WorldWideScience

Sample records for argonne high flux reactor

  1. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  2. The BR2 high-flux reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ponsard, Bernard [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium). BR2 Reactor

    2012-10-15

    The BR2 reactor is a 100 MW{sub th} High-Flux 'Material Testing Reactor' which first became operational in 1963 and has since been refurbished in 1995 to 1997. It is operated by the Belgian Nuclear Research Centre, SCK CEN, in the framework of programmes related to the development of structural materials and nuclear fuels for fission and fusion reactors. Serious maintenance efforts are currently made by SCK CEN to secure its safe operation until at least 2023. This would guarantee the continuity of the activities in which the BR2 reactor is involved through its replacement by an Accelerator Driven System (ADS), MYRRHA, scheduled to be operated by SCK CEN from 2023. (orig.)

  3. HFBR handbook, 1992: High flux beam reactor

    International Nuclear Information System (INIS)

    Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance

  4. Annual Report 1991. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    In 1991 the operation of the High Flux Reactor was carried out as planned. The availability was more than 100% of scheduled operating time. The average utilization of the reactor was 69% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. Development activities addressed upgrading of irradiation devices, neutron capture therapy, neutron radiography and neutron transmutation doping of silicon. General activities in support of running irradiation programmes progressed in the normal way

  5. Annual report 1990. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    In 1990 the operation of the High Flux Reactor was carried out as planned. The availability was 96% of scheduled operating time. The average utilization of the reactor was 71% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  6. Annual progress report 1988, operation of the high flux reactor

    International Nuclear Information System (INIS)

    In 1988 the High Flux Reactor Petten was routinely operated without any unforeseen event. The availability was 99% of scheduled operation. Utilization of the irradiation positions amounted to 80% of the practical occupation limit. The exploitation pattern comprised nuclear energy deployment, fundamental research with neutrons, and radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  7. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buxbaum, Robert

    2010-06-30

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  8. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  9. Fabrication of control rods for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A

  10. Fabrication of control rods for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  11. Neutron diffraction facilities at the high flux reactor, Petten

    Science.gov (United States)

    Ohms, C.; Youtsos, A. G.; Bontenbal, A.; Mulder, F. M.

    2000-03-01

    The High Flux Reactor in Petten is equipped with twelve beam tubes for the extraction of thermal neutrons for applications in materials and medical science. Beam tubes HB4 and HB5 are equipped with diffractometers for residual stress and powder investigations. Recently at HB4 the Large Component Neutron Diffraction Facility has been installed. It is a unique facility with respect to its capability of handling heavy components up to 1000 kg in residual stress testing. Its basic features are described and the first applications on thick piping welds are shown. The diffractometer at HB5 can be set up for powder and stress measurements. Recent applications include temperature dependent measurements on phase transitions in intermetallic compounds and on Li ion energy storage materials.

  12. High Flux Isotope Reactor system RELAP5 input model

    International Nuclear Information System (INIS)

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model

  13. High Flux Isotope Reactor system RELAP5 input model

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  14. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  15. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH2) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  16. Dhruva reactor -- a high flux facility for neutron beam research

    International Nuclear Information System (INIS)

    Dhruva reactor, the highest flux thermal neutron source in India has been operating at full power of 100 MW over the past two years. Several advanced facilities like the cold source, guides, etc. are being installed for neutron beam research in condensed matter. A large number and variety of neutron spectrometers are operational. This paper deals with the basic advantages that one can derive from neutron scattering investigations and gives a brief description of the instruments that are developed and commissioned at Dhruva for neutron beam research. (author). 3 figs

  17. High flux testing reactor Petten. Replacement of the reactor vessel and connected components. Overall report

    International Nuclear Information System (INIS)

    The project of replacing the HFR originated in 1974 when results of several research programmes confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report contains the detailed chronology of events concerning preparation and execution of the replacement. After a 14 months' outage the reactor resumed routine operation on 14th February, 1985. At the end of several years of planning and preparation the reconstruction proceded in the following steps: unloading of the old core, decay of short-lived radioactivity in December 1983, removal of the old tank and of its peripheral equipment in January-February 1984, segmentation and waste disposal of the removed components in March-April, decontamination of the pools, bottom penetration overhauling in May-June, installation of the new tank and other new components in July-September, testing and commissioning, including minor modifications in October-December, and, trials runs and start-up preparation in January-February 1985. The new HFR Petten features increased and improved experimental facilities. Among others the obsolete thermal columns was replaced by two high flux beam tubes. Moreover the new plant has been designed for future increases of reactor power and neutron fluxes. For the next three to four years the reactor has to cope with a large irradiation programme, claiming its capacity to nearly 100%

  18. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the calculated lower

  19. Dissolution Flowsheet for High Flux Isotope Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Rudisill, T. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); O' Rourke, P. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Karay, N. S [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-27

    As part of the Spent Nuclear Fuel (SNF) processing campaign, H-Canyon is planning to begin dissolving High Flux Isotope Reactor (HFIR) fuel in late FY17 or early FY18. Each HFIR fuel core contains inner and outer fuel elements which were fabricated from uranium oxide (U3O8) dispersed in a continuous Al phase using traditional powder metallurgy techniques. Fuels fabricated in this manner, like other SNF’s processed in H-Canyon, dissolve by the same general mechanisms with similar gas generation rates and the production of H2. The HFIR fuel cores will be dissolved and the recovered U will be down-blended into low-enriched U. HFIR fuel was previously processed in H-Canyon using a unique insert in both the 6.1D and 6.4D dissolvers. Multiple cores will be charged to the same dissolver solution maximizing the concentration of dissolved Al. The objective of this study was to identify flowsheet conditions through literature review and laboratory experimentation to safely and efficiently dissolve the HFIR fuel in H-Canyon. Laboratory-scale experiments were performed to evaluate the dissolution of HFIR fuel using both Al 1100 and Al 6061 T6 alloy coupons. The Al 1100 alloy was considered a representative surrogate which provided an upper bound on the generation of flammable (i.e., H2) gas during the dissolution process. The dissolution of the Al 6061 T6 alloy proceeded at a slower rate than the Al 1100 alloy and was used to verify that the target Al concentration in solution could be achieved for the selected Hg concentration. Mass spectrometry and Raman spectroscopy were used to provide continuous monitoring of the concentration of H2 and other permanent gases in the dissolution offgas allowing the development of H2 generation rate profiles. The H2 generation rates were subsequently used to evaluate if a full HFIR core could be dissolved in an H-Canyon dissolver without exceeding 60% of the calculated lower

  20. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    International Nuclear Information System (INIS)

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report

  1. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  2. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews

  3. Operating manual for the High Flux Isotope Reactor: operating procedures

    International Nuclear Information System (INIS)

    Procedures are presented for reactor operation; instrumentation and control; reactor components; research facilities; cooling systems; containment heating, venting, and air conditioning; emergency procedures; waste systems; on-site utilities; records and data accumulation; auxiliary equipment; and technical specification requirements

  4. COMPARISON OF COOLING SCHEMES FOR HIGH HEAT FLUX COMPONENTS COOLING IN FUSION REACTORS

    Directory of Open Access Journals (Sweden)

    Phani Kumar Domalapally

    2015-04-01

    Full Text Available Some components of the fusion reactor receives high heat fluxes either during the startup and shutdown or during the operation of the machine. This paper analyzes different ways of enhancing heat transfer using helium and water for cooling of these high heat flux components and then conclusions are drawn to decide the best choice of coolant, for usage in near and long term applications.

  5. The response time analysis of high log neutron flux rate for heavy water reactors

    International Nuclear Information System (INIS)

    The heavy water reactor such as Wolssung no. 1 has a protection/safety system named special safety system. The system has four safety systems ; shutdown no. 1, shutdown no. 2, emergency core cooling system and containment system. In this paper, the response time of high log neutron flux rate, one of the reactor trip loops of shutdown no.1/no.2, was analysed based on the description of final safety analysis report and compared to the plant measurement

  6. 1980 Annual status report: operation of the high flux reactor

    International Nuclear Information System (INIS)

    HFR Petten has been operated in 1980 in fulfilment of the 1980/83 JRC Programme Decision. Both reactor operation and utilization data have been met within a few percent of the goals set out in the annual working schedule, in support of a large variety of research programmes. Major improvements to experimental facilities have been introduced during the year and future modernization has been prepared

  7. Specifications for high flux isotope reactor fuel elements HFIR-FE-3

    International Nuclear Information System (INIS)

    This specification covers requirements for two types of aluminum-base fuel elements which together will be used as the fuel assembly in the High Flux Isotope Reactor (HFIR). Requirements are included for materials of construction, fabrication, assembly, inspection, and quality control to produce fuel elements in accordance with Company drawings

  8. Next generation fuel irradiation capability in the High Flux Reactor Petten

    Energy Technology Data Exchange (ETDEWEB)

    Fuetterer, Michael A., E-mail: michael.fuetterer@jrc.n [European Commission, Joint Research Centre, Institute for Energy (JRC-IE), P.O. Box 2, NL-1755 ZG Petten (Netherlands); D' Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco [European Commission, Joint Research Centre, Institute for Energy (JRC-IE), P.O. Box 2, NL-1755 ZG Petten (Netherlands); Raison, Philippe [European Commission, Joint Research Centre, Institute for Transuranium Elements (JRC-ITU), D-76334 Eggenstein-Leopoldshafen (Germany); Bakker, Klaas; Groot, Sander de; Klaassen, Frodo [Nuclear Research and consultancy Group (NRG), P.O. Box 25, NL-1755 ZG Petten (Netherlands)

    2009-07-15

    This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.

  9. Neutron spectra at different High Flux Isotope Reactor (HFIR) pressure vessel surveillance locations

    Energy Technology Data Exchange (ETDEWEB)

    Remec, I. [Josef Sefan Inst., Ljubljana (Slovenia); Kam, F.B. [Oak Ridge National Lab., TN (United States)

    1993-12-01

    This project addresses the potential problem of radiation embrittlement of reactor pressure vessel (RPV) supports. Surveillance specimens irradiated at the High Flux Isotope Reactor (HFIR) at relatively low neutron flux levels (about 1.5E + 8 cm{sup {minus}2}.s{sup {minus}1}) and low temperatures (about 50{degrees}C) showed embrittlement more rapidly than expected. Commercial power reactors have similar flux levels and temperatures at the level vessel support structures. The purposes of this work are to provide the neutron fluence spectra data that are needed to evaluate previously measured mechanical property changes in the HFIR, to explain the discrepancies in neutron flux levels between the nickel dosimeters and two other dosimeters, neptunium and beryllium, and to address any questions or peculiarities of the HFIR reactor environment. The current work consists of neutron and gamma transport calculations, dosimetry measurements, and least-squares logarithmic adjustment to obtain the best estimates for the neutron spectra and the related neutron exposure parameters. The results indicate that the fission rates in neptunium-237 (Np-237) and uranium-238 (U-238) and the helium production rates in beryllium-9 (Be-9) are dominated by photo-induced reactions. The displacements per atom rate for iron (dpa/s) from gamma rays is five times higher than the dpa/s from neutrons. The neutron fluxes in key 7, position 5 do not show any significant gradient in the surveillance capsule, but key 4 and key 2 showed differences in magnitude as well as in the shape of the spectrum. The stainless steel monitor in the V-notch of the Charpy specimens of the surveillance capsules is adequate to determine the neutron flux above 1.0 MeV at the desired V-notch location. Simultaneous adjustment of neutron and gamma fluxes with the measurements has been demonstrated and should avoid future problems with photo-induced reactions.

  10. A conceptual high flux reactor design with scope for use in ADS applications

    Indian Academy of Sciences (India)

    Usha Pal; V Jagannathan

    2007-02-01

    A 100 MWt reactor design has been conceived to support flux level of the order of 1015 n/cm2/s in selected flux trap zones. The physics design considers high enriched metallic alloy fuel in the form of annular plates placed in a D2O moderator tank in a hexagonal lattice arrangement. By choosing a tight lattice pitch in the central region and double the lattice pitch in the outer region, it is possible to have both high fast flux and thermal flux trap zones. By design the flux level in the seed fuel has been kept lower than in the high flux trap zones so that the burning rate of the seed is reduced. Another important objective of the design is to maximize the time interval of refueling. As against a typical refueling interval of a few weeks in such high flux reactor cores, it is desired to maximize this period to as much as six months or even one year. This is possible to achieve by eliminating the conventional control absorbers and replacing them with a suitable amount of fertile material loading in the reactor. Requisite number of seedless thorium–aluminum alloy plates are placed at regular lattice locations vacated by seed fuel in alternate fuel layers. It is seen that these thorium plates are capable of acquiring asymptotic fissile content of 14 g/kg in about 100 days of irradiation at a flux level of 8 × 1014 n/cm2 /s. In summary, the core has a relatively higher fast flux in the central region and high thermal flux in the outer region. The present physics design envisages a flat core excess reactivity for the longest possible cycle length of 6 months to one year. It is also possible to modify the design for constant subcriticality for about the same period or longer duration by considering neutron spallation source at the centre and curtailing the power density in the inner core region by shielding it with a layer of thoria fuel loading.

  11. Job and Task Analysis project at Brookhaven National Laboratory's high flux beam reactor

    International Nuclear Information System (INIS)

    The presenter discussed the Job and Task Analysis (JTA) project conducted at Brookhaven National Laboratory's High Flux Beam Reactor (HFBR). The project's goal was to provide JTA guidelines for use by DOE contractors, then, using the guidelines conduct a JTA for the reactor operator and supervisor positions at the HFBR. Details of the job analysis and job description preparation as well as details of the task selection and task analysis were given. Post JTA improvements to the HFBR training programs were covered. The presentation concluded with a listing of the costs and impacts of the project

  12. HTGR experiment HRB-15b: particle loadings and irradiation in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, W.E.; Long, E.L. Jr.; Conlin, J.A.; Johnsen, B.P.

    1979-12-01

    Candidate high-temperature gas-cooled reactor fissile and fertile particles were irradiated in the High Flux Isotope Reactor removable beryllium reflector facility (RB-5) for eight reactor cycles. The experiment contained 18 different ''types'' of fissile particles and five different ''types'' of fertile particles. All uranium was 20% enriched in /sup 235/U. The loose particles were loaded into ''trays'' that resemble flat graphite washers, each having 116 drilled holes in one face. One hundred eighty-four trays were stacked in columns in an alternate fertile particle-fissile particle sequence. The particles were irradiated for 169.4 full power days. The report discusses methods used to specify particle loadings and contains thermal and neutronics results applicable to the irradiation test period.

  13. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  14. Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Gehin, Jess C [ORNL

    2009-04-01

    A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.

  15. Proposed fuel pin irradiation facilities for the high flux isotope reactor

    International Nuclear Information System (INIS)

    The Global Nuclear Energy Partnership (GNEP) is proposing to develop a sodium-cooled fast-spectrum reactor (SFR) to transmute and consume actinides from spent nuclear fuel. The proposed fuels include metal and oxide forms mixed actinides (U-Np-Pu-Am-Cm) as well as target concepts with perhaps both Am-Cm. The High Flux Isotope Reactor (HFIR) was built for the purpose of transmuting plutonium to various higher actinides including Am, Cm, and Cf Since a fast-spectrum irradiation facility does not exist in the United States, HFIR can fulfill a first step in the GNEP- mission that being to establish a near-term domestic capability to irradiate materials in a fast neutron spectrum. Modifications to the HFIR central target region to accomplish this goal are described. A second ongoing project for HFIR is to design capsules and installation tools and procedures to irradiate short rods of innovative nuclear fuel types and cladding materials under prototypic light water reactor (LWR) operating conditions at an accelerated rate relative to expected reactor performance. This second proposal would be for a facility representative of thermal reactor conditions rather than the GNEP concept. In order to maintain power densities within the fuel at levels normally seen by LWR reactors, an entirely new experiment and test capsule design will be needed. (authors)

  16. Evaluation of HFIR [High Flux Isotope Reactor] pressure-vessel integrity considering radiation embrittlement

    International Nuclear Information System (INIS)

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of ∼104 less), that is, a rate effect

  17. Evaluation of HFIR (High Flux Isotope Reactor) pressure-vessel integrity considering radiation embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Cheverton, R.D.; Merkle, J.G.; Nanstad, R.K. (eds.)

    1988-04-01

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of approx.10/sup 4/ less), that is, a rate effect.

  18. RADIATION DOSIMETRY OF THE PRESSURE VESSEL INTERNALS OF THE HIGH FLUX BEAM REACTOR.

    Energy Technology Data Exchange (ETDEWEB)

    HOLDEN,N.E.; RECINIELLO,R.N.; HU,J.P.; RORER,D.C.

    2002-08-18

    In preparation for the eventual decommissioning of the High Flux Beam Reactor after the permanent removal of its fuel elements from the Brookhaven National Laboratory, both measurements and calculations of the decay gamma-ray dose rate have been performed for the reactor pressure vessel and vessel internal structures which included the upper and lower thermal shields, the transition plate, and the control rod blades. The measurements were made using Red Perspex{trademark} polymethyl methacrylate high-level film dosimeters, a Radcal ''peanut'' ion chamber, and Eberline's high-range ion chamber. To compare with measured gamma-ray dose rate, the Monte Carlo MCNP code and geometric progressive Microshield code were used to model the gamma transport and dose buildup.

  19. Proposed Fuel Pin Irradiation Facilities for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    The Global Nuclear Energy Partnership (GNEP) is proposing to develop a sodium-cooled fast-spectrum reactor (SFR) to transmute and consume actinides from spent nuclear fuel. The proposed fuels include metal and oxide mixed actinides (U-Np-Pu-Am-Cm) as well as target concepts with perhaps only Am-Cm. The High Flux Isotope Reactor was built for the purpose of transmuting plutonium to various higher actinides including Am, Cm, and Cf. Since a fast-spectrum irradiation facility does not exist in the United States, HFIR can fulfill a first step in the GNEP mission; that being to establish a near-term capability to irradiate materials in a fast neutron spectrum in addition to efforts to gain access to international facilities through partnering arrangements. Modifications to the HFIR central target region to accomplish this goal are described. A second on-going project for HFIR is to design capsules and installation tools and procedures to irradiate short rods of innovative nuclear fuel types and cladding materials under prototypic LWR operating conditions at an accelerated rate relative to expected reactor performance. This second proposal would be for a facility representative of thermal reactor conditions rather than the GNEP concept. In order to maintain power densities within the fuel at levels normally seen by LWR reactors, an entirely new experiment and test capsule design will be needed than has been available in the past

  20. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    Energy Technology Data Exchange (ETDEWEB)

    Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  1. Heat Transfer Calculation on Plate-Type Fuel Assembly of High Flux Research Reactor

    Directory of Open Access Journals (Sweden)

    Daxin Gong

    2015-01-01

    Full Text Available Heat transfer characteristics of fuel assemblies for a high flux research reactor with a neutron trap are numerically investigated in this study. Single-phase turbulence flow is calculated by a commercial code, FLUENT, where the computational objective covers standard and control fuel assemblies. The simulation is carried out with an inlet coolant velocity varying from 4.5 m/s to 7.5 m/s in hot assemblies. The results indicate that the cladding temperature is always lower than the saturation temperature in the calculated ranges. The temperature rise in the control fuel assembly is smaller than that of the standard fuel assembly. Additionally, the assembly with a hot spot is specially studied, and the safety of the research reactor is also approved.

  2. Liquid Metal Fast Breeder Reactor Program: Argonne facilities

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, S. V. [comp.

    1976-09-01

    The objective of the document is to present in one volume an overview of the Argonne National Laboratory test facilities involved in the conduct of the national LMFBR research and development program. Existing facilities and those under construction or authorized as of September 1976 are described. Each profile presents brief descriptions of the overall facility and its test area and data relating to its experimental and testing capability. The volume is divided into two sections: Argonne-East and Argonne-West. Introductory material for each section includes site and facility maps. The profiles are arranged alphabetically by title according to their respective locations at Argonne-East or Argonne-West. A glossary of acronyms and letter designations in common usage to describe organizations, reactor and test facilities, components, etc., involved in the LMFBR program is appended.

  3. Calculations for HFIR [High Flux Isotope Reactor] fuel plate non- bonding and fuel segregation uncertainty factors

    International Nuclear Information System (INIS)

    The effects of non-bonds and of fuel segregation on the package factors of the heat flux in the High Flux Isotope Reactor (HFIR) are examined. The effects of the two defects are examined both separately and together. It is concluded that the peaking factors that are used in the present HFIR thermal analysis code are conservative and thus no changes in the peaking factors are necessary to continue to ensure that HFIR is safe. A study was made of the effect of the non-bond spot diameter on the peaking factor. The conclusion is that the spot can have diameter more than three times the maximum value allowed by the specifications before the peaking factor is greater than the maximum value specified in the present HFIR thermal analysis code. 6 refs., 7 figs., 8 tabs

  4. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G [ORNL; Howard, Richard H [ORNL

    2016-08-01

    FeCrAl ODS alloys are an attractive sub-set alloy class of the more global FeCrAl alloys class for nuclear applications due to their high temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary PIE on these irradiated specimens have shown good radiation tolerance at elevated temperatures (330 C) but possible radiation-induced hardening and embrittlement at irradiations of 200 C at 1.9 dpa. Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses than the preliminary studies final dose level. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.

  5. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD)

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C to a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.

  6. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Hirtz, Gregory John [ORNL; Ilas, Germina [ORNL

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  7. Modeling and Depletion Simulations for a High Flux Isotope Reactor Cycle with a Representative Experiment Loading

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Betzler, Ben [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Hirtz, Gregory John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division; Sunny, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Reactor and Nuclear Systems Division

    2016-09-01

    The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se production capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.

  8. Reactor Physics Studies of Reduced-Tantaulum-Content Control and Safety Elements for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Some of the unirradiated High Flux Isotope Reactor (HFIR) control elements discharged during the late 1990s were observed to have cladding damage--local swelling or blistering. The cladding damage was limited to the tantalum/europium interface of the element and is thought to result from interaction of hydrogen and europium to form a compound of lower density than europium oxide, thus leading to a ''blistering'' of the control plate cladding. Reducing the tantalum loading in the control plates should help preclude this phenomena. The impact of the change to the control plates on the operation of the reactor was assessed. Regarding nominal, steady-state reactor operation, the impact of the change in the power distribution in the core due to reduced tantalum content was calculated and found to be insignificant. The magnitude and impact of the change in differential control element worth was calculated, and the differential worths of reduced tantalum elements vs the current elements from equivalent-burnup critical configurations were determined to be unchanged within the accuracy of the computational method and relevant experimental measurements. The location of the critical control elements symmetric positions for reduced tantalum elements was found to be 1/3 in. less withdrawn relative to existing control elements regardless of the value of fuel cycle burnup (time in the fuel cycle). The magnitude and impact of the change in the shutdown margin (integral rod worth) was assessed and found to be unchanged. Differential safety element worth values for the reduced-tantalum-content elements were calculated for postulated accident conditions and were found to be greater than values currently assumed in HFIR safety analyses

  9. Aging, maintenance and modernization of instrumentation at the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    This paper describes actions taken at ORNL to upgrade and modernize systems associated with the High Flux Isotope Reactor (HFIR). Three systems are described. The first is a redesigned resistance temperature device commonly used as a temperature detector at HFIR. The aging of existing devices, and lack of spare devices prompted the redesign of new temperature sensors which used commercial grade sensors in a redesigned assembly which allows easier maintenance. The second is a newly designed neutron detector system to replace existing aging devices. The new design uses commercial ionization chambers, in a cheaper, simpler, and less complicated design which could fit in the previous space, and provide monitoring for control and for protection. The third is the development and implementation of a new test procedure for checking the safety performance of the magnetic safety rod release system. This new procedure allows for electronic testing of the modules with considerably lessened chances that a rod will be dropped during the weekly testing

  10. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  11. Power Distribution Analysis for the ORNL High Flux Isotope Reactor Critical Experiment 3

    International Nuclear Information System (INIS)

    The mission of the Reduced Enrichment for Research and Test Reactors Program is to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors, as well as radioisotope production processes, to low-enriched uranium (LEU) fuel and targets. Oak Ridge National Laboratory (ORNL) is currently reviewing the design bases and key operating criteria including fuel operating parameters, enrichment-related safety analyses, fuel performance, and fuel fabrication in regard to converting the fuel of the High Flux Isotope Reactor (HFIR) from HEU to LEU. The purpose of this study is to validate Monte Carlo methods currently in use for conversion analyses. The methods have been validated for the prediction offlux values in the reactor target, reflector, and beam tubes, but this study focuses on the prediction of the power density profile in the core. Power distributions were calculated in the fuel elements of the HFIR, a research reactor at ORNL, via MCNP and were compared to experimentally obtained data. This study was performed to validate Monte Carlo methods for power density calculations and to observe biases. A current three-dimensional MCNP model was modified to replicate the 1965 HFIR Critical Experiment 3 (HFIRCE-3). In this experiment, the power profile was determined by counting the gamma activity at selected locations in the core. 'Foils' (chunks of fuel meat and clad) were punched out of the fuel elements in HFIRCE-3 following irradiation, and experimental relative power densities were obtained by measuring the activity of these foils and comparing each foil's activity to the activity of a normalizing foil. This analysis consisted of calculating corresponding activities by inserting volume tallies into the modified MCNP model to represent the punchings. The average fission density was calculated for each foil location and then normalized to the reference foil

  12. Application of expert systems to heat exchanger control at the 100-megawatt high-flux isotope reactor

    International Nuclear Information System (INIS)

    The High-Flux Isotope Reactor (HFIR) is a 100-MW pressurized water reactor at the Oak Ridge National Laboratory. It is used to produce isotopes and as a source of high neutron flux for research. Three heat exchangers are used to remove heat from the reactor to the cooling towers. A fourth heat exchanger is available as a spare in case one of the operating heat exchangers malfunctions. It is desirable to maintain the reactor at full power while replacing the failed heat exchanger with the spare. The existing procedures used by the operators form the initial knowledge base for design of an expert system to perform the switchover. To verify performance of the expert system, a dynamic simulation of the system was developed in the MACLISP programming language. 2 refs., 3 figs

  13. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  14. A Level 1+ Probabilistic Safety Assessment of the High Flux Australian Reactor. Vol 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Department of Industry, Science and Tourism selected PLG, an EQE International Company, to systematically and independently evaluate the safety of the High Flux Australian Reactor (HIFAR), located at Lucas Heights, New South Wales. PLG performed a comprehensive probabilistic safety assessment (PSA) to quantify the risks posed by operation of HIFAR . The PSA identified possible accident scenarios, estimated their likelihood of occurrence, and assigned each scenario to a consequence category; i.e., end state. The accident scenarios developed included the possible release of radioactive material from irradiated nuclear fuel and of tritium releases from reactor coolant. The study team developed a recommended set of safety criteria against which the results of the PSA may be judged. HIFAR was found to exceed one of the two primary safety objectives and two of the five secondary safety objectives. Reactor coolant leaks, earthquakes, and coolant pump trips were the accident initiators that contributed most to scenarios that could result in fuel overheating. Scenarios initiated by earthquakes were the reason the frequency criterion for the one primary safety objective was exceeded. Overall, the plant safety status has been shown to be generally good with no evidence of major safety-related problems from its operation. One design deficiency associated with the emergency core cooling system was identified that should be corrected as soon as possible. Additionally, several analytical issues have been identified that should be investigated further. The results from these additional investigations should be used to determine whether additional plant and procedural changes are required, or if further evaluations of postulated severe accidents are warranted. Supporting information can be found in Appendix A for the seismic analysis and in the Appendix B for selected other external events refs., 139 tabs., 85 figs. Prepared for Department of Industry, Science and Tourism

  15. A Level 1+ Probabilistic Safety Assessment of the High Flux Australian Reactor. Vol 1

    International Nuclear Information System (INIS)

    The Department of Industry, Science and Tourism selected PLG, an EQE International Company, to systematically and independently evaluate the safety of the High Flux Australian Reactor (HIFAR), located at Lucas Heights, New South Wales. PLG performed a comprehensive probabilistic safety assessment (PSA) to quantify the risks posed by operation of HIFAR . The PSA identified possible accident scenarios, estimated their likelihood of occurrence, and assigned each scenario to a consequence category; i.e., end state. The accident scenarios developed included the possible release of radioactive material from irradiated nuclear fuel and of tritium releases from reactor coolant. The study team developed a recommended set of safety criteria against which the results of the PSA may be judged. HIFAR was found to exceed one of the two primary safety objectives and two of the five secondary safety objectives. Reactor coolant leaks, earthquakes, and coolant pump trips were the accident initiators that contributed most to scenarios that could result in fuel overheating. Scenarios initiated by earthquakes were the reason the frequency criterion for the one primary safety objective was exceeded. Overall, the plant safety status has been shown to be generally good with no evidence of major safety-related problems from its operation. One design deficiency associated with the emergency core cooling system was identified that should be corrected as soon as possible. Additionally, several analytical issues have been identified that should be investigated further. The results from these additional investigations should be used to determine whether additional plant and procedural changes are required, or if further evaluations of postulated severe accidents are warranted. Supporting information can be found in Appendix A for the seismic analysis and in the Appendix B for selected other external events

  16. Job/task analysis for I ampersand C [Instrumentation and Controls] instrument technicians at the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    To comply with Department of Energy Order 5480.XX (Draft), a job/task analysis was initiated by the Maintenance Management Department at Oak Ridge National Laboratory (ORNL). The analysis was applicable to instrument technicians working at the ORNL High Flux Isotope Reactor (HFIR). This document presents the procedures and results of that analysis. 2 refs., 2 figs

  17. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  18. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Ade, Brian J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Sunny, Eva E [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Betzler, Benjamin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Pinkston, Daniel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)

    2015-03-01

    A concerted effort over the past few years has been focused on enhancing the core model for the High Flux Isotope Reactor (HFIR), as part of a comprehensive study for HFIR conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel. At this time, the core model used to perform analyses in support of HFIR operation is an MCNP model for the beginning of Cycle 400, which was documented in detail in a 2005 technical report. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed to serve as reference for the design of an LEU fuel for HFIR. The recent enhancements in modeling and simulations for HFIR that are discussed in the present report include: (1) revision of the 2005 MCNP model for the beginning of Cycle 400 to improve the modeling data and assumptions as necessary based on appropriate primary reference sources HFIR drawings and reports; (2) improvement of the fuel region model, including an explicit representation for the involute fuel plate geometry that is characteristic to HFIR fuel; and (3) revision of the Monte Carlo-based depletion model for HFIR in use since 2009 but never documented in detail, with the development of a new depletion model for the HFIR explicit fuel plate representation. The new HFIR models for Cycle 400 are used to determine various metrics of relevance to reactor performance and safety assessments. The calculated metrics are compared, where possible, with measurement data from preconstruction critical experiments at HFIR, data included in the current HFIR safety analysis report, and/or data from previous calculations performed with different methods or codes. The results of the analyses show that the models presented in this report provide a robust and reliable basis for HFIR analyses.

  19. Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Selby, Douglas L [ORNL; Bilheux, Hassina Z [ORNL; Meilleur, Flora [ORNL; Jones, Amy [ORNL; Bailey, William Barton [ORNL; Vandergriff, David H [ORNL

    2015-01-01

    This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentation on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very

  20. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  1. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Adam R [ORNL

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  2. Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

    2009-12-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  3. Tensile and impact testing of an HFBR [High Flux Beam Reactor] control rod follower

    International Nuclear Information System (INIS)

    The Materials Technology Group of the Department of Nuclear Energy (DNE) at Brookhaven National Laboratory (BNL) undertook a program to machine and test specimens from a control rod follower from the High Flux Beam Reactor (HFBR). Tensile and Charpy impact specimens were machined and tested from non-irradiated aluminum alloys in addition to irradiated 6061-T6 from the HFBR. The tensile test results on irradiated material showed a two-fold increase in tensile strength to a maximum of 100.6 ksi. The impact resistance of the irradiated material showed a six-fold decrease in values (3 in-lb average) compared to similar non-irradiated material. Fracture toughness (KI) specimens were tested on an unirradiated compositionally and dimensionally similar (to HFBR follower) 6061 T-6 material with Kmax values of 24.8 ± 1.0 Ksi√in (average) being obtained. The report concludes that the specimens produced during the program yielded reproducible and believable results and that proper quality assurance was provided throughout the program. 9 figs., 6 tabs

  4. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    International Nuclear Information System (INIS)

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  5. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Christian M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  6. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  7. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward

    International Nuclear Information System (INIS)

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high

  8. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Sease, John D [ORNL; Guida, Tracey [University of Pittsburgh; Jolly, Brian C [ORNL

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  9. The study on the stability of the supporting ground on the construction site of High Flux Reactor building in Research Reactor Institute of Kyoto University

    International Nuclear Information System (INIS)

    This report provides the results of the study on the stability of the supporting gwound which has been carried out as a part of the seismic design of the High Flux Reactor building which is planned to be constructed by Kyoto University, Research Reactor Institute. In this work the finite element method is used. The stresses and displacements of the ground are calculated under the following conditions; (1) Stress-strain relationships for the individual elements are linear. (2) The problem is analyzed on two-dimensional plane strain distributions. (3) No-tension analysis is applied to the calculation for earthquake load. (4) The mechanical properties of the ground are obtained from the soil survey which has been performed at the construction site of High Flux Reactor building. The results are summarized as follows; (1) The settlement of the building is estimated to be about 2 -- 5 cm for long-time loading, including the result from elastic theory, while the relative settlement is about 0.3 cm at both ends of the building. (2) Safety factor is larger than 1.4 for long-time loading. (3) Maximum angle of the deformation of the building due to the earthquake load is estimated to be about 9.2 x 10-3 degree (1.6 x 10-4 rad). (4) Safety factor is larger than 1.2 -- 1.3 for earthquake load. Judging from these results described above, the ground at the construction site of the High Flux Reactor is appropriate for the supporting ground of the reactor building, and the mat foundation can be adopted for the foundation form. (author)

  10. Neutronic flux stability of production uranium graphite reactor conversion core relative to high-frequency oscillations

    International Nuclear Information System (INIS)

    Preliminary methodical simplified investigation into stability of the neutron field in the conversion load of industrial uranium-graphite reactors with regard to basic characteristics of the load in transient processes was carried out. Analysis was based on the calculated research into the behaviour of simplified single-point and one-dimensional models of the reactor core in transient regimes during the interconnected description of dynamics of neutron-physical and thermal properties of the load. Fundamental assumptions on the reactor characteristics used in the calculated model. In the context of accepted approximations the obtained results preclude the possibility for the occurrence of spontaneous high frequency oscillations resulting from the positive reactivity effect on the fuel temperature in the conversion load

  11. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  12. Design Study for a Low-enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Ellis, Ronald James [ORNL; Gehin, Jess C [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL

    2007-11-01

    This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology

  13. Experimental and analytical studies of high heat flux components for fusion experimental reactor

    International Nuclear Information System (INIS)

    In this report, the experimental and analytical results concerning the development of plasma facing components of ITER are described. With respect to developing high heat removal structures for the divertor plates, an externally-finned swirl tube was developed based on the results of critical heat flux (CHF) experiments on various tube structures. As the result, the burnout heat flux, which also indicates incident CHF, of 41 ± 1 MW/m2 was achieved in the externally-finned swirl tube. The applicability of existing CHF correlations based on uniform heating conditions was evaluated by comparing the CHF experimental data with the smooth and the externally-finned tubes under one-sided heating condition. As the results, experimentally determined CHF data for straight tube show good agreement, for the externally-finned tube, no existing correlations are available for prediction of the CHF. With respect to the evaluation of the bonds between carbon-based material and heat sink metal, results of brazing tests were compared with the analytical results by three dimensional model with temperature-dependent thermal and mechanical properties. Analytical results showed that residual stresses from brazing can be estimated by the analytical three directional stress values instead of the equivalent stress value applied. In the analytical study on the separatrix sweeping for effectively reducing surface heat fluxes on the divertor plate, thermal response of the divertor plate has been analyzed under ITER relevant heat flux conditions and has been tested. As the result, it has been demonstrated that application of the sweeping technique is very effective for improvement in the power handling capability of the divertor plate and that the divertor mock-up has withstood a large number of additional cyclic heat loads. (J.P.N.) 62 refs

  14. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and/or Mars. These reactors require robust automatic control systems using low mass, rapid...

  15. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and Mars. These reactors require robust automatic control systems using low mass, rapid...

  16. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  17. Core management, operational limits and conditions and safety aspects of the Australian High Flux Reactor (HIFAR)

    Energy Technology Data Exchange (ETDEWEB)

    Town, S.L. [ANSTO, Nuclear Technology Div., Menai (Australia)

    1997-07-01

    HIFAR is a DIDO class reactor which commenced routine operation at approximately 10 MW in 1960. It is principally used for production of medical radio-isotopes, scientific research using neutron scattering facilities and irradiation of silicon ingots for the electronics industry. A detailed description of the core, including fuel types, is presented. Details are given of the current fuel management program HIFUEL and the experimental measurements associated with reactor physics analysis of HIFAR are discussed. (author)

  18. Development of a high temperature, high sensitivity fission counter for liquid metal reactor in-vessel flux monitoring

    International Nuclear Information System (INIS)

    Advanced liquid metal reactor concepts such as the Sodium Advanced Fast Reactor (SAFR) and the Power Reactor Inherently Safe Module (PRISM) have relatively large pressure vessels that necessitate in-vessel placement of the neutron detectors to achieve adequate count rates during source range operations. It is estimated that detector sensitivities of 5 to 10 counts/center dot/s/center dot//sup /minus/1//center dot/[neutron/(cm2/center dot/s)]/sup /minus/1/ will be required for the initial core loading. The Instrumentation and Controls Division of Oak Ridge National Laboratory has designed and fabricated a fission counter to meet this requirement which is also capable of operating in uncooled instrument thimbles at primary coolant temperatures of 500 to 600/degree/C. Components are fabricated from Inconel-600, and high temperature alumina insulators are employed. The transmission line electrode configuration is utilized to minimize capacitive loading effects

  19. Chronology of the beryllium replacement shutdown at the High Flux Isotope Reactor (HFIR), 1983

    International Nuclear Information System (INIS)

    In addition to the permanent beryllium reflector, several other components were replaced. The outer shroud and lower tracks were replaced. The new control rod access plugs and the upper tracks were installed. Replacement of collimator tubes for HB-1 and -2 are tentatively slated for the next permanent beryllium changeout. Inspection of the reactor vessel, the vessel-to-nozzle welds, core support structure, and vessel internal cladding showed them to be in acceptable condition. The highest, accumulative radiation doses received by Reactor Operations personnel during the shutdown, in mrem, were 665, 606, and 560; the highest for P and E personnel were 520, 505, and 475

  20. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclear Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.

  1. High flux materials testing reactor HFR Petten. Characteristics of facilities and standard irradiation devices

    International Nuclear Information System (INIS)

    For the materials testing reactor HFR some characteristic information is presented. Besides the nuclear data for the experiment positions short descriptions are given of the most important standard facilities for material irradiation and radionuclide production. One paragraph deals with the experimental set-ups for solid state and nuclear structure investigations. The information in this report refers to a core type, which is operational since March 1977. The numerical data compiled have been up-dated to June 1978

  2. Assessment of similarity of HFBR [High Flux Beam Reactor] with separate effects test

    International Nuclear Information System (INIS)

    A Separate Effects Test (SET) facility was constructed in 1963 to demonstrate the feasibility of the HFBR design and to determine the core power limits for a safe flow reversal event. The objective of the task reported here is to review the capability of the test to scale the dominant phenomena in the HFBR during a flow reversal event and the applicability of the range of the power level obtained from the test to the HFBR. The conclusion of this report was that the flow during the flow reversal event will not be similar in the two facilities. The causes of the dissimilarity are the differences in the core inlet friction, bypass path friction, the absence of the check valve in the test, and the materials used to represent the fuel plates. The impact of these differences is that the HFBR will undergo flow reversal sooner than the test and will have a higher flow rate in the final Natural Circulation Period. The shorter duration of the flow reversal event will allow less time for the plate to heat up and the larger flow in the Natural Circulation Period will lead to higher critical heat flux limits in the HFBR than in the test. Based on these observations, it was concluded that the HFBR can undergo flow reversal safely for heat fluxes up to 46,700 (BTU/hr ft2), the heat flux limit obtained from the 1963 test

  3. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  4. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    International Nuclear Information System (INIS)

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U3O8 powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated

  5. Short-lived radionuclides produced on the ORNL 86-inch cyclotron and High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    The production of short-lived radionuclides at ORNL includes the preparation of target materials, irradiation on the 86-in. cyclotron and in the High Flux Isotope Reactor (HFIR), and chemical processing to recover and purify the product radionuclides. In some cases the target materials are highly enriched stable isotopes separated on the ORNL calutrons. High-purity 123I has been produced on the 86-in. cyclotron by irradiating an enriched target of 123Te in a proton beam. Research on calutron separations has led to a 123Te product with lower concentrations of 124Te and 126Te and, consequently to lower concentrations of the unwanted radionuclides, 124I and 126I, in the 123I product. The 86-in. cyclotron accelerates a beam of protons only but is unique in providing the highest available beam current of 1500 μA at 21 MeV. This beam current produces relatively large quantities of radionuclides such as 123I and 67Ga

  6. Neutronics Conversion Analyses of the Laue-Langevin Institute (ILL) High Flux Reactor (RHF)

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Calzavara, Y. [Inst. Laue-Langevin (ILL), Grenoble (France)

    2014-09-30

    The following report describes the neutronics results obtained with the MCNP model of the RHF U7Mo LEU reference design that has been established in 2010 during the feasibility analysis. This work constitutes a complete and detailed neutronics analysis of that LEU design using models that have been significantly improved since 2010 and the release of the feasibility report. When possible, the credibility of the neutronics model is tested by comparing the HEU model results with experimental data or other codes calculations results. The results obtained with the LEU model are systematically compared to the HEU model. The changes applied to the neutronics model lead to better comparisons with experimental data or improved the calculation efficiency but do not challenge the conclusion of the feasibility analysis. If the U7Mo fuel is commercially available, not cost prohibitive, a back-end solution is established and if it is possible to manufacture the proposed element, neutronics analyses show that the performance of the reactor would not be challenged by the conversion to LEU fuel.

  7. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the cold source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and

  8. Transmutation of /sup 90/Sr and /sup 137/Cs in a high-flux fast reactor with a thermalized central region

    Energy Technology Data Exchange (ETDEWEB)

    Taube, M.

    1976-10-01

    The fission products /sup 90/Sr and /sup 137/Cs produced by fission reactors of 30 GW(th) can be transmutated into stable nuclides by neutron irradiation with a thermal flux of 2 x 10/sup 16/ n cm/sup -2/ s/sup -1/. The rates of transmutation are 15 and 3.3 times greater, respectively, than that of spontaneous beta decay. The transmutation would take place in a central thermalized region of a high-flux fast burner reactor of 7 GW(th). In the case where the power reactors of 23 GW(th) are breeders with a high breeding gain of G = 0.38, the total system, inclusive of the high-flux burner, remains a breeding system, with G/sub total/ = 0.09. Details of the neutronics calculations and simplified thermohydraulics are given. The high-flux burner is fueled with a molten salt of chlorides of plutonium and sodium with a power density of 10 kW cm/sup -3/. The ''self-liquidation'' of such a system is discussed.

