

    Science.gov (United States)

    Mathur, D; Dota, K; Dey, D; Tiwari, A K; Dharmadhikari, J A; Dharmadhikari, A K; De, S; Vasa, P

    2015-12-28

    One of the holy grails of contemporary science has been to establish the possibility of preferentially breaking one of several bonds in a molecule. For instance, the two O-H bonds in water are equivalent: given sufficient energy, either one of them is equally likely to break. We report bond-selective molecular fragmentation upon application of intense, 2-cycle pulses of 800 nm laser light: we demonstrate up to three-fold enhancement for preferential bond breaking in isotopically substituted water (HOD). Our experimental observations are rationalized by means of ab initio computations of the potential energy surfaces of HOD, HOD(+), and HOD(2+) and explorations of the dissociation limits resulting from either O-H or O-D bond rupture. The observations we report present a formidable theoretical challenge that need to be taken up in order to gain insights into molecular dynamics, strong field physics, chemical physics, non-adiabatic processes, mass spectrometry, and time-dependent quantum chemistry.

  17. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the author shave made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  18. Relativistic electron transport in wire and foil targets driven by intense short pulse lasers

    Science.gov (United States)

    Mason, R. J.; Stephens, R. B.; Wei, M.; Freeman, R. R.; Hill, J.; van Woerkom, L. D.

    2006-10-01

    We model intense laser driven electron transport in wires and foils with the new implicit hybrid code e-PLAS. We focus on background plasma heating for Fast Ignitor applications. The model tracks collisional relativistic PIC electrons undergoing scatter and drag in a background plasma of colliding cold electron and ion Eulerian fluids. Application to 10 μm diameter, 250 μm long, fully ionized carbon wires with an attached cone [Kodama et al. Nature 432 1005 (2004)], exposed to 1 ps, 10^19 W/cm^2 pulses in a 30 μm centered spot, directly calculates resistive Joule heating of the background electrons in the wire to 1.7 KeV. 150 MG magnetic fields arise at the wire surfaces corresponding to hot electron flow outside the wire and a return electron flow just within it. Shorter wires (25 μm) exhibit hot electron recycling. Preliminary simulations indicate that reduction of the cone to a 30 μm diameter nail head produces little change in these results. We also report on tapered wires, wires attached to foils, and the modifying effects of pre-plasma on electron transport into the foils.

  19. Low-intensity pulsed ultrasound therapy: a potential strategy to stimulate tendon-bone junction healing

    Institute of Scientific and Technical Information of China (English)

    Zhi-min YING; Tiao LIN; Shi-gui YAN

    2012-01-01

    Incorporation of a tendon graft within the bone tunnel represents a challenging clinical problem.Successful anterior cruciate ligament (ACL) reconstruction requires solid healing of the tendon graft in the bone tunnel.Enhancement of graft healing to bone is important to facilitate early aggressive rehabilitation and a rapid return to pre-injury activity levels.No convenient,effective or inexpensive procedures exist to enhance tendon-bone (T-B) healing after surgery.Low-intensity pulsed ultrasound (LIPUS) improves local blood perfusion and angiogenesis,stimulates cartilage maturation,enhances differentiation and proliferation of osteoblasts,and motivates osteogenic differentiation of mesenchymal stem cells (MSCs),and therefore,appears to be a potential non-invasive tool for T-B healing in early stage of rehabilitation of ACL reconstruction.It is conceivable that LIPUS could be used to stimulate T-B tunnel healing in the home,with the aim of accelerating rehabilitation and an earlier return to normal activities in the near future.The purpose of this review is to demonstrate how LIPUS stimulates T-B healing at the cellular and molecular levels,describe studies in animal models,and provide a future direction for research.

  20. Finite element modeling of heating phenomena of cracks excited by high-intensity ultrasonic pulses

    Institute of Scientific and Technical Information of China (English)

    Chen Zhao-Jiang; Zheng Jiang; Zhang Shu-Yi; Mi Xiao-Bing; Zheng Kai

    2010-01-01

    A three-dimensional thermo-mechanical coupled finite element model is built up to simulate the phenomena of dynamical contact and frictional heating of crack faces when the plate containing the crack is excited by high-intensity ultrasonic pulses. In the finite element model, the high-power ultrasonic transducer is modeled by using a piezoelectric thermal-analogy method, and the dynamical interaction between both crack faces is modeled using a contact-impact theory. In the simulations, the frictional heating taking place at the crack faces is quantitatively calculated by using finite element thermal-structural coupling analysis, especially, the influences of acoustic chaos to plate vibration and crack heating are calculated and analysed in detail Meanwhile, the related ultrasonic infrared images are also obtained experimentally, and the theoretical simulation results are in agreement with that of the experiments. The results show that, by using the theoretical method, a good simulation of dynamic interaction and friction heating process of the crack faces under non-chaotic or chaotic sound excitation can be obtained.

  1. Selective breaking of bonds in water with intense, 2-cycle, infrared laser pulses

    Science.gov (United States)

    Mathur, D.; Dota, K.; Dey, D.; Tiwari, A. K.; Dharmadhikari, J. A.; Dharmadhikari, A. K.; De, S.; Vasa, P.

    2015-12-01

    One of the holy grails of contemporary science has been to establish the possibility of preferentially breaking one of several bonds in a molecule. For instance, the two O-H bonds in water are equivalent: given sufficient energy, either one of them is equally likely to break. We report bond-selective molecular fragmentation upon application of intense, 2-cycle pulses of 800 nm laser light: we demonstrate up to three-fold enhancement for preferential bond breaking in isotopically substituted water (HOD). Our experimental observations are rationalized by means of ab initio computations of the potential energy surfaces of HOD, HOD+, and HOD2+ and explorations of the dissociation limits resulting from either O-H or O-D bond rupture. The observations we report present a formidable theoretical challenge that need to be taken up in order to gain insights into molecular dynamics, strong field physics, chemical physics, non-adiabatic processes, mass spectrometry, and time-dependent quantum chemistry.

  2. Dissociative ionization of H2+ using intense femtosecond XUV laser pulses

    CERN Document Server

    Yue, Lun

    2014-01-01

    The dissociative ionization of H2+ interacting with intense, femtosecond extreme-ultraviolet laser pulses is investigated theoretically. This is done by numerical propagation of the time-dependent Schr\\"{o}dinger equation for a colinear one-dimensional model of H2+, with electronic and nuclear motion treated exactly within the limitations of the model. The joint-energy spectra (JES) are extracted for the fragmented electron and nuclei by means of the t-SURFF method. The dynamic interference effect, which was first observed in one-electron atomic systems, is in the present work observed for H2+, emerging as interference patterns in the JES. The photoelectron spectrum and the nuclear energy spectrum is obtained by integration of the JES. Without the JES, the photoelectron spectrum itself is shown to be inadequate for the observation of the dynamic interference effect. The resulting JES are analyzed in terms of two models. In one model the wave function is expanded in terms of the "essential" states of the syste...

  3. Effect of low intensity pulsed ultrasound on repairing the periodontal bone of Beagle canines

    Institute of Scientific and Technical Information of China (English)

    Xiao-Qi Gu; Yong-Mei Li; Jing Guo; Li-Hua Zhang; Dong Li; Xiao-Dong Gai

    2014-01-01

    Objective: To investigate the repairing effect of low intensity pulsed ultrasound (LIPUS) on the Beagle canines periodontal bone defect. Methods: A total of 12 Beagle dogs with periodontal bone defect model were randomly divided into control group, LIPUS group, guided tissue regeneration (GTR) group and LIPUS+GTR group, with three in each. After completion of the models, no other proceeding was performed in control group; LIPUS group adopt direct exposure to radiation line LIPUS processing 1 week after modeling; GTR group adopted treatment with GTR, following the CTR standard operation reference; LIPUS+GTR group was treated with LIPUS joint GTR. Temperature change before treatment and histopathological change of periodontal tissue after repair was observed. Results: There was no significant difference in temperature changes of periodontal tissue between groups (P>0.05). The amount and maturity of LIPUS+GTR group were superior to other groups; new cementum, dental periodontal bones of GTR group were superior to the control group but less than LIPUS group; new collagen and maturity of the control group is not high relatively. Conclusions: LIPUS can accelerate the calcium salt deposition and new bone maturation, thus it can serve as promoting periodontal tissue repair, and shortening the periodontal tissue repair time.

  4. Chronic exposure to pulsed low-intensity microwaves is carcinogenic and tumorogenic

    Science.gov (United States)

    Lundquist, Marjorie

    2004-03-01

    To study health effects of lifetime exposure to low-intensity pulsed radiation >890 MHz, one controlled laboratory study of SPF* rats[1-3] and two of mice[4,5] were conducted, but only one[4] reported that its data showed an association between irradiation and cancer; reports of the other two studies minimized or denied such association. Critical review of these identified data evaluation errors; their correction enables a conclusion of microwave carcinogenicity from each study (the rat study also shows an association with endocrine-system primary malignancies and with a benign tumor of the adrenal medulla), enhancing the credibility of an epidemiological study[6] reporting a brain cancer risk for users of both analog and digital cellular phones. [1] J. Raloff. Science News 126(7):103(1984). [2] K. R. Foster & A. W. Guy. Sci Am 255(3):32-39(1986). [3] C.-K. Chou et al. Bioelectromagnetics 13:469-496(1992). [4] M. H. Repacholi et al. Radiat Res 147:631-640(1990)SPF\\. [5] T. D. Utteridge et al. Radiat Res 158:357-364(2002)non-SPF\\. [6] L. Hardell et al. Int J Oncol 22:399-407(2003). * SPF = specific-pathogen-free

  5. Low-intensity pulsed ultrasound prompts tissue-engineered bone formation after implantation surgery

    Institute of Scientific and Technical Information of China (English)

    Wang Juyong; Wang Juqiang; Asou Yoshinori; Paul Fu; Shen Huiliang; Chen Jiani; Sotome Shinichi

    2014-01-01

    Background A practical problem impeding clinical translation is the limited bone formation seen in artificial bone grafts.Low-pressure/vacuum seeding and dynamic culturing in bioreactors have led to a greater penetration into the scaffolds,enhanced production of bone marrow cells,and improved tissue-engineered bone formation.The goal of this study was to promote more extensive bone formation in the composites of porous ceramics and bone marrow stromal cells (BMSCs).Methods BMSCs/β-tricalcium phosphate (β-TCP) composites were subcultured for 2 weeks and then subcutaneously implanted into syngeneic rats that were split into a low-intensity pulsed ultrasound (LIPUS) treatment group and a control group.These implants were harvested at 5,10,25,and 50 days after implantation.The samples were then biomechanically tested and analyzed for alkaline phosphate (ALP) activity and osteocalcin (OCN) content and were also observed by light microscopy.Results The levels of ALP activity and OCN content in the composites were significantly higher in the LIPUS group than in the control group.Histomorphometric analysis revealed a greater degree of soft tissue repair,increased blood flow,better angiogenesis,and more extensive bone formation in the LIPUS groups than in the controls.No significant difference in the compressive strength was found between the two groups.Conclusion LIPUS treatment appears to enhance bone formation and angiogenesis in the BMSCs/β3-TCP composites.

  6. Acne treatment by methyl aminolevulinate photodynamic therapy with red light vs. intense pulsed light.

    Science.gov (United States)

    Hong, Jong Soo; Jung, Jae Yoon; Yoon, Ji Young; Suh, Dae Hun

    2013-05-01

    Various methods of photodynamic therapy (PDT) for acne have been introduced. However, comparative studies among them are still needed. We performed this study to compare the effect of methyl aminolevulinate (MAL) PDT for acne between red light and intense pulsed light (IPL). Twenty patients were enrolled in this eight-week, prospective, split-face study. We applied MAL cream over the whole face with a three-hour incubation time. Then patients were irradiated with 22 J/cm(2) of red light on one-half of the face and 8-10 J/cm(2) of IPL on the other half during each treatment session. We performed three treatment sessions at two-week intervals and followed-up patients until four weeks after the last session. Inflammatory and non-inflammatory acne lesions were reduced significantly on both sides. The red light side showed a better response than the IPL side after the first treatment. Serious adverse effects after treatment were not observed. MAL-PDT with red light and IPL are both an effective and safe modality in acne treatment. Red light showed a faster response time than IPL. After multiple sessions, both light sources demonstrated satisfactory results. We suggest that reducing the total dose of red light is desirable when performing MAL-PDT in Asian patients with acne compared with Caucasians.

  7. Intense pulsed light: A promising therapy in treatment of acne vulgaris

    Directory of Open Access Journals (Sweden)

    Manjunatha Puttaiah

    2017-01-01

    Full Text Available Background: Medical treatment of acne vulgaris includes a variety of topical and oral medications. Poor compliance, lack of durable remission, potential side effects are common drawbacks to these treatment. Therefore, there is a growing demand for a fast, safe and side effect free novel therapy. Light-based therapies are an attractive alternative acne therapy because they potentially offer more rapid onset and better patient compliance with a low incidence of adverse events. Aim: To study the efficacy of intense pulsed light in treatment of acne vulgaris. Materials and Methods: Twenty five patients with acne vulgaris were subjected to IPL. Baseline grading of acne was done. IPL was administered every 2weeks for 4 sessions. Grading was done after the end of treatment. Clinical photographs were taken for evaluation. Results: All patients showed a reduction in the number of acne lesions after 4 sessions of IPL. No significant side effects were noted. Patients also noted an improvement in skin texture. Conclusion: IPL showed beneficial effects in the treatment of acne.

  8. On the Pulse Intensity Modulation of PSR B0823+26

    CERN Document Server

    Young, N J; Weltevrede, P; Lyne, A G; Kramer, M

    2012-01-01

    We investigate the radio emission behaviour of PSR B0823+26, a pulsar which is known to undergo pulse nulling, using an 153-d intensive sequence of observations. The pulsar is found to exhibit both short (~min) and unusually long-term (~hours or more) nulls, which not only suggest that the source possesses a distribution of nulling timescales, but that it may also provide a link between conventional nulling pulsars and longer-term intermittent pulsars. Despite seeing evidence for periodicities in the pulsar radio emission, we are uncertain whether they are intrinsic to the source, due to the influence of observation sampling on the periodicity analysis performed. Remarkably, we find evidence to suggest that the pulsar may undergo pre-ignition periods of 'emission flickering', that is rapid changes between radio-on (active) and -off (null) emission states, before transitioning to a steady radio-emitting phase. We find no direct evidence to indicate that the object exhibits any change in spin-down rate between ...

  9. Intense Pulsed Neutron Source: Progress report 1991--1996. 15. Anniversary edition -- Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Marzec, B. [ed.

    1996-05-01

    The 15th Anniversary Edition of the IPNS Progress Report is being published in recognition of the Intense Pulsed Neutron Source`s first 15 years of successful operation as a user facility. To emphasize the importance of this milestone, the authors have made the design and organization of the report significantly different from previous IPNS Progress Reports. This report consists of two volumes. For Volume 1, authors were asked to prepare articles that highlighted recent scientific accomplishments at IPNS, from 1991 to present; to focus on and illustrate the scientific advances achieved through the unique capabilities of neutron studies performed by IPNS users; to report on specific activities or results from an instrument; or to focus on a body of work encompassing different neutron-scattering techniques. Articles were also included on the accelerator system, instrumentation, computing, target, and moderators. A list of published and ``in press` articles in journals, books, and conference proceedings, resulting from work done at IPNS since 1991, was compiled. This list is arranged alphabetically according to first author. Publication references in the articles are listed by last name of first author and year of publication. The IPNS experimental reports received since 1991 are compiled in Volume 2. Experimental reports referenced in the articles are listed by last name of first author, instrument designation, and experiment number.

  10. Systematic study of spatiotemporal dynamics of intense femtosecond laser pulses in BK-7 glass

    Indian Academy of Sciences (India)

    Ram Gopal; V Deepak; S Sivaramakrishnan

    2007-04-01

    In this paper we present a systematic study of the spatial and temporal effects of intense femtosecond laser pulses in BK-7 over a broad range of input powers, 1–1000 times the critical power for self-focusing (cr) by numerically solving the nonlinear Schrödinger equation (NLS). Most numerical studies have not been extended to such high powers. A clear-cut classification of spatio-temporal dynamics up to very high powers into three regimes – the group-velocity dispersion (GVD) regime, the ionization regime and the dominant plasma regime – as done here, is a significant step towards a better understanding. Further, we examine in detail the role of GVD in channel formation by comparing BK-7 to an `artificial' medium. Our investigations bring forth the important observation that diffraction plays a minimal role in the formation of multiple cones and that plasma plays a diffraction-like role at very high powers. A detailed study of the spatio-temporal dynamics in any condensed medium over this range of powers has not been reported hitherto, to the best of our knowledge. We also suggest appropriate operational powers for various applications employing BK-7 on the basis of our results.

  11. Accelerating Protons to Therapeutic Energies with Ultra-Intense Ultra-Clean and Ultra-Short Laser Pulses

    CERN Document Server

    Bulanov, Stepan S; Bychenkov, Valery Yu; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-01-01

    Proton acceleration by high-intensity laser pulses from ultra-thin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10-11 achieved on Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W/cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-In-Cell (PIC) computer simulations of proton acceleration in the Directed Coulomb explosion regime from ultra-thin double-layer (heavy ions / light ions) foils of different thicknesses were performed under the anticipated experimental conditions for Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 microns (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the ma...

  12. Radiation reaction effects in cascade scattering of intense, tightly focused laser pulses by relativistic electrons: Classical approach

    Science.gov (United States)

    Zhidkov, A.; Masuda, S.; Bulanov, S. S.; Koga, J.; Hosokai, T.; Kodama, R.

    2014-05-01

    Nonlinear cascade scattering of intense, tightly focused laser pulses by relativistic electrons is studied numerically in the classical approximation including radiation damping for the quantum parameter ⟨ℏωxray⟩/ɛ <1 and an arbitrary radiation parameter χ. The electron's energy loss, along with its being scattered to the side by the ponderomotive force, makes scattering in the vicinity of a high laser field nearly impossible at high electron energies. The use of a second, copropagating laser pulse as a booster is shown to partially solve this problem.

  13. Atmospheric velocity spectral width measurements using the statistical distribution of pulsed CO2 lidar return signal intensities

    Science.gov (United States)

    Ancellet, Gerard M.; Menzies, Robert T.; Grant, William B.

    1989-01-01

    A pulsed CO2 lidar with coherent detection has been used to measure the correlation time of backscatter from an ensemble of atmospheric aerosol particles which are illuminated by the pulsed radiation. The correlation time of the backscatter of the return signal, which is directly related to the velocity spectral width, can be used to study the velocity structure constant of atmospheric turbulence and wind shear. Various techniques for correlation time measurement are discussed, and several measurement results are presented for the technique using the information contained in the statistical distribution of a set of lidar return signal intensities.

  14. Design evolution enhances patient compliance for low-intensity pulsed ultrasound device usage

    Directory of Open Access Journals (Sweden)

    Pounder NM

    2016-11-01

    Full Text Available Neill M Pounder, John T Jones, Kevin J Tanis Bioventus LLC, Durham, NC, USA Abstract: Poor patient compliance or nonadherence with prescribed treatments can have a significant unfavorable impact on medical costs and clinical outcomes. In the current study, voice-of-the-customer research was conducted to aid in the development of a next-generation low-intensity pulsed ultrasound (LIPUS bone healing product. An opportunity to improve patient compliance reporting was identified, resulting in the incorporation into the next-generation device of a visual calendar that provides direct feedback to the patient, indicating days for which they successfully completed treatment. Further ­investigation was done on whether inclusion of the visual calendar improved patient adherence to the prescribed therapy (20 minutes of daily treatment over a 6-month period. Thus, 12,984 data files were analyzed from patients prescribed either the earlier- or the next-generation LIPUS device. Over the 6-month period, overall patient compliance was 83.8% with the next-generation LIPUS device, compared with 74.2% for the previous version (p<0.0001. Incorporation of the calendar feature resulted in compliance never decreasing below 76% over the analysis period, whereas compliance with the earlier-generation product fell to 51%. A literature review on the LIPUS device shows a correlation between clinical effectiveness and compliance rates more than 70%. Incorporation of stakeholder feedback throughout the design and innovation process of a next-generation LIPUS device resulted in a measurable improvement in patient adherence, which may help to optimize clinical outcomes. Keywords: LIPUS, ultrasound, compliance, patient adherence, medical device design

  15. Issues in deep ocean collinear double-pulse laser induced breakdown spectroscopy: Dependence of emission intensity and inter-pulse delay on solution pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence-Snyder, Marion; Scaffidi, Jonathan P.; Pearman, William F.; Gordon, Christopher M.; Angel, S. Michael

    2014-09-01

    Double-pulse laser-induced breakdown spectroscopy (DP-LIBS) with a collinear laser beam orientation is shown for high-pressure bulk aqueous solutions (up to 50 bar) along with bubble and plasma images. These investigations reveal that the emission plasma is quenched much more rapidly in solution requiring much shorter detector gate delays than for typical LIBS measurements in air. Also, the emission is inversely proportional to solution pressure, and the most intense emission at all pressures occurs when the laser-induced vapor bubble is at a maximum diameter. It is also shown that the laser-induced bubble grows initially at the same rate for all solution pressures, collapsing more quickly as the pressure is increased. Intense emission is best obtained for conditions where the laser-induced bubble formed by the first laser pulse is small and spherically shaped. - Highlights: • Collinear double-pulse LIBS is shown for 50 bar bulk aqueous solutions. • LIBS plasma in solution is much more rapidly quenched than a LIBS plasma in air. • For DP LIBS, the emission is inversely proportional to solution pressure. • Laser-induced bubble growth rate is the same at all solution pressures. • Large spherical laser-induced bubbles produce the strongest DP LIBS emission.

  16. Propagation of Ultra-Intense Laser Pulses in Near-critical Plasmas: Depletion Mechanisms and Effects of Radiation Reaction

    CERN Document Server

    Wallin, Erik; Harvey, Christopher; Lundh, Olle; Marklund, Mattias

    2015-01-01

    Although, for current laser pulse energies, the weakly nonlinear regime of LWFA is known to be the optimal for reaching the highest possible electron energies, the capabilities of upcoming large laser systems will provide the possibility of running highly nonlinear regimes of laser pulse propagation in underdense or near-critical plasmas. Using an extended particle-in-cell (PIC) model that takes into account all the relevant physics, we show that such regimes can be implemented with external guiding for a relatively long distance of propagation and allow for the stable transformation of laser energy into other types of energy, including the kinetic energy of a large number of high energy electrons and their incoherent emission of photons. This is despite the fact that the high intensity of the laser pulse triggers a number of new mechanisms of energy depletion, which we investigate systematically.

  17. Improving the quality of proton beams via double targets driven by an intense circularly polarized laser pulse

    Directory of Open Access Journals (Sweden)

    Yanxia Xu

    2016-10-01

    Full Text Available A new scheme is proposed to improve the quality of proton beams via ultra-intense laser pulse interacting with double plasma targets, which consist of a pre-target with relatively low density and a main target with high density. Both one- and two-dimensional Particle-in-Cell simulations show that, the using of an appropriate pre-target can help to obtain a much stronger longitudinal charge separation field in contrast to using only the main target. And proton beam with lower momentum divergence, better monochromaticity and collimation, as well as higher current density is generated. Moreover, due to the strengthened coupling between the laser pulse and targets, the energy conversion from laser pulse to protons is also increased.

  18. Simulation calculation for the energy deposition profile and the transmission fraction of intense pulsed electron beam at various incident angles

    CERN Document Server

    Yang Hai Liang; Zhang Jia Sheng; Huang Jian Jun; Sun Jian Feng

    2002-01-01

    The incident angles have a heavy effect on the intense pulsed electron beam energy deposition profile, energy deposition fraction and beam current transmission fraction in material. The author presents electron beam energy deposition profile and energy deposition fraction versus electron energy (0.5-2.0 MeV), at various incident angles for three aluminum targets of various thickness via theoretical calculation. The intense pulsed electron beam current transmission fractions versus electron energy (0.4-1.4 MeV) at various incident angles for three thickness of carbon targets were also theoretically calculated. The calculation results indicate that the deposition energy in unit mass of material surface layer increase with the rise of electron beam incident angle, and electron beam with low incident angle (closer to normal incident angle) penetrates deeper into the target material. The electron beams deposit more energy in unit mass of material surface layer at 60 degree-70 degree incident angle

  19. Effect of nuclear motion on high-order harmonic generation of H$_2^+$ in intense ultrashort laser pulses

    CERN Document Server

    Ahmadi, Hamed; Sabzyan, Hassan; Niknam, Ali Reza; Vafaee, Mohsen

    2014-01-01

    High-order harmonic generation is investigated for H$_2^+$ and D$_2^+$ with and without Born-Oppenheimer approximation by numerical solution of full dimensional electronic time-dependent Schr\\"{o}dinger equation under 4-cycle intense laser pulses of 800 nm wavelength and $I$=4, 5, 7, 10 $\\times 10^{14}$ W$/$cm$^2$ intensities. For most harmonic orders, the intensity obtained for D$_2^+$ is higher than that for H$_2^+$, and the yield difference increases as the harmonic order increases. Only at some low harmonic orders, H$_2^+$ generates more intense harmonics compared to D$_2^+$. The results show that nuclear motion, ionization probability and system dimensionality must be simultaneously taken into account to properly explain the isotopic effects on high-order harmonic generation and to justify experimental observations.

  20. EVALUATION OF THE THERAPEUTIC EFFICACY OF HIGH-INTENSITY PULSED-PERIODIC LASER RADIATION (CLINICAL AND EXPERIMENTAL OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    V. V. Sokolov

    2016-01-01

    Full Text Available From the experience of clinical observations, we have shown a high therapeutic effectiveness of the medical laser KULON-MED in: cosmetics, non-cancer inflammatory diseases of the gastrointestinal tract and cancer (cancer of the stomach and colon as at different wavelengths, and with different types of photosensitizers. In the area of anti-tumor photodynamic therapy (PDT, based on experimental studies, we have showed the high antitumor (sarcoma S‑37 effectiveness of the laser (with the inhibition of tumor growth of up to 100% for repetitively pulsed irradiation mode, and for mode fractionation doses laser radiation. In addition, significant differences are shown in the effectiveness of anticancer PDT methods in the application of high-intensity lasers, continuous and pulsed caused fundamental properties of laser radiation characteristics – time structure of the radiation pulses. Thus, for the first time we have shown that the time of high-intensity laser pulses structure significantly affects therapeutic efficacy laser system, and hence on the mechanisms of interaction of laser radiation with biological tissue.

  1. Protective effects of low-intensity pulsed ultrasound on aluminum-induced cerebral damage in Alzheimer's disease rat model

    OpenAIRE

    Lin, Wei-Ting; Chen, Ran-Chou; Lu, Wen-Wei; Liu,Shing-Hwa; Yang, Feng-Yi

    2015-01-01

    The protein expressions of neurotrophic factors can be enhanced by low-intensity pulsed ultrasound (LIPUS) stimulation in the brain. The purpose of this study was to demonstrate the protective effect of LIPUS stimulation against aluminum-induced cerebral damage in Alzheimer's disease rat model. LIPUS was administered 7 days before each aluminum chloride (AlCl3) administration, and concomitantly given with AlCl3 daily for a period of 6 weeks. Neurotrophic factors in hippocampus were measured b...

  2. Three-dimensional simulation on explosions of hydrogen atomic clusters irradiated by an intense femtosecond laser pulse

    Institute of Scientific and Technical Information of China (English)

    Xia Yong; Liu Jian-Sheng; Ni Guo-Quan; Xu Zhi-Zhan

    2004-01-01

    Using classic particle dynamics simulations, the interaction process between an intense femtosecond laser pulse and icosahedral hydrogen atomic clusters H13, H55 and H147 has been studied. It is revealed that with increasing number of atoms in the cluster, the kinetic energy of ions generated in the Coulomb explosion of the ionized hydrogen clusters increases. The expansion process of the clusters after laser irradiation has also been examined, showing that the expansion scale decreases with increasing cluster size.

  3. The effect of low-intensity pulsed sound waves delivered by the Exogen device on Staphylococcus aureus morphology and genetics

    OpenAIRE

    2004-01-01

    Objectives: We investigated the effect of low-intensity pulsed sound waves delivered by the Exogen device, which is recommended for the treatment of delayed union and nonunion in orthopedic surgery, on the colony number, antimicrobial susceptibility, bacterial morphology, and genetics of Staphylococcus aureus, which is a frequent pathogen in orthopedic infections. Methods: Thirty tubes containing 0.5 McFarland suspensions of S. aureus (ATCC 25923) were used. Fifteen tubes forming the test ...

  4. The sensory quality of meat, game, poultry, seafood and meat products as affected by intense light pulses: a systematic review

    OpenAIRE

    2015-01-01

    The effect of intense light pulses (ILP) on sensory quality of 16 different varieties of meat, meat products, game, poultry and seafood are reviewed. Changes induced by ILP are animal species, type of meat product and fluences applied dependent. ILP significantly deteriorates sensory quality of cooked meat products. It causes less change in the sensory properties of dry cured than cooked meat products while fermented sausage is least affected. The higher fluence applied significantly changes ...

  5. Impact of Pre-Plasma on Fast Electron Generation and Transport from Short Pulse High Intensity Lasers

    Science.gov (United States)

    Peebles, J.; McGuffey, C.; Krauland, C.; Jarrott, L. C.; Sorokovikova, A.; Qiao, B.; Krasheninnikov, S.; Beg, F. N.; Wei, M. S.; Park, J.; Link, A.; Chen, H.; McLean, H. S.; Wagner, C.; Minello, V.; McCary, E.; Meadows, A.; Spinks, M.; Gaul, E.; Dyer, G.; Hegelich, B. M.; Martinez, M.; Donovan, M.; Ditmire, T.

    2014-10-01

    We present the results and analysis from recent short pulse laser matter experiments using the Texas Petawatt Laser to study the impact of pre-plasma on fast electron generation and transport. The experimental setup consisted of 3 separate beam elements: a main, high intensity, short pulse beam for the interaction, a secondary pulse of equal intensity interacting with a separate thin foil target to generate protons for side-on proton imaging and a third, low intensity, wider beam to generate a varied scale length pre-plasma. The main target consisted of a multilayer planar Al foil with a buried Cu fluor layer. The electron beam was characterized with multiple diagnostics, including several bremsstrahlung spectrometers, magnetic electron spectrometers and Cu-K α imaging. The protons from the secondary target were used to image the fields on the front of the target in the region of laser plasma interaction. Features seen in the interaction region by these protons will be presented along with characteristics of the generated electron beam. This work performed under the auspices of the US DOE under Contracts DE-FOA-0000583 (FES, NNSA).

  6. DNA electrophoretic migration patterns change after exposure of Jurkat cells to a single intense nanosecond electric pulse.

    Directory of Open Access Journals (Sweden)

    Stefania Romeo

    Full Text Available Intense nanosecond pulsed electric fields (nsPEFs interact with cellular membranes and intracellular structures. Investigating how cells respond to nanosecond pulses is essential for a development of biomedical applications of nsPEFs, including cancer therapy, and b better understanding of the mechanisms underlying such bioelectrical effects. In this work, we explored relatively mild exposure conditions to provide insight into weak, reversible effects, laying a foundation for a better understanding of the interaction mechanisms and kinetics underlying nsPEF bio-effects. In particular, we report changes in the nucleus of Jurkat cells (human lymphoblastoid T cells exposed to single pulses of 60 ns duration and 1.0, 1.5 and 2.5 MV/m amplitudes, which do not affect cell growth and viability. A dose-dependent reduction in alkaline comet-assayed DNA migration is observed immediately after nsPEF exposure, accompanied by permeabilization of the plasma membrane (YO-PRO-1 uptake. Comet assay profiles return to normal within 60 minutes after pulse delivery at the highest pulse amplitude tested, indicating that our exposure protocol affects the nucleus, modifying DNA electrophoretic migration patterns.

  7. Effectiveness of Intense Pulsed Light treatment in solar lentigo: a retrospective study

    Directory of Open Access Journals (Sweden)

    İlgen Ertam

    2014-03-01

    Full Text Available Intense Pulsed Light (IPL; is a light system of 500-1200 nm wavelength which is used for the treatment of hair removal, hyperpigmentation, non-ablative skin resurfacing and superficial vascular lesions. The mechanism of action is thought to be the focal epidermal coagulation due to selective photothermolysis in the epidermal keratinocytes and melanocytes. A variety of laser systems can be used in the treatment of lsolar entigo. The aim of this study is to investigate the effectiveness of IPL in solar lentigo. Materials and Methods: The archives of Cosmetology Unit retrospectively reviewed for the patients with the diagnosis of solar lentigo from March 2007 to November 2010. There were 139 files of patients who were diagnosed as solar lentigo clinically and dermoscopically and treated by IPL (L900 a & m IPL. Informed consent was taken from all patients. Among them, 42 patients who had come to controls regularly and had photographed before and after treatment included into the study. Results: A total of 52 lesions of 42 female and 1 male patient included into the study. Patients’ mean age was 42±9.6 years, ranging between 33 to 88. Of the lesions, 27 lesions(51.9% were on cheek, 7 lesions (13.5% were on zygoma, 6 lesions (11.5% were on chin, 4 lesions (7.7% were on hands, 4 lesions (7.7% were on forehead, 2 lesions(3.8% were on nose, 2 lesions (3.8% were on forearm. The mean number of sessions was 3.28 ranging between 1 and 7. After treatment, improvement was over 75% in 57,7% lesions, 50-75% in 17.3% of the lesions, 25-50% in 17.3% of the lesions, under 25% in 7.7% of the lesions. Conclusion: According to the results of our work, IPL can be accepted as an effective, cheap and safety method in terms of its side effects in treatment of solar lentigo.

  8. A paradoxical signal intensity increase in fatty livers using opposed-phase gradient echo imaging with fat-suppression pulses

    Energy Technology Data Exchange (ETDEWEB)

    Mulkern, Robert V.; Voss, Stephan [Harvard Medical School, Department of Radiology, Children' s Hospital Boston, Boston, MA (United States); Loeb Salsberg, Sandra; Krauel, Marta Ramon; Ludwig, David S. [Harvard Medical School, Department of Medicine, Children' s Hospital Boston, Boston, MA (United States)

    2008-10-15

    With the increase in obese and overweight children, nonalcoholic fatty liver disease has become more prevalent in the pediatric population. Appreciating subtleties of magnetic resonance (MR) signal intensity behavior from fatty livers under different imaging conditions thus becomes important to pediatric radiologists. We report an initially confusing signal behavior - increased signal from fatty livers when fat-suppression pulses are applied in an opposed-phase gradient echo imaging sequence - and seek to explain the physical mechanisms for this paradoxical signal intensity behavior. Abdominal MR imaging at 3 T with a 3-D volumetric interpolated breath-hold (VIBE) sequence in the opposed-phase condition (TR/TE 3.3/1.3 ms) was performed in five obese boys (14{+-}2 years of age, body mass index >95th percentile for age and sex) with spectroscopically confirmed fatty livers. Two VIBE acquisitions were performed, one with and one without the use of chemical shift selective (CHESS) pulse fat suppression. The ratios of fat-suppressed over non-fat-suppressed signal intensities were assessed in regions-of-interest (ROIs) in five tissues: subcutaneous fat, liver, vertebral marrow, muscle and spleen. The boys had spectroscopically estimated hepatic fat levels between 17% and 48%. CHESS pulse fat suppression decreased subcutaneous fat signals dramatically, by more than 85% within regions of optimal fat suppression. Fatty liver signals, in contrast, were elevated by an average of 87% with CHESS pulse fat suppression. Vertebral marrow signal was also significantly elevated with CHESS pulse fat suppression, while spleen and muscle signals demonstrated only small signal increases on the order of 10%. We demonstrated that CHESS pulse fat suppression actually increases the signal intensity from fatty livers in opposed-phase gradient echo imaging conditions. The increase can be attributed to suppression of one partner of the opposed-phase pair that normally contributes to the

  9. Acoustic Diagnostics of Plasma Channels Induced by Intense Femtosecond Laser Pulses in Air

    Institute of Scientific and Technical Information of China (English)

    HAO Zuo-Qiang; WEI Zhi-Yi; YU Jin; ZHANG Jie; LI Yu-Tong; YUAN Xiao-Hui; ZHENG Zhi-Yuan; WANG Peng; WANG Zhao-Hua; LING Wei-Jun

    2005-01-01

    @@ Long plasma channels induced by femtosecond laser pulses in air are diagnosed using the sonographic method. By detecting the sound signals along the channels, the length and the electron density of the channels are measured.

  10. Application of immobilized TiO2 photocatalysis to improve the inactivation of Heterosigma akashiwo in ballast water by intense pulsed light.

    Science.gov (United States)

    Feng, Daolun; Xu, Shihong; Liu, Gang

    2015-04-01

    Ballast water exotic discharge has been identified as a leading vector for marine species invasion. Here immobilized TiO2 photocatalysis is introduced to improve the performance of intense pulsed light. For intense pulsed light/TiO2 photocatalysis, a typical inactivation of 99.89±0.46% can be achieved under treatment condition of 1.78 L min(-1) flow rate, 300 V pulse peak voltage, 15 Hz pulse frequency and 5 ms pulse width. Moreover, within tested 220-260 V peak voltage, 18.37-40.51% elevation in inactivation is observed in comparison with intense pulsed light treatment alone. The rough energy consumption of the tested intense pulsed light/TiO2 treatment system is about 1.51-2.51 times higher than that of the typical commercial UV ballast water treatment system. The stability of the photocatalytic reactivity and intactness of loaded TiO2 film is proved within 20-d's test, while local erosion on stainless steel support is observed after 30-d's test. The results indicate that intense pulsed light/TiO2 photocatalysis is likely to be a competitive ballast water treatment technique, while further measures is needed to reduce the energy consumption and ensure the performance of TiO2 film in a long run.

  11. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    Science.gov (United States)

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-06-03

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  12. Metabolite profiling of phenolic and carotenoid contents in tomatoes after moderate-intensity pulsed electric field treatments.

    Science.gov (United States)

    Vallverdú-Queralt, Anna; Oms-Oliu, Gemma; Odriozola-Serrano, Isabel; Lamuela-Raventós, Rosa M; Martín-Belloso, Olga; Elez-Martínez, Pedro

    2013-01-01

    A metabolite profiling approach was used to study the effect of moderate-intensity pulsed electric field (MIPEF) treatments on the individual polyphenol and carotenoid contents of tomato fruit after refrigeration at 4°C for 24h. The MIPEF processing variables studied were electric field strength (from 0.4 to 2.0kV/cm) and number of pulses (from 5 to 30). Twenty four hours after MIPEF treatments, an increase was observed in hydroxycinnamic acids and flavanones, whereas flavonols, coumaric and ferulic acid-O-glucoside were not affected. Major changes were also observed for carotenoids, except for the 5-cis-lycopene isomer, which remain unchanged after 24h of MIPEF treatments. MIPEF treatments, conducted at 1.2kV/cm and 30 pulses, led to the greatest increases in chlorogenic (152%), caffeic acid-O-glucoside (170%) and caffeic (140%) acids. On the other hand, treatments at 1.2kV/cm and 5 pulses led to maximum increases of α-carotene, 9- and 13-cis-lycopene, which increased by 93%, 94% and 140%, respectively. Therefore, MIPEF could stimulate synthesis of secondary metabolites and contribute to production of tomatoes with high individual polyphenol and carotenoid contents.

  13. Effect of plasma inhomogeneity on ion acceleration when an ultra-intense laser pulse interacts with a foil target

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.A.; Platonov, K.Yu. [Institute for Laser Physics, SC Vavilov State Optical Institute, St. Petersburg (Russian Federation); Zhidkov, A.G. [University of Tokyo, Graduate School of Engineering, Nuclear Engineering Research Laboratory, Tokai, Naka, Ibaraki (Japan); Sasaki, A. [Advanced Photon Research Center JAERI, Kizu-cho, Soraku-gun, Kyoto (Japan)

    2002-07-01

    Fast electrons generated via the interaction of ultra-intense laser pulses with a solid target can produce multi-MeV ions from laser-induced plasmas. These fast ions can be used for various applications ranging from the ion implantation to the stimulation of nuclear reactions. The most important point here is the efficiency of production of such fast ions. We analyse in detail, with the help of an analytical model and particle-in-cell simulations, the most efficient acceleration mechanisms including the ponderomotive force driving and acceleration by the shock wave, and compare the electrostatic ion acceleration at the front side and at the rear side of a foil target. We also determine the optimal plasma density distribution shaped by the laser pre-pulse. (author)

  14. Experimental Observation of Generation of Superradiance Pulses in the Process of Backscattering of Pump Wave on the Intense Electron Bunch

    CERN Document Server

    Ginzburg, N S; Denisov, G G; Rozental, R M; Sergeev, A; Zotova, I V

    2005-01-01

    Recently significant progress was archived in the generation of multimegawatt subnanosecond pulses in millimeter wave band utilizing the cyclotron and Cherenkov mechanisms of superradiance (SR) [1,2]. We study the novel mechanism of SR when the powerful pumping wave undergoes the stimulated back scattering on the intense electron bunch. Due to the Doppler up shift the radiation frequency can significantly exceed the frequency of the pumping wave. With the relativistic microwave generator as a pumping wave source such a mechanism can be used for generation of the powerful pulse radiation in the short millimeter and submillimeter wave bands. Experiments on the observation of the stimulated scattering in the superradiance regime were carried out at Institute of Electrophysics RAS with two synchronized accelerators. The 4 ns electron beam from the first accelerator is used for generation of the 38 GHz 100 MW pumping wave which subsequently scattered on the subnanosecond 250 keV 1 kA electron bunch produced by the...

  15. Pulse low-intensity electromagnetic field as prophylaxis of heterotopic ossification in patients with traumatic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Đurović Aleksandar

    2009-01-01

    Full Text Available Background/Aim. Heterotopic ossification (HO is an important complication of head and spinal cord injuries (SCI. Pulse low-intensity electromagnetic field (PLIMF therapy increases blood flow to an area of pain or inflammation, bringing more oxygen to that area and helps to remove toxic substances. The aim of this study was to determine the effect of PLIMF as prophylaxis of HO in patients with SCI. Methods. This prospective random control clinical study included 29 patients with traumatic SCI. The patients were randomly divided into experimental (n = 14 and control group (n = 15. The patients in the experimental group, besides exercise and range of motion therapy, were treated by PLIMF of the following characteristics: induction of 10 mT, frequency of 25 Hz and duration of 30 min. Pulse low-intensity electromagnetic field therapy started in the 7th week after the injury and lasted 4 weeks. The presence or absence of HO around the patients hips we checked by a plane radiography and Brookers classification. Functional capabilities and motor impairment were checked by Functional Independent Measure (FIM, Barthel index and American Spinal Injury Association (ASIA impairment class. Statistic analysis included Kolmogorov-Smirnov test, Shapiro-Wilk test, Mann Whitney Exact test, Exact Wilcoxon signed rank test and Fischer Exact test. Statistical significance was set up to p < 0.05. Results. At the end of the treatment no patient from the experimental group had HO. In the control group, five patients (33.3% had HO. At the end of the treatment the majority of the patients from the experimental group (57.14% moved from ASIA-A to ASIA-B class. Conclusion. Pulse low-intensity electromagnetic field therapy could help as prophylaxis of HO in patients with traumatic SCI.

  16. The Effect of the Cool Intense Pulsed Light (CIPL on Hair Removal of Chin Area in Hirsute Women

    Directory of Open Access Journals (Sweden)

    SH Njafei Dolatabadi

    2012-12-01

    Full Text Available Abstract Background & aim: Hirsutism can esthetically cause significant psychosocial consequences in hirsute women. Different methods, so far, have been applied for hair removal, and the Cool Intense Pulsed Light (CIPL system is one of them. The aim of this study was to determine the effect and side effects of the CIPL method on removing the hairs of the chin area in hirsute women. Methods: This is a interventional study in which 30 women suffering from hirsutism referred to a dermatologist's clinic in Yasuj, Iran were participated during 2009-2010. A convenience sampling method was used for data collection. Subjects underwent the Cool Intense Pulsed Light method over 6 months, one session per month . To compare the effect of the applied intervention, number of hair on the chin area were compared before and after the intervention Collected data were analyzed by the SPSS software using descriptive and analytic statistics such as t-test, paired t-test and ANOVA, considering α=0.05. Results: The duration of affliction with hirsutism was 1-15 year. The mean number of hairs of the chin area before and after the intervention were 288.2± 229.2 and 56.4± 43.8 respectively. Paired T-test analysis revealed that the difference is significant (p=0.001. None of the participants reported any specific problems related to the applied intervention. Conclusion: treatment efficacy of CIPL for hirsutism was 80 percent. However, we suggest further studies to confirm these findings. Key words: Cool Intense Pulsed Light, Hirsutism, Hair removal

  17. Argonne Bubble Experiment Thermal Model Development II

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-01

    This report describes the continuation of the work reported in “Argonne Bubble Experiment Thermal Model Development”. The experiment was performed at Argonne National Laboratory (ANL) in 2014. A rastered 35 MeV electron beam deposited power in a solution of uranyl sulfate, generating heat and radiolytic gas bubbles. Irradiations were performed at three beam power levels, 6, 12 and 15 kW. Solution temperatures were measured by thermocouples, and gas bubble behavior was observed. This report will describe the Computational Fluid Dynamics (CFD) model that was developed to calculate the temperatures and gas volume fractions in the solution vessel during the irradiations. The previous report described an initial analysis performed on a geometry that had not been updated to reflect the as-built solution vessel. Here, the as-built geometry is used. Monte-Carlo N-Particle (MCNP) calculations were performed on the updated geometry, and these results were used to define the power deposition profile for the CFD analyses, which were performed using Fluent, Ver. 16.2. CFD analyses were performed for the 12 and 15 kW irradiations, and further improvements to the model were incorporated, including the consideration of power deposition in nearby vessel components, gas mixture composition, and bubble size distribution. The temperature results of the CFD calculations are compared to experimental measurements.

  18. Status of RF superconductivity at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.

    1989-01-01

    Development of a superconducting (SC) slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first SC heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerating System), which began regularly scheduled operation in 1978. To date, more than 40,000 hours of bean-on target operating time has been accumulated with ATLAS. The Physics Division at ANL has continued to develop SC RF technology for accelerating heavy-ions, with the result that the SC linac has, up to the present, has been in an almost continuous process of upgrade and expansion. It should be noted that this has been accomplished while at the same time maintaining a vigorous operating schedule in support of the nuclear and atomic physics research programs of the division. In 1987, the Engineering Physics Division at ANL began development of SC RF components for the acceleration of high-brightness proton and deuterium beams. This work has included the evaluation of RF properties of high-{Tc} oxide superconductors, both for the above and for other applications. The two divisions collaborated while they worked on several applications of RF SC, and also worked to develop the technology generally. 11 refs., 6 figs.

  19. Time dependence of X-ray polarizability of a crystal induced by an intense femtosecond X-ray pulse

    Directory of Open Access Journals (Sweden)

    A. Leonov

    2014-11-01

    Full Text Available The time evolution of the electron density and the resulting time dependence of Fourier components of the X-ray polarizability of a crystal irradiated by highly intense femtosecond pulses of an X-ray free-electron laser (XFEL is investigated theoretically on the basis of rate equations for bound electrons and the Boltzmann equation for the kinetics of the unbound electron gas. The photoionization, Auger process, electron-impact ionization, electron–electron scattering and three-body recombination have been implemented in the system of rate equations. An algorithm for the numerical solution of the rate equations was simplified by incorporating analytical expressions for the cross sections of all the electron configurations in ions within the framework of the effective charge model. Using this approach, the time dependence of the inner shell populations during the time of XFEL pulse propagation through the crystal was evaluated for photon energies between 4 and 12 keV and a pulse width of 40 fs considering a flux of 1012 photons pulse−1 (focusing on a spot size of ∼1 µm. This flux corresponds to a fluence ranging between 0.8 and 2.4 mJ µm−2. The time evolution of the X-ray polarizability caused by the change of the atomic scattering factor during the pulse propagation is numerically analyzed for the case of a silicon crystal. The time-integrated polarizability drops dramatically if the fluence of the X-ray pulse exceeds 1.6 mJ µm−2.

  20. Intense picosecond pulsed electric fields inhibit proliferation and induce apoptosis of HeLa cells.

    Science.gov (United States)

    Zhang, Min; Xiong, Zheng-Ai; Chen, Wen-Juan; Yao, Cheng-Guo; Zhao, Zhong-Yong; Hua, Yuan-Yuan

    2013-06-01

    A picosecond pulsed electric field (psPEF) is a localized physical therapy for tumors that has been developed in recent years, and that may in the future be utilized as a targeted non‑invasive treatment. However, there are limited studies regarding the biological effects of psPEF on cells. Electric field amplitude and pulse number are the main parameters of psPEF that influence its biological effects. In this study, we exposed HeLa cells to a psPEF with a variety of electric field amplitudes, from 100 to 600 kV/cm, and various pulse numbers, from 1,000 to 3,000. An MTT assay was used to detect the growth inhibition, while flow cytometry was used to determine the occurrence of apoptosis and the cell cycle of the HeLa cells following treatment. The morphological changes during cell apoptosis were observed using transmission electron microscopy (TEM). The results demonstrated that the cell growth inhibition rate gradually increased, in correlation with the increasing electric field amplitude and pulse number, and achieved a plateau of maximum cell inhibition 12 h following the pulses. In addition, typical characteristics of HeLa cell apoptosis in the experimental groups were observed by TEM. The results demonstrated that the rate of apoptosis in the experimental groups was significantly elevated in comparison with the untreated group. In the treatment groups, the rate of apoptosis was greater in the higher amplitude groups than in the lower amplitude groups. The same results were obtained when the variable was the pulse number. Flow cytometric analysis indicated that the cell cycle of the HeLa cells was arrested at the G2/M phase following psPEF treatment. Overall, our results indicated that psPEF inhibited cell proliferation and induced cell apoptosis, and that these effects occurred in a dose-dependent manner. In addition, the results demonstrated that the growth of the HeLa cells was arrested at the G2/M phase following treatment. This study may provide a

  1. Shock wave acceleration of protons in inhomogeneous plasma interacting with ultrashort intense laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Lecz, Zs. [ELI-ALPS, ELI-HU Nkft., Szeged (Hungary); Andreev, A. [ELI-ALPS, ELI-HU Nkft., Szeged (Hungary); Max-Born Institute, Berlin (Germany)

    2015-04-15

    The acceleration of protons, triggered by solitary waves in expanded solid targets is investigated using particle-in-cell simulations. The near-critical density plasma is irradiated by ultrashort high power laser pulses, which generate the solitary wave. The transformation of this soliton into a shock wave during propagation in plasma with exponentially decreasing density profile is described analytically, which allows to obtain a scaling law for the proton energy. The high quality proton bunch with small energy spread is produced by reflection from the shock-front. According to the 2D simulations, the mechanism is stable only if the laser pulse duration is shorter than the characteristic development time of the parasitic Weibel instability.

  2. Comparative evaluation of long pulse alexandrite laser and intense pulsed light systems for pseudofolliculitis barbae treatment with one year of follow up

    Directory of Open Access Journals (Sweden)

    Leheta Tahra

    2009-01-01

    Full Text Available Background: Existing remedies for controlling pseudofolliculitis barbae (PFB are sometimes helpful; however the positive effects are often short lived. The only definitive cure for PFB is permanent removal of the hair follicle. Aims: Our aim was to compare the efficacy of the Alexandrite laser with the intense pulsed light system in the treatment of PFB and to follow up the recurrence. Methods: Twenty male patients seeking laser hair removal for the treatment of PFB were enrolled in this study. One half of the face was treated with the long-pulse Alexandrite laser and the other half was treated with the IPL system randomly. The treatment outcome and any complications were observed and followed up for one year. Results: All patients exhibited a statistically significant decrease in the numbers of papules. Our results showed that the Alexandrite-treated side needed seven sessions to reach about 80% improvement, while the IPL-treated side needed 10-12 sessions to reach about 50% improvement. During the one year follow up period, the Alexandrite-treated side showed recurrence in very minimal areas, while the IPL-treated side showed recurrence in bigger areas. Conclusions: Our results showed that both systems might improve PFB but Alexandrite laser was more effective at reducing PFB than IPL.

  3. Ionization of oriented carbonyl-sulfide molecules by intense circularly polarized laser pulses

    CERN Document Server

    Dimitrovski, Darko; Madsen, Lars Bojer; Filsinger, Frank; Meijer, Gerard; Küpper, Jochen; Holmegaard, Lotte; Kalhøj, Line; Nielsen, Jens H; Stapelfeldt, Henrik

    2010-01-01

    We present combined experimental and theoretical results on strong-field ionization of oriented carbonyl-sulphide molecules by circularly-polarized laser pulses. The obtained molecular frame photoelectron angular distributions show pronounced asymmetries perpendicular to the direction of the molecular electric dipole moment. These findings are explained by a tunneling model invoking the laser-induced Stark shifts associated with the dipoles and polarizabilities of the molecule and its unrelaxed cation.

  4. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    Science.gov (United States)

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.

  5. Light dark matter candidates in intense laser pulses II: the relevance of the spin degrees of freedom

    Science.gov (United States)

    Villalba-Chávez, S.; Müller, C.

    2016-02-01

    Optical searches assisted by the field of a laser pulse might allow for exploring a variety of not yet detected dark matter candidates such as hidden-photons and scalar minicharged particles. These hypothetical degrees of freedom may be understood as a natural consequence of extensions of the Standard Model incorporating a hidden U(1)-gauge sector. In this paper, we study the effects induced by both candidates on the propagation of a probe electromagnetic wave in the vacuum polarized by a long laser pulse of moderate intensity, this way complementing our previous study [ JHEP 06 (2015) 177]. We describe how the absence of a spin in the scalar charged carriers modifies the photon-paraphoton oscillations as compared with a fermionic minicharge model. In particular, we find that the regime close to their lowest threshold mass might provide the most stringent upper limit for minicharged scalars. The pure-laser based experiment investigated here could allow for excluding a sector in the parameter space of the particles which has not been experimentally ruled out by setups driven by dipole magnets. We explain how the sign of the ellipticity and rotation of the polarization plane acquired by a probe photon — in combination with their dependencies on the pulse parameters — can be exploited to elucidate the quantum statistics of the charge carriers.

  6. Optical control of filamentation-induced damage to DNA by intense, ultrashort, near-infrared laser pulses

    Science.gov (United States)

    Dharmadhikari, J. A.; Dharmadhikari, A. K.; Kasuba, K. C.; Bharambe, H.; D’Souza, J. S.; Rathod, K. D.; Mathur, D.

    2016-06-01

    We report on damage to DNA in an aqueous medium induced by ultrashort pulses of intense laser light of 800 nm wavelength. Focusing of such pulses, using lenses of various focal lengths, induces plasma formation within the aqueous medium. Such plasma can have a spatial extent that is far in excess of the Rayleigh range. In the case of water, the resulting ionization and dissociation gives rise to in situ generation of low-energy electrons and OH-radicals. Interactions of these with plasmid DNA produce nicks in the DNA backbone: single strand breaks (SSBs) are induced as are, at higher laser intensities, double strand breaks (DSBs). Under physiological conditions, the latter are not readily amenable to repair. Systematic quantification of SSBs and DSBs at different values of incident laser energy and under different external focusing conditions reveals that damage occurs in two distinct regimes. Numerical aperture is the experimental handle that delineates the two regimes, permitting simple optical control over the extent of DNA damage.

  7. Treatment of hepatic tumors by thermal versus mechanical effects of pulsed high intensity focused ultrasound in vivo

    Science.gov (United States)

    Peng, Song; Zhou, Ping; He, Wei; Liao, Manqiong; Chen, Lili; Ma, C.-M.

    2016-09-01

    The purpose of this study is to comparatively assess the thermal versus mechanical effects of pulsed high intensity focused ultrasound (HIFU) treatment on hepatic tumors in vivo. Forty-five rabbits with hepatic VX2 tumors were randomly separated into three groups (15 animals per group) before HIFU ablation. The total HIFU energy (in situ) of 1250 J was used for each tumor for three groups. In groups I and II, animals were treated with 1 MHz pulsed ultrasound at 1 Hz pulsed repetition frequency (PRF), 0.5 duty cycle (0.5 s on and 0.5 s off) and10 s duration for one spot sonication. For group II, in addition to HIFU treatment, microbubbles (SonoVue, Bracco, Milan, Italy) were injected via vein before sonication acting as a synergist. In group III, animals were treated with 1 MHz pulsed ultrasound at 10 Hz PRF, 0.1 duty cycle (0.1 s on and 0.9 s off) and 10 s duration for one sonication. The total treatment spots were calculated according to the tumor volume. Tumors were examined with contrast-enhanced computed tomography (CECT) immediately prior to and post HIFU treatment. Histopathologic assessment was performed 3 h after treatment. Our study showed that all animals tolerated the HIFU treatment well. Our data showed that mechanical HIFU could lead to controlled injury in rabbit hepatic tumors with different histological changes in comparison to thermal HIFU with or without microbubbles.

  8. Deflection of high-intensity pulsed ion beam in focusing magnetically insulated ion diode with a passive anode

    Science.gov (United States)

    Zhu, X. P.; Zhang, Q.; Ding, L.; Zhang, Z. C.; Yu, N.; Pushkarev, A.; Lei, M. K.

    2016-12-01

    The focused high-intensity pulsed ion beam (HIPIB) of 100 ns order pulse is generated with respect to its spatial stability in two types of magnetically insulated ion diodes (MIDs) with geometrical focusing configuration using the passive anode, i.e., insulation of electrons with an external magnetic-field and a self-magnetic field, respectively. Anode plasma formation for the ion beam generation is based on different processes in the two types of MIDs, as the surface breakdown on the polymer-coated anode operated in the unipolar pulse mode for the external-magnetic field MID and the explosive electron emission on the graphite anode in the bipolar-pulse mode for the self-magnetic field MID. Typical energy density per pulse is in the range of 3-6 J/cm2, at an accelerating voltage of 200-300 kV with a pulse duration of 120-150 ns. The spatial deviations of the HIPIB is evaluated by measuring the energy density distribution by using an infrared diagnostic method considering neutralizing during the ion beam propagation to the focal plane with a spatial resolution of 1 mm. The ion beam deviation is about ±1.5 mm for the external-magnetic field MID and ±2.5 mm for the self-magnetic field MID, leading to a fluctuation in the energy density of 1%-12%, and 9%-27% within a 10 mm range at the focal point, respectively. It is revealed that the displacement of different parts of a beam spot occurs nonsynchronously, mainly attributable to the intrinsic diode processes of plasma generation and expansion, and ion beam extraction from the anode-cathode gap, while the influence of magnetic field in the transportation region is negligible. The ion beam spatial deviation has a major influence on the shot-to-shot stability of ion beam, and it is suggested that the stability can be enhanced via diode process improvement.

  9. Environmental monitoring at Argonne National Laboratory. Annual report, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1982-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1981 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated.

  10. Environmental monitoring at Argonne National Laboratory. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; Duffy, T. L.; Sedlet, J.

    1981-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1980 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and foodstuffs; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated.

  11. Environmental monitoring at Argonne National Laboratory. Annual report for 1979

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; Duffy, T. L.; Sedlet, J.

    1980-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1979 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, Argonne effluent water, soil, grass, bottom sediment, and foodstuffs; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environemetal penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measuremenets were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated.

  12. Environmental monitoring at Argonne National Laboratory. Annual report for 1983

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1984-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1983 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, ground water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The potential radiation dose to off-site population groups is also estimated. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. 19 references, 8 figures, 49 tables.

  13. Environmental monitoring at Argonne National Laboratory. Annual report for 1982

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1983-03-01

    The results of the environmental monitoring program at Argonne Ntaional Laboratory for 1982 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, ground water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and masurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated.

  14. Environmental assessment related to the operation of Argonne National Laboratory, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    In order to evaluate the environmental impacts of Argonne National Laboratory (ANL) operations, this assessment includes a descriptive section which is intended to provide sufficient detail to allow the various impacts to be viewed in proper perspective. In particular, details are provided on site characteristics, current programs, characterization of the existing site environment, and in-place environmental monitoring programs. In addition, specific facilities and operations that could conceivably impact the environment are described at length. 77 refs., 16 figs., 47 tabs.

  15. Versatile microscope-coupled high-intensity pulsed light source for high-speed cine photomicrography of microactuators

    Science.gov (United States)

    Krehl, Peter; Engemann, Stephan; Rembe, Christian; Hofer, Eberhard P.

    1997-05-01

    A compact high-intensity pulsed light source has been developed in order to match a microdynamic test facility for high-speed motion analysis of micromechanical components. The test stand encompasses a universal microscope Zeiss Axioplan, the new light source and an electronic ultra high- speed multiple framing camera Hadland Imacon 468. The light source consists of a narrow cylindrical Xe-filled discharge tube, thus providing a locally stable emission. Since the small-size flashlamp easily fits into a standard microscope lamphousing, it allows to maintain the advantages of Koehler illumination as well as switching to other types of lamphousings. The flash tube is operated via an artificial asymmetric transmission line and delivers a square light pulse with a flash duration of 110 microsecond(s) FWHM and a peak intensity of 50 Med. The light source illuminates the object uniformly within the interesting time window; image shuttering is provided in the camera by gated micro-channel- plate intensifiers. To test the efficiency of the total system for various standard visualization methods (transmitted light, reflected light and differential interference contrast), microscopic still images have been taken at magnification up to 500X and with exposure times down to 10 ns. In addition, two microscopic darkfield methods which provide a high contrast but a low light intensity of the image, have been selected to test their applicability down to an exposure time of 100 ns. Two examples for real-time cinematography of high-speed phenomena in microactuators are shown: the bouncing behavior of an electro-magnetic microrelay and the bubble/jet formation of a thermal ink jet printhead.

  16. Coulomb explosion of H{sub 2} induced by a sub-10 fs intense laser pulse; Explosion coulombienne de H{sub 2} induite par une impulsion laser intense sub-10 fs

    Energy Technology Data Exchange (ETDEWEB)

    Saugout, S

    2006-12-15

    This work presents an experimental and theoretical study of the interaction of H2 with an intense sub-10 fs-laser pulse. The ejection of the two electrons of the molecule by the laser pulse leads to the fragmentation of the physical sys em in two protons. This process is called Coulomb Explosion. The electronic and nuclear dynamics can be analyzed by measuring the kinetic energy spectra as a function of different laser parameters. This dynamics is also analyzed through a non-perturbative, double active electron theoretical model, based on the resolution of the time dependent Schroedinger equation. In this model, the internuclear distance is treated as a quantum variable. The experimental and theoretical results enlight the translation of the kinetic energy spectra towards a higher energy when the pulse duration decreases. Experimentally, laser pulses from 40 to 10 fs were used and down to 1 fs using theoretical simulations. This study shows that, for laser pulses shorter than 4 fs, the carrier envelope phase becomes a crucial parameter. Furthermore, the molecular dynamics of H2 in intense laser field is sensitive to the peak intensity of the pulse. The experimental and theoretical results show that, as the intensity increases, the kinetic energy spectra are centered around a higher energy. In addition, the presence of two double ionization regimes is theoretically demonstrated for a pulse duration of 4 fs. The H{sub 2} molecule is also sensitive to the temporal shape of the laser pulse. This sensitivity allows for the detection of pre- or post-pulses by measuring the experimental kinetic energy spectra. Finally, the different double ionization processes are studied. The results show that the electron rescattering influences the femtosecond nuclear dynamics. (author)

  17. Interaction of ultra-short ultra-intense laser pulses with under-dense plasmas; Interaction d'impulsions laser ultra-courtes et ultra-intenses avec des plasmas sous denses

    Energy Technology Data Exchange (ETDEWEB)

    Solodov, A

    2000-12-15

    Different aspects of interaction of ultra-short ultra-intense laser pulses with underdense plasmas are studied analytically and numerically. These studies can be interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order harmonic generation, initial confinement fusion with fast ignition. For numerical simulations a fully-relativistic particle code WAKE was used, developed earlier at Ecole Polytechnique. It was modified during the work on the thesis in the part of simulation of ion motion, test electron motion, diagnostics for the field and plasma. The studies in the thesis cover the problems of photon acceleration in the plasma wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of laser pulses with duration of the order of a plasma period, ion dynamics in the wake of a short intense laser pulse, plasma wave breaking. Simulation of three experiments on the laser pulse propagation in plasma and electron acceleration were performed. Among the main results of the thesis, it was found that reduction of the plasma wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a plasma channel is used for the laser pulse guiding. Self-similar structures describing relativistic guiding of short laser pulses in plasmas were found and relativistic channeling of initially Gaussian laser pulses of a few plasma periods in duration was demonstrated. It was shown that ponderomotive force of a plasma wake excited by a short laser pulse forms a channel in plasma and plasma wave breaking in the channel was analyzed in detail. Effectiveness of electron acceleration by the laser field and plasma wave was compared and frequency shift of probe laser pulses by the plasma waves was found in conditions relevant to the current experiments. (author)

  18. Electron emission following collective autoionization of He nanodroplets irradiated by intense XUV pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ovcharenko, Yevheniy; Moeller, Thomas [Technische Universitaet Berlin (Germany); Lyamayev, Viktor; Katzy, Raphael; LaForge, Aaron; Stienkemeier, Frank [Universitaet Freiburg (Germany); Devetta, Michele; Piseri, Paolo [University of Milan (Italy); Plekan, Oksana; Richter, Robert; Finetti, Paola; Prince, Kevin; Callegari, Carlo [Sincrotrone Trieste (Italy); O' Keeffe, Patrick; Coreno, Marcello [CNR-IMIP Rome (Italy); Mazza, Tommaso [European XFEL GmbH (Germany); Di Fraia, Michele [University of Trieste (Italy); Brauer, Nils-Benedict; Drabbels, Marcel [EPFL Lausanne (Switzerland); Stranges, Stefano [University of Rome ' ' Sapienza' ' (Italy)

    2013-07-01

    The narrow bandwidth and tunability of FERMI rate at Elettra seeded FEL (Free Electron Laser) open new areas in the study of ultrafast radiation-matter interaction. Using this unique source with high-brilliance femtosecond XUV-pulses, photoelectron spectroscopy of He-nanodroplets has been performed by velocity map imaging technique in the photon energy range 20-27 eV. The electron spectra show that ionization occurs not only by a direct process at photon energies above the ionization potential (IP) but also below the threshold. It was found that electron spectra below IP strongly depend on the total energy absorbed by nanodroplets and give evidence for a collective autoionization process with energy transfer between neighboring atoms.

  19. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    Directory of Open Access Journals (Sweden)

    Rebecca Boll

    2016-07-01

    Full Text Available Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse.

  20. Understanding molecular harmonic emission at relatively long intense laser pulses: Beyond the Born-Oppenheimer approximation

    CERN Document Server

    Ahmadi, H; Maghari, A

    2016-01-01

    The underlying physics behind the molecular harmonic emission in relatively long sin$^2$-like laser pulses is investigated. We numerically solved the full-dimensional electronic time-dependent Schr\\"{o}dinger equation beyond the Born-Oppenheimer approximation for simple molecular ion H$_2^+$. The occurrence and the effect of electron localization, non-adiabatic redshift and spatially asymmetric emission are evaluated to understand better complex patterns appearing in the high-order harmonic generation (HHG) spectrum. Results show that the complex patterns in the HHG spectrum originate mainly from a non-adiabatic response of the molecule to the rapidly changing laser field and also from a spatially asymmetric emission along the polarization direction. The effect of electron localization on the HHG spectrum was not observed as opposed to what is reported in the literature.

  1. Monte Carlo study of impact ionization in InSb induced by intense ultrashort terahertz pulses

    Energy Technology Data Exchange (ETDEWEB)

    Asmontas, S.; Raguotis, R.; Bumeliene, S. [Center for Physical Sciences and Technology, Vilnius (Lithuania)

    2015-09-15

    The electron impact ionization dynamic has been investigated by Monte Carlo method in n-type InSb under the action of single-cycle pulses with 1 ps duration. The threshold electric field of impact ionization has been estimated to be about 8 kV/cm at 80 K. The number of generated carriers increases rapidly with increasing of electric field strength over threshold, and at 100 kV/cm, normalized electron concentration reaches 14. It is found that impact ionization process is dominant energy loss mechanism for hot carriers with energy larger than threshold energy of impact ionization. The results of calculations are compared with available experimental data. The agreement between theoretical calculations and experimental results was obtained. (orig.)

  2. Spectral splitting of high order harmonics of ionizing gases irradiated with ultrashort intense laser pulses

    Institute of Scientific and Technical Information of China (English)

    钟方川; 胡雪原; 黎忠; 张正泉; 李儒新; 徐至展

    2002-01-01

    The spectrum of harmonics generated and propagated in ionized noble gas has been analyzed using one-dimensional wave propagation equation.The result shows that the spectral lines of harmonic become broadened and then split into two peaks when the laser intensity is strong enough to ionize the noble gas.The influnence of laser parameters and gas pressure on the splitting has been made clear.

  3. Aluminum surface layer strengthening using intense pulsed beam radiation of substrate film system

    Science.gov (United States)

    Klopotov, A. A.; Ivanov, Yu F.; Vlasov, V. A.; Kondratyuk, A. A.; Teresov, A. D.; Shugurov, V. V.; Petrikova, E. A.

    2016-11-01

    The paper presents formation of the substrate film system (Zr-Ti-Cu/Al) by electric arc spraying of cathode having the appropriate composition. It is shown that the intense beam radiation of the substrate film system is accompanied by formation of the multi-phase state, the microhardness of which exceeds the one of pure A7 aluminum by ≈4.5 times.