  9. Advanced liquid metal reactor development at Argonne National Laboratory during the 1980s

    International Nuclear Information System (INIS)

    Argonne National Laboratory's (ANL'S) effort to pursue the exploitation of liquid metal cooled reactor (LMR) characteristics has given rise to the Integral Fast Reactor (IFR) concept, and has produced substantial technical advancement in concept implementation which includes demonstration of high burnup capability of metallic fuel, demonstration of injection casting fabrication, integral demonstration of passive safety response, and technical feasibility of pyroprocessing. The first half decade of the 90's will host demonstration of the IFR closed fuel cycle technology at the prototype scale. The EBR-II reactor will be fueled with ternary alloy fuel in HT-9 cladding and ducts, and pyroprocessing and injection casting refabrication of EBR-II fuel will be conducted using near-commercial sized equipment at the Fuel cycle Facility (FCF) which is co-located adjacent to EBR-II. Demonstration will start in 1992. The demonstration of passive safety response achievable with the IFR design concept, (already done in EBR-II in 1986) will be repeated in the mid 90's using the IFR prototype recycle fuel from the FCF. The demonstration of scrubbing of the reprocessing fission product waste stream, with recycle of the transuranics to the reactor for consumption, will also occur in the mid 90's. 30 refs

  10. Design, fabrication, and testing of gadolinium-shielded metal fuel samples in the hydraulic tube of the high flux isotope reactor

    International Nuclear Information System (INIS)

    The use of hydraulic rabbit capsules inserted into and ejected from the core of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) during full power operation allows for precise control of the neutron fluence in fueled experiments. Rabbit capsules with strong thermal neutron absorbers must be used to screen out thermal neutrons, thereby reducing the heat generation rate while maintaining the fast neutron flux that produces displacement damage similar to fast reactor type conditions. However, rapid insertion and ejection of rabbit capsules containing a strong neutron absorber causes a reactivity response in the reactor that has the potential to engage the HFIR safety response system which could result in an unplanned shutdown. Therefore, a set of tests were performed to provide the data needed to establish limits on the reactivity worth that can be ejected from the hydraulic facility without causing a reactor shutdown. This paper will describe the design, operation, and results of the reactivity measurements undertaken to understand the reactor response to insertion of the gadolinium-lined rabbit capsules. (author)

  11. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    Harpeneau, Evan M. [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  12. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  13. Production of Medical Radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for Cancer Treatment and Arterial Restenosis Therapy after PTCA

    Science.gov (United States)

    Knapp, F. F. Jr.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  14. Spheromak reactor with poloidal flux-amplifying transformer

    Science.gov (United States)

    Furth, Harold P.; Janos, Alan C.; Uyama, Tadao; Yamada, Masaaki

    1987-01-01

    An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.

  15. Determination flux in the Reactor JEN-1

    International Nuclear Information System (INIS)

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 μ gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs

  16. Reactor antineutrino fluxes - status and challenges

    CERN Document Server

    Huber, Patrick

    2016-01-01

    In this contribution we describe the current understanding of reactor antineutrino fluxes and point out some recent developments. This is not intended to be a complete review of this vast topic but merely a selection of observations and remarks, which despite their incompleteness, will highlight the status and the challenges of this field.

  17. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    Science.gov (United States)

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed. PMID:7869995

  18. Type B investigation of the iridium contamination event at the High Flux Isotope Reactor on September 7, 1993

    International Nuclear Information System (INIS)

    On the title date, at ORNL, area radiation alarms sounded during a routine transfer of a shielding cask (containing 60 Ci192Ir) from the HFIR pool side to a transport truck. Small amounts of Ir were released from the cask onto the reactor bay floor. The floor was cleaned, and the cask was shipped to a hot cell at Building 3047 on Oct. 3, 1993. The event was caused by rupture of one of the Ir target rods after it was loaded into the cask for normal transport operations; the rupture was the result of steam generation in the target rod soon after it was placed in the cask (water had entered the target rod through a tiny defect in a weld while it was in the reactor under pressure). While the target rods were in the reactor and reactor pool, there was sufficient cooling to prevent steam generation; when the target rod was loaded into the dry transport cask, the temperature increased enough to result in boiling of the trapped water and produced high enough pressure to result in rupture. The escaping steam ejected some of the Ir pellets. The event was reported as Occurrence Report Number ORO--MMES-X10HFIR-1993-0030, dated Sept. 8, 1993. Analysis indicated that the following conditions were probable causes: less than adequate welding procedures, practices, or techniques, material controls, or inspection methods, or combination thereof, could have led to weld defects, affecting the integrity of target rod IR-75; less than adequate secondary containment in the cask allowed Ir pellets to escape

  19. Experimental Plan and Irradiation Target Design for FeCrAl Embrittlement Screening Tests Conducted Using the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-26

    The objective of the FeCrAl embrittlement screening tests being conducted through the use of Oak Ridge National Laboratories (ORNL) High Flux Isotope Reactor is to provide data on the radiation-induced changes in the mechanical properties including radiation-induced hardening and embrittlement through systematic testing and analysis. Data developed on the mechanical properties will be supported by extensive microstructural evaluations to assist in the development of structure-property relationships and provide a sound, fundamental understanding of the performance of FeCrAl alloys in intense neutron radiation fields. Data and analysis developed as part of this effort will be used to assist in the determination of FeCrAl alloys as a viable material for commercial light water reactor (LWR) applications with a primary focus as an accident tolerant cladding.

  20. Experimental Plan and Irradiation Target Design for FeCrAl Embrittlement Screening Tests Conducted Using the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    The objective of the FeCrAl embrittlement screening tests being conducted through the use of Oak Ridge National Laboratories (ORNL) High Flux Isotope Reactor is to provide data on the radiation-induced changes in the mechanical properties including radiation-induced hardening and embrittlement through systematic testing and analysis. Data developed on the mechanical properties will be supported by extensive microstructural evaluations to assist in the development of structure-property relationships and provide a sound, fundamental understanding of the performance of FeCrAl alloys in intense neutron radiation fields. Data and analysis developed as part of this effort will be used to assist in the determination of FeCrAl alloys as a viable material for commercial light water reactor (LWR) applications with a primary focus as an accident tolerant cladding.

  1. Determining Reactor Flux from Xenon-136 and Cesium-135 in Spent Fuel

    CERN Document Server

    Hayes, A C

    2012-01-01

    The ability to infer the reactor flux from spent fuel or seized fissile material would enhance the tools of nuclear forensics and nuclear nonproliferation significantly. We show that reactor flux can be inferred from the ratios of xenon-136 to xenon-134 and cesium-135 to cesium-137. If the average flux of a reactor is known, the flux inferred from measurements of spent fuel could help determine whether that spent fuel was loaded as a blanket or close to the mid-plane of the reactor. The cesium ratio also provides information on reactor shutdowns during the irradiation of fuel, which could prove valuable for identifying the reactor in question through comparisons with satellite reactor heat monitoring data. We derive analytic expressions for these correlations and compare them to experimental data and to detailed reactor burn simulations. The enrichment of the original uranium fuel affects the correlations by up to 3 percent, but only at high flux.

  2. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  3. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs

  4. Decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East. Project final report

    Energy Technology Data Exchange (ETDEWEB)

    Fellhauer, C.R.; Clark, F.R. [Argonne National Lab., IL (United States). Technology Development Div.; Garlock, G.A. [MOTA Corp., Cayce, SC (United States)

    1997-10-01

    The decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East (ANL-E) was completed in October 1997. Descriptions and evaluations of the activities performed and analyses of the results obtained during the JANUS D and D Project are provided in this Final Report. The following information is included: objective of the JANUS D and D Project; history of the JANUS Reactor facility; description of the ANL-E site and the JANUS Reactor facility; overview of the D and D activities performed; description of the project planning and engineering; description of the D and D operations; summary of the final status of the JANUS Reactor facility based upon the final survey results; description of the health and safety aspects of the project, including personnel exposure and OSHA reporting; summary of the waste minimization techniques utilized and total waste generated by the project; and summary of the final cost and schedule for the JANUS D and D Project.

  5. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  6. Department of Energy's High Flux Beam Reactor (HFBR), September 15--19, 1980: An independent on-site safety review

    International Nuclear Information System (INIS)

    The intent of this on-site safety review was to make a broad management assessment of HFBR operations, rather than conduct a detailed in-depth audit. The result of the review should only be considered as having identified trends or indications. The Team's observations and recommendations for the most part are based upon licensed reactor facility practices used to meet industry standards. These standards form the basis for many of the comments in this report. The Team believes that a uniform minimum standard of performance should be achieved in the operation of DOE reactors. In order to assure that this is accomplished, clear standards are necessary. Consistent with the past AEC and ERDA policy, the team has used the standards of the commercial nuclear power industry. It is recognized that this approach is conservative in that the HFBR reactor has a significantly greater degree of inherent safety (low pressure, temperature, power, etc.) than a licensed reactor

  7. RELAP5/MOD2.5 analysis of the HFBR [High Flux Beam Reactor] for a loss of power and coolant accident

    International Nuclear Information System (INIS)

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs

  8. Specialists' meeting on advanced controls for fast reactors, Argonne, Illinois, USA June 20-22, 1989

    International Nuclear Information System (INIS)

    The Specialists' Meeting on ''Advanced Controls for Fast Reactors'' was held in Argonne, Illinois, USA, from June 20 to 22, 1989. The meeting was sponsored by the International Atomic Energy Agency on the recommendation of the IAEA International Working Group on Fast Reactors and was hosted by Argonne National Laboratory and the US Department of Energy. It was attended by 20 participants and observers from Argentina, France, Germany, Japan, India, the USSR, the United Kingdom, the United States of America, and the IAEA. The purpose of the meeting was to provide an opportunity for participating countries to review and discuss their views on design and technology for advanced control in fast reactors. During the meeting papers were presented by the participants on behalf of their countries and organizations. Presentations were followed by open discussions on the subjects covered by the papers and summaries of the discussions were drafted. After the formal sessions were completed, a final discussion session was held and summaries, general conclusions and recommendations were approved by consensus. A separate abstract was prepared for each of the 22 papers presented at this meeting. Refs, figs, tabs, diagrams and photos

  9. Investigation of the delay in pressure vessel embrittlement specimen analysis for the Oak Ridge National Laboratory High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Analysis of the investigative data pertaining to this incident reveals the following conditions as key findings and probable causes: (1) The contractor failed to properly implement the surveillance program for monitoring reactor pressure vessel embrittlement. (2) Contractor and DOE organizations provided less than adequate oversight and independent overview, especially by not requiring operating organizations to provide documented evidence to substantiate claims that there was ''no problem'' with respect to embrittlement. (3) Although the temperature limitation for reactor pressurization identified in the Technical Specifications was never violated, the basis of this safety limitation was violated. (4) The basis for concluding that there would be no embrittlement of the pressure vessel steel over the expected life of the reactor is questionable. (5) The contractor and DOE failed to make the surveillance program visible by incorporating it in the Technical Specifications. (6) The Accident Analysis/Final Safety Analysis Report was never adequately reviewed and updated subsequent to its initial issuance. (7) Surveillance specimen analysis was incomplete and never transmitted to reactor operating personnel in a usable format prior to November 1986. (8) There was extensive delays (many years) in the testing, analysis, and reporting of surveillance program results

  10. Study of the Potential Impact of Gamma-Induced Radiolytic Gases on Loading of Cesium Onto Crystalline Silicotitanate Sorbent at ORNL's High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, A.J.

    2001-02-12

    The use of an engineered form of crystalline silicotitanate as a potential sorbent for the removal and concentration of cesium from the high-level waste at the Savannah River Site was investigated. Results conclusively showed this sorbent to be unaffected by gamma-induced radiolytic gas formation during column loading. Closely controlled column-loading experiments were performed at the Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) in a gamma field with a conservative dose rate expected to exceed that in a full-scale column by a factor of nearly 16. Operation of column loading under expected nominal full-scale field conditions in the HFIR pool showed that radiolytic gases were formed at a previously calculated generation rate of 0.4 mL per liter of feed solution. When the resulting cesium-loading curve in the gamma field was compared with that of a control experiment in the absence of a gamma field, no discernable difference in the curves (within analytical error) was detected. Both curves were in good agreement with the VERSE computer-generated curve. Results conclusively indicate that the production of radiolytic gases within a full-scale column is not expected to result in reduced capacity or associated gas generation problems during operation at the Savannah River Site.

  11. Detailed flux calculations for the conceptual design of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    A detailed MCNP model of the Advanced Neutron Source Reactor has been developed. All reactor components inside the reflector tank were included, and all components were highly segmented. Neutron and photon multigroup flux spectra have been calculated for each segment in the model, and thermal-to-fast neutron flux ratios were determined for each component segment. Axial profiles of the spectra are provided for all components of the reactor. Individual segment statistical uncertainties were limited wherever possible, and the group fluxes for all important reflector components have a standard deviation below 10%

  12. INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    The objective of the verification survey was to obtain evidence by means of measurements and sampling to confirm that the final radiological conditions meet the established cleanup goals. This objective was achieved via multiple verification components including document reviews, instrument scans, and sample analysis to determine the accuracy and adequacy of FSS documentation. During the period between August 18 to 25 and September 24 to 29, 2010, ORISE conducted measurements and sampling of the HFBR 'Outside Areas' at the BNL site. ORISE performed gamma walkover scans in all eight SUs with SUs 2, 4, 6, 7, and 8 receiving high density scans of accessible areas. The remainder of SUs received low density scans. While scanning, ORISE team members observed a significant spike in count rate activity in SU 8. Just as quickly as the count rate increased the count rate decreased. A previous pass in the area did not identify any activity associated with soil contamination. The team determined that both detector instrument electronics functioned normally, and that the increased activity was due to a site activity. All individual sample concentrations and corresponding mean concentrations evaluated were determined to be below the established cleanup goal. A review of the data collected by ORISE has not identified any areas of contamination exceeding cleanup goals.

  13. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T [ORNL; Curtis, Franklin G [ORNL; Arimilli, Rao V [ORNL; Ekici, Kivanc [ORNL; Freels, James D [ORNL

    2015-12-01

    ABSTRACT The findings presented in this report are results of a five year effort lead by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor

  14. Research and Development of Multiphysics Models in Support of the Conversion of the High Flux Isotope Reactor to Low Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bodey, Isaac T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curtis, Franklin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Arimilli, Rao V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ekici, Kivanc [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Freels, James D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-01

    ABSTRACT The findings presented in this report are results of a five year effort lead by the RRD Division of the ORNL, which is focused on research and development toward the conversion of the High Flux Isotope Reactor (HFIR) fuel from high-enriched uranium (HEU) to low-enriched uranium (LEU). This report focuses on the tasks accomplished by the University of Tennessee Knoxville (UTK) team from the Department of Mechanical, Aerospace, and Biomedical Engineering (MABE) that provided expert support in multiphysics modeling of complex problems associated with the LEU conversion of the HFIR reactor. The COMSOL software was used as the main computational modeling tool, whereas Solidworks was also used in support of computer-aided-design (CAD) modeling of the proposed LEU fuel design. The UTK research has been governed by a statement of work (SOW), which was updated annually to clearly define the specific tasks reported herein. Ph.D. student Isaac T. Bodey has focused on heat transfer and fluid flow modeling issues and has been aided by his major professor Dr. Rao V. Arimilli. Ph.D. student Franklin G. Curtis has been focusing on modeling the fluid-structure interaction (FSI) phenomena caused by the mechanical forces acting on the fuel plates, which in turn affect the fluid flow in between the fuel plates, and ultimately the heat transfer, is also affected by the FSI changes. Franklin Curtis has been aided by his major professor Dr. Kivanc Ekici. M.Sc. student Adam R. Travis has focused two major areas of research: (1) on accurate CAD modeling of the proposed LEU plate design, and (2) reduction of the model complexity and dimensionality through interdimensional coupling of the fluid flow and heat transfer for the HFIR plate geometry. Adam Travis is also aided by his major professor, Dr. Kivanc Ekici. We must note that the UTK team, and particularly the graduate students, have been in very close collaboration with Dr. James D. Freels (ORNL technical monitor and mentor

  15. Excitation of neutron flux waves in reactor core transients

    International Nuclear Information System (INIS)

    An analysis of the excitation of neutron flux waves in reactor core transients has been performed. A perturbation theory solution has been developed for the time-dependent thermal diffusion equation in which the absorption cross section undergoes a rapid change, as in a PWR rod ejection accident (REA). In this analysis the unperturbed reactor flux states provide the basis for the spatial representation of the flux solution. Using a simplified space-time representation for the cross section change, the temporal integrations have been carried out and analytic expressions for the modal flux amplitudes determined. The first order modal excitation strength is determined by the spatial overlap between the initial and final flux states, and the cross section perturbation. The flux wave amplitudes are found to be largest for rapid transients involving large reactivity perturbations

  16. Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments

    CERN Document Server

    Cucoanes, Andi; Cabrera, Anatael; Fallot, Muriel; Onillon, Anthony; Obolensky, Michel; Yermia, Frederic

    2015-01-01

    This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications o...

  17. Experiments on critical heat flux for CAREM reactor

    International Nuclear Information System (INIS)

    The prediction of critical heat flux (CHF) in rod bundles of light water reactors is basically performed with the aid of empirical correlations derived from experimental data. Many CHF correlations have been proposed and are widely used in the analysis of the thermal margin during normal operation, transient, and accident conditions. Correlations found in the open literature are not sufficiently verified for the thermal-hydraulic conditions that appear in the CAREM core under normal operation: high pressure, low flow, and low qualities. To compensate this deficiency, an experimental investigation on CHF in such thermal-hydraulic conditions is being carried out. The experiments have been performed in the Institute of Physics and Power Engineering of Russian Federation. A short description of facilities, details of the experimental program and some trends in the preliminary results obtained are presented in this work. (author)

  18. Decontamination and decommissioning of the Argonne Thermal Source Reactor at Argonne National Laboratory - East project final report.

    Energy Technology Data Exchange (ETDEWEB)

    Fellhauer, C.; Garlock, G.; Mathiesen, J.

    1998-12-02

    The ATSR D&D Project was directed toward the following goals: (1) Removal of radioactive and hazardous materials associated with the ATSR Reactor facility; (2) Decontamination of the ATSR Reactor facility to unrestricted use levels; and (3)Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure). These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the ATSR Reactor facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The reactor aluminum, reactor lead, graphite piles in room E-111, and the contaminated concrete in room E-102 were the primary areas of concern. NES, Incorporated (Danbury, CT) characterized the ATSR Reactor facility from January to March 1998. The characterization identified a total of thirteen radionuclides, with a total activity of 64.84 mCi (2.4 GBq). The primary radionuclides of concern were Co{sup 60}, Eu{sup 152}, Cs{sup 137}, and U{sup 238}. No additional radionuclides were identified during the D&D of the facility. The highest dose rates observed during the project were associated with the reactor tank and shield tank. Contact radiation levels of 30 mrem/hr (0.3 mSv/hr) were measured on reactor internals during dismantlement of the reactor. A level of 3 mrem/hr (0.03 mSv/hr) was observed in a small area (hot spot) in room E-102. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem/yr (50 mSv/yr); the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  19. Monitoring Akkuyu Nuclear Reactor Using Anti-Neutrino Flux Measurement

    CERN Document Server

    Ozturk, Sertac; Ozcan, V Erkcan; Unel, Gokhan

    2016-01-01

    We present a simulation based study for monitoring Akkuyu Nuclear Power Plant's activity using anti-neutrino flux originating from the reactor core. A water Cherenkov detector has been designed and optimization studies have been performed using Geant4 simulation toolkit. A first study for the design of a monitoring detector facility for Akkuyu Nuclear Power Plant has been discussed in this paper.

  20. Which reactor antineutrino flux may be responsible for the anomaly?

    CERN Document Server

    Giunti, Carlo

    2016-01-01

    We investigate which among the reactor antineutrino fluxes from the decays of the fission products of $^{235}\\text{U}$, $^{238}\\text{U}$, $^{239}\\text{Pu}$, and $^{241}\\text{Pu}$ may be responsible for the reactor antineutrino anomaly. We find that it is the $^{235}\\text{U}$ flux, which contributes to the rates of all reactor neutrino experiments. From the fit of the data we obtain the precise determination $ \\sigma_{^{235}\\text{U}} = ( 6.34 \\pm 0.10 ) \\times 10^{-43} \\, \\text{cm}^2 / \\text{fission} $ of the $^{235}\\text{U}$ cross section per fission, which is more precise than the calculated value and differs from it by $2.0\\sigma$.

  1. High temperature gas reactor

    International Nuclear Information System (INIS)

    The present invention provides a reflector block structure of a high temperature gas reactor in which graphite blocks are not failed even a containing cylinder loaded to a fuel exchanger collides against to secured reflectors upon loading and withdrawing fuel constitutional elements. Namely, a protection plate made of a metal material such as stainless steel is covered on the secured reflector blocks disposed to the upper most step among secured graphite reflector blocks constituting the reactor core. In addition, positioning guide grooves are formed on the protection plate for guiding the containing cylinder loaded to the fuel exchanger to the column of the reactor core constitutional elements. With such a constitution, even if the containing cylinder of fuel exchanger is hoisted down and collided against the inner circumferential edge of the secured reflector blocks due to deviation of the position and the direction upon exchange of fuels, the reflector blocks are not failed since the above-mentioned portion is covered with the metal protection plate. In addition, the positioning guide grooves lead the fuel exchanger to a predetermined column correctly. (I.S.)

  2. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 5 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the concrete duct from Trench 5 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 5 was appropriate based on recent verification results from Trenches 2, 3, and 4, and the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch pipe from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 5. Based on the pre-excavation sample results of the soil overburden the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that resolved each ORISE comment adequately (BNL 2010a). ORISE referred to the revised HFBR Underground Utilities FSP FSS data to conduct the Type A verification

  3. PODESY program for flux mapping of CNA II reactor:

    International Nuclear Information System (INIS)

    The PODESY program, developed by KWU, calculates the spatial flux distribution of CNA II reactor through a three-dimensional expansion of 90 incore detector measurements. The calculation is made in three steps: a) short-term calculation which considers the control rod positions and it has to be done each time the flux mapping is calculated; b) medium-term calculation which includes local burn-up dependent calculation made by diffusion methods in macro-cell configurations (seven channels in hexagonal distribution), and c) long-term calculation, or macroscopic flux determination, that is a fitting and expansion of measured fluxes, previously corrected by local effects, using the eigen functions of the modified diffusion equation. The paper outlines development of step (c) of the calculation. The incore detectors have been located in the central zone of the core. In order to obtain low errors in the expansion procedure it is necessary to include additional points, whose flux values are assumed to be equivalent to detector measurements. These flux values are calculated with detector measurements and a spatial flux distribution calculated by a PUMA code. This PUMA calculation employs a smooth burn-up distribution (local burn-up variations are considered in step (b) of the whole calculation) representing the state of core evolution at the calculation time. The core evolution referred to ends when the equilibrium core condition is reached. Additionally, a calculation method to be employed in the plant in case of incore detector failures, is proposed. (Author)

  4. LETTER REPORT - INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education (ORISE) personnel visited the Brookhaven National Laboratory (BNL) on August 17 through August 23, 2010 to perform visual inspections and conduct independent measurement and sampling of the 'Outside Areas' at the High Flux Beam Reactor (HFBR) decommissioning project. During this visit, ORISE was also able to evaluate Fan House, Building 704 survey units (SUs) 4 and 5, which are part of the Underground Utilities portion of the HFBR decommissioning project. ORISE performed limited alpha plus beta scans of the remaining Fan House foundation lower walls and remaining pedestals while collecting static measurements. Scans were performed using gas proportional detectors coupled to ratemeter-scalers with audible output and encompassed an area of approximately 1 square meter around the static measurement location. Alpha plus beta scans ranged from 120 to 460 cpm. Twenty smears for gross alpha and beta activity and tritium were collected at judgmentally selected locations on the walls and pedestals of the Fan House foundation. Attention was given to joints, cracks, and penetrations when determining each sample location. Removable concentrations ranged from -0.43 to 1.73 dpm/100 cm2 for alpha and -3.64 to 7.80 dpm/100 cm2 for beta. Tritium results for smears ranged from -1.9 to 9.0 pCi/g. On the concrete pad, 100% of accessible area was scanned using a large area alpha plus beta gas proportional detector coupled to a ratemeter-scaler. Gross scan count rates ranged from 800 to 1500 cpm using the large area detector. Three concrete samples were collected from the pad primarily for tritium analysis. Tritium concentrations in concrete samples ranged from 53.3 to 127.5 pCi/g. Gamma spectroscopy results of radionuclide concentrations in concrete samples ranged from 0.02 to 0.11 pCi/g for Cs-137 and 0.19 to 0.22 pCi/g for Ra-226. High density scans for gamma radiation levels were performed in accessible areas in each SU, Fan House

  5. Modeling space–time evolution of flux in a traveling wave reactor

    International Nuclear Information System (INIS)

    Highlights: • Monte-Carlo MCNPX was used to analyze flux profile in a traveling wave reactor. • Results show steady propagation of flux (2 cm/year) over life of the reactor. • High discharge burn-up of 394 GWd/MTU was observed for the prototype compact model. - Abstract: Simulations have been carried out using Monte Carlo code MCNPX to evaluate the space and time evolution of flux in a prototype traveling wave reactor under constant thermal power condition. A 3-D box-shaped model of the reactor is developed. The reactor core is divided into two primary regions: the smaller, enriched region with fissile material; and the larger non-enriched region with fertile material. This enrichment strategy is aimed to allow breed-and-burn in the core. The core, on the outside, is surrounded by shielding material of uniform thickness. To facilitate the study, these two primary regions in the core are further divided into thin slab-like regions referred to as cells. Results show propagation of flux profile from the enriched region to the non-enriched region at a near constant speed. Analyses of time evolution of local power density (power fraction) at specified locations in the core are presented. Space and time evolution of the overall core burn-up and localized burn-up are discussed

  6. γ-ray fluxes in Oklo natural reactors

    Science.gov (United States)

    Gould, C. R.; Sharapov, E. I.; Sonzogni, A. A.

    2012-11-01

    Background: Uncertainty in the operating temperatures of Oklo reactor zones impacts the precision of bounds derived for time variation of the fine structure constant α. Improved 176Lu/175Lu thermometry has been discussed but its usefulness may be complicated by photoexcitation of the isomeric state 176mLu by 176Lu(γ,γ') fluorescence.Purpose: We calculate prompt, delayed, and equilibrium γ-ray fluxes due to fission of 235U in pulsed mode operation of Oklo zone RZ10.Methods: We use Monte Carlo modeling to calculate the prompt flux. We use improved data libraries to estimate delayed and equilibrium spectra and fluxes.Results: We find γ-ray fluxes as a function of energy and derive values for the coefficients λγ,γ' that describe burn-up of 176Lu through the isomeric 176mLu state.Conclusion: The contribution of the (γ,γ') channel to the 176Lu/175Lu isotopic ratio is negligible in comparison to the neutron burn-up channels. Lutetium thermometry is fully applicable to analyses of Oklo reactor data.

  7. Calculation with MCNP of capture photon flux in VVER-1000 experimental reactor.

    Science.gov (United States)

    Töre, Candan; Ortego, Pedro

    2005-01-01

    The aim of this study is to obtain by Monte Carlo method the high energy photon flux due to neutron capture in the internals and vessel layers of the experimental reactor LR-0 located in REZ, Czech Republic, and loaded with VVER-1000 fuel. The calclated neutron, photon and photon to neutron flux ratio are compared with experimental measurements performed with a multi-parameter stilbene detector. The results show clear underestimation of photon flux in downcomer and some overestimation at vessel surface and 1/4 thickness but a good fitting for deeper points in vessel.

  8. Jules Horowitz Reactor: a high performance material testing reactor

    Science.gov (United States)

    Iracane, Daniel; Chaix, Pascal; Alamo, Ana

    2008-04-01

    The physical modelling of materials' behaviour under severe conditions is an indispensable element for developing future fission and fusion systems: screening, design, optimisation, processing, licensing, and lifetime assessment of a new generation of structure materials and fuels, which will withstand high fast neutron flux at high in-service temperatures with the production of elements like helium and hydrogen. JANNUS and other analytical experimental tools are developed for this objective. However, a purely analytical approach is not sufficient: there is a need for flexible experiments integrating higher scales and coupled phenomena and offering high quality measurements; these experiments are performed in material testing reactors (MTR). Moreover, complementary representative experiments are usually performed in prototypes or dedicated facilities such as IFMIF for fusion. Only such a consistent set of tools operating on a wide range of scales, can provide an actual prediction capability. A program such as the development of silicon carbide composites (600-1200 °C) illustrates this multiscale strategy. Facing the long term needs of experimental irradiations and the ageing of present MTRs, it was thought necessary to implement a new generation high performance MTR in Europe for supporting existing and future nuclear reactors. The Jules Horowitz Reactor (JHR) project copes with this context. It is funded by an international consortium and will start operation in 2014. JHR will provide improved performances such as high neutron flux ( 10 n/cm/s above 0.1 MeV) in representative environments (coolant, pressure, temperature) with online monitoring of experimental parameters (including stress and strain control). Experimental devices designing, such as high dpa and small thermal gradients experiments, is now a key objective requiring a broad collaboration to put together present scientific state of art, end-users requirements and advanced instrumentation. To cite this

  9. Department of Energy's High Flux Beam Reactor (HFBR), September 15--19, 1980: An independent on-site safety review

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    The intent of this on-site safety review was to make a broad management assessment of HFBR operations, rather than conduct a detailed in-depth audit. The result of the review should only be considered as having identified trends or indications. The Team's observations and recommendations for the most part are based upon licensed reactor facility practices used to meet industry standards. These standards form the basis for many of the comments in this report. The Team believes that a uniform minimum standard of performance should be achieved in the operation of DOE reactors. In order to assure that this is accomplished, clear standards are necessary. Consistent with the past AEC and ERDA policy, the team has used the standards of the commercial nuclear power industry. It is recognized that this approach is conservative in that the HFBR reactor has a significantly greater degree of inherent safety (low pressure, temperature, power, etc.) than a licensed reactor.

  10. Gamma-ray fluxes in Oklo natural reactors

    CERN Document Server

    Gould, C R; Sonzogni, A A; 10.1103/PhysRevC.86.054602

    2012-01-01

    Uncertainty in the operating temperatures of Oklo reactor zones impacts the precision of bounds derived for time variation of the fine structure constant $\\alpha$. Improved $^{176}$Lu/$^{175}$Lu thermometry has been discussed but its usefulness may be complicated by photo excitation of the isomeric state $^{176m}$Lu by $^{176}$Lu($\\gamma,\\gamma^\\prime $) fluorescence. We calculate prompt, delayed and equilibrium $\\gamma$-ray fluxes due to fission of $^{235}$U in pulsed mode operation of Oklo zone RZ10. We use Monte Carlo modeling to calculate the prompt flux. We use improved data libraries to estimate delayed and equilibrium spectra and fluxes. We find $\\gamma$-ray fluxes as a function of energy and derive values for the coefficients $\\lambda_{\\gamma,\\gamma^\\prime}$ that describe burn-up of $^{176}$Lu through the isomeric $^{176m}$Lu state. The contribution of the ($\\gamma,\\gamma^\\prime $) channel to the $^{176}$Lu/$^{175}$Lu isotopic ratio is negligible in comparison to the neutron burn-up channels. Lutetium...

  11. Axial flux distribution in a lattice position in the NRX reactor

    International Nuclear Information System (INIS)

    The axial thermal flux distribution in a lattice position in the NRX reactor has been measured at a number of moderator levels. The results have been fitted to sine functions and values are given for the positions of the flux maxima and the extrapolated flux lengths. Results of measurements of the axial fast flux distribution are also given. (author)

  12. Analysis of calculated neutron flux response at detectors of G.A. Siwabessy multipurpose reactor (RSG-GAS Reactor)

    International Nuclear Information System (INIS)

    Multi Purpose Reactor G.A. Siwabessy (RSG-GAS) reactor core possesses 4 fission-chamber detectors to measure intermediate power level of RSG-GAS reactor. Another detector, also fission-chamber detector, is intended to measure power level of RSG-GAS reactor. To investigate influence of space to the neutron flux values for each detector measuring intermediate and power levels has been carried out. The calculation was carried out using combination of WIMS/D4 and CITATION-3D code and focused on calculation of neutron flux at different detector location of RSG-GAS typical working core various scenarios. For different scenarios, all calculation results showed that each detector, located at different location in the RSG-GAS reactor core, causes different neutron flux occurred in the reactor core due to spatial time effect

  13. Advanced high temperature heat flux sensors

    Science.gov (United States)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  14. A Level 1+ Probabilistic Safety Assessment of the high flux Australian reactor. Vol. 2. Appendix C: System analysis models and results

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This section contains the results of the quantitative system/top event analysis. Section C. 1 gives the basic event coding scheme. Section C.2 shows the master frequency file (MFF), which contains the split fraction names, the top events they belong to, the mean values of the uncertainty distribution that is generated by the Monte Carlo quantification in the System Analysis module of RISKMAN, and a brief description of each split fraction. The MFF is organized by the systems modeled, and within each system, the top events associated with the system. Section C.3 contains the fault trees developed for the system/top event models and the RISKMAN reports for each of the system/top event models. The reports are organized under the following system headings: Compressed/Service Air Supply (AIR); Containment Isolation System (CIS); Heavy Water Cooling System (D20); Emergency Core Cooling System (ECCS); Electric Power System (EPS); Light Water Cooling system (H20); Helium Gas System (HE); Mains Water System (MW); Miscellaneous Top Events (MISC); Operator Actions (OPER) Reactor Protection System (RPS); Space Conditioner System (SCS); Condition/Status Switch (SWITCH); RCB Ventilation System (VENT); No. 1 Storage Block Cooling System (SB)

  15. Triga Mark III Reactor Operating Power and Neutron Flux Study by Nuclear Track Methodology

    Science.gov (United States)

    Espinosa, G.; Golzarri, J. I.; Raya-Arredondo, R.; Cruz-Galindo, S.; Sajo-Bohus, L.

    The operating power of a TRIGA Mark III reactor was studied using Nuclear Track Methodology (NTM). The facility has a Highly Enriched Uranium core that provides a neutron flux of around 2 x 1012 n cm-2 s-1 in the TO-2 irradiation channel. The detectors consisted of a Landauer® CR-39 (allyl diglycol polycarbonate) chip covered with a 3 mm Plexiglas® converter. After irradiation, the detectors were chemically etched in a 6.25M-KOH solution at 60±1 °C for 6 h. Track density was determined by a custom-made Digital Image Analysis System. The results show a direct proportionality between reactor power and average nuclear track density for powers in the range 0.1-7 kW. Data reproducibility and relatively low uncertainty (±3%) were achieved. NTM is a simple, fast and reliable technique that can serve as a complementary procedure to measure reactor operating power. It offers the possibility of calibrating the neutron flux density in any low power reactor.

  16. Argonne National Laboratory High Energy Physics Division semiannual report of research activities, January 1, 1989--June 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This paper discuss the following areas on High Energy Physics at Argonne National Laboratory: experimental program; theory program; experimental facilities research; accelerator research and development; and SSC detector research and development.

  17. Dissolution of low burnup Fast Flux Test reactor fuel

    International Nuclear Information System (INIS)

    The first Fast-Flux Test Facility reactor fuel [mixed (U,Pu)O2 composition] has been used in dissolution tests for fuel reprocessing. The fuel tested here had a peak burnup of 0.22 at. %, with peak centerline temperatures of 19970C. Linear dissolution rates of 0.99 to 1.57 mm/h were determined for dissolver solution and fresh acid, respectively. Insoluble residues from dissolution at 950C ranged from 0.18 to 0.28% of the original fuel. From 2 to 37 wt % of the residue was recoverable plutonium. Dissolution at 290C yielded residues of 0.56 to 0.64% of the original fuel. The major elements present in the HF leached residue included Ru, Mo, and Rh. The recovered cladding from the 950C dissolution contained the equivalent of 198 mg of 239Pu per 100 g of hulls, while the cladding from the 290c experiments contained only 0.21 mg of 239Pu per 100 g of hulls. 9 references, 5 figures

  18. Poloidal flux linkage requirements for the International Thermonuclear Experimental Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jardin, S.C.; Kessel, C.; Pomphrey, N.

    1994-01-01

    We have applied two computational models to calculate the poloidal flux linkage requirements for the current ramp-up and for the flattop phase of the proposed International Thermonuclear Experimental Reactor (ITER). For the current ramp-up phase, we have used the TSC code to simulate the entire current ramp-up period as described in the TAC-3 Physics Report. We have extended the time of the simulation to cover the full current penetration time, that is, until the loop voltage is a constant throughout the plasma. Sensitivity studies have been performed with respect to current ramp-up time, impurity concentration, and to the time of onset of auxiliary heating. We have also used a steady state plasma equilibrium code that has the constant loop voltage constraint built in to survey the dependence of the steady state loop-voltage on the density and temperature profiles. This calculation takes into account the plasma bootstrap current contribution, including non-circular and collisional corrections. The results can be displayed as contours of the loop-voltage on a POPCON like diagram.

  19. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements.

    Science.gov (United States)

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-10-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. PMID:26141293

  20. Flux attenuation at NREL's High-Flux Solar Furnace

    Science.gov (United States)

    Bingham, Carl E.; Scholl, Kent L.; Lewandowski, Allan A.

    1994-10-01

    The High-Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) has a faceted primary concentrator and a long focal-length-to-diameter ratio (due to its off-axis design). Each primary facet can be aimed individually to produce different flux distributions at the target plane. Two different types of attenuators are used depending on the flux distribution. A sliding-plate attenuator is used primarily when the facets are aimed at the same target point. The alternate attenuator resembles a venetian blind. Both attenuators are located between the concentrator and the focal point. The venetian-blind attenuator is primarily used to control the levels of sunlight failing on a target when the primary concentrators are not focused to a single point. This paper will demonstrate the problem of using the sliding-plate attenuator with a faceted concentrator when the facets are not aimed at the same target point. We will show that although the alternate attenuator necessarily blocks a certain amount of incoming sunlight, even when fully open, it provides a more even attenuation of the flux for alternate aiming strategies.

  1. Solid-State Neutron Flux Monitoring Instruments for Nuclear Reactors

    International Nuclear Information System (INIS)

    This paper describes solid-state picoammeters, log-N amplifiers and period meters which have been developed for the flux monitoring and control system of the material testing reactor (JMTR). Recent developments and improvements of insulated-gate field-effect transistors (MOS FET's) have enabled us to realize a perfectly transistorized direct coupled electrometer. The examination of the behaviour of the MOS FET for the ambient temperature variation shows that the voltage drift referred to the gate is higher than that of the ordinary FET, but low enough for picoammeter application. For log-N amplifier applications, selection of the first stage FET or adjustment of the drain current for the individual FET is necessary. The paper also describes the method of compensating the temperature dependence of the log-diode. Balancing out the variation due to the temperature dependent saturation current with an identical diode and compensating the slope by the use of an amplifier having a temperature-dependent gain, a variation of less than 0.1 decades is attained in the range of 3 x 10-12 to 3 x 10-4 A for an ambient temperature variation of 25°C. The authors discuss the non-linear representation of the period-indication to compromise requirements of the expanded scale for the convenience of operation and of compressed scale necessary for period trip. Finally, a description is given of complete picoammeter circuits covering the ranges of 10-10 to 10-4A, the 8-decade log-N amplifier covering 3 x 10-12 to 3 x 10-4 A, and the period meter. (author)

  2. High flux isotope reactor technical specifications

    International Nuclear Information System (INIS)

    Technical specifications are presented concerning safety limits and limiting safety system settings; limiting conditions for operation; surveillance requirements; design features; administrative controls; and accidents and anticipated transients

  3. Technical basis in support of the conversion of the University of Missouri Research Reactor (MURR) core from highly-enriched to low-enriched uranium - core neutron physics

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Foyto, L [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Kutikkad, K [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; McKibben, J C [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Peters, N. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Stevens, J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-09-01

    This report contains the results of reactor design and performance for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support of the U. S. government.

  4. Argonne National Laboratory high-performance network support of APS experiments

    International Nuclear Information System (INIS)

    Under the Scientific Facilities Initiative, IPNS is planning to double its operation to 32 weeks/yr. Additional scientific and technical support staff will be added for the greatly expanded user program. The IPNS Upgrade Feasibility Study was published in April 1995 and is a thoroughly documented study on a 1-MW pulsed spallation neutron source at Argonne, including cost and schedule. A new booster target (235U-Mo alloy) has been designed that will increase the neutron flux by a factor of ∼3 and construction will begin soon. A new small angle diffractometer (SAND) is in the final stages of commissioning, a prototype inelastic scattering spectrometer for Chemical Excitations (CHEX) was recently constructed and an upgraded quasielastic spectrometer (QENS) has been designed. IPNS has gained considerable operating experience with solid methane moderators, including controlled heating at periodic intervals in order to anneal the accumulated radiation induced stored energy

  5. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  6. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    International Nuclear Information System (INIS)

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm2, 10000C cladding temperature, and (2) 40 h at 40 W/cm2, 12000C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 13700C

  7. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  8. Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated

  9. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  10. High flux expansion divertor studies in NSTX

    CERN Document Server

    Soukhanovskii, V A; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Maqueda, R; Menard, J E; Mueller, D; Paul, S F; Raman, R; Roquemore, A L

    2009-01-01

    High flux expansion divertor studies have been carried out in the National Spherical Torus Experiment using steady-state X-point height variations from 22 to 5-6 cm. Small-ELM H-mode confinement was maintained at all X-point heights. Divertor flux expansions from 6 to 26-28 were obtained, with associated reduction in X-point connection length from 5-6 m to 2 m. Peak divertor heat flux was reduced from 7-8 MW/m$^2$ to 1-2 MW/m$^2$. In low X-point configuration, outer strike point became nearly detached. Among factors affecting deposition of parallel heat flux in the divertor, the flux expansion factor appeared to be dominant

  11. Slow neutron flux extrapolation distances in R-5 and CIRUS reactors

    International Nuclear Information System (INIS)

    In order to calculate the core reactivity, fuel channel power outputs and neutron flux levels in the R-5 reactor at Trombay, axial flux extrapolation distances are required. For this, an analysis is carried out considering the reactor core as a two region neutron multiplying system in axial direction. The slow neutron diffusion equations for both the regions are solved analytically by applying suitable boundary conditions. Application of this method for the estimation of top extrapolation distances in CIRUS, has given results which agree well with accepted values for the reactor. (author)

  12. SUMMARY AND RESULTS LETTER REPORT - INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PROJECT, PHASE 3: TRENCHES 2, 3, AND 4 BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education (ORISE) personnel visited the Brookhaven National Laboratory (BNL) on September 7 through September 10, 2010, and September 20 through Seeptember 24, 2010. ORISE performed visual inspections, conducted independent measurement, and sampling of Trenches 2, 3, and 4, which are part of Phase 3 for the High Flux Beam Reactor (HFBR) Underground Utilities Removal Project. Trenches 2 and 3 were addressed during the first visit and Trench 4 during the second visit to BNL. Spatial orientation to Building 801 and minimal survey area inside Trenches 2 and 3 limited satellite reception and the ability to utilize a global positioning system (GPS) as real-time data capture for the gamma scan surveys in these trenches. However, Trench 4 provided suitable conditions in which gamma scan data could be collected using the GPS. ORISE performed high-density gamma scans of accessible surface areas using shielded sodium iodide detectors coupled to ratemeter-scalers with audible output. Scans for Trench 2 ranged from 4,000 to 22,000 gross counts per minute (cpm); Trench 3 from 3,000 to 5,000 gross cpm and Trench 4 from 2,600 to 9,500 gross cpm. ORISE personnel flagged the area where the elevated counts were observed in Trench 2 for further investigation. Additional scane valuations were performed on remaining pipes and associated end-caps in the trenches with no elevated activity detected. Eleven judgemental soil samples (5098M0041 through 5098M0051) were obtained throughout Trenches 2, 3, and 4. The sample locations were selected based on count rates observed during the scan survey or because of contamination potential from pipeline removal activities. ORISE personnel judgmentally selected the location for sample M0043 in response to the 22,000 cpm observed during the scan survey, and to ascertain whether the elevataed counts were a result of soil contamination or radioactive shine from the trench's spatial orientation to the Target Room in

  13. Simulation of the SONGS Reactor Antineutrino Flux Using DRAGON

    CERN Document Server

    Jones, C L

    2011-01-01

    For reactor antineutrino experiments, a thorough understanding of the fuel composition and isotopic evolution is of paramount importance for the extraction of $\\theta_{13}$. To accomplish these goals, we employ the deterministic lattice code DRAGON, and analyze the instantaneous antineutrino rate from the San Onofre Nuclear Generating Station (SONGS) Unit 2 reactor in California. DRAGON's ability to predict the rate for two consecutive fuel cycles is examined.