  4. Intense Pulsed light Versus 1,064 Long-Pulsed Neodymium: Yttrium–Aluminum– Garnet Laser in the Treatment of Facial Acne Vulgaris

    Science.gov (United States)

    Mohamed, Essam Elden; Tawfik, Khaled

    2016-01-01

    Introduction Laser and light-based procedures provide a good and safe modality for treatment of active acne lesions when used properly. Aim To compare the clinical efficacy of intense pulsed light (IPL) versus 1,064 long-pulsed Neodymium:Yttrium–Aluminum– Garnet (Nd: YAG) in treatment of facial acne vulgaris. Materials and Methods Seventy four patients recruited between June 2013 and August 2014 was enrolled in this controlled, single-blind, split-face clinical trial. All participants received 3 sessions of IPL on the right side of the face and 1,064-nm Nd:YAG on the left side of the face at 4-weeks intervals. Final assessment was made by comparison of the changes in the count of inflammatory acne lesions (inflammatory papules, pustules, nodules and cyst) and non-inflammatory acne lesions (Comedones) and the acne severity score between both therapies, based on standardized photography. Results At the final visit, the inflammatory acne lesions were reduced on the IPL and 1,064-nm Nd:YAG treated sides by 67.1% and 70.2% respectively (p0.05 for each). For both therapies, there was significant difference in the improvement on inflammatory acne lesions in comparison to non-inflammatory lesions (p0.05 for each). Conclusion Both IPL and 1,064-nm Nd:YAG laser are effective in treatment of inflammatory facial acne vulgaris. There is no significant difference between the effects of both therapies on facial acne lesions. PMID:27630934

  5. Experimental results of beryllium exposed to intense high energy proton beam pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ammigan, K. [Fermilab; Hartsell, B. [Fermilab; Hurh, P. [Fermilab; Zwaska, R. [Fermilab; Butcher, M. [CERN; Guinchard, M. [CERN; Calviani, M. [CERN; Losito, R. [CERN; Roberts, S. [Culham Lab; Kuksenko, V. [Oxford U.; Atherton, A. [Rutherford; Caretta, O. [Rutherford; Davenne, T. [Rutherford; Densham, C. [Rutherford; Fitton, M. [Rutherford; Loveridge, J. [Rutherford; O' Dell, J. [Rutherford

    2017-02-10

    Beryllium is extensively used in various accelerator beam lines and target facilities as a material for beam windows, and to a lesser extent, as secondary particle production targets. With increasing beam intensities of future accelerator facilities, it is critical to understand the response of beryllium under extreme conditions to reliably operate these components as well as avoid compromising particle production efficiency by limiting beam parameters. As a result, an exploratory experiment at CERN’s HiRadMat facility was carried out to take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several beryllium grades. The test matrix consisted of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. This paper outlines the experimental measurements, as well as findings from Post-Irradiation-Examination (PIE) work where different imaging techniques were used to analyze and compare surface evolution and microstructural response of the test matrix specimens.

  6. ARTICLES: Propagation of an intensity-modulated laser beam through a pulsed CO2 amplifier

    Science.gov (United States)

    Fedorov, S. V.; Yur'ev, M. S.

    1987-01-01

    A theoretical study was made (by a self-consistent solution of the equations of vibrational kinetics, hydrodynamics, and quasioptics) of the influence of self-interaction of laser radiation on the transmission of a beam through a CO2 amplifier. It was found that for times exceeding the time for collisional decay of the upper active level the radiation wavefront becomes unstable in the presence of small-scale perturbations of the transverse structure of the beam. It was shown that the harmful influence of the self-interaction on the divergence can be weakened by raising the intensity of the incident beam and the gain of the amplifier.

  7. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU)

    Science.gov (United States)

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2016-09-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in clinics. Besides the thermal ablation, tissue disintegration is also possible because of the interaction between the distorted HIFU bursts and either bubble cloud or boiling bubble. Hydrodynamic cavitation is another type of cavitation and has been employed widely in industry, but its role in mechanical erosion to tissue is not clearly known. In this study, the bubble dynamics immediately after the termination of HIFU exposure in the transparent gel phantom was captured by high-speed photography, from which the bubble displacement towards the transducer and the changes of bubble size was quantitatively determined. The characteristics of hydrodynamic cavitation due to the release of the acoustic radiation force and relaxation of compressed surrounding medium were found to associate with the number of pulses delivered and HIFU parameters (i.e. pulse duration and pulse repetition frequency). Because of the initial big bubble (~1 mm), large bubble expansion (up to 1.76 folds), and quick bubble motion (up to ~1 m s-1) hydrodynamic cavitation is significant after HIFU exposure and may lead to mechanical erosion. The shielding effect of residual tiny bubbles would reduce the acoustic energy delivered to the pre-existing bubble at the focus and, subsequently, the hydrodynamic cavitation effect. Tadpole shape of mechanical erosion in ex vivo porcine kidney samples was similar to the contour of bubble dynamics in the gel. Liquefied tissue was observed to emit towards the transducer through the punctured tissue after HIFU exposure in the sonography. In summary, the release of HIFU exposure-induced hydrodynamic cavitation produces significant bubble expansion and motion, which may be another important mechanism of tissue erosion. Understanding its mechanism and optimizing the outcome would broaden and enhance HIFU applications.

  8. Condensation of ablation plumes in the irradiation of metals by high-intensity nanosecond laser pulses at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kozadaev, K V [A.N. Sevchenko Institute of Applied Physical Problems, Belarusian State University, Minsk (Belarus)

    2016-01-31

    The Anisimov–Luk'yanchuk model is adapted for describing the condensation of vapour-plasma plumes produced in the irradiation of metal targets by high-intensity (10{sup 8} – 10{sup 10} W cm{sup -2}) nanosecond (10 – 100 ns) pulses at atmospheric pressure. The resultant data suggest that the initial stages of the development of metal ablation plumes correspond with a high degree of accuracy to the Zel'dovich–Raizer theory of dynamic condensation; however, at the stage of the ablation plume decay, the liquid-droplet phase is formed primarily by coalescence of 'nuclei'. (interaction of laser radiation with matter. laser plasma)

  9. Effects and Mechanisms of Low-Intensity Pulsed Ultrasound for Chronic Prostatitis and Chronic Pelvic Pain Syndrome.

    Science.gov (United States)

    Lin, Guiting; Reed-Maldonado, Amanda B; Lin, Maofan; Xin, Zhongcheng; Lue, Tom F

    2016-07-01

    Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is one of the most common urologic diseases, and no curative treatments have been identified. Low-intensity pulsed ultrasound (LIPUS) has been successfully used in promoting tissue healing, inhibiting inflammation and pain, differentiating stem cells, and stimulating nerve regeneration/muscle regeneration, as well as enhancing angiogenesis. Very recently, LIPUS has been proven an effective approach for CP/CPPS. This review summarizes the possible mechanisms responsible for the therapeutic effect of LIPUS for CP/CPPS. To search publications relevant to the topics of this review, the search engine for life sciences of Entrez was used. We reviewed the available evidence from 1954 through 2015 concerning LIPUS for CP/CPPS. According to the literature, both transrectal and transperineal approaches of LIPUS are effective for CP/CPPS.

  10. Effects and Mechanisms of Low-Intensity Pulsed Ultrasound for Chronic Prostatitis and Chronic Pelvic Pain Syndrome

    Directory of Open Access Journals (Sweden)

    Guiting Lin

    2016-07-01

    Full Text Available Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS is one of the most common urologic diseases, and no curative treatments have been identified. Low-intensity pulsed ultrasound (LIPUS has been successfully used in promoting tissue healing, inhibiting inflammation and pain, differentiating stem cells, and stimulating nerve regeneration/muscle regeneration, as well as enhancing angiogenesis. Very recently, LIPUS has been proven an effective approach for CP/CPPS. This review summarizes the possible mechanisms responsible for the therapeutic effect of LIPUS for CP/CPPS. To search publications relevant to the topics of this review, the search engine for life sciences of Entrez was used. We reviewed the available evidence from 1954 through 2015 concerning LIPUS for CP/CPPS. According to the literature, both transrectal and transperineal approaches of LIPUS are effective for CP/CPPS.

  11. 11. Bactericidal Activity of Photocatalytic TiO2 Excited by Low Intensity Pulsed Ultrasound (LIPUS): An In Vitro Study.

    Science.gov (United States)

    Noguchi, Chieko; Koseki, Hironobu

    2016-08-01

    Photocatalysis with anatase-type titanium dioxide (TiO2) under ultraviolet has a well-recognized bactericidal effect. The purpose of the present study was to evaluate the photocatalytic bactericidal effects of TiO2 on Staphylococcus epidermidis (ATCC35984) caused by Low Intensity Pulsed Ultrasound (LIPUS) associated with bio-implant-related infections. The photocatalytic properties of the TiO2 films were confirmed by the degradation of an aqueous solution of methylene blue. The disks were seeded with cultured Staphylococcus epidermidis and irradiated by LIPUS. The bactericidal effect of the TiO2 films was evaluated by counting the surviving colonies. The viability of the bacteria on the photocatalytic TiO2 film coated titanium was suppressed significantly to 63% after 2 hours of LIPUS treatment (P TiO2 under LIPUS is useful for sterilizing the contaminated and infected surfaces of metal bio-implants.

  12. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    CERN Document Server

    Bertarelli, A; Boccone, V; Carra, F; Cerutti, F; Charitonidis, N; Charrondiere, C; Dallocchio, A; Fernandez Carmona, P; Francon, P; Gentini, L; Guinchard, M; Mariani, N; Masi, A; Marques dos Santos, S D; Moyret, P; Peroni, L; Redaelli, S; Scapin, M

    2013-01-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser ...

  13. Deposition of Diamond-Like carbon Films by High-Intensity Pulsed Ion Beam Ablation at Various Substrate Temperatures

    Institute of Scientific and Technical Information of China (English)

    梅显秀; 刘振民; 马腾才; 董闯

    2003-01-01

    Diamond-like carbon (DLC) films have been deposited on to Si substrates at substrate temperatures from 25℃to 400 ℃ by a high-intensity pulsed-ion-beam (HIPIB) ablation deposition technique. The formation of DLC is confirmed by Raman spectroscopy. According to an x-ray photoelectron spectroscopy analysis, the concentration of spa carbon in the films is about 40% when the substrate temperature is below 300 ℃. With increasing substrate temperature from 25 ℃ to 400 ℃, the concentration of sp3 carbon decreases from 43% to 8%. In other words,sp3 carbon is graphitized into sp2 carbon when the substrate temperature is above 300 ℃. The results of xray diffraction and atomic force microscopy show that, with increasing the substrate temperature, the surface roughness and the friction coefficient increase, and the microhardness and the residual stress of the films decrease.

  14. Broadband colored-crescent generation in a single {beta}-barium-borate crystal by intense femtosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Fan, Y. X.; Zhu, H.; Yan, Z. D.; Zhu, S. N.; Wang, Z. L. [Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, 210093 Nanjing (China); Zeng, H. [State Key Laboratory of Precision Spectroscopy, East China Normal University, 200062 Shanghai (China); Wang, H.-T. [Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, 210093 Nanjing (China); School of Physics, Nankai University, 300071 Tianjin (China)

    2011-12-15

    A visible colored crescent with a bandwidth broader than 220 nm is observed experimentally by loosely focused femtosecond pulses in a bulk quadratic nonlinear crystal ({beta}-BBO crystal) at certain incident angles. Through the analysis based on a simple collinear phase-matching model, we suggest that the colored crescent might be the coexistence of spontaneous parametric down-conversions (SPDCs) in the infrared range and the corresponding efficient second-order harmonic generations (SHGs) that occur in a wide spectrum. We further provide a possible mechanism for the SHG process in which the phase-mismatching angles of the frequency doubling of SPDCs in {beta}-BBO crystal are assumed to be compensated by the strong diffraction effect during the self-focusing process of the generated intense SPDC signals.

  15. Direct detection of delayed high energy electrons from the 181Ta target irradiated by a moderate intensity femtosecond laser pulse

    Science.gov (United States)

    Savel’ev, A.; Chefonov, O.; Ovchinnikov, A.; Agranat, M.; Spohr, K. M.

    2017-03-01

    We depict an experimental study of delayed fast, negatively charged particles from femtosecond laser-plasma interaction at an intensity of I ∼ 1017 W cm‑2. Plates of 2 mm thickness made of 181Ta (∼100% abundance) and natural W were used as targets. We distinguished certain delayed events due to detection of negative H‑, C‑ and O‑ ions. However, most events which were delayed by 0.5–5 μs with respect to the instantaneous plasma formation caused by the laser pulses, were identified as electrons with energies of 3–7 keV. A comparative analysis between the tantalum and tungsten spectra was undertaken. This revealed a close similarity between the measured spectrum for tantalum and the predicted spectrum for electrons arising from to the internal conversion decay of the 6.237 keV nuclear isomeric state in 181Ta.

  16. Intra-pulse transition between ion acceleration mechanisms in intense laser-foil interactions

    Science.gov (United States)

    Padda, Hersimerjit; King, Martin; Gray, Ross; Powell, Haydn; Gonzalez-Izquierdo, Bruno; Stockhausen, Luca; Wilson, Robbie; Carroll, David; Dance, Rachel; MacLellan, David; Yuan, Xiaohui; Butler, Nick; Capdessus, Remi; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-10-01

    Laser-driven sheath acceleration of ions has been widely studied and the recent move to ultra thin foil interactions enables promising new acceleration mechanisms. However, the acceleration dynamics in this regime are complex and over the course of the laser-foil interaction multiple ion acceleration mechanisms can occur, resulting in the dominant mechanism changing throughout the interaction. Measuring the spatial intensity distribution of the accelerated proton beam we investigate the transition from radiation pressure acceleration to transparency-driven processes. Using PIC simulations, the radiation pressure drives an increased expansion of the target ions, which results in a radial deflection of low MeV protons to form an annular distribution. By varying the thickness of the target, the opening angle of the ring is shown to be correlated to the point in time that transparency occurs and is maximised at the peak of the laser intensity profile. Measurements of the ring size as a function of target thickness are found to be in good agreement with the simulation results.

  17. Light dark matter candidates in intense laser pulses II: the relevance of the spin degrees of freedom

    CERN Document Server

    Villalba-Chávez, Selym

    2015-01-01

    Optical searches assisted by the field of a laser pulse might allow for exploring a variety of not yet detected dark matter candidates such as hidden-photons and scalar minicharged particles. These hypothetical degrees of freedom may be understood as a natural consequence of extensions of the Standard Model incorporating a hidden $\\rm U(1)$-gauge sector. In this paper, we study the effects induced by both candidates on the propagation of a probe electromagnetic waves in the vacuum polarized by a long laser pulse of moderate intensity, this way complementing our previous study [JHEP \\textbf{06}, $177$ ($2015$)]. We describe how the absence of a spin in the scalar charged carriers modifies the photon-paraphoton oscillations as compared with a fermionic minicharge model. In particular, we find that the regime close to their lowest threshold mass might provide the most stringent upper limit for minicharged scalars. The pure-laser based experiment investigated here could allow 23for excluding a sector in the param...

  18. Biological response in vitro of skeletal muscle cells treated with different intensity continuous and pulsed ultrasound fields

    Energy Technology Data Exchange (ETDEWEB)

    Abrunhosa, Viviane M; Costa-Felix, Rodrigo P B [Laboratory of Ultrasound, Directory of Scientific and Industrial Metrology (DIMCI), National Institute of Metrology, Standardization, and Industrial Quality (Inmetro), Av. Nossa Sra das Gracas, 50 Predio 1, Duque de Caxias, RJ, ZIP 25250-020 (Brazil); Mermelstein, Claudia S; Costa, Manoel L, E-mail: rpfelix@inmetro.gov.br [Laboratory of Muscle Differentiation and Cytoskeleton, Biomedical Sciences Institute, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, RJ, ZIP 21949-590 (Brazil)

    2011-02-01

    Therapeutic ultrasound has been used in physiotherapy to accelerate tissue healing. Although the ultrasonic wave is widely used in clinical practice, not much is known about the biological effects of ultrasound on cells and tissues. This study aims to evaluate the biological response of ultrasound in primary cultures of chick myogenic cells. To ensure the metrological reliability of whole measurement process, the ultrasound equipment was calibrated in accordance with IEC 61689:2007. The skeletal muscle cells were divided in four samples. One sample was used as a control group and the others were submitted to different time and intensity and operation mode of ultrasound: 1) 0.5 W/cm{sup 2} continuous for 5 minutes, 2) 0.5 W/cm{sup 2} pulsed for 5 minutes, 3) 1.0 W/cm{sup 2} pulsed for 10 minutes. The samples were analyzed with phase contrast optical microscopy before and after the treatment. The results showed alignment of myogenic cells in the sample treated with 0.5 W/cm{sup 2} continuous during 5 minutes when compared with the control group and the other samples. This study is a first step towards a metrological and scientific based protocol to cells and tissues treatment under different ultrasound field exposures.

  19. Research on ZrO2 Thermal Barrier Coatings Modified by High-Intensity Pulsed Ion Beam

    Institute of Scientific and Technical Information of China (English)

    WV Di; LIU Chen; ZHU Xiao-Peng; LEI Ming-Kai

    2008-01-01

    @@ We report a modification method for ZrO2 thermal barrier coatings (TBCs) by high-intensity pulsed ion beam (HIPIB) irradiation. Based on the temporal and spatial distribution models of the ion beam density detected by Faraday cup in the chamber and the ions accelerating voltage, the energy deposition of the beam ions in ZrO2 is calculated by Monte Carlo method. Taking this time-dependent nonlinear deposited energy as the source term of two-dimensional thermal conduction equation, we obtain the temporal and spatial ablation process of ZrO2 thermal barrier coatings during a pulse time. The top-layer TBC material in thickness of about 0.2μm is ablated by vaporization and the coating in thickness of 1 μm is melted after one shot at the ion current density of 200 A/cm2. This calculation is in reasonable agreement with those measured by HIPIB irradiation experiments.The melted top coat becoming a dense modification layer due to HIPIB irradiation seals the gaps among ZrO2crystal clusters, and hence barrels the direct tunnel of oxygen.

  20. Ultrafast Dynamics of a Nucleobase Analogue Illuminated by a Short Intense X-ray Free Electron Laser Pulse

    Science.gov (United States)

    Nagaya, K.; Motomura, K.; Kukk, E.; Fukuzawa, H.; Wada, S.; Tachibana, T.; Ito, Y.; Mondal, S.; Sakai, T.; Matsunami, K.; Koga, R.; Ohmura, S.; Takahashi, Y.; Kanno, M.; Rudenko, A.; Nicolas, C.; Liu, X.-J.; Zhang, Y.; Chen, J.; Anand, M.; Jiang, Y. H.; Kim, D.-E.; Tono, K.; Yabashi, M.; Kono, H.; Miron, C.; Yao, M.; Ueda, K.

    2016-04-01

    Understanding x-ray radiation damage is a crucial issue for both medical applications of x rays and x-ray free-electron-laser (XFEL) science aimed at molecular imaging. Decrypting the charge and fragmentation dynamics of nucleobases, the smallest units of a macro-biomolecule, contributes to a bottom-up understanding of the damage via cascades of phenomena following x-ray exposure. We investigate experimentally and by numerical simulations the ultrafast radiation damage induced on a nucleobase analogue (5-iodouracil) by an ultrashort (10 fs) high-intensity radiation pulse generated by XFEL at SPring-8 Angstrom Compact free electron Laser (SACLA). The present study elucidates a plausible underlying radiosensitizing mechanism of 5-iodouracil. This mechanism is independent of the exact composition of 5-iodouracil and thus relevant to other such radiosensitizers. Furthermore, we found that despite a rapid increase of the net molecular charge in the presence of iodine, and of the ultrafast release of hydrogen, the other atoms are almost frozen within the 10-fs duration of the exposure. This validates single-shot molecular imaging as a consistent approach, provided the radiation pulse used is brief enough.

  1. Theory of two-electron atoms interacting with intense laser pulses: the one-photon ionization of He and the photodetachment of H{sup -}

    Energy Technology Data Exchange (ETDEWEB)

    Abrashkevich, A.G.; Shapiro, M. [Weizmann Inst. of Science, Rehovoth (Israel). Dept. of Chemical Physics and Structural Chemistry

    1996-02-28

    Theory of one-photon ionization of atoms by intense light pulses is developed. The infinite set of coupled first-order differential equations, derived from the time-dependent Schroedinger equation, is reduced to a single integro-differential equation. This equation is solved both numerically and in closed form by invoking the slowly varying continuum approximation (SVCA). Comparisons of the SVCA with the numerical solutions are used to delimit the range of validity of this approximation. The time-evolution of wavepackets composed of scattering states prepared by short laser pulses is studied as a function of the pulse intensity. We predict a transient `freezing` of the wavepacket during its build-up phase. Temporal saturation and power broadening of the wavepacket by the strong field are also studied. Our method is used to performing exact numerical calculations of the real-time strong-pulse one-photon ionization of He and the photodetachment of H{sup -}. (author).

  2. Generation of heavy ion beams using high-intensity short pulse lasers

    Science.gov (United States)

    Petrov, George; McGuffey, Chris; Thomas, Alec; Krushelnick, Karl; Beg, Farhat

    2016-10-01

    A theoretical study of ion acceleration from high-Z material irradiated by intense sub-picosecond lasers is presented. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. At least four technical hurdles have been identified: low charge-to-mass ratio, limited number of ions amenable to acceleration, delayed acceleration and poor energy coupling due to high reflectivity of the plasma. Using two dimensional particle-in-cell (PIC) simulations, we observed transitions from Radiation Pressure Acceleration (RPA) to the Breakout Afterburner regime (BoA) and to Target Normal Sheath Acceleration (TNSA) akin to light ions. The numerical simulations predict gold ions beams with high directionality (high fluxes (>1011 ions/sr) and energy (>10 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  3. Pondermotive acceleration of electrons to GeV energies by a tightly focused ultra-short ultra-intense laser pulse

    Science.gov (United States)

    Tian, Youwei; Yu, Wei; Lu, Peixiang; He, Feng; Xu, Han

    2005-12-01

    Laser-driven pondermotive acceleration of electrons in vacuum has been considered using computer simulations. It is demonstrated that a low-energy free electron can be violently accelerated to final kinetic energy of GeV by a tightly focused ultra-short ultra-intense laser pulse. Suitable conditions that are crucial for this phenomenon to occur have been investigated. It is shown that selection of appropriate initial conditions like relative time delay between electron and the laser pulse, electron's incident angle and momentum, laser pulse duration and its focal spot size play important roles in the efficient acceleration scheme.

  4. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation.

    Science.gov (United States)

    Zhou, Xuan; Castro, Nathan J; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-09-06

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm(2) intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application.

  5. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertarelli, A., E-mail: alessandro.bertarelli@cern.ch [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Berthome, E. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Boccone, V. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Carra, F. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Cerutti, F. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Charitonidis, N. [CERN, Engineering Department, Machines and Experimental Facilities Group (EN-MEF), CH-1211 Geneva 23 (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Charrondiere, C. [CERN, Engineering Department, Industrial Controls and Engineering Group (EN-ICE), CH-1211 Geneva 23 (Switzerland); Dallocchio, A.; Fernandez Carmona, P.; Francon, P.; Gentini, L.; Guinchard, M.; Mariani, N. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Masi, A. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Marques dos Santos, S.D.; Moyret, P. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Peroni, L. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Redaelli, S. [CERN, Beams Department, Accelerators and Beams Physics Group (BE-ABP), CH-1211 Geneva 23 (Switzerland); Scapin, M. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-08-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser Doppler vibrometer and high-speed camera). The method presented in this paper, combining experimental measurements with numerical simulations, may find applications to assess materials under very high strain rates and temperatures in domains well beyond particle physics (severe accidents in fusion and fission nuclear facilities, space debris impacts, fast and intense loadings on materials and structures etc.)

  6. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation

    Science.gov (United States)

    Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  7. High-Frequency, Low-Intensity Pulsed Ultrasound Enhances Alveolar Bone Healing of Extraction Sockets in Rats: A Pilot Study.

    Science.gov (United States)

    Kang, Kyung Lhi; Kim, Eun-Cheol; Park, Joon Bong; Heo, Jung Sun; Choi, Yumi

    2016-02-01

    Most studies of the beneficial effects of low-intensity pulsed ultrasound (LIPUS) on bone healing have used frequencies between 1.0 and 1.5 MHz. However, after consideration of ultrasound wave characteristics and depth of target tissue, higher-frequency LIPUS may have been more effective on superficially positioned alveolar bone. We investigated this hypothesis by applying LIPUS (frequency, 3.0 MHz; intensity, 30 mW/cm(2)) on shaved right cheeks over alveolar bones of tooth extraction sockets in rats for 10 min/d for 2 wk after tooth extraction; the control group (left cheek of the same rats) did not receive LIPUS treatment. Compared with the control group, the LIPUS group manifested more new bone growth inside the sockets on histomorphometric analysis (maximal difference = 2.5-fold on the seventh day after extraction) and higher expressions of osteogenesis-related mRNAs and proteins than the control group did. These findings indicate that 3.0-MHz LIPUS could enhance alveolar bone formation and calcification in rats.

  8. Interaction of intense femtosecond laser pulses with KDP and DKDP crystals in the short wavelength regime

    Science.gov (United States)

    Duchateau, Guillaume; Geoffroy, Ghita; Belsky, Andrei; Fedorov, Nikita; Martin, Patrick; Guizard, Stéphane

    2013-10-01

    We investigate the electronic photo-excitation and relaxation mechanisms involved in the optical breakdown of potassium dihydrogen phosphate crystal (KH2PO4) and its deuterated form. The dynamics and spectroscopic properties of electron-hole pair formation are investigated using time-resolved measurement of the dielectric function, and luminescence spectroscopy. The non-common mechanical and electronic characteristics of these dielectric materials are revealed by the particular structure of ablation craters and also by the complex dynamics observed in the relaxation of excited carriers. This relaxation occurs in two steps, and varies with the initial carrier density and thus with the laser intensity. We show that the defect states play a key role in the excitation pathways, and also determine the relaxation stage. The latter also depends upon the initial amount of energy of the electron-hole pair after photo-excitation. A model based on kinetic equations describing the evolution of the different level populations allows us to successfully interpret and reproduce the experimental data.

  9. Argonne National Laboratory research offers clues to Alzheimer's plaques

    CERN Multimedia

    2003-01-01

    Researchers from Argonne National Laboratory and the University of Chicago have developed methods to directly observe the structure and growth of microscopic filaments that form the characteristic plaques found in the brains of those with Alzheimer's Disease (1 page).

  10. High-temperature superconductor applications development at Argonne National Laboratory

    Science.gov (United States)

    Hull, J. R.; Poeppel, R. B.

    1992-02-01

    Developments at Argonne National Laboratory of near and intermediate term applications using high-temperature superconductors are discussed. Near-term applications of liquid-nitrogen depth sensors, current leads, and magnetic bearings are discussed in detail.

  11. Argonne National Lab gets Linux network teraflop cluster

    CERN Multimedia

    2003-01-01

    "Linux NetworX, Salt Lake City, Utah, has delivered an Evolocity II (E2) Linux cluster to Argonne National Laboratory that is capable of performing more than one trillion calculations per second (1 teraFLOP). The cluster, named "Jazz" by Argonne, is designed to provide optimum performance for multiple disciplines such as chemistry, physics and reactor engineering and will be used by the entire scientific community at the Lab" (1 page).

  12. Intensity noise reduction of a high-power nonlinear femtosecond fiber amplifier based on spectral-breathing self-similar parabolic pulse evolution

    Science.gov (United States)

    Wang, Sijia; Liu, Bowen; Song, Youjian; Hu, Minglie

    2016-04-01

    We report on a simple passive scheme to reduce the intensity noise of high-power nonlinear fiber amplifiers by use of the spectral-breathing parabolic evolution of the pulse amplification with an optimized negative initial chirp. In this way, the influences of amplified spontaneous emission (ASE) on the amplifier intensity noise can be efficiently suppressed, owing to the lower overall pulse chirp, shorter spectral broadening distance, as well as the asymptotic attractive nature of self-similar pulse amplification. Systematic characterizations of the relative intensity noise (RIN) of a free-running nonlinear Yb-doped fiber amplifier are performed over a series of initial pulse parameters. Experiments show that the measured amplifier RIN increases respect to the decreased input pulse energy, due to the increased amount of ASE noise. For pulse amplification with a proper negative initial chirp, the increase of RIN is found to be smaller than with a positive initial chirp, confirming the ASE noise tolerance of the proposed spectral-breathing parabolic amplification scheme. At the maximum output average power of 27W (25-dB amplification gain), the incorporation of an optimum negative initial chirp (-0.84 chirp parameter) leads to a considerable amplifier root-mean-square (rms) RIN reduction of ~20.5% (integrated from 10 Hz to 10 MHz Fourier frequency). The minimum amplifier rms RIN of 0.025% (integrated from 1 kHz to 5 MHz Fourier frequency) is obtained along with the transform-limited compressed pulse duration of 55fs. To our knowledge, the demonstrated intensity noise performance is the lowest RIN level measured from highpower free-running femtosecond fiber amplifiers.

  13. Argonne National Laboratory Site Environmental Report for Calendar Year 2013

    Energy Technology Data Exchange (ETDEWEB)

    Davis, T. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Gomez, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Moos, L. P. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-09-02

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2013. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with environmental management, sustainability efforts, environmental corrective actions, and habitat restoration. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, Argonne, and other) and are compared with applicable standards intended to protect human health and the environment. A U.S. Department of Energy (DOE) dose calculation methodology, based on International Commission on Radiological Protection (ICRP) recommendations and the U.S. Environmental Protection Agency’s (EPA) CAP-88 Version 3 computer code, was used in preparing this report.

  14. Argonne National Laboratory Site Environmental report for calendar year 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; Davis, T. M.; Moos, L. P.

    2010-08-04

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2009. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy (DOE) dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's (EPA) CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  15. Argonne National Laboratory site environmental report for calendar year 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; ESH/QA Oversight

    2007-09-13

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2006. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  16. Argonne National Laboratory site enviromental report for calendar year 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; Davis, T. M.; Moos, L. P.

    2009-09-02

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2008. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  17. Argonne National Laboratory site environmental report for calendar year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; Davis, T. M.; Moos, L. P.; ESH/QA Oversight

    2008-09-09

    This report discusses the status and the accomplishments of the environmental protection program at Argonne National Laboratory for calendar year 2007. The status of Argonne environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of Argonne operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the Argonne site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and Argonne effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 Version 3 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  18. High-intensity, high-contrast laser pulses generated from the fully diode-pumped Yb:glass laser system POLARIS.

    Science.gov (United States)

    Hornung, Marco; Keppler, Sebastian; Bödefeld, Ragnar; Kessler, Alexander; Liebetrau, Hartmut; Körner, Jörg; Hellwing, Marco; Schorcht, Frank; Jäckel, Oliver; Sävert, Alexander; Polz, Jens; Arunachalam, Ajay Kawshik; Hein, Joachim; Kaluza, Malte C

    2013-03-01

    We report on the first generation of high-contrast, 164 fs duration pulses from the laser system POLARIS reaching focused peak intensities in excess of 2×10(20) W/cm2. To our knowledge, this is the highest peak intensity reported so far that has been achieved with a diode-pumped, solid-state laser. Several passive contrast enhancement techniques have been specially developed and implemented, achieving a relative prepulse intensity smaller than 10(-8) at t=-30 ps before the main pulse. Furthermore a closed-loop adaptive-optics system has been installed. Together with angular chirp compensation, this method has led to a significant reduction of the focal spot size and an increase of the peak intensity.

  19. MR Guided Pulsed High Intensity Focused Ultrasound Enhancement of Gene Therapy Combined with Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    Science.gov (United States)

    2012-09-01

    the observed enhancement are not well understood. It is thought mainly due to the nonthermal effects of ultrasound —mechanical streaming and cavitation ...AD ________________ Award Number: W81XWH-08-1-0469 TITLE: MR Guided Pulsed High Intensity Focused Ultrasound Enhancement of (Enter title of award...Intensity Focused Ultrasound Enhancement of 5b. GRANT NUMBER Gene Therapy Combined with Androgen Deprivation and Radiotherapy W81XWH-08-1-0469 for Prostate

  20. Concurrent Chemotherapy and Pulsed High-Intensity Focused Ultrasound Therapy for the Treatment of Unresectable Pancreatic Cancer: Initial Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Young; Choi, Byung Ihn; Ryu, Ji Kon; Kim, Yong Tae; Kim, Se Hyung; Han, Joon Koo [Seoul National University Hospital, Seoul (Korea, Republic of); Hwang, Joo Ha [University of Washington Medical Center, Seattle (United States)

    2011-04-15

    This study was performed to evaluate the potential clinical value of concurrent chemotherapy and pulsed high intensity focused ultrasound (HIFU) therapy (CCHT), as well as the safety of pulsed HIFU, for the treatment of unresectable pancreatic cancer. Twelve patients were treated with HIFU from October 2008 to May 2010, and three of them underwent CCHT as the main treatment (the CCHT group). The overall survival (OS), the time to tumor progression (TTP), the complications and the current performance status in the CCHT and non-CCHT groups were analyzed. Nine patients in the non-CCHT group were evaluated to determine why CCHT could not be performed more than twice. The OS of the three patients in the CCHT group was 26.0, 21.6 and 10.8 months, respectively, from the time of diagnosis. Two of them were alive at the time of preparing this manuscript with an excellent performance status, and one of them underwent a surgical resection one year after the initiation of CCHT. The TTP of the three patients in the CCHT group was 13.4, 11.5 and 9.9 months, respectively. The median OS and TTP of the non-CCHT group were 10.3 months and 4.4 months, respectively. The main reasons why the nine patients of the non-CCHT group failed to undergo CCHT more than twice were as follows: pancreatitis (n = 1), intolerance of the pain during treatment (n = 4), palliative use of HIFU for pain relief (n = 1) and a poor physical condition due to disease progression (n = 3). No major complications were encountered except one case of pancreatitis. This study shows that CCHT is a potentially effective and safe modality for the treatment of unresectable pancreatic cancer

  1. Study of intense pulse irradiation effects on silicon targets considered as ground matter for optical detectors; Etude des effets d`irradiations pulsees intenses sur des cibles de silicium considere en tant que materiau de base pour detecteurs optiques

    Energy Technology Data Exchange (ETDEWEB)

    Muller, O.

    1994-12-01

    This study aim was centered on morphological and structural alterations induced by laser irradiation on silicon targets considered as ground matter for optical detectors. First we recalled the main high light intensity effects on the condensed matter. Then we presented the experimental aspects. The experimental studies were achieved on two sample types: SiO{sub 2}/Si and Si. Two topics were studied: the defect chronology according to wavelength and pulse length, and the crystalline quality as well as the structure defects of irradiated zones by Raman spectroscopy. Finally, irradiation of Si targets by intense pulsed beams may lead to material fusion. This phenomenon is particularly easy when the material is absorbent, when the pulse is short and when the material is superficially oxidized. (MML). 204 refs., 93 figs., 21 tabs., 1 appendix.