  14. Measurement and calculation of the neutron flux distribution in the RP-10 reactor

    International Nuclear Information System (INIS)

    In this work implementing experimental methods are implemented for easy reproduction for measuring the spatial distribution or thermal neutron flux in the RP-10 reactor core. Using two measuring methods: the passive and the active ones. In the passive method was used the activation technique using foils such as gold, manganese, and indium. These were irradiated in the reactor core and treated through the Westcott's formalism. In the active method was used the Self Powered Neutron Detectors (SPNs) for which was necessary to condition the detectors response for the data acquisition. The knowledge of the spatial distribution of RP-10 reactor neutrons flux will contribute in the understanding of other interesting parameters of reactor physics such as power density, reactivity, buckling, etc.. Wish knowledge is important for reactor operation. Fuel burnup calculations as well as others related to safety. (author)

  15. Second annual progress report on United States-Japan collaborative testing in the High Flux Isotope Reactor and the Oak Ridge Research Reactor for the period ending September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J.L.; Grossbeck, M.L.; Mansur, L.K.; Rowcliffe, A.F.; Siman-Tov, I.I.; Thoms, K.R.; Tanaka, M.P.; Hamada, S.; Kendo, T.; Hishinuma, A.

    1986-08-01

    The second year of the program of US-Japan collaborative testing in the HFIR and ORR has been successfully completed. Two of eight phase-I target capsules were irradiated, and postirradiation testing was begun. Two spectral-tailoring capsules, MFE-6J and -7J, were fabricated and installed in the ORR. The JEOL JEM 2000FX microscope was installed at ORNL and is now being operated routinely. Microstructural data of the JPCA in the SA, 10%, and 20% cold-worked conditions and type J316 in the SA and 20% cold-worked conditions reveal that all specimens examined clearly show a high concentration of fine helium bubbles after irradiation to about 30 dpa at 300/sup 0/C (in HFIR). Precipitation of MC was observed in 20% cold-worked JPCA. Swelling of all specimens was less than 1%.

  16. Second annual progress report on United States-Japan collaborative testing in the High Flux Isotope Reactor and the Oak Ridge Research Reactor for the period ending September 30, 1985

    International Nuclear Information System (INIS)

    The second year of the program of US-Japan collaborative testing in the HFIR and ORR has been successfully completed. Two of eight phase-I target capsules were irradiated, and postirradiation testing was begun. Two spectral-tailoring capsules, MFE-6J and -7J, were fabricated and installed in the ORR. The JEOL JEM 2000FX microscope was installed at ORNL and is now being operated routinely. Microstructural data of the JPCA in the SA, 10%, and 20% cold-worked conditions and type J316 in the SA and 20% cold-worked conditions reveal that all specimens examined clearly show a high concentration of fine helium bubbles after irradiation to about 30 dpa at 3000C (in HFIR). Precipitation of MC was observed in 20% cold-worked JPCA. Swelling of all specimens was less than 1%

  17. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 D/F WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 2; the D/F Waste Line removal at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed the final status survey (FSS) of the D/F Waste Line that provided the conduit for pumping waste from Building 750 to Building 801. Sample results have been submitted as required to demonstrate that the cleanup goals of 15 mrem/yr above background to a resident in 50 years have been met. Four rounds of sampling, from pre-excavation to final status survey (FSS), were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the US Departmental of Energy (DOE) to perform independent verifications of decontamination and decomissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task at the HFBR. ORISE together with DOE determined that a Type A verification of the D/F Waste Line was appropriate based on its method of construction and upon the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages in the process to decommission the HFBR facility and support structures. Phase 2 of this project included the grouting and removal of 1100 feet of 2-inch pipe and 640 feet of 4-inch pipe that served as the D/F Waste Line. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that addressed each ORISE comment adequately (BNL 2010a). ORISE referred to the revised Phase 2 D/F Waste Line removal FSP FSS data to conduct the Type A verification and determine whether the intent odf

  18. Flux measurements in a nuclear research reactor by using an aluminum nitride detector

    International Nuclear Information System (INIS)

    A small polycrystalline aluminium nitride detector with a thickness of 381 μm was used to measure a 200,000 Ci Co60 source and to measure the flux in a research reactor where the neutron flux is about 1014/cm2 s, which is nearly the same order as in the commercial power plant. If the applied voltage is greater than or equal to 2000 V and if the measurements are done in a short period of time so that the heat energy does not build up in the aluminium nitride, then the measured electric current is linearly proportional to the input flux. It is assumed of course that the energy spectrum of the input flux remains constant. This linearity relation is illustrated by the results of a measurement in which the reactor power has been controlled so that the flux becomes a step function

  19. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements

    International Nuclear Information System (INIS)

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. - Highlights: • Neutron flux redistribution due to control rod movement in JSI TRIGA has been studied. • Detector response sensitivity to the control rod position has been minimized. • Optimal radial and axial detector positions have been determined

  20. High density operation for reactor-relevant power exhaust

    Science.gov (United States)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  1. Background Radiation Measurements at High Power Research Reactors

    CERN Document Server

    Ashenfelter, J; Baldenegro, C X; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Davee, D; Dean, D; Deichert, G; Dolinski, M J; Dolph, J; Dwyer, D A; Fan, S; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Kettell, S; Langford, T J; Littlejohn, B R; Martinez, D; McKeown, R D; Morrell, S; Mueller, P E; Mumm, H P; Napolitano, J; Norcini, D; Pushin, D; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Stemen, N T; Surukuchi, P T; Thompson, S J; Varner, R L; Wang, W; Watson, S M; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zhang, C; Zhang, X

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $\\gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  2. Fission reactor flux monitors based on single-crystal CVD diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Almaviva, S.; Marinelli, M.; Prestopino, G.; Tucciarone, A.; Verona, C.; Verona-Rinati, G. [Dipartimento di Ingegneria Meccanica, Universita di Roma ' ' Tor Vergata' ' , Via del Politecnico 1, 00133 Roma (Italy); INFN - Sezione Roma ' ' Tor Vergata' ' (Italy); Milani, E. [INFN - Sezione Roma ' ' Tor Vergata' ' (Italy); Angelone, M.; Lattanzi, D.; Pillon, M. [Associazione EURATOM-ENEA sulla Fusione, Via E. Fermi 45, 00144 Frascati (Roma) (Italy); Rosa, R. [Dipartimento Fusione e Presidio Nucleare ENEA C.R. Casaccia, Via Anguillarese 301, 00123 Roma (Italy)

    2007-09-15

    Diamond based thermal neutron flux monitors have been fabricated using single crystal diamond films, grown by chemical vapour deposition. A 3 {mu}m thick {sup 6}LiF layer was thermally evaporated on the detector surface as a converting material for thermal neutron monitoring via the {sup 6}Li(n, {alpha}) T nuclear reaction. The detectors were tested in a fission nuclear reactor. One of them was positioned 80 cm above the core mid-plane, where the neutron flux is 2.2 x 10{sup 9} neutrons/cm{sup 2}s at 1 MW resulting in a device count rate of about 150000 cps. Good stability and reproducibility of the device output were proved over the whole reactor power range (up to 1 MW). During the irradiation, several pulse height spectra were recorded, in which both products of the {sup 6}Li(n,{alpha})T reaction, e.g. 2.73 MeV tritium and the 2.06 MeV {alpha}, were clearly identified, thus excluding a degradation of the detector response. A comparison with a reference fission chamber monitor pointed out a limitation of the adopted readout electronics at high count rates, due to multiple pile-up processes. However, once this effect is properly accounted for, a good linearity of the diamond flux monitor response is observed as a function of the fission chamber one, as well as an excellent agreement between the temporal behaviour of the two detector response. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    Science.gov (United States)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  4. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fourmentel, D., E-mail: damien.fourmentel@cea.fr [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Filliatre, P.; Villard, J.F.; Lyoussi, A. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Reynard-Carette, C. [Aix-Marseille Université, LISA EA 4672, cedex 20, Marseille 13397 (France); Carcreff, H. [CEA, DEN, DRSN, Saclay, F-91191 Gif-sur-Yvette (France)

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g{sup −1} and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  5. High flux lithium antineutrino source with variable hard spectrum

    CERN Document Server

    Lyashuk, V I

    2016-01-01

    The high flux antineutrino source with hard antineutrino spectrum based on neutron activation of 7Li and subsequent fast beta-decay (T 1/2 = 0.84 s) of the 8Li isotope with emission of antineutrino with energy up to 13 MeV - is discussed. Creation of the intensive isotope neutrino source of hard spectrum will allow to increase the detection statistics of neutrino interaction and it is especially urgent for oscillation experiments. The scheme of the proposed neutrino source is based on the continuous transport of the created 8Li to the neutrino detector, which moved away from the place of neutron activation. Analytical expressions for lithium antineutrino flux is obtained. The discussed source will ensure to increase the cross section for reactions with deuteron from several times to tens compare to the reactor antineutrino spectrum. An another unique feature of the installation is the possibility to vary smoothly the hardness of the antineutrino spectrum.

  6. High flux source of cold rubidium atoms

    International Nuclear Information System (INIS)

    We report on the production of a continuous, slow, and cold beam of 87Rb atoms with an extremely high flux of 3.2x1012 atoms/s, a transverse temperature of 3 mK, and a longitudinal temperature of 90 mK. We describe the apparatus created to generate the atom beam. Hot atoms are emitted from a rubidium candlestick atomic beam source and transversely cooled and collimated by a 20 cm long atomic collimator section, boosting overall beam flux by a factor of 50. The Rb atomic beam is then decelerated and longitudinally cooled by a 1 m long Zeeman slower

  7. High flux source of cold rubidium atoms

    Science.gov (United States)

    Slowe, Christopher; Vernac, Laurent; Hau, Lene Vestergaard

    2005-10-01

    We report on the production of a continuous, slow, and cold beam of Rb87 atoms with an extremely high flux of 3.2×1012atoms/s, a transverse temperature of 3mK, and a longitudinal temperature of 90mK. We describe the apparatus created to generate the atom beam. Hot atoms are emitted from a rubidium candlestick atomic beam source and transversely cooled and collimated by a 20cm long atomic collimator section, boosting overall beam flux by a factor of 50. The Rb atomic beam is then decelerated and longitudinally cooled by a 1m long Zeeman slower.

  8. High heat flux loop heat pipes

    Science.gov (United States)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop heat pipes (LHPs) can transport very large thermal power loads over long distances, through flexible, small diameter tubes against gravitational heads. In order to overcome the evaporator limit of LHPs, which is of about 0.07 MW/sq m, work was carried out to improve the efficiency by threefold to tenfold. The vapor passage geometry for the high heat flux conditions is shown. A bidisperse wick material within the circumferential vapor passages was used. Along with heat flux enhancement, several underlying issues were demonstrated, including the fabrication of bidisperse powder with controlled properties and the fabrication of a device geometry capable of replacing vapor passages with bidisperse powder.

  9. The behavior of reactor power and flux resulting from changes in core-coolant temperature for a miniature neutron source reactor

    International Nuclear Information System (INIS)

    In this work, measurements were performed to verify the theoretical predictions of reactor power and flux parameters that result from changes in core inlet temperature (Tin) and the temperature difference between the coolant inlet and outlet (ΔT) in the Nigeria Research Reactor-1 (NIRR-1), which is a Miniature Neutron Source Reactor (MNSR). The measured data shows that there is a strong dependence of the reactor power on coolant temperature in agreement with the design of MNSR. The experimental parameters were found to be in good agreement with data obtained using a semi-empirical relationship between the reactor power, flux parameters, core inlet temperature, and the coolant temperature rise. The relationship was therefore used to predict the power level of NIRR-1 from its neutron flux parameters to which it has been found to be proportional. The variation of Tin and ΔT with the reactor power and flux was also investigated and the results obtained are hereby discussed

  10. Uniaxial in-reactor creep of Zircaloy-2: Stress, flux, and temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Tinti, F.

    1983-01-01

    Results of several uniaxial in-reactor creep tests, carried out in a temperature range of 553 to 623 K on Zircaloy-2 cold-worked specimens in fast flux (E > 1 MeV) from 1.2 X 10/sup 17/ to 1.1 X 10/sup 18/ n X m/sup -2/ X s and in a stress range from 98 to 157 MPa, are presented. The effects of instantaneous flux and applied tensile stress are investigated, and the available data correlated by functional relationship. The effect of the temperature on the creep rate in the presence and absence of flux is also investigated and discussed.

  11. Visualization of neutron flux and power distributions in TRIGA Mark II reactor as an educational tool

    Energy Technology Data Exchange (ETDEWEB)

    Snoj, Luka; Ravnik, Matjaz; Lengar, Igor [Jozef Stefan Institute, Reactor Physics Division, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2008-10-29

    Modern Monte Carlo computer codes (e.g. MCNP) for neutron transport allow calculation of detailed neutron flux and power distribution in complex geometries with resolution of {approx}1 mm. Moreover they enable the calculation of individual particle tracks, scattering and absorption events. With the use of advanced software for 3D visualization (e.g. Amira, Voxler, etc.) one can create and present neutron flux and power distribution in a 'user friendly' way convenient for educational purposes. One can view axial, radial or any other spatial distribution of the neutron flux and power distribution in a nuclear reactor from various perspectives and in various modalities of presentation. By visualizing the distribution of scattering and absorption events and individual particle tracks one can visualize neutron transport parameters (mean free path, diffusion length, macroscopic cross section, up-scattering, thermalization, etc.) from elementary point of view. Most of the people remember better, if they visualize the processes. Therefore the representation of the reactor and neutron transport parameters is a convenient modern educational tool for the (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. The visualization of neutron flux and power distributions in Jozef Stefan Institute TRIGA Mark II research reactor is treated in the paper. The distributions are calculated with MCNP computer code and presented using Amira and Voxler software. The results in the form of figures are presented in the paper together with comments qualitatively explaining the figures. (authors)

  12. Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    CERN Document Server

    An, F P; Band, H R; Bishai, M; Blyth, S; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J -H; Cheng, J; Cheng, Y P; Cheng, Z K; Cherwinka, J J; Chu, M C; Chukanov, A; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dolgareva, M; Dove, J; Dwyer, D A; Edwards, W R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, R P; Guo, X H; Guo, Z; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Huo, W; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Joshi, J; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lee, J H C; Lei, R T; Leitner, R; Li, C; Li, D J; Li, F; Li, G S; Li, Q J; Li, S; Li, S C; Li, W D; Li, X N; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, S; Lin, S K; Lin, Y -C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, J L; Liu, J C; Loh, C W; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Lv, Z; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Malyshkin, Y; Caicedo, D A Martinez; McDonald, K T; McKeown, R D; Mitchell, I; Mooney, M; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevskiy, A; Pan, H -R; Park, J; Patton, S; Pec, V; Peng, J C; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Treskov, K; Tsang, K V; Tull, C E; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, C -H; Wu, Q; Wu, W J; Xia, D M; Xia, J K; Xing, Z Z; Xu, J Y; Xu, J L; Xu, Y; Xue, T; Yang, C G; Yang, H; Yang, L; Yang, M S; Yang, M T; Ye, M; Ye, Z; Yeh, M; Young, B L; Yu, Z Y; Zeng, S; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, X T; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y B; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2016-01-01

    A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GW$_{\\mathrm{th}}$ nuclear reactors and detected by eight antineutrino detectors deployed in two near (510~m and 560~m flux-weighted baselines) and one far (1580~m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be $0.946\\pm0.020$ ($0.992\\pm0.021$) for the Huber+Mueller (ILL+Vogel) model. A 2.9 $\\sigma$ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6~MeV was found in the measured spectrum, with a local significance of 4.4 $\\sigma$. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent p...

  13. Two-field and drift-flux models with applications to nuclear reactor safety

    International Nuclear Information System (INIS)

    The ideas of the two-field (6 equation model) and drift-flux (4 equation model) description of two-phase flows are presented. Several example calculations relating to reactor safety are discussed and comparisons of the numerical results and experimental data are shown to be in good agreement

  14. Flux perturbation factor in cobalt samples for the reactor production of Co-60

    International Nuclear Information System (INIS)

    Total flux perturbation factor (F) is experimentally determined for hollow cylinder cobalt samples irradiated in the RA-3 reactor. F factor is studied for different thicknesses of the material and the values are compared with those theoretically estimated by Dwork for a similar. (author)

  15. High flux film and transition boiling

    Science.gov (United States)

    Witte, L. C.

    1993-02-01

    An investigation was conducted on the potential for altering the boiling curve through effects of high velocity and high subcooling. Experiments using water and Freon-113 flowing over cylindrical electrical heaters in crossflow were made to see how velocity and subcooling affect the boiling curve, especially the film and transition boiling regions. We sought subcooling levels down to near the freezing points of these two liquids to prove the concept that the critical heat flux and the minimum heat flux could be brought together, thereby averting the transition region altogether. Another emphasis was to gain insight into how the various boiling regions could be represented mathematically on various parts of the heating surface. Motivation for the research grew out of a realization that the effects of very high subcooling and velocity might be to avert the transition boiling altogether so that the unstable part of the boiling curve would not limit the application of high flux devices to temperatures less than the burnout temperatures. Summaries of results from the study are described. It shows that the potential for averting the transition region is good and points the way to further research that is needed to demonstrate the potential.

  16. Neutronics Code Development at Argonne National Laboratory

    International Nuclear Information System (INIS)

    As part of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of U.S. DOE, a suite of modern fast reactor simulation tools is being developed at Argonne National Laboratory. The general goal is to reduce the uncertainties and biases in various areas of reactor design activities by providing enhanced prediction capabilities. Under this fast reactor simulation program, a high-fidelity deterministic neutron transport code named UNIC is being developed. The end goal of this development is to produce an integrated neutronics code that enables the high fidelity description of a nuclear reactor and simplifies the multi-step design process by direct and accurate coupling with thermal-hydraulics and structural mechanics calculations. (author)

  17. Improving flux tilt control while adjuster control rods are removed from the Pickering NGS A reactor

    International Nuclear Information System (INIS)

    Removal of adjuster control rods from the Pickering NGS A reactor core results in flux peaking and higher fuel powers in the centre region of the core. The present flux tilt control algorithm increases the level of the light water neutron absorber in the centre liquid zone controllers in an attempt to nullify flux peaking. However, due to the limited depth of the neutron absorption capability of the liquid zone controllers, the pre-removal zone powers can not be achieved. This results in saturation of liquid zone controller levels and reduced flux tilt control. Recent operating experience as shown that in certain situations the reduced flux tilt control capability with adjusters removed results in uncorrected side to side azimuthal flux tilts. To increase tilt control in these situations an improved flux tilt control algorithm has been developed which switches the zone power flux tilt control targets to more realistic obtainable values as adjusters are removed. In this paper the computer simulations and analysis performed to develop and test the improved flux tilt algorithm is described. Also the improved performance of the new algorithm in one event will be demonstrated. 2 refs., 9 figs

  18. Resonance integral calculations for high temperature reactors

    International Nuclear Information System (INIS)

    Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)

  19. High heat flux loop heat pipes

    Science.gov (United States)

    North, Mark T.; Sarraf, David B.; Rosenfeld, John H.; Maidanik, Yuri F.; Vershinin, Sergey

    1997-01-01

    Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and against high gravitational heads. While recent LHPs have transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m2. This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m2. This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m2.K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser.

  20. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    Science.gov (United States)

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  1. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    Science.gov (United States)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-10-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  2. Argonne National Laboratory, High Energy Physics Division: Semiannual report of research activities, July 1, 1986-December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This paper discusses the research activity of the High Energy Physics Division at the Argonne National Laboratory for the period, July 1986-December 1986. Some of the topics included in this report are: high resolution spectrometers, computational physics, spin physics, string theories, lattice gauge theory, proton decay, symmetry breaking, heavy flavor production, massive lepton pair production, collider physics, field theories, proton sources, and facility development. (LSP)

  3. Calculation of the inventory and near-field release rates of radioactivity from neutron-activated metal parts discharged from the high flux isotope reactor and emplaced in solid waste storage area 6 at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of 152Eu, 154Eu, and 155Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of 55Fe, 59Ni, 60Co, and 63Ni from stainless steel and cobalt alloy components, as well as of 10Be, 41Ca, and 55Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10-4 Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10-5 Ci/year due primarily to 41Ca. 50 refs., 13 figs., 8 tabs

  4. Calculation of the inventory and near-field release rates of radioactivity from neutron-activated metal parts discharged from the high flux isotope reactor and emplaced in solid waste storage area 6 at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kelmers, A.D.; Hightower, J.R.

    1987-05-01

    Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of /sup 55/Fe, /sup 59/Ni, /sup 60/Co, and /sup 63/Ni from stainless steel and cobalt alloy components, as well as of /sup 10/Be, /sup 41/Ca, and /sup 55/Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10/sup -4/ Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10/sup -5/ Ci/year due primarily to /sup 41/Ca. 50 refs., 13 figs., 8 tabs.

  5. Calculation of self-shielding coefficients, flux depression and cadmium factor for thermal neutron flux measurement of the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    A calculation methodology of Flux Depression, Self-Shielding and Cadmium Factors is presented, using the ANISN code, for experiments conducted at the IPEN/MB-01 Research Reactor. The correction factors were determined considering thermal neutron flux and 0.125 e 0.250 mm diameter of 197 Au wires. (author)

  6. Epithermal neutron flux characterization of the TRIGA MARK II reactor, Ljubljana, Yugoslavia, for use in NAA

    International Nuclear Information System (INIS)

    The nonideality of the epithermal neutron flux distribution at a reactor site can be described by a 1/E1+α spectrum representation, with parameter α as a measure of nonideality. α-values were determined in 3 typical irradiation positions of the TRIGA MARK II reactor, Ljubljana, Yugoslavia, using the 'Cd-ratio for multi-monitor' method. The simpler 'Cd-ratio for dual monitor' method also yielded reliable results. This characterization is useful in the ko-method of NAA. (author) 18 refs.; 3 figs

  7. NEUTRONIC REACTOR HAVING LOCALIZED AREAS OF HIGH THERMAL NEUTRON DENSITIES

    Science.gov (United States)

    Newson, H.W.

    1958-06-01

    A nuclear reactor for the irradiation of materials designed to provide a localized area of high thermal neutron flux density in which the materials to be irradiated are inserted is described. The active portion of the reactor is comprised of a cubicle graphite moderator of about 25 feet in length along each axis which has a plurality of cylindrical channels for accommodatirg elongated tubular-shaped fuel elements. The fuel elements have radial fins for spacing the fuel elements from the channel walls, thereby providing spaces through which a coolant may be passed, and also to serve as a heatconductirg means. Ducts for accommnodating the sample material to be irradiated extend through the moderator material perpendicular to and between parallel rows of fuel channels. The improvement is in the provision of additional fuel element channels spaced midway between 2 rows of the regular fuel channels in the localized area surrounding the duct where the high thermal neutron flux density is desired. The fuel elements normally disposed in the channels directly adjacent the duct are placed in the additional channels, and the channels directly adjacent the duct are plugged with moderator material. This design provides localized areas of high thermal neutron flux density without the necessity of providing additional fuel material.

  8. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    International Nuclear Information System (INIS)

    Determination of thermal to fast neutron flux ratio (ffast) and fast neutron flux (φfast) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The ffast and subsequently φfast were determined using the absolute method. The ffast ranged from 48 to 155, and the φfast was found in the range 1.03x1010-4.89x1010 n cm-2 s-1. These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  9. Fast flux measurements by means of threshold detectors on the reactor 'Melusine'

    International Nuclear Information System (INIS)

    Using existing data on the (n,p) and (n,α) threshold reactions we have carried out fast flux measurements on the swimming pool type reactor 'Melusine'. Four common elements: P, S, Mg, Al were chosen because from the point of view of fast spectrum analysis they represent a fairly good energy range from 2.4 MeV to 8 MeV. The fission flux value found in the central element at a power of 1 MW is 1.4 x 1013 n/cm2/s ± 0.14. (author)

  10. Steel slag carbonation in a flow-through reactor system:The role of fluid-flux

    Institute of Scientific and Technical Information of China (English)

    Eleanor J.Berryman; Anthony E.Williams-Jones; Artashes A.Migdisov

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2.As annual steel production continues to grow,the need for effective methods of reducing its carbon footprint increases correspondingly.The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production,in particular its major constituent,lamite {Ca2SiO4},which is a structural analogue of olivine {(MgFe)2SiO4},the main mineral subjected to natural carbonation in peridotites,offers the potential to offset some of these emissions.However,the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood.Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature,fluid flux,and reaction gradient on the dissolution and carbonation of steel slag.The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies.Moreover,they show that fluid flux needs to be optimized in addition to grain size,pressure,and temperature,in order to maximize the efficiency of carbonation.Based on these results,a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation,allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system.

  11. High Temperature reactors status 1977

    International Nuclear Information System (INIS)

    The objective of this report is to summarize the current state-of-the-art of HTR technology as part of follow-up studies of the development of advanced fission reactor systems. These studies have been performed at AB Atomenergi since fiscal year 1975/76 and are financed by governmental funds for energy R and D. In this report emphasis is given to the following main aspects of the HTR development: - a survey of the major HTR - R and D programmes; - the description of HTR technology including remaining development problems and uncertainties; - the analysis of the safety and environmental characteristics of the HTR systems; - the analysis of the incentives for the introduction of various HTR types. The report contains also information kindly provided directly by experts from several organisations developing the HTR-systems

  12. Flux profile scanners for scattered high-energy electrons

    CERN Document Server

    Hicks, R S; Arroyo, C; Breuer, M; Celli, J; Chudakov, E; Kumar, K S; Olson, M; Peterson, G A; Pope, K; Ricci, J; Savage, J; Souder, P A

    2005-01-01

    The paper describes the design and performance of flux integrating Cherenkov scanners with air-core reflecting light guides used in a high-energy, high-flux electron scattering experiment at the Stanford Linear Accelerator Center. The scanners were highly radiation resistant and provided a good signal to background ratio leading to very good spatial resolution of the scattered electron flux profile scans.

  13. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    CERN Document Server

    An, F P; Band, H R; Bishai, M; Blyth, S; Butorov, I; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J H; Cheng, J; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dove, J; Draeger, E; Dwyer, D A; Edwards, W R; Ely, S R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, X H; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, K Y; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Caicedo, D A Martinez; McDonald, K T; McKeown, R D; Meng, Y; Mitchell, I; Kebwaro, J Monari; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Pan, H -R; Park, J; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Tsang, K V; Tull, C E; Tung, Y C; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C G; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Young, B L; Yu, G Y; Yu, Z Y; Zang, S L; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, Y M; Zhang, Y X; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y F; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2015-01-01

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 $\\pm$ 0.04) $\\times$ 10$^{-18}$~cm$^2$/GW/day or (5.92 $\\pm$ 0.14) $\\times$ 10$^{-43}$~cm$^2$/fission. This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is $0.946\\pm0.022$ ($0.991\\pm0.023$) relative to the flux predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2$\\sigma$ over the full energy range with a local significance of up to $\\sim$4$\\sigma$ between 4-6 MeV. A reactor antineutrino spectrum...

  14. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay.

    Science.gov (United States)

    An, F P; Balantekin, A B; Band, H R; Bishai, M; Blyth, S; Butorov, I; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J H; Cheng, J; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dove, J; Draeger, E; Dwyer, D A; Edwards, W R; Ely, S R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, X H; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, K Y; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Martinez Caicedo, D A; McDonald, K T; McKeown, R D; Meng, Y; Mitchell, I; Monari Kebwaro, J; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Pan, H-R; Park, J; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Tsang, K V; Tull, C E; Tung, Y C; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C G; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Young, B L; Yu, G Y; Yu, Z Y; Zang, S L; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y F; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2016-02-12

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18)  cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43)  cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.

  15. Measurement of thermal, epithermal and fast neutron flux in the IEA-R1 reactor by the foil activation method

    International Nuclear Information System (INIS)

    Experimental and theoretical details of the foil activation method applied to neutrons flux measurements at the IEA-R1 reactor are presented. The thermal - and epithermal - neutron flux were determined form activation measurements of gold, cobalt and manganese foils; and for the fast neutron flux determination, aluminum, iron and nickel foils were used. The measurements of the activity induced in the metal foils were performed using a Ge-Li gamma spectrometry system. In each energy range of the reactor neutron spectrum, the agreement among the experimental flux values obtained using the three kind of materials, indicates the consistency of the theoretical approach and of the nuclear parameters selected. (Author)

  16. Development of a 10-decade single-mode reactor flux monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, K.H.; Shepard, R.L.; Falter, K.G.; Reese, W.B.

    1988-03-31

    Conventional wide-range neutron channels employ three optional modes to monitor the required flux range from source levels to full power (typically 10 or more decades). Difficult calibrations are necessary to provide a continuous output signal when such a system switches from counting mode in the source range to mean-square voltage mode in the midrange to dc current mode in the power range. In an ORNL proof-of-principle test, a method of extended range counting was implemented with a fission counter and conventional wide-band pulse processing electronics to provide a single-mode, monotonically increasing signal that spanned /approximately 10/ decades of neutron flux. Ongoing work includes design, fabrication, and testing of a comlpete neutron flux monitoring system suitable for advanced liquid metal reactor designs. 6 refs., 4 figs.

  17. Neutron flux measurement in the thermal column of the Malaysian TRIGA mark II reactor with MCNP verification

    International Nuclear Information System (INIS)

    A study of the thermal column of the Malaysian TRIGA Mark II reactor, forming part of a feasibility study for BNCT was proposed in 2001. In the current study, pure metals were used to measure the neutron flux at selected points in the thermal column and the neutron flux determined using SAND-II. Monte Carlo simulation of the thermal column was also carried out. The reactor core was homogenized and calculations of the neutron flux through the graphite stringers performed using MCNP5. The results show good agreement between the measured flux and the MCNP calculated flux. An obvious extension from this is that the MCNP neutron flux output can be utilized as an input spectrum for SAND-II for the flux iteration. (author)

  18. The Fabrication of Plutonium from Highly Irradiated Reactor Fuel

    International Nuclear Information System (INIS)

    Plutonium that has been separated from highly irradiated, or recycled, reactor fuel contains substantial percentages of 238Pu, 240 Pu, 241Pu and 242Pu. These isotopes and their daughter products are sources of increased gamma and neutron radiation, which affects the costs, the facilities and the techniques of fabricating the plutonium into reactor fuel elements. The commercial application of recycled power-reactor plutonium will depend, to a large extent, upon the ability of the fabricators to process, fabricate and use plutonium derived from highly irradiated fuels economically and safely. Experimental fuel elements are being fabricated at Argonne National Laboratory for a long-range study of the effects on reactor neutronics of various plutonium isotopic compositions that range from nearly pure 239Pu to plutonium that is principally 242Pu. A secondary purpose of this work was to determine the gamma and neutron rates of radiation dosage to personnel and to gain practical experience during the fabrication of typical compositions of plutonium from power reactors. The first step in this study was to develop a computer programme for calculating the rates of radiation dosage to personnel encountered during the fabrication of plutonium metal fuel elements of any isotopic composition versus time after fabrication. The effects of mass, geometry, shield composition and thickness, and time of operator exposure may be factored into the programme and the total operator radiation exposure predicted. The second stage was to compare the calculated exposures with measured radiation exposures during the fabrication of plutonium metal and oxide fuel elements containing 10, 30 and 50% of the higher plutonium isotopes. The fabrication of 2-kg batches of plutonium was accomplished unshielded gloveboxes with lightly leaded gloves. Glove-hand contact with the plutonium was avoided, and the operator time spent at the glovebox face was limited. The weekly exposure of each operator to

  19. Localized fast neutron flux enhancement for damage experiments in a research reactor; Accroissement local du flux rapide pour des experiences de dommages dans un reacteur de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Malouch, F

    2003-06-01

    In irradiation experiments on materials in the core of the Osiris reactor (CEA-Saclay) we seek to increase damage in irradiated samples and to reduce the duration of their stay in the core. Damage is essentially caused by fast neutrons (E {>=} 1 MeV); we have therefore pursued the possibility of a localized increase of their level in an irradiation experiment by using a flux converter device made up of fissile material arranged according to a suitable geometry that allows the converter to receive experiments. We have studied several parameters that are influential in the increase of fast neutron flux within the converter. We have also considered the problem of the converter's cooling in the core and its effect on the operation of the reactor. We have carried out a specific neutron calculation scheme based on the modular 2D-transport code APOLLO2 using a two-level transport method. Experimental validation of the flux calculation scheme was carried out in the ISIS reactor, the mock-up of OSIRIS, by optimizing the loading of fuel elements in the core. The experimental results show that the neutron calculation scheme computes the fluxes in close agreement with the measurements especially the fast flux. This study allows us to master the essential physical parameters needed for the design of a flux converter in an MTR reactor. (author)

  20. Filtration behavior of casein glycomacropeptide (CGMP) in an enzymatic membrane reactor: fouling control by membrane selection and threshold flux operation

    DEFF Research Database (Denmark)

    Luo, Jianquan; Morthensen, Sofie Thage; Meyer, Anne S.;

    2014-01-01

    to be the most suitable membrane for this application. Low pH increased CGMP retention but produced more fouling. Higher agitation and lower CGMP concentration induced larger permeate flux and higher CGMP retention. Adsorption fouling and pore blocking by CGMP in/on membranes could be controlled by selecting......Sialylated human milk oligosaccharides (HMOs) can be produced by enzymatic trans-sialidation using casein glycomacropeptide (CGMP) as the substrate. By performing the reaction in an enzymatic membrane reactor (EMR), simultaneous separation of the HMOs from CGMP and enzyme reuse can be achieved...... a highly hydrophilic membrane with appropriate pore size. Operating under threshold flux could minimize the concentration polarization and cake/gel/scaling layers, but might not avoid irreversible fouling caused by adsorption and pore blocking. The effects of membrane properties, pH, agitation and CGMP...

  1. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  2. High-energy fluxes of atmospheric neutrinos

    CERN Document Server

    Sinegovskaya, T S; Sinegovsky, S I

    2013-01-01

    High-energy neutrinos from decays of mesons, produced in collisions of cosmic ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are required since measurements in the IceCube experiment reach the intriguing energy region where a contribution of the prompt neutrinos and/or astrophysical ones should be discovered. Basing on the referent hadronic models QGSJET II-03, SIBYLL 2.1, we calculate high-energy spectra, both of the muon and electron atmospheric neutrinos, averaged over zenith-angles. The computation is made using three parameterizations of cosmic ray spectra which include the knee region. All calculations are compared with the atmospheric neutrino measurements by Frejus and IceCube. The prompt neutrino flux predictions obtained with thequark-gluon string model (QGSM) for the charm production by Kaidalov & Piskunova do not contradict to the IceCube measurements and upper limit on the astr...

  3. Theoretical analysis of nuclear reactors (Phase I), I-V, Part V, Determining the fine flux distribution

    International Nuclear Information System (INIS)

    Mono energetic neutron transport equation was solved by Carlson numerical method in cylindrical geometry. Sn code was developed for the digital computer ZUSE Z23. Neutron flux distribution was determined for the RA reactor cell by applying S4 approximation. Reactor cell was treated as D2O-U-D2O system. Time of iteration was 185 s

  4. Nodal equivalence theory for hexagonal geometry, thermal reactor analysis

    International Nuclear Information System (INIS)

    An important aspect of advanced nodal methods is the determination of equivalent few-group parameters for the relatively large homogenized regions used in the nodal flux solution. The theoretical foundation for light water reactor (LWR) assembly homogenization methods has been clearly established, and during the last several years, its successes have secured its position in the stable of dependable LWR analysis methods. Groupwise discontinuity factors that correct for assembly homogenization errors are routinely generated along with the group constants during lattice physics analysis. During the last several years, there has been interest in applying equivalence theory to other reactor types and other geometries. A notable effort has been the work at Argonne National Laboratory to incorporate nodal equivalence theory (NET) for hexagonal lattices into the nodal diffusion option of the DIF3D code. This work was originally intended to improve the neutronics methods used for the analysis of the Experimental Breeder Reactor II (EBR-II), and Ref. 4 discusses the success of that application. More recently, however, attempts were made to apply NET to advanced, thermal reactor designs such as the modular high-temperature gas reactor (MHTGR) and the new production heavy water reactor (NPR/HWR). The same methods that were successful for EBR-II have encountered problems for these reactors. Our preliminary analysis indicates that the sharp global flux gradients in these cores requires large discontinuity factors (greater than 4 or 5) to reproduce the reference solution. This disrupts the convergence of the iterative methods used to solve for the node-wise flux moments and partial currents. Several attempts to remedy the problem have been made over the last few years, including bounding the discontinuity factors and providing improved initial guesses for the flux solution, but nothing has been satisfactory

  5. Technical aspects of high converter reactors

    International Nuclear Information System (INIS)

    The meeting provided an opportunity to review and discuss national R and D programs, various technical aspects of and worldwide progress in the implementation of high conversion reactors. The meeting was attended by 66 participants from 18 countries and 2 international organizations. 33 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs, tabs, slides and diagram

  6. Ultra high temperature particle bed reactor design

    Science.gov (United States)

    Lazareth, Otto; Ludewig, Hans; Perkins, K.; Powell, J.

    1990-01-01

    A direct nuclear propulsion engine which could be used for a mission to Mars is designed. The main features of this reactor design are high values for I(sub sp) and very efficient cooling. This particle bed reactor consists of 37 cylindrical fuel elements embedded in a cylinder of beryllium which acts as a moderator and reflector. The fuel consists of a packed bed of spherical fissionable fuel particles. Gaseous H2 passes over the fuel bed, removes the heat, and is exhausted out of the rocket. The design was found to be neutronically critical and to have tolerable heating rates. Therefore, this particle bed reactor design is suitable as a propulsion unit for this mission.

  7. Verification of Monte Carlo calculations of the neutron flux in typical irradiation channels of the TRIGA reactor, Ljubljana

    NARCIS (Netherlands)

    Jacimovic, R; Maucec, M; Trkov, A

    2003-01-01

    An experimental verification of Monte Carlo neutron flux calculations in typical irradiation channels in the TRIGA Mark II reactor at the Jozef Stefan Institute is presented. It was found that the flux, as well as its spectral characteristics, depends rather strongly on the position of the irradiati

  8. High heat flux engineering in solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.

    1993-07-01

    Solar thermal energy systems can produce heat fluxes in excess of 10,000 kW/m{sup 2}. This paper provides an introduction to the solar concentrators that produce high heat flux, the receivers that convert the flux into usable thermal energy, and the instrumentation systems used to measure flux in the solar environment. References are incorporated to direct the reader to detailed technical information.

  9. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  10. Critical Heat Flux Phenomena at HighPressure & Low Mass Fluxes: NEUP Final Report Part I: Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Wu, Qiao [Oregon State Univ., Corvallis, OR (United States)

    2015-04-30

    This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embedded in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.

  11. Development of a neutron tomography system using a low flux reactor

    International Nuclear Information System (INIS)

    A neutron tomography instrument was designed and developed at the Royal Military College (RMC) of Canada with Queen's University to enhance these institutions' non-destructive evaluation capabilities. The neutron imaging system was built around a Safe Low-Power C(K)ritical Experiment (SLOWPOKE-2) nuclear research reactor. The low power and physical geometry of the reactor required that a novel design be developed to facilitate tomography. A unique rotisserie style rotary stage and clamping apparatus was developed. Furthermore, the low flux at the image plane (3x104 n cm-2 s-1), necessitated that the image acquisition and reconstruction processes be optimized. Tomographs of numerous samples were obtained using the new tomography instrument at RMC.

  12. Power and neutron flux calculation for the PUSPATI TRIGA Reactor using MCNP

    International Nuclear Information System (INIS)

    The Malaysian 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the calculation of neutron flux and power distribution in PUSPATI TRIGA REACTOR (RTP) 14th core configuration. The 3-D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA core and fuels. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data as well as S (α, β) thermal neutron scattering functions distributed with the MCNP code were used. Results of calculations are analyzed and discussed. (author)

  13. Anisotropic flux pinning in high Tc superconductors

    Science.gov (United States)

    Koleśnik, S.; Igalson, J.; Skośkiewicz, T.; Szymczak, R.; Baran, M.; Pytel, K.; Pytel, B.

    1995-02-01

    In this paper we present a comparison of the results of FC magnetization measurements on several PbSr(Y,Ca)CuO crystals representing various levels of flux pinning. The pinning centers in our crystals have been set up during the crystal growth process or introduced by neutron irradiation. Some possible explanations of the observed effects, including surface barrier, flux-center distribution and sample-shape effects, are discussed.

  14. Experimental results of angular neutron flux spectra leaking from slabs of fusion reactor candidate materials, (1)

    International Nuclear Information System (INIS)

    This report summarizes experimental data of angular neutron flux spectra measured on the slab assemblies of fusion reactor candidate materials using the neutron time-of-flight (TOF) method. These experiments have been performed for graphite (carbon), beryllium and lithium-oxide. The obtained data are very suitable for the benchmark tests to check the nuclear data and calculational code systems. For use of that purpose, the experimental conditions, definitions of key terms and results obtained are compiled in figures and numerical tables. (author)

  15. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Sarmani, S.B. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Radir, M.H. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2011-05-15

    Determination of thermal to fast neutron flux ratio (f{sub fast}) and fast neutron flux ({phi}{sub fast}) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f{sub fast} and subsequently {phi}{sub fast} were determined using the absolute method. The f{sub fast} ranged from 48 to 155, and the {phi}{sub fast} was found in the range 1.03x10{sup 10}-4.89x10{sup 10} n cm{sup -2} s{sup -1}. These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  16. Characterization of the neutron flux gradients in typical irradiation channels of a TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    The neutron distribution in a defined volume (gradient) for different matrices (air, water, cellulose, biological material and silicon dioxide) in two typical irradiation channels (pneumatic tube (PT) and IC40-channel in the carousel facility) in the TRIGA Mark II reactor at the Jozef Stefan Institute (IJS) was studied. Experiment was based on inserting Fe wires (flux monitors) into the chosen matrices. The wires were cut into small pieces after irradiation and the induced activities of 59Fe measured. The results showed that for the studied geometry the average spatial thermal neutron flux inhomogeneities (for five studied matrices) are about 2.3% in the PT-channel and about 2.9% in the IC40-channel. (author)

  17. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    International Nuclear Information System (INIS)

    The use of internally and externally cooled annular fuel rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and economic assessment. The investigation was conducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperature. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasibility issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density

  18. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  19. High-Order Homogenization Method in Diffusion Theory for Reactor Core Simulation and Design Calculation

    International Nuclear Information System (INIS)

    Most modern nodal methods in use by the reactor vendors and utilities are based on the generalized equivalence theory (GET) that uses homogenized cross sections and flux discontinuity factors. These homogenized parameters, referred to as infinite medium parameters, are precomputed by performing single bundle fine-mesh calculations with zero current boundary conditions. It is known that for configurations in which the node-to-node leakage (e.g., surface current-to-flux ratio) is large the use of the infinite medium parameters could lead to large errors in the nodal solution. This would be the case for highly heterogeneous core configurations, typical of modern reactor core designs

  20. High-Order Homogenization Method in Diffusion Theory for Reactor Core Simulation and Design Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Farzad Rahnema

    2003-09-30

    Most modern nodal methods in use by the reactor vendors and utilities are based on the generalized equivalence theory (GET) that uses homogenized cross sections and flux discontinuity factors. These homogenized parameters, referred to as infinite medium parameters, are precomputed by performing single bundle fine-mesh calculations with zero current boundary conditions. It is known that for configurations in which the node-to-node leakage (e.g., surface current-to-flux ratio) is large the use of the infinite medium parameters could lead to large errors in the nodal solution. This would be the case for highly heterogeneous core configurations, typical of modern reactor core designs.

  1. A High Flux Source of Cold Rubidium

    CERN Document Server

    Slowe, C; Hau, L V; Slowe, Christopher; Vernac, Laurent; Hau, Lene Vestergaard

    2004-01-01

    We report the production of a continuous, slow, and cold beam of 87-Rb atoms with an unprecedented flux of 3.2 x 10^12 atoms/s and a temperature of a few milliKelvin. Hot atoms are emitted from a Rb candlestick atomic beam source and transversely cooled and collimated by a 20 cm long atomic collimator section, augmenting overall beam flux by a factor of 50. The atomic beam is then decelerated and longitudinally cooled by Zeeman slowing.

  2. Neutron flux characterisation of the Pavia TRIGA Mark II research reactor for radiobiological and microdosimetric applications.

    Science.gov (United States)

    Alloni, D; Prata, M; Salvini, A; Ottolenghi, A

    2015-09-01

    Nowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies. Experimental data on neutron fluxes have been collected analysing and measuring the gamma activity induced in thin target foils of different materials irradiated in different TRIGA experimental channels. The data on the induced gamma activities have been processed with the SAND II deconvolution code and finally compared with the spectra obtained with Monte Carlo simulations. The comparison between simulated and measured spectra showed a good agreement allowing a more precise characterisation of the neutron spectra and a validation of the adopted method. PMID:25958412

  3. Neutron flux characterisation of the Pavia Triga Mark II research reactor for radiobiological and microdosimetric applications

    International Nuclear Information System (INIS)

    Nowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies. Experimental data on neutron fluxes have been collected analysing and measuring the gamma activity induced in thin target foils of different materials irradiated in different TRIGA experimental channels. The data on the induced gamma activities have been processed with the SAND II deconvolution code and finally compared with the spectra obtained with Monte Carlo simulations. The comparison between simulated and measured spectra showed a good agreement allowing a more precise characterisation of the neutron spectra and a validation of the adopted method. (authors)

  4. Neutron flux parameters for k{sub 0}-NAA method at the Malaysian nuclear agency research reactor after core reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Sarmani, S. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Masood, Z. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia)

    2011-02-15

    The Malaysian Nuclear Agency (MNA) research reactor, commissioned in 1982, is a TRIGA Mark II swimming pool type reactor. When the core configuration changed in June 2009, it became essential to re-determine such neutron flux parameters as thermal to epithermal neutron flux ratio (f), epithermal neutron flux shape factor ({alpha}), thermal neutron flux ({phi}{sub th}) and epithermal neutron flux ({phi}{sub epi}) in the irradiation positions of MNA research reactor in order to guarantee accuracy in the application of k{sub 0}-neutron activation analysis (k{sub 0}-NAA).The f and {alpha} were determined using the bare bi-isotopic monitor and bare triple monitor methods, respectively; Au and Zr monitors were utilized in present study. The results for four irradiation positions are presented and discussed in the present work. The calculated values of f and {alpha} ranged from 33.49 to 47.33 and -0.07 to -0.14, respectively. The {phi}{sub th} and the {phi}{sub epi} were measured as 2.03 x 10{sup 12} (cm{sup -2} s{sup -1}) and 6.05 x 10{sup 10} (cm{sup -2} s{sup -1}) respectively. These results were compared to those of previous studies at this reactor as well as to those of reactors in other countries. The results indicate a good conformity with other findings.

  5. Workshop on high heat flux materials for TFCX

    International Nuclear Information System (INIS)

    The workshop reviewed the performance requirements for high-heat-flux material in TFCX, summarized existing materials and materials technologies for meeting these requirements, identified critical near-term materials R and D for high-heat flux components, and reviewed the status of materials test facilities for performing the necessary R and D

  6. Critical heat flux predictions for the Sandia Annular Core Research Reactor

    International Nuclear Information System (INIS)

    This study provides best estimate predictions of the Critical Heat Flux (CHF) and the Critical Heat Flux Ratio (CHFR) to support the proposed upgrade of the Annual Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) from its present value of 2 MWt to 4 MWt. These predictions are based on the University of New Mexico (UNM) - CHF correlation, originally developed for uniformly heated vertical annuli. The UNM-CHF correlation is applicable to low-flow and low-pressure conditions, which are typical of those in the ACRR. The three hypotheses that examined the effect of the nonuniform axial heat flux distribution in the ACRR core are (1) the local conditions hypotheses, (2) the total power hypothesis, and (3) the global conditions hypothesis. These hypotheses, in conjunction with the UNM-CHF correlation, are used to estimate the CHF and CHFR in the ACRR. Because the total power hypothesis predictions of power per rod at CHF are approximately 15%-20% lower than those corresponding to saturation exit conditions, it can be concluded that the total power hypothesis considerably underestimates the CHF for nonuniformly heated geometries. This conclusion is in agreement with previous experimental results. The global conditions hypothesis, which is more conservative and more accurate of the other two, provides the most reliable predictions of CHF/CHFR for the ACRR. The global conditions hypothesis predictions of CHFR varied between 2.1 and 3.9, with the higher value corresponding to the lower water inlet temperature of 20 degrees C

  7. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  8. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield.

    Science.gov (United States)

    Merz, Stefan; Djuricic, Mile; Villa, Mario; Böck, Helmuth; Steinhauser, Georg

    2011-11-01

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10(9)cm(-2)s(-1) at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. PMID:21646026

  9. Theoretical and experimental study of collectrons for epithermal neutron flux in reactors

    International Nuclear Information System (INIS)

    A theoretical study of nuclear reactions and electric charge displacements arising in sensitivity to thermal and epithermal neutrons in collectrons allowed a computer code conception. Collectrons in Rhodium, Silver, Cobalt, Hafnium, Erbium, Gadolinium and Holmium have been tested in different radiation fields given by neutron or gamma filters irradiated in different places of Melusine and Siloe reactors. Some emitters were covered with different steel, nickel or zircaloy thicknesses. Theoretical and experimental results are consistent; that validate the computer code and show possibilities and necessity of covering collectron emitters to reduce or cancel the gamma sensitivity and to improve response instantaneity. A selective measurement of epithermal neutron flux can by this way, made by associating two types of collectrons

  10. Verification of MCNP simulation of neutron flux parameters at TRIGA MK II reactor of Malaysia.

    Science.gov (United States)

    Yavar, A R; Khalafi, H; Kasesaz, Y; Sarmani, S; Yahaya, R; Wood, A K; Khoo, K S

    2012-10-01

    A 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.19±0.03)×10(12) cm(-2)s(-1), (1.26±0.02)×10(11) cm(-2)s(-1) and (3.33±0.02)×10(10) cm(-2)s(-1), respectively. These average values were consistent with the experimental results obtained by k(0)-INAA. The findings show a good agreement between MCNP code results and experimental results. PMID:22885391

  11. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    Energy Technology Data Exchange (ETDEWEB)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  12. Response of actinides to flux changes in high-flux systems

    International Nuclear Information System (INIS)

    When discussing the transmutation of actinides in accelerator-based transmutation of waste (ATW) systems, there has been some concern about the dynamics of the actinides under high transient fluxes. For a pure neptunium feed, it has been estimated that the 238Np/237Np ratio increase due to an increasing flux may lead to an unstable, positive reactivity growth. In this analysis, a perturbation method is used to calculate the response of the entire set of actinides in a general way that allows for more species than just neptunium. The time response of the system can be calculated; i.e., a plot of fuel composition and reactivity versus time after a change in flux can be made. The effects of fission products can also be included. The procedure is extremely accurate on short time scales (∼ 1000 s) for the flux levels we contemplate. Calculational results indicate that the reactivity insertions are always smaller than previously estimated

  13. Magnetic Flux Compression Reactor Concepts for Spacecraft Propulsion and Power (MSFC Center Director's Discretionary Fund; Project No. 99-24). Part 1

    Science.gov (United States)

    Litchford, R. J.; Robertson, G. A.; Hawk, C. W.; Turner, M. W.; Koelfgen, S.; Litchford, Ron J. (Technical Monitor)

    2001-01-01

    This technical publication (TP) examines performance and design issues associated with magnetic flux compression reactor concepts for nuclear/chemical pulse propulsion and power. Assuming that low-yield microfusion detonations or chemical detonations using high-energy density matter can eventually be realized in practice, various magnetic flux compression concepts are conceivable. In particular, reactors in which a magnetic field would be compressed between an expanding detonation-driven plasma cloud and a stationary structure formed from a high-temperature superconductor are envisioned. Primary interest is accomplishing two important functions: (1) Collimation and reflection of a hot diamagnetic plasma for direct thrust production, and (2) electric power generation for fusion standoff drivers and/or dense plasma formation. In this TP, performance potential is examined, major technical uncertainties related to this concept accessed, and a simple performance model for a radial-mode reactor developed. Flux trapping effectiveness is analyzed using a skin layer methodology, which accounts for magnetic diffusion losses into the plasma armature and the stationary stator. The results of laboratory-scale experiments on magnetic diffusion in bulk-processed type II superconductors are also presented.

  14. Development of high intensity source of thermal positrons APosS (Argonne Positron Source)

    International Nuclear Information System (INIS)

    We present an update on the positron-facility development at Argonne National Laboratory. We will discuss advantages of using low-energy electron accelerator, present our latest results on slow positron production simulations, and plans for further development of the facility. We have installed a new converter/moderator assembly that is appropriate for our electron energy that allows increasing the yield about an order of magnitude. We have simulated the relative yields of thermalized positrons as a function of incident positron energy on the moderator. We use these data to calculate positron yields that we compare with our experimental data as well as with available literature data. We will discuss the new design of the next generation positron front end utilization of reflection moderator geometry. We also will discuss planned accelerator upgrades and their impact on APosS.

  15. 3D AGENT methodology validation for prismatic high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    The Generation IV of nuclear reactors includes as highly competitive the design of a Very High Temperature Reactor (VHTR). This type of reactors can be of a prismatic block, or pebble-bed type. An example of a prismatic block nuclear reactor is the High Temperature Test Reactor (HTTR) operated by Japan Atomic Energy Agency; the reactor reached its full power of 30 MWth for the first time in 1999. The primary coolant is helium at the pressure of ∼4 MPa, with inlet-outlet temperatures of 395°C and 850 – 950°C, respectively. The fuel is 6% enriched uranium, and the moderator is made of graphite. Using the literature available data, a comprehensive validation study is performed to benchmark and assess the AGENT (Arbitrary GEometry Neutron Transport) methodology capabilities in predicting and capturing reactor physics details affected by double heterogeneity of the fuel. Using AGENT with explicit modeling of the fuel double heterogeneity, the HTTR neutronics parameters are compared to NEWT and KENO VI, as well as to experimental data as found in literature. Detailed analysis of spatial steady-state reaction rates and flux spatial maps are provided. The AGENT methodology is based on the method of characteristics and the only one in the world as applied to reactor systems, the R-function based reactor solid modeler, in providing an accurate deterministic solution for 3D steady-state reactor physics. The R-functions modeler presents no limits to reactor geometry and materials types with their distributions. (author)

  16. High-temperature and breeder reactors - economic nuclear reactors of the future

    International Nuclear Information System (INIS)

    The thesis begins with a review of the theory of nuclear fission and sections on the basic technology of nuclear reactors and the development of the first generation of gas-cooled reactors applied to electricity generation. It then deals in some detail with currently available and suggested types of high temperature reactor and with some related subsidiary issues such as the coupling of different reactor systems and various schemes for combining nuclear reactors with chemical processes (hydrogenation, hydrogen production, etc.), going on to discuss breeder reactors and their application. Further sections deal with questions of cost, comparison of nuclear with coal- and oil-fired stations, system analysis of reactor systems and the effect of nuclear generation on electricity supply. (C.J.O.G.)

  17. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Feldman, E. E. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Wilson, E. H. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Div., Research and Test Reactor Dept.; Foyto, L. P. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Kutikkad, K. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; McKibben, J. C. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Peters, N. J. [Univ. of Missouri, Columbia, MO (United States). Research Reactor; Cowherd, W. M. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program; Rickman, B. [Univ. of Missouri, Columbia, MO (United States). College of Engineering, Nuclear Engineering Program

    2014-12-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo

  18. Experimental and MCNP5 based evaluation of neutron and gamma flux in the irradiation ports of the University of Utah research reactor

    Directory of Open Access Journals (Sweden)

    Noble Brooklyn

    2012-01-01

    Full Text Available Neutron and gamma flux environment of various irradiation ports in the University of Utah training, research, isotope production, general atomics reactor were experimentally assessed and fully modeled using the MCNP5 code. The experimental measurements were based on the cadmium ratio in the irradiation ports of the reactor, flux profiling using nickel wire, and gamma dose measurements using thermo luminescence dosimeter. Full 3-D MCNP5 reactor model was developed to obtain the neutron flux distributions of the entire reactor core and to compare it with the measured flux focusing at the irradiation ports. Integration of all these analysis provided the updated comprehensive neutron-gamma flux maps of the existing irradiation facilities of the University of Utah TRIGA reactor.

  19. Miniaturized heat flux sensor for high enthalpy plasma flow characterization

    International Nuclear Information System (INIS)

    An improved miniaturized heat flux sensor is presented aiming at measuring extreme heat fluxes of plasma wind tunnel flows. The sensor concept is based on an in-depth thermocouple measurement with a miniaturized design and an advanced calibration approach. Moreover, a better spatial estimation of the heat flux profile along the flow cross section is realized with this improved small sensor design. Based on the linearity assumption, the heat flux is determined using the impulse response of the sensor relating the heat flux to the temperature of the embedded thermocouple. The non-integer system identification (NISI) procedure is applied that allows a calculation of the impulse response from transient calibration measurements with a known heat flux of a laser source. The results show that the new sensor leads to radially highly resolved heat flux measurement for a flow with only a few centimetres in diameter, the so far not understood non-symmetric heat flux profiles do not occur with the new sensor design. It is shown that this former effect is not a physical effect of the flow, but a drawback of the classical sensor design. (authors)

  20. Relation of middle molecules levels and oxidative stress to erythropoietin requirements in high-flux versus low-flux hemodialysis

    Directory of Open Access Journals (Sweden)

    Hala S El-Wakil

    2013-01-01

    Full Text Available The objective of this study is to investigate the serum beta-2-microglobulin (B2MG and advanced oxidation protein products (AOPP as middle molecule uremic toxins and protein carbonyl (PCO as oxidative stress marker in uremic patients undergoing high-flux versus low-flux hemodialysis (HD and to correlate their levels to the erythropoietin requirements for those patients. Twenty patients on chronic low-flux HD were recruited in the study. At the start of the study, all patients underwent high-flux HD for eight weeks, followed by low-flux HD for two weeks as a washout period. The patients were then subjected to another eight weeks of low-flux HD. Blood samples were obtained at the beginning and at the end of the high-flux period and the low-flux period. The mean erythropoietin dose for patients using high-flux HD was significantly lower than that for low-flux HD (P = 0.0062. Post-high flux, the B2MG and PCO levels were significantly lower than the pre-high-flux levels (P = 0.026 and 0.0005, respectively, but no significant change was observed in AOPP (P = 0.68. Post-low flux, the B2MG, AOPP and PCO were significantly higher than the pre-low-flux levels (P = 0.0002, 0.021 and <0.0001, respectively. Post-low flux, the B2MG and PCO were significantly higher than the post-high-flux levels (P <0.0001, but no significant difference was observed in AOPP (P = 0.11. High-flux HD results in reduction of some of the middle molecule toxins and PCO levels better than low-flux HD, and is associated with a better response to erythropoietin.

  1. High Torque Density Transverse Flux Machine without the Need to Use SMC Material for 3D Flux Paths

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2015-01-01

    machine topology proposed in this paper, by advantageously utilizing the magnetic flux path provided by an additional rotor, use of laminations that allow 2-D flux paths only will be sufficient to accomplish the required 3-D flux paths. The machine also has a high torque density and is therefore......This paper presents a new transverse flux permanent magnet machine. In a normal transverse flux machine, complicated 3-D flux paths often exist. Such 3-D flux paths would require the use of soft magnetic composites material instead of laminations for construction of the machine stator. In the new...

  2. Use of different programs for calculating the flux density of neutrons activating sodium in the secondary circuit of a NPP with the BN-600 reactor

    International Nuclear Information System (INIS)

    Possibilities of application of the RADAR, TVK-2D and MMKFK program complexes to calculate the BN-600 type reactor shields are analyzed. TVK-2D program (ALGOL-DDR, BESM-6 computer) is designed for two-dimensional calculations of reactors in diffusion multigroup finite-difference approximation using classical and unified perturbation theory. The RADAR system (FORTRAN-4, BESM-6 computer) realizes Boltzmann equation solution by iterative synthesis method in multigroup diffusion approximation. The MMKFK complex (FORTRAN, BESM-6 computer) is used to calculate radiation transport in reactors and cells. The complex is improved: at large ratioes of neutron flux attenuation the methods of splitting and roulette are realized. Calculational results of the integral by energy and mean by zones values of neutron flux density in radial shield and sodium activity in the secondary coolant circuits are presented. Good conformity of the data obtained is pointed out. Conclusion is made about the applicability of the program systems investigated to calculate fast reactor shields at different stages of design. The RADAR system due to its quick operation will be more efficient at the initial stages, while the MMKFK system - at final ones, when high accuracy of calculation is required

  3. Experimental and MCNP5 based evaluation of neutron and gamma flux in the irradiation ports of the University of Utah research reactor

    OpenAIRE

    Noble Brooklyn; Choe Dong-Ok; Jevremovic Tatjana

    2012-01-01

    Neutron and gamma flux environment of various irradiation ports in the University of Utah training, research, isotope production, general atomics reactor were experimentally assessed and fully modeled using the MCNP5 code. The experimental measurements were based on the cadmium ratio in the irradiation ports of the reactor, flux profiling using nickel wire, and gamma dose measurements using thermo luminescence dosimeter. Full 3-D MCNP5 reactor model was developed to obtain the neutron f...

  4. Fusion reactors-high temperature electrolysis (HTE)

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J.A. (ed.)

    1978-01-01

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 1800/sup 0/C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 1400/sup 0/C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) ($1000/KW(E) equivalent), the H/sub 2/ energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 10/sup 6/ scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen.

  5. Fusion reactors-high temperature electrolysis (HTE)

    International Nuclear Information System (INIS)

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 18000C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 14000C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) [$1000/KW(E) equivalent], the H2 energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 106 scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen

  6. High temperature reactors and their use in the FRG

    International Nuclear Information System (INIS)

    Various aspects of the strategy of building high temperature reactors in the FRG are discussed. The development of these reactors has a long tradition in the FRG and great sums of money are being invested in the research programme. In 1988 the AVR-15 experimental reactor is expected to be shut down in which the helium output temperature had been maintained at 950 degC for a long period of time. The THTR-300 demonstration power plant which is expected to be available at that time represents a link to further application of high temperature reactors in the FRG. A detailed description is presented of projects of further high temperature reactors with a wide range of power output. The BBC/HRB association with Swiss participation is now specifying the project of the HTR-500 reactor with a steam cycle and the delivery of technological steam. This reactor should be followed up by the construction of a reactor with an HHT gas turbine and of an HTR-PNP reactor for coal gasification. Alternatively developed are small HTR-100 universal reactors. Prospective projects also include the 80 MW modular system by KWU following up on the AVR-15 reactor. (Z.M.)

  7. Design and construction of an automatic measurement electronic system and graphical neutron flux for the subcritical reactor

    International Nuclear Information System (INIS)

    The National Institute of Nuclear Research (ININ) has in its installations with a nuclear subcritical reactor which was designed and constructed with the main purpose to be used in the nuclear sciences education in the Physics areas and Reactors engineering. Within the nuclear experiments that can be realized in this reactor are very interesting those about determinations of neutron and gamma fluxes spectra, since starting from these some interesting nuclear parameters can be obtained. In order to carry out this type of experiments different radioactive sources are used which exceed the permissible doses by far to human beings. Therefore it is necessary the remote handling as of the source as of detectors used in different experiments. In this work it is presented the design of an electronic system which allows the different positions inside of the tank of subcritical reactor at ININ over the radial and axial axes in manual or automatic ways. (Author)

  8. High Performance Photocatalytic Oxidation Reactor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes a technology program for the development of an innovative photocatalytic oxidation reactor for the removal and mineralization of...

  9. Comparing changes in plasma and skin autofluorescence in low-flux versus high-flux hemodialysis

    NARCIS (Netherlands)

    Ramsauer, Bernd; Engels, Gerwin; Arsov, Stefan; Hadimeri, Henrik; Sikole, Aleksandar; Graaff, Reindert; Stegmayr, Bernd

    2015-01-01

    Background: Tissue advanced glycation end products (AGE) are increased in hemodialysis (HD) patients, especially those with cardiovascular complications. Skin autofluorescence (skin-AF) can noninvasively estimate the accumulation of AGE in tissue. The aim was to clarify whether HD using a high-flux

  10. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    International Nuclear Information System (INIS)

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 108 ± 5.25% n/cm2s. (author)

  11. Visualization Study on High Heat Flux Boiling and Critical Heat Flux

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    In this study, an integrated visible and infrared-based experimental method is introduced to simultaneously measure the details of high-resolution liquid-vapor phase and heat transfer distributions on a heated wall. The dynamics and heat transfer at high heat flux boiling and critical heat flux were observed. The experiment was conducted in pool of saturated water under atmospheric pressure. There have been many studies to examine the physical mechanisms of nucleation boiling and critical heat flux over several decades. Several visible and infrared-based optical techniques for time-resolved high resolution measurements for liquid-vapor phase and heater surface temperature during boiling have been introduced to understand the characteristics and mechanisms of them. Liquid-vapor phase, temperature, and heat flux distributions on the heated surface were measured during pool boiling of water using the integrated total reflection and infrared thermometry technique. Qualitative examination of the data for high heat flux boiling and CHF was performed. The main contributions of this work are summarized below. The existence and behavior of dry patches lead the way toward CHF condition. Therefore, the mechanistic modeling of the CHF phenomenon necessarily needs to include the physical parameters related to dynamics of the large dry patch such as life time and size. In addition to the dynamic behavior of the dry patch, the thermal behavior of the hot patch is also important. Even though the dry area was rewetted, the stored thermal energy in the hot patch can be remained if the rewetting time is short and the subsequent dry patch is regenerated quickly.

  12. Maintenance management at the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Maintenance procedures are described for mechanical and electrical equipment; nuclear and process instrumentation; operational maintenance; equipment and systems inspections; and HFIR quality assurance

  13. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor

    International Nuclear Information System (INIS)

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  14. Irradiation embrittlement mechanism of reactor pressure vessel steels of light water reactors. Effect of neutron flux on the embrittlement of low copper steels

    International Nuclear Information System (INIS)

    To investigate the effects of neutron flux on the mechanical properties of low copper reactor pressure vessel steels, we carried out neutron irradiation of Japanese plate and forging steels. We then tested subsize tensile and Charpy impact specimens in the joint research program between the Central Research Institute of Electric Power Industry and the University of California, Santa Barbara. The results showed that shifts in ductile-to-brittle transition temperature obtained from Charpy impact tests have no dependence on neutron flux through the neutron fluence levels although there are slight changes of shift in ductile-to-brittle transition temperature as neutron flux changes. Changes in yield stress and ultimate tensile stress obtained from tensile tests are independent of neutron flux but increase with increasing neutron fluence. Based on the mechanical property test results, we conclude that irradiation embrittlement of low copper steels has no detectable dependence on neutron flux in the neutron flux range of 7 x 1010-5 x 1012 n/cm2-s. (author)

  15. Reliability Analysis of High Temperature Reactor Fuels

    International Nuclear Information System (INIS)

    This paper presents the results of reliability analysis of the TRISO -coated fuel particles for the High Temperature Test Reactor (HTTR), Japan. The reliability of fuel particle was evaluated based on the failure probability of each coating layer, and only the failure due to internal gas pressure and shrinkage of pyrolytic carbon (PyC) layer was considered The analysis results show that, no significant failure occurs up to about 45 MWd/kgU for the first core fuel particle and up to about 75 MWd/kgU for the reload core fuel particle. The fuel particle is predicted to fail completely at about 50 MWd/kgU for the first core fuel particle and at about 85 MWd/kgU for the reload core fuel particle. This results show that the TRISO -coated fuel particle for the HTTR to have high reliability. No failure occurs up to the maximum burnup design level, i.e. 33 MWd/kgU for the first core fuel particle and 60 MWd/kgU for the reload core fuel particle. The analysis results show also that the fuel particle reliability (coating layers) depends on the irradiation temperature. The failure occurs at lower burnup if the irradiation temperature increases. (author)

  16. Multipurpose Utilisation of a Medium Flux Research Reactor. Benefit for the Society

    International Nuclear Information System (INIS)

    The Budapest Research Reactor (BRR) was restarted after a major refurbishment and increase in power to 10 MW in 1992. Basically, the experience gained with the utilization of this multipurpose facility during the past 20 years is described here. The utilization aims for 3 major activities: i) Research and development base for the energy sector: scientific and safety support for the Paks NPP; research in energy saving and production. ii) A complex source of irradiations for materials testing and modification, diagnostics in nanotechnologies, engineering, healthcare etc. iii) Neutron beams from the horizontal channels of the reactor serve for exploratory as well as for applied research in a very wide range of disciplines. Graduate and professional training is also in the scope of our activity. The reactor went critical first in 1959. It served nearly 3 decades as a home base for learning nuclear sciences and technologies, to development nuclear energetics, which resulted in launching four power plant blocks in the eighties, as well as to establish neutron beam research in our country. Nearly 20 years passed now that the decision was made - after the falling of the Iron Curtain'' - the practically brand new 10 megawatt reactor should be commissioned and opened for the international user community. The reactor reached its nominal power in May 1993 and neutron beam experiments were available on 4 instruments at that time. Thanks to a continuous development the number of experimental stations now is 15, the research staffs has grown from 10 to nearly 50 scientists and research facilities have been improved considerably. A few important milestones should be mentioned: a liquid hydrogen cold source was installed and the neutron guide system was replaced by a supermirror guide configuration, yielding a factor of 50-80 gain in neutron intensity; a second guide hall was constructed to house a new time-of-flight instrument; BRR became a member of the European neutron

  17. High Field Seeking State Atom Laser and Properties of Flux

    Institute of Scientific and Technical Information of China (English)

    XIA Lin; XIONG Wei; YANG Fan; YI Lin; ZHOU Xiao-Ji; CHEN Xu-Zong

    2008-01-01

    We present an experimental study on the continuous atom laser. The experiments show that a high field seeking state atom laser with stable flux can be formed by increasing the strength of outcoupling before large density fluctuations appear. It is easy to obtain a long length or high speed output with this kind of atom laser.

  18. Spatial distribution of the neutron flux in the IEA-R1 reactor core obtained by means of foil activation

    International Nuclear Information System (INIS)

    A three-dimensional distribution of the neutron flux in IEA-R1 reactor, obtained by activating gold foils, is presented. The foils of diameter 8mm and thickness 0,013mm were mounted on lucite plates and located between the fuel element plates. Foil activities were measured using a 3x3 inches Nal(Tl) scintilation detector calibrated against a 4πβγ coincidence detector. Foil positions were chosen to minimize the errors of measurement; the overall estimated error on the measured flux is 5%. (Author)

  19. Neutron flux calculation and fluence in the encircling of the core and vessel of a reactor BWR

    International Nuclear Information System (INIS)

    One of the main objectives related to the safety of any nuclear power plant, including the nuclear power plant of Laguna Verde is to ensure the structural integrity of reactor pressure vessel. To identify and quantify the damage caused by neutron irradiation in the vessel of any nuclear reactor, it is necessary to know both the neutron flux and the neutron fluence that the vessel has been receiving during its operation lifetime, and that the damage observed by mechanical testing are products of microstructural effects induced by neutron irradiation; therefore, it is important the study and prediction of the neutron flux in order to have a better understanding of the damage that these materials are receiving. The calculation here described uses the DORT code, which solves the neutron transport equation in discrete ordinates in two dimensions (x-y, r-θ and r-z), according to a regulatory guide, it should make an approximation of the neutron flux in three dimensions by the so called synthesis method. It is called in that way because it achieves a representation of 3 Dimensional neutron flux combining or summarizing the fluxes calculated by DORT r-θ, r-z and r. This work presents the application of synthesis method, according to Regulatory Guide 1190, to determine the 3 Dimensional fluxes in internal BWR reactor using three different spatial meshes. The results of the neutron flux and fluence, using three different meshes in the directions r, θ and z were compared with results reported in the literature obtaining a difference not larger than 9.61%, neutron flux reached its maximum, 1.58 E + 12 n/cm2s, at a height H 4 (239.07 cm) and angle 32.236o in the core shroud and 4.00 E + 09 n/cm2s at a height H 4 and angle 35.27o in the inner wall of the reactor vessel, positions that are consistent to within ±10% over the ones reported in the literature. (Author)

  20. A wide range in-core neutron monitoring system for high powered TRIGA reactors

    International Nuclear Information System (INIS)

    High power movable core TRIGA reactors present unique problems of determining power levels from a neutron flux measurement because of (1) difficulty of locating detectors; (2) water thermal effects and (3) effect of experimental facilities. A solution, along with experimental results, will be described that uses a beam tube to effectively make in-core flux measurements with an out-of-core detector. The application of this new type of detector assembly to wide range linear and log power measurement will also be discussed. (author)

  1. BOTHER: a steady-state code that predicts margin to burnout heat flux for N-Reactor fuel elements

    International Nuclear Information System (INIS)

    In order to operate a nuclear reactor safely, some method must be available which can adequately describe the thermal-hydraulics of the reactor core. Further, some method must be available which can be used to predict the effects of changes in system operation. For example it is often necessary to know or be able to predict the effects of reduced coolant flow, front or rear peaked power distribution, etc., on the overall safe operation of the reactor. Because of the uniqueness of the N Reactor (horizontal pressure tubes with no crossflow between tubes or annular subchannels) the commonly available thermal-hydraulics codes are generally not directly applicable. For these reasons the BOTHER (BurnOut THErmal Ratio) computer code has been developed at UNI. Using experimental results for N Reactor flow splits and heat splits as well as enthalpy imbalance and critical heat flux data, BOTHER computes the steady state margin to burnout for N Reactor fuel elements. The equations used by BOTHER to perform the burnout calculations are described. A sample problem for MARK-IV fuel with input and output listings is also included

  2. Development and modelling of fission chambers designed for high neutron fluxes: applications at the HFR reactor (ILL) and the MEGAPIE target (PSI); Developpement et modelisation de chambres a fission pour les hauts flux, mise en application au RHF (ILL) et a MEGAPIE (PSI)

    Energy Technology Data Exchange (ETDEWEB)

    Chabod, S

    2006-11-15

    The international project MEGAPIE (MEGAwatt PIlot Experiment) at the Paul Scherrer Institute aims to build and operate the first 1 MW liquid lead-bismuth spallation target. This work is dedicated to the characterization of the neutron flux and the actinide incineration potential of the target. This mission has required the development of an innovating neutron detector (DNM) made of 8 micro fission chambers, installed inside the central rod of the MEGAPIE target. The combination of uranium chambers with chambers without deposit allows an efficient compensation of the gamma radiation background. The optimisation and development work on the MEGAPIE chambers have enabled us to measure the {sigma}{sub f} * {phi} product at each level of the DNM with an uncertainty of less than 3 per cent. We have inferred from these data the value of the epithermal neutron flux (E > 1 eV) at 37 cm away from the window: 3.4*10{sup 13} n.cm{sup -2}.s{sup -1}, and the values of the neutron flux at 50, 60 and 74 cm: 1.2*10{sup 13}, 7.9*10{sup 12} and 3.9*10{sup 12} n.cm{sup -2}.s{sup -1} respectively. All these values are notably less important than those obtained from MCNPX simulations. Thermocouples installed in DMN have enabled us to know the temperature distribution inside the target. For a beam intensity of 1.2 mA, the temperature ranges from 360 to 420 Celsius degrees in the low part of the central rod. The thermal inertia of the system composed of the central rod and DNM has been assessed for brutal changes of the beam intensity and is worth about 60 s. (A.C.)

  3. Investigating the use of nanofluids to improve high heat flux cooling systems

    CERN Document Server

    Barrett, T R; Flinders, K; Sergis, A; Hardalupas, Y

    2013-01-01

    The thermal performance of high heat flux components in a fusion reactor could be enhanced significantly by the use of nanofluid coolants, suspensions of a liquid with low concentrations of solid nanoparticles. However, before they are considered viable for fusion, the long-term behaviour of nanofluids must be investigated. This paper reports an experiment which is being prepared to provide data on nanofluid stability, settling and erosion in a HyperVapotron device. Procedures are demonstrated for nanofluid synthesis and quality assessment, and the fluid sample analysis methods are described. The end results from this long-running experiment are expected to allow an initial assessment of the suitability of nanofluids as coolants in a fusion reactor.

  4. Complementary system for monitoring and control of neutron flux during a fuel outage and during reactor start up stage

    International Nuclear Information System (INIS)

    The present work is an example for that, how with modern technical instruments is possible to compensate disadvantage and to increase technical resources of the old systems, without a change of given system totally with new one. The system detail design and implementation was possible mostly, due to the international conferences and courses organised by IAEA and technical information provided by the agency. The designed system plays a role of complementary system to the in-situ operational systems for monitoring and control of the reactor core neutron flux, allowing its measurement and control during a fuel outage and during reactor start up stage. Additionally, the system recalculates the reactivity in beta units and according to its value the reactor criticality fixed up reactivity is defined. (author)

  5. Summary of a workshop on high heat load x-ray optics held at Argonne National Laboratory

    International Nuclear Information System (INIS)

    A workshop on High Heat Load X-Ray Optics was held at Argonne National Laboratory on August 3-5, 1989. The workshop was cosponsored by the Advanced Photon Source and the European Synchrotron Radiation Facility and served as a satellite conference to SR189. The object of this workshop was to discuss recent advances in the art of cooling X-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed open-quote finite-elementclose quotes and open-quote finite-differenceclose quotes calculations comparing experiment with theory and extending theory to optimize performance

  6. Cascade: a high-efficiency ICF power reactor

    International Nuclear Information System (INIS)

    Cascade attains a net power-plant efficiency of 49% and its cost is competitive with high-temperature gas-cooled reactor, pressurized-water reactor, and coal-fired power plants. The Cascade reactor and blanket are made of ceramic materials and activation is 6 times less than that of the MARS Tandem Mirror Reactor operating at comparable power. Hands-on maintenance of the heat exchangers is possible one day after shutdown. Essentially all tritium is recovered in the vacuum system, with the remainder recovered from the helium power conversion loop. Tritium leakage external to the vacuum system and power conversion loop is only 0.03 Ci/d

  7. RHTF 2, a 1200 MWe high temperature reactor

    International Nuclear Information System (INIS)

    After having adapted to French conditions the 1160 MWe G.A.C. reactor, Commissariat a l'Energie Atomique and French Industry have decided to design an High Temperature Reactor 1200 MWe based on the G.A.C. technology and taking into account the point of view of Electricite de France and the experience of C.E.A. and industry on the gas cooled reactor technology. The main objective of this work is to produce a reactor design having a low technical risk, good operability, with an emphasis on the safety aspects easing the licensing problems

  8. Neutron flux variability at the TRIGA MARK II reactor, Ljubljana, as a parameter with applying the k0-method of NAA

    International Nuclear Information System (INIS)

    Neutron flux behaviour during irradiation should be known when applying the k0 method of neutron activation analysis. During two 100-hour operating periods of the TRIGA MARK II reactor, Ljubljana, the flux was measured by means of a 197Au(n,γ)198Au monitor (Eγ=411.8 keV). Cadmium-covered irradiations were also performed to obtain the epithermal flux and thermal-to-epithermal flux ratio variations. Consistency was found between these results and the reactor operators' logbook record. (author) 5 refs.; 3 figs

  9. High temperature reactor development in the Netherlands

    International Nuclear Information System (INIS)

    This year, some clear design choices have been made in the WHITE Reactor development programme. The activities will be concentrated at the development of a small size pebble bed HTR for combined heat and power production with a closed cycle gas turbine. Objective of the development is threefold: 1. restoring social support; 2. establishing commercial viability after market introduction; and 3. making the market introduction itself feasible, i.e. limited development and first-of-a-kind costs. This design is based on the peu-a-peu design of KFA Juelich and will be optimized. The computer codes necessary for this are being prepared for this work. The dynamic neutronics code PANTHER is being coupled to the thermal hydraulics code THERMIX-DIREKT. For this reactor type, fuel temperatures are maximal in the scenario of depressurization with recriticality. Even for this scenario, fuel temperatures of the 20MWth PAP-GT do not exceed 1300 deg. C, so there should be room for upscaling for economic reasons. On the other hand, it would be convenient to fuel the reactor batchwise instead of continuously, and the use of thorium could be required. These two features may lead to a larger temperature margin. The optimal design must unite these features in the best acceptable way. To gain expertise in calculations on gas cooled graphite moderate reactors, benchmark calculations are being performed in parallel with international partners. Parallel to this, special expertise is being built up on HTR fuel and HTR reactor vessels. (author). 3 refs

  10. Core Physics of Pebble Bed High Temperature Nuclear Reactors

    NARCIS (Netherlands)

    Auwerda, G.J.

    2014-01-01

    To more accurately predict the temperature distribution inside the reactor core of pebble bed type high temperature reactors, in this thesis we investigated the stochastic properties of randomly stacked beds and the effects of the non-homogeneity of these beds on the neutronics and thermal-hydraulic

  11. High-flux, extended-pulse accelerators: Final report

    International Nuclear Information System (INIS)

    The purpose of the program was to investigate physical phenomena associated with high flux ion beam generation and to develop technology for intense ion beam accelerators with pulselengths in the ms range. At the time the work was initiated, the chief area of application for the technology was ion implantation and materials modification

  12. The dynamics of flux tubes in a high beta plasma

    CERN Document Server

    Vishniac, E T

    1994-01-01

    We suggest a new model for the structure of a magnetic field embedded high \\beta turbulent plasma, based on the popular notion that the magnetic field will tend to separate into individual flux tubes. We point out that interactions between the flux tubes will be dominated by coherent effects stemming from the turbulent wakes created as the fluid streams by the flux tubes. Balancing the attraction caused by shielding effects with turbulent diffusion we find that flux tubes have typical radii comparable to the local Mach number squared times the large scale eddy length, are arranged in a one dimensional fractal pattern, have a radius of curvature comparable to the largest scale eddies in the turbulence, and have an internal magnetic pressure comparable to the ambient pressure. When the average magnetic energy density is much less than the turbulent energy density the radius, internal magnetic field and curvature scale of the flux tubes will be smaller than these estimates. Realistic resistivity does not alter t...

  13. Flux-freezing breakdown in high-conductivity magnetohydrodynamic turbulence.

    Science.gov (United States)

    Eyink, Gregory; Vishniac, Ethan; Lalescu, Cristian; Aluie, Hussein; Kanov, Kalin; Bürger, Kai; Burns, Randal; Meneveau, Charles; Szalay, Alexander

    2013-05-23

    The idea of 'frozen-in' magnetic field lines for ideal plasmas is useful to explain diverse astrophysical phenomena, for example the shedding of excess angular momentum from protostars by twisting of field lines frozen into the interstellar medium. Frozen-in field lines, however, preclude the rapid changes in magnetic topology observed at high conductivities, as in solar flares. Microphysical plasma processes are a proposed explanation of the observed high rates, but it is an open question whether such processes can rapidly reconnect astrophysical flux structures much greater in extent than several thousand ion gyroradii. An alternative explanation is that turbulent Richardson advection brings field lines implosively together from distances far apart to separations of the order of gyroradii. Here we report an analysis of a simulation of magnetohydrodynamic turbulence at high conductivity that exhibits Richardson dispersion. This effect of advection in rough velocity fields, which appear non-differentiable in space, leads to line motions that are completely indeterministic or 'spontaneously stochastic', as predicted in analytical studies. The turbulent breakdown of standard flux freezing at scales greater than the ion gyroradius can explain fast reconnection of very large-scale flux structures, both observed (solar flares and coronal mass ejections) and predicted (the inner heliosheath, accretion disks, γ-ray bursts and so on). For laminar plasma flows with smooth velocity fields or for low turbulence intensity, stochastic flux freezing reduces to the usual frozen-in condition.

  14. The reactor core analysis code CITATION-1000VP for High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Reactor core analysis with full core model has been necessary for the High Temperature Engineering Test Reactor (HTTR) design. The CITATION-1000VP code has been developed to enable reactor core analysis of HTTR with full core model through extending the number of zones and meshes, and enhancing the calculation speed of CITATION code. This report describes the program changes for extending the number of zones and meshes, and for vectorization. The maximum number of zones and meshes becomes 999 and 500, respectively. The calculation speed is enhanced up to 21 times. (author)

  15. BVOC ecosystem flux measurements at a high latitude wetland site

    Directory of Open Access Journals (Sweden)

    T. Holst

    2010-02-01

    Full Text Available In this study, we present summertime concentrations and fluxes of biogenic volatile organic compounds (BVOCs measured at a sub-arctic wetland in northern Sweden using a disjunct eddy-covariance (DEC technique based on a proton transfer reaction mass spectrometer (PTR-MS. The vegetation at the site was dominated by Sphagnum, Carex and extit{Eriophorum} spp. The measurements reported here cover a period of 50 days (1 August to 19 September 2006, approximately one half of the growing season at the site, and allowed to investigate the effect of day-to-day variation in weather as well as of vegetation senescence on daily BVOC fluxes, and on their temperature and light responses. The sensitivity drift of the DEC system was assessed by comparing H3O+-ion cluster formed with water molecules (H3O+(H2O at m37 with water vapour concentration measurements made using an adjacent humidity sensor, and the applicability of the DEC method was analysed by a comparison of sensible heat fluxes for high frequency and DEC data obtained from the sonic anemometer. These analyses showed no significant PTR-MS sensor drift over a period of several weeks and only a small flux-loss due to high-frequency spectrum omissions. This loss was within the range expected from other studies and the theoretical considerations.

    Standardised (20 °C and 1000 μmol m−2 s−1 PAR summer isoprene emission rates found in this study of 329 μg C m−2 (ground area h−1 were comparable with findings from more southern boreal forests, and fen-like ecosystems. On a diel scale, measured fluxes indicated a stronger temperature dependence than emissions from temperate or (subtropical ecosystems. For the first time, to our knowledge, we report ecosystem methanol fluxes from a sub-arctic ecosystem. Maximum daytime emission fluxes were around 270 μg m−2 h−1

  16. High power density reactors based on direct cooled particle beds

    Science.gov (United States)

    Powell, J. R.; Horn, F. L.

    Reactors based on direct cooled High Temperature Gas Cooled Reactor (HTGR) type particle fuel are described. The small diameter particle fuel is packed between concentric porous cylinders to make annular fuel elements, with the inlet coolant gas flowing inwards. Hot exit gas flows out along the central channel of each element. Because of the very large heat transfer area in the packed beds, power densities in particle bed reactors (PBRs) are extremely high resulting in compact, lightweight systems. Coolant exit temperatures are high, because of the ceramic fuel temperature capabilities, and the reactors can be ramped to full power and temperature very rapidly. PBR systems can generate very high burst power levels using open cycle hydrogen coolant, or high continuous powers using closed cycle helium coolant. PBR technology is described and development requirements assessed.