  2. Propagation and scattering of high-intensity X-ray pulses in dense atomic gases and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Weninger, Clemens

    2015-10-15

    Nonlinear spectroscopy in the X-ray domain is a promising technique to explore the dynamics of elementary excitations in matter. X-rays provide an element specificity that allows them to target individual chemical elements, making them a great tool to study complex molecules. The recent advancement of X-ray free electron lasers (XFELs) allows to investigate non-linear processes in the X-ray domain for the first time. XFELs provide short femtosecond X-ray pulses with peak powers that exceed previous generation synchrotron X-ray sources by more than nine orders of magnitude. This thesis focuses on the theoretical description of stimulated emission processes in the X-ray regime in atomic gases. These processes form the basis for more complex schemes in molecules and provide a proof of principle for nonlinear X-ray spectroscopy. The thesis also includes results from two experimental campaigns at the Linac Coherent Light Source and presents the first experimental demonstration of stimulated X-ray Raman scattering. Focusing an X-ray free electron laser beam into an elongated neon gas target generates an intense stimulated X-ray emission beam in forward direction. If the incoming X-rays have a photon energy above the neon K edge, they can efficiently photo-ionize 1s electrons and generate short-lived core excited states. The core-excited states decay mostly via Auger decay but have a small probability to emit a spontaneous X-ray photon. The spontaneous emission emitted in forward direction can stimulate X-ray emission along the medium and generate a highly directional and intense X-ray laser pulse. If the photon energy of the incoming X-rays however is below the ionization edge in the region of the pre-edge resonance the incoming X-rays can be inelastically scattered. This spontaneous X-ray Raman scattering process has a very low probability, but the spontaneously scattered photons in the beginning of the medium can stimulate Raman scattering along the medium. The

  3. Roll-to-roll-compatible, flexible, transparent electrodes based on self-nanoembedded Cu nanowires using intense pulsed light irradiation

    Science.gov (United States)

    Zhong, Zhaoyang; Woo, Kyoohee; Kim, Inhyuk; Hwang, Hyewon; Kwon, Sin; Choi, Young-Man; Lee, Youngu; Lee, Taik-Min; Kim, Kwangyoung; Moon, Jooho

    2016-04-01

    Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs.Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced

  4. Argonne National Laboratory institutional plan FY 2001--FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, S.D.

    2000-12-07

    This Institutional Plan describes what Argonne management regards as the optimal future development of Laboratory activities. The document outlines the development of both research programs and support operations in the context of the nation's R and D priorities, the missions of the Department of Energy (DOE) and Argonne, and expected resource constraints. The Draft Institutional Plan is the product of many discussions between DOE and Argonne program managers, and it also reflects programmatic priorities developed during Argonne's summer strategic planning process. That process serves additionally to identify new areas of strategic value to DOE and Argonne, to which Laboratory Directed Research and Development funds may be applied. The Draft Plan is provided to the Department before Argonne's On-Site Review. Issuance of the final Institutional Plan in the fall, after further comment and discussion, marks the culmination of the Laboratory's annual planning cycle. Chapter II of this Institutional Plan describes Argonne's missions and roles within the DOE laboratory system, its underlying core competencies in science and technology, and six broad planning objectives whose achievement is considered critical to the future of the Laboratory. Chapter III presents the Laboratory's ''Science and Technology Strategic Plan,'' which summarizes key features of the external environment, presents Argonne's vision, and describes how Argonne's strategic goals and objectives support DOE's four business lines. The balance of Chapter III comprises strategic plans for 23 areas of science and technology at Argonne, grouped according to the four DOE business lines. The Laboratory's 14 major initiatives, presented in Chapter IV, propose important advances in key areas of fundamental science and technology development. The ''Operations and Infrastructure Strategic Plan'' in Chapter V includes

  5. Paring and intense pulsed light versus paring alone for recalcitrant hand and foot warts: a randomized clinical trial with blinded outcome evaluation

    DEFF Research Database (Denmark)

    Togsverd-Bo, Katrine; Gluud, Christian; Winkel, Per

    2010-01-01

    Treatment of recalcitrant viral warts remains a therapeutic challenge. Intense pulsed light (IPL) has been suggested effective to clear wart tissue. The objective was in a randomized controlled trial to assess the efficacy of paring followed by IPL versus paring alone for recalcitrant hand and foot...

  6. Effects of Low-intensity Pulsed Ultrasound and Cryotherapy on Recovery of Joint Function and C-reactive Protein Levels in Patients after Total Knee Replacement Surgery.

    Science.gov (United States)

    Kang, Jeong Il; Kim, Yong-Nam; Choi, Hyun

    2014-07-01

    [Purpose] We investigated the effect of low-intensity pulsed ultrasound and cryotherapy on joint function recovery and C-reactive protein (CRP) levels of patients with total knee replacement. [Subjects] Forty-six patients with total knee replacement were recruited and allocated to either low-intensity pulsed ultrasound therapy (n=15), cryotherapy (n=15), or a combination of both (n=16). Therapy was administered once a day, 5 times a week for 3 weeks. To determine functional joint recovery and reduction of inflammation, changes in the Korean Western Ontario and McMaster Universities Arthritis Index (K-WOMAC), range of motion (ROM), and CRP were assessed postsurgically and four times over a 3-week period. Using one-way analysis of variance (ANOVA), homogeneity tests were performed based on participants' general characteristics. To recognize changes in time-variant K-WOMAC, ROM, and CRP values between groups, repeated measures ANOVA was performed, and Tukey's test was used for post-test analysis. Values at α=0.05 were considered significant. [Results] We found a difference between groups and times, and the group that received the combined therapies showed greater changes in outcomes than the group that received low-intensity pulsed ultrasound therapy alone. [Conclusion] Applying both low-intensity pulsed ultrasound and cryotherapy can relieve inflammation and enhance joint function in patients who undergo total knee replacement.

  7. Generation of intense 10-ps, 193-nm pulses using simple distributed feedback dye lasers and an ArF(*) amplifier.

    Science.gov (United States)

    Hatten, D L; Cui, Y; Iii, W T; Mikes, T; Goldhar, J

    1992-11-20

    A pair of holographic distributed feedback dye lasers is used to generate 10-ps pulses at two selected wavelengths that are mixed in a BBO crystal to produce a pulse ~ 10 ps in duration at 193 nm. This seed pulse is subsequently amplified in an ArF(*) excimer laser to an energy of 10-15 mJ with <40 microJ in amplified spontaneous emission. The pulses are nearly transform limited and diffraction limited.

  8. Bilateral skin conductance, finger pulse volume, and EEG orienting response to tones of differing intensities in chronic schizophrenics and controls.

    Science.gov (United States)

    Bernstein, A S; Taylor, K W; Starkey, P; Juni, S; Lubowsky, J; Paley, H

    1981-08-01

    Skin conductance (SCOR), finger pulse volume (FPV-OR), and EEG orienting responses were examined to repeated tones of either 60- or 90-dB intensity in chronic schizophrenics, nonschizophrenic psychiatric patients, and normals. SCOR reaffirmed previous findings with schizophrenics displaying significantly more frequent nonresponsiveness to 60-dB tones, and faster habituation among patients who did respond. Increased stimulus intensity decreased the incidence of nonresponsiveness to the level of controls, but did not alter the rapid habituation of schizophrenics. These results generalized fully to the FPV-OR, despite the independence demonstrated between SCOR and FPV-OR, but did not generalize to EEG response. There were no significant differences between schizophrenics and controls in EEG reactivity-only in background activity, particularly in a slowing of dominant alpha frequency in schizophrenics. Schizophrenics displayed the same degree of bilateral asymmetry as controls in both SCOR and EEG; there was no evidence of a specifically schizophrenic asymmetry. Schizophrenics nonresponsive in either SCOR or FPV-OR showed significantly greater Conceptual Disorganization and Emotional Withdrawal, and significantly less Excitement than responders in blind clinical ratings on the Brief Psychiatric Rating Scale. None of the findings could be attributed to the effect of neuroleptics. Comparisons between medicated and nonmedicated patients showed no drug-associated effect on any OR variable under study. Drug effects were apparent only in skin conductance level (SCL). Neuroleptics were associated with a significant reduction in SCL in both schizophrenics and nonschizophrenics, together with a flattening of an otherwise incrementing SCL among schizophrenics.

  9. Efficacy of pulsed low-intensity electric neuromuscular stimulation in reducing pain and disability in patients with myofascial syndrome.

    Science.gov (United States)

    Iodice, P; Lessiani, G; Franzone, G; Pezzulo, G

    2016-01-01

    Myofascial pain syndrome (MPS) is characterized by chronic pain in multiple myofascial trigger points and fascial constrictions. In recent years, the scientific literature has recognized the need to include the patient with MPS in a multidimensional rehabilitation project. At the moment, the most widely recognized therapeutic methods for the treatment of myofascial syndrome include the stretch and spray pressure massage. Microcurrent electric neuromuscular stimulation was proposed in pain management for its effects on normalizing bioelectricity of cells and for its sub-sensory application. In this study, we tested the efficacy of low-intensity pulsed electric neuromuscular stimulus (PENS) on pain in patients with MPS of cervical spine muscles. We carried out a prospective-analytic longitudinal study at an outpatient clinic during two weeks. Forty subjects (mean age 42±13 years) were divided into two groups: treatment (TrGr, n=20) and control group (CtrlGr, n=20). Visual-analog scale (VAS) values, concerning the spontaneous and movement-related pain in the cervical-dorsal region at baseline (T0) and at the end of the study (T1), showed a reduction from 7 to 3.81 (p pain threshold at T0 was 2.1 vs 4.2 at T1 (p pain and on the restoration of tissue homeostasis. It seems to affect the transmission of pain through the stimulation of A-beta fibers. The above results show that low-intensity PENS can be considered as an effective treatment to reduce pain and disability in patients with MPS.

  10. Temporal and spatial profiles of emission intensities in atmospheric pressure helium plasma jet driven by microsecond pulse: Experiment and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Zhang, Cheng; Yan, Ping; Shao, Tao, E-mail: st@mail.iee.ac.cn [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Shen, Yuan [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Zhu, Weidong [Department of Applied Science and Technology, Saint Peter' s University, Jersey City, New Jersey 07306 (United States); Babaeva, Natalia Yu.; Naidis, George V. [Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow 125412 (Russian Federation)

    2015-09-28

    A needle-circular electrode structure helium plasma jet driven by microsecond pulsed power is studied. Spatially resolved emission results show that the emission intensity of He(3{sup 3}S{sub 1}) line decreases monotonically along the axial direction, while those of N{sub 2}(C{sup 3}Π{sub u}), N{sub 2}{sup +}(B{sup 2}∑{sup +}{sub u}), and O(3p{sup 5}P) reach their maxima at 3 cm, 2.6 cm, and 1.4 cm, respectively. The plasma plume of the four species shows different characteristics: The N{sub 2} emission plume travels at a fast speed along the entire plasma jet; the N{sub 2}{sup +} emission plume is composed of a bright head and relatively weak tail and travels a shorter distance than the N{sub 2} emission plume; the He emission plume travels at a slower speed for only a very short distance; propagation of the O emission plume is not observed. Results of calculation of radiation fluxes emitted by positive streamers propagating along helium plasma jets are presented. It is shown, in agreement with the results of the present experiment and with other available experimental data, that the intensities of radiation of N{sub 2}(C{sup 3}Π{sub u}) molecules and He(3{sup 3}S{sub 1}) atoms vary with time (along the plasma jet) quite differently. The factors resulting in this difference are discussed.

  11. Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability.

    Science.gov (United States)

    Guo, Gepu; Lu, Lu; Ji, Hongfei; Ma, Yong; Dong, Rui; Tu, Juan; Guo, Xiasheng; Qiu, Yuanyuan; Wu, Junru; Zhang, Dong

    2015-04-01

    A 3-D scaffold culture system has been used to promote in producing functional chondrocytes for repairing damaged cartilage. In the present study, the low intensity pulse ultrasound (LIPUS) (P(-)=0, 0.055, 0.085 and 0.11 MPa) was applied to improve the porosity and permeability of a 3-D alginate scaffold which was beneficial for the nutrition supply and metabolism during cell growth in 3-D alginate scaffold. The porosity and permeability of the scaffold was quantitatively analyzed based on scanning electron microscopy examination and fluorescence image observation. The results suggest that, for the scaffold exposed to LIPUS, its porosity and permeability could be significantly enhanced by the increasing LIPUS amplitude, which might be induced by the microstreaming shear stress generated by ultrasound-driven microbubble oscillations. Furthermore, the assessments of cell proliferation and collagen II expression confirmed that chondrocytes growth could be effectively promoted in 3-D alginate scaffolds treated by LIPUS, because of the improved scaffold porosity and permeability might benefit cell growth space and nutrition supply. It should also be noticed that appropriate LIPUS driving parameters should be adapted to achieve optimized chondrocytes culture effect in 3-D alginate scaffold.

  12. Protective effects of low-intensity pulsed ultrasound on aluminum-induced cerebral damage in Alzheimer's disease rat model

    Science.gov (United States)

    Lin, Wei-Ting; Chen, Ran-Chou; Lu, Wen-Wei; Liu, Shing-Hwa; Yang, Feng-Yi

    2015-04-01

    The protein expressions of neurotrophic factors can be enhanced by low-intensity pulsed ultrasound (LIPUS) stimulation in the brain. The purpose of this study was to demonstrate the protective effect of LIPUS stimulation against aluminum-induced cerebral damage in Alzheimer's disease rat model. LIPUS was administered 7 days before each aluminum chloride (AlCl3) administration, and concomitantly given with AlCl3 daily for a period of 6 weeks. Neurotrophic factors in hippocampus were measured by western blot analysis. Behavioral changes in the Morris water maze and elevated plus maze were examined in rats after administration of AlCl3. Various biochemical analyses were performed to evaluate the extent of brain damages. LIPUS is capable of prompting levels of brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and vascular endothelial growth factor (VEGF) in rat brain. AlCl3 administration resulted in a significant increase in the aluminum concentration, acetylcholinesterase activity and beta-amyloid (Aβ) deposition in AlCl3 treated rats. LIPUS stimulation significantly attenuated aluminum concentration, acetylcholinesterase activity, Aβ deposition and karyopyknosis in AlCl3 treated rats. Furthermore, LIPUS significantly improved memory retention in AlCl3-induced memory impairment. These experimental results indicate that LIPUS has neuroprotective effects against AlCl3-induced cerebral damages and cognitive dysfunction.

  13. Effect of low-intensity pulsed ultrasound (LIPUS) on mandibular condyle growth in rats analyzed with micro-CT.

    Science.gov (United States)

    Sasaki, Kyozo; Motoyoshi, Mitsuru; Horinuki, Eri; Arai, Yoshinori; Shimizu, Noriyoshi

    2016-01-01

    This study examined the effects of a bite-jumping appliance combined with low-intensity pulsed ultrasound (LIPUS) stimulation on the mandibular condyle of growing rats using micro CT (mCT) and histological examinations. Twelve Wistar rats were divided into three groups of four individuals each: Group 1 was an untreated control group, Group 2 received bite-jumping appliances, and Group 3 received bite-jumping appliances and LIPUS stimulation (15 min/day, 2 weeks) to the temporomandibular region. We measured the length and three-dimensional bone volume of each rat's mandibular condyle using mCT. The condylar cartilage was observed after the rats had been sacrificed. There was no significant difference in condylar sagittal width among the groups. The bite-jumping appliance combined with LIPUS stimulation increased the condylar major axis, mandibular sagittal length and condylar bone volume to a greater degree than use of the bite-jumping appliance alone. Histological examination demonstrated hypertrophy of the condylar cartilage layers, the fibrous layer and hypertrophic cell layer of the rats treated with bite-jumping appliances combined with LIPUS stimulation in comparison to rats treated with bite-jumping appliances alone. (J Oral Sci 58, 415-422, 2016).

  14. 1,213 Cases of Treatment of Facial Acne Using Indocyanine Green and Intense Pulsed Light in Asian Skin

    Directory of Open Access Journals (Sweden)

    Kui Young Park

    2015-01-01

    Full Text Available Background. Photodynamic therapy (PDT has been used for acne, with various combinations of photosensitizers and light sources. Objective. We evaluated the effectiveness and safety of indocyanine green (ICG and intense pulsed light (IPL in the treatment of acne. Materials and Methods. A total of 1,213 patients with facial acne were retrospectively reviewed. Patients received three or five treatments of ICG and IPL at two-week intervals. Clinical response to treatment was assessed by comparing pre- and posttreatment clinical photographs and patient satisfaction scores. Results. Marked to excellent improvement was noted in 483 of 1,213 (39.8% patients, while minimal to moderate improvement was achieved in the remaining 730 (60.2% patients. Patient satisfaction scores revealed that 197 (16.3% of 1,213 patients were highly satisfied, 887 (73.1% were somewhat satisfied, and 129 (10.6% were unsatisfied. There were no significant side effects. Conclusion. These results suggest that PDT with ICG and IPL can be effectively and safely used in the treatment of acne.

  15. The effect of high-intensity pulsed ion beam on surface structures of MAO film on magnesium alloy AZ31

    Energy Technology Data Exchange (ETDEWEB)

    Han, X.G.; Zhu, F. [Transportation Equipments and Ocean Engineering College, Dalian Maritime University, Dalian 116026 (China); Zhu, X.P.; Lei, M.K. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Xu, J.J., E-mail: jjxu@dlmu.edu.cn [Transportation Equipments and Ocean Engineering College, Dalian Maritime University, Dalian 116026 (China)

    2013-07-15

    Micro-arc oxidation (MAO) films on AZ31 magnesium alloy were modified by high-intensity pulsed ion beam (HIPIB) irradiation with ion energy of 300 keV at 200 A/cm{sup 2} with up to 10 shots. Scanning electron microscopy, X-ray diffractometry and micro-hardness testers were used to characterize the surface properties of the irradiated MAO films. The thickness of remelted layer increased and then decreased, and the maximal value of 10 μm was obtained at 200 A/cm{sup 2} with 5 shots. The phase structure of the ablated surface still consisted of Mg{sub 2}SiO{sub 4} and MgO, which are the same as that of the original ones. Surface roughness of the ablated surface increased and then decreased with the increase of shot number. The surface roughness for the original MAO film is about 2.10 μm, it decreased to 1.18 μm with 1 shot irradiation and then increased to 4.13 μm with irradiation shots up to 10. Correspondingly, the surface energy of the ablated surface augmented, resulting in the tedious decrease of static contact angle from 145.9° for original film to 49.7° for the film with 10 shots. The ablation modification enhanced the continuity and compaction of the MAO films on AZ31 magnesium alloy.

  16. Low intensity pulsed ultrasound increases the mechanical properties of the healing tissues at bone-tendon junction.

    Science.gov (United States)

    Lu, Min-Hua; Zheng, Yong-Ping; Huang, Qing-Hua; Lu, Hong-Bin; Qin, Ling

    2009-01-01

    The re-establishment of bone-tendon junction (BTJ) tissues is involved in many trauma and reconstructive surgeries. A direct BTJ repair requires a long period of immobilization which may be associated with a postoperative weak knee. In this study, we investigated if low-intensity pulsed ultrasound treatment increases the material properties of healing tissues at bone-tendon junction (BTJ) after partial patellectomy using rabbit models. Standard partial patellectomy was conducted on one knee of twenty four rabbits which were randomly divided into an ultrasound group and a control group. The bony changes of BTJ complexes around the BTJ healing interface were measured by anteroposterior x-ray radiographs; then the volumetric bone-mineral density (BMD) of the new bone was assessed using a peripheral computed tomography scanner (pQCT). The stiffness of patellar cartilage, fibrocartilage at the healing interface and the tendon were measured in situ using a novel noncontact ultrasound water jet indentation system. Not only significantly more newly formed bone at the BTJ healing interface but also increased stiffness of the junction tissues were found in the ultrasound group compared with the controls at week 18. In addition, the ultrasound group also showed significantly 44% higher BMD at week 6 than controls.

  17. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films.

    Science.gov (United States)

    Dharmadasa, Ruvini; Jha, Menaka; Amos, Delaina A; Druffel, Thad

    2013-12-26

    Conducting films are becoming increasingly important for the printed electronics industry with applications in various technologies including antennas, RFID tags, photovoltaics, flexible electronics, and displays. To date, expensive noble metals have been utilized in these conductive films, which ultimately increases the cost. In the present work, more economically viable copper based conducting films have been developed for both glass and flexible PET substrates, using copper and copper oxide nanoparticles. The copper nanoparticles (with copper(I) oxide impurity) are synthesized by using a simple copper reduction method in the presence of Tergitol as a capping agent. Various factors such as solvent, pH, and reductant concentration have been explored in detail and optimized in order to produce a nanoparticle ink at room temperature. Second, the ink obtained at room temperature was used to fabricate conducting films by intense pulse light sintering of the deposited films. These conducting films had sheet resistances as low as 0.12 Ω/□ over areas up to 10 cm(2) with a thickness of 8 μm.

  18. Research on the preparation of antioxidant peptides derived from egg white with assisting of high-intensity pulsed electric field.

    Science.gov (United States)

    Lin, Songyi; Jin, Yan; Liu, Mingyuan; Yang, Yi; Zhang, Meishuo; Guo, Yang; Jones, Gregory; Liu, Jingbo; Yin, Yongguang

    2013-08-15

    Egg white protein powder, one of the main egg products, was hydrolysed by Alcalase, Trypsin, and Pepsin respectively to prepare antioxidant peptides. All hydrolysates were assayed by determination of reducing power (RP) ability. Three kinds of hydrolysates were prepared under optimal enzymatic parameters that were obtained from the preliminary one-factor-at-a-time (OFAT) and response surface methodology (RSM) experiments. The results showed that the Alcalase hydrolysates exerted the best RP ability. Thereafter, the Alcalase hydrolysates were sequentially fractionated by ultra filtration membranes in cut-off molecular weight (MW) of 30, 10, and 1 kDa, and tested their antioxidant activities in terms of RP ability, DPPH radical scavenging ability, ABTS radical scavenging ability, and FRAP assay. Effects of high intensity pulsed electric field treatment were further investigated on antioxidant peptides to improve their activities. The results showed that Alcalase hydrolysates possessed the strongest antioxidant ability compared with the other two hydrolysates, particularly for the Fraction-3 with MW <1 kDa. After PEF treatment, this fraction showed a significant improvement of RP ability within 5 h (P<0.05).

  19. Intense Pulsed Light and Low-Fluence Q-Switched Nd:YAG Laser Treatment in Melasma Patients

    Science.gov (United States)

    Na, Se Young; Cho, Soyun

    2012-01-01

    Background Recently, low fluence collimated Q-switched (QS) Nd:YAG laser has drawn attention for the treatment of melasma. However, it needs a lot of treatment sessions for the substantial results and repetitive laser exposures may end up with unwanted depigmentation. Objective We evaluated the clinical effects and safety of the combinational treatment, using intense pulsed light (IPL) and low fluence QS Nd:YAG laser. Methods Retrospective case series of 20 female patients, with mixed type melasma, were analyzed using medical records. They were treated with IPL one time, and 4 times of weekly successive low fluence Nd:YAG laser treatments. At each visit, digital photographs were taken under the same condition. Melanin index (MI) and erythema index (EI) were measured on the highest point on the cheekbones. Modified melasma area and severity index (MASI) scores were calculated by two investigators using digital photographs. Results The mean values of MI and EI decreased significantly after treatments. The modified MASI score has decreased by 59.35%, on average. Sixty percents of the participants did not require any more treatments, and no clinical aggravations were observed during the follow-up period (mean 5.9 months). Conclusion IPL and low fluence laser may elicit a clinical resolution in the mixed type melasma with long term benefits. PMID:22879709

  20. Significant reduction of inflammation and sebaceous glands size in acne vulgaris lesions after intense pulsed light treatment.

    Science.gov (United States)

    Barakat, Manal T; Moftah, Noha H; El Khayyat, Mohammad A M; Abdelhakim, Zainab A

    2017-01-01

    Intense pulsed light (IPL) has been used for years in treatment of acne vulgaris. However, quantitative evaluation of histopathological changes after its use as a sole therapy was poorly investigated. Accordingly, this study aims to objectively evaluate inflammatory infiltrate and sebaceous glands in acne vulgaris after IPL. Twenty-four patients of acne were treated with six IPL sessions. Clinical evaluation was done at 2 weeks after last session by counting acne lesions. Patient satisfaction using Cardiff Acne Disability Index (CADI) was recorded at baseline, 2 weeks and 3 months after IPL. Using histopathological and computerized morphometric analysis, quantitative evaluation of inflammatory infiltrate and measurement of surface area of sebaceous glands were performed for skin biopsies at baseline and 2 weeks after last session. After IPL, there was significant reduction of all acne lesions especially inflammatory variety with significant decrease of CADI score at 2 weeks and 3 months after IPL (p acne vulgaris especially inflammatory variety. The results suggest that IPL could improve acne lesions through targeting both inflammation and sebaceous glands.

  1. Fire protection review revisit no. 2, Argonne National Laboratory, Argonne, Illinois

    Science.gov (United States)

    Dobson, P. H.; Earley, M. W.; Mattern, L. J.

    1985-05-01

    A fire protection survey was conducted at Argonne National Laboratory on April 1-5, 8-12, and April 29-May 2, 1985. The purpose was to review the facility fire protection program and to make recommendations or identify areas according to criteria established by the Department of Energy. There has been a substantial improvement in fire protection at this laboratory since the 1977 audit. Numerous areas which were previously provided with detection systems only have since been provided with automatic sprinkler protection. The following basic fire protection features are not properly controlled: (1) resealing wall and floor penetrations between fire areas after installation of services; (2) cutting and welding; and (3) housekeeping. The present Fire Department manpower level appears adequate to control a route fire. Their ability to adequately handle a high-challenge fire, or one involving injuries to personnel, or fire spread beyond the initial fire area is doubtful.

  2. Status of the Argonne heavy-ion-fusion low-beta linac

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.M.; Bogaty, J.M.; Moretti, A.; Sacks, R.A.; Sesol, N.Q.; Wright, A.J.

    1981-01-01

    The primary goal of the experimental program in heavy-ion fusion (HIF) at Argonne National Laboratory (ANL) during the next few years is to demonstrate many of the requirements of a RF linac driver for inertial-fusion power plants. So far, most of the construction effort has been applied to the front end. The ANL program has developed a high-intensity xenon source, a 1.5-MV preaccelerator, and the initial cavities of the low-beta linac. The design, initial tests, and status of the low-beta linac are described.

  3. Status of the Argonne heavy ion fusion low-beta linac

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.M.; Bogaty, J.M.; Moretti, A.; Sacks, R.A.; Sesol, N.Q.; Wright, A.J.

    1981-06-01

    The primary goal of the experimental program in heavy ion fusion (HIF) at Argonne National Laboratory (ANL) during the next few years is to demonstrate many of the requirements of a RF linac driver for inertial fusion power plants. So far, most of the construction effort has been applied to the front end. The ANL program has developed a high intensity xenon source, a 1.5 MV preaccelerator, and the initial cavities of the low-beta linac. The design, initial tests and status of the low-beta linac are described. 8 refs.

  4. Tiger team assessment of the Argonne Illinois site

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-19

    This report documents the results of the Department of Energy's (DOE) Tiger Team Assessment of the Argonne Illinois Site (AIS) (including the DOE Chicago Operations Office, DOE Argonne Area Office, Argonne National Laboratory-East, and New Brunswick Laboratory) and Site A and Plot M, Argonne, Illinois, conducted from September 17 through October 19, 1990. The Tiger Team Assessment was conducted by a team comprised of professionals from DOE, contractors, consultants. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety, and Health (ES H) Programs at AIS. Argonne National Laboratory-East (ANL-E) is the principal tenant at AIS. ANL-E is a multiprogram laboratory operated by the University of Chicago for DOE. The mission of ANL-E is to perform basic and applied research that supports the development of energy-related technologies. There are a significant number of ES H findings and concerns identified in the report that require prompt management attention. A significant change in culture is required before ANL-E can attain consistent and verifiable compliance with statutes, regulations and DOE Orders. ES H activities are informal, fragmented, and inconsistently implemented. Communication is seriously lacking, both vertically and horizontally. Management expectations are not known or commondated adequately, support is not consistent, and oversight is not effective.

  5. High-power radio frequency pulse generation and extration based on wakefield excited by an intense charged particle beam in dielectric-loaded waveguides.

    Energy Technology Data Exchange (ETDEWEB)

    Gao, F.; High Energy Physics; Illinois Inst. of Tech

    2009-07-24

    Power extraction using a dielectric-loaded (DL) waveguide is a way to generate high-power radio frequency (RF) waves for future particle accelerators, especially for two-beam-acceleration. In a two-beam-acceleration scheme, a low-energy, high-current particle beam is passed through a deceleration section of waveguide (decelerator), where the power from the beam is partially transferred to trailing electromagnetic waves (wakefields); then with a properly designed RF output coupler, the power generated in the decelerator is extracted to an output waveguide, where finally the power can be transmitted and used to accelerate another usually high-energy low-current beam. The decelerator, together with the RF output coupler, is called a power extractor. At Argonne Wakefield Accelerator (AWA), we designed a 7.8GHz power extractor with a circular DL waveguide and tested it with single electron bunches and bunch trains. The output RF frequency (7.8GHz) is the sixth harmonic of the operational frequency (1.3GHz) of the electron gun and the linac at AWA. In single bunch excitation, a 1.7ns RF pulse with 30MW of power was generated by a single 66nC electron bunch passing through the decelerator. In subsequent experiments, by employing different splitting-recombining optics for the photoinjector laser, electron bunch trains were generated and thus longer RF pulses could be successfully generated and extracted. In 16-bunch experiments, 10ns and 22ns RF pulses have been generated and extracted; and in 4-bunch experiments, the maximum power generated was 44MW with 40MW extracted. A 26GHz DL power extractor has also been designed to test this technique in the millimeter-wave range. A power level of 148MW is expected to be generated by a bunch train with a bunch spacing of 769ps and bunch charges of 20nC each. The arrangement for the experiment is illustrated in a diagram. Higher-order-mode (HOM) power extraction has also been explored in a dual-frequency design. By using a bunch

  6. Nonlinear Dichroism in Back-to-Back Double Ionization of He by an Intense Elliptically Polarized Few-Cycle Extreme Ultraviolet Pulse.

    Science.gov (United States)

    Ngoko Djiokap, J M; Manakov, N L; Meremianin, A V; Hu, S X; Madsen, L B; Starace, Anthony F

    2014-11-28

    Control of double ionization of He by means of the polarization and carrier-envelope phase (CEP) of an intense, few-cycle extreme ultraviolet (XUV) pulse is demonstrated numerically by solving the six-dimensional two-electron, time-dependent Schrödinger equation for He interacting with an elliptically polarized XUV pulse. Guided by perturbation theory (PT), we predict the existence of a nonlinear dichroic effect (∝I^{3/2}) that is sensitive to the CEP, ellipticity, peak intensity I, and temporal duration of the pulse. This dichroic effect (i.e., the difference of the two-electron angular distributions for opposite helicities of the ionizing XUV pulse) originates from interference of first- and second-order PT amplitudes, allowing one to probe and control S- and D-wave channels of the two-electron continuum. We show that the back-to-back in-plane geometry with unequal energy sharing is an ideal one for observing this dichroic effect that occurs only for an elliptically polarized, few-cycle attosecond pulse.

  7. Time dependent Doppler shifts in high-order harmonic generation in intense laser interactions with solid density plasma and frequency chirped pulses

    Energy Technology Data Exchange (ETDEWEB)

    Welch, E. C.; Zhang, P.; He, Z.-H. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Dollar, F. [JILA, University of Colorado, Boulder, Colorado 80309 (United States); Krushelnick, K.; Thomas, A. G. R., E-mail: agrt@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109-2104 (United States)

    2015-05-15

    High order harmonic generation from solid targets is a compelling route to generating intense attosecond or even zeptosecond pulses. However, the effects of ion motion on the generation of harmonics have only recently started to be considered. Here, we study the effects of ion motion in harmonics production at ultrahigh laser intensities interacting with solid density plasma. Using particle-in-cell simulations, we find that there is an optimum density for harmonic production that depends on laser intensity, which scales linearly with a{sub 0} with no ion motion but with a reduced scaling if ion motion is included. We derive a scaling for this optimum density with ion motion and also find that the background ion motion induces Doppler red-shifts in the harmonic structures of the reflected pulse. The temporal structure of the Doppler shifts is correlated to the envelope of the incident laser pulse. We demonstrate that by introducing a frequency chirp in the incident pulse we are able to eliminate these Doppler shifts almost completely.

  8. Effect of intense, ultrashort laser pulses on DNA plasmids in their native state: strand breakages induced by {\\it in-situ} electrons and radicals

    CERN Document Server

    D'Souza, J S; Dharmadhikari, A K; Rao, B J; Mathur, D

    2011-01-01

    Single strand breaks are induced in DNA plasmids, pBR322 and pUC19, in aqueous media exposed to strong fields generated using ultrashort laser pulses (820 nm wavelength, 45 fs pulse duration, 1 kHz repetition rate) at intensities of 1-12 TW cm$^{-2}$. The strong fields generate, {\\it in situ}, electrons and radicals that induce transformation of supercoiled DNA into relaxed DNA, the extent of which is quantified. Introduction of electron and radical scavengers inhibits DNA damage; results indicate that OH radicals are the primary (but not sole) cause of DNA damage.

  9. Predicting dynamic range and intensity discrimination for electrical pulse-train stimuli using a stochastic auditory nerve model: the effects of stimulus noise.

    Science.gov (United States)

    Xu, Yifang; Collins, Leslie M

    2005-06-01

    This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.

  10. Efficacy of Intense Pulsed Light Therapy in the Treatment of Facial Acne Vulgaris: Comparison of Two Different Fluences

    Science.gov (United States)

    Patidar, Monika V; Deshmukh, Ashish Ramchandra; Khedkar, Maruti Yadav

    2016-01-01

    Background: Acne vulgaris is the most common disease of the skin affecting adolescents and young adults causing psychological distress. The combination of antibiotic resistance, adverse effects of topical and systemic anti acne medications and desire for high tech approaches have all led to new enthusiasm for light based acne treatment. Intense pulse light (IPL) therapy has three modes of action in acne vulgaris i.e., photochemical, photo thermal and photo immunological. Aims: (1) to study efficacy of IPL therapy in facial acne vulgaris. (2) To compare two fluences - one normal and other subnormal on right and left side of face respectively. Methods: (Including settings and design and statistical analysis used). Total 45 patients in age group 16 to 28 years with inflammatory facial acne vulgaris were included in prospective study. Baseline data for each patient was recorded. All patients were given 4 sittings of IPL at 2 weeks interval and were followed for 2 months every 2 weeks. Fluence used was 35J/cm2 on right and 20J/cm2 on left side. Percentage reduction in lesion count was calculated at each sitting and follow up and graded as mild (0-25%), moderate (26-50%), good (51-75%) and excellent (76-100%). Side effects were noted. The results were analysed using Mann-Whitney Test. Results: On right side, excellent results were achieved in 10(22%), good in 22(49%) and moderate in 13(29%) patients. On left side excellent were results achieved in 7(15%), good in 19(42%) and moderate in 16(43%) patients. There was no statically significant difference noted in efficacy of two fluences used in treatment of facial acne vulgaris. Conclusions: IPL is a effective and safe option for inflammatory acne vulgaris with minimal reversible side effects. Subnormal fluence is as effective as normal fluence in Indian skin. PMID:27688446

  11. Efficacy of intense pulsed light therapy in the treatment of facial acne vulgaris: Comparison of two different fluences

    Directory of Open Access Journals (Sweden)

    Monika V Patidar

    2016-01-01

    Full Text Available Background: Acne vulgaris is the most common disease of the skin affecting adolescents and young adults causing psychological distress. The combination of antibiotic resistance, adverse effects of topical and systemic anti acne medications and desire for high tech approaches have all led to new enthusiasm for light based acne treatment. Intense pulse light (IPL therapy has three modes of action in acne vulgaris i.e., photochemical, photo thermal and photo immunological. Aims: (1 to study efficacy of IPL therapy in facial acne vulgaris. (2 To compare two fluences - one normal and other subnormal on right and left side of face respectively. Methods: (Including settings and design and statistical analysis used. Total 45 patients in age group 16 to 28 years with inflammatory facial acne vulgaris were included in prospective study. Baseline data for each patient was recorded. All patients were given 4 sittings of IPL at 2 weeks interval and were followed for 2 months every 2 weeks. Fluence used was 35J/cm2 on right and 20J/cm2 on left side. Percentage reduction in lesion count was calculated at each sitting and follow up and graded as mild (0-25%, moderate (26-50%, good (51-75% and excellent (76-100%. Side effects were noted. The results were analysed using Mann-Whitney Test. Results: On right side, excellent results were achieved in 10(22%, good in 22(49% and moderate in 13(29% patients. On left side excellent were results achieved in 7(15%, good in 19(42% and moderate in 16(43% patients. There was no statically significant difference noted in efficacy of two fluences used in treatment of facial acne vulgaris. Conclusions: IPL is a effective and safe option for inflammatory acne vulgaris with minimal reversible side effects. Subnormal fluence is as effective as normal fluence in Indian skin.