  17. Challenges in the development of high temperature reactors

    International Nuclear Information System (INIS)

    Highlights: • Challenges for advance reactor concepts (such as VHTR and AHTR) are discussed. • Both the VHTR and AHTR design offer promising performance characteristics and potential for process heat industrial applications. • Licensing issues needs to be addressed by increasing the technical maturity level by building and operating prototype. - Abstract: Advanced reactor designs offer potentially significant improvements over currently operating light water reactors including improved fuel utilization, increased efficiency, higher temperature operation (enabling a new suite of non-electric industrial process heat applications), and increased safety. As with most technologies, these potential performance improvements come with a variety of challenges to bringing advanced designs to the marketplace. There are technical challenges in material selection and thermal hydraulic and power conversion design that arise particularly for higher temperature, long life operation (possibly >60 years). The process of licensing a new reactor design is also daunting, requiring significant data collection for model verification and validation to provide confidence in safety margins associated with operating a new reactor design under normal and off-normal conditions. This paper focuses on the key technical challenges associated with two proposed advanced reactor concepts: the helium gas cooled Very High Temperature Reactor (VHTR) and the molten salt cooled Advanced High Temperature Reactor (AHTR)

  18. Seismic stability of VGM type high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    The main principles of the design provision of high temperature gas cooled VGM reactors seismic stability and the results of calculations, performed by linear-spectral method are presented. (author). 1 ref., 10 figs

  19. High-temperature reactor developments in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Schram, R.P.C.; Cordfunke, E.H.P.; Heek, A.I. van

    1996-01-01

    The high-temperature reactor development in the Netherland is embedded in the WHITE reactor program, in which several Dutch research institutes and engineering companies participate. The activities within the WHITE program are focused on the development of a small scale HTS for combined heat and power generation. In 1995, design choices for a pebble bed reactor were made at ECN. The first concept HTR will gave a closed cycle helium turbine and a power level of 40 MWth. It is intended to make the market introduction of a commercially competitive HTR feasible. The design will be an optimization of the Peu-a-Peu (PAP) concept of KFA Juelich. Computer codes necessary for the evaluation of reactor physics aspects of this reactor are developed in cooperation with international partners. An evaluation of a 20 MWth PAP concept showed that the maximum fuel termmperature after depressurization does not exceed 1300 C. (orig.).

  20. Generation of field-reversed-configurations with high bias flux using controlled reconnection

    International Nuclear Information System (INIS)

    The magnitude of poloidal flux and the ultimate size of field-reversed-configurations formed in field-reversed-theta-pinches depends on the amount of initial bias flux which can be trapped. Operation at high bias fluxes results in violent axial contractions and severe flux loss, thus preventing the attainment of high poloidal flux toroids. The use of controlled reconnection techniques permits stable generation at higher bias fluxes, and thus the generation of more energetic field-reversed-configurations

  1. High speed plasma focus fusion reactor

    International Nuclear Information System (INIS)

    An electrical discharge thermonuclear reactor having a capacitor which is discharged into a reaction chamber through a low inductance distribution circuit funneling discharge current to a focus point in the reaction chamber so that the magnitude of the magnetic field intensity associated with the discharge current is generally inversely proportional to the square of the distance from the focus point. Then the circuit inductance is limited to an minimum value regardless of the absolute maximum distance from the capacitor to the focus point and thus the size of the capacitor. The distribution circuit has two outward-branching, interpenetrating three dimensional circuit networks of opposite polarity conveniently fabricated by stacking conductor plates having a generally cylindrical geometry. The distribution circuit spherically surrounds the reaction chamber so far as is practical so that the discharge rate, power and energy transfer to the reaction chamber are maximized and thus reducing the required size of the reactor

  2. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, K.L. (ed.)

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  3. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    International Nuclear Information System (INIS)

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well

  4. Determination of the gamma-ray flux of the stopped WWR-SM reactor by color center production in LiF

    International Nuclear Information System (INIS)

    Full text: Gamma-radiation with a wide energy spectrum, accompanying neutron flux in the nuclear reactor, is known to result in radiation heating of materials. It is usually detected either by calorimetry or by an ionizing chamber maintained in the active zone while the reactor works and high-energy neutrons also contribute into ionization. The aim of this research was to separate the gamma-component from the neutron flux upon stopping the WWR-SM reactor and to determine the gamma-intensity both with the ionization chamber and the well-known dosimeter LiF crystal, and also by comparing with the effect of monochromatic 60Co gamma-radiation of the known flux and dose. For LiF with small Z the photoelectric effect is weak, and Compton scattering prevails. Both the optical absorption and photo-luminescence techniques together with micro-hardness and X-ray diffraction analysis were used for measuring the structure defect generation rate in the irradiated crystals, which is proportional to the gamma-intensity. Fluorine vacancy trapping electron is the well-known stable F-center responsible for the isolated absorption band at 250 nm and induced by radiolysis mechanism. The sequential irradiations and measurements were done within 150 hours after the moment of the reactor quenching. The dose dependence of the absorption band was found to be linear up to the dose of 106 R. The F-center concentration as a measure of an accumulated dose was calculated by the Smakula formula. At higher doses another band at 440 nm appears like that for 60Co irradiation, which is responsible for unstable F2 and F3 centers formed due to coagulation of F-centers. X-diffraction analysis revealed twin structure in (111) plane. Yet the micro-hardness of the gamma-irradiated samples did not change noticeably. For higher doses the photo-luminescence band at 650 nm was also used as a dosimetric item. The luminescence kinetics has a fast nanosecond scale component and a weak tail in a microsecond range

  5. Variability of methane fluxes over high latitude permafrost wetlands

    OpenAIRE

    Andrei Serafimovich; Hartmann, J.; Eric Larmanou; Torsten Sachs

    2013-01-01

    Atmospheric methane plays an important role in the global climate system. Due to significant amounts of organic material stored in the upper layers of high latitude permafrost wetlands and a strong Arctic warming trend, there is concern about potentially large methane emissions from Arctic and sub-Arctic areas. The quantification of methane fluxes and their variability from these regions therefore plays an important role in understanding the Arctic carbon cycle and changes in atmo...

  6. High flux inductors for the rapid heating of steel products

    Energy Technology Data Exchange (ETDEWEB)

    Pierret, R.; Griffay, G.; Galbrun, F. [Institut de Recherches de la Siderurgie Francaise (IRSID), 78 - Saint-Germain-en-Laye (France); Hellegouaec`h, J.; Prost, G.

    1995-03-01

    To reduce investment and operating costs of electroheating processes of long products by induction, we developed a new multilayed inductor with high flux density which represents a real technological step in regard of conventional technics: 4 MV/m{sup 2} instead of 1MW/m{sup 2}, efficiency of 85% instead of 55%, compacity and low costs of maintenance. The new technology can also be used with success in flat products plants. (authors). 10 figs., 1 tab.

  7. High Tc Superconductor Theoretical Models and Electromagnetic Flux Characteristics

    Institute of Scientific and Technical Information of China (English)

    JIN Jian-xun

    2006-01-01

    High Tc Superconductors (HTS) have special electromagnetic characteristics and phenomena. Effort has been made in order to theoretically understand the applied HTS superconductivity and HTS behaviors for practical applications, various theoretical models related to the HTS electromagnetic properties have been developed. The theoretical models and analytic methods are summarized with regard to understanding the HTS magnetic flux characteristic which is one of the most critical issues related to HTS applications such as for HTS magnetic levitation application.

  8. Calculational determination of neutron flux densities in the IR-8 reactor with the aim of choosing the additional cells for material irradiation

    International Nuclear Information System (INIS)

    The calculated analysis of the neutronic characteristics of working loading of the IR-8 reactor at its physical start-up is carried out for the estimation of flux definition error in the reflector. The calculated analysis of working loading of the IR-8 reactor with ampoule rigs is carried out with the purpose of choice of the cell for irradiation of constructional materials in the reflector of the IR-8 reactor under condition of neutron flux density ∼ 2 x 1011 cm-2 s-1 (E > 0.5 MeV)

  9. The Jules Horowitz Reactor : A new high Performances European MTR (Material Testing Reactor) with modern experimental capacities : Toward an International User Facility

    International Nuclear Information System (INIS)

    The Jules Horowitz Reactor (JHR) is a new Material Testing Reactor (MTR) currently under construction at CEA Cadarache research centre in the south of France. It will be a major Research facility in support to the development and the qualification of materials and fuels under irradiation with sizes and environment conditions relevant for nuclear power plants in order to optimise and demonstrate safe operations of existing power reactors as well as to support future reactor design. It will represent also an important Research Infrastructure for scientific studies dealing with material and fuel behaviour under irradiation. The JHR will contribute also to secure the production of radioisotope for medical application. This is a key public health stake. The construction of JHR which was started in 2007 is on-going. The first operation is planned before the end of this decade.The design of the reactor will provide an essential facility supporting the programs for the nuclear energy for the next 50 years. JHR is designed to provide high neutron flux (enhancing the maximum available today in MTRs), to run highly instrumented experiments to support advanced modelling giving prediction beyond experimental points, and to operate experimental devices giving environment conditions (pressure, temperature, flux, coolant chemistry, ···) relevant for water reactors, for gas cooled thermal or fast reactors, for sodium fast reactors, ···So, the reactor will perform R and D programs for the optimization of the present generation of NPP, support the development of the next generation of NPP (mainly LWR) and also offer irradiation possibilities for future reactors. In parallel to the construction of the reactor, the preparation of an international community around JHR is continuing; this is an important topic as building and gathering a strong international community in support to MTR experiments is a key-issue for the R and D in nuclear energy field. Consequently, CEA is

  10. Applicability of copper alloys for DEMO high heat flux components

    Science.gov (United States)

    Zinkle, Steven J.

    2016-02-01

    The current state of knowledge of the mechanical and thermal properties of high-strength, high conductivity Cu alloys relevant for fusion energy high heat flux applications is reviewed, including effects of thermomechanical and joining processes and neutron irradiation on precipitation- or dispersion-strengthened CuCrZr, Cu-Al2O3, CuNiBe, CuNiSiCr and CuCrNb (GRCop-84). The prospects for designing improved versions of wrought copper alloys and for utilizing advanced fabrication processes such as additive manufacturing based on electron beam and laser consolidation methods are discussed. The importance of developing improved structural materials design criteria is also noted.

  11. Status of the IDTF high-heat-flux test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, V.; Gorbenko, A.; Davydov, V.; Kokoulin, A.; Komarov, A.; Mazul, I.; Mudyugin, B.; Ovchinnikov, I.; Stepanov, N.; Rulev, R.; Volodin, A., E-mail: volodin@sintez.niiefa.spb.su

    2014-10-15

    Highlights: • In the Efremov Institute the IDTF (ITER Divertor Test Facility) was created for the high heat flux tests (HHFT) of the PFUs of the ITER divertor. • In summer 2012, the IDTF had been qualified for the testing of the outer vertical full-scale prototypes. • The HHFT of the test assembly of the outer vertical target full-scale prototype – was completed at the end of 2012. - Abstract: The ITER Divertor Test Facility (IDTF) was designed for the high heat flux tests of outer vertical targets, inner vertical targets and domes of the ITER divertor. This facility was created in the Efremov Institute under the Procurement Arrangement 1.7.P2D.RF (high heat flux tests of the plasma facing units of the ITER divertor). The heat flux is generated by an electron-beam system (EBS), 800 kW power and 60 kV maximum accelerating voltage. The component to be tested is mounted on a manipulator in the vacuum chamber capable of testing objects up to 2.5 m long and 1.5 m wide. The pressure in the vacuum chamber is about 3*10{sup −3} Pa. The parameters of the cooling system and the water quality (deionized water) are similar to the cooling conditions of the ITER divertor. The integrated control system regulates all IDTF subsystems and data acquisition from all diagnostic devices, such as pyrometers, IR-cameras, video cameras, flow, pressure and temperature sensors. Started in 2008, the IDTF was commissioned in 2012 with the testing the outer vertical full-scale prototypes and the completion of the PA 1.7.P2D.RF task. This paper details the main characteristics of the IDTF.

  12. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; Davie Petti

    2009-10-01

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  13. Thermal Hydraulics of the Very High Temperature Gas Cooled Reactor

    International Nuclear Information System (INIS)

    The U.S Department of Energy (DOE) is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R and D) that will be critical to the success of the NGNP, primarily in the areas of: (1) High temperature gas reactor fuels behavior; (2) High temperature materials qualification; (3) Design methods development and validation; (4) Hydrogen production technologies; and (5) Energy conversion. This paper presents current R and D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs

  14. Thermal hydraulics of the very high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R and D) that will be critical to the success of the NGNP, primarily in the areas of: · High temperature gas reactor fuels behavior · High temperature materials qualification · Design methods development and validation · Hydrogen production technologies · Energy conversion. This paper presents current R and D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs. (author)

  15. Gamma and Neutron Flux of a Prompt Gamma Neutron Activation Analysis Collimator at the PUSPATI TRIGA Reactor

    International Nuclear Information System (INIS)

    A Prompt Gamma Neutron Activation Analysis (PGNAA) facility is being studied for installation at PUSPATI TRIGA Reactor (RTP) under the Thorium Flagship programme. This work presents the preliminary design of a PGNAA collimator at the RTP. The result of calculations for gamma and neutron flux at various positions of the PGNAA collimator in the RTP beam port 1 by using the computer code MCNPX are presented and discussed. The results indicate the technical feasibility of the installation of PGNAA facility at the RTP and the possibility of enhancing the utilization of the RTP. (author)

  16. Nitrogen determination in wheat by neutron activation analysis using fast neutron flux from a thermal nuclear reactor

    International Nuclear Information System (INIS)

    This is a study of the technique for the determination of nitrogen and other elements in wheat flour through activation analysis with fast neutrons from a thermal nuclear reactor. The study begins with an introduction about the basis of the analytical methods, the equipment used in activation analysis and a brief description of the neutrons source. In the study are included the experiments carried out in order to determine the flux form in the site of irradiation, the N-13 half life and the interference due to the sample composition. (author)

  17. Do you want to build such a machine? : Designing a high energy proton accelerator for Argonne National Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Paris, E.

    2004-04-05

    Argonne National Laboratory's efforts toward researching, proposing and then building a high-energy proton accelerator have been discussed in a handful of studies. In the main, these have concentrated on the intense maneuvering amongst politicians, universities, government agencies, outside corporations, and laboratory officials to obtain (or block) approval and/or funds or to establish who would have control over budgets and research programs. These ''top-down'' studies are very important but they can also serve to divorce such proceedings from the individuals actually involved in the ground-level research which physically served to create theories, designs, machines, and experiments. This can lead to a skewed picture, on the one hand, of a lack of effect that so-called scientific and technological factors exert and, on the other hand, of the apparent separation of the so-called social or political from the concrete practice of doing physics. An exception to this approach can be found in the proceedings of a conference on ''History of the ZGS'' held at Argonne at the time of the Zero Gradient Synchrotron's decommissioning in 1979. These accounts insert the individuals quite literally as they are, for the most part, personal reminiscences of those who took part in these efforts on the ground level. As such, they are invaluable raw material for historical inquiry but generally lack the rigor and perspective expected in a finished historical work. The session on ''Constructing Cold War Physics'' at the 2002 annual History of Science Society Meeting served to highlight new approaches circulating towards history of science and technology in the post-WWII period, especially in the 1950s. There is new attention towards the effects of training large numbers of scientists and engineers as well as the caution not to equate ''national security'' with military preparedness, but rather

  18. High Energy Atmospheric Neutrino Fluxes From a Realistic Primary Spectrum

    Science.gov (United States)

    Campos Penha, Felipe; Dembinski, Hans; Gaisser, Thomas K.; Tilav, Serap

    2016-03-01

    Atmospheric neutrino fluxes depend on the energy spectrum of primary nucleons entering the top of the atmosphere. Before the advent of AMANDA and the IceCube Neutrino Observatory, measurements of the neutrino fluxes were generally below ~ 1TeV , a regime in which a simple energy power law sufficed to describe the primary spectrum. Now, IceCube's muon neutrino data extends beyond 1PeV , including a combination of neutrinos from astrophysical sources with background from atmospheric neutrinos. At such high energies, the steepening at the knee of the primary spectrum must be accounted for. Here, we describe a semi-analytical approach for calculating the atmospheric differential neutrino fluxes at high energies. The input is a realistic primary spectrum consisting of 4 populations with distinct energy cutoffs, each with up to 7 representative nuclei, where the parameters were extracted from a global fit. We show the effect of each component on the atmospheric neutrino spectra, above 10TeV . The resulting features follow directly from recent air shower measurements included in the fit. Felipe Campos Penha gratefully acknowledges financial support from CAPES (Processo BEX 5348/14-5), CNPq (Processo 142180/2012-2), and the Bartol Research Institute.

  19. High neutron flux quality for irradiation and BCNT conditions

    International Nuclear Information System (INIS)

    This paper presents methods for characterising the neutron field in irradiation and boron neutron capture therapy (BNCT) facilities, applications for which a high flux quality is needed. The irradiation facility considered consists of an isotopic (Am-Be) neutron source in a cylindrical cavity bored inside a solid paraffin cube measuring 51·51·51 cm, thus constituting a neutron Howitzer. The neutron flux distribution within the cavity above this source was investigated by measurements of aluminium foil activation and by calculations with the MCNP-4C code. The BNCT calculations were performed for different channel radii. Results from measurements and calculations are in good agreement despite the uncertainties in identifying the exact energies at which the two reactions measured, 27Al(n,γ)28Al and 27Al(n, p)27Mg, take place. The study provided useful information about the optimal irradiation and BNCT conditions. (author)

  20. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Heeger, Karsten M. [Yale Univ., New Haven, CT (United States)

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  1. The Jules Horowitz Reactor - A new High Performance European Material Testing Reactor open to International Users Present Status and Objectives

    Energy Technology Data Exchange (ETDEWEB)

    Iracane, Daniel; Bignan, Gilles [CEA Atomic Energy Commission Saclay Batiment 121- 91191 Gif Sur Yvette (France); Lindbaeck, Jan-Erik; Blomgren, Jan [VATTENFALL AB Nuclear Power Jaemtlandsgatan 99 SE-16287 Stockholm (Sweden)

    2010-07-01

    The development of sustainable nuclear energy requires R and D on fuel and material behaviour under irradiation with a high level of performance in order to meet the needs and challenges for the benefit of industry, research and public bodies. These stakes require a sustainable and secured access to an up-to-date high performance Material Testing Reactor. Following a broad survey within the European Research Area, the international community agreed that the need for Material Test Reactors in support of nuclear power plant safety and operation will continue in the context of sustainable nuclear energy. The Jules Horowitz Reactor project (JHR) copes with this context. JHR is designed as a user facility addressing the needs of the international community. This means: - flexibility with irradiation loops able to reproduce a large variation in operation conditions of different power reactor technologies, - high flux capacity to address Generations II, III, and IV needs. JHR is designed, built and operated as an international user facility because: - Given the maturity and globalization of the industry, domestic tools have no more the required level of economic and technical efficiency. Meanwhile, countries with nuclear energy need an access to high performance irradiation experimental capabilities to support technical skill and guarantee the competitiveness and safety of nuclear energy. - Many research items related to safety or public policy (waste management, etc.) require international cooperation to share costs and benefits of resulting consensus. JHR design is optimised for offering high performance material and fuel irradiation capability for the coming decades. This project is driven and funded by an international consortium gathering vendors, utilities and public stakeholders. This consortium has been set up in March 2007 when the construction began. The construction is in progress and the start of operation is scheduled for 2014. The JHR is a research

  2. High-Temperature Gas-Cooled Test Reactor Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Kinsey, James Carl [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory; Kumar, Akansha [Idaho National Laboratory

    2016-04-01

    A point design has been developed for a 200 MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technological readiness level, licensing approach and costs.

  3. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  4. FASTER test reactor preconceptual design report summary

    International Nuclear Information System (INIS)

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  5. Solar absorber material stability under high solar flux

    Science.gov (United States)

    Ignatiev, A.; Zajac, G.; Smith, G. B.

    1982-04-01

    Solar absorbing Black Chrome coatings have been exposed to high temperatures (350-400 C) under high solar fluxes (0.4 to 2.0 MW/sq m) to test for their stability under actual operating conditions. Field tests at the White Sands Solar Furnace have shown higher stability than expected from oven tested samples. Laboratory studies utilizing spectrally selective concentrated solar simulated radiation have indicated that the cause of the higher stability under solar irradiation is photo-stimulated desorption of oxygen bearing species at the absorber surface and resultant reduced oxidation of the absorber.

  6. High temperature fast reactor for hydrogen production in Brazil

    International Nuclear Information System (INIS)

    The main nuclear reactors technology for the Generation IV, on development phase for utilization after 2030, is the fast reactor type with high temperature output to improve the efficiency of the thermo-electric conversion process and to enable applications of the generated heat in industrial process. Currently, water electrolysis and thermo chemical cycles using very high temperature are studied for large scale and long-term hydrogen production, in the future. With the possible oil scarcity and price rise, and the global warming, this application can play an important role in the changes of the world energy matrix. In this context, it is proposed a fast reactor with very high output temperature, ∼ 1000 deg C. This reactor will have a closed fuel cycle; it will be cooled by lead and loaded with nitride fuel. This reactor may be used for hydrogen, heat and electricity production in Brazil. It is discussed a development strategy of the necessary technologies and some important problems are commented. The proposed concept presents characteristics that meet the requirements of the Generation IV reactor class. (author)

  7. Proliferation resistance assessment of high temperature gas reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chikamatsu N, M. A. [Instituto Tecnologico y de Estudios Superiores de Monterrey, Campus Santa Fe, Av. Carlos Lazo No. 100, Santa Fe, 01389 Mexico D. F. (Mexico); Puente E, F., E-mail: midori.chika@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    The Generation IV International Forum has established different objectives for the new generation of reactors to accomplish. These objectives are focused on sustain ability, safety, economics and proliferation resistance. This paper is focused on how the proliferation resistance of the High Temperature Gas Reactors (HTGR) is assessed and the advantages that these reactors present currently. In this paper, the focus will be on explaining why such reactors, HTGR, can achieve the goals established by the GIF and can present a viable option in terms of proliferation resistance, which is an issue of great importance in the field of nuclear energy generation. The reason why the HTGR are being targeted in this writing is that these reactors are versatile, and present different options from modular reactors to reactors with the same size as the ones that are being operated today. Besides their versatility, the HTGR has designed features that might improve on the overall sustain ability of the nuclear reactors. This is because the type of safety features and materials that are used open up options for industrial processes to be carried out; cogeneration for instance. There is a small section that mentions how HTGR s are being developed in the international sector in order to present the current world view in this type of technology and the further developments that are being sought. For the proliferation resistance section, the focus is on both the intrinsic and the extrinsic features of the nuclear systems. The paper presents a comparison between the features of Light Water Reactors (LWR) and the HTGR in order to be able to properly compare the most used technology today and one that is gaining international interest. (Author)

  8. Optimum Reactor Outlet Temperatures for High Temperature Gas-Cooled Reactors Integrated with Industrial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee O. Nelson

    2011-04-01

    This report summarizes the results of a temperature sensitivity study conducted to identify the optimum reactor operating temperatures for producing the heat and hydrogen required for industrial processes associated with the proposed new high temperature gas-cooled reactor. This study assumed that primary steam outputs of the reactor were delivered at 17 MPa and 540°C and the helium coolant was delivered at 7 MPa at 625–925°C. The secondary outputs of were electricity and hydrogen. For the power generation analysis, it was assumed that the power cycle efficiency was 66% of the maximum theoretical efficiency of the Carnot thermodynamic cycle. Hydrogen was generated via the hightemperature steam electrolysis or the steam methane reforming process. The study indicates that optimum or a range of reactor outlet temperatures could be identified to further refine the process evaluations that were developed for high temperature gas-cooled reactor-integrated production of synthetic transportation fuels, ammonia, and ammonia derivatives, oil from unconventional sources, and substitute natural gas from coal.

  9. Overview of results of the first phase of validation activities for the IFMIF High Flux Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu [Karlsruhe Institute of Technology, Karlsruhe (Germany); Chen Yuming; Dolensky, Bernhard; Freund, Jana; Heupel, Tobias; Klein, Christine; Scheel, Nicola; Schlindwein, Georg [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Validation of computational fluid dynamics (CFD) modeling approach for application in the IFMIF High Flux Test Module. Black-Right-Pointing-Pointer Fabrication of prototypes of the irradiation capsules of the IFMIF High Flux Test Module. - Abstract: The international fusion materials irradiation facility (IFMIF) is projected to create an experimentally validated database of material properties relevant for fusion reactor designs. The IFMIF High Flux Test Module is the dedicated experiment to irradiate alloys in the temperature range 250-550 Degree-Sign C and up to 50 displacements per atom per irradiation cycle. The High Flux Test Module is developed to maximize the specimen payload in the restricted irradiation volume, and to minimize the temperature spread within each specimen bundle. Low pressure helium mini-channel cooling is used to offer a high integration density. Due to the demanding thermo-hydraulic and mechanical conditions, the engineering design process (involving numerical neutronic, thermo-hydraulic and mechanical analyses) is supported by extensive experimental validation activities. This paper reports on the prototype manufacturing, thermo-hydraulic modeling experiments and component tests, as well as on mechanical testing. For the testing of the 1:1 prototype of the High Flux Test Module, a dedicated test facility, the Helium Loop Karlsruhe-Low Pressure (HELOKA-LP) has been taken into service.

  10. Resistance, flux motion and pinning in high temperature superconductors

    International Nuclear Information System (INIS)

    Properties of a vortex systems in high-temperature superconductors are now under intense investigation. As observed by Muller et al. and Yeshurun and Malozemoff, the relaxation of magnetization supposes that flux creep plays an important role in magnetic measurements. The experiments by Palstra et al. clearly demonstrate the thermally activated nature of resistivity in a wide region below Tc. The activation energy depends on the magnetic field, the temperature, and the transport current. The current dependence of the activation energy is a very remarkable feature of a vortex state. If in the limit of small current the activation energy tends to infinity (flux creep), it can be considered a true superconducting state with zero ohmic resistivity. If the small current limit of the activation energy is finite, then ohmic resistivity exists and this region is called thermally assisted flux flow (TAFF). The transition between ohmic and non-ohmic resistivity was observed by Koch et al. Experiments by Yeshurun and Malozemoff, Palstra et al., Kim et al., and Brunner et al. give different magnetic field dependence of the activation energy. The theoretical study of the activation processes in a liquid state and the estimation of the activation energy as a function of the magnetic field and temperature are not a simple problem. Some approaches for the liquid state are here

  11. Argonne National Lab gets Linux network teraflop cluster

    CERN Document Server

    2003-01-01

    "Linux NetworX, Salt Lake City, Utah, has delivered an Evolocity II (E2) Linux cluster to Argonne National Laboratory that is capable of performing more than one trillion calculations per second (1 teraFLOP). The cluster, named "Jazz" by Argonne, is designed to provide optimum performance for multiple disciplines such as chemistry, physics and reactor engineering and will be used by the entire scientific community at the Lab" (1 page).

  12. Evaluation of the thermal neutron flux in the core of IPEN/MB-01 reactor using the code Monte Carlo (MCNP)

    Energy Technology Data Exchange (ETDEWEB)

    Salome, Jean A.D.; Cardoso, Fabiano; Faria, Rochkhudson B.; Pereira, Claubia, E-mail: jadsalome@yahoo.com.br, E-mail: fabinuclear@yahoo.com.br, E-mail: rockdefaria@yahoo.com.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2015-07-01

    The IPEN/MB-01 reactor, located in the city of Sao Paulo - Brazil, reached its first criticality on the year of 1988. The reactor is characterized by a low output power of 100 W only, even because its purpose is to produce knowledge about nuclear power plants on a smaller geometric scale without the requirement of an extremely complex cooling system. The use of devices such as this it is very interesting because it achieves the demands of nuclear engineering about the neutronic parameters needed in the design of large nuclear plants through relatively simple and inexpensive methods. In this paper, the computational mathematical code MCNP5 is used to perform the calculation of the thermal neutron flux in the core of the IPEN/MB-01 reactor. To do this is used an experiment from the LEU-COMP-THERM-077 benchmark that represents the standard rectangular configuration of the IPEN/MB-01 reactor. The thermal neutron flux is calculated at some axial planes of different heights and, after that, axial profiles of the thermal neutron flux are done and compared to experimental results issued previously. The experimental values used as reference refer to a cylindrical configuration of the core of the reactor. Finally, the pertinence and relevance of the results are checked. With this work is expected to produce more knowledge about the dynamics of neutron flux in the core of the IPEN/MB-01 reactor. (author)

  13. Laboratory Measurement of Enthalpy Flux in High Winds

    Science.gov (United States)

    Jeong, D.; Haus, B. K.; Donelan, M. A.; Zhang, J.

    2006-12-01

    The intensity of tropical cyclones is sensitive to the rates at which enthalpy and momentum are transferred between sea and air in the high-wind core of the storm. Present models of the wind dependence of these transfer rates, does not allow for storms of greater than marginal hurricane intensity. Recent studies have shown that there is a saturation of the bulk drag coefficient in high winds, however more information on the enthalpy flux is required. In particular the role that sea spray plays in enhancing the enthalpy transfer at very high wind speeds is not known. The coefficients for sensible and latent heat transfer (Stanton and Dalton numbers) were measured in the 15-m wind-wave facility at the University of Miami's Air-Sea Interaction Saltwater Tank (ASIST). The wind speed (referred to 10m) was explored over a range of 0 to 45 m/s, covering a full range of aerodynamic conditions from smooth to fully rough. Experiments were designed with water temperatures set between 2 and 5° C above/below the air temperature, with precision thermistors (± 0.002° C) to monitor temperature and Li-Cor infra-red absorption devices to monitor specific humidity changes at upstream and downstream ends of the wave tank during the experiment. The calorimetric use of a wind-wave tank gave precise flux estimates, and experiments were repeated at different Bowen ratios to allow the separation of the heat and moisture parts of the transfer. The effect of spray on the moisture flux was reflected in the drop in temperature along the air path from upstream to downstream and this made it possible to estimate the total spray evaporated in the air column.

  14. Flux flow in high-Tc Josephson junctions

    DEFF Research Database (Denmark)

    Filatrella, G.; Pedersen, Niels Falsig

    1993-01-01

    The possibility of achieving fluxon nucleation in nonhysteretic high-T(c) Josephson junctions due to the presence of inhomogeneities is investigated numerically. For a large range of parameters the I- V characteristics in presence of such discontinuities show a strong similarity with those obtained...... experimentally. The spatial inhomogeneities considered are on the scale of the Josephson penetration depth (mum). It is demonstrated that the topic is of interest for the construction of amplifiers. Thus when fluxons are generated the resulting flux flow regime proves to be much more sensitive than the uniform...

  15. Enzymatically active high-flux selectively gas-permeable membranes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ying-Bing; Cecchi, Joseph L.; Rempe, Susan; FU, Yaqin; Brinker, C. Jeffrey

    2016-01-26

    An ultra-thin, catalyzed liquid transport medium-based membrane structure fabricated with a porous supporting substrate may be used for separating an object species such as a carbon dioxide object species. Carbon dioxide flux through this membrane structures may be several orders of magnitude higher than traditional polymer membranes with a high selectivity to carbon dioxide. Other gases such as molecular oxygen, molecular hydrogen, and other species including non-gaseous species, for example ionic materials, may be separated using variations to the membrane discussed.

  16. High-flux solar photon processes: Opportunities for applications

    Energy Technology Data Exchange (ETDEWEB)

    Steinfeld, J I; Coy, S L; Herzog, H; Shorter, J A; Schlamp, M; Tester, J W; Peters, W A [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-06-01

    The overall goal of this study was to identify new high-flux solar photon (HFSP) processes that show promise of being feasible and in the national interest. Electric power generation and hazardous waste destruction were excluded from this study at sponsor request. Our overall conclusion is that there is promise for new applications of concentrated solar photons, especially in certain aspects of materials processing and premium materials synthesis. Evaluation of the full potential of these and other possible applications, including opportunities for commercialization, requires further research and testing. 100 refs.

  17. BVOC ecosystem flux measurements at a high latitude wetland site

    Directory of Open Access Journals (Sweden)

    T. Holst

    2008-12-01

    Full Text Available In this study, we present summertime concentrations and fluxes of biogenic volatile organic compounds (BVOCs measured at a sub-arctic wetland in northern Sweden using a disjunct eddy-covariance (DEC technique based on a proton transfer reaction mass spectrometer (PTR-MS. The vegetation at the site was dominated by Sphagnum, Carex and Eriophorum spp. The performance of the DEC system was assessed by comparing H3O+-ion cluster formed with water molecules (H3O+(H2O at m37 with water vapour concentration measurements made using an adjacent humidity sensor, and from a comparison of sensible heat fluxes for high frequency and DEC data obtained from the sonic anemometer. These analyses showed no significant PTR-MS sensor drift over a period of several weeks and only a small flux-loss due to high-frequency spectrum omissions. This loss was within the range expected from other studies and the theoretical considerations.

    Standardised (20°C and 1000 μmol m−2 s−1 PAR summer isoprene emission rates of 323 μg C m−2 (ground area h−1 were comparable with findings from more southern boreal forests, and fen-like ecosystems. On a diel scale, measured fluxes indicated a stronger temperature dependence when compared with emissions from temperate or (subtropical ecosystems. For the first time, to our knowledge, we report ecosystem methanol fluxes from a sub-arctic ecosystem. Maximum daytime emission fluxes were around 270 μg m−2 h−1 (ca. 100 μg C m−2 h-1 and measurements indicated some nocturnal deposition.

    The measurements reported here covered a period of 50 days (1 August to 19 September 2006, approximately one half of the growing season at the site, and allowed to investigate the effect of vegetation senescence on daily BVOC fluxes and on their temperature and light

  18. Uncertainty analysis for fuel flux calculations of fast reactors with external fuel cycle

    International Nuclear Information System (INIS)

    The paper focuses on the results of uncertainty analysis when calculating nuclide composition in fuel of fast reactors and on uncertainties of determining nuclide composition in the external fuel cycle. As demonstrated, the main contributions to the uncertainty of nuclide composition are due to: - uncertainties in operation of the reactor and in the fuel-cycle time; - uncertainties in nuclide clean-up factors at the Closed Nuclear Fuel Cycle (CNFC) stages when reprocessing spent nuclear fuel; - uncertainties in isotopic-kinetics cross-sections; - uncertainties in nuclide decay data. (author)

  19. Calibration of the nuclear power channels of the IPEN/MB-01 reactor obtained from the measurements of the spatial thermal neutron flux distribution in the reactor core through the irradiation of infinitely diluted gold foils

    International Nuclear Information System (INIS)

    Several nuclear parameters are obtained through the gamma spectrometry of targets irradiated in a research reactor core and this is the case of the activation foils which make possible, through the measurements of the activity induced, to determine the neutron flux in the place where they had been irradiated. The power level operation of the reactor is a parameter directly proportional to the average neutron flux in the core. This work aims to get the power operation of the reactor through of spatial neutron flux distribution in the core of IPEN/MB-01 reactor by the irradiation of infinitely diluted gold foils and prudently located in its interior. These foils were made in the form of metallic alloy in concentration levels such that the phenomena of flux disturbance, as the self-shielding factors to neutrons become worthless. These activation foils has only 1% of dispersed gold atoms in an aluminium matrix content of 99% of this element. The irradiations of foils have been carried through with and without cadmium plate. The total correlation between the average thermal neutron flux obtained by irradiation of infinitely diluted activation foils and the average digital value of current of the nuclear power channels 5 and 6 (non-compensated ionization chambers - CINC), allow the calibration of the nuclear channels of the IPEN/MB-01 reactor. (author)

  20. High-irradiance reactors with unfolded aplanatic optics.

    Science.gov (United States)

    Feuermann, Daniel; Gordon, Jeffrey M

    2008-11-01

    Reconstituting the intense irradiance of short-arc discharge lamps at a remote target, at high radiative efficiency, represents a central challenge in the design of high-temperature chemical reactors, heightened by the need for high numerical aperture at both the target and the source. Separating the optical system from both the source and the reactor allows pragmatic operation, monitoring, and control. We explore near-field unfolded aplanats as feasible solutions and report measurements for a prototype that constitutes a double-ellipsoid mirror. We also propose compound unfolded aplanats that collect lamp emission over all angles (in lieu of light recycling optics) and irradiate the reactor over nearly its full circumference.

  1. Deuterium retention in radiation damaged tungsten exposed to high-flux plasma

    OpenAIRE

    Kleijn, A.W.; Zeijlmans van Emmichoven, P. A.; Hoen, 't, Peter A.C.

    2014-01-01

    Nuclear fusion has the potential for large-scale sustainable energy production. Currently, the most promising fusion reactor concept is a tokamak. Scientists and engineers from all over the world are collaborating on building the next-generation fusion reactor: ITER. A critical component of the ITER design is the exhaust, the divertor. The material of choice for the divertor is tungsten in order to be able to withstand the extreme heat and particle fluxes that it experiences during operation....

  2. Advanced Tethersonde for High-Speed Flux Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flux measurements of trace gases and other quantities, such as latent heat, are of great importance in scientific field research. One typical flux measurement setup...

  3. Parameter estimation from dragon high temperature gas cooled reactor dynamic experiments

    International Nuclear Information System (INIS)

    Dynamic experiments were performed on the Dragon high temperature gas cooled reactor at full power, 20 MW. Both terminated ramp and pseudo-random chain code perturbations were applied to a control rod for two amplitudes of reactivity perturbation. Neutron flux and thermocouple signals were observed and recorded together with samples of the inherent noise with the reactor unperturbed. Frequency responses were deduced from the measurements and compared with previous sinusoidal frequency response measurements and theoretical predictions. A simplified model was constructed and optimized by least squares fitting of the equivalent response from the binary cross correlator to the model's output. These optimizations showed that a very simple feedback model is appropriate to Dragon and that a good estimate of the power/reactivity coefficient and temperature coefficient of reactivity may be made. (author)

  4. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of

  5. Medium-size high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    This report summarizes high-temperature gas-cooled reactor (HTGR) experience for the 40-MW(e) Peach Bottom Nuclear Generating Station of Philadelphia Electric Company and the 330-MW(e) Fort St. Vrain Nuclear Generating Station of the Public Service Company of Colorado. Both reactors are graphite moderated and helium cooled, operating at approx. 7600C (14000F) and using the uranium/thorium fuel cycle. The plants have demonstrated the inherent safety characteristics, the low activation of components, and the high efficiency associated with the HTGR concept. This experience has been translated into the conceptual design of a medium-sized 1170-MW(t) HTGR for generation of 450 MW of electric power. The concept incorporates inherent HTGR safety characteristics [a multiply redundant prestressed concrete reactor vessel (PCRV), a graphite core, and an inert single-phase coolant] and engineered safety features

  6. Design of a high-gain flux-compression generator

    International Nuclear Information System (INIS)

    The current gain of a high-gain, high-explosive helical magnetic-flux-compression generator (HEG) is limited both by nonuniformities in stator expansion and by armature-stator misalignment. The authors report on their work to achieve three goals: first, an output current of at least 2 MA with a current gain greater than 1000 to drive a 150-to 300-nH load; second, a generator with an acceptably small volume and length; and finally, generator output of a reliable magnitude. To achieve these performance goals, the authors had to pay careful attention to design aspects of mechanical tolerances. They increased the diameter of the armature winding wire to limit the action integral at a given location along it to a value below the surface melting point

  7. Dialyzer Reuse and Outcomes of High Flux Dialysis.

    Directory of Open Access Journals (Sweden)

    Christos Argyropoulos

    Full Text Available The bulk of randomized trial evidence for the expanding use of High Flux (HF hemodialysis worldwide comes from two randomized controlled trials, one of which (HEMODIALYSIS, HEMO allowed, while the other (Membrane Outcomes Permeability, MPO excluded, the reuse of membranes. It is not known whether dialyzer reuse has a differential impact on outcomes with HF vs low flyx (LF dialyzers.Proportional Hazards Models and Joint Models for longitudinal measures and survival outcomes were used in HEMO to analyze the relationship between β2-microglobulin (β2M concentration, flux, and reuse. Meta-analysis and regression techniques were used to synthesize the evidence for HF dialysis from HEMO and MPO.In HEMO, minimally reused (< 6 times HF dialyzers were associated with a hazard ratio (HR of 0.67 (95% confidence interval, 95%CI: 0.48-0.92, p = 0.015, 0.64 (95%CI: 0.44 - 0.95, p = 0.03, 0.61 (95%CI: 0.41 - 0.90, p = 0.012, 0.53 (95%CI: 0.28 - 1.02, p = 0.057 relative to minimally reused LF ones for all cause, cardiovascular, cardiac and infectious mortality respectively. These relationships reversed for extensively reused membranes (p for interaction between reuse and flux < 0.001, p = 0.005 for death from all cause and cardiovascular causes, while similar trends were noted for cardiac and infectious mortality (p of interaction between reuse and flux of 0.10 and 0.08 respectively. Reduction of β2M explained only 1/3 of the effect of minimally reused HF dialyzers on all cause mortality, while non-β2M related factors explained the apparent attenuation of the benefit with more extensively reused dialyzers. Meta-regression of HEMO and MPO estimated an adjusted HR of 0.63 (95% CI: 0.51-0.78 for non-reused HF dialyzers compared with non-reused LF membranes.This secondary analysis and synthesis of two large hemodialysis trials supports the widespread use of HF dialyzers in clinical hemodialysis over the last decade. A mechanistic understanding of the effects of

  8. Flux Creep and Giant Flux Creep in High Tc Hg,Pb-based Superconductors

    Science.gov (United States)

    Kirven, Douglas; Owens, Frank; Iqbal, Z.; Bleiweiss, M.; Lungu, A.; Datta, T.

    1996-03-01

    Dynamic behavior of the trapped flux in fields of up to 17.5 T was studied in a set of Hg-Pb based superconductors with a Tc in excess of 130 K. Depending on the experimental conditions, both creep and giant flux creep dynamics were observed. Results were analyzed using to standard models such as Anderson-Kim and giant-flux creep models (GFC). The plots of relaxation rate of remnant magnetization versus temperature show a peak below Tc. These results were compared with other Cu-O compounds. A distribution of activation energies was found from the magnetization rate. The activation energy distribution shows a peak around 50 K. The peak determines the temperature where the flux flow rate is a maximum. A universal relation of the resistive behavior was also found as a function of temperature and field. The zero-field/field-cooled results gave a reversibility curve that also obeyed a universal power relation.

  9. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (RW)

  10. Control rod drive for high temperature gas cooled reactor

    Institute of Scientific and Technical Information of China (English)

    DengJun-Xian; XuJi-Ming; 等

    1998-01-01

    This control rod drive is developed for HTR-10 high temperature gas cooled test reactor.The stepmotor is prefered to improve positioning of the control rod and the scram behavior.The preliminary test in 1600170 ambient temperature shows that the selected stepmotor and transmission system can meet the main operation function requirements of HTR-10.

  11. Methanol conversion in high-rate anaerobic reactors

    NARCIS (Netherlands)

    Weijma, J.; Stams, A.J.M.

    2001-01-01

    An overview on methanol conversion in high-rate anaerobic reactors is presented, with the focus on technological as well as microbiological aspects. The simple C1-compound methanol can be degraded anaerobically in a complex way, in which methanogens, sulfate reducing bacteria and homoacetogens inter

  12. Effects of Low Energy and High Flux Helium/Hydrogen Plasma Irradiation on Tungsten as Plasma Facing Material

    Institute of Scientific and Technical Information of China (English)

    Ye Minyou

    2005-01-01

    The High-Z material tungsten (W) has been considered as a plasma facing material in the divertor region of ITER (International Thermonuclear Experimental Reactor). In ITER, the divertor is expected to operate under high particle fluxes (> 1023 m-2s-1) from the plasma as well as from intrinsic impurities with a very low energy (< 200 eV). During the past dacade, the effects of plasma irradiation on tungsten have been studied extensively as functions of the ion energy,fluence and surface temperature in the burning plasma conditions. In this paper, recent results concerning blister and bubble formations on the tungsten surface under low energy (< 100 eV) and high flux (> 1021 m-2s-1) He/H plasma irradiation are reviewed to gain a better understanding of the performance of tungsten as a plasma facing material under the burning plasma conditions.