  12. Argonne's contribution to regional development : successful examples.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. I.

    2000-11-14

    Argonne National Laboratory's mission is basic research and technology development to meet national goals in scientific leadership, energy technology, and environmental quality. In addition to its core missions as a national research and development center, Argonne has exerted a positive impact on its regional economic development, has carried out outstanding educational programs not only for college/graduate students but also for pre-college students and teachers, and has fostered partnerships with universities for research collaboration and with industry for shaping the new technological frontiers.

  13. Performance model of the Argonne Voyager multimedia server

    Energy Technology Data Exchange (ETDEWEB)

    Disz, T.; Olson, R.; Stevens, R. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1997-07-01

    The Argonne Voyager Multimedia Server is being developed in the Futures Lab of the Mathematics and Computer Science Division at Argonne National Laboratory. As a network-based service for recording and playing multimedia streams, it is important that the Voyager system be capable of sustaining certain minimal levels of performance in order for it to be a viable system. In this article, the authors examine the performance characteristics of the server. As they examine the architecture of the system, they try to determine where bottlenecks lie, show actual vs potential performance, and recommend areas for improvement through custom architectures and system tuning.

  14. The Argonne Leadership Computing Facility 2010 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Drugan, C. (LCF)

    2011-05-09

    Researchers found more ways than ever to conduct transformative science at the Argonne Leadership Computing Facility (ALCF) in 2010. Both familiar initiatives and innovative new programs at the ALCF are now serving a growing, global user community with a wide range of computing needs. The Department of Energy's (DOE) INCITE Program remained vital in providing scientists with major allocations of leadership-class computing resources at the ALCF. For calendar year 2011, 35 projects were awarded 732 million supercomputer processor-hours for computationally intensive, large-scale research projects with the potential to significantly advance key areas in science and engineering. Argonne also continued to provide Director's Discretionary allocations - 'start up' awards - for potential future INCITE projects. And DOE's new ASCR Leadership Computing (ALCC) Program allocated resources to 10 ALCF projects, with an emphasis on high-risk, high-payoff simulations directly related to the Department's energy mission, national emergencies, or for broadening the research community capable of using leadership computing resources. While delivering more science today, we've also been laying a solid foundation for high performance computing in the future. After a successful DOE Lehman review, a contract was signed to deliver Mira, the next-generation Blue Gene/Q system, to the ALCF in 2012. The ALCF is working with the 16 projects that were selected for the Early Science Program (ESP) to enable them to be productive as soon as Mira is operational. Preproduction access to Mira will enable ESP projects to adapt their codes to its architecture and collaborate with ALCF staff in shaking down the new system. We expect the 10-petaflops system to stoke economic growth and improve U.S. competitiveness in key areas such as advancing clean energy and addressing global climate change. Ultimately, we envision Mira as a stepping-stone to exascale-class computers

  15. Cellular Levels of Signaling Factors Are Sensed by β-actin Alleles to Modulate Transcriptional Pulse Intensity

    Directory of Open Access Journals (Sweden)

    Alon Kalo

    2015-04-01

    Full Text Available The transcriptional response of β-actin to extra-cellular stimuli is a paradigm for transcription factor complex assembly and regulation. Serum induction leads to a precisely timed pulse of β-actin transcription in the cell population. Actin protein is proposed to be involved in this response, but it is not known whether cellular actin levels affect nuclear β-actin transcription. We perturbed the levels of key signaling factors and examined the effect on the induced transcriptional pulse by following endogenous β-actin alleles in single living cells. Lowering serum response factor (SRF protein levels leads to loss of pulse integrity, whereas reducing actin protein levels reveals positive feedback regulation, resulting in elevated gene activation and a prolonged transcriptional response. Thus, transcriptional pulse fidelity requires regulated amounts of signaling proteins, and perturbations in factor levels eliminate the physiological response, resulting in either tuning down or exaggeration of the transcriptional pulse.

  16. Pulse intensity modulation and the timing stability of millisecond pulsars: A case study of PSR J1713+0747

    CERN Document Server

    Shannon, Ryan M

    2012-01-01

    Most millisecond pulsars, like essentially all other radio pulsars, show timing errors well in excess of what is expected from additive radiometer noise alone. We show that changes in amplitude, shape and pulse phase for the millisecond pulsar J1713+0747 cause this excess error. These changes appear to be uncorrelated from one pulse period to the next. The resulting time of arrival variations are correlated across a wide frequency range and are observed with different backend processors on different days, confirming that they are intrinsic in origin and not an instrumental effect or caused by strongly frequency dependent interstellar scattering. Centroids of single pulses show an rms phase variation \\approx 40 microsec, which dominates the timing error and is the same phase jitter phenomenon long known in slower spinning, canonical pulsars. We show that the amplitude modulations of single pulses are modestly correlated with their arrival time fluctuations. We also demonstrate that single-pulse variations are ...

  17. Theory of two-electron atoms interacting with intense laser pulses: the one-photon ionization of He and the photodetachment of ?

    Science.gov (United States)

    Abrashkevich, Alexander G.; Shapiro, Moshe

    1996-02-01

    Theory of one-photon ionization of atoms by intense light pulses is developed. The infinite set of coupled first-order differential equations, derived from the time-dependent Schrödinger equation, is reduced to a single integro-differential equation. This equation is solved both numerically and in closed form by invoking the slowly varying continuum approximation (SVCA). Comparisons of the SVCA with the numerical solutions are used to delimit the range of validity of this approximation. The time-evolution of wavepackets composed of scattering states prepared by short laser pulses is studied as a function of the pulse intensity. We predict a transient `freezing' of the wavepacket during its build-up phase. Temporal saturation and power broadening of the wavepacket by the strong field are also studied. Our method is used to performing exact numerical calculations of the real-time strong-pulse one-photon ionization of He and the photodetachment of 0953-4075/29/4/006/img2.

  18. MR-Guided Pulsed High-Intensity Focused Ultrasound Enhancement of Gene Therapy Combined With Androgen Deprivation and Radiotherapy for Prostate Cancer Treatment

    Science.gov (United States)

    2009-09-01

    ultrasound . J. Acoust. Soc.Am. 72 1926-1932, (1982) (7) Neppiras E A. Acoustic cavitation . Physics reports 61(3): 159-251, (1980) (8) ter Haar G R, Daniels...Guided Pulsed High-Intensity Focused Ultrasound Enhancement of 5b. GRANT NUMBER W81XWH-08-1-0469 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...failing to This work is aimed to study MR guided high intensity focused ultrasound (MRgHIFU) enhancement of gene therapy for Prostate Cancer. The

  19. Efficacy of focused low-intensity pulsed ultrasound therapy for the management of knee osteoarthritis: a randomized, double blind, placebo-controlled trial

    OpenAIRE

    2016-01-01

    The aim of this study was to investigate the effects of focused low-intensity pulsed ultrasound (FLIPUS) therapy on the functional and health status of patients with knee osteoarthritis (KOA). A total of 106 subjects with bilateral KOA were randomized sequentially into two groups. Group I received FLIPUS + diclofenac sodium, and group II received sham FLIPUS + diclofenac sodium. The therapeutic effects of the interventions were evaluated by measuring changes in VAS pain, the WOMAC scores, and...

  20. Cystic acne improved by photodynamic therapy with short-contact 5-aminolevulinic acid and sequential combination of intense pulsed light and blue light activation.

    Science.gov (United States)

    Melnick, Stuart

    2005-01-01

    Photodynamic therapy with short-contact 5-aminolevulinic acid (Levulan Kerastick, Dusa Pharmaceuticals, Inc.) and activation by intense pulsed light in an initial treatment and blue light in 3 subsequent treatments has resulted in significant improvement in severity of acne, reduction in the number of lesions, improvement in skin texture, and smoothing of scar edges in an Asian patient with severe (class 4) facial cystic acne and scarring.

  1. Increased signal intensity on fat-suppressed three-dimensional T1-weighted pulse sequences in patellar tendon: magic angle effect?

    Energy Technology Data Exchange (ETDEWEB)

    Karantanas, A.H.; Zibis, A.H. [CT-MRI Dept., Larissa General Hospital, Larissa (Greece); Papanikolaou, N. [Radiology Dept., University of Crete, Heraklion (Greece)

    2001-02-01

    Objective. To assess the frequency of increased signal intensity in the patellar tendon using three-dimensional T1-weighted MRI pulse sequences. Design and patients. Sixty patients were examined with a 1.0 T scanner (15mT/m gradient strength) using a quadrature coil. Three pulse sequences were applied in the sagittal plane: PD turbo spin echo (PD-TSE), 3D T1-weighted gradient echo with fat suppression (3D-T1-FFE-FS) and 3D T1-weighted echo planar imaging with fat suppression (3D-T1-EPI-FS). The high signal intensity areas were measured in their maximum length. The angle of the patellar tendon relative to the main field position was measured in the same slice. In eight patients with anterior knee pain, and in 11 with no anterior knee pain, a fourth T2-weighted TSE pulse sequence (T2-TSE) was obtained to rule out patellar tendinitis. Results. The correlation of the high signal intensity areas with the relative position of the tendon was found to be significant with the 3D sequences (P=0.03 for 3D-T1-FFE-FS and P=0.003 for 3D-T1-EPI-FS). The length of the high signal intensity area in the tendon was 5.4 mm with 3D-T1-FFE-FS, 4.9 mm with 3D-T1-EPI-FS and 3.1 mm with PD-TSE images. No patellar tendinitis was demonstrated on the T2-TSE images. Conclusion. The magic angle effect is commonly observed in the 3D based T1-weighted pulse sequences with fat suppression. The presence of the above sign must be recognized by radiologists, so that misdiagnosis of patellar tendinitis is avoided. (orig.)

  2. Effects of low-intensity pulsed ultrasound on new trabecular bone during bone-tendon junction healing in a rabbit model: a synchrotron radiation micro-CT study.

    Directory of Open Access Journals (Sweden)

    Hongbin Lu

    Full Text Available This study was designed to evaluate the effects of low-intensity pulsed ultrasound on bone regeneration during the bone-tendon junction healing process and to explore the application of synchrotron radiation micro computed tomography in three dimensional visualization of the bone-tendon junction to evaluate the microarchitecture of new trabecular bone. Twenty four mature New Zealand rabbits underwent partial patellectomy to establish a bone-tendon junction injury model at the patella-patellar tendon complex. Animals were then divided into low-intensity pulsed ultrasound treatment (20 min/day, 7 times/week and placebo control groups, and were euthanized at week 8 and 16 postoperatively (n = 6 for each group and time point. The patella-patellar tendon specimens were harvested for radiographic, histological and synchrotron radiation micro computed tomography detection. The area of the newly formed bone in the ultrasound group was significantly greater than that of control group at postoperative week 8 and 16. The high resolution three dimensional visualization images of the bone-tendon junction were acquired by synchrotron radiation micro computed tomography. Low-intensity pulsed ultrasound treatment promoted dense and irregular woven bone formation at week 8 with greater bone volume fraction, number and thickness of new trabecular bone but with lower separation. At week 16, ultrasound group specimens contained mature lamellar bone with higher bone volume fraction and thicker trabeculae than that of control group; however, there was no significant difference in separation and number of the new trabecular bone. This study confirms that low-intensity pulsed ultrasound treatment is able to promote bone formation and remodeling of new trabecular bone during the bone-tendon junction healing process in a rabbit model, and the synchrotron radiation micro computed tomography could be applied for three dimensional visualization to quantitatively evaluate

  3. New insight in the treatment of refractory melasma: Laser Q-switched Nd: YAG non-ablative fractionated followed by intense pulsed light.

    Science.gov (United States)

    Cunha, Paulo Rowilson; Pinto, Clovis Antonio Lopes; Mattos, Camila Bonati; Cabrini, Dayane Peverari; Tolosa, Joana Lugli

    2015-01-01

    The purpose of our study was to verify the results of the association of Q-switched Nd: YAG non-ablative fractionated with intense pulsed light, in order to treat patients with refractory melasma. The combination of these two devices seems to be the best treatment to combat hyperpigmentation produced by melasma, with low occurrence of side effects, which may be justified by the selective photothermolysis at subcellular level.

  4. Argonne to open new facility for advanced vehicle testing

    CERN Multimedia

    2002-01-01

    Argonne National Laboratory will open it's Advanced Powertrain Research Facility on Friday, Nov. 15. The facility is North America's only public testing facility for engines, fuel cells, electric drives and energy storage. State-of-the-art performance and emissions measurement equipment is available to support model development and technology validation (1 page).

  5. Brookhaven Lab and Argonne Lab scientists invent a plasma valve

    CERN Multimedia

    2003-01-01

    Scientists from Brookhaven National Laboratory and Argonne National Laboratory have received U.S. patent number 6,528,948 for a device that shuts off airflow into a vacuum about one million times faster than mechanical valves or shutters that are currently in use (1 page).

  6. Argonne National Laboratory Publications July 1, 1968 - June 30, 1969.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1969-08-01

    This publication list is a bibliography of scientific and technical accounts originated at Argonne and published during the fiscal year 1969 (July 1, 1968 through June 30, 1969). It includes items published as journal articles, technical reports, books, etc., all of which have been made available to the public.

  7. Argonne Laboratory Computing Resource Center - FY2004 Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R.

    2005-04-14

    In the spring of 2002, Argonne National Laboratory founded the Laboratory Computing Resource Center, and in April 2003 LCRC began full operations with Argonne's first teraflops computing cluster. The LCRC's driving mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting application use and development. This report describes the scientific activities, computing facilities, and usage in the first eighteen months of LCRC operation. In this short time LCRC has had broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. Steering for LCRC comes from the Computational Science Advisory Committee, composed of computing experts from many Laboratory divisions. The CSAC Allocations Committee makes decisions on individual project allocations for Jazz.

  8. Three Argonne technologies win R&D 100 awards

    CERN Multimedia

    2003-01-01

    "Three technologies developed or co-developed at the U.S. Department of Energy's Argonne National Laboratory have been recognized with R&D 100 Awards, which highlight some of the best products and technologies from around the world" (1 page).

  9. Split-second nanostructure control of a polymer:fullerene photoactive layer using intensely pulsed white light for highly efficient production of polymer solar cells.

    Science.gov (United States)

    Yang, Hee Yeon; Hong, Jae-Min; Kim, Tae Whan; Song, Yong-Won; Choi, Won Kook; Lim, Jung Ah

    2014-02-12

    Intensely pulsed white light (IPWL) treatment was tested as an ultrafast, large-area processable optical technique for the control of the nanostructure of a polymeric bulk-heterojunction photoactive layer to improve the efficiencies of polymer solar cells. Only 2 s of IPWL irradiation of a polymer:fullerene photoactive layer under ambient conditions was found to enhance significantly the power conversion efficiencies of the tested polymer solar cells to values approaching that of typical devices treated with thermal annealing. Consecutive white-light pulses from the xenon lamp induce the self-organization of the polymeric donor into an ordered structure and result in the optimized phase segregation of the polymeric donor and the fullerene acceptor in the photoactive layer, which enhances the light absorption and hole mobility and results in efficient photocurrent generation. The effects of varying the pulse conditions on device performance, including the irradiation fluence, pulse duration time, and number of pulses, were systematically investigated. Finally, it was successfully demonstrated that the IPWL treatment produces flexible polymer solar cells. The proposed IPWL process is suitable for the efficient industrial roll-to-roll production of polymer solar cells.

  10. Generation of ultra-intense and ultra-short laser pulses with high temporal contrast; Generation d'impulsions laser ultra-breves et ultra-intenses a contraste temporel eleve

    Energy Technology Data Exchange (ETDEWEB)

    Julien, A

    2006-03-15

    The topic of this thesis work concerns the design and the characterization of an efficient device devoted to the temporal contrast improvement for ultra-intense femtosecond laser pulses. The contrast is defined as the intensity ratio between the main femtosecond pulse and its nanosecond pedestal. This pedestal is the amplified spontaneous emission (ASE), inherent with laser amplification mechanism. The ASE background has dramatic effects for laser-matter interactions on a solid target. The presented work consists in the theoretical and experimental study of a temporal filter based on a third order nonlinear effect acting on the pulse polarization. We have studied several kinds of nonlinear filters. The selected device is based on the process of cross-polarized wave generation (XPW) in crystals with an anisotropic third-order nonlinear susceptibility. This nonlinear filter has been experimented on various femtosecond systems. It allows a contrast improvement of several orders of magnitude, as demonstrated by temporal profiles measurements on a large intensity dynamic. A device to improve the nonlinear process conversion efficiency, it means the filter transmission, has also been achieved. This method is based on constructive interferences between XPW signals generated in different crystals. This setup has made it possible to reach experimentally the maximum theoretical efficiency ( >20%) and in the same time ensures the system stability. At least, we have demonstrated that the filter preserves, or even improves, spectral and spatial qualities of the laser pulse. These results are thus particularly promising and allow contemplating the implementation of the filter in current femtosecond systems. (author)

  11. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)

    2016-02-15

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  12. Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.

    Energy Technology Data Exchange (ETDEWEB)

    Papka, M.; Messina, P.; Coffey, R.; Drugan, C. (LCF)

    2012-08-16

    The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursor to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to

  13. Multiphoton L-shell ionization of H2S using intense x-ray pulses from a free-electron laser

    Science.gov (United States)

    Murphy, B. F.; Fang, L.; Chen, M.-H.; Bozek, J. D.; Kukk, E.; Kanter, E. P.; Messerschmidt, M.; Osipov, T.; Berrah, N.

    2012-11-01

    Sequential multiphoton L-shell ionization of hydrogen sulfide exposed to intense femtosecond pulses of 1.25-keV x rays has been observed via photoelectron, Auger electron, and ion time-of-flight spectroscopies. Monte Carlo simulations based on relativistic Dirac-Hartree-Slater calculations of Auger decay rates in sulfur with single and double L-shell vacancies accurately model the observed spectra. While single-vacancy-only calculations are surprisingly accurate even at the high x-ray intensity used in the experiment, calculations including double-vacancy states improve on yield estimates of highly charged sulfur ions. In the most intense part of the x-ray focal volume, an average molecule absorbs more than five photons, producing multiple L-shell vacancies in 17% of photoionization events according to simulation. For 280-fs pulse duration and ˜1017 W cm-2 focal intensity, the yield of S13+ is ˜1% of the S3+ yield, in good agreement with simulations. An overabundance of S12+, and S14+ observed in the experimental ion spectra is not predicted by either single-vacancy or double-vacancy calculations.

  14. Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Benaroya, R.; Clifft, B.E.; Jaffey, A.H.; Johnson, K.W.; Khoe, T.K.; Scheibelhut, C.H.; Shepard, K.W.; Wangler, Y.Z.

    1976-01-01

    A summary is given of the status of a project to develop and build a small superconducting linac to boost the energy of heavy ions from an existing tandem electrostatic accelerator. The design of the system is well advanced, and construction of major components is expected to start in late 1976. The linac will consist of independently-phased resonators of the split-ring type made of niobium and operating at a temperature of 4.2/sup 0/K. The resonance frequency is 97 MHz. Tests on full-scale resonators lead one to expect accelerating fields of approximately 4 MV/m within the resonators. The linac will be long enough to provide a voltage gain of at least 13.5 MV, which will allow ions with A less than or approximately 80 to be accelerated above the Coulomb barrier of any target. The modular nature of the system will make future additions to the length relatively easy. A major design objective is to preserve the good quality of the tandem beam. This requires an exceedingly narrow beam pulse, which is achieved by bunching both before and after the tandem. Focusing by means of superconducting solenoids within the linac limit the radial size of the beam. An accelerating structure some 15 meters downstream from the linac will manipulate the longitudinal phase ellipse so as to provide the experimenter with either very good energy resolution (..delta..E/E approximately equal to 2 x 10/sup -4/) or very good time resolution (..delta.. t approximately equal to 30 psec).

  15. Production of an intense source of micro-second proton pulses; Recherche d'une intense source de protons pulsee a la micro-seconde

    Energy Technology Data Exchange (ETDEWEB)

    Belmont, J.L. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-02-01

    In order to obtain micro-second proton pulses of 100 mA, we have built a duoplasmatron ion source and beam focusing equipment. The pulses of the ion-source were produced by a load discharge. The source operates as a hydrogen-thyratron. The particular geometry of the duoplasmatron was chosen in order that the ion emission be stable with a 10 A arc and with a gas-flow lower than 10 cm{sup 3}/h T.P.N. Studies of the beam showed preponderance of protons and the presence of heavy ions. The beam density is higher on the optic axis. (author) [French] Pour obtenir des impulsions d'une microseconde de 100 mA de protons, on a ete amene a construire une source 'duoplasmatron' et son optique de focalisation. La pulsation de la source a ete faite par decharge d'une ligne, la source fonctionnant elle-meme comme un thyratron a hydrogene. La geometrie de la source a ete etudiee pour que l'emission d'ions soit stable avec un arc de 10 amperes de crete et un debit de gaz de 10 cm{sup 3}/h T.P.N. Une analyse du faisceau a revele la preponderance des protons et l'existence d'ions lourds. La densite du faisceau est plus grande sur l'axe de l'optique.

  16. Photoionization of hydrogen atom by coherent intense high-frequency short laser pulses: Direct propagation of electron wave packets on enormous spatial grids

    CERN Document Server

    Demekhin, Philipp V; Cederbaum, Lorenz S

    2013-01-01

    The time-dependent Schr\\"{o}dinger equation for the hydrogen atom and its interaction with coherent intense high-frequency short laser pulses is solved numerically exactly by employing the code implemented for the multi-configurational time-dependent Hartree-Fock (MCTDHF) method. Thereby, the wavefunction is followed in space and time for times longer than the pulse duration. Results are explicitly shown for 3 and 10 fs pulses. Particular attention is paid to identifying the effect of dynamic interference of photoelectrons emitted with the same kinetic energy at different times during the rising and falling sides of the pulse predicted in [\\emph{Ph.V. Demekhin and L.S. Cederbaum}, Phys. Rev. Lett. \\textbf{108}, 253001 (2012)]. In order to be able to see the dynamic interference pattern in the computed electron spectra, the photoelectron wave packet has to be propagated over long distances. Clearly, complex absorption potentials often employed to compute spectra of emitted particles cannot be used to detect dy...

  17. Applicability of Pulse Pressure Variation during Unstable Hemodynamic Events in the Intensive Care Unit: A Five-Day Prospective Multicenter Study

    Directory of Open Access Journals (Sweden)

    Bertrand Delannoy

    2016-01-01

    Full Text Available Pulse pressure variation can predict fluid responsiveness in strict applicability conditions. The purpose of this study was to describe the clinical applicability of pulse pressure variation during episodes of patient hemodynamic instability in the intensive care unit. We conducted a five-day, seven-center prospective study that included patients presenting with an unstable hemodynamic event. The six predefined inclusion criteria for pulse pressure variation applicability were as follows: mechanical ventilation, tidal volume >7 mL/kg, sinus rhythm, no spontaneous breath, heart rate/respiratory rate ratio >3.6, absence of right ventricular dysfunction, or severe valvulopathy. Seventy-three patients presented at least one unstable hemodynamic event, with a total of 163 unstable hemodynamic events. The six predefined criteria for the applicability of pulse pressure variation were completely present in only 7% of these. This data indicates that PPV should only be used alongside a strong understanding of the relevant physiology and applicability criteria. Although these exclusion criteria appear to be profound, they likely represent an absolute contraindication of use for only a minority of critical care patients.

  18. Re-evaluation of low intensity pulsed ultrasound in treatment of tibial fractures (TRUST): randomized clinical trial

    Science.gov (United States)

    Bhandari, Mohit; Einhorn, Thomas A; Schemitsch, Emil; Heckman, James D; Tornetta, Paul; Leung, Kwok-Sui; Heels-Ansdell, Diane; Makosso-Kallyth, Sun; Della Rocca, Gregory J; Jones, Clifford B; Guyatt, Gordon H

    2016-01-01

    Objective To determine whether low intensity pulsed ultrasound (LIPUS), compared with sham treatment, accelerates functional recovery and radiographic healing in patients with operatively managed tibial fractures. Design A concealed, randomized, blinded, sham controlled clinical trial with a parallel group design of 501 patients, enrolled between October 2008 and September 2012, and followed for one year. Setting 43 North American academic trauma centers. Participants Skeletally mature men or women with an open or closed tibial fracture amenable to intramedullary nail fixation. Exclusions comprised pilon fractures, tibial shaft fractures that extended into the joint and required reduction, pathological fractures, bilateral tibial fractures, segmental fractures, spiral fractures >7.5 cm in length, concomitant injuries that were likely to impair function for at least as long as the patient’s tibial fracture, and tibial fractures that showed 1 cm gap after surgical fixation. 3105 consecutive patients who underwent intramedullary nailing for tibial fracture were assessed, 599 were eligible and 501 provided informed consent and were enrolled. Interventions Patients were allocated centrally to self administer daily LIPUS (n=250) or use a sham device (n=251) until their tibial fracture showed radiographic healing or until one year after intramedullary fixation. Main outcome measures Primary registry specified outcome was time to radiographic healing within one year of fixation; secondary outcome was rate of non-union. Additional protocol specified outcomes included short form-36 (SF-36) physical component summary (PCS) scores, return to work, return to household activities, return to ≥80% of function before injury, return to leisure activities, time to full weight bearing, scores on the health utilities index (mark 3), and adverse events related to the device. Results SF-36 PCS data were acquired from 481/501 (96%) patients, for whom we had 2303/2886 (80

  19. Generation and diagnostics of pulsed intense ion beams with an energy density of 10 J/cm{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Isakova, Yu., E-mail: isakova-yulia@tpu.ru; Pushkarev, A.; Khailov, I. [Tomsk Polytechnic University, 30, Lenin Ave., 634050 Tomsk (Russian Federation); Zhong, H., E-mail: zhonghaowen@buaa.edu.cn [Beihang University, Beijing 100191 (China)

    2015-07-15

    The paper presents the results of a study on transportation and focusing of a pulsed ion beam at gigawatt power level, generated by a diode with explosive-emission cathode. The experiments were carried out with the TEMP-4M accelerator operating in double-pulse mode: the first pulse is of negative polarity (500 ns, 100-150 kV), and this is followed by a second pulse of positive polarity (120 ns, 200-250 kV). To reduce the beam divergence, we modified the construction of the diode. The width of the anode was increased compared to that of the cathode. We studied different configurations of planar and focusing strip diodes. It was found that the divergence of the ion beam formed by a planar strip diode, after construction modification, does not exceed 3° (half-angle). Modification to the construction of a focusing diode made it possible to reduce the beam divergence from 8° to 4°-5°, as well as to increase the energy density at the focus up to 10-12 J/cm{sup 2}, and decrease the shot to shot variation in the energy density from 10%-15% to 5%-6%. When measuring the ion beam energy density above the ablation threshold of the target material (3.5-4 J/cm{sup 2}), we used a metal mesh with 50% transparency to lower the energy density. The influence of the metal mesh on beam transport has been studied.

  20. Long-term efficacy of intense pulsed light on epilation%强脉冲光脱毛远期疗效的初步观察

    Institute of Scientific and Technical Information of China (English)

    张兆锋; 沈华; 胡宏慧; 贾万新; 沈尊理

    2014-01-01

    Objective To evaluate the long-term effects and safety of an intense pulsed light (IPL) in the treatment of epilation.Methods 159 patients received treatment with a non-coherent IPL because of unwanted facial and body hair.116 cases were followed up by means of phone call or letters.The average follow-up time was 38 months.Results Overall,36 (31.0%) patients were very satisfied,53 (45.7%) were satisfied and 27 (23.3%) remained unsatisfied with the outcome of lightassisted hair removal.The non-coherent intense pulsed light satisfactorily removed unwanted dark hair.Hair-free periods from weeks to years could be observed.Besides,the satisfaction was not related with the colour of the skin.Conclusions Hair removal by a non-coherent intense pulsed light is an effective and safe method for long-term epilation of unwanted hair.%目的 探讨强脉冲光(intense pulsed light,IPL)脱毛的远期临床疗效及安全性.方法 应用IPL对159例进行脱毛治疗,获远期随访者116例,平均随访时间为38个月.观察内容包括治疗区域毛发密度和生长速度,治疗后无毛发生长时间,色素沉着及水疱等不良反应发生情况等.以脱毛者对脱毛效果的主观满意程度评价治疗效果.结果 经过IPL治疗后再生的毛发显著稀疏细小,生长速度减慢.治疗后即刻脱毛部位有不同程度的红斑和灼痛感,毛囊周围出现荨麻疹样水肿,红斑、水肿一般在数小时内自然消退.极少部分脱毛者脱毛部位出现水疱、结痂及色素沉着,一般数天至数周消失.脱毛者对脱毛疗效总体满意度为76.7%,且疗效与肤色无关.结论 IPL是一种安全有效的脱毛方法.

  1. Bandwidth and repetition rate programmable Nyquist sinc-shaped pulse train source based on intensity modulators and four-wave mixing.

    Science.gov (United States)

    Cordette, S; Vedadi, A; Shoaie, M A; Brès, C-S

    2014-12-01

    We propose and experimentally demonstrate an all-optical Nyquist sinc-shaped pulse train source based on intensity modulation and four-wave mixing. The proposed scheme allows for the tunability of the bandwidth and the full flexibility of the repetition rate in the limit of the electronic bandwidth of the modulators used through the flexible synthesis of rectangular frequency combs. Bandwidth up to 360 GHz at 40 GHz rate and up to 45 frequency lines at 5 GHz rate are demonstrated with 40 GHz modulators.

  2. Effect of Nonviral Plasmid Delivered Basic Fibroblast Growth Factor and Low Intensity Pulsed Ultrasound on Mandibular Condylar Growth: A Preliminary Study

    OpenAIRE

    Harmanpreet Kaur; Hasan Uludağ; Tarek El-Bialy

    2014-01-01

    Objective. Basic fibroblast growth factor (bFGF) is an important regulator of tissue growth. Previous studies have shown that low intensity pulsed ultrasound (LIPUS) stimulates bone growth. The objective of this study was to evaluate the possible synergetic effect of LIPUS and local injection of nonviral bFGF plasmid DNA (pDNA) on mandibular growth in rats. Design. Groups were control, blank pDNA, bFGF pDNA, LIPUS, and bFGF pDNA + LIPUS. Treatments were performed for 28 days. Significant incr...

  3. Fiber transmission and generation of ultrawideband pulses by direct current modulation of semi-conductor lasers and chirp-to-intensity conversion

    DEFF Research Database (Denmark)

    Company Torres, Victor; Prince, Kamau; Tafur Monroy, Idelfonso

    2008-01-01

    Optical pulses generated by current modulation of semiconductor lasers are strongly frequency chirped. This effect has been considered pernicious for optical communications. We take advantage of this effect for the generation of ultrawideband microwave signals by using an optical filter to achieve...... chirp-to-intensity conversion. We also experimentally achieve propagation through a 20 km nonzero dispersion shifted fiber with no degradation of the signal at the receiver. Our method constitutes a prospective low-cost solution and offers integration capabilities with fiber...

  4. Self-consistent analyses for potential conduction block in nerves by an ultrashort high-intensity electric pulse

    Science.gov (United States)

    Joshi, R. P.; Mishra, A.; Hu, Q.; Schoenbach, K. H.; Pakhomov, A.

    2007-06-01

    Simulation studies are presented that probe the possibility of using high-field (>100kV/cm) , short-duration (˜50ns) electrical pulses for nonthermal and reversible cessation of biological electrical signaling pathways. This would have obvious applications in neurophysiology, clinical research, neuromuscular stimulation therapies, and even nonlethal bioweapons development. The concept is based on the creation of a sufficiently high density of pores on the nerve membrane by an electric pulse. This modulates membrane conductance and presents an effective “electrical short” to an incident voltage wave traveling across a nerve. Net blocking of action potential propagation can then result. A continuum approach based on the Smoluchowski equation is used to treat electroporation. This is self-consistently coupled with a distributed circuit representation of the nerve dynamics. Our results indicate that poration at a single neural segment would be sufficient to produce an observable, yet reversible, effect.

  5. Ionization of one- and three-dimensionally-oriented asymmetric-top molecules by intense circularly polarized femtosecond laser pulses

    DEFF Research Database (Denmark)

    Hansen, Jonas Lerche; Holmegaard, Lotte; Kalhøj, Line;

    2011-01-01

    are quantum-state selected using a deflector and three-dimensionally (3D) aligned and oriented adiabatically using an elliptically polarized laser pulse in combination with a static electric field. A characteristic splitting in the molecular frame photoelectron momentum distribution reveals the position......We present a combined experimental and theoretical study on strong-field ionization of a three-dimensionally-oriented asymmetric top molecule, benzonitrile (C7H5N), by circularly polarized, nonresonant femtosecond laser pulses. Prior to the interaction with the strong field, the molecules...... of the nodal planes of the molecular orbitals from which ionization occurs. The experimental results are supported by a theoretical tunneling model that includes and quantifies the splitting in the momentum distribution. The focus of the present article is to understand strong-field ionization from 3D...

  6. Spectral analysis of K-shell X-ray emission of magnesium plasma produced by ultrashort high-intensity laser pulse irradiation

    Indian Academy of Sciences (India)

    V Arora; U Chakravarty; Manoranjan P Singh; J A Chakera; P A Naik; P D Gupta

    2014-02-01

    Spectral analysis of K-shell X-ray emission of magnesium plasma, produced by laser pulses of 45 fs duration, focussed up to an intensity of ∼1018 W cm-2, is carried out. The plasma conditions prevalent during the emission of X-ray spectrum were identified by comparing the experimental spectra with the synthetic spectra generated using the spectroscopic code Prism-SPECT. It is observed that He-like resonance line emission occurs from the plasma region having sub-critical density, whereas K- emission arises from the bulk solid heated to a temperature of 10 eV by the impact of hot electrons. K- line from Be-like ions was used to estimate the hot electron temperature. A power law fit to the electron temperature showed a scaling of 0.47 with laser intensity.

  7. Diagnosis of high-intensity pulsed heavy ion beam generated by a novel magnetically insulated diode with gas puff plasma gun.

    Science.gov (United States)

    Ito, H; Miyake, H; Masugata, K

    2008-10-01

    Intense pulsed heavy ion beam is expected to be applied to materials processing including surface modification and ion implantation. For those applications, it is very important to generate high-purity ion beams with various ion species. For this purpose, we have developed a new type of a magnetically insulated ion diode with an active ion source of a gas puff plasma gun. When the ion diode was operated at a diode voltage of about 190 kV, a diode current of about 15 kA, and a pulse duration of about 100 ns, the ion beam with an ion current density of 54 A/cm(2) was obtained at 50 mm downstream from the anode. By evaluating the ion species and the energy spectrum of the ion beam via a Thomson parabola spectrometer, it was confirmed that the ion beam consists of nitrogen ions (N(+) and N(2+)) of energy of 100-400 keV and the proton impurities of energy of 90-200 keV. The purity of the beam was evaluated to be 94%. The high-purity pulsed nitrogen ion beam was successfully obtained by the developed ion diode system.