  13. Proposed high throughput electrorefining treatment for spent N- Reactor fuel

    International Nuclear Information System (INIS)

    A high-throughput electrorefining process is being adapted to treat spent N-Reactor fuel for ultimate disposal in a geologic repository. Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the type of fragmentation necessary to provide fuel segments suitable for this process. Based on these tests, a conceptual design was produced of a plant-scale electrorefiner. In this design, the diameter of an electrode assembly is about 1.07 m (42 in.). Three of these assemblies in an electrorefiner would accommodate a 3-metric-ton batch of N-Reactor fuel that would be processed at a rate of 42 kg of uranium per hour

  14. In-reactor optical dosimetry in high-temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    The applicability of fused silica core optical fibres to in-reactor dosimetry was demonstrated at elevated temperatures and a special irradiation rig was developed for realizing high-temperature optical dosimetry in a high-temperature test reactor (HTTR) at the Oarai Research Establishment of JAERI (Japan Atomic Energy Research Institute). The paper will describe the present status of preparation for the high-temperature dosimetry in HTTR, utilising radiation-resistant optical fibres and radioluminescent materials. Temperature measurement with a high-speed response is the main target for the present optical dosimetry, which could be applied for monitoring transient behaviours of the HTTR. This could be realised by measuring the intensity of thermoluminescence and black body radiation in the infrared region. For monitoring reactor powers, optical measurements in the visible region are essential. At present, the measurement of the intensity of Cerenkov radiation is the most promising area of study. Other possibilities with radioluminescent materials having luminescent peaks in the visible region are under consideration. One of the candidates will be silica, which has a robust radioluminescent peak at 450 nm. (author)

  15. A new efficient empirical correlation for filtrate flux in slurry bubble column reactor of a gas-to-liquid process

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Mohammad Reza [Entekhab Petrochemical Co., Tehran (Iran, Islamic Republic of); Khodagholi, Mohammad Ali [Research Institute of Petroleum Industry, Tehran (Iran, Islamic Republic of)

    2015-12-15

    Gas to Liquid has recently become of great interest. In this technology slurry bubble column reactors are favored for many reasons. Separation of liquid wax from the slurry is still a major problem that may be done by internal or external filtration. A system of sintered metal candle filters are designed and operated to collect experimental data of internal filtration. Data for 4 and 8 micron filter elements with different pressure differences and kinematic viscosity were collected. Data analysis revealed that these data could be correlated as a simple function of time, pressure drop and kinematic viscosity. This new and efficient correlation shows excellent ability to reproduce original data at moderate filtration conditions, but it is less precious in severe conditions. It was understood that main reason for this behavior is different filtrate flux regimes through filter media pores, led to inability of a single correlation to fit both regimes properly.

  16. Reactivity and neutron flux measurements in IPEN/MB-01 reactor with B4C burnable poison

    International Nuclear Information System (INIS)

    Burnable poison rods, made of B4C- Al2 O3 pellets with 5.01 mg/cm310 B concentration, have been manufactured for a set of experiments in the IPEN/MB-01 zero-power reactor. Several core parameters which are affected by the burnable poisons rods have been measured. The principal results, for the situation in which the burnable poison rods are located near the absorber rods of a control rod, are they cause a 29% rod worth shadowing, a reduction of 39% in the local void coefficient of reactivity, a reduction of 4.8% in the isothermal temperature coefficient of reactivity, and a reduction of 9% in the thermal neutron flux in the region where the burnable poison rods are located. These experimental results will be used for the validation of burnable poison calculation methods in the CTMSP. (author)

  17. A new formulation of the pseudocontinuous synthesis algorithm applied to the calculation of neutronic flux in PWR reactors

    International Nuclear Information System (INIS)

    A new formulation of the pseudocontinuous synthesis algorithm is applied to solve the static three dimensional two-group diffusion equations. The new method avoids ambiguities regarding interface conditions, which are inherent to the differential formulation, by resorting to the finite difference version of the differential equations involved. A considerable number of input/output options, possible core configurations and control rod positioning are implemented resulting in a very flexible as well as economical code to compute 3D fluxes, power density and reactivities of PWR reactors with partial inserted control rods. The performance of this new code is checked against the IAEA 3D Benchmark problem and results show that SINT3D yields comparable accuracy with much less computing time and memory required than in conventional 3D finite differerence codes. (Author)

  18. Developing a High-Flux Isolated Attosecond Pulse Source

    Science.gov (United States)

    Kamalov, Andrei; Ware, Matthew; Bucksbaum, Philip; Cryan, James

    2016-05-01

    High harmonic based light sources have proven to be valuable experimental tools that facilitate studies of electron dynamics at their natural timescale, the attosecond regime. The nature of driving laser sources used in high harmonic generation make it difficult to attain attosecond pulses that are both isolated in time and of a high intensity. We present our progress in commissioning a beamline designed to produce high-flux isolated attosecond pulses. A multistep amplification process provides us with 30 mJ, 25 fs pulses centered around 800 nm with 100 Hz repetition rate. These pulses are spatially split and focused into a gas cell. A non-collinear optical gating scheme is used to produce a lighthouse source of high harmonic radiation wherein each beamlet is an isolated attosecond pulse. A variable-depth grazing-incidence stepped mirror is fabricated to extend the optical path length of the older beamlets and thus overlap the beamlets in time. The combined beam is tightly focused and ensuing mechanics will be studied with an electron spectrometer as well as a xuv photon spectrometer. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

  19. FFTF (FAST FLUX TEST FACILITY) REACTOR CHARACTERIZATION PROGRAM ABSOLUTE FISSION RATE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    FULLER JL; GILLIAM DM; GRUNDL JA; RAWLINS JA; DAUGHTRY JW

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  20. FFTF (Fast Flux Test Facility) Reactor Characterization Program: Absolute Fission-rate Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, J.L.; Gilliam, D.M.; Grundl, J.A.; Rawlins, J.A.; Daughtry, J.W.

    1981-05-01

    Absolute fission rate measurements using modified National Bureau of Standards fission chambers were performed in the Fast Flux Test Facility at two core locations for isotopic deposits of {sup 232}Th, {sup 233}U, {sup 235}U, {sup 238}U, {sup 237}Np, {sup 239}Pu, {sup 240}Pu, and {sup 241}Pu. Monitor chamber results at a third location were analyzed to support other experiments involving passive dosimeter fission rate determinations.

  1. High Flux Commercial Illumination Solution with Intelligent Controls

    Energy Technology Data Exchange (ETDEWEB)

    Camil Ghiu

    2012-04-30

    This report summarizes the work performed at OSRAM SYLVANIA under US Department of Energy contract DE-EE0003241 for developing a high efficiency LED-based luminaire. A novel light engine module (two versions: standard and super), power supply and luminaire mechanical parts were designed and tested. At steady-state, the luminaire luminous flux is 3156 lumens (lm), luminous efficacy 97.4 LPW and CRI (Ra) 88 at a correlated color temperature (CCT) of 3507K. When the luminaire is fitted with the super version of the light engine the efficacy reaches 130 LPW. In addition, the luminaire is provided with an intelligent control network capable of additional energy savings. The technology developed during the course of this project has been incorporated into a family of products. Recently, the first product in the family has been launched.

  2. High-quality Critical Heat Flux in Horizontally Coiled Tubes

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    An investigation on the high-quality dryout in two electrically heated coiled tubes with horizontally helix axes is reported.The temperature profiles both along the tube and around the circumference are measured.and it is found that the temperature profiles around the circumference are not identical for the corss-sections at different parts of the coil.The “local condition hypothesis” seems applicable under present conditions,and the critical heat flux qcr decreases with increasing critical quality xcr.The CHF increases as mass velocity and ratio of tube diameter to coil diameter(d/D) increases,and it seems not to be affected hby the system pressure.The CHF is larger with coils than that with straight tubes,and the difference increases with increasing mass velocity and d/D.

  3. Influence of the flux axial form on the conversion rate and duration of cycle between recharging for ThPu and U{sub nat} fuels in CANDU reactors; Influence de la forme axiale du flux sur le taux de conversion et la duree du cycle entre rechargements pour du combustible ThPu et U{sub nat} dans les reacteurs CANDU

    Energy Technology Data Exchange (ETDEWEB)

    Chambon, Richard [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier / CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2007-01-15

    To face the increasing world power demand the world nuclear sector must be continuously updated and developed as well. Thus reactors of new types are introduced and advanced fuel cycles are proposed. The technological and economic feasibility and the transition of the present power park to a renewed park require thorough studies and scenarios, which are highly dependent on the reactor performances. The conversion rate and cycle span between recharging are important parameters in the scenarios studies. In this frame, we have studied the utilisation of thorium in the CANDU type reactors and particularly the influence of axial form of the flux, i.e. of the recharging mode, on the conversion rate and duration of the cycle between recharging. The results show that up to a first approximation the axial form of the flux resulting from the neutron transport calculations for assessing the conversion rate is not necessary to be taken into account. However the time span between recharging differs up to several percents if the axial form of the flux is taken into consideration in transport calculations. Thus if the burnup or the recharging frequency are parameters which influence significantly the deployment scenarios of a nuclear park an approach more refined than a simple transport evolution in a typical cell/assembly is recommended. Finally, the results of this study are not more general than for the assumed conditions but they give a thorough calculation method valid for any recharging/fuel combination in a CANDU type reactor.

  4. Monochromatic Neutron Tomography Using 1-D PSD Detector at Low Flux Research Reactor

    Science.gov (United States)

    Ashari, N. Abidin; Saleh, J. Mohamad; Abdullah, M. Zaid; Mohamed, A. Aziz; Azman, A.; Jamro, R.

    2008-03-01

    This paper describes the monochromatic neutron tomography experiment using the 1-D Position Sensitive Neutron Detector (PSD) located at Nuclear Malaysia TRIGA MARK II Research reactor. Experimental work was performed using monochromatic neutron source from beryllium filter and HOPG crystal monochromator. The principal main aim of this experiment was to test the detector efficiency, image reconstruction algorithm and the usage of 0.5 nm monochromatic neutrons for the neutron tomography setup. Other objective includes gathering important parameters and features to characterize the system.

  5. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Swanson

    2005-08-30

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was

  6. High temperature reactors for cogeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Verfondern, Karl [Forschungszentrum Juelich (Germany). IEK-6; Allelein, Hans-Josef [Forschungszentrum Juelich (Germany). IEK-6; RWTH Aachen (Germany). Lehrstuhl fuer Reaktorsicherheit und -technik (LRST)

    2016-05-15

    There is a large potential for nuclear energy also in the non-electric heat market. Many industrial sectors have a high demand for process heat and steam at various levels of temperature and pressure to be provided for desalination of seawater, district heating, or chemical processes. The future generation of nuclear plants will be capable to enter the wide field of cogeneration of heat and power (CHP), to reduce waste heat and to increase efficiency. This requires an adjustment to multiple needs of the customers in terms of size and application. All Generation-IV concepts proposed are designed for coolant outlet temperatures above 500 C, which allow applications in the low and medium temperature range. A VHTR would even be able to cover the whole temperature range up to approx. 1 000 C.

  7. Hydrogen production using high temperature nuclear reactors : A feasibility study

    OpenAIRE

    Sivertsson, Viktor

    2010-01-01

    The use of hydrogen is predicted to increase substantially in the future, both as chemical feedstock and also as energy carrier for transportation. The annual world production of hydrogen amounts to some 50 million tonnes and the majority is produced using fossil fuels like natural gas, coal and naphtha. High temperature nuclear reactors (HTRs) represent a novel way to produce hydrogen at large scale with high efficiency and less carbon footprint. The aim of this master thesis has been to eva...

  8. Burning high-level TRU waste in fusion fission reactors

    Science.gov (United States)

    Shen, Yaosong

    2016-09-01

    Recently, the concept of actinide burning instead of a once-through fuel cycle for disposing spent nuclear fuel seems to get much more attention. A new method of burning high-level transuranic (TRU) waste combined with Thorium-Uranium (Th-U) fuel in the subcritical reactors driven by external fusion neutron sources is proposed in this paper. The thorium-based TRU fuel burns all of the long-lived actinides via a hard neutron spectrum while outputting power. A one-dimensional model of the reactor concept was built by means of the ONESN_BURN code with new data libraries. The numerical results included actinide radioactivity, biological hazard potential, and much higher burnup rate of high-level transuranic waste. The comparison of the fusion-fission reactor with the thermal reactor shows that the harder neutron spectrum is more efficient than the soft. The Th-U cycle produces less TRU, less radiotoxicity and fewer long-lived actinides. The Th-U cycle provides breeding of 233U with a long operation time (>20 years), hence significantly reducing the reactivity swing while improving safety and burnup.

  9. Process heat cogeneration using a high temperature reactor

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, Gustavo, E-mail: gustavoalonso3@gmail.com [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Ramirez, Ramon [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico); Valle, Edmundo del [Instituto Politécnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Ed. 9, Lindavista, D.F. 07300 (Mexico); Castillo, Rogelio [Instituto Nacional de Investigaciones Nucleares, Carretera Mexico-Toluca s/n, Ocoyoacac, Edo. De Mexico 52750 (Mexico)

    2014-12-15

    Highlights: • HTR feasibility for process heat cogeneration is assessed. • A cogeneration coupling for HTR is proposed and process heat cost is evaluated. • A CCGT process heat cogeneration set up is also assessed. • Technical comparison between both sources of cogeneration is performed. • Economical competitiveness of the HTR for process heat cogeneration is analyzed. - Abstract: High temperature nuclear reactors offer the possibility to generate process heat that could be used in the oil industry, particularly in refineries for gasoline production. These technologies are still under development and none of them has shown how this can be possible and what will be the penalty in electricity generation to have this additional product and if the cost of this subproduct will be competitive with other alternatives. The current study assesses the likeliness of generating process heat from Pebble Bed Modular Reactor to be used for a refinery showing different plant balances and alternatives to produce and use that process heat. An actual practical example is presented to demonstrate the cogeneration viability using the fact that the PBMR is a modular small reactor where the cycle configuration to transport the heat of the reactor to the process plant plays an important role in the cycle efficiency and in the plant economics. The results of this study show that the PBMR would be most competitive when capital discount rates are low (5%), carbon prices are high (>30 US$/ton), and competing natural gas prices are at least 8 US$/mmBTU.

  10. Supercell Depletion Studies for Prismatic High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    J. Ortensi

    2012-10-01

    The traditional two-step method of analysis is not accurate enough to represent the neutronic effects present in the prismatic high temperature reactor concept. The long range coupling of the various regions in high temperature reactors poses a set of challenges that are not seen in either LWRs or fast reactors. Unlike LWRs, which exhibit large, localized effects, the dominant effects in PMRs are, for the most part, distributed over larger regions, but with lower magnitude. The 1-D in-line treatment currently used in pebble bed reactor analysis is not sufficient because of the 2-D nature of the prismatic blocks. Considerable challenges exist in the modeling of blocks in the vicinity of reflectors, which, for current small modular reactor designs with thin annular cores, include the majority of the blocks. Additional challenges involve the treatment of burnable poisons, operational and shutdown control rods. The use of a large domain for cross section preparation provides a better representation of the neutron spectrum, enables the proper modeling of BPs and CRs, allows the calculation of generalized equivalence theory parameters, and generates a relative power distribution that can be used in compact power reconstruction. The purpose of this paper is to quantify the effects of the reflector, burnable poison, and operational control rods on an LEU design and to delineate an analysis approach for the Idaho National Laboratory. This work concludes that the use of supercells should capture these long-range effects in the preparation of cross sections and along with a set of triangular meshes to treat BPs, and CRs a high fidelity neutronics computation is attainable.

  11. High conductivity Be-Cu alloys for fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, E.A. [NGK Metals Corp., Reading, PA (United States); Adachi, Takao; Ishibashi, Yoshiki [NGK Insulators, Ltd., Aichi-ken (Japan)

    1995-09-01

    The optimum material has not yet been identified. This will result in heat from plasma to the first wall and divertor. That is, because of cracks and melting by thermal power and shock. Today, it is considered to be some kinds of copper, alloys, however, for using, it must have high conductivity. And it is also needed another property, for example, high strength and so on. We have developed some new beryllium copper alloys with high conductivity, high strength, and high endurance. Therefore, we are introducing these new alloys as suitable materials for the heat sink in fusion reactors.

  12. High temperature gas cooled reactors in China

    International Nuclear Information System (INIS)

    China has plentiful energy resources, but it is unevenly distributed geographically. 60% of coal resources are concentrated in North China, 71% of hydro-power resources in the hardly accessible Southwest China, whereas the densely populated and highly industrialized 15 provinces/municipalities along the coast, yielding 73% of the gross national product, posses only 10% of national energy resources, which makes our railway system hard pressed. In fact, about 40% of the railway transport and 50% of the main waterway transport are committed to fuel. Yet the needs of energy in the coastal regions cannot be met. To develop nuclear power is a naturally expected approach to solving energy problems in China, particularly in the near term for the coastal regions, where the demand of electricity increases sharply and fuel transport from other regions is already tense. Chinese nuclear circle is interested in MHTGR due to the following reasons. 1. Small capacity of MHTGR is suitable for small power grid in certain areas. 2. Chinese manufacturers are able to provide whole package of conventional island of MHTGR nuclear power plant. 3. Multipurpose MHTGR is attractive for Chinese heavy industries. 4. MHTGR nuclear power plant can be built in suburbs due to inherent safety features. Regarding the users' requirements in China, it can be summarised as: 1. Mature technologies and easy to get license from nuclear safety authority. 2. Emergency zone as small as possible, even unnecessary. 3. 200-300 MWe size desirable. 4. Big portion of domestic share in engineering and component supply. 5. Slightly higher electricity price than coal fired. 6. Investment and favourable financing conditions from overseas. 7. Reimbursement of hard currency by countertrade. At present, four working groups, including users, manufacturers and nuclear industry circle, have been established for performing independent feasibility study on building MHTGR demonstration nuclear power plant in China. (author)

  13. An Advanced Integrated Diffusion/Transport Method for the Design, Analysis and Optimization of the Very-High-Temperature Reactors

    International Nuclear Information System (INIS)

    The main objective of this research is to develop an integrated diffusion/transport (IDT) method to substantially improve the accuracy of nodal diffusion methods for the design and analysis of Very High Temperature Reactors (VHTR). Because of the presence of control rods in the reflector regions in the Pebble Bed Reactor (PBR-VHTR), traditional nodal diffusion methods do not accurately model these regions, within which diffusion theory breaks down in the vicinity of high neutron absorption and steep flux gradients. The IDT method uses a local transport solver based on a new incident flux response expansion method in the controlled nodes. Diffusion theory is used in the rest of the core. This approach improves the accuracy of the core solution by generating transport solutions of controlled nodes while maintaining computational efficiency by using diffusion solutions in nodes where such a treatment is sufficient. The transport method is initially developed and coupled to the reformulated 3-D nodal diffusion model in the CYNOD code for PBR core design and fuel cycle analysis. This method is also extended to the prismatic VHTR. The new method accurately captures transport effects in highly heterogeneous regions with steep flux gradients. The calculations of these nodes with transport theory avoid errors associated with spatial homogenization commonly used in diffusion methods in reactor core simulators

  14. An Advanced Integrated Diffusion/Transport Method for the Design, Analysis and Optimization of the Very-High-Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Farzad Rahnema; Dingkang Zhang; Abderrafi Ougouag; Frederick Gleicher

    2011-04-04

    The main objective of this research is to develop an integrated diffusion/transport (IDT) method to substantially improve the accuracy of nodal diffusion methods for the design and analysis of Very High Temperature Reactors (VHTR). Because of the presence of control rods in the reflector regions in the Pebble Bed Reactor (PBR-VHTR), traditional nodal diffusion methods do not accurately model these regions, within which diffusion theory breaks down in the vicinity of high neutron absorption and steep flux gradients. The IDT method uses a local transport solver based on a new incident flux response expansion method in the controlled nodes. Diffusion theory is used in the rest of the core. This approach improves the accuracy of the core solution by generating transport solutions of controlled nodes while maintaining computational efficiency by using diffusion solutions in nodes where such a treatment is sufficient. The transport method is initially developed and coupled to the reformulated 3-D nodal diffusion model in the CYNOD code for PBR core design and fuel cycle analysis. This method is also extended to the prismatic VHTR. The new method accurately captures transport effects in highly heterogeneous regions with steep flux gradients. The calculations of these nodes with transport theory avoid errors associated with spatial homogenization commonly used in diffusion methods in reactor core simulators

  15. Hybrid high temperature gas-cooled reactor, thermonuclear fusion

    International Nuclear Information System (INIS)

    The project of a multi-purpose high temperature gas-cooled reactor started in 1969. The Atomic Energy Commission, Japan, approved in 1980 the budget for the design study of the experimental reactor. The conceptual design is in progress. The manufacturing of coated fuel pellets and the test method have been developed. The study of graphite structure is carried out. Corrosion and creep tests are made to obtain the knowledge concerning the metals in high temperature helium gas. The engineering study of various machines and structures operating at high temperature is performed. International cooperative works are considered. The experimental reactor will be critical in 1987. A critical plasma test facility, JT-60, has been constructed at the Japan Atomic Energy Research Institute. As the theoretical work on plasma confinement, the evaluation of the critical beta value of JT-60 was made. By high temperature neutral beam injection, the slowing down and heating processes of high energy particles are studied. The development of a non-circular cross-section tokamak is in progress. The construction of JT-60 will be completed in 1984. Study concerning superconducting magnets is considered. Japan is one of the members of INTOR project. (Kato, T.)

  16. Combination of helical ferritic-steel inserts and flux-tube-expansion divertor for the heat control in tokamak DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, T., E-mail: takizuka.tomonori@gmail.com [Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871 (Japan); Tokunaga, S.; Hoshino, K. [Japan Atomic Energy Agency, 2-166, Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Shimizu, K. [Japan Atomic Energy Agency, 801-1, Mukoyama, Naka 311-0193 (Japan); Asakura, N. [Japan Atomic Energy Agency, 2-166, Omotedate, Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2015-08-15

    Edge localized modes (ELMs) in the H-mode operation of tokamak reactors may be suppressed/mitigated by the resonant magnetic perturbation (RMP), but RMP coils are considered incompatible with DEMO reactors under the strong neutron flux. We propose an innovative concept of the RMP without installing coils but inserting ferritic steels of the helical configuration. Helically perturbed field is naturally formed in the axisymmetric toroidal field through the helical ferritic steel inserts (FSIs). When ELMs are avoided, large stationary heat load on divertor plates can be reduced by adopting a flux-tube-expansion (FTE) divertor like an X divertor. Separatrix shape and divertor-plate inclination are similar to those of a simple long-leg divertor configuration. Combination of the helical FSIs and the FTE divertor is a suitable method for the heat control to avoid transient ELM heat pulse and to reduce stationary divertor heat load in a tokamak DEMO reactor.

  17. High photon flux table-top coherent extreme ultraviolet source

    CERN Document Server

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Hoffmann, Armin; Pronin, Oleg; Pervak, Vladimir; Limpert, Jens; Tünnermann, Andreas

    2014-01-01

    High harmonic generation (HHG) enables extreme ultraviolet radiation with table-top setups. Its exceptional properties, such as coherence and (sub)-femtosecond pulse durations, have led to a diversity of applications. Some of these require a high photon flux and megahertz repetition rates, e.g. to avoid space charge effects in photoelectron spectroscopy. To date this has only been achieved with enhancement cavities. Here, we establish a novel route towards powerful HHG sources. By achieving phase-matched HHG of a megahertz fibre laser we generate a broad plateau (25 eV - 40 eV) of strong harmonics, each containing more than $10^{12}$ photons/s, which constitutes an increase by more than one order of magnitude in that wavelength range. The strongest harmonic (H25, 30 eV) has an average power of 143 $\\mu$W ($3\\cdot10^{13}$ photons/s). This concept will greatly advance and facilitate applications in photoelectron or coincidence spectroscopy, coherent diffractive imaging or (multidimensional) surface science.

  18. A Compact, High-Flux Cold Atom Beam Source

    Science.gov (United States)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  19. High Heat Flux Burnout in Subcooled Flow Boiling

    Institute of Scientific and Technical Information of China (English)

    G.P.Celata; M.Cumo; 等

    1995-01-01

    The paper reports the results of an experimental research carried out at the Heat transfer divison of the Energy Department,C.R.Casaccia,on the thermal hydraulic characterization of subcooled flow boiling CHF under typical conditions of thermonuclear fusion reactors.I.e.high liquid velocity and subcooling.The experiment was carried out exploring the following parameters:channel diameter(from 2.5to 8.0 mm),heated length(10 and 15cm) ,liquid velocity (from 2 to 40m/s),exit pressure(from atmospheric to 5.0 MPa),inlet temperature(from 30 to 80℃),channel orientation (vertical and horizontal),A maximum CHF value of 60.6MW/m2 has been obtained under the following conditions:Tin-30°,p=2.5MPa,u=40m/s,D=2.5mm(smooth channel) Turbulence promoters(helically coiled wires)have been employed to further enhance the CHF attainable with subcooled flow boiling.Helically coiled wires allow an increase of 50% of the maximum CHF obtained with smooth channels.

  20. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  1. Baseline Concept Description of a Small Modular High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gougar, Hans D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  2. Baseline Concept Description of a Small Modular High Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hans Gougar

    2014-05-01

    The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNP were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the

  3. Preliminary Demonstration Reactor Point Design for the Fluoride Salt-Cooled High-Temperature Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Betzler, Benjamin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, Nicholas R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Carbajo, Juan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrell, Jerry W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Development of the Fluoride Salt-Cooled High-Temperature Reactor (FHR) Demonstration Reactor (DR) is a necessary intermediate step to enable commercial FHR deployment through disruptive and rapid technology development and demonstration. The FHR DR will utilize known, mature technology to close remaining gaps to commercial viability. Lower risk technologies are included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologies include tristructural-isotropic (TRISO) particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell heat exchangers. This report provides an update on the development of the FHR DR. At this writing, the core neutronics and thermal hydraulics have been developed and analyzed. The mechanical design details are still under development and are described to their current level of fidelity. It is anticipated that the FHR DR can be operational within 10 years because of the use of low-risk, near-term technology options.

  4. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Laboratory; Bayless, Paul David [Idaho National Laboratory; Nelson, Lee Orville [Idaho National Laboratory; Gougar, Hans David [Idaho National Laboratory; Strydom, Gerhard [Idaho National Laboratory

    2016-03-01

    • Provide an initial summary description of the design and its main attributes o Summarize the main Test Reactor attributes: reactor type, power, coolant, irradiation conditions (fast and thermal flux levels, number of test loops, positions and volumes), costs (project, operational), schedule and availability factor. o Identify secondary missions and power conversion options, if applicable. o Include statements on the envisioned attractiveness of the reactor type in relation to anticipated domestic and global irradiation services needs, citing past and current trends in reactor development and deployment. o Include statements on Test Reactor scalability (e.g. trade-off between size, power/flux levels and costs), prototypical conditions, overall technology maturity of the specific design and the general technology type. The intention is that this summary must be readable as a stand-alone section.

  5. Flux-measuring approach of high temperature metal liquid based on BP neural networks

    Institute of Scientific and Technical Information of China (English)

    胡燕瑜; 桂卫华; 李勇刚

    2003-01-01

    A soft-measuring approach is presented to measure the flux of liquid zinc with high temperature andcausticity. By constructing mathematical model based on neural networks, weighing the mass of liquid zinc, the fluxof liquid zinc is acquired indirectly, the measuring on line and flux control are realized. Simulation results and indus-trial practice demonstrate that the relative error between the estimated flux value and practical measured flux value islower than 1.5%, meeting the need of industrial process.

  6. Advanced High Temperature Reactor Systems and Economic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Qualls, A L [ORNL

    2011-09-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a large-output [3400 MW(t)] fluoride-salt-cooled high-temperature reactor (FHR). FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR's large thermal output enables direct comparison of its performance and requirements with other high output reactor concepts. As high-temperature plants, FHRs can support either high-efficiency electricity generation or industrial process heat production. The AHTR analysis presented in this report is limited to the electricity generation mission. FHRs, in principle, have the potential to be low-cost electricity producers while maintaining full passive safety. However, no FHR has been built, and no FHR design has reached the stage of maturity where realistic economic analysis can be performed. The system design effort described in this report represents early steps along the design path toward being able to predict the cost and performance characteristics of the AHTR as well as toward being able to identify the technology developments necessary to build an FHR power plant. While FHRs represent a distinct reactor class, they inherit desirable attributes from other thermal power plants whose characteristics can be studied to provide general guidance on plant configuration, anticipated performance, and costs. Molten salt reactors provide experience on the materials, procedures, and components necessary to use liquid fluoride salts. Liquid metal reactors provide design experience on using low-pressure liquid coolants, passive decay heat removal, and hot refueling. High temperature gas-cooled reactors provide experience with coated particle fuel and graphite components. Light water reactors (LWRs) show the potentials of transparent, high-heat capacity coolants with low chemical reactivity. Modern coal-fired power plants provide design experience

  7. Assessment of very high-temperature reactors in process applications

    Energy Technology Data Exchange (ETDEWEB)

    Spiewak, I.; Jones, J.E. Jr.; Gambill, W.R.; Fox, E.C.

    1976-11-01

    An overview is presented of the technical and economic feasibility for the development of a very high-temperature reactor (VHTR) and associated processes. A critical evaluation of VHTR technology for process temperatures of 1400 and 2000/sup 0/F is made. Additionally, an assessment of potential market impact is made to determine the commercial viability of the reactor system. It is concluded that VHTR process heat in the range of 1400 to 1500/sup 0/F is attainable with near-term technology. However, process heat in excess of 1600/sup 0/F would require considerably more materials development. The potential for the VHTR could include a major contribution to synthetic fuel, hydrogen, steel, and fertilizer production and to systems for transport and storage of high-temperature heat. A recommended development program including projected costs is presented.

  8. High flux and high resolution VUV beam line for synchrotron radiation

    International Nuclear Information System (INIS)

    A beam line has been optimized for high flux and high resolution in the wavelength range from 30 nm to 300 nm. Sample chambers for luminescence spectroscopy on gaseous, liquid and solid samples and for photoelectron spectroscopy have been integrated. The synchrotron radiation from the storage ring DORIS (at DESY, Hamburg) emitted into 50 mrad in horizontal and into 2.2 mrad in vertical direction is focused by a cylindrical and a plane elliptical mirror into the entrance slit of a 2m normal incidence monochromator. The light flux from the exit slit is focused by a rotational elliptic mirror onto the sample yielding a size of the light spot of 4 x 0.15 mm2. The light flux at the sample reaches 7 x 1012 photons nm-1s-1 at 8 eV photon energy for a current of 100 mA in DORIS. A resolution of 0.007 nm has been obtained. (orig.)

  9. The final power calibration of the IPEN/MB-01 nuclear reactor for various configurations obtained from the measurements of the absolute average neutron flux

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre Fonseca Povoa da, E-mail: alexandre.povoa@mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil); Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto Credidio; Lima, Ana Cecilia de Souza; Betti, Flavio; Santos, Diogo Feliciano dos, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The use of neutron activation foils is a widely spread technique applied to obtain nuclear parameters then comparing the results with those calculated using specific methodologies and available nuclear data. By irradiation of activation foils and subsequent measurement of its induced activity, it is possible to determine the neutron flux at the position of irradiation. The power level during operation of the reactor is a parameter which is directly proportional to the average neutron flux throughout the core. The objective of this work is to gather data from irradiation of gold foils symmetrically placed along a cylindrically configured core which presents only a small excess reactivity in order to derive the power generated throughout the spatial thermal and epithermal neutron flux distribution over the core of the IPEN/MB-01 Nuclear Reactor, eventually lending to a proper calibration of its nuclear channels. The foils are fixed in a Lucite plate then irradiated with and without cadmium sheaths so as to obtain the absolute thermal and epithermal neutron flux. The correlation between the average power neutron flux resulting from the gold foils irradiation, and the average power digitally indicated by the nuclear channel number 6, allows for the calibration of the nuclear channels of the reactor. The reactor power level obtained by thermal neutron flux mapping was (74.65 ± 2.45) watts to a mean counting per seconds of 37881 cps to nuclear channel number 10 a pulse detector, and 0.719.10{sup -5} ampere to nuclear linear channel number 6 (a non-compensated ionization chamber). (author)

  10. Economics of High-Temperature Nuclear Reactors for Industrial Cogeneration

    OpenAIRE

    Hampe, Jona; Madlener, Reinhard

    2012-01-01

    The EU Emissions Trading Scheme challenges the cost-competitiveness of energy-intensive industries in Europe, and induces them to search for low-carbon alternatives for their process heat requirements, such as cogeneration or the employment of nuclear power plants. The high-temperature nuclear reactor (HTR) is a technology option that combines these two aspects. In this paper, the economic potential of using HTRs for cogeneration of industrial process heat and electricity is studied. We show ...

  11. Request for Naval Reactors Comment on Proposed PROMETHEUS Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to Jet Propulsion Laboratory

    International Nuclear Information System (INIS)

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory

  12. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R.

    2015-10-01

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from -90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.

  13. Study on transmutation and storage of LLFP using a high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    There is a need to temporally store high-level radioactive waste (HLW) until the location of final disposal is decided. HLW contains several types of long-lived fission product (LLFP) which stay radioactive for hundreds of thousands of years. In addition, they tend to be chemically mobile when dissolved into ground water thus may not be suited for geological disposal. A facility that is able to store and incinerate LLFP simultaneously is desirable. The high-temperature gas-cooled reactor (HTGR) is one of the fourth generation nuclear reactors currently under research and it has some favorable characteristics that allow the reactor to destroy LLFP through nuclear transmutation. In this study the capability of HTGR as LLFP transmuter was evaluated in terms of neutron economy. Considering gas turbine high-temperature reactor with 300 MWe nominal capacity (GTHTR300) as HTGR, transmutations of four types of LLFP nuclide were estimated using Monte Carlo transport code MVP and ORIGEN. In addition, burn-up simulations for whole-core region were carried out using MVP-BURN. It was numerically shown that the neutron fluxes change significantly depending on the arrangement of LLFP in the core. When 15 t of LLFP is placed in an ideal manner, the GTHTR300 can sustain sufficient reactivity for one year while transmuting up to 30 kg per year. Additionally, there are more space available for storing larger amount of LLFP without affecting the reactivity. These results suggest that there is a possibility of using GTHTR300 as both LLFP storage and transmuter. (author)

  14. Design of high temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Construction of High Temperature Engineering Test Reactor (HTTR) is now underway to establish and upgrade basic technologies for HTGRs and to conduct innovative basic research at high temperatures. The HTTR is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal output and outlet coolant temperature of 850degC for rated operation and 950degC for high temperature test operation. It is planned to conduct various irradiation tests for fuels and materials, safety demonstration tests and nuclear heat application tests. JAERI received construction permit of HTTR reactor facility in February 1990 after 22 months of safety review. This report summarizes evaluation of nuclear and thermal-hydraulic characteristics, design outline of major systems and components, and also includes relating R and D result and safety evaluation. Criteria for judgment, selection of postulated events, major analytical conditions for anticipated operational occurrences and accidents, computer codes used in safety analysis and evaluation of each event are presented in the safety evaluation. (author)

  15. Anisotropic flux pinning in high T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kolesnik, S. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, PL-02668, Warszawa (Poland); Igalson, J. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, PL-02668, Warszawa (Poland); Skoskiewicz, T. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, PL-02668, Warszawa (Poland); Szymczak, R. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, PL-02668, Warszawa (Poland); Baran, M. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, PL-02668, Warszawa (Poland); Pytel, K. [Institute of Atomic Energy, Swierk (Poland); Pytel, B. [Institute of Atomic Energy, Swierk (Poland)

    1995-02-09

    In this paper we present a comparison of the results of FC magnetization measurements on several Pb-Sr-(Y,Ca)-Cu-O crystals representing various levels of flux pinning. The pinning centers in our crystals have been set up during the crystal growth process or introduced by neutron irradiation. Some possible explanations of the observed effects, including surface barrier, flux-center distribution and sample-shape effects, are discussed. ((orig.)).

  16. Proceedings of Japan-U.S. workshop P-196 on high heat flux components and plasma surface interactions for next devices

    International Nuclear Information System (INIS)

    The Japan-US Workshop P-196 was successfully carried out in Kyushu University, Chikushi Campus, from November 17 to 19. The major concern was on the research and development required both for international Thermonuclear Experimental Reactor (ITER) and Large Helical Device (LHD). Most of the discussion items was similar to that of the last workshop, e.g. PFC and PSI in Large Device, High Heat Flux Component, Laboratory Studies and Neutron Damage. The presentation number concerning High Heat Flux Component was largest. (J.P.N.)

  17. Parametric evaluation of mixed (low and high enriched) fuel core for a swimming pool type research reactor

    International Nuclear Information System (INIS)

    A study has been carried out to evaluate the performance of a swimming pool type research reactor core comprised of mixed (low and high enriched) uranium fuel. The study includes the calculations of core reactivity, worth of control rods and core criticality at the Beginning Of Life (BOL) of the core and for two operating conditions Cold Zero Power (CZP) and Hot Full Power (HFP). Further, to ensure safe and stable operation of the core from nuclear design point of view, average power densities in the fuel region, power peaking factors, axial power distribution in the hot channel and reactivity feed back coefficients have also been calculated. Two group fluxes have also been determined at different irradiation locations. All these calculations have been carried out employing reactor lattice code WIMS-D14 and reactor analysis code CITATION The calculated results show reasonably good agreement with the quoted operational data of the previous LEU cores. (Author)

  18. Multi-scale Control and Enhancement of Reactor Boiling Heat Flux by Reagents and Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Manglik, R M; Athavale, A; Kalaikadal, D S; Deodhar, A; Verma, U

    2011-09-02

    The phenomenological characterization of the use of non-invasive and passive techniques to enhance the boiling heat transfer in water has been carried out in this extended study. It provides fundamental enhanced heat transfer data for nucleate boiling and discusses the associated physics with the aim of addressing future and next-generation reactor thermal-hydraulic management. It essentially addresses the hypothesis that in phase-change processes during boiling, the primary mechanisms can be related to the liquid-vapor interfacial tension and surface wetting at the solidliquid interface. These interfacial characteristics can be significantly altered and decoupled by introducing small quantities of additives in water, such as surface-active polymers, surfactants, and nanoparticles. The changes are fundamentally caused at a molecular-scale by the relative bulk molecular dynamics and adsorption-desorption of the additive at the liquid-vapor interface, and its physisorption and electrokinetics at the liquid-solid interface. At the micro-scale, the transient transport mechanisms at the solid-liquid-vapor interface during nucleation and bubblegrowth can be attributed to thin-film spreading, surface-micro-cavity activation, and micro-layer evaporation. Furthermore at the macro-scale, the heat transport is in turn governed by the bubble growth and distribution, macro-layer heat transfer, bubble dynamics (bubble coalescence, collapse, break-up, and translation), and liquid rheology. Some of these behaviors and processes are measured and characterized in this study, the outcomes of which advance the concomitant fundamental physics, as well as provide insights for developing control strategies for the molecular-scale manipulation of interfacial tension and surface wetting in boiling by means of polymeric reagents, surfactants, and other soluble surface-active additives.

  19. Multi-scale Control and Enhancement of Reactor Boiling Heat Flux by Reagents and Nanoparticles

    International Nuclear Information System (INIS)

    The phenomenological characterization of the use of non-invasive and passive techniques to enhance the boiling heat transfer in water has been carried out in this extended study. It provides fundamental enhanced heat transfer data for nucleate boiling and discusses the associated physics with the aim of addressing future and next-generation reactor thermal-hydraulic management. It essentially addresses the hypothesis that in phase-change processes during boiling, the primary mechanisms can be related to the liquid-vapor interfacial tension and surface wetting at the solidliquid interface. These interfacial characteristics can be significantly altered and decoupled by introducing small quantities of additives in water, such as surface-active polymers, surfactants, and nanoparticles. The changes are fundamentally caused at a molecular-scale by the relative bulk molecular dynamics and adsorption-desorption of the additive at the liquid-vapor interface, and its physisorption and electrokinetics at the liquid-solid interface. At the micro-scale, the transient transport mechanisms at the solid-liquid-vapor interface during nucleation and bubblegrowth can be attributed to thin-film spreading, surface-micro-cavity activation, and micro-layer evaporation. Furthermore at the macro-scale, the heat transport is in turn governed by the bubble growth and distribution, macro-layer heat transfer, bubble dynamics (bubble coalescence, collapse, break-up, and translation), and liquid rheology. Some of these behaviors and processes are measured and characterized in this study, the outcomes of which advance the concomitant fundamental physics, as well as provide insights for developing control strategies for the molecular-scale manipulation of interfacial tension and surface wetting in boiling by means of polymeric reagents, surfactants, and other soluble surface-active additives.

  20. Design and construction of an automatic measurement electronic system and graphical neutron flux for the subcritical reactor; Diseno y construccion de un sistema electronico automatico de medicion y graficado del flujo neutronico para el reactor subcritico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, J.L.; Balderas, E.G.; Rivero G, T. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The National Institute of Nuclear Research (ININ) has in its installations with a nuclear subcritical reactor which was designed and constructed with the main purpose to be used in the nuclear sciences education in the Physics areas and Reactors engineering. Within the nuclear experiments that can be realized in this reactor are very interesting those about determinations of neutron and gamma fluxes spectra, since starting from these some interesting nuclear parameters can be obtained. In order to carry out this type of experiments different radioactive sources are used which exceed the permissible doses by far to human beings. Therefore it is necessary the remote handling as of the source as of detectors used in different experiments. In this work it is presented the design of an electronic system which allows the different positions inside of the tank of subcritical reactor at ININ over the radial and axial axes in manual or automatic ways. (Author)

  1. Characterization of the neutron flux in the Hohlraum of the thermal column of the TRIGA Mark III reactor of the ININ; Caracterizacion del flujo neutronico en el Hohlraum de la columna termica del reactor TRIGA Mark III del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Delfin L, A.; Palacios, J.C.; Alonso, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: adl@nuclear.inin.mx

    2006-07-01

    Knowing the magnitude of the neutron flux in the reactor irradiation facilities, is so much importance for the operation of the same one, like for the investigation developing. Particularly, knowing with certain precision the spectrum and the neutron flux in the different positions of irradiation of a reactor, it is essential for the evaluation of the results obtained for a certain irradiation experiment. The TRIGA Mark III reactor account with irradiation facilities designed to carry out experimentation, where the reactor is used like an intense neutron source and gamma radiation, what allows to make irradiations of samples or equipment in radiation fields with components and diverse levels in the different facilities, one of these irradiation facilities is the Thermal Column where the Hohlraum is. In this work it was carried out a characterization of the neutron flux inside the 'Hohlraum' of the irradiation facility Thermal Column of the TRIGA Mark III reactor of the Nuclear Center of Mexico to 1 MW of power. It was determined the sub cadmic neutron flux and the epi cadmic by means of the neutron activation technique of thin sheets of gold. The maps of the distribution of the neutron flux for both energy groups in three different positions inside the 'Hohlraum' are presented, these maps were obtained by means of the irradiation of undressed thin activation sheets of gold and covered with cadmium in arrangements of 10 x 12, located parallel to 11.5 cm, 40.5 cm and 70.5 cm to the internal wall of graphite of the installation in inverse address to the position of the reactor core. Starting from the obtained values of neutron flux it was found that, for the same position of the surface of irradiation of the experimental arrangement, the relative differences among the values of neutron flux can be of 80%, and that the differences among different positions of the irradiation surfaces can vary until in a one order of magnitude. (Author)

  2. Fuel performance at high burnup for water reactors

    International Nuclear Information System (INIS)

    The present meeting was scheduled by the International Atomic Energy Agency, upon proposal of the Members of the International Working Group on Water Reactor Fuel Performance and Technology. The purpose of this meeting was to review the ''state-of-the-art'' in the area of Fuel Performance at High Burnup for Water Reactors. Previous IAEA meetings on this topic were held in Mol in 1981 and 1984 and on related topics in Stockholm and Lyon in 1987. Fifty-five participants from 16 countries and two international organizations attended the meeting and 28 papers were presented and discussed. The papers were presented in five sub-sessions and during the meeting, working groups composed of the session chairmen and paper authors prepared the summary of each session with conclusions and recommendations for future work. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  3. High-temperature nuclear reactors - economy, ecology, technology

    International Nuclear Information System (INIS)

    Various advantages of the high-temperature reactor are shown. Even though it represents an improvement upon the conventional light-water reactor, this process is only slowly being introduced on the market. This situation is likely to change in the future because of the necessity to save and to use more efficiently energy reserves, nuclear as well as fossil. The sharp price increase of fossil fuel together with the dependence of the industrialised countries upon this type of energy will favor the use of other energy sources. The HTR with its 232-Th fuel cycle and its possibility to be used as a multipurpose heat source is likely to play an important role despite public resistance to nuclear energy in general and some recent drawbacks in its development. (Auth.)