  8. Sub-picosecond energy transfer from a highly intense THz pulse to water: a computational study based on the TIP4P/2005 model

    CERN Document Server

    Mishra, Pankaj Kr; Santra, Robin

    2016-01-01

    The dynamics of ultrafast energy transfer to water clusters and to bulk water by a highly intense, sub-cycle THz pulse of duration $\\approx$~150~fs is investigated in the context of force-field molecular dynamics simulations. We focus our attention on the mechanisms by which rotational and translational degrees of freedom of the water monomers gain energy from these sub-cycle pulses with an electric field amplitude of up to about 0.6~V/{\\AA}. It has been recently shown that pulses with these characteristics can be generated in the laboratory [PRL 112, 213901 (2014)]. Through their permanent dipole moment, water molecules are acted upon by the electric field and forced off their preferred hydrogen-bond network conformation. This immediately sets them in motion with respect to one another as energy quickly transfers to their relative center of mass displacements. We find that, in the bulk, the operation of these mechanisms is strongly dependent on the initial temperature and density of the system. In low densit...

  9. Generation of quasi-monoenergetic heavy ion beams via staged shock wave acceleration driven by intense laser pulses in near-critical plasmas

    Science.gov (United States)

    Zhang, W. L.; Qiao, B.; Shen, X. F.; You, W. Y.; Huang, T. W.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-09-01

    Laser-driven ion acceleration potentially offers a compact, cost-effective alternative to conventional accelerators for scientific, technological, and health-care applications. A novel scheme for heavy ion acceleration in near-critical plasmas via staged shock waves driven by intense laser pulses is proposed, where, in front of the heavy ion target, a light ion layer is used for launching a high-speed electrostatic shock wave. This shock is enhanced at the interface before it is transmitted into the heavy ion plasmas. Monoenergetic heavy ion beam with much higher energy can be generated by the transmitted shock, comparing to the shock wave acceleration in pure heavy ion target. Two-dimensional particle-in-cell simulations show that quasi-monoenergetic {{{C}}}6+ ion beams with peak energy 168 MeV and considerable particle number 2.1 × {10}11 are obtained by laser pulses at intensity of 1.66 × {10}20 {{W}} {{cm}}-2 in such staged shock wave acceleration scheme. Similarly a high-quality {{Al}}10+ ion beam with a well-defined peak with energy 250 MeV and spread δ E/{E}0=30 % can also be obtained in this scheme.

  10. Importance of re-calibration time on pulse contour analysis agreement with thermodilution measurements of cardiac output: a retrospective analysis of intensive care unit patients.

    Science.gov (United States)

    Scully, Christopher G; Gomatam, Shanti; Forrest, Shawn; Strauss, David G

    2016-10-01

    We assessed the effect of re-calibration time on cardiac output estimation and trending performance in a retrospective analysis of an intensive care unit patient population using error grid analyses. Paired thermodilution and arterial blood pressure waveform measurements (N = 2141) from 222 patient records were extracted from the Multiparameter Intelligent Monitoring in Intensive Care II database. Pulse contour analysis was performed by implementing a previously reported algorithm at calibration times of 1, 2, 8 and 24 h. Cardiac output estimation agreement was assessed using Bland-Altman and error grid analyses. Trending was assessed by concordance and a 4-Quadrant error grid analysis. Error between pulse contour and thermodilution increased with longer calibration times. Limits of agreement were -1.85 to 1.66 L/min for 1 h maximum calibration time compared to -2.70 to 2.41 L/min for 24 h. Error grid analysis resulted in 74.2 % of points bounded by 20 % error limits of thermodilution measurements for 1 h calibration time compared to 65 % for 24 h. 4-Quadrant error grid analysis showed analysis method and thermodilution showed poor agreement to monitor changes in cardiac output.

  11. Ab initio time-dependent method to study the hydrogen molecule exposed to intense ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Sanz-Vicario, J.L. [Departamento de Quimica, C-IX, Universidad Autonoma de Madrid, 28049-Madrid (Spain); Sede de Investigacion Universitaria (SIU). Instituto de Fisica, Universidad de Antioquia, Medellin (Colombia)], E-mail: joseluis.sanzvicario@uam.es; Palacios, A. [Departamento de Quimica, C-IX, Universidad Autonoma de Madrid, 28049-Madrid (Spain); Cardona, J.C. [Sede de Investigacion Universitaria (SIU). Instituto de Fisica, Universidad de Antioquia, Medellin (Colombia); Bachau, H. [Centre des Lasers Intenses et Applications, UMR 5107 du CNRS-Universite bordeaux I-CEA, Universite Bordeaux I, 33405 Talence Cedex (France); Martin, F. [Departamento de Quimica, C-IX, Universidad Autonoma de Madrid, 28049-Madrid (Spain)

    2007-10-15

    An ab initio non-perturbative time dependent method to describe ionization of molecular systems by ultrashort (femtosecond) laser pulses has been developed. The method allows one to describe competing processes such as non dissociative ionization, dissociative ionization and dissociation into neutrals, including the possibility of autoionization. In this work we assess the validity of the method by applying it to different physical situations and by comparing with results previously obtained within stationary perturbation theory. In particular, it is shown that inclusion of the nuclear motion is essential to describe H{sub 2} resonance enhanced multiphoton ionization and interferences mediated by H{sub 2} autoionizing states.

  12. Low temperature plasmas created by photoionization of gases with intense radiation pulses from laser-produced plasma sources

    Science.gov (United States)

    Bartnik, A.; Pisarczyk, T.; Wachulak, P.; Chodukowski, T.; Fok, T.; Wegrzyński, Ł.; Kalinowska, Z.; Fiedorowicz, H.

    2016-12-01

    A comparative study of photoionized plasmas created by soft X-ray (SXR) and extreme ultraviolet (EUV) laser plasma sources was performed. The sources, employing high or low energy laser systems, utilized double-stream Xe/He gas-puff targets irradiated with laser pulses of different parameters. The SXR/EUV beams were used for irradiation of a gas stream, injected into a vacuum chamber synchronously with the radiation pulse. Photoionized plasmas produced this way in Ne gas emitted radiation in the SXR/EUV range. The corresponding spectra were dominated by emission lines originating from singly charged ions. Significant differences between spectra obtained in different experimental conditions concern specific transitions in Ne II ions. Creation of photoionized plasmas by SXR or EUV irradiation resulted in K-shell or L-shell emissions respectively. In case of the low energy system absorption spectra were measured additionally. In case of the high energy system, the electron density measurements were performed by laser interferometry, employing a femtosecond laser system. A maximum electron density reached the value of 2·1018cm-3. For the low energy system, a detection limit was too high for the interferometric measurements, thus only an upper estimation for electron density could be made.

  13. Transverse Dynamics and Energy Tuning of Fast Electrons Generated in Sub-Relativistic Intensity Laser Pulse Interaction with Plasmas

    CERN Document Server

    Mori, M; Daito, I; Kotaki, H; Hayashi, Y; Yamazaki, A; Ogura, K; Sagisaka, A; Koga, J; Nakajima, K; Daido, H; Bulanov, S V; Kimura, T

    2006-01-01

    The regimes of quasi-mono-energetic electron beam generation were experimentally studied in the sub-relativistic intensity laser plasma interaction. The observed electron acceleration regime is unfolded with two-dimensional-particle-in-cell simulations of laser-wakefield generation in the self-modulation regime.

  14. Argonne's Laboratory computing center - 2007 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R.; Pieper, G. W.

    2008-05-28

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific

  15. 1985 annual site environmental report for Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N.W.; Duffy, T.L.; Sedlet, J.

    1986-03-01

    This is one in a series of annual reports prepared to provide DOE, environmental agencies, and the public with information on the level of radioactive and chemical pollutants in the environment and on the amounts of such substances, if any, added to the environment as a result of Argonne operations. Included in this report are the results of measurements obtained in 1985 for a number of radionuclides in air, surface water, ground water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in surface and subsurface water; and for the external penetrating radiation dose.

  16. Research in mathematics and computer science at Argonne

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, G.W.

    1989-08-01

    This report reviews the research activities in the Mathematics and Computer Science Division at Argonne National Laboratory for the period January 1988 - August 1989. The body of the report gives a brief look at the MCS staff and the research facilities, and discusses various projects carried out in two major areas of research: analytical and numerical methods and advanced computing concepts. Projects funded by non-DOE sources are also discussed, and new technology transfer activities are described. Further information on division staff, visitors, workshops, and seminars is found in the appendices.

  17. Change in argonne national laboratory: a case study.

    Science.gov (United States)

    Mozley, A

    1971-10-01

    Despite traditional opposition to change within an institution and the known reluctance of an "old guard" to accept new managerial policies and techniques, the reactions suggested in this study go well beyond the level of a basic resistance to change. The response, indeed, drawn from a random sampling of Laboratory scientific and engineering personnel, comes close to what Philip Handler has recently described as a run on the scientific bank in a period of depression (1, p. 146). It appears that Argonne's apprehension stems less from the financial cuts that have reduced staff and diminished programs by an annual 10 percent across the last 3 fiscal years than from the administrative and conceptual changes that have stamped the institution since 1966. Administratively, the advent of the AUA has not forged a sense of collaborative effort implicit in the founding negotiations or contributed noticeably to increasing standards of excellence at Argonne. The AUA has, in fact, yet to exercise the constructive powers vested in them by the contract of reviewing and formulating long-term policy on the research and reactor side. Additionally, the University of Chicago, once the single operator, appears to have forfeited some of the trust and understanding that characterized the Laboratory's attitude to it in former years. In a period of complex and sensitive management the present directorate at Argonne is seriously dissociated from a responsible spectrum of opinion within the Laboratory. The crux of discontent among the creative scientific and engineering community appears to lie in a developed sense of being overadministered. In contrast to earlier periods, Argonne's professional staff feels a critical need for a voice in the formulation of Laboratory programs and policy. The Argonne senate could supply this mechanism. Slow to rally, their present concern springs from a firm conviction that the Laboratory is "withering on the vine." By contrast, the Laboratory director Powers

  18. Initial operation of the Argonne superconducting heavy-ion linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K. W.

    1979-01-01

    Initial operation and recent development of the Argonne superconducting heavy-ion linac are discussed. The linac has been developed in order to demonstrate a cost-effective means of extending the performance of electrostatic tandem accelerators. The results of beam acceleration tests which began in June 1978 are described. At present 7 of a planned array of 22 resonators are operating on-line, and the linac system provides an effective accelerating potential of 7.5 MV. Although some technical problems remain, the level of performance and reliability is sufficient that appreciable beam time is becoming available to users.

  19. Possibility of applying a hydrodynamic model to describe the laser erosion of metals irradiated by high-intensity nanosecond pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kozadaev, K V [A.N. Sevchenko Research Institute of Applied Physics Problems, Belarusian State University, Minsk (Belarus)

    2014-04-28

    We report the results of experimental investigations of the production and development of plasma-vapour plumes upon irradiation of metal targets by nanosecond (10–100 ns) pulses with a high (10{sup 8}–10{sup 10} W cm{sup -2}) power density under atmospheric conditions. The transition from a quasi-stationary thermal mechanism of metal erosion to an explosion hydrodynamic one takes place when the radiation power density increases from 10{sup 8} to 10{sup 9} W cm{sup -2}. The resultant experimental information is extremely important for the laser deposition of metal nanostructures under atmospheric conditions, which is possible only for power densities of 10{sup 8}–10{sup 9} W cm{sup -2}. (interaction of laser radiation with matter)

  20. A 3D time reversal cavity for the focusing of high-intensity ultrasound pulses over a large volume

    Science.gov (United States)

    Robin, J.; Arnal, B.; Tanter, M.; Pernot, M.

    2017-02-01

    Shock wave ultrasound therapy techniques, increasingly used for non-invasive surgery, require extremely high pressure amplitudes in precise focal spots, and large high-power transducers arranged on a spherical shell are usually used to achieve that. This solution allows limited steering of the beam around the geometrical focus of the device at the cost of a large number of transducer elements, and the treatment of large and moving organs like the heart is challenging or impossible. This paper validates numerically and experimentally the possibility of using a time reversal cavity (TRC) for the same purpose. A 128-element, 1 MHz power transducer combined with different multiple scattering media in a TRC was used. We were able to focus high-power ultrasound pulses over a large volume in a controlled manner, with a limited number of transducer elements. We reached sufficiently high pressure amplitudes to erode an Ultracal® target over a 10 cm2 area.

  1. Physics Division Argonne National Laboratory description of the programs and facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, K.J. [ed.

    1999-05-24

    The ANL Physics Division traces its roots to nuclear physics research at the University of Chicago around the time of the second world war. Following the move from the University of Chicago out to the present Argonne site and the formation of Argonne National Laboratory: the Physics Division has had a tradition of research into fundamental aspects of nuclear and atomic physics. Initially, the emphasis was on areas such as neutron physics, mass spectrometry, and theoretical studies of the nuclear shell model. Maria Goeppert Maier was an employee in the Physics Division during the time she did her Nobel-Prize-winning work on the nuclear shell model. These interests diversified and at the present time the research addresses a wide range of current problems in nuclear and atomic physics. The major emphasis of the current experimental nuclear physics research is in heavy-ion physics, centered around the ATLAS facility (Argonne Tandem-Linac Accelerator System) with its new injector providing intense, energetic ion beams over the fill mass range up to uranium. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. A small program continues in accelerator development. In addition, the Division has a strong program in medium-energy nuclear physics carried out at a variety of major national and international facilities. The nuclear theory research in the Division spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national and international scale. The Physics Division traditionally has strong connections with the nation's universities. We have many visiting faculty members and we encourage students to participate in our

  2. The Clinical Analysis of Treatment Vitiligo with Intense Pulse Light%强脉冲光治疗白癜风的临床分析

    Institute of Scientific and Technical Information of China (English)

    黄伟

    2010-01-01

    Objective To evaluate the clinical efficacy of treatment vitiligo with 320 nm intense pulse light.Methods 126 cases of patients with vitiligo vulgaris were irradiated with 320 nm intense pulse light on personalized treatment parameters once a week,and the clinical efficacy was evaluated after 10 and 20 times treatment.Results After 10 and 20 times of treatment,the total effective rate of 126 patients with vitiligo was 77.0%(97/126)and 90.5 %(114/126)respectively.From the perspective of skin lesions,the effective rate in face-neck,trunk and extremities was 83.1%(49/59),79.6%(35/44)and 56.5%(13/23)respectively after 10 times treatment.The rate in face-neck and turnk was higher than in extremities(P < 0.05),but the rate in face-neck and in trunk was not obvious differences(P < 0.05).Conclusion Treatment vitiligo with 320 nm intense pulse light is effective,convenient and safe.%目的 观察应用320 nm强脉冲光治疗白癜风的临床效果.方法 126例寻常型白癜风患者,应用320 nm强脉冲光选择个性化治疗参数对皮损进行照射,1次/周,10次和20次治疗后评价其临床效果.结果 10次治疗结束后,总有效率为77.0%(97/126),20次治疗结束后,有效率为90.5%(114/126);从皮损部位看,面颈部、躯干部和四肢在10次治疗结束后的有效率,分别为83.1%(49/59)、79.6%(35/44)和56.5%(13/23),面颈部和躯干的有效率明显高于四肢(P<0.05),而颈部与躯干部的有效率无明显差异(P>0.05).结论 应用320 nm强脉冲光治疗白癜风的临床效果肯定,方便安全.

  3. Microscale chemistry technology exchange at Argonne National Laboratory - east.

    Energy Technology Data Exchange (ETDEWEB)

    Pausma, R.

    1998-06-04

    The Division of Educational Programs (DEP) at Argonne National Laboratory-East interacts with the education community at all levels to improve science and mathematics education and to provide resources to instructors of science and mathematics. DEP conducts a wide range of educational programs and has established an enormous audience of teachers, both in the Chicago area and nationally. DEP has brought microscale chemistry to the attention of this huge audience. This effort has been supported by the U.S. Department of Energy through the Environmental Management Operations organization within Argonne. Microscale chemistry is a teaching methodology wherein laboratory chemistry training is provided to students while utilizing very small amounts of reagents and correspondingly small apparatus. The techniques enable a school to reduce significantly the cost of reagents, the cost of waste disposal and the dangers associated with the manipulation of chemicals. The cost reductions are achieved while still providing the students with the hands-on laboratory experience that is vital to students who might choose to pursue careers in the sciences. Many universities and colleges have already begun to switch from macroscale to microscale chemistry in their educational laboratories. The introduction of these techniques at the secondary education level will lead to freshman being better prepared for the type of experimentation that they will encounter in college.

  4. Draft environmental assessment of Argonne National Laboratory, East

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    This environmental assessment of the operation of the Argonne National Laboratory is related to continuation of research and development work being conducted at the Laboratory site at Argonne, Illinois. The Laboratory has been monitoring various environmental parameters both offsite and onsite since 1949. Meteorological data have been collected to support development of models for atmospheric dispersion of radioactive and other pollutants. Gaseous and liquid effluents, both radioactive and non-radioactive, have been measured by portable monitors and by continuous monitors at fixed sites. Monitoring of constituents of the terrestrial ecosystem provides a basis for identifying changes should they occur in this regime. The Laboratory has established a position of leadership in monitoring methodologies and their application. Offsite impacts of nonradiological accidents are primarily those associated with the release of chlorine and with sodium fires. Both result in releases that cause no health damage offsite. Radioactive materials released to the environment result in a cumulative dose to persons residing within 50 miles of the site of about 47 man-rem per year, compared to an annual total of about 950,000 man-rem delivered to the same population from natural background radiation. 100 refs., 17 figs., 33 tabs.

  5. 强脉冲光治疗面部光老化的疗效评估%Efficacy on intense pulsed light treatment of facial Photoaging

    Institute of Scientific and Technical Information of China (English)

    韩阳; 高玉雪; 李倩云; 王圣伊; 刘玉芳

    2014-01-01

    目的:评价强脉冲光(intense pulsed light,IPL)治疗面部光老化的疗效.方法:应用皮肤测试仪检测IPL治疗前后皮肤水分含量、弹性及色素值.结果:面部光老化经IPL治疗后,皮肤水分含量略增加(P>0.05),皮肤弹性增加(P<0.01),黑色素值下降(P<0.01),血红素值下降(P<0.01).结论:应用皮肤测试仪检测IPL治疗前后皮肤水分含量、弹性及色素的改变,使评价IPL的治疗效果更为科学、准确、客观.

  6. Determination of eye safety filter protection factors associated with retinal thermal hazard and blue light photochemical hazard for intense pulsed light sources

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, D McG [Department of Clinical Physics and Bioengineering, Arden Cancer Centre, Walsgrave Hospital, UHCW NHS Trust, Coventry, CV2 2DX (United Kingdom)

    2006-02-21

    An assessment is provided of protection factors afforded for retinal thermal hazard and blue light photochemical hazard for a range of filters used with intense pulsed light sources (IPLs). A characteristic IPL spectrum based on black body radiation at 5000 K with a low cut filter at 515 nm was identified as suitable for such estimations. Specific filters assessed included types with idealized transmission properties and also a range of types whose transmission characteristics were measured by means of a Bentham DMc150 spectroradiometer. Predicted behaviour based on these spectra is outlined which describes both the effectiveness of protection and the level of luminous transmittance afforded. The analysis showed it was possible to describe a figure of merit for a particular filter material relating the degree of protection provided and corresponding value of luminous transmittance. This consideration is important for providing users of IPL equipment with safety eyewear with adequate level of visual transmittance. (note)

  7. Numerical study on the thermo-stress of ZrO_2 thermal barrier coatings by high-intensity pulsed ion beam irradiation

    Institute of Scientific and Technical Information of China (English)

    Wu Di; Liu Chen; Zhu Xiao Peng; Lei Ming Kai

    2009-01-01

    This paper studies numerically the thermo-mechanical effects of ZrO_2 thermal barrier coatings (TBCs) irradiated by a high-intensity pulsed ion beam in consideration of the surface structure. Taking the deposited energy of ion beams in TBCs as the source term in the thermal conduction equation, the distribution of temperature in TBCs was simulated. Then, based on the distribution, the evolution of thermal stress was calculated by the finite element method. The results show that tensile radial stress formed at the valley of TBC surfaces after irradiation by HIPIB. Therefore, if cracks happen, they must be at valleys instead of peaks. As for the stress waves, no matter whether through peak or valley position, tensile and compressive stresses are present alternately inside TBCs along the depth direction, and the strength of stress decreases with time.

  8. Hybrid pulse position modulation and binary phase shift keying subcarrier intensity modulation for free space optics in a weak and saturated turbulence channel.

    Science.gov (United States)

    Faridzadeh, Monire; Gholami, Asghar; Ghassemlooy, Zabih; Rajbhandari, Sujan

    2012-08-01

    In this paper a hybrid modulation scheme based on pulse position modulation (PPM) and binary phase shift keying subcarrier intensity modulation (BPSK-SIM) schemes for free-space optical communications is proposed. The analytical bit error rate (BER) performance is investigated in weak and saturated turbulence channels and results are verified with the simulation data. Results show that performance of PPM-BPSK-SIM is superior to BPSK-SIM in all turbulence regimes; however, it outperforms 2-PPM for the turbulence variance σ(1)(2)>0.2. PPM-BPSK-SIM offers a signal-to-noise ratio (SNR) gain of 50 dB in the saturation regime compared to BPSK at a BER of 10(-6). The SNR gain in comparison to PPM improves as the strength of the turbulence level increases.

  9. High harmonic generation in H$_{2}^{+}$ and HD+ by intense femtosecond laser pulses: A wave packet approach with nonadiabatic interaction in HD+

    Indian Academy of Sciences (India)

    Farzana Sharmin; Samir Saha; S S Bhattacharyya

    2013-06-01

    We have theoretically investigated the high harmonic generation (HHG) spectra of H$_{2}^{+}$ and HD+ using a time-dependent wave packet approach for the nuclear motion with pulsed lasers of peak intensities (0) of 3.5 × 1014 and 4.5 × 1014 W/cm2, wavelengths (L) of 800 and 1064 nm, and pulse durations () of 40 and 50 fs, for initial vibrational levels 0 = 0 and 1. We have argued that for these conditions the harmonic generation due to the transitions in the electronic continuum by tunnelling or multiphoton ionization will not be important. Thus, the characteristic features of HHG spectra in our model arise only due to the nuclear motions on the two lowest field-coupled electronic states between which both interelectronic and intraelectronic (due to intrinsic dipole moments, for HD+) radiative transitions can take place. For HD+, the effect of nonadiabatic (NA) interaction between the two lowest Born–Oppenheimer (BO) electronic states has been taken into account and comparison has been made with the HHG spectra of HD+ obtained in the BO approximation. Even harmonics and a second plateau in the HHG spectra of HD+ with the NA interaction and hyper-Raman lines in the spectra of both H$_{2}^{+}$ and HD+ for 0 = 1 have been observed for higher value of 0 or L. Our calculations indicate reasonable efficiencies of harmonic generation even without involving the electronic continuum.

  10. Consequences of the magnetic field, sonic and radiofrequency waves and intense pulsed light on the labeling of blood constituents with technetium-99m

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Patricia Froes; Costa, Iris do Ceu Clara; Brandao-Neto, Jose; Medeiros, Aldo da Cunha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-graduacao em Ciencias da Saude; Santos-Filho, Sebastiao David; Adenilson de Souza da Fonseca; Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Lab. de Radiofarmacia Experimental; Ariel Ronzio, Oscar [Universidad de Buenos Aires (Argentina); Bonelli, Ludmila [Universidade Salgado de Oliveira, Belo Horizonte, MG (Brazil)

    2007-09-15

    Sources of magnetic field, radiofrequency and audible sonic waves and pulsed light have been used in physiotherapy to treat different disorders. In nuclear medicine, blood constituents(Bl-Co) are labeled with technetium-99m ({sup 99m}Tc) are used. This study evaluated the consequences of magnetic field, radiofrequency and audible sonic waves and intense pulsed light sources on the labeling of Bl-Co with {sup 99m}Tc. Blood from Wistar rats was exposed to the cited sources. The labeling of Bl-Co with {sup 99m}Tc was performed. Blood not exposed to the physical agents was used(controls). Data showed that the exposure to the different studied sources did not alter significantly (p>0.05) the labeling of Bl-Co. Although the results were obtained with animals, the data suggest that no alteration on examinations performed with Bl-Co labeled with {sup 99m}Tc after exposition to the cited agents. The biological consequences associated with these agents would be not capable to interfere with some properties of the Bl-Co. (author)

  11. Effects of electron recirculation on a hard x-ray source observed during the interaction of a high intensity laser pulse with thin Au targets

    Science.gov (United States)

    Compant La Fontaine, A.; Courtois, C.; Lefebvre, E.; Bourgade, J. L.; Landoas, O.; Thorp, K.; Stoeckl, C.

    2013-12-01

    The interaction of a high intensity laser pulse on the preplasma of a high-Z solid target produced by the pulse's pedestal generates high-energy electrons. These electrons subsequently penetrate inside the solid target and produce bremsstrahlung photons, generating an x-ray source which can be used for photonuclear studies or to radiograph high area density objects. The source characteristics are compared for targets with thin (20 μm) and thick (100 μm) Au foils on the Omega EP laser at Laboratory for Laser Energetics. Simulations using the particle-in-cell code CALDER show that for a 20 μm thickness Au target, electrons perform multiple round-trips in the target under the effect of the laser ponderomotive potential and the target electrostatic potential. These relativistic electrons have random transverse displacements, with respect to the target normal, attributed to electrostatic fluctuation fields. As a result, the x-ray spot size is increased by a factor 2 for thin target compared to thick targets, in agreement with experimental results. In addition, the computed doses agree with the measured ones provided that electron recirculation in the thin target is taken into account. A dose increase by a factor 1.7 is then computed by allowing for recirculation. In the 100 μm target case, on the other hand, this effect is found to be negligible.

  12. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    Energy Technology Data Exchange (ETDEWEB)

    Renk, T. J., E-mail: tjrenk@sandia.gov; Harper-Slaboszewicz, V.; Mikkelson, K. A.; Ginn, W. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Ottinger, P. F. [ENGILITY, Chantilly, Virginia 20151 (United States); Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. A new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. In addition, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.

  13. Investigation of the effects of intense pulsed particle beams on the durability of metal-to-plastic interfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Somuri V.; Renk, Timothy J.; Provencio, Paula Polyak; Petersen, Donald W. (University of Alabama, Birmingham, AL); Petersen, Thomas D. (University of California, San Diego, CA); Buchheit, Thomas Edward; McNulty, Donald E. (DePuy Orthopaedic, Inc., Warsaw, IN); Engelko, Vladimir (D. V. Efremov Scientific Research Institute of the Electrophysical Apparatus, St. Petersburg, Russia)

    2005-02-01

    We have investigated the potential for intense particle beam surface modification to improve the mechanical properties of materials commonly used in the human body for contact surfaces in, for example, hip and knee implants. The materials studied include Ultra-High Molecular Weight Polyethylene (UHMWPE), Ti-6Al-4Al (titanium alloy), and Co-Cr-Mo alloy. Samples in flat form were exposed to both ion and electron beams (UHMWPE), and to ion beam treatment (metals). Post-analysis indicated a degradation in bulk properties of the UHMWPE, except in the case of the lightest ion fluence tested. A surface-alloyed Hf/Ti layer on the Ti-6Al-4V is found to improve surface wear durability, and have favorable biocompatibility. A promising nanolaminate ceramic coating is applied to the Co-Cr-Mo to improve surface hardness.

  14. Optical tomography of human skin with subcellular spatial and picosecond time resolution using intense near infrared femtosecond laser pulses

    Science.gov (United States)

    Koenig, Karsten; Wollina, Uwe; Riemann, Iris; Peukert, Christiane; Halbhuber, Karl-Juergen; Konrad, Helga; Fischer, Peter; Fuenfstueck, Veronika; Fischer, Tobias W.; Elsner, Peter

    2002-06-01

    We describe the novel high resolution imaging tool DermaInspect 100 for non-invasive diagnosis of dermatological disorders based on multiphoton autofluorescence imaging (MAI)and second harmonic generation. Femtosecond laser pulses in the spectral range of 750 nm to 850 nm have been used to image in vitro and in vivo human skin with subcellular spatial and picosecond temporal resolution. The non-linear induced autofluorescence originates mainly from naturally endogenous fluorophores/protein structures like NAD(P)H, flavins, keratin, collagen, elastin, porphyrins and melanin. Second harmonic generation was observed in the stratum corneum and in the dermis. The system with a wavelength-tunable compact 80 MHz Ti:sapphire laser, a scan module with galvo scan mirrors, piezoelectric objective positioner, fast photon detector and time-resolved single photon counting unit was used to perform optical sectioning and 3D autofluorescence lifetime imaging (t-mapping). In addition, a modified femtosecond laser scanning microscope was involved in autofluorescence measurements. Tissues of patients with psoriasis, nevi, dermatitis, basalioma and melanoma have been investigated. Individual cells and skin structures could be clearly visualized. Intracellular components and connective tissue structures could be further characterized by tuning the excitation wavelength in the range of 750 nm to 850 nm and by calculation of mean fluorescence lifetimes per pixel and of particular regions of interest. The novel non-invasive imaging system provides 4D (x,y,z,t) optical biopsies with subcellular resolution and offers the possibility to introduce a further optical diagnostic method in dermatology.

  15. Argonne National Lab deploys Force10 networks' massively dense ethernet switch for supercomputing cluster

    CERN Multimedia

    2003-01-01

    "Force10 Networks, Inc. today announced that Argonne National Laboratory (Argonne, IL) has successfully deployed Force10 E-Series switch/routers to connect to the TeraGrid, the world's largest supercomputing grid, sponsored by the National Science Foundation (NSF)" (1/2 page).

  16. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  17. Modeling of pulsed K DPAL taking into account the spatial variation of the pump and laser intensities in the transverse direction

    Science.gov (United States)

    Barmashenko, Boris D.; Auslender, Ilya; Rosenwaks, Salman; Zhdanov, Boris; Rotondaro, Matthew; Knize, Randall J.

    2015-10-01

    We report on a model of highly efficient static, pulsed K DPAL [Zhdanov et al, Optics Express 22, 17266 (2014)], where Gaussian spatial shapes of the pump and laser intensities in any cross section of the beams are assumed. The model shows good agreement between the calculated and measured dependence of the laser power on the incident pump power. In particular, the model reproduces the observed threshold pump power, 22 W (corresponding to pump intensity of 4 kW/cm2), which is much higher than that predicted by the standard semi-analytical models of the DPAL. The reason for the large values of the threshold power is that the volume occupied by the excited K atoms contributing to the spontaneous emission is much larger than the volumes of the pump and laser beams in the laser cell, resulting in very large energy losses due to the spontaneous emission. To reduce the adverse effect of the high threshold power, high pump power is needed, and therefore gas flow with high gas velocity to avoid heating the gas has to be applied. Thus, for obtaining high power, highly efficient K DPAL, subsonic or supersonic flowing-gas device is needed.

  18. The vascular response observation by the monitoring of the photosensitizer, oxygen, and blood flow during the high intensity pulsed excitation photodynamic therapy 1h after water-soluble photosensitizer intravenous injection

    Science.gov (United States)

    Hakomori, S.; Matsuo, H.; Arai, T.

    2008-02-01

    We investigated the correlation between the therapeutic effect by early irradiation Photodynamic Therapy (PDT) and vascular response. The early irradiation PDT has been proposed by our group. This PDT protocol is that pulse laser irradiates to tumors 1 h after intravenous injection of water-soluble photosensitizer. The intact layer appeared over the well treated layer, when the early irradiation PDT was performed at rat prostate subcutaneous tumors with high intensity pulse laser (over 1 MW/cm2 in peak intensity) and Talaporfin sodium. In order to clarify the phenomenon mechanism, we monitored blood volume, surface temperature, photosensitizer amount, and oxygen saturation during the PDT. The rat prostate subcutaneous tumor was irradiated with excimer dye laser light at 1 h after the intravenous injection. The photosensitizer dose wa 2.0 mg/kg, and the pulse energy density was 2.5 mJ/cm2 (low intensity) or 10 mJ/cm2 (high intensity). Under the low intensity pulsed PDT, the fluorescence amount was decreasing gently during the irradiation, and the blood volume and oxygen saturation started decreasing just after the irradiation. Under the hgh intensity pulsed PDT, the fluorescence amount was decreaased rapidly for 20 s after the irradiation started. The blood volume and oxygen saturation were temporally decreased during the irradiation, and recovered at 48 hrs after the irradiation. According to these results, under the low intensity pulsed PDT, the blood vessel located near the surface started closing just after the irradiation. On the other hand, under the high intensity pulsed PDT the blood vessel was closing for 20 s after the irradiation started, moreover, the blood flow recovered at 48 hrs after the irradiation. We concluded that the vascular response depended on the pulse energy density, and then the therapeutic effect was attributed to the difference of the vascular response. In other words, the surface intact layer could be considered to be induced the

  19. Users Handbook for the Argonne Premium Coal Sample Program

    Energy Technology Data Exchange (ETDEWEB)

    Vorres, K.S.

    1993-10-01

    This Users Handbook for the Argonne Premium Coal Samples provides the recipients of those samples with information that will enhance the value of the samples, to permit greater opportunities to compare their work with that of others, and aid in correlations that can improve the value to all users. It is hoped that this document will foster a spirit of cooperation and collaboration such that the field of basic coal chemistry may be a more efficient and rewarding endeavor for all who participate. The different sections are intended to stand alone. For this reason some of the information may be found in several places. The handbook is also intended to be a dynamic document, constantly subject to change through additions and improvements. Please feel free to write to the editor with your comments and suggestions.

  20. Development of the experimental procedure to examine the response of carbon fiber-reinforced polymer composites subjected to a high-intensity pulsed electric field and low-velocity impact

    Science.gov (United States)

    Hart, Robert J.; Zhupanska, Olesya I.

    2016-01-01

    A new fully automated experimental setup has been developed to study the response of carbon fiber reinforced polymer (CFRP) composites subjected to a high-intensity pulsed electric field and low-velocity impact. The experimental setup allows for real-time measurements of the pulsed electric current, voltage, impact load, and displacements on the CFRP composite specimens. The setup includes a new custom-built current pulse generator that utilizes a bank of capacitor modules capable of producing a 20 ms current pulse with an amplitude of up to 2500 A. The setup enabled application of the pulsed current and impact load and successfully achieved coordination between the peak of the current pulse and the peak of the impact load. A series of electrical, impact, and coordinated electrical-impact characterization tests were performed on 32-ply IM7/977-3 unidirectional CFRP composites to assess their ability to withstand application of a pulsed electric current and determine the effects of the pulsed current on the impact response. Experimental results revealed that the electrical resistance of CFRP composites decreased with an increase in the electric current magnitude. It was also found that the electrified CFRP specimens withstood higher average impact loads compared to the non-electrified specimens.

  1. Development of the experimental procedure to examine the response of carbon fiber-reinforced polymer composites subjected to a high-intensity pulsed electric field and low-velocity impact.

    Science.gov (United States)

    Hart, Robert J; Zhupanska, Olesya I

    2016-01-01

    A new fully automated experimental setup has been developed to study the response of carbon fiber reinforced polymer (CFRP) composites subjected to a high-intensity pulsed electric field and low-velocity impact. The experimental setup allows for real-time measurements of the pulsed electric current, voltage, impact load, and displacements on the CFRP composite specimens. The setup includes a new custom-built current pulse generator that utilizes a bank of capacitor modules capable of producing a 20 ms current pulse with an amplitude of up to 2500 A. The setup enabled application of the pulsed current and impact load and successfully achieved coordination between the peak of the current pulse and the peak of the impact load. A series of electrical, impact, and coordinated electrical-impact characterization tests were performed on 32-ply IM7/977-3 unidirectional CFRP composites to assess their ability to withstand application of a pulsed electric current and determine the effects of the pulsed current on the impact response. Experimental results revealed that the electrical resistance of CFRP composites decreased with an increase in the electric current magnitude. It was also found that the electrified CFRP specimens withstood higher average impact loads compared to the non-electrified specimens.

  2. Theoretical study of the interaction between intense laser pulses and rare gas clusters; Etude theorique de l'interaction entre une impulsion laser intense et un agregat de gaz rare

    Energy Technology Data Exchange (ETDEWEB)

    Micheau, S

    2007-07-15

    The irradiation of nanometer-scale rare gas clusters by a short (a few hundreds of femtosecond) and intense (I > 10{sup 15} W/cm{sup 2}) laser pulse yields multi-keV short X-ray bursts. We employ an hydrodynamic model, the so-called 'nano-plasma model', to understand the mechanisms that tailor the interaction. In this model, the cluster is treated as a dielectric sphere embedded in the quasi-static laser field leading to the formation of a plasma of nano-metric size. We have shown that this model cannot reproduce the experimental results such as the high ionization states and associated X-ray spectra. We have thus included in the model two additional mechanisms that significantly improve the ionization dynamics. First, we have introduced high order ionization processes involving intermediate excited states X{sup q+} + e{sup -} {yields} X{sup q+*} + e{sup -} {yields}... {yields} X{sup q+1+} + 2 e{sup -}. We have used a model potential approach to describe the electronic structure of the cluster's ions (and atoms), and we have computed the total excitation and ionization cross-sections in the distorted-wave Born approximation. Secondly we have studied the influence of screening phenomena induced by the electronic density on the interaction dynamics. By using a sophisticated potential, we have shown that screening effects enhance ionization and lower excitation cross sections with respect to the unscreened data. The improved nano-plasma model allows us to reproduce the populations of highly charged states experimentally observed, and the variation of argon He{sub {alpha}} emission with respect to the various experimental parameters (cluster size, laser pulse duration, intensity and wavelength). We have further computed time- and energy-resolved X-ray spectra which emphasize ultra-short emission duration (less than 100 fs), and therefore indicate that cluster-based X-ray sources are adequate to ultrafast X-ray science applications. (author)

  3. Comparative study of diode laser versus neodymium-yttrium aluminum: garnet laser versus intense pulsed light for the treatment of hirsutism

    Directory of Open Access Journals (Sweden)

    Neerja Puri

    2015-01-01

    Full Text Available Introduction: Lasers are widely used for the treatment of hirsutism. But the choice of the right laser for the right skin type is very important. Before starting with laser therapy, it is important to assess the skin type, the fluence, the pulse duration and the type of laser to be used. Aims: To compare the efficacy and side effects of Diode laser, Neodymium-yttrium aluminum - garnet (Nd: YAG laser and intense pulsed light (IPL on 30 female patients of hirsutism. Materials and Methods: Thirty female patients with hirsutism were selected for a randomised controlled study. The patients were divided into three groups of 10 patients each. In group I patients diode laser was used, in group II patients long pulsed Nd: YAG laser was used and in group III, IPL was used. The patients were evaluated and result graded according to a 4-point scale as excellent, >75% reduction; good, 50-75% reduction; fair; 25-50% reduction; and poor, <25% reduction in hair density. Results: It was seen that the percentage of hair reduction after two sessions of treatment was maximum (40% in the diode laser group, followed by 35% hair reduction in the Nd: Yag laser group and 10% hair reduction in the IPL group. The percentage of hair reduction after four sessions of treatment was maximum (64% in the diode laser group, followed by 62% hair reduction in the Nd: Yag laser group and 48% hair reduction in the IPL group. The percentage of hair reduction after eight sessions of treatment was maximum (92% in the diode laser group, followed by 90% hair reduction in the Nd: YAG group and 70% hair reduction in the IPL group. Conclusions: To conclude for the Indian skin with dark hairs, the diode laser still stands the test of time. But, since the diode laser has a narrow margin of safety, proper pre and post-procedure cooling is recommended. Although, the side effects of Nd: YAG laser are less as compared to the diode laser, it is less efficacious as compared to the diode laser.

  4. Low-intensity pulsed ultrasound increases bone volume, osteoid thickness and mineral apposition rate in the area of fracture healing in patients with a delayed union of the osteotomized fibula

    NARCIS (Netherlands)

    Rutten, S.; Nolte, P.A.; Korstjens, C.M.; van Duin, M.A.; Klein-Nulend, J.

    2008-01-01

    Introduction Low-intensity pulsed ultrasound (LIPUS) accelerates impaired fracture healing, but the exact mechanism is unknown. The aim of this study was to investigate how LIPUS affects bone healing at the tissue level in patients with a delayed union of the osteotomized fibula, by using histology

  5. 强脉冲光脱毛的临床疗效观察%Clinical observation of curative effect of intense pulsed light on hair re-moval

    Institute of Scientific and Technical Information of China (English)

    王怀湘; 李建明

    2014-01-01

    Objective To evaluate the curative effect of intense pulsed light (IPL) on excess body hair removal and ob-serve its therapeutic safety. Methods The human 387 different areas of 265 cases were depilated by IPL at 4 to 8 weeks interval.The energy density was delivered in the range of 26-45 J/cm2 by multiple pulse illumination with dura-tion of 30-40 ms and wavelength of 700-1200 nm.The assessment for curative effect of hair reduction was conducted prior to each treatment and 6 months after the last treatment. Results The total effective rate and cure rate after 3-10 treatments was 98.71%and 95.35% respectively.The effective rate of axillary,hairline,limb,chest and abdomen,perineum groups were 100.00% and the times were fewer than those in the rest of groups,the effective rate of lip and glabella groups were 94.50%and 75.00%.During treatment,only 1 case appeared local blister which then were cured after symp-tomatic treatment.No adverse effects such as blister,scarring and pigmentation or hypopigmentation were observed on the rest of cases. Conclusion Intense pulsed light is better effective on hair removal and its curative effect is positively related to the frequency of the treatments.Due to different areas of the body,the curative efficiency of permanent hair removal by IPL are different.The curative efficiency of axillary, limb are better.Personalized treatment of IPL has less adverse reaction,does not affect work and life,and easy for patients to accept.%目的:评价强脉冲光祛除多余体毛的临床疗效,并观察其治疗的安全性。方法采用强脉冲光治疗仪对265例患者387个部位进行脱毛治疗,治疗波长为700~1200 nm,能量密度为26~45 J/cm2,脉冲宽度30~40 ms,治疗间隔4~8周,每次治疗前和末次治疗后6个月评价患者的临床效果。结果经3~10次光子脱毛治疗后,总有效率为98.71%,总治愈率为95.35%。腋窝、发际、四肢、胸腹部、比基尼部位的有效率达100.00%,

  6. Use of radial self-field geometry for intense pulsed ion beam generation above 6 MeV on Hermes III.

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy Jerome [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harper-Slaboszewicz, Victor Jozef [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ginn, William Craig [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mikkelson, Kenneth A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schall, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Gary Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-12-01

    We investigate the generation and propagation of intense pulsed ion beams at the 6 MeV level and above using the Hermes III facility at Sandia National Laboratories. While high-power ion beams have previously been produced using Hermes III, we have conducted systematic studies of several ion diode geometries for the purpose of maximizing focused ion energy for a number of applications. A self-field axial-gap diode of the pinch reflex type and operated in positive polarity yielded beam power below predicted levels. This is ascribed both to power flow losses of unknown origin upstream of the diode load in Hermes positive polarity operation, and to anomalies in beam focusing in this configuration. A change to a radial self-field geometry and negative polarity operation resulted in greatly increased beam voltage (> 6 MeV) and estimated ion current. A comprehensive diagnostic set was developed to characterize beam performance, including both time-dependent and time-integrated measurements of local and total beam power. A substantial high-energy ion population was identified propagating in reverse direction, i.e. from the back side of the anode in the electron beam dump. While significant progress was made in increasing beam power, further improvements in assessing the beam focusing envelope will be required before ultimate ion generation efficiency with this geometry can be completely determined.

  7. Single-session intense pulsed light combined with stable fixed-dose triple combination topical therapy for the treatment of refractory melasma.

    Science.gov (United States)

    Figueiredo Souza, Linton; Trancoso Souza, Simone

    2012-01-01

    The effectiveness of intense pulsed light (IPL) has been reported in adults with melasma, but there is little information about IPL with triple combination topical therapy (TC) and refractory melasma. Sixty-two patients with totally or partially refractory melasma were enrolled in this randomized open-label study. Thirty-one patients were treated with IPL in a single session, bleaching agents and broad-spectrum sunscreens. Thirty-one patients were in the control group, receiving only bleaching agents and broad-spectrum sunscreens. The Melasma Area and Severity Index (MASI) and the investigator's global assessment using a seven-point scale were used to determine the impact and effectiveness of the treatment. The IPL group results based on MASI showed a 49.4% reduction (from 17.6 to 8.9; p group and control group was significant (p = 0.002), with a better response in the IPL group. Single session IPL combined with stable fixed-dose triple combination treatment is a safe and effective treatment for refractory mixed and dermal melasma.

  8. Effect of Nonviral Plasmid Delivered Basic Fibroblast Growth Factor and Low Intensity Pulsed Ultrasound on Mandibular Condylar Growth: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Harmanpreet Kaur

    2014-01-01

    Full Text Available Objective. Basic fibroblast growth factor (bFGF is an important regulator of tissue growth. Previous studies have shown that low intensity pulsed ultrasound (LIPUS stimulates bone growth. The objective of this study was to evaluate the possible synergetic effect of LIPUS and local injection of nonviral bFGF plasmid DNA (pDNA on mandibular growth in rats. Design. Groups were control, blank pDNA, bFGF pDNA, LIPUS, and bFGF pDNA + LIPUS. Treatments were performed for 28 days. Significant increase was observed in mandibular height and condylar length in LIPUS groups. MicroCT analysis showed significant increase in bone volume fraction in bFGF pDNA + LIPUS group. Histomorphometric analysis showed increased cell count and condylar proliferative and hypertrophic layers widths in bFGF pDNA group. Results. Current study showed increased mandibular condylar growth in either bFGF pDNA or LIPUS groups compared to the combined group that showed only increased bone volume fraction. Conclusion. It appears that there is an additive effect of bFGF + LIPUS on the mandibular growth.

  9. Combined application of low-intensity pulsed ultrasound and functional electrical stimulation accelerates bone-tendon junction healing in a rabbit model.

    Science.gov (United States)

    Hu, Jianzhong; Qu, Jin; Xu, Daqi; Zhang, Tao; Qin, Ling; Lu, Hongbin

    2014-02-01

    The objective of this study was to elucidate the combined use of low-intensity pulsed ultrasound (LIPUS) and functional electrical stimulation (FES) on patella-patellar tendon (PPT) junction healing using a partial patellectomy model in rabbits. LIPUS was delivered continuously starting day 3 postoperative until week 6. FES was applied on quadriceps muscles to induce tensile force to the repaired PPT junction 5 days per week for 6 weeks since week 7 postoperatively. Forty rabbits with partial patellectomy were randomly divided into four groups: control, LIPUS alone, FES alone, and LIPUS + FES groups. At week 12, the PPT complexes were harvested for histology, radiographs, peripheral quantitative computed tomography, and biomechanical testing. There was better remodeling of newly formed bone and fibrocartilage zone in the three treatment groups compared with the control group. LIPUS and/or FES treatments significantly increased the area and bone mineral content of new bone. The failure load and ultimate strength of PPT complex were also highly improved in the three treatment groups. More new bone formed and higher tensile properties were showed in the LIPUS + FES group compared with the LIPUS or FES alone groups. Early LIPUS treatment and later FES treatment showed the additive effects of accelerating PPT junction healing.

  10. Long-term effect of pulsed high-intensity laser therapy in the treatment of post-mastectomy pain syndrome: a double blind, placebo-control, randomized study.

    Science.gov (United States)

    Ebid, Anwar Abdelgayed; El-Sodany, Ahmed Mohamed

    2015-08-01

    We assess the long-term effect of pulsed high-intensity laser therapy (HILT) in the treatment of the post-mastectomy pain syndrome (PMPS). A total of 61 women participated in this study (30 in the laser group and 31 in the placebo laser group), with a mean age of 53.56 ± 1.11 years. Patients who were randomly assigned to the laser group received HILT three times per week for 4 weeks, plus a routine physical therapy program (RPTP). The placebo laser group received placebo HILT plus RPTP. The outcomes measured were pain level by visual analog scale (VAS), shoulder range of motion (ROM), and quality of life (QOL). Statistical analysis was performed by ANOVA with repeated measures to compare the differences between baseline and post-treatment measurements and after 12 weeks of follow-up for both groups. The level of statistical significance was set at P placebo group. VAS results showed a significant decrease post-treatment in the laser group relative to the placebo group, and QOL results showed a significant improvement in the laser group compared with the placebo group and still improved after 12 weeks of follow-up. HILT combined with an RPTP appears to be more effective in patients with PMPS than a placebo laser procedure with RPTP.

  11. Intense pulsed light versus photodynamic therapy using liposomal methylene blue gel for the treatment of truncal acne vulgaris: a comparative randomized split body study.

    Science.gov (United States)

    Moftah, Nayera Hassan; Ibrahim, Shady Mahmoud; Wahba, Nadine Hassan

    2016-05-01

    Acne vulgaris is an extremely common skin condition. It often leads to negative psychological consequences. Photodynamic therapy (PDT) using intense pulsed light has been introduced for effective treatment of acne. The objective was to study the effect of PDT in truncal acne vulgaris using liposomal methylene blue (LMB) versus IPL alone. Thirty-five patients with varying degrees of acne were treated with topical 0.1 % LMB hydrogel applied on the randomly selected one side of the back, and after 60 min the entire back was exposed to IPL. The procedure was done once weekly for three sessions and patients were re-evaluated 1 month after the third session by two independent dermatologists. Acne severity was graded using the Burton scale. Patient satisfaction using Cardiff Acne Disability Index (CADI) was recorded before and after treatment. On LMB-pretreated side, inflammatory acne lesion counts were significantly decreased by 56.40 % compared with 34.06 % on IPL alone. Marked improvement was seen on LMB-pretreated side in 11.5 % of patients compared with 2.8 % on IPL alone. There was a correlation between CADI score and overall improvement. Our study concluded that LMB-IPL is more effective than IPL alone, safe with tolerable pain in the treatment of acne vulgaris on the back. LMB-IPL is more effective than IPL alone, safe with tolerable pain in the treatment of acne vulgaris on the back.

  12. Within-patient right-left blinded comparison of diode (810 nm) laser therapy and intense pulsed light therapy for hair removal.

    Science.gov (United States)

    Cameron, H; Ibbotson, S H; Dawe, R S; Ferguson, J; Moseley, H

    2008-10-01

    Excessive facial hair in women can cause significant psychological distress. A variety of treatment methods are available, including lasers and, more recently, intense pulsed light (IPL) sources. There are very few studies comparing laser and IPL devices. The purpose of our study was to compare a laser diode device with an IPL, using a within-patient, right-left, assessor-blinded, controlled, study design. Hair counts were made, using coded close-up photographs. Treatments were carried out on three occasions at 6-week intervals, and a final assessment was made 6 weeks following the third treatment. Patient self-assessment was also included. Nine women were recruited, and seven completed the study. Average hair counts in a 16 cm(2) area before and after treatment were, respectively, 42.4 and 10.4 (laser), 38.1 and 20.4 (IPL), 45.3 and 44.7 (control). Both laser and IPL reduced the hair count substantially; laser vs control was significant at P=0.028, but IPL vs control had P=0.13, suggesting that more subjects or more treatments were required if statistical significance were to be achieved. Despite subjecting the patients to higher pain scores and more inflammation, laser was preferred by five patients; two preferred IPL and one had no preference.

  13. Effects of low-intensity pulsed ultrasound for articular cartilage repair%低强度脉冲式超声对关节软骨的修复

    Institute of Scientific and Technical Information of China (English)

    刘洋; 刘宁; 刘昭铭; 郝振民; 王东来

    2016-01-01

    BACKGROUND:Articular cartilage injuries can result from a variety of causes. Conventional therapy cannot obtain the optimal clinical results. Low-intensity pulsed ultrasound has been shown to promote the repair of injured articular cartilage. OBJECTIVE:To investigate the effects of low-intensity pulsed ultrasound on the repair of injured articular cartilage. METHODS:Twenty New Zealand white rabbits were used to establish knee arthritis models and equal y randomized into study and control groups, respectively. Rabbits in the study group received low-intensity pulsed ultrasound treatment, and sham low-intensity pulsed ultrasound treatment was given in the control group. At 8 weeks after treatment, pathological change and histological scores in articular cartilage tissue col ected from both groups were determined. Moreover, the ultrastructure and type II col agen expression of chondrocytes were determined. Matrix metal oproteinase-13 mRNA expression was detected by quantitative real-time PCR. RESULTS AND CONCLUSION:At 8 weeks after treatment, toluidine blue staining showed a disordered arrangement of cel s, decreased number of cartilage cel s in each layer and cluster in the control group. Light disordered arrangement of cel s, decreased appearance of the superficial layer cel s and the cluster phenomenon were observed in the study group. Articular cartilage tissue scores were significantly decreased in the study group compared with the control group (P<0.05). The chondrocytes were smal , enlarged intracel ular mitochondria and rough endoplasmic reticulum, cytoplasmic swel ing, col agen fibrils coarse, wel developed Golgi apparatus, and nuclear fragmentation were observed in the control group. In addition, the normal structure of organel es disappeared and cel degeneration was observed in the control group. In the study group, the size of chondrocytes and the Golgi complex and other organel es were normal, and the protein polysaccharide granules were observed in the

  14. Flow Induced Vibration Program at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Argonne National Laboratory has had a Flow Induced Vibration Program since 1967; the Program currently resides in the Laboratory's Components Technology Division. Throughout its existence, the overall objective of the program has been to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities have been funded by the US Atomic Energy Commission (AEC), Energy Research and Development Administration (ERDA), and Department of Energy (DOE). Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology (ECUT) Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components has been funded by the Clinch River Breeder Reactor Plant (CRBRP) Project Office. Work has also been performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  15. Treatment of mixed radioactive liquid wastes at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C. [and others

    1994-03-01

    Aqueous mixed waste at Argonne National Laboratory (ANL) is traditionally generated in small volumes with a wide variety of compositions. A cooperative effort at ANL between Waste Management (WM) and the Chemical Technology Division (CMT) was established, to develop, install, and implement a robust treatment operation to handle the majority of such wastes. For this treatment, toxic metals in mixed-waste solutions are precipitated in a semiautomated system using Ca(OH){sub 2} and, for some metals, Na{sub 2}S additions. This step is followed by filtration to remove the precipitated solids. A filtration skid was built that contains several filter types which can be used, as appropriate, for a variety of suspended solids. When supernatant liquid is separated from the toxic-metal solids by decantation and filtration, it will be a low-level waste (LLW) rather than a mixed waste. After passing a Toxicity Characteristic Leaching Procedure (TCLP) test, the solids may also be treated as LLW.

  16. Argonne National Laboratory site environmental report for calendar year 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; Kolzow, R. G.

    2005-09-02

    This report discusses the accomplishments of the environmental protection program at Argonne National Laboratory (ANL) for calendar year 2004. The status of ANL environmental protection activities with respect to compliance with the various laws and regulations is discussed, along with the progress of environmental corrective actions and restoration projects. To evaluate the effects of ANL operations on the environment, samples of environmental media collected on the site, at the site boundary, and off the ANL site were analyzed and compared with applicable guidelines and standards. A variety of radionuclides were measured in air, surface water, on-site groundwater, and bottom sediment samples. In addition, chemical constituents in surface water, groundwater, and ANL effluent water were analyzed. External penetrating radiation doses were measured, and the potential for radiation exposure to off-site population groups was estimated. Results are interpreted in terms of the origin of the radioactive and chemical substances (i.e., natural, fallout, ANL, and other) and are compared with applicable environmental quality standards. A U.S. Department of Energy dose calculation methodology, based on International Commission on Radiological Protection recommendations and the U.S. Environmental Protection Agency's CAP-88 (Clean Air Act Assessment Package-1988) computer code, was used in preparing this report.

  17. Routine environmental reaudit of the Argonne National Laboratory - West

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report documents the results of the Routine Environmental Reaudit of the Argonne National Laboratory - West (ANL-W), Idaho Falls, Idaho. During this audit, the activities conducted by the audit team included reviews of internal documents and reports from previous audits and assessments; interviews with U.S. Department of Energy (DOE), U.S. Environmental Protection Agency (EPA), State of Idaho Department of Health and Welfare (IDHW), and DOE contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted from October 11 to October 22, 1993, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). DOE 5482.113, {open_quotes}Environment, Safety, and Health Appraisal Program,{close_quotes} established the mission of EH-24 to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is enhancement of environmental protection and minimization of risk to public health and the environment. EH-24 accomplishes its mission by conducting systematic and periodic evaluations of the Department`s environmental programs within line organizations, and by utilizing supplemental activities that serve to strengthen self-assessment and oversight functions within program, field, and contractor organizations.

  18. Consequences of the magnetic field, sonic and radiofrequency waves and intense pulsed light on the labeling of blood constituents with technetium-99m

    Directory of Open Access Journals (Sweden)

    Patricia Froes Meyer

    2007-09-01

    Full Text Available Sources of magnetic field, radiofrequency and audible sonic waves and pulsed light have been used in physiotherapy to treat different disorders. In nuclear medicine, blood constituents(Bl-Co are labeled with technetium-99m (99mTc are used. This study evaluated the consequences of magnetic field, radiofrequency and audible sonic waves and intense pulsed light sources on the labeling of Bl-Co with 99mTc. Blood from Wistar rats was exposed to the cited sources. The labeling of Bl-Co with 99mTc was performed. Blood not exposed to the physical agents was used(controls. Data showed that the exposure to the different studied sources did not alter significantly (p>0.05 the labeling of Bl-Co. Although the results were obtained with animals, the data suggest that no alteration on examinations performed with Bl-Co labeled with 99mTc after exposition to the cited agents. The biological consequences associated with these agents would be not capable to interfere with some properties of the Bl-Co.Fontes de campo magnético, ondas sonoras audíveis e de radiofreqüência e luz intensa pulsada são usadas para o tratamento de doenças. Constituintes sangüíneos(CS marcados com tecnécio-99m(99mTc são utilizados na medicina nuclear. Esse trabalho avaliou as consequências de fontes de campo magnético, ondas sonoras audíveis e de radiofreqüência e luz intensa pulsada na marcação de CS com 99mTc. Sangue de ratos Wistar foi exposto às fontes citadas. A marcação de CS com 99mTc foi realizada. Sangue não exposto foram utilizadas(controle. Resultados mostraram que os agentes físicos estudados não alteraram significativamente (p>0.05 a radiomarcação de CS. Apesar terem sido obtidos com sangue de animais, os resultados sugerem que nenhuma alteração nos exames realizados com constituintes sangüíneos com 99mTc em medicina nuclear ocorreria após a exposição às fontes avaliadas. As consequências biológicas associadas a esses agentes não seriam

  19. Argonne Natl Lab receives TeraFLOP Cluster Linux NetworX

    CERN Multimedia

    2002-01-01

    " Linux NetworX announced today it has delivered an Evolocity II (E2) Linux cluster to Argonne National Laboratory that is capable of performing more than one trillion calculations per second (1 teraFLOP)" (1/2 page).

  20. Authorized limits for disposal of PCB capacitors from Buildings 361 and 391 at Argonne National Laboratory, Argonne, Illinois.

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.-J.; Chen, S.-Y.; Environmental Science Division

    2009-12-22

    This report contains data and analyses to support the approval of authorized release limits for the clearance from radiological control of polychlorinated biphenyl (PCB) capacitors in Buildings 361 and 391 at Argonne National Laboratory, Argonne, Illinois. These capacitors contain PCB oil that must be treated and disposed of as hazardous waste under the Toxic Substances Control Act (TSCA). However, they had been located in radiological control areas where the potential for neutron activation existed; therefore, direct release of these capacitors to a commercial facility for PCB treatment and landfill disposal is not allowable unless authorized release has been approved. Radiological characterization found no loose contamination on the exterior surface of the PCB capacitors; gamma spectroscopy analysis also showed the radioactivity levels of the capacitors were either at or slightly above ambient background levels. As such, conservative assumptions were used to expedite the analyses conducted to evaluate the potential radiation exposures of workers and the general public resulting from authorized release of the capacitors; for example, the maximum averaged radioactivity levels measured for capacitors nearest to the beam lines were assumed for the entire batch of capacitors. This approach overestimated the total activity of individual radionuclide identified in radiological characterization by a factor ranging from 1.4 to 640. On the basis of this conservative assumption, the capacitors were assumed to be shipped from Argonne to the Clean Harbors facility, located in Deer Park, Texas, for incineration and disposal. The Clean Harbors facility is a state-permitted TSCA facility for treatment and disposal of hazardous materials. At this facility, the capacitors are to be shredded and incinerated with the resulting incineration residue buried in a nearby landfill owned by the company. A variety of receptors that have the potential of receiving radiation exposures were

  1. Characterisation and testing of a prototype $6 \\times 6$ cm$^2$ Argonne MCP-PMT

    CERN Document Server

    Cowan, Greig A; Needham, Matthew; Gambetta, Silvia; Eisenhardt, Stephan; McBlane, Neil; Malek, Matthew

    2016-01-01

    The Argonne micro-channel plate photomultiplier tube (MCP-PMT) is an offshoot of the Large Area Pico-second Photo Detector (LAPPD) project, wherein \\mbox{6 $\\times$ 6 cm$^2$} sized detectors are made at Argonne National Laboratory. Measurements of the properties of these detectors, including gain, time and spatial resolution, dark count rates, cross-talk and sensitivity to magnetic fields are reported. In addition, possible applications of these devices in future neutrino and collider physics experiments are discussed.

  2. Argonne National Laboratory`s photooxidation organic mixed-waste treatment system

    Energy Technology Data Exchange (ETDEWEB)

    Shearer, T.L.; Torres, T.; Conner, C. [Argonne National Lab., IL (United States)] [and others

    1997-12-01

    This paper describes the installation and startup testing of the Argonne National Laboratory-East (ANL-E) photo-oxidation organic mixed-waste treatment system. This system will treat organic mixed (i.e., radioactive and hazardous) waste by oxidizing the organics to carbon dioxide and inorganic salts in an aqueous media. The residue will be treated in the existing radwaste evaporators. The system is installed in the waste management facility at the ANL-E site in Argonne, Illinois.

  3. Effect of intense pulsed light in hypertrophic scars in rabbit ear%强脉冲光治疗兔耳增生性瘢痕

    Institute of Scientific and Technical Information of China (English)

    李石峰; 谭军; 李高峰; 黄泽春

    2011-01-01

    Objective To explore the effect and mechanisms of intense pulsed light (IPL) in treating hypertrophic scars on rabbit ear.Methods Thirty New Zealand white rabbits were incruited in this study.Two hypertrophic scar models were made in the ventral surface of the rabbit ears with two lesions on each ear.The rabbits were divided randomly into two groups:the treatment group and the control group.Rabbits in the treatment groups were treated by IPL at the 3rd,5th,7th week after operation.Rabbits in the control groups were untreated.Morphological appearances of the hypertrophic scar were observed,and biopsies of scar were taken for HE stain and immunohistochemistry for the expression of vascular endothelial growth factor (VEGF),proliferating cell nuclear antigen (PCNA) and α-SMA,microvessel density was calculated by the expression of α-SMA at the 3rd,5th,7th,9th week after operation.At the 9th week after the operation,the ventral surface skin from two normally-fed rabbits were collected to undergo the same examination above.Results Comparing with the control group,the height of scars was reduced significantly in the IPL treatment group.The scars becaming soften and completely flat needed less time in the IPL treatment group.Comparing with the control group,the level of α-SMA,MVD,VEGF and PCNA expression in the treatment group obviously decreased over the same period (P<0.05).Conclusions IPL is of great therapeutic effect on treating hypertrophic scar of rabbit ear.%目的 探讨强脉冲光(intense pulsed light,IPL)对兔耳增生性瘢痕的作用及机制.方法 选取新西兰大白兔30只,在每只兔耳腹侧面制作2个增生性瘢痕模型,随机分为治疗组和对照组.治疗组瘢痕在建立模型第3、5、7周采用IPL进行治疗,对照组不进行治疗.观察各组瘢痕形态变化,并且于建立模型第3、5、7周IPL治疗前及建立模型第9周采集各组瘢痕组织标本,苏木精-伊红(HE)染色,采用免疫组织化学方法检测

  4. Analysis of the Argonne distance tabletop exercise method.

    Energy Technology Data Exchange (ETDEWEB)

    Tanzman, E. A.; Nieves, L. A.; Decision and Information Sciences

    2008-02-14

    The purpose of this report is to summarize and evaluate the Argonne Distance Tabletop Exercise (DISTEX) method. DISTEX is intended to facilitate multi-organization, multi-objective tabletop emergency response exercises that permit players to participate from their own facility's incident command center. This report is based on experience during its first use during the FluNami 2007 exercise, which took place from September 19-October 17, 2007. FluNami 2007 exercised the response of local public health officials and hospitals to a hypothetical pandemic flu outbreak. The underlying purpose of the DISTEX method is to make tabletop exercising more effective and more convenient for playing organizations. It combines elements of traditional tabletop exercising, such as scenario discussions and scenario injects, with distance learning technologies. This distance-learning approach also allows playing organizations to include a broader range of staff in the exercise. An average of 81.25 persons participated in each weekly webcast session from all playing organizations combined. The DISTEX method required development of several components. The exercise objectives were based on the U.S. Department of Homeland Security's Target Capabilities List. The ten playing organizations included four public health departments and six hospitals in the Chicago area. An extent-of-play agreement identified the objectives applicable to each organization. A scenario was developed to drive the exercise over its five-week life. Weekly problem-solving task sets were designed to address objectives that could not be addressed fully during webcast sessions, as well as to involve additional playing organization staff. Injects were developed to drive play between webcast sessions, and, in some cases, featured mock media stories based in part on player actions as identified from the problem-solving tasks. The weekly 90-minute webcast sessions were discussions among the playing organizations

  5. Non-thermal ablation of rabbit liver VX2 tumor by pulsed high intensity focused ultrasound with ultrasound contrast agent: Pathological characteristics

    Institute of Scientific and Technical Information of China (English)

    Cheng-Wen Zhou; Fa-Qi Li; Yan Qin; Chun-Mei Liu; Xiao-Lin Zheng; Zhi-Biao Wang

    2008-01-01

    AIM:To investigate the pathological characteristics of non-thermal damage induced by pulsed high intensity focused ultrasound (PHIFU) combined with ultrasound contrast agent (UCA),SonoVue (Bracco SpA,Milan,Italy) in rabbit liver VX2 tumor.METHODS:Liver VX2 tumor models were established in 20 rabbits,which were divided randomly into PHIFU combined with ultrasound contrast agent group (PHIFU + UCA group) and sham group.In the PHIFU + UCA group,0.2 mL of SonoVue was injected intravenously into the tumor,followed by ultrasound exposure of Isp 5900 W/cm2.The rabbits were sacrificed one day after ultrasound exposure.Specimens of the exposed tumor tissues were obtained and observed pathologically under light microscope and transmission electron microscope.The remaining tumor tissues were sent for 2,3,5-Triphenyltetrazolium chloride (TTC) staining.RESULTS:Before TTC staining,tumor tissues in both the sham and the PHIFU + UCA groups resembled gray fish meat.After TTC staining,the tumor tissues were uniformly stained red,with a clear boundary between tumor tissue and normal tissue.Histological examination showed signs of tumor cell injury in PHIFU + UCA group,with cytoplasmic vacuoles of various sizes,chromatin margination and karyopyknosis.Electron microscopic examination revealed tumor cell volume reduction,karyopyknosis,chromatin margination,intercellular space widening,the presence of high electron-density apoptotic bodies and vacuoles in cytoplasm.CONCLUSION:The non-thermal effects of PHIFU combined with UCA can be used to ablate rabbit liver VX2 tumors.

  6. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  7. The safety and efficacy of combined autologous concentrated bone marrow grafting and low-intensity pulsed ultrasound in the treatment of osteonecrosis of the femoral head.

    Science.gov (United States)

    Mishima, Hajime; Sugaya, Hisashi; Yoshioka, Tomokazu; Aoto, Katsuya; Wada, Hiroshi; Akaogi, Hiroshi; Ochiai, Naoyuki

    2016-04-01

    Osteonecrosis of the femoral head (ONFH) is commonly treated with total hip arthroplasty; however, the disadvantages of this form of treatment, especially in young patients, include the need for revision arthroplasty. Here we describe a novel, combined approach to the treatment of ONFH based on autologous concentrated bone marrow grafting and low-intensity pulsed ultrasound (LIPUS). The 7 male and 7 female patients (mean age: 40 years; 22 hips) underwent autologous concentrated bone marrow grafting followed by 6 months of continuous LIPUS. The mean follow-up period was 26 months. We evaluated site-specific bacterial infection of the grafted bone marrow concentrate microbiologically and site-specific cancer by magnetic resonance imaging 24 months after grafting. All patients were assessed using the visual analogue scale (VAS) for pain and the Japanese Orthopedic Association (JOA) hip score. Clinical and plain radiographic evaluations were performed before grafting and at the most recent follow-up. Computed tomography (CT) scans were obtained before and 12 months after grafting. None of the grafted bone marrow concentrates were infected, and none of the patients developed a tumor at the treatment site. The VAS and JOA scores improved in all patients. Collapse progressed in 8 of the 22 hips, but none required total hip arthroplasty. The mean volume of new bone formation 12 months post-grafting as seen on CT was 1256 mm(3). New bone formation was observed in all patients. Our study demonstrates the safety and efficacy of autologous concentrated bone marrow grafting and LIPUS as a joint-preserving procedure for patients with ONFH.