  4. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    Science.gov (United States)

    Woolway, R Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  5. Autonomous, high-resolution observations of particle flux in the oligotrophic ocean

    Directory of Open Access Journals (Sweden)

    M. L. Estapa

    2013-01-01

    Full Text Available Observational gaps limit our understanding of particle flux attenuation through the upper mesopelagic because available measurements (sediment traps and radiochemical tracers have limited temporal resolution, are labor-intensive, and require ship support. Here, we conceptually evaluate an autonomous, optical proxy-based method for high-resolution observations of particle flux. We present four continuous records of particle flux collected with autonomous, profiling floats in the western Sargasso Sea and the subtropical North Pacific, as well as one shorter record of depth-resolved particle flux near the Bermuda Atlantic Timeseries Study (BATS and Oceanic Flux Program (OFP sites. These observations illustrate strong variability in particle flux over very short (~1 day timescales, but at longer timescales they reflect patterns of variability previously recorded during sediment trap timeseries. While particle flux attenuation at BATS/OFP agreed with the canonical power-law model when observations were averaged over a month, flux attenuation was highly variable on timescales of 1–3 days. Particle fluxes at different depths were decoupled from one another and from particle concentrations and chlorophyll fluorescence in the immediately-overlying surface water, consistent with horizontal advection of settling particles. We finally present an approach for calibrating this optical proxy in units of carbon flux, discuss in detail the related, inherent physical and optical assumptions, and look forward toward the requirements for the quantitative application of this method in highly time-resolved studies of particle export and flux attenuation.

  6. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  7. Thorium fueled high temperature gas cooled reactors. An assessment

    International Nuclear Information System (INIS)

    The use of thorium as a fertile fuel for the High Temperature Gas Cooled Reactor (HTR) instead of uranium has been reviewed. It has been concluded that the use of thorium might be beneficial to reduce the actinide waste production. To achieve a real advancement, the uranium of the spent fuel has to be recycled and the requested make-up fissile material for the fresh fuel has to be used in the form of highly-enriched uranium. A self-sustaining fuel cycle may be possible in the HTR of large core size, but this could reduce the inherent safety features of the design. (orig.)

  8. Change in argonne national laboratory: a case study.

    Science.gov (United States)

    Mozley, A

    1971-10-01

    , William B. Cannon, who is vice president of programs and projects of the University of Chicago, and a small selection of staff members believe that the Laboratory is going through a natural and inevitable process of change consonant with altered missions and objectives in an atomic energy laboratory. The general mood, however, demonstrates the Jeffersonian insight, as relevant in science as in politics, that only democratic governance provides salutary checks and balances when things go wrong. The point deserves close scrutiny when Argonne's tripartite contract comes up for renegotiation in October 1971. Fundamentally Argonne's relations with its sponsoring agency remain at the center of its progress and future plans. Despite administrative and management changes, there is little doubt that he who pays the piper calls the tune. In common with other federal contract research and development adjuncts, Argonne has undoubtedly undergone tightening and winnowing away of flexibility in the past 6 years. In the nuclear reactor program the consequences have been strongly felt, and stringent national budgets have widened the tendency in the research domain. The impact of these changes and of AEC's attitude to basic research raise large questions for the future of the national laboratories. Few doubt that these "major national assets," with their outstanding scientific and technical personnel and equipment, fulfill a unique function and are here to stay, though their missions may undergo some change; the question of their most effective direction and handling, however, remains crucial for those concerned with priorities and decision-making for science. A recent review of 40 national federal adjuncts (30,31) has indicated that the primary sponsoring agency obtains better performance from a center that has a relatively high degree of independence than from one that is tightly controlled. The point is confirmed at Argonne where the present tendency (particularly on the nuclear reactor

  9. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  10. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor; Determinacion de nitrogeno en harina de trigo mediante analisis por activacion empleando el flujo de neutrones rapidos de un reactor nuclear termico

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, T

    1976-07-01

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  11. Surface morphology and deuterium retention in tungsten exposed to high flux D plasma at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Y.Z. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); De Temmerman, G. [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); ITER Organization, Route de Vinon-sur-Verdon-CS90046, 13067 St Paul Lez Durance Cedex (France); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Xu, H.Y. [Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621907 (China); Li, C.; Fu, B.Q. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-02-15

    Surface modifications and deuterium retention induced in tungsten by high fluxes (10{sup 24} m{sup −2} s{sup −1}) low energy (38 eV) deuterium ions were studied as a function of surface temperature. Blister formation was studied by scanning electron microscopy and electron backscatter diffraction, while deuterium retention was measured by thermal desorption spectroscopy. Blisters are observed on the surface exposed at different temperatures, ranging from 493 K to 1273 K. The blister density and D retention decrease with the increasing exposure temperature. The formation of blisters at high temperatures is attributed to the high flux of D plasma. At 943 K, with the increasing fluence, there is trend to the saturation of D retention and blister density. The defects caused by plasma exposure have an important effect on the D trapping and blistering behavior. The formation of blisters has a strong relationship with slipping system of tungsten.

  12. NEET Enhanced Micro Pocket Fission Detector for High Temperature Reactors - FY15 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy [Idaho National Lab. (INL), Idaho Falls, ID (United States); McGregor, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ugorowski, Phil [Idaho National Lab. (INL), Idaho Falls, ID (United States); Reichenberger, Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ito, Takashi [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A new project, that is a collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core parallel plate fission chamber and thermocouple. As discussed within this report, the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year one of this three year project. Highlights from research accomplishments include: A joint collaboration was initiated between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. An updated HT MPFD design was developed. New high temperature-compatible materials for HT MPFD construction were procured. Construction methods to support the new design were evaluated at INL. Laboratory evaluations of HT MPFD were initiated. Electrical contact and fissile material plating has been performed at KSU. Updated detector electronics are undergoing evaluations at KSU. A

  13. Operational research on a high-T c rectifier-type superconducting flux pump

    Science.gov (United States)

    Geng, Jianzhao; Matsuda, K.; Fu, Lin; Shen, Boyang; Zhang, Xiuchang; Coombs, T. A.

    2016-03-01

    High-T c superconducting (HTS) flux pumps are capable of injecting flux into a superconducting circuit, which can achieve persistent current operation for HTS magnets. In this paper, we studied the operation of a rectifier-type HTS flux pump. The flux pump employs a transformer to generate high alternating current in its secondary winding, which is connected to an HTS load shorted by an HTS bridge. A high frequency ac field is intermittently applied perpendicular to the bridge, thus, generating flux flow. The dynamic resistance caused by the flux flow ‘rectifies’ the secondary current, resulting in a direct current in the load. We have found that the final load current can easily be controlled by changing the phase difference between the secondary current and the bridge field. The bridge field of frequency ranging from 10 to 40 Hz and magnitude ranging from 0 to 0.66 T was tested. Flux pumping was observed for field magnitudes of 50 mT or above. We have found that both higher field magnitude and higher field frequency result in a faster pumping speed and a higher final load current. This can be attributed to the influence of dynamic resistance. The dynamic resistance measured in the flux pump is comparable with the theoretical calculation. The experimental results fully support a first order circuit model. The flux pump is much more controllable than the traveling wave flux pumps based on permanent magnets, which makes it promising for practical use.

  14. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).

  15. Calculation of intermediate neutron flux in the radial reflectors of graphite reactors, comparison with experiments; Calcul du flux de neutrons intermediaires dans les reflecteurs lateraux des piles a graphite. Comparaison avec l'experience

    Energy Technology Data Exchange (ETDEWEB)

    Brisbois, J.; Vergnaud, T.; Oceraies, Y

    1967-12-01

    In a graphite pile, EDF or Inca type reactor, it is necessary to know the value of the intermediate neutron flux at the output of the lateral reflector in order to determine more precisely the neutron flux at the level of ionisation chambers. A sub critical pile of graphite and natural uranium was built, allowing to reconstitute the geometry of the radiation sources and the disposition of inferior and lateral protections of these piles. This pile is supplied with thermal neutrons coming from the Nereide light water type reactor. Some measurements of intermediate neutron flux have been made in this pile in order to establish a formalism for neutron flux calculation in slowing down in a whole core-lateral reflector, from the distribution of the thermal neutrons flux in the core. The flux calculation is done by age theory in three dimensions, in two homogenous media, separated by an axially semi infinite and laterally finite plane. One of these media includes a distribution of source. The constants are modified in order to take into account the presence of empty channels in the stacking. These calculations are done by the Malaga code. The checking of the formalism has been made in a greater complex geometry of these reactors that introduces an uncertainty factor in the comparison of results. We can however tell that we estimate correctly the variation of the intermediate neutrons flux in the core as well as its descending in a holed lateral reflector. The ratio between the calculation and the experiment is inferior to 2 or 3. Most of the time to a factor 2. [French] Dans une pile a graphite, du type EdF ou Inca, il est necessaire de connaitre la valeur du flux de neutrons intermediaires a la sortie du reflecteur lateral, afin de determiner avec plus de precision le flux de neutrons au niveau des chambres d'ionisation. Il a ete construit un empilement sous-critique, graphite uranium naturel, qui permet de reconstituer la geometrie des sources de rayonnement et la

  16. On the kinetics of the aluminum-water reaction during exposure in high-heat flux test loops: 1, A computer program for oxidation calculations

    International Nuclear Information System (INIS)

    The ''Griess Correlation,'' in which the thickness of the corrosion product on aluminum alloy surfaces is expressed as a function of time and temperature for high-flux-reactor conditions, was rewritten in the form of a simple, general rate equation. Based on this equation, a computer program that calculates oxide-layer thickness for any given time-temperature transient was written. 4 refs

  17. Education for university students, high school teachers and the general public using the Kinki University Reactor

    International Nuclear Information System (INIS)

    Atomic Energy Research Institute of Kinki University is equipped with a nuclear reactor which is called UTR-KINKI. UTR is the abbreviation for University Teaching and Research Reactor. The reactor is the first one installed in Japanese universities. Though the reactor is owned and operated by Kinki University, its use is widely open to scientists and students from other universities and research institutions. The reactor is made the best of teaching instrument for the training of high school teachers. In addition, the reactor is utilized for general public education concerning atomic energy. (author)

  18. Use of CMOS imagers to measure high fluxes of charged particles

    Science.gov (United States)

    Servoli, L.; Tucceri, P.

    2016-03-01

    The measurement of high flux charged particle beams, specifically at medical accelerators and with small fields, poses several challenges. In this work we propose a single particle counting method based on CMOS imagers optimized for visible light collection, exploiting their very high spatial segmentation (> 3 106 pixels/cm2) and almost full efficiency detection capability. An algorithm to measure the charged particle flux with a precision of ~ 1% for fluxes up to 40 MHz/cm2 has been developed, using a non-linear calibration algorithm, and several CMOS imagers with different characteristics have been compared to find their limits on flux measurement.

  19. Aging study of boiling water reactor high pressure injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  20. Safety review, assessment and inspection on research reactors, experimental reactors, nuclear heating reactors and critical facilities

    International Nuclear Information System (INIS)

    The NNSA organized mainly in 1999 to complete the verification loop in core of the high flux experimental reactor with the 2000 kW fuel elements, the re-starting of China Pulsed Reactor, review and assessment on nuclear safety for the restarting of the Uranium-water critical Facility and treat the fracture event with the fuel tubes in the HWRR

  1. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T. (University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering); Liu, P.K.T. (Aluminum Co. of America, Pittsburgh, PA (United States)); Webster, I.A. (Unocal Corp., Los Angeles, CA (United States))

    1992-01-01

    Membrane reactors are today finding extensive applications for gas and vapor phase catalytic reactions (see discussion in the introduction and recent reviews by Armor [92], Hsieh [93] and Tsotsis et al. [941]). There have not been any published reports, however, of their use in high pressure and temperature liquid-phase applications. The idea to apply membrane reactor technology to coal liquid upgrading has resulted from a series of experimental investigations by our group of petroleum and coal asphaltene transport through model membranes. Coal liquids contain polycyclic aromatic compounds, which not only present potential difficulties in upgrading, storage and coprocessing, but are also bioactive. Direct coal liquefaction is perceived today as a two-stage process, which involves a first stage of thermal (or catalytic) dissolution of coal, followed by a second stage, in which the resulting products of the first stage are catalytically upgraded. Even in the presence of hydrogen, the oil products of the second stage are thought to equilibrate with the heavier (asphaltenic and preasphaltenic) components found in the feedstream. The possibility exists for this smaller molecular fraction to recondense with the unreacted heavy components and form even heavier undesirable components like char and coke. One way to diminish these regressive reactions is to selectively remove these smaller molecular weight fractions once they are formed and prior to recondensation. This can, at least in principle, be accomplished through the use of high temperature membrane reactors, using ceramic membranes which are permselective for the desired products of the coal liquid upgrading process. An additional incentive to do so is in order to eliminate the further hydrogenation and hydrocracking of liquid products to undesirable light gases.

  2. Technical outline of a high temperature pool reactor with inherent passive safety features

    International Nuclear Information System (INIS)

    Many reactor designers world wide have successfully established technologies for very small reactors (less than 10 MWTH), and technologies for large power reactors (greater than 1000 MWTH), but have not developed small reactors (between 10 MWTH and 1000 MWth) which are safe, economic, and capable of meeting user technical, economic, and safety requirements. This is largely because the very small reactor technologies and the power reactor technologies are not amiable to safe and economic upsizing/downsizing. This paper postulates that new technologies, or novel combinations of existing technologies are necessary to the design of safe and economic small reactors. The paper then suggest a set of requirements that must be satisfied by a small reactor design, and defines a pool reactor that utilizes lead coolant and TRISO fuel which has the potential for meeting these requirements. This reactor, named LEADIR-PS, (an acronym for LEAD-cooled Integral Reactor, Passively Safe) incorporates the inherent safety features of the Modular High Temperature Gas Cooled Reactor (MWGR), while avoiding the cost of reactor and steam generator pressure vessels, and the safety concerns regarding pressure vessel rupture. This paper includes the description of a standard 200MW thermal reactor module based on this concept, called LEADIR-PS 200. (author)

  3. Temporal behavior of neutral particle fluxes in TFTR (Tokamak Fusion Test Reactor) neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Kamperschroer, J.H.; Gammel, G.M.; Roquemore, A.L.; Grisham, L.R.; Kugel, H.W.; Medley, S.S.; O' Connor, T.E.; Stevenson, T.N.; von Halle, A.; Williams, M.D.

    1989-09-01

    Data from an E {parallel} B charge exchange neutral analyzer (CENA), which views down the axis of a neutral beamline through an aperture in the target chamber calorimeter of the TFTR neutral beam test facility, exhibit two curious effects. First, there is a turn-on transient lasting tens of milliseconds having a magnitude up to three times that of the steady-state level. Second, there is a 720 Hz, up to 20% peak-to-peak fluctuation persisting the entire pulse duration. The turn-on transient occurs as the neutralizer/ion source system reaches a new pressure equilibrium following the effective ion source gas throughput reduction by particle removal as ion beam. Widths of the transient are a function of the gas throughput into the ion source, decreasing as the gas supply rate is reduced. Heating of the neutalizer gas by the beam is assumed responsible, with gas temperature increasing as gas supply rate is decreased. At low gas supply rates, the transient is primarliy due to dynamic changes in the neutralizer line density and/or beam species composition. Light emission from the drift duct corroborate the CENA data. At high gas supply rates, dynamic changes in component divergence and/or spatial profiles of the source plasma are necessary to explain the observations. The 720 Hz fluctuation is attributed to a 3% peak-to-peak ripple of 720 Hz on the arc power supply amplified by the quadratic relationship between beam divergence and beam current. Tight collimation by CENA apertures cause it to accept a very small part of the ion source's velocity space, producing a signal linearly proportional to beam divergence. Estimated fluctuations in the peak power density delivered to the plasma under these conditions are a modest 3--8% peak to peak. The efffects of both phenomena on the injected neutral beam can be ameliorated by careful operion of the ion sources. 21 refs., 11 figs., 2 tabs.

  4. Photographic as-builts for Argonne National Laboratory-West

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, E.K.; Wiegand, C.V.

    1995-04-19

    Located 35 miles West of Idaho Falls, Idaho, Argonne National Laboratory-West operates a number of nuclear facilities for the Department of Energy (DOE) through the University of Chicago. Part of the present mission of Argonne National Laboratory-West includes shutdown of the EBR-II Reactor. In order to accomplish this task the Engineering-Drafting Department is exploring cost effective methods of providing as-building services. A new technology of integrating photographic images and AUTOCAD drawing files is considered one of those methods that shows promise.

  5. Safety review, assessment and inspection on research reactors, experimental reactors, nuclear heating reactors and critical facilities

    International Nuclear Information System (INIS)

    In 1998, the NNSA organized to complete the nuclear safety review on the test loop in-reactor operation of the High-flux Engineering Experimental Reactor (HFEER) and the re-operation of the China Pulsed Reactor and the Uranium-water Criticality Facility. The NNSA conducted the nuclear safety review on the CP application of the China Experimental Fast Reactor (CEFR) and the siting of China Advanced Research Reactor (CARR), and carried out the construction supervision on HTR-10, and dealt with the event about the technological tube breakage of HWRR and other events

  6. Development of magnetic flux leakage technique for examination of steam generator tubes of prototype fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • For non-destructive detection of small localized defects in SG tubes of PFBR, tandem GMR array sensors based MFL technique developed. • 3D-finite element modeling performed for optimization of magnetizing current and spacing between the magnetizing coils. • The optimized magnetizing structure with ferrite core and guides detected 0.54 mm deep OD circumferential notch, 0.56 mm deep flat bottom hole, and 1.08 mm diameter hole in the tube with a SNR better than 6 dB. • Images of notches have been obtained using the tandem GMR array sensor. • The use of MFL and remote field eddy current techniques is expected to ensure comprehensive inspection of SG tubes of PFBR. - Abstract: For non-destructive examination of small diameter (outer diameter, OD 17.2 mm) and thick walled (wall thickness, 2.3 mm) ferromagnetic Modified 9Cr–1Mo steel steam generator (SG) tubes of Prototype Fast Breeder Reactor (PFBR), this paper proposes magnetic flux leakage (MFL) technique. Three dimensional finite element (3D-FE) modeling has been performed to optimize the magnetizing unit and inter-coil spacing of bobbin coils used for axial magnetization of the tube. The performance of the technique has been evaluated experimentally by measuring the axial (Ba) component of the leakage fields from localized machined defects in SG tubes. The MFL technique has shown capability to detect and image tube outside defects with a signal-to-noise ratio (SNR) better than 6 dB. Study reveals that Inconel support plates surrounding the SG tubes do not influence the MFL signals. As the MFL technique can detect localized defects in the presence of support plates as well as sodium and the remote field eddy current technique is sensitive to distributed wall thinning, their combined use will ensure comprehensive inspection of the SG tubes

  7. High Temperature Gas-Cooled Test Reactor Options Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Preliminary scoping calculations are being performed for a 100 MWt gas-cooled test reactor. The initial design uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to identify some reactor design features to investigate further. Current status of the effort is described.

  8. Thermal barrier coatings (TBC's) for high heat flux thrust chambers

    Science.gov (United States)

    Bradley, Christopher M.

    -section components has become critical, but at the same time the service conditions have put our best alloy systems to their limits. As a result, implementation of cooling holes and thermal barrier coatings are new advances in hot-section technologies now looked at for modifications to reach higher temperature applications. Current thermal barrier coatings used in today's turbine applications is known as 8%yttria-stabilized zirconia (YSZ) and there are no coatings for current thrust chambers. Current research is looking at the applicability of 8%yttria-stabilized hafnia (YSH) for turbine applications and the implementation of 8%YSZ onto thrust chambers. This study intends to determine if the use of thermal barrier coatings are applicable for high heat flux thrust chambers using industrial YSZ will be advantageous for improvements in efficiency, thrust and longer service life by allowing the thrust chambers to be used more than once.

  9. Single-pass high harmonic generation at high repetition rate and photon flux

    Science.gov (United States)

    Hädrich, Steffen; Rothhardt, Jan; Krebs, Manuel; Demmler, Stefan; Klenke, Arno; Tünnermann, Andreas; Limpert, Jens

    2016-09-01

    Sources of short wavelength radiation with femtosecond to attosecond pulse durations, such as synchrotrons or free electron lasers, have already made possible numerous, and will facilitate more, seminal studies aimed at understanding atomic and molecular processes on fundamental length and time scales. Table-top sources of coherent extreme ultraviolet to soft x-ray radiation enabled by high harmonic generation (HHG) of ultrashort pulse lasers have also gained significant attention in the last few years due to their enormous potential for addressing a plethora of applications, therefore constituting a complementary source to large-scale facilities (synchrotrons and free electron lasers). Ti:sapphire based laser systems have been the workhorses for HHG for decades, but are limited in repetition rate and average power. On the other hand, it has been widely recognized that fostering applications in fields such as photoelectron spectroscopy and microscopy, coincidence detection, coherent diffractive imaging and frequency metrology requires a high repetition rate and high photon flux HHG sources. In this article we will review recent developments in realizing the demanding requirement of producing a high photon flux and repetition rate at the same time. Particular emphasis will be put on suitable ultrashort pulse and high average power lasers, which directly drive harmonic generation without the need for external enhancement cavities. To this end we describe two complementary schemes that have been successfully employed for high power fiber lasers, i.e. optical parametric chirped pulse amplifiers and nonlinear pulse compression. Moreover, the issue of phase-matching in tight focusing geometries will be discussed and connected to recent experiments. We will highlight the latest results in fiber laser driven high harmonic generation that currently produce the highest photon flux of all existing sources. In addition, we demonstrate the first promising applications and

  10. Reactor physics analysis for HANARO core conversion using high density U-Mo fuel

    International Nuclear Information System (INIS)

    Currently, HANARO is using U3Si/Al fuel of 3.15 gU/cc. To enhance the utilization of HANARO, core conversion using high density U-Mo fuel is studied. Minimal core conversion considered maintains fuel shape and only changes fuel density. U7Mo/AI of 4.0/4.5 gU/cc which has been irradiated at HANARO, and U7Mo/AI of 5.0/4.3 gU/cc for the next irradiation test are considered. Important reactor physics parameters such as linear heat generation rate, neutron flux, and reactivity, are compared. A new core model for U7Mo/Al fuel offers additional 4 irradiation sites. U7Mo/ Al core give cycle length extension of 16% and 27%, but a little bit of neutron flux decrease. The increase of linear heat generation rate in a compact U7Mo/Al core is suppressed by the optimized design of fuel assembly. Reactivity effects of U7Mo/Al core are similar to the current core. Core conversion using high density U-Mo fuel give additional irradiation sites and extension of core cycle without any significant loss

  11. The high flux neutron source, FRM-II at Garching

    International Nuclear Information System (INIS)

    The FRM-II project is totally in accordance to the schedule. The technical, financial and licensing basis allows the erection of the plant without major influences from outside. The Technical University of Munich (TUM) as the overall manager of the FRM-II and Siemens being the General supplier of the reactor plant are cooperating closely together. The detailed design work at Siemens and TUM has been finalised to such an extent, that the first (April 1996) and the second partial license (October 1997) for the erection of the complete facility can be executed. To do so TUM and Siemens have contracted sub-suppliers, for producing and mounting the systems and components of the plant. The reactor building including the pool liners and the hot cell is under construction and will be finished late Summer 1998. Progress has been made for example in improving the reinforcement methods and in the field of pool liner cladding technique in increasing the quality of the facility in combination with reduced costs. Out-looking to further steps in the project main installation works will be performed between autumn 1998 to spring 2000. The third partial license mainly nuclear commissioning and routine operation is expected September 2000

  12. The Integral Fast Reactor

    International Nuclear Information System (INIS)

    The Integral Fast Reactor (IFR) is an innovative liquid metal reactor concept being developed at Argonne National Laboratory. It seeks to specifically exploit the inherent properties of liquid metal cooling and metallic fuel in a way that leads to substantial improvements in the characteristics of the complete reactor system. This paper describes the key features and potential advantages of the IFR concept, with emphasis on its safety characteristics. 3 refs., 4 figs., 1 tab

  13. Calculations of neutron flux for BNCT facility of typical working core Multipurpose Reactor (RSG-GAS) using MCNP4B Code

    International Nuclear Information System (INIS)

    Calculation of neutron flux distributions of RSG-GAS typical working core using MCNP 4b Code has been done. Prior to the calculations, modelling of fuel element of meat as well as surfaces of cladding cell and geometry should be made. The model was then included water as a containment also developed. To achieve neutron flux behavior, it was simulated 200,000 to 2,000,000 neutrons. The calculation results indicated that the neutron flux in TWC core is in the order of 1014. Meanwhile, the best flux order for the BNCT facility should be in the order of 1010. With the use of any method, such as constructing of shielding and collimator, the order of neutron flux will decrease. In the previous research in 2001, the results showed the neutron flux in the order of 1010 by installing the collimator with 45 cm thick, made of Pb and 380 cm from the core centre. The results of this research completed with the research done in 2001, 2000 and 1999 certainly support the possibility to construct the BNCT facility in RSG-GAS reactor core

  14. Development of a computer code for neutronic calculations of a hexagonal lattice of nuclear reactor using the flux expansion nodal method

    Directory of Open Access Journals (Sweden)

    Mohammadnia Meysam

    2013-01-01

    Full Text Available The flux expansion nodal method is a suitable method for considering nodalization effects in node corners. In this paper we used this method to solve the intra-nodal flux analytically. Then, a computer code, named MA.CODE, was developed using the C# programming language. The code is capable of reactor core calculations for hexagonal geometries in two energy groups and three dimensions. The MA.CODE imports two group constants from the WIMS code and calculates the effective multiplication factor, thermal and fast neutron flux in three dimensions, power density, reactivity, and the power peaking factor of each fuel assembly. Some of the code's merits are low calculation time and a user friendly interface. MA.CODE results showed good agreement with IAEA benchmarks, i. e. AER-FCM-101 and AER-FCM-001.

  15. High Temperature Gas Cooled Reactor Fuels and Materials

    International Nuclear Information System (INIS)

    At the third annual meeting of the technical working group on Nuclear Fuel Cycle Options and Spent Fuel Management (TWG-NFCO), held in Vienna, in 2004, it was suggested 'to develop manuals/handbooks and best practice documents for use in training and education in coated particle fuel technology' in the IAEA's Programme for the year 2006-2007. In the context of supporting interested Member States, the activity to develop a handbook for use in the 'education and training' of a new generation of scientists and engineers on coated particle fuel technology was undertaken. To make aware of the role of nuclear science education and training in all Member States to enhance their capacity to develop innovative technologies for sustainable nuclear energy is of paramount importance to the IAEA Significant efforts are underway in several Member States to develop high temperature gas cooled reactors (HTGR) based on either pebble bed or prismatic designs. All these reactors are primarily fuelled by TRISO (tri iso-structural) coated particles. The aim however is to build future nuclear fuel cycles in concert with the aim of the Generation IV International Forum and includes nuclear reactor applications for process heat, hydrogen production and electricity generation. Moreover, developmental work is ongoing and focuses on the burning of weapon-grade plutonium including civil plutonium and other transuranic elements using the 'deep-burn concept' or 'inert matrix fuels', especially in HTGR systems in the form of coated particle fuels. The document will serve as the primary resource materials for 'education and training' in the area of advanced fuels forming the building blocks for future development in the interested Member States. This document broadly covers several aspects of coated particle fuel technology, namely: manufacture of coated particles, compacts and elements; design-basis; quality assurance/quality control and characterization techniques; fuel irradiations; fuel

  16. Very high temperature measurements: Applications to nuclear reactor safety tests

    International Nuclear Information System (INIS)

    This PhD dissertation focuses on the improvement of very high temperature thermometry (1100 deg. C to 2480 deg. C), with special emphasis on the application to the field of nuclear reactor safety and severe accident research. Two main projects were undertaken to achieve this objective: - The development, testing and transposition of high-temperature fixed point (HTFP) metal-carbon eutectic cells, from metrology laboratory precision (±0.001 deg. C) to applied research with a reasonable degradation of uncertainties (±3-5 deg. C). - The corrosion study and metallurgical characterization of Type-C thermocouple (service temp. 2300 deg. C) prospective sheath material was undertaken to extend the survivability of TCs used for molten metallic/oxide corium thermometry (below 2000 deg. C)

  17. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  18. High-Uranium-Loaded U3O8-Al fuel element development program. Part 1

    International Nuclear Information System (INIS)

    The High-Uranium-Loaded U3O8-Al Fuel Element Development Program supports Argonne National Laboratory efforts to develop high-uranium-density research and test reactor fuel to accommodate use of low-uranium enrichment. The goal is to fuel most research and test reactors with uranium of less than 20% enrichment for the purpose of lowering the potential for diversion of highly-enriched material for nonpeaceful usages. The specific objective of the program is to develop the technological and engineering data base for U3O8-Al plate-type fuel elements of maximal uranium content to the point of vendor qualification for full scale fabrication on a production basis. A program and management plan that details the organization, supporting objectives, schedule, and budget is in place and preparation for fuel and irradiation studies is under way. The current programming envisions a program of about four years duration for an estimated cost of about two million dollars. During the decades of the fifties and sixties, developments at Oak Ridge National Laboratory led to the use of U3O8-Al plate-type fuel elements in the High Flux Isotope Reactor, Oak Ridge Research Reactor, Puerto Rico Nuclear Center Reactor, and the High Flux Beam Reactor. Most of the developmental information however applies only up to a uranium concentration of about 55 wt % (about 35 vol % U3O8). The technical issues that must be addressed to further increase the uranium loading beyond 55 wt % U involve plate fabrication phenomena of voids and dogboning, fuel behavior under long irradiation, and potential for the thermite reaction between U3O8 and aluminum

  19. Electronic Instability at High Flux-Flow Velocities in High-Tc Superconducting Films

    DEFF Research Database (Denmark)

    Doettinger, S. G.; Huebener, R. P.; Gerdemann, R.;

    1994-01-01

    At high flux-flow velocities in type-II superconductors the nonequilibrium distribution of the quasiparticles leads to an electronic instability and an aburpt switching into a state with higher electric resistivity, as predicted by Larkin and Ovchinnikow (LO). We report the first obervation of this...... effect in a high-temperature superconductor, namely in epitaxial c-axis oriented films of YBa(2)Cu3O(7)-(delta). Using the LO therory, we have extracted from out results the inelastic quasiparticle scattering rare tau(in)(-1), which strongly decreases with decreasing temperature below T-c...

  20. A high-flux BEC source for mobile atom interferometers

    CERN Document Server

    Rudolph, Jan; Grzeschik, Christoph; Sternke, Tammo; Grote, Alexander; Popp, Manuel; Becker, Dennis; Müntinga, Hauke; Ahlers, Holger; Peters, Achim; Lämmerzahl, Claus; Sengstock, Klaus; Gaaloul, Naceur; Ertmer, Wolfgang; Rasel, Ernst M

    2015-01-01

    Quantum sensors based on coherent matter-waves are precise measurement devices whose ultimate accuracy is achieved with Bose-Einstein condensates (BEC) in extended free fall. This is ideally realized in microgravity environments such as drop towers, ballistic rockets and space platforms. However, the transition from lab-based BEC machines to robust and mobile sources with comparable performance is a technological challenge. Here we report on the realization of a miniaturized setup, generating a flux of $4 \\times 10^5$ quantum degenerate $^{87}$Rb atoms every 1.6 s. Ensembles of $1 \\times 10^5$ atoms can be produced at a 1 Hz rate. This is achieved by loading a cold atomic beam directly into a multi-layer atom chip that is designed for efficient transfer from laser-cooled to magnetically trapped clouds. The attained flux of degenerate atoms is on par with current lab-based experiments while offering significantly higher repetition rates. The compact and robust design allows for mobile operation in a variety of...

  1. MIT nuclear reactor laboratory high school teaching program

    International Nuclear Information System (INIS)

    For the last 6 years, the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory's academic and scientific staffa have been conducting evening seminars for precollege science teachers, parents, and high school students from the New England area. These seminars, as outlined in this paper, are intended to give general information on nuclear technologies with specific emphasis on radiation physics, nuclear medicine, nuclear chemistry, and ongoing research activities at the MIT research reactor. The ultimate goal is to create interest or build on the already existing interest in science and technology by, for example, special student projects. Several small projects have already been completed ranging from environmental research to biological reactions with direct student involvement. Another outcome of these seminars was the change in attitudes of science teachers toward nuclear technology. Numerous letters have been received from the teachers and parents stating their previous lack of knowledge on the beneficial aspects of nuclear technologies and the subsequent inclusion of programs in their curriculum for educating students so that they may also develop a more positive attitude toward nuclear power

  2. Multiphysics methods development for high temperature gas reactor analysis

    Science.gov (United States)

    Seker, Volkan

    Multiphysics computational methods were developed to perform design and safety analysis of the next generation Pebble Bed High Temperature Gas Cooled Reactors. A suite of code modules was developed to solve the coupled thermal-hydraulics and neutronics field equations. The thermal-hydraulics module is based on the three dimensional solution of the mass, momentum and energy equations in cylindrical coordinates within the framework of the porous media method. The neutronics module is a part of the PARCS (Purdue Advanced Reactor Core Simulator) code and provides a fine mesh finite difference solution of the neutron diffusion equation in three dimensional cylindrical coordinates. Coupling of the two modules was performed by mapping the solution variables from one module to the other. Mapping is performed automatically in the code system by the use of a common material mesh in both modules. The standalone validation of the thermal-hydraulics module was performed with several cases of the SANA experiment and the standalone thermal-hydraulics exercise of the PBMR-400 benchmark problem. The standalone neutronics module was validated by performing the relevant exercises of the PBMR-268 and PBMR-400 benchmark problems. Additionally, the validation of the coupled code system was performed by analyzing several steady state and transient cases of the OECD/NEA PBMR-400 benchmark problem.

  3. Safeguards concept for the THTR-300 Thorium High Temperature Reactor

    International Nuclear Information System (INIS)

    The nuclear power plant in Hamm, Federal Republic of Germany is a plant with a high temperature reactor. The fuel elements are spheres with a diameter of 60 mm, an enrichment of 93%, a 235U content of 0.96 g and a thorium content of 10.2 g. The facility is divided into two material balance areas (MBA 1: fresh fuel and spent fuel storage; MBA 2: loading facility, reactor core and discharge facility) in order to increase the transparency of the fuel element flow, and because a direct physical inventory of the core is not possible. The inventory of the core is determined by the quantity received and the quantity withdrawn, which are to be reported to Euratom. The quantity received in the core will be verified by the inspectors using a special sampling machine. The quantity withdrawn from the core is counted by independent counters at the exit of the core. At the exit of the spent fuel storage a monitoring and logging system verifies all the drums leaving the storage. The route of the spent fuel drums is continuously observed by video systems until they are finally packed into shipping containers which are to be sealed by the operator using electronic seals. (author)

  4. High Temperature Fission Chamber for He- and FLiBe-cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Zane W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Giuliano, Dominic R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holcomb, David Eugene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lance, Michael J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miller, Roger G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warmack, Robert J. Bruce [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wilson, Dane F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    We have evaluated candidate technologies for in-core fission chambers for high-temperature reactors to monitor power level via measurements of neutron flux from start-up through full power at up to 800°C. This research is important because there are no commercially available instruments capable of operating above 550 °C. Component materials and processes were investigated for fission chambers suitable for operation at 800 °C in reactors cooled by molten fluoride salt (FLiBe) or flowing He, with an emphasis placed on sensitivity (≥ 1 cps/nv), service lifetime (2 years at full power), and resistance to direct immersion in FLiBe. The latter gives the instrument the ability to survive accidents involving breach of a thimble. The device is envisioned to be a two-gap, three-electrode instrument constructed from concentric nickel-plated alumina cylinders and using a noble gas–nitrogen fill-gas. We report the results of measurements and calculations of the response of fill gasses, impurity migration in nickel alloy, brazing of the alumina insulator, and thermodynamic calculations.

  5. High field, low current operation of engineering test reactors

    International Nuclear Information System (INIS)

    Steady state engineering test reactors with high field, low current operation are investigated and compared to high current, lower field concepts. Illustrative high field ETR parameters are R = 3 m, α ∼ 0.5 m, B ∼ 10 T, β = 2.2% and I = 4 MA. For similar wall loading the fusion power of an illustrative high field, low current concept could be about 50% that of a lower field device like TIBER II. This reduction could lead to a 50% decrease in tritium consumption, resulting in a substantial decrease in operating cost. Furthermore, high field operation could lead to substantially reduced current drive requirements and cost. A reduction in current drive source power on the order of 40 to 50 MW may be attainable relative to a lower field, high current design like TIBER II implying a possible cost savings on the order of $200 M. If current drive is less efficient than assumed, the savings could be even greater. Through larger β/sub p/ and aspect ratio, greater prospects for bootstrap current operation also exist. Further savings would be obtained from the reduced size of the first wall/blanket/shield system. The effects of high fields on magnet costs are very dependent on technological assumptions. Further improvements in the future may lie with advances in superconducting and structural materials

  6. Validation of absolute axial neutron flux distribution calculations with MCNP with 197Au(n,γ)198Au reaction rate distribution measurements at the JSI TRIGA Mark II reactor.

    Science.gov (United States)

    Radulović, Vladimir; Štancar, Žiga; Snoj, Luka; Trkov, Andrej

    2014-02-01

    The calculation of axial neutron flux distributions with the MCNP code at the JSI TRIGA Mark II reactor has been validated with experimental measurements of the (197)Au(n,γ)(198)Au reaction rate. The calculated absolute reaction rate values, scaled according to the reactor power and corrected for the flux redistribution effect, are in good agreement with the experimental results. The effect of different cross-section libraries on the calculations has been investigated and shown to be minor. PMID:24316530

  7. Neutronic characterization of cylindrical core of minor excess reactivity in the nuclear reactor IPEN/MB-01 from the measure of neutron flux distribution and its reactivity ratio

    International Nuclear Information System (INIS)

    When compared to a rectangular parallelepiped configuration the cylindrical configuration of a nuclear reactor core has a better neutron economy because in this configuration the probability of the neutron leakage is smaller, causing an increase in overall reactivity in the system to the same amount of fuel used. In this work we obtained a critical cylindrical configuration with the control rods 89.50% withdraw from the active region of the IPEN/MB-01 core. This is the cylindrical configuration minimum possible excess of reactivity. Thus we obtained a cylindrical configuration with a diameter of only 28 fuel rods with lowest possible excess of reactivity. For this purpose, 112 peripheral fuel rods are removed from standard reactor core (rectangular parallelepiped of 28x28 fuel rods). In this configuration the excesses of reactivity is approximated 279 pcm. From there, we characterize the neutron field by measuring the spatial distribution of the thermal and epithermal neutron flux for the reactor operating power of 83 watts measured by neutron noise analysis technique and 92.08± 0.07 watts measured by activation technique [10]. The values of thermal and epithermal neutron flux in different directions, axial, radial north-south and radial east-west, are obtained in the asymptotic region of the reactor core, away from the disturbances caused by the reflector and control bar, by irradiating thin gold foils infinitely diluted (1% Au - 99% Al) with and without (bare) cadmium cover. In addition to the distribution of neutron flux, the moderator temperature coefficient, the void coefficient, calibration of the control rods were measured. (author)

  8. A Catalytically Active Membrane Reactor for Fast, Highly Exothermic, Heterogeneous Gas Reactions. A Pilot Plant Study

    NARCIS (Netherlands)

    Veldsink, Jan W.; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    Membrane reactors have been frequently studied because of their ability to combine chemical activity and separation properties into one device. Due to their thermal stability and mechanical strength, ceramic membranes are preferred over polymeric ones, but small transmembrane fluxes obstruct a wides

  9. Siting evaluation of High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    It is necessary to evaluate hypothetical accident to judge the appropriateness of reactor siting condition. Hypothetical accident is postulated assuming the occurrence of an accident which is unlikely to occur from a technical standpoint. The safety characteristics and/or advantages of the HTGRs are (1) slow response to core heatup events and (2) high temperature that fuel can sustain before the initiation of fission product release. A double-ended rupture of coaxial double pipe of the primary cooling system was selected as the hypothetical accident of the HTTR. Since the HTTR is a HTGR, the core temperature changes slowly and no instantaneous failure of coated fuel particles occur. Therefore, time-dependent release model was newly introduced to calculate the release amount of core contained fission products during the accident. From the result based on the analytical model developed here, appropriateness of siting condition of the HTTR was confirmed

  10. Advances in High Temperature Gas Cooled Reactor Fuel Technology

    International Nuclear Information System (INIS)

    This publication reports on the results of a coordinated research project on advances in high temperature gas cooled reactor (HTGR) fuel technology and describes the findings of research activities on coated particle developments. These comprise two specific benchmark exercises with the application of HTGR fuel performance and fission product release codes, which helped compare the quality and validity of the computer models against experimental data. The project participants also examined techniques for fuel characterization and advanced quality assessment/quality control. The key exercise included a round-robin experimental study on the measurements of fuel kernel and particle coating properties of recent Korean, South African and US coated particle productions applying the respective qualification measures of each participating Member State. The summary report documents the results and conclusions achieved by the project and underlines the added value to contemporary knowledge on HTGR fuel.

  11. High temperature reactor and application to nuclear process heat

    International Nuclear Information System (INIS)

    The principle of high temperature nuclear process heat is explained and the main applications (hydrogasification of coal, nuclear chemical heat pipe, direct reduction of iron ore, coal gasification by steam and water splitting) are described in more detail. The motivation for the introduction of nuclear process heat to the market, questions of cost, of raw material resources and environmental aspects are the next point of discussion. The new technological questions of the nuclear reactor and the status of development are described, especially information about the fuel elements, the hot gas ducts, the contamination and some design considerations are added. Furthermore the status of development of helium heated steam reformers, the main results of the work until now and the further activities in this field are explained. (author)

  12. Statistical similarity between high energy charged particle fluxes in near-earth space and earthquakes

    Science.gov (United States)

    Wang, P.; Chang, Z.; Wang, H.; Lu, H.

    2014-05-01

    It has long been noticed that rapid short-term variations of high energy charged particle fluxes in near-Earth space occur more frequently several hours before the main shock of earthquakes. Physicists wish that this observation supply a possible precursor of strong earthquakes. Based on DEMETER data, we investigate statistical behaviors of flux fluctuations for high energy charged particles in near-Earth space. Long-term clustering, scaling, and universality in the temporal occurrence are found. There is high degree statistical similarity between high energy charged particle fluxes in near-Earth space and earthquakes. Thus, the observations of the high energy particle fluxes in near-Earth space may supply a useful tool in the study of earthquakes.