  8. Intense pulsed light-assisted facile and agile fabrication of cobalt oxide/nickel cobaltite nanoflakes on nickel-foam for high performance supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kihun; Yu, Seongil [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Park, Sung-Hyeon [Department of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Kim, Hak-Sung, E-mail: kima@hanyang.ac.kr [Department of Mechanical Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of); Ahn, Heejoon, E-mail: ahn@hanyang.ac.kr [Department of Organic and Nano Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Institute of Nano Science and Technology, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-01-05

    Highlights: • The CoO/NiCo{sub 2}O{sub 4} nanoflakes are formed on Ni-foam substrate by IPL irradiation. • The nanoflakes are formed by IPL irradiation with an energy of 20 J cm{sup −2} for 15 ms. • The CoO/NiCo{sub 2}O{sub 4} nanoflakes exhibit a very high specific capacitance of 2163 Fg{sup −1}. • They show a good rate performance of 908 Fg{sup −1} even at 50 Ag{sup −1}. - Abstract: We report an extremely efficient method for fabricating high-performance supercapacitive CoO/NiCo{sub 2}O{sub 4} nanoflakes on Ni-foam substrate by using intense pulsed light (IPL) technology. Structural and morphological characterization is carried out using X-ray diffraction (XRD) and scanning and transmission electron microscopies (SEM and TEM). These reveal that hierarchically structured CoO/NiCo{sub 2}O{sub 4} nanoflakes of 150–200 nm in size and a thickness around 10 nm are formed on Ni-foam substrate by IPL irradiation with energy of 20 J cm{sup −2} for 15 ms. The electrochemical behavior of the composites is analyzed by cyclic voltammetry and galvanostatic charge–discharge experiments. The IPL-induced CoO/NiCo{sub 2}O{sub 4}/Ni-foam electrode exhibits a very high specific capacitance of 2163 Fg{sup −1} at a discharge current density of 1 Ag{sup −1} and a good rate performance of 908 Fg{sup −1} even at 50 Ag{sup −1}.

  9. Fiscal 1998 R and D report on femtosecond technology (power generation facility monitoring system using high- intensity X-ray pulse); 1998 nendo femuto byo technology no kenkyu kaihatsu (kokido X senb pulse riyo hatsuden shisetsu monitoring system no kenkyu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report reports the fiscal 1998 R and D result of Femtosecond Technology Research Association (FESTA) supported by NEDO. For creation of industrial basic technologies supporting the advanced information society in the 21st century, ultra-high speed electronics technology including new functions beyond the speed limit of conventional electronics technologies is indispensable. From such viewpoint, this R and D aims at establishment of the basic technology controlling conditions of beams and electrons in a femtosecond (10{sup -15}-10{sup -12} seconds) region. In development of the titled system, this R and D aims at generation of high-intensity X-ray pulse by interaction between femtosecond light pulse and high-density electron beam pulse, and development of measurement technology (non- stop inspection) of high-speed moving objects using such X- ray pulse. In fiscal 1998, this project succeeded in time stabilization of laser oscillators at a 100fs level and generation of low-emittance electron beam pulse through development of ultra-short pulse synchronization, laser stabilization and electron beam pulse generation technologies. (NEDO)

  10. Effects of errors in velocity tilt on maximum longitudinal compression during neutralized drift compression of intense beam pulses: I. general description

    Energy Technology Data Exchange (ETDEWEB)

    Kaganovich, Igor D., E-mail: ikaganov@pppl.gov [Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Massidda, Scott; Startsev, Edward A.; Davidson, Ronald C. [Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Vay, Jean-Luc [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Friedman, Alex [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States)

    2012-06-21

    Neutralized drift compression offers an effective means for particle beam pulse compression and current amplification. In neutralized drift compression, a linear longitudinal velocity tilt (head-to-tail gradient) is applied to the non-relativistic beam pulse, so that the beam pulse compresses as it drifts in the focusing section. The beam current can increase by more than a factor of 100 in the longitudinal direction. We have performed an analytical study of how errors in the velocity tilt acquired by the beam in the induction bunching module limit the maximum longitudinal compression. It is found that the compression ratio is determined by the relative errors in the velocity tilt. That is, one-percent errors may limit the compression to a factor of one hundred. However, a part of the beam pulse where the errors are small may compress to much higher values, which are determined by the initial thermal spread of the beam pulse. It is also shown that sharp jumps in the compressed current density profile can be produced due to overlaying of different parts of the pulse near the focal plane. Examples of slowly varying and rapidly varying errors compared to the beam pulse duration are studied. For beam velocity errors given by a cubic function, the compression ratio can be described analytically. In this limit, a significant portion of the beam pulse is located in the broad wings of the pulse and is poorly compressed. The central part of the compressed pulse is determined by the thermal spread. The scaling law for maximum compression ratio is derived. In addition to a smooth variation in the velocity tilt, fast-changing errors during the pulse may appear in the induction bunching module if the voltage pulse is formed by several pulsed elements. Different parts of the pulse compress nearly simultaneously at the target and the compressed profile may have many peaks. The maximum compression is a function of both thermal spread and the velocity errors. The effects of the

  11. IPL照射对皮肤结构和胶原蛋白表达影响的实验研究%Experimental Study of Skin Structure and Collagen Protein Biological Effect by Intense Pulsed Light

    Institute of Scientific and Technical Information of China (English)

    葛明盖; 党永岩; 顾军

    2012-01-01

    用强脉冲光照射SD (Sprague Dawley)背部皮肤后,通过HE染色观察皮肤组织学的改变,用RT-PCR观察皮肤Ⅰ型胶原蛋白mRNA的表达.定量分析皮肤Ⅰ型胶原蛋白蛋白质水平,为深入理解IPL治疗皮肤皱纹的作用机制提供分子生物学理论依据.%After Intense pulse light irradiation Sprague Dawley skin to evaluate the histological change of skin with HE stains,to quantitative analysis collagen protein of content. Confirm molecular biology mechanism of action for Intense pulse light on human skin.

  12. Authorized limits for disposal of PCB capacitors from Buildings 361 and 391 at Argonne National Laboratory, Argonne, Illinois.

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J.-J.; Chen, S.-Y.; Environmental Science Division

    2009-12-22

    This report contains data and analyses to support the approval of authorized release limits for the clearance from radiological control of polychlorinated biphenyl (PCB) capacitors in Buildings 361 and 391 at Argonne National Laboratory, Argonne, Illinois. These capacitors contain PCB oil that must be treated and disposed of as hazardous waste under the Toxic Substances Control Act (TSCA). However, they had been located in radiological control areas where the potential for neutron activation existed; therefore, direct release of these capacitors to a commercial facility for PCB treatment and landfill disposal is not allowable unless authorized release has been approved. Radiological characterization found no loose contamination on the exterior surface of the PCB capacitors; gamma spectroscopy analysis also showed the radioactivity levels of the capacitors were either at or slightly above ambient background levels. As such, conservative assumptions were used to expedite the analyses conducted to evaluate the potential radiation exposures of workers and the general public resulting from authorized release of the capacitors; for example, the maximum averaged radioactivity levels measured for capacitors nearest to the beam lines were assumed for the entire batch of capacitors. This approach overestimated the total activity of individual radionuclide identified in radiological characterization by a factor ranging from 1.4 to 640. On the basis of this conservative assumption, the capacitors were assumed to be shipped from Argonne to the Clean Harbors facility, located in Deer Park, Texas, for incineration and disposal. The Clean Harbors facility is a state-permitted TSCA facility for treatment and disposal of hazardous materials. At this facility, the capacitors are to be shredded and incinerated with the resulting incineration residue buried in a nearby landfill owned by the company. A variety of receptors that have the potential of receiving radiation exposures were

  13. Pulsed Optics

    Science.gov (United States)

    Hirlimann, C.

    Optics is the field of physics which comprises knowledge on the interaction between light and matter. When the superposition principle can be applied to electromagnetic waves or when the properties of matter do not depend on the intensity of light, one speaks of linear optics. This situation occurs with regular light sources such as light bulbs, low-intensity light-emitting diodes and the sun. With such low-intensity sources the reaction of matter to light can be characterized by a set of parameters such as the index of refraction, the absorption and reflection coefficients and the orientation of the medium with respect to the polarization of the light. These parameters depend only on the nature of the medium. The situation changed dramatically after the development of lasers in the early sixties, which allowed the generation of light intensities larger than a kilowatt per square centimeter. Actual large-scale short-pulse lasers can generate peak powers in the petawatt regime. In that large-intensity regime the optical parameters of a material become functions of the intensity of the impinging light. In 1818 Fresnel wrote a letter to the French Academy of Sciences in which he noted that the proportionality between the vibration of the light and the subsequent vibration of matter was only true because no high intensities were available. The intensity dependence of the material response is what usually defines nonlinear optics.

  14. 低强度脉冲中子束的数字式n/γ分辨测量%Digital n/γ discrimination measurement of low intensity pulsed neutron

    Institute of Scientific and Technical Information of China (English)

    田耕; 欧阳晓平; 渠红光; 张显鹏; 刘金良; 李海涛

    2015-01-01

    Background: The traditional measurement methods in which the detectors are working in counting mode or current mode all have limitations in the measurement of low intensity pulsed neutron.Purpose: We aim to establish a method for low intensity pulsed neutron measurement to acquire the spectra of energy and time by digitalizing and analyzing the fast current pulse generated by detector as each single neutron induced.Methods: A digital pulse shape discrimination (DPSD) system for low intensity pulsed neutron measurement has been developed, which employs wideband digital oscilloscope as data acquisition device. With BC501A liquid scintillator detector, the system can acquire and store the waveforms of neutrons andγ-rays, and discriminate neutrons from all waveforms by DPSD algorithms. The system has two operation modes as “continuous acquisition” and “acquisition window with time stamp” for different event rates according to the intensity of pulsed neutron.Results: The function of pulse height analysis of neutrons is achieved, and time information of neutron’s arriving can be acquired by the analysis of the position of the waveform in the record or the time stamps. Experiment has been carried out with Am-Be neutron source with the operation mode of acquisition window, and the neutron pulse height spectrum, time spectrum and n/γ discrimination spectrum have been acquired.Conclusion: The spectra of energy and time of low intensity pulsed neutron can be measured by the digital method which employees wideband digital oscilloscope and digital signal processing algorithms, and has the advantage that all original waveforms of neutrons andγ-rays can be stored for further analysis.%针对低强度脉冲中子束测量,使用高速数字示波器作为数据采集设备,配合BC501A液体闪烁体探测器组建了数字式脉冲形状甄别(Digital Pulse Shape Discrimination, DPSD)测量系统,实现了中子的n/γ分辨测量。系统工作时采集并存

  15. PHASE II VAULT TESTING OF THE ARGONNE RFID SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Willoner, T.; Turlington, R.; Koenig, R.

    2012-06-25

    The U.S. Department of Energy (DOE) (Environmental Management [EM], Office of Packaging and Transportation [EM-45]) Packaging and Certification Program (DOE PCP) has developed a Radio Frequency Identification (RFID) tracking and monitoring system, called ARG-US, for the management of nuclear materials packages during transportation and storage. The performance of the ARG-US RFID equipment and system has been fully tested in two demonstration projects in April 2008 and August 2009. With the strong support of DOE-SR and DOE PCP, a field testing program was completed in Savannah River Site's K-Area Material Storage (KAMS) Facility, an active Category I Plutonium Storage Facility, in 2010. As the next step (Phase II) of continued vault testing for the ARG-US system, the Savannah River Site K Area Material Storage facility has placed the ARG-US RFIDs into the 910B storage vault for operational testing. This latest version (Mark III) of the Argonne RFID system now has the capability to measure radiation dose and dose rate. This paper will report field testing progress of the ARG-US RFID equipment in KAMS, the operability and reliability trend results associated with the applications of the system, and discuss the potential benefits in enhancing safety, security and materials accountability. The purpose of this Phase II K Area test is to verify the accuracy of the radiation monitoring and proper functionality of the ARG-US RFID equipment and system under a realistic environment in the KAMS facility. Deploying the ARG-US RFID system leads to a reduced need for manned surveillance and increased inventory periods by providing real-time access to status and event history traceability, including environmental condition monitoring and radiation monitoring. The successful completion of the testing program will provide field data to support a future development and testing. This will increase Operation efficiency and cost effectiveness for vault operation. As the next step

  16. Pulse on Pulse

    DEFF Research Database (Denmark)

    Schmidt, Ulrik; Carlson, Merete

    2012-01-01

    Pulse on Pulse” investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006-) by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy...... and pulsating ‘room’. Hence, the visitors in Pulse Room are invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic ‘rhythm of life’) and instants of pure material processuality...... a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, an anthropomorfized archive of a past intimacy and an all-encompassing immersive environment modulating continuously in real space-time....

  17. 强脉冲光美容效果的评价%Evaluation of the efficacy of intensive pulse light on facial beauty

    Institute of Scientific and Technical Information of China (English)

    赵小忠; 魏宁; 王一理; 纪彦林; 宋燕哲

    2009-01-01

    Objective To assess the efficacy and safety of intensive pulse light (IPL) device for facial rejuvenation and the treatment of hyperpigmented lesions, facial telangiectasias, acne vulgaris and hair removal. Methods One hundred females who claim to improve their skin texture, hair re-moval and patients with hyperpigmented lesions, facial telangiectasias and acne vulgaris were treated with IPL device. Patients received five treatments with the time interval of 3 weeks to 1 month. Pho-tographs were assessed 1 month after the last treatment. Results For facial skin texture, the total im-provement were scored 100 %. For hyperpigmented lesions and facial telangiectasias, the total im-provement reached to 90%. For ache vulgaris, the total improvement reached to 75 %. For hair re-moval, the total improvement was 95 %. Conclusion The IPL device is an effective and safe modality for the improvement of skin texture, hyperpigmented lesions, facial telangiectasias and hair removal, and a novel modality for the treatment of acne vulgaris.%目的 观察强脉冲光对皮肤表浅色索性和血管性疾病、寻常痤疮的疗效;评价其嫩肤美容及脱毛的疗效.方法 采用GP666型强脉冲光(IPL)治疗仪对皮肤老化、面部色沉性皮损、皮肤毛细血管扩张、寻常痤疮及多毛症各20例共100例进行治疗,光子嫩肤每3周治疗1次.5次为1个疗程;脱毛每月治疗1次.结果 经5次治疗,色素病和血管病有效率为9O%,痤疮疗效为75%,美容效果为100%.脱毛效果为90%.无不可逆不良反应发生.结论 IPL能有效治疗皮肤浅表色素沉着性皮损和毛细血管扩张;有较好的美容效果;脱毛效果肯定.

  18. Argonne National Laboratory summary site environmental report for calendar year 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; ESH/QA Oversight

    2008-03-27

    This booklet is designed to inform the public about what Argonne National Laboratory is doing to monitor its environment and to protect its employees and neighbors from any adverse environmental impacts from Argonne research. The Downers Grove South Biology II class was selected to write this booklet, which summarizes Argonne's environmental monitoring programs for 2006. Writing this booklet also satisfies the Illinois State Education Standard, which requires that students need to know and apply scientific concepts to graduate from high school. This project not only provides information to the public, it will help students become better learners. The Biology II class was assigned to condense Argonne's 300-page, highly technical Site Environmental Report into a 16-page plain-English booklet. The site assessment relates to the class because the primary focus of the Biology II class is ecology and the environment. Students developed better learning skills by working together cooperatively, writing and researching more effectively. Students used the Argonne Site Environmental Report, the Internet, text books and information from Argonne scientists to help with their research on their topics. The topics covered in this booklet are the history of Argonne, groundwater, habitat management, air quality, Argonne research, Argonne's environmental non-radiological program, radiation, and compliance. The students first had to read and discuss the Site Environmental Report and then assign topics to focus on. Dr. Norbert Golchert and Mr. David Baurac, both from Argonne, came into the class to help teach the topics more in depth. The class then prepared drafts and wrote a final copy. Ashley Vizek, a student in the Biology class stated, 'I reviewed my material and read it over and over. I then took time to plan my paper out and think about what I wanted to write about, put it into foundation questions and started to write my paper. I rewrote and revised so I

  19. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  20. Effect Comparison of Intense Pulsed Light and Red Light Irradiation for the Treatment of Acne Mark%强脉冲光与红光照射治疗痤疮后印迹的效果对比

    Institute of Scientific and Technical Information of China (English)

    邓景航; 王菲; 黄茂芳

    2014-01-01

    Objective:To do effect comparison on intense pulsed light and red light irradiation for the treatment of acne mark. Methods:The study group were treated with intense pulsed light treatment, the control group were treated with red light irradiation, respectively. After a period of treatment, therapeutic effect was obvious. Results:In the use of intense pulsed light, 36 cases completely cured, 13 cases cured effectively and 2 cases cured invalidly, and the total efficiency of 96.07%; In the control group, 31 cases completely cured, 12 cases cured effectively, 8 cases cured invalidly, and the total efficiency was 84.31%. There was significant difference between two groups in the effective rate and the total efficiency. Conclusion:Intense pulsed light irradiation has the relatively same effect as red intense pulsed light therapy.%目的:强脉冲光与红光照射治疗痤疮后印迹的效果比较。方法:观察组使用强脉冲光进行治疗,对照组使用红光照射进行治疗,分别治疗一个疗程以后比较治疗效果。结果:在使用强脉冲光的观察组的例患者中,完全治愈的有36例,有效的为13例,无效的有2例,总有效率96.07%;在使用红光照射的对照组的例患者中,完全治愈的有31例,有效的为12例,无效的有8例,总有效率84.31%,两组在显效率及总有效率两方面比较差异无统计学意义。结论:强脉冲光与红光照射治疗痤疮后印迹的效果相当。

  1. Optimization of nuclear magnetic resonance refocusing pulses to enhance signal intensity in gradient B0 field∗%优化重聚脉冲提高梯度场核磁共振信号强度*

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    It is an efficient protocol to use the refocusing flip angle pulse optimization technique to solve special engineering technical problems in nuclear magnetic resonance (NMR) measurements. By reducing RF pulse duration, the low refocusing flip angle pulses can consume lower power, satisfy specific absorption rate of samples, and improve signal-to-noise ratio as well. To further analyze the function mechanism of pulse angles, the dependence of signal intensity on RF pulse is studied in homogenous magnetic field and constant gradient magnetic field respectively. Afterwards, echo amplitudes with various tip angles and flip angles ranging from 0◦ to 180◦ are compared with conventional sequence of 90◦ pulse followed by 180◦ pulses theoretically and experimentally. For the constant gradient field, the refocusing pulse of flip angle can be as low as 140◦, defined as the optimum herein, to obtain the strongest signal intensity, enhanced by 13%compared with that of 180◦. Moreover, T1 distributions measured by the conventional and optimal sequences for distilled water at room temperature are compared, and good conformances of T1 between the two pulse sequences are obtained, which demonstrates the optimal refocusing pulse can be directly applied to T1 measurement. The results provide constructive suggestion for designing pulse sequences for signal intensity enhancement in NMR logging while drilling and NMR online quick analysis.%  缩短射频脉冲宽度,有助于解决脉冲电力消耗大、样品吸收率高、信噪比低等极端条件核磁共振探测的关键问题。本文首先分析射频脉冲角度对核磁共振自旋回波信号强度的影响机理,基于Bloch方程推导了回波信号幅度与扳转角、重聚角的关系。在特制核磁共振分析仪上采用变脉冲角度技术,分别在均匀磁场和梯度磁场条件下实现对扳转角和重聚角与回波信号强度关系的数值模拟和实验测量。结果表明,

  2. Assessment of intense pulsed light in the treatment of erythromelanosis follicularis faciei et colli%强脉冲光治疗面颈部毛囊性红斑黑变病疗效评价

    Institute of Scientific and Technical Information of China (English)

    屈慧明; 王娜; 张衍国

    2015-01-01

    目的::评价强脉冲光治疗面颈部毛囊红斑黑变病的疗效。方法:采用强脉冲光治疗15例患者,波长560~585 nm,脉宽20~40 ms,能量密度18~23 J/cm2,每4周治疗1次,共治疗3~8次。结果:痊愈3例,显效7例,好转4例,无效1例,有效率为66.67%。治疗后15例患者均无疤痕形成。结论:强脉冲光治疗面颈部毛囊红斑黑变病安全有效。%Objective: To assess the efficacy of intense pulsed light in the treatment of erythromelanosis follicularis faciei et colli. Methods:Fifteen patients were treated with intense pulsed light ( wavelengths 560-585 nm, pulse-band 20-30 ms and energy density 18-23 J/cm2 ) , once every 4 weeks for 3-8 times. Re-sults:Three patients were cured, 7 were significantly improved, 4 were improved and 1 was ineffective. The effective rate was 66.67%. There was no scar in all the 15 patients. Conclusion:Intense pulsed light is effec-tive and safe in the treatment of erythromelanosis follicularis faciei et colli.

  3. Laser e luz pulsada de alta energia: indução e tratamento de reações alérgicas relacionadas a tatuagens Laser and intense pulsed light: induction and treatment of allergic reactions related to tattoos

    Directory of Open Access Journals (Sweden)

    Tatiana Sacks

    2004-12-01

    Full Text Available Os autores apresentam dois casos de reações alérgicas relacionadas a tatuagens, em que o laser e a luz pulsada de alta energia tiveram papel fundamental na indução e no tratamento dessas reações. No primeiro, houve surgimento de lesão eczematosa no local do pigmento vermelho utilizado na tatuagem. Após várias tentativas terapêuticas, a luz pulsada de alta energia foi utilizada com sucesso na remoção do pigmento e desaparecimento dos sintomas. No segundo, os autores demonstram um caso de reação anafilática induzida pelo laser Nd:YAG de pulso longo.The authors describe two cases of allergic reactions related to tattoos, in which laser and intense pulsed light had an important role in inducing and treating these allergic reactions. In the first case, the patient developed eczematous lesions at the site of the red pigment used in tattooing. After several unsuccessful therapeutic attempts, intense pulsed light was used. It successfully removed the red pigment and treated the allergy symptoms. In the second case, the authors describe a case of anaphylactic reaction precipitated by the long pulse Nd:YAD laser.

  4. Spent fuel treatment and mineral waste form development at Argonne National Laboratory-West

    Energy Technology Data Exchange (ETDEWEB)

    Goff, K.M.; Benedict, R.W.; Bateman, K. [Argonne National Lab., Idaho Falls, ID (United States); Lewis, M.A.; Pereira, C. [Argonne National Lab., IL (United States); Musick, C.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1996-07-01

    At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Conditioning Facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. Both mineral and metal high-level waste forms will be produced. The mineral waste form will contain the active metal fission products and the transuranics. Cold small-scale waste form testing has been on-going at Argonne in Illinois. Large-scale testing is commencing at ANL-West.

  5. Ionization of oriented targets by intense circularly polarized laser pulses: Imprints of orbital angular nodes in the two-dimensional momentum distribution

    DEFF Research Database (Denmark)

    Martiny, Christian; Abu-Samha, Mahmoud; Madsen, Lars Bojer

    2010-01-01

    We solve the three-dimensional time-dependent Schrödinger equation for a few-cycle circularly polarized femtosecond laser pulse that interacts with an oriented target exemplified by an argon atom, initially in a 3px or 3py state. The photoelectron momentum distributions show distinct signatures......, we show that ionization by a circularly polarized pulse completely maps out the angular nodal structure of the initial state, thus providing a potential tool for studying orbital symmetry in individual systems or during chemical reactions....

  6. 强脉冲光脱毛和半导体激光脱毛临床疗效分析%Comparative evaluation of intense pulsed light and diode (810 nm) laser for hair removal

    Institute of Scientific and Technical Information of China (English)

    姜莉; 苏明山; 涂平

    2011-01-01

    目的 评价强脉冲光脱毛及半导体激光脱毛临床疗效.方法 61例随机分为两组,36例为强脉冲光进行脱毛治疗组,25例为半导体激光进行脱毛治疗组.每次治疗间隔8周,总计治疗3次,治疗3个月后评价总疗效.结果 强脉冲光和半导体激光都使毛发数量明显减少.强脉冲光治疗组的有效率为80.6%,半导体激光治疗组的有效率为76.0%,经x2检验,两组治疗方法 有效率间比较差异无统计学意义(P>0.05).结论 强脉冲光脱毛与半导体激光脱毛同样有效.%Objective To evaluate the efficacy and safety of intense pulsed light and diode laser for axillary hair removal. Methods Clinical trials on 61 persons using intense pulsed light and diode laser to depilate axillary hairs were conducted. 36 persons were treated by IPL and 25 persons by diode laser.Treatments were carried out in three times at 8-week intervals, and a final assessment was made 3 months following the third theatment. Results Both IPL and diode laser reduced the hair count substantially! the IPL group effective rates were 80. 6 % and the diode laser group, 76. 0 %. They had no statistical significance was (P>0. 05)). Conclusions Intense pulsed light and diode laser are effiective and safe for hair removal.

  7. Clinical effects of intense pulsed light on superficial strawberry hemangioma in proliferative phase%强脉冲光治疗增生期浅表草莓状血管瘤疗效观察

    Institute of Scientific and Technical Information of China (English)

    殷佳鹏; 郭耐强; 林菊丽; 陈宝清

    2010-01-01

    目的 观察强脉冲光(intense pulsed light,IPL)治疗婴幼儿增生期浅表草莓状血管瘤的治疗效果.方法 采用Queen IPL系统,选择合适的能量及间隔时间治疗68例婴幼儿增生期浅表草莓状血管瘤,并进行疗效评定.结果 总有效率为76.47%,少数患儿在治疗过程中出现水泡、色素沉着等不良反应.结论 IPL可以作为婴幼儿增生期浅表草莓状血管瘤的前期治疗方案.%Objective To evaluate the clinical effect of intense pulsed light(IPL) on infantile superficial strawberry hemangioma in proliferative phase.Methods 68 patients,with age range from 1 day to 24 months,received IPL therapy with a proper energy and intervals.The therapeutic effects of the patients were evaluated through comparison of the photographs before and after treatment.Results AII patients with IPL therapy had a general effective rate of 76.47%.Few patients had adverse effects such as burned vesicle, hyperpigmentation,etc.Conclusion The intense pulsed light can be used as an earlier therapeutic scheme for infantile superficial strawberry hemangioma in proliferative phase.

  8. Generation of shock fronts in the interaction of short pulses of intense laser light in supercritical plasma; Generacion de frentes de choque en la interaccion de pulsos cortos de luz laser intensa en plasmas supercriticos

    Energy Technology Data Exchange (ETDEWEB)

    Lopez V, V.E. [ITESST, 52650 Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    The investigation of the laser interaction with plasma has been carried out mainly in laboratories of Europe, Japan and United States during the last decades. This studies concern the propagation of intense light laser in a non homogeneous plasma, the radiation absorption and the generation of suprathermal electrons, among others. Numerical simulations made by Denavit, for radiation pulses for up of 10{sup 20} W/cm{sup 2} on solid targets, have allowed to observe the generation of ionic crash fronts with high propagation speeds. In this work it is expanded the study of this effect through algorithms of particles simulation. (Author)

  9. Computation of Two-Body Matrix Elements From the Argonne $v_{18}$ Potential

    CERN Document Server

    Mihaila, B; Mihaila, Bogdan; Heisenberg, Jochen H.

    1998-01-01

    We discuss the computation of two-body matrix elements from the Argonne $v_{18}$ interaction. The matrix elements calculation is presented both in particle-particle and in particle-hole angular momentum coupling. The procedures developed here can be applied to the case of other NN potentials, provided that they have a similar operator format.

  10. Argonne National Laboratory-East site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N.W.; Kolzow, R.G. [Environmental Management Operation, Argonne National Lab., IL (United States)

    1996-09-01

    This report presents the environmental report for the Argonne National Laboratory-East for the year of 1995. Topics discussed include: general description of the site including climatology, geology, seismicity, hydrology, vegetation, endangered species, population, water and land use, and archaeology; compliance summary; environmental program information; environmental nonradiological program information; ground water protection; and radiological monitoring program.

  11. Applied mathematical sciences research at Argonne, April 1, 1981-March 31, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, G.W. (ed.)

    1982-01-01

    This report reviews the research activities in Applied Mathematical Sciences at Argonne National Laboratory for the period April 1, 1981, through March 31, 1982. The body of the report discusses various projects carried out in three major areas of research: applied analysis, computational mathematics, and software engineering. Information on section staff, visitors, workshops, and seminars is found in the appendices.

  12. Bush will tour Illionois lab working to fight terrorism Argonne develops chemical detectors

    CERN Multimedia

    2002-01-01

    "A chemical sensor that detects cyanide gas, a biochip that can determine the presence of anthrax, and a portable device that finds concealed nuclear materials are among the items scientists at Argonne National Laboratory are working on to combat terrorism" (1/2 page).

  13. Quality management at Argonne National Laboratory: Status, accomplishments, and lessons learned

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    In April 1992, Argonne National Laboratory (ANL) launched the implementation of quality management (QM) as an initiative of the Laboratory Director. The goal of the program is to seek ways of improving Laboratory performance and effectiveness by drawing from the realm of experiences in the global total quality management movement. The Argonne QM initiative began with fact finding and formulating a strategy for implementation; the emphasis is that the underlying principles of QM should be an integral part of how the Laboratory is managed and operated. A primary theme that has guided the Argonne QM initiative is to consider only those practices that offer the potential for real improvement, make sense, fit the culture, and would be credible to the broad population. In October 1993, the Laboratory began to pilot a targeted set of QM activities selected to produce outcomes important to the Laboratory--strengthening the customer focus, improving work processes, enhancing employee involvement and satisfaction, and institutionalizing QM. This report describes the results of the just-concluded QM development and demonstration phase in terms of detailed strategies, accomplishments, and lessons learned. These results are offered as evidence to support the conclusion that the Argonne QM initiative has achieved value-added results and credibility and is well positioned to support future deployment across the entire Laboratory as an integrated management initiative. Recommendations for follow-on actions to implement future deployment are provided separately.

  14. Argonne National Laboratory research to help U.S. steel industry

    CERN Multimedia

    2003-01-01

    Argonne National Laboratory has joined a $1.29 million project to develop technology software that will use advanced computational fluid dynamics (CFD), a method of solving fluid flow and heat transfer problems. This technology allows engineers to evaluate and predict erosion patterns within blast furnaces (1 page).

  15. Update on intrusive characterization of mixed contact-handled transuranic waste at Argonne-West

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, C.C.; Jensen, B.A.; Bryngelson, C.D.; Duncan, D.S.

    1997-02-03

    Argonne National Laboratory and Lockheed Martin Idaho Technologies Company have jointly participated in the Department of Energy`s (DOE) Waste Isolation Pilot Plant (WIPP) Transuranic Waste Characterization Program since 1990. Intrusive examinations have been conducted in the Waste Characterization Area, located at Argonne-West in Idaho Falls, Idaho, on over 200 drums of mixed contact-handled transuranic waste. This is double the number of drums characterized since the last update at the 1995 Waste Management Conference. These examinations have provided waste characterization information that supports performance assessment of WIPP and that supports Lockheed`s compliance with the Resource Conservation and Recovery Act. Operating philosophies and corresponding regulatory permits have been broadened to provide greater flexibility and capability for waste characterization, such as the provision for minor treatments like absorption, neutralization, stabilization, and amalgamation. This paper provides an update on Argonne`s intrusive characterization permits, procedures, results, and lessons learned. Other DOE sites that must deal with mixed contact-handled transuranic waste have initiated detailed planning for characterization of their own waste. The information presented herein could aid these other storage and generator sites in further development of their characterization efforts.

  16. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  17. Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: Dependence of the laser-intensity profile on beam propagation

    Energy Technology Data Exchange (ETDEWEB)

    Richou, B.; Richou, J. [Laboratoire d` Optoelectronique, Faculte des Sciences, Universite de Toulon et du Var, BP 132, La Garde 83957 (France); Schertz, I.; Gobin, I. [Commissariat a l`Energie Atomique/Vaujours, Moronvilliers, BP 7, Courtry 77181 (France)

    1997-03-01

    A large-core multimode optical fiber of a few meters length is studied as a 10-MW beam delivery system for a 15-ns pulsed Nd:YAG laser. A laser-to-fiber vacuum coupler is used to inhibit air breakdown and reduce the probability of dielectric breakdown on the fiber front surface. Laser-induced damage inside the fiber core is observed behind the fiber front surface. An explanation based on a high power density is illustrated by a ray trace. Damaged spots and measurements of fiber output energies are reported for two laser beam distributions: a flat-hat type and a near-Gaussian type. Experiments have been performed to deliver a 100-pulse mean energy between 100 and 230 mJ without catastrophic damage. {copyright} 1997 Optical Society of America

  18. Delivery of 10-MW Nd:YAG laser pulses by large-core optical fibers: dependence of the laser-intensity profile on beam propagation.

    Science.gov (United States)

    Richou, B; Schertz, I; Gobin, I; Richou, J

    1997-03-01

    A large-core multimode optical fiber of a few meters length is studied as a 10-MW beam delivery system for a 15-ns pulsed Nd:YAG laser. A laser-to-fiber vacuum coupler is used to inhibit air breakdown and reduce the probability of dielectric breakdown on the fiber front surface. Laser-induced damage inside the fiber core is observed behind the fiber front surface. An explanation based on a high power density is illustrated by a ray trace. Damaged spots and measurements of fiber output energies are reported for two laser beam distributions: a flat-hat type and a near-Gaussian type. Experiments have been performed to deliver a 100-pulse mean energy between 100 and 230 mJ without catastrophic damage.

  19. Temperature-dependent photovoltage response in La0.9Li0.1MnO3/SrTiO3-Nb heterojunction induced by a low intensity pulse laser

    Science.gov (United States)

    Wang, Jianyuan; Bai, Jianying; Xing, Hui; Wang, Shuanhu; Wang, Min; Jin, Kexin; Chen, Changle

    2017-02-01

    The photovoltage response under low intensity pulse laser (473 nm) in the perovskite manganite p-n junction La0.9Li0.1MnO3/SrTiO3:Nb is investigated within a wide temperature range. The maximum photovoltage occurs at around the metal-insulator transition temperature (TMI, 250 K) of La0.9Li0.1MnO3 rather than the lowest temperature, which indicates that the low density charge induced by a weak light can be significantly affected by the leakage rather than the thermal carriers. Moreover, the time response of photovoltage shows distinct temperature-dependent and light intensity-dependent regularities in the temperature regions TTMI respectively. The mechanisms are discussed according to the charge transport and magnetic phase transition of La0.9Li0.1MnO3.

  20. Tunable broadband intense IR pulse generation at non-degenerate wavelengths using group delay compensation in a dual-crystal OPA scheme.

    Science.gov (United States)

    Rezvani, Seyed Ali; Zhang, Qingbin; Hong, Zuofei; Lu, Peixiang

    2016-05-16

    A robust group delay compensated dual-crystal optical parametric amplification (DOPA) scheme is proposed that will be used to prove the positive effect of group delay compensation on a DOPA as predicted by the simulations in the previously published literature. Through simple adjustments, it is also capable of providing 20 fs pulses (theoretically compressible to 12 fs, corresponding to sub-four-cycle for 1300 nm components), broadband IR pulses at non-degenerate wavelengths using short pulse (broadband) pump laser. In our table-top DOPA system, group delay compensation has been realized using a simple optical crystal. Our design provides output power in order of 100 mW. We managed to achieve minimum 20 nm improvement on the bandwidth, compared to single-crystal OPA (SOPA) structure whilst keeping total conversion efficiency above 30%. Adjusting our configuration by optimizing the phase-matching angles of the two BBO crystals, we also have realized a practical scheme that benefitting from group delay compensation can obtain 75 nm bandwidth improvement while keeping the conversion efficiency constant. This achievement will open the doors to the realm of multiple crystals OPA systems and provide a solution to the imposed limitation on the effective lengths of applicable non-linear crystals and hence limited power gain of such broadband OPA systems.