  13. Neutronic Analysis on Coolant Options in a Hybrid Reactor System for High Level Waste Transmutation

    International Nuclear Information System (INIS)

    A fusion-fission hybrid reactor (FFHR) which is a combination of plasma fusion tokamak as a fast neutron source and a fission reactor as of fusion blanket is another potential candidate. In FFHR, fusion plasma machine can supply high neutron-rich and energetic 14.1MeV (D, T) neutrons compared to other options. Therefore it has better capability in HLW incineration. While, it has lower requirements compared to pure fusion. Much smaller-sized tokamak can be achievable in a near term because it needs relatively low plasma condition. FFHR has also higher safety potential than fast reactors just as ADSR because it is subcritical reactor system. FFHR proposed up to this time has many design concepts depending on the design purpose. FFHR may also satisfy many design requirement such as energy multiplication, tritium production, radiation shielding for magnets, fissile breeding for self-sustain ability also waste transmutation. Many types of fuel compositions and coolant options have been studied. Effect of choices for fuel and coolant was studied for the transmutation purpose FFHR by our team. In this study LiPb coolant was better than pure Li coolant both for neutron multiplication and tritium breeding. However, performance of waste transmutation was reduced with increased neutron absorption at coolant caused by tritium breeding. Also, LiPb as metal coolant has a problem of massive MHD pressure drop in coolant channels. Therefore, in a previous study, waste transmutation performance was evaluated with light water coolant option which may be a realistic choice. In this study, a neutronic analysis was done for the various coolant options with a detailed computation. One of solutions suggested is to use the pressure tubes inside of first wall and second wall In this work, performance of radioactive waste transmutation was compared with various coolant options. On the whole, keff increases with all coolants except for FLiBe, therefore required fusion power is decreased. In

  14. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor to be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround

  15. Magnetic fusion energy plasma interactive and high heat flux components. Volume II. Technical assessment of the critical issues and problem areas in high heat flux materials and component development

    International Nuclear Information System (INIS)

    A technical assessment of the critical issues and problem areas for high heat flux materials and components (HHFMC) in magnetic fusion devices shows these problems to be of critical importance for the successful operation of near-term fusion experiments and for the feasibility and attractiveness of long-term fusion reactors. A number of subgroups were formed to assess the critical HHFMC issues along the following major lines: (1) source conditions, (2) systems integration, (3) materials and processes, (4) thermal hydraulics, (5) thermomechanical response, (6) electromagnetic response, (7) instrumentation and control, and (8) test facilities. The details of the technical assessment are presented in eight chapters. The primary technical issues and needs for each area are highlighted

  16. Nanostructures and pinholes on W surfaces exposed to high flux D plasma at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Y.Z., E-mail: jaja880816@aliyun.com [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xu, B. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Li, C.; Fu, B.Q. [Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); De Temmerman, G. [FOM Institute DIFFER-Dutch Institute for Fundamental Energy Research, Edisonbaan 14, 3439 MN Nieuwegein (Netherlands); ITER Organization, Route de Vinon-Sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France)

    2015-08-15

    Nanostructures and pinholes formed on tungsten surface exposed to high fluxes (10{sup 24} m{sup −2} s{sup −1}) deuterium ions at 943 K and 1073 K were studied by scanning electron microscopy and electron backscatter diffraction. Nanostructure formation is observed at 943 K and 1073 K, and exhibits a strong dependence on the surface orientation. With increasing fluence, pinholes appear on the surface and are mainly observed on grains with surface normal near [1 1 1]. The pinholes are speculated to be caused by the rupture of bubbles formed near the surface. The formation of pinholes has no obvious relationship with the surface nanostructures.

  17. The pebble-bed high-temperature reactor as a source of nuclear process heat. Vol. 4

    International Nuclear Information System (INIS)

    In this volume the design conditions for a helium-heated steam reformer in the primary circuit of a high-temperature reactor are explained as far as today's knowledge allows. For the realization of helium-heated steam reformers, some fundamental questions at first occur regarding the heating temperature, heat fluxes, suitable materials and design solutions for steam reformers. It is shown that following the development program carried out until now, solutions to these questions can be seen. Moreover, details are given about the heat transfer, the mechanical design and the behaviour of reformer materials in helium with regard to H2- and T-permeation as well as corrosion. Furthermore, questions about the choice of the lay-out data, the design form, the arrangement in the helium circuits of the nuclear reactor and the necessary development steps are handled. Some design examples of heat exchangers for a 3,000 MW(th)-plant are given, too. (orig.)

  18. High-uranium-loaded U3O8-Al fuel element development program [contributed by N.M. Martin, ORNL

    International Nuclear Information System (INIS)

    The High-Uranium-Loaded U3O8-Al Fuel Element Development Program supports Argonne National Laboratory efforts to develop high-uranium-density research and test reactor fuel to accommodate use of low-uranium enrichment. The goal is to fuel most research and test reactors with uranium of less than 20% enrichment for the purpose of lowering the potential for diversion of highly-enriched material for nonpeaceful usages. The specific objective of the program is to develop the technological and engineering data base for U3O8-Al plate-type fuel elements of maximal uranium content to the point of vendor qualification for full scale fabrication on a production basis. A program and management plan that details the organization, supporting objectives, schedule, and budget is in place and preparation for fuel and irradiation studies is under way. The current programming envisions a program of about four years duration for an estimated cost of about two million dollars. During the decades of the fifties and sixties, developments at Oak Ridge National Laboratory led to the use of U3O8-Al plate-type fuel elements in the High Flux Isotope Reactor, Oak Ridge Research Reactor, Puerto Rico Nuclear Center Reactor, and the High Flux Beam Reactor. Most of the developmental information however applies only up to a uranium concentration of about 55 wt % (about 35 vol % U3O8). The technical issues that must be addressed to further increase the uranium loading beyond 55 wt % involve plate fabrication phenomena of voids and dogboning, fuel behavior under long irradiation, and potential for the thermite reaction between U3O8 and aluminum. (author)

  19. Properties of High Basicity Mold Fluxes for Peritectic Steel Slab Casting

    Institute of Scientific and Technical Information of China (English)

    LONG Xiao; HE Sheng-ping; XU Jian-fei; HUO Xu-ling; WANG Qian

    2012-01-01

    In high speed continuous casting of peritectic steel slabs, mold fluxes with high basicity are required for less surface defect product. However, the basicity of remaining liquid slag film tends to decrease in casting process because of the crystallization of 3CaO ·2SiO2 · CaF2. Thus, a way is put forward to improve mold fluxesr properties by raising the original basicity. In order to confirm the possibility of this method, the effect of rising original basicity on the properties of mold fluxes is discussed. Properties of high fluorine based mold fluxes with different basicities and contents of CaF2 , Na2 O, and MgO were measured, respectively. Then, properties of higher basicity mold fluxes were discussed and compared with traditional ones. The results show that increasing the basicity index can improve the melting and flow property of mold fluxes. With the increasing basicity, crystallization rate of mold fluxes increases obviously and crystallization temperature tends to decrease when the basicity exceeds 1.35. The method presen- ted before is proved as a potential way to resolve the contradiction between horizontal heat transfer controlling and solidified shell lubricating for peritectic steel slab casting. But further study on improving the flow property of liquid slag is needed. This work can be used to guide mold fluxes design for high speed continuous casting of peritectic steel slabs.

  20. Deterministic Modeling of the High Temperature Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ortensi, J.; Cogliati, J. J.; Pope, M. A.; Ferrer, R. M.; Ougouag, A. M.

    2010-06-01

    Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is used in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the

  1. A preliminary assessment of the effects of heat flux distribution and penetration on the creep rupture of a reactor vessel lower head

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.Y.; Bentz, J.; Simpson, R. [Sandia National Labs., Albuquerque, NM (United States); Witt, R. [Univ. of Wisconsin, Madison, WI (United States)

    1997-02-01

    The objective of the Lower Head Failure (LHF) Experiment Program is to experimentally investigate and characterize the failure of the reactor vessel lower head due to thermal and pressure loads under severe accident conditions. The experiment is performed using 1/5-scale models of a typical PWR pressure vessel. Experiments are performed for various internal pressure and imposed heat flux distributions with and without instrumentation guide tube penetrations. The experimental program is complemented by a modest modeling program based on the application of vessel creep rupture codes developed in the TMI Vessel Investigation Project. The first three experiments under the LHF program investigated the creep rupture of simulated reactor pressure vessels without penetrations. The heat flux distributions for the three experiments are uniform (LHF-1), center-peaked (LHF-2), and side-peaked (LHF-3), respectively. For all the experiments, appreciable vessel deformation was observed to initiate at vessel wall temperatures above 900K and the vessel typically failed at approximately 1000K. The size of failure was always observed to be smaller than the heated region. For experiments with non-uniform heat flux distributions, failure typically occurs in the region of peak temperature. A brief discussion of the effect of penetration is also presented.

  2. Two-dimensional DORT discrete ordinates X-Y geometry neutron flux calculations for the Halden Heavy Boiling Water Reactor core configurations

    International Nuclear Information System (INIS)

    Results are reported for two-dimensional discrete ordinates, X-Y geometry calculations performed for seven Halden Heavy Boiling Water Reactor core configurations. The calculations were performed in support of an effort to reassess the neutron fluence received by the reactor vessel. Nickel foil measurement data indicated considerable underprediction of fluences by the previously used multigroup removal- diffusion method. Therefore, calculations by a more accurate method were deemed appropriate. For each core configuration, data are presented for (1) integral fluxes in the core and near the vessel wall, (2) neutron spectra at selected locations, (3) isoflux contours superimposed on the geometry models, (4) plots of the geometry models, and (5) input for the calculations. The initial calculations were performed with several mesh sizes. Comparisons of the results from these calculations indicated that the uncertainty in the calculated fluxes should be less than 10%. However, three-dimensional effects (such as axial asymmetry in the fuel loading) could contribute to much greater uncertainty in the calculated neutron fluxes. 7 refs., 22 figs., 11 tabs

  3. Temperature measurements during high flux ion beam irradiations.

    Science.gov (United States)

    Crespillo, M L; Graham, J T; Zhang, Y; Weber, W J

    2016-02-01

    A systematic study of the ion beam heating effect was performed in a temperature range of -170 to 900 °C using a 10 MeV Au(3+) ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 10(12) cm(-2) s(-1). Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. A simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beam analysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect. PMID:26931879

  4. Proceedings of the international meeting on research and test reactor core conversions from HEU to LEU fuels

    International Nuclear Information System (INIS)

    Conversion of research and test reactor cores from the use of high enrichment uranium to the use of low enrichment uranium depends on the cooperation of many research organizations, reactor operators, and government agencies. At a technical level, it involves almost all aspects of the fuel cycle, including fuel development, testing, shipping and reprocessing; experiment performance; economics; and safety and licensing aspects. The reactors involved and the conversion activities are distributed among approximately 25 countries, making this a subject which is best dealt with on an international basis. To foster direct communication in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the fifth of a series which began in 1978. The previous meetings were held at Argonne (International Meeting of Research Reactor Fuel Designers, Developers, and Fabricators, Argonne National Laboratory, Argonne, U.S.A., November 910, 1978), at Saclay (IAEA Consultants' Meeting on Research Reactor Core Conversions from HEU to LEU, Centre d'etudes Nucleaires de Saclay, Saclay, France, December 12-14, 1979), at Argonne (International Meeting on Development, Fabrication and Application of Reduced Enrichment Fuels for Research and Test Reactors, Argonne National Laboratory, Argonne, U.S.A., November 12-14, 1980) and at Juelich (Seminar on Research Reactor Operation and Use, Juelich Nuclear Research Center, Juelich, F.R.G., September 48, 1981). Proceedings from the two most recent previous meetings were published as ANL/RERTR/TM-3 (CONF-801144) and IAEA-SR-77. The spirit of this meeting differs slightly from that of the previous meetings. The advances which have been made and the growing maturity of the effort have caused a gradual shift of emphasis away from those topics which dominated the floor during the first meetings, such as fuel and methods development, and towards topics which concern more

  5. Plasma resonance and flux dynamics in layered high-Tc superconductors

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sakai, S.

    2000-01-01

    Flux dynamics of layered high Tc superconductors are considered with special emphasis on the small oscillation modes. In particular we find the dispersion relation for the plasma modes and discuss the spectra to be observed in microwave experiments.......Flux dynamics of layered high Tc superconductors are considered with special emphasis on the small oscillation modes. In particular we find the dispersion relation for the plasma modes and discuss the spectra to be observed in microwave experiments....

  6. The big and little of fifty years of Moessbauer spectroscopy at Argonne

    International Nuclear Information System (INIS)

    the $50 million Zero Gradient Synchrotron (ZGS) and the $30 million Experimental Breeder Reactor (EBR) II. Starting in the mid-1990s, Argonne physicists expanded their exploration of the properties of matter by employing a new type of Moessbauer spectroscopy--this time using synchrotron light sources such as Argonne's Advanced Photon Source (APS), which at $1 billion was the most expensive U.S. accelerator project of its time. Traditional Moessbauer spectroscopy looks superficially like prototypical ''Little Science'' and Moessbauer spectroscopy using synchrotrons looks like prototypical ''Big Science''. In addition, the growth from small to larger scale research seems to follow the pattern familiar from high energy physics even though the wide range of science performed using Moessbauer spectroscopy did not include high energy physics. But is the story of Moessbauer spectroscopy really like the tale told by high energy physicists and often echoed by historians? What do U.S. national laboratories, the ''Home'' of Big Science, have to offer small-scale research? And what does the story of the 50-year development of Moessbauer spectroscopy at Argonne tell us about how knowledge is produced at large laboratories? In a recent analysis of the development of relativistic heavy ion science at Lawrence Berkeley Laboratory I questioned whether it was wise for historians to speak in terms of ''Big Science'', pointing out at that Lawrence Berkeley Laboratory hosted large-scale projects at three scales, the grand scale of the Bevatron, the modest scale of the HILAC, and the mezzo scale of the combined machine, the Bevalac. I argue that using the term ''Big Science'', which was coined by participants, leads to a misleading preoccupation with the largest projects and the tendency to see the history of physics as the history of high energy physics. My aim here is to provide an additional corrective to such views as well as further information about the web of connections that allows

  7. Progress on the realization of a new GEM based neutron diagnostic concept for high flux neutron beams

    Science.gov (United States)

    Croci, G.; Rebai, M.; Cazzaniga, C.; Palma, M. Dalla; Grosso, G.; Muraro, A.; Murtas, F.; Claps, G.; Pasqualotto, R.; Cippo, E. Perelli; Tardocchi, M.; Tollin, M.; Cavenago, M.; Gorini, G.

    2014-08-01

    Fusion reactors will need high flux neutron detectors to diagnose the deuterium-deuterium and deuterium-tritium. A candidate detection technique is the Gas Electron Multiplier (GEM). New GEM based detectors are being developed for application to a neutral deuterium beam test facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission due to interaction of the deuterium beam with the deuterons implanted in the beam dump surface. This is done by placing a detector in close contact, right behind the dump. CNESM uses nGEM detectors, i.e. GEM detectors equipped with a cathode that also serves as neutron-proton converter foil. After the realization and test of several small area prototypes, a full size prototype has been realized and tested with laboratory sources. Test on neutron beams are foreseen for the next months.

  8. Evaluation of strategies for end storage of high-level reactor fuel

    International Nuclear Information System (INIS)

    This report evaluates a national strategy for end-storage of used high-level reactor fuel from the research reactors at Kjeller and in Halden. This strategy presupposes that all the important phases in handling the high-level material, including temporary storage and deposition, are covered. The quantity of spent fuel from Norwegian reactors is quite small. In addition to the technological issues, ethical, environmental, safety and economical requirements are emphasized

  9. High-energy tritium beams as current drivers in tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams.

  10. High temperature gas-cooled reactor: gas turbine application study

    International Nuclear Information System (INIS)

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project

  11. High temperature gas-cooled reactor: gas turbine application study

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The high-temperature capability of the High-Temperature Gas-Cooled Reactor (HTGR) is a distinguishing characteristic which has long been recognized as significant both within the US and within foreign nuclear energy programs. This high-temperature capability of the HTGR concept leads to increased efficiency in conventional applications and, in addition, makes possible a number of unique applications in both electrical generation and industrial process heat. In particular, coupling the HTGR nuclear heat source to the Brayton (gas turbine) Cycle offers significant potential benefits to operating utilities. This HTGR-GT Application Study documents the effort to evaluate the appropriateness of the HTGR-GT as an HTGR Lead Project. The scope of this effort included evaluation of the HTGR-GT technology, evaluation of potential HTGR-GT markets, assessment of the economics of commercial HTGR-GT plants, and evaluation of the program and expenditures necessary to establish HTGR-GT technology through the completion of the Lead Project.

  12. High-temperature membrane reactors: potential and problems

    NARCIS (Netherlands)

    Saracco, G.; Neomagus, H.W.J.P.; Versteeg, G.F.; Swaaij, van W.P.M.

    1999-01-01

    The most recent literature in the field of membrane reactors is reviewed, four years after an analogous effort of ours (Saracco et al., 1994), describing shortly the potentials of these reactors, which now seem to be well established, and focusing mostly on problems towards practical exploitation. S

  13. High-temperature membrane reactors : potential and problems

    NARCIS (Netherlands)

    Saracco, G.; Neomagus, H.W.J.P.; Versteeg, G.F.; Swaaij, W.P.M. van

    1999-01-01

    The most recent literature in the field of membrane reactors is reviewed, four years after an analogous effort of ours, describing shortly the potentials of these reactors, which now seem to be well established, and focusing mostly on problems towards practical exploitation. Since then, progress has

  14. Adaptation of a High Frequency Ultrasonic Transducer to the Measurement of Water Temperature in a Nuclear Reactor

    Science.gov (United States)

    Zaz, G.; Calzavara, Y.; Le Clézio, E.; Despaux, G.

    Most high flux reactors possess for research purposes fuel elements composed of plates. Their relative distance is a crucial parameter, particularly concerning the irradiation history. For the High Flux Reactor (RHF) of the Institute Laue-Langevin (ILL), the measurement of this distance with a microscopic resolution becomes extremely challenging. To address this issue, a specific ultrasonic transducer, presented in a first paper, has been designed and manufactured to be inserted into the 1.8 mm width channel existing between curved fuel plates. It was set on a blade yielding a total device thickness of 1 mm. To achieve the expected resolution, the system is excited with frequencies up to 70 MHz and integrated into a set of high frequency acquisition instruments. Thanks to a specific signal processing, this device allows the distance measurement through the evaluation of the ultrasonic wave time of fight. One of the crucial points is then the evaluation of the local water temperature inside the water channel. To obtain a precise estimation of this parameter, the ultrasonic sensor is used as a thermometer thanks to the analysis of the spectral components of the acoustic signal propagating inside the sensor multilayered structure. The feasibility of distance measurement was proved during the December 2013 experiment in the RHF fuel element of the ILL. Some of the results will be presented as well as some experimental constraints identified to improve the accuracy of the measurement in future works.

  15. Evaluation of selected ex-reactor accidents related to the tritium and medical isotope production missions at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    The Fast Flux Test Facility (FFTF) has been proposed as a production facility for tritium and medical isotopes. A range of postulated accidents related to ex-reactor irradiated fuel and target handling were identified and evaluated using new source terms for the higher fuel enrichment and for the tritium and medical isotope targets. In addition, two in-containment sodium spill accidents were re-evaluated to estimate effects of increased fuel enrichment and the presence of the Rapid Retrieval System. Radiological and toxicological consequences of the analyzed accidents were found to be well within applicable risk guidelines

  16. Measurement of the thermal and fast neutron flux in a research reactor with a Li and Th loaded optical fibre detector

    CERN Document Server

    Yamane, Y; Misawa, T; Karlsson, J K H; Pázsit, I

    1999-01-01

    The spatial dependence of thermal and fast neutron flux was measured axially in the core of a 1 MW research reactor. The measurements were made by a thin optical fibre detector with a neutron sensitive ZnS(Ag) scintillation tip. For thermal neutrons sup 6 Li was used, whereas for fast neutrons sup 2 sup 3 sup 2 Th was used as neutron converter. The spatial dependence was measured by moving the fibre axially with a uniform speed. The measurement takes a few minutes, compared to up to 10 h with the conventional wire activation method. Comparison with traditional measurements shows a good agreement. (author)

  17. Fractal Pattern Growth in Ti-Implanted Steel with High Ion Flux

    Institute of Scientific and Technical Information of China (English)

    张通和; 吴瑜光; 刘安东

    2002-01-01

    We report on the formation of metal nanometre phase and fractal patterns in steel using metal vapour vacuum arc source ion implantation with high ion flux. The dense nanometre phases are cylindrical and well dispersed in the Ti-implanted layer with an ion flux up to 50μA/cm2. The collision fractal pattern is formed in Ti-implanted steel with an ion flux of 25μA/cm2 and the disconnected fractal pattern is observed with an ion flux of 50μA/cm2.The average density ofnanometre phases decreases from 1.2 × 1011/cm2 to 6.5 × 1010/cm2 as the ion flux increases from 25 μA/cm2 to 50 μA/cm2. Fractal pattern growth is in remarkable agreement with Sander's diffusion-limited aggregation model. The alloy clusters have diffused and aggregated in chains forming branches to grow a beautiful tree during Ti implantation with an ion flux ranging from 75μA/cm2 to 85μA/cm2. We discuss the model of fractal pattern growth during ion implantation with high ion flux.

  18. Development of high-fidelity multiphysics system for light water reactor analysis

    Science.gov (United States)

    Magedanz, Jeffrey W.

    There has been a tendency in recent years toward greater heterogeneity in reactor cores, due to the use of mixed-oxide (MOX) fuel, burnable absorbers, and longer cycles with consequently higher fuel burnup. The resulting asymmetry of the neutron flux and energy spectrum between regions with different compositions causes a need to account for the directional dependence of the neutron flux, instead of the traditional diffusion approximation. Furthermore, the presence of both MOX and high-burnup fuel in the core increases the complexity of the heat conduction. The heat transfer properties of the fuel pellet change with irradiation, and the thermal and mechanical expansion of the pellet and cladding strongly affect the size of the gap between them, and its consequent thermal resistance. These operational tendencies require higher fidelity multi-physics modeling capabilities, and this need is addressed by the developments performed within this PhD research. The dissertation describes the development of a High-Fidelity Multi-Physics System for Light Water Reactor Analysis. It consists of three coupled codes -- CTF for Thermal Hydraulics, TORT-TD for Neutron Kinetics, and FRAPTRAN for Fuel Performance. It is meant to address these modeling challenges in three ways: (1) by resolving the state of the system at the level of each fuel pin, rather than homogenizing entire fuel assemblies, (2) by using the multi-group Discrete Ordinates method to account for the directional dependence of the neutron flux, and (3) by using a fuel-performance code, rather than a Thermal Hydraulics code's simplified fuel model, to account for the material behavior of the fuel and its feedback to the hydraulic and neutronic behavior of the system. While the first two are improvements, the third, the use of a fuel-performance code for feedback, constitutes an innovation in this PhD project. Also important to this work is the manner in which such coupling is written. While coupling involves combining

  19. Intercomparison of the finite difference and nodal discrete ordinates and surface flux transport methods for a LWR pool-reactor benchmark problem in X-Y geometry

    International Nuclear Information System (INIS)

    The aim of the present work is to compare and discuss the three of the most advanced two dimensional transport methods, the finite difference and nodal discrete ordinates and surface flux method, incorporated into the transport codes TWODANT, TWOTRAN-NODAL, MULTIMEDIUM and SURCU. For intercomparison the eigenvalue and the neutron flux distribution are calculated using these codes in the LWR pool reactor benchmark problem. Additionally the results are compared with some results obtained by French collision probability transport codes MARSYAS and TRIDENT. Because the transport solution of this benchmark problem is close to its diffusion solution some results obtained by the finite element diffusion code FINELM and the finite difference diffusion code DIFF-2D are included

  20. Neutron flux parameters in the Triga Mark I IPR-R1 research reactor, CDTN/CNEN, for k{sub 0}-INAA method

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Maria Angela de B.C.; Leal, Alexandre Soares; Meireles, Sincler Peixoto de, E-mail: menezes@cdtn.br, E-mail: asleal@cdtn.br, E-mail: sinclercdtn@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Jacimovic, Radojko, E-mail: radojko.jacimovic@ijs.si [Jozef Stefan Institute, Department of Environmental Sciences, Ljubljana (Slovenia)

    2013-07-01

    Neutron activation analysis is a very versatile analytical technique used to determine elemental concentrations in almost all kind of matrixes. When it is applied in relative way, using standards of interested element, all possible interferences do not affect the final results, once the standards and samples were submitted to the same influences. However, when the technique is carried out by k{sub 0}-standardized method, a non-relative method, the accurate determination of several parameters is very important. The determination of neutron fluxes in irradiation position is among these parameters. The thermal and epithermal neutron fluxes characterization as well as parameters f and α are presented in several irradiation channels in the carousel of the TRIGA Mark - IPR-R1 reactor by experimental method,'Cd-ratio multi-monitor'. These parameters are necessary to apply the k{sub 0}-standardized method. (author)

  1. Development of Very High Temperature Reactor Design Technology

    International Nuclear Information System (INIS)

    To develop design technologies for the VHTR (Very High Temperature Gas-cooled Reactor) of 950 .deg. C outlet temperature for an efficient hydrogen production, key studies were performed, which include evaluation technology for the performance and safety of VHTR, and development of design and analysis codes. First, to evaluate the performance of VHTR, a series of analyses has been carried out for core characteristics at 950 .deg. C, cooled-vessel adopting internal flow path through the graphite structure, compact heat exchanger with periodic channel configuration, intermediate loop system, risk/performance-informed method, and high temperature structural integrity. Through the analyses of major accidents such as HPCC and LPCC, safety evaluation of both VHTR and RCCS has been also performed. In addition, prototype codes have been developed for a nuclear design, system loop design, system performance analysis, air-ingress accident analysis, fission product/tritium transport analysis, graphite structure seismic analysis and hydrogen explosion analysis, and they are being verified and validated through a lot of international collaborations

  2. Development of very high temperature reactor design technology

    International Nuclear Information System (INIS)

    or an efficient production of nuclear hydrogen, the VHTR (Very High Temperature Gas-cooled Reactor) of 950 .deg. C outlet temperature and the interfacing system for the hydrogen production are required. We have developed various evaluation technologies for the performance and safety of VHTR through the accomplishment of this project. First, to evaluate the performance of VHTR, a series of analyses has been performed such as core characteristics at 950 .deg. C, applicability of cooled-vessel, intermediate loop system and high temperature structural integrity. Through the analyses of major accidents such as HPCC and LPCC and the analysis of the risk/performance-informed method, VHTR safety evaluation has been also performed. In addition, various design analysis codes have been developed for a nuclear design, system loop design, system performance analysis, fission product/tritium transport analysis, core thermo-fluid analysis, system layout analysis, graphite structure seismic analysis and hydrogen exposion analysis, and they are being verified and validated through a lot of international collaborations

  3. Design of reactor internals in larger high-temperature reactors with spherical fuel elements

    International Nuclear Information System (INIS)

    In his paper, the author analyzes and summarizes the present state of the art with emphasis on the prototype reactor THTR 300 MWe, because in addition to spherical fuel elements, this type includes other features of future HTR design such as the same flow direction of cooland gas through the core. The paper on hand also elaborates design guidelines for reactor internals applicable with large HTR's of up to 1200 MWe. Proved designs will be altered so as to meet the special requirements of larger cores with spherical elements to be reloaded according to the OTTO principle. This paper is furthermore designed as a starting point for selective and swift development of reactor internals for large HTR's to be refuelled according to the OTTO principle. (orig./GL)

  4. Neutron analysis of the fuel of high temperature nuclear reactors; Analisis neutronico del combustible de reactores nucleares de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Bastida O, G. E.; Francois L, J. L., E-mail: gbo729@yahoo.com.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    In this work a neutron analysis of the fuel of some high temperature nuclear reactors is presented, studying its main features, besides some alternatives of compound fuel by uranium and plutonium, and of coolant: sodium and helium. For this study was necessary the use of a code able to carry out a reliable calculation of the main parameters of the fuel. The use of the Monte Carlo method was convenient to simulate the neutrons transport in the reactor core, which is the base of the Serpent code, with which the calculations will be made for the analysis. (Author)

  5. Advanced Test Reactor National Scientific User Facility Partnerships

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

    2012-03-01

    Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

  6. Dislocation-mediated trapping of deuterium in tungsten under high-flux high-temperature exposures

    Science.gov (United States)

    Bakaeva, A.; Terentyev, D.; De Temmerman, G.; Lambrinou, K.; Morgan, T. W.; Dubinko, A.; Grigorev, P.; Verbeken, K.; Noterdaeme, J. M.

    2016-10-01

    The effect of severe plastic deformation on the deuterium retention in tungsten exposed to high-flux low-energy plasma (flux ∼1024 m-2 s-1, energy ∼50 eV and fluence up to 5 × 1025 D/m2) was studied experimentally in a wide temperature range (460-1000 K) relevant for application in ITER. The desorption spectra in both reference and plastically-deformed samples were deconvoluted into three contributions associated with the detrapping from dislocations, deuterium-vacancy clusters and pores. As the exposure temperature increases, the positions of the release peaks in the plastically-deformed material remain in the same temperature range but the peak amplitudes are altered as compared to the reference material. The desorption peak attributed to the release from pores (i.e. cavities and bubbles) was suppressed in the plastically deformed samples for the low-temperature exposures, but became dominant for exposures above 700 K. The observed strong modulation of the deuterium storage in "shallow" and "deep" traps, as well as the reduction of the integral retention above 700 K, suggest that the dislocation network changes its role from "trapping sites" to "diffusion channels" above a certain temperature. The major experimental observations of the present work are in line with recent computational assessment based on atomistic and mean field theory calculations available in literature.

  7. A high flux source of cold strontium atoms

    CERN Document Server

    Yang, T; Pramod, M S; Leroux, F; Kwong, C C; Hajiyev, E; Chia, Z Y; Fang, B; Wilkowski, D

    2015-01-01

    We describe an experimental apparatus capable of achieving a high loading rate of strontium atoms in a magneto-optical trap operating in a high vacuum environment. A key innovation of this setup is a two dimensional magneto-optical trap deflector located after a Zeeman slower. We find a loading rate of 6x10^9/s whereas the lifetime of the magnetically trapped atoms in the 3P2 state is 54s.

  8. Research and development for high temperature gas cooled reactor in Japan

    International Nuclear Information System (INIS)

    The paper describes the current status of High Temperature Gas Cooled Reactor research and development work in Japan, with emphasis on the Experimental Very High Temperature Reactor (Exp. VHTR) to be built by Japan Atomic Energy Research Institute (JAERI) before the end of 1985. The necessity of construction of Exp. VHTR was explained from the points of Japanese energy problems and resources

  9. Extracellular Polymeric Substances (EPS) in Upflow Anaerobic Sludge Blanket (UASB) Reactors Operated under High Salinity Conditions

    NARCIS (Netherlands)

    Ismail, S.; Parra, de la C.J.; Temmink, B.G.; Lier, van J.B.

    2010-01-01

    Considering the importance of stable and well–functioning granular sludge in anaerobic high rate reactors, a series of experiments were conducted to determine the production and composition of EPS in high sodium concentrations wastewaters pertaining to anaerobic granule properties. The UASB reactors

  10. Tritium Formation and Mitigation in High Temperature Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Carl Stoots

    2012-08-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. In order to prevent the tritium contamination of proposed reactor buildings and surrounding sites, this paper examines the root causes and potential solutions for the production of this radionuclide, including materials selection and inert gas sparging. A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750°C. Results of the diffusion model are presented for one steadystate value of tritium production in the reactor.

  11. Status of the design concepts for a high fluence fast pulse reactor (HFFPR)

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, J.S.; Nelson, W.E.; Rosenstroch, B.

    1978-10-01

    The report describes progress that has been made on the design of a High Fluence Fast Pulse Reactor (HFFPR) through the end of calendar year 1977. The purpose of this study is to present design concepts for a test reactor capable of accommodating large scale reactor safety tests. These concepts for reactor safety tests are adaptations of reactor concepts developed earlier for DOE/OMA for the conduct of weapon effects tests. The preferred driver core uses fuel similar to that developed for Sandia's ACPR upgrade. It is a BeO/UO/sub 2/ fuel that is gas cooled and has a high volumetric heat capacity. The present version of the design can drive large (217) pin bundles of prototypically enriched mixed oxide fuel well beyond the fuel's boiling point. Applicability to specific reactor safety accident scenarios and subsequent design improvements will be presented in future reports on this subject.

  12. Reflectance-Based Estimation of Soil Heat Fluxes in the Texas High Plains

    Science.gov (United States)

    Gowda, P. H.; Colaizzi, P. D.; O'Shaughnessy, S.; Ha, W.; Howell, T. A.

    2010-12-01

    Soil heat flux (G) is one of the terms required for estimating evapotranspiration rates using an energy balance. Numerous reflectance-based models are available in the literature for estimating G fluxes. However, these models have shown wide variation in their performance. Therefore, operational ET remote sensing programs may require locally developed/calibrated models for accurately estimating G. The objective of this study was to develop and evaluate reflectance-based empirical G models for the semi-arid Texas High Plains. Soil heat flux was measured at 0.15 hz interval and averaged every 15 minutes at five different locations within a 4.7 ha lysimeter field with Pullman clay loam soil during the 2010 summer growing season. The field was planted to soybean and managed under dryland conditions. In each location, G was measured at 8 cm depth with two Campbell Scientific HFT3 soil heat flux plates. Soil temperature was measured at 2 and 6 cm above the soil heat flux plates. Soil moisture was measured in the 2-8 cm layer using Acclima SDI-12 sensors. Hourly G fluxes at the surface were calculated by adding the measured G fluxes at 8 cm to the energy stored above the heat flux plates. A multispectral radiometer (MSR, CROPSCAN, Inc.) and hand-held thermometer (EVEREST Interscience Inc.) measured surface reflectance in red and near infrared bandwidths and surface temperature (ST), respectively, daily at 11:30 AM CST to be consistent with the Landsat 5 overpass time. Fraction crop cover (FC) was measured by digital photographs taken twice a week. A set of G models was developed for estimating hourly fluxes based on measured reflectance, net radiation, ST, NDVI, and FC,. Resulting models were compared for performance with existing models available in the literature. In this presentation, we will discuss our G models for the Texas High Plains and the statistical results.

  13. The Flux Variability of Markarian 501 in Very High Energy Gamma Rays

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, J. (Fred Lawrence Whipple Observatory, Harvard-Smithsonian CfA, P.O. Box 97, Amado, AZ 85645-0097 (United States) Dept. of Experimental Physics, University College, Belfield, Dublin 4 (Ireland)); Bond, I.H. (Department of Physics, University of Leeds, Leeds, LS2 9JT, West Yorkshire, England (United Kingdom)); Boyle, P.J. (Department of Experimental Physics, University College, Belfield, Dublin 4 (Ireland)); Bradbury, S.M. (Department of Physics, University of Leeds, Leeds, LS2 9JT, West Yorkshire, England (United Kingdom)); Breslin, A.C. (Department of Experimental Physics, University College, Belfield, Dublin 4 (Ireland)); Buckley, J.H. (Department of Physics, Washington University, St. Louis, MO 63130 (United States)); Burdett, A.M. (Fred Lawrence Whipple Observatory, Harvard-Smithsonian CfA, P.O. Box 97, Amado, AZ 85645-0097 (United States) Department of Physics, University of Leeds, Leeds, LS2 9JT, West Yorkshire, England (United Kingdom)); Gordo, J.B. (Department of

    1999-06-01

    The BL Lacertae object Markarian 501 was identified as a source of [gamma]-ray emission at the Whipple Observatory in 1995 March. Here we present a flux variability analysis on several timescales of the 233 hr data set accumulated over 213 nights (from March 1995 to July 1998) with the Whipple Observatory 10 m atmospheric Cerenkov imaging telescope. In 1995, with the exception of a single night, the flux from Markarian 501 was constant on daily and monthly timescales and had an average flux of only 10[percent] that of the Crab Nebula, making it the weakest very high energy source detected to date. In 1996, the average flux was approximately twice the 1995 flux and showed significant month-to-month variability. No significant day-scale variations were detected. The average [gamma]-ray flux above [approximately]350 GeV in the 1997 observing season rose to 1.4 times that of the Crab Nebula[emdash]14 times the 1995 discovery level[emdash]allowing a search for variability on timescales shorter than 1 day. Significant hour-scale variability was present in the 1997 data, with the shortest, observed on MJD 50,607, having a doubling time of [approximately]2 hr. In 1998 the average emission level decreased considerably from that of 1997 (to [approximately]20[percent] of the Crab Nebula flux), but two significant flaring events were observed. Thus the emission from Markarian 501 shows large amplitude and rapid flux variability at very high energies, as does Markarian 421. It also shows large mean flux level variations on year-to-year timescales, behavior that has not been seen from Markarian 421 so far. [copyright] [ital [copyright] 1999.] [ital The American Astronomical Society

  14. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    Science.gov (United States)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  15. Effect of fluxes on high iron and low silica sintering

    Institute of Scientific and Technical Information of China (English)

    ZHU De-qing(朱德庆); ZHANG Ke-cheng(张克诚); PAN Jian(潘建); FAN Xiao-hui(范晓慧); HU You-ming(胡友名); John Clout

    2003-01-01

    Burnt lime and serpentine were incorporated into the sinter mix to improve high iron and low silica sinte-ring. Optimization of how to use burnt lime including dosage of burnt lime, moisture of sinter mix, hydrating andgranulation time was performed. Evaluations of sinter characteristics including sinter mineralogy, reducibility, lowtemperature reduction degradation, softening and melting down properties were carried out. Compared with the re-sults of traditional process in base case, the tumbling index (TI) is increased by 1.53%-2.33% through proportio-ning high ratio of burnt lime or adding serpentine in the sinter mix. It is shown that effective granulation, better per-meability and improved high temperature reactivity in the sinter bed are achieved, resulting in an increase in 3.13 %- 5.10% calcium ferrite occurring in acicular and columnar shape and decrease in glass phase, and with the reduc-ibility index(RI) being increased by 1.65%- 3.25%.

  16. Nanoengineering of Flux Pinning Sites in High-Tc Superconductors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Volume pinning forces were determined for a variety of bulk high-Tcsuperconductors of the 123-type from magnetization measurements. By means of scaling of the pinning forces, the acting pinning mechanisms in various temperature ranges were identified. The Nd-based superconductors and some YBCO crystalsexhibited a dominating pinning of the δTc-type (i.e., small, superconducting pinning sites). In contrast to this, the addition of insulating 211 particles provided pinning of the δl-type; providing effective pinning in the entire temperature range acting as a "background" pinning mechanism for the peak effect. Due to the small coherence lengths of the high-Tc compounds, effective pinning sites are defects or particles of nanometer size relative to ξ3. Integral magnetic measurements of the magnetization as a function of temperature in large applied magnetic fields (up to 7 T) revealed that practically all high-Tc compounds were spatially inhomogeneous, which could be caused byoxygen deficiency (YBCO), solid solutions of Nd/Ba (NdBCO and other light rare earth compounds), intergrowths (Bi-based superconductors), and doping by pair-breaking dopants like Zn, Pr. This implies that the superconducting sample consists of stronger and weaker superconducting areas, coupled together. In large appliedfields, this coupling gets broken and the magnetization versus temperature curves revealed more than one superconducting transition. In contrast, irradiation experiments by neutrons, protons, and heavy-ions enabled the artificial introduction of very effective pinning sites into the high-Tc superconductors, thus creating a large variety of different observations using magnetic data. From all these observations, we construct a pinning diagram for bulk high-Tc superconductors explaining many features observed in high-Tc samples.

  17. Behavior of TPC`s in a high particle flux environment

    Energy Technology Data Exchange (ETDEWEB)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Lindenbaum, S.J. [Brookhaven National Lab., Upton, NY (United States); Chan, C.S.; Kramer, M.A.; Zhao, K.H.; Zhu, Y. [City College of New York, New York (United States); Hallman, T.J.; Madansky, L. [Johns Hopkins Univ., Baltimore, MD (United States); Ahmad, S.; Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Mutchler, G.S.; Roberts, J.B. [Bonner Nuclear Lab., Houston, TX (United States)

    1991-12-31

    TPC`s (Time Projection Chamber) used in E-810 at the TAGS (Alternating Gradient Synchrotron) were exposed to fluxes equivalent to more than 10 minimum ionizing particles per second to find if such high fluxes cause gain changes or distortions of the electric field. Initial results of these and other tests are presented and the consequences for the RHIC (Relativistic Heavy Ion Collider) TPC-based experiments are discussed.

  18. Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters

    Energy Technology Data Exchange (ETDEWEB)

    Darmann, Frank [Zenergy Power, Inc., Burlingame, CA (United States); Lombaerde, Robert [Zenergy Power, Inc., Burlingame, CA (United States); Moriconi, Franco [Zenergy Power, Inc., Burlingame, CA (United States); Nelson, Albert [Zenergy Power, Inc., Burlingame, CA (United States)

    2012-03-01

    Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with warm bore diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged spider design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZP's product development program, the amount of HTS

  19. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  20. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Sterbentz, James William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bayless, Paul David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nelson, Lee Orville [Idaho National Lab. (INL), Idaho Falls, ID (United States); Gougar, Hans David [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, Gerhard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  1. Influence of high dose irradiation on core structural and fuel materials in advanced reactors

    International Nuclear Information System (INIS)

    The IAEA International Working Group on Fast Reactors (IWGFR) periodically organizes meeting to discuss and review important aspects of fast reactor technology. The fifth meeting held in Obninsk, Russian Federation, 16-19 June 1997, was devoted to the influence of high dose irradiation on the mechanical properties of reactor core structural and fuel materials. The proceedings includes the papers submitted at this meeting each with a separate abstract

  2. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    OpenAIRE

    Beaumont, Jonathan; Villa, Mario; Mellor, Matthew; Joyce, Malcolm John

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has bee...

  3. High Temperature Gas-Cooled Test Reactor Point Design: Summary Report

    International Nuclear Information System (INIS)

    A point design has been developed for a 200-MW high-temperature gas-cooled test reactor. The point design concept uses standard prismatic blocks and 15.5% enriched uranium oxycarbide fuel. Reactor physics and thermal-hydraulics simulations have been performed to characterize the capabilities of the design. In addition to the technical data, overviews are provided on the technology readiness level, licensing approach, and costs of the test reactor point design.

  4. Magnetic flux annihilation waves in inhomogeneous high-temperature superconductors

    NARCIS (Netherlands)

    Rudnev, IA; Khodot, AE; Eremin, AV; Mikhailov, BP

    2004-01-01

    The process of magnetic field penetration into polycrystalline high-T-c superconductors of the YBa2Cu3O7 - x and Bi2Sr2Ca2Cu3O10 - x systems has been studied using traditional magnetooptical methods and scanning Hall probe microscopy. It is established that remagnetization of a sample is accompanied

  5. Potential role of the Fast Flux Test Facility and the advanced test reactor in the U.S. tritium production system

    International Nuclear Information System (INIS)

    The Department of Energy is currently engaged in a dual-track strategy to develop an accelerator and a commercial light water reactor (CLWR) as potential sources of tritium supply. New analysis of the production capabilities of the Fast Flux Test Facility (FFTF) at the Hanford Site argues for considering its inclusion in the tritium supply,system. The use of the FFTF (alone or together with the Advanced Test Reactor [ATR] at the Idaho National Engineering Laboratory) as an integral part of,a tritium production system would help (1) ensure supply by 2005, (2) provide additional time to resolve institutional and technical issues associated with the- dual-track strategy, and (3) reduce discounted total life-cycle'costs and near-tenn annual expenditures for accelerator-based systems. The FFRF would also provide a way to get an early start.on dispositioning surplus weapons-usable plutonium as well as provide a source of medical isotopes. Challenges Associated With the Dual-Track Strategy The Department's purchase of either a commercial reactor or reactor irradiation services faces challenging institutional issues associated with converting civilian reactors to defense uses. In addition, while the technical capabilities of the individual components of the accelerator have been proven, the entire system needs to be demonstrated and scaled upward to ensure that the components work together 1548 as a complete production system. These challenges create uncertainty over the ability of the du2a-track strategy to provide an assured tritium supply source by 2005. Because the earliest the accelerator could come on line is 2007, it would have to operate at maximum capacity for the first few years to regenerate the reserves lost through radioactive decay after 2005

  6. Development of high nitrogen electrodes for fast breeder reactor applications

    International Nuclear Information System (INIS)

    Austenitic stainless steels of AISI type 316 (316 SS) and its variants are used extensively as structural material for the components of fast reactors operating at temperature up to 823 K. SS 316LN has been chosen as the major structural material for the construction of Prototype Fast Breeder Reactor (PFBR) with a targeted service life of 40 years. To reduce the risk of sensitization in SS 316LN, the carbon content has been reduced to less than 0.03 wt%, and the nitrogen content has been specified as 0.08 wt% to compensate the loss in strength due to the reduced carbon content. An improved version of this alloy with nitrogen content of 0.14 wt% in a frilly austenite matrix has been developed for the future FBRs, to enhance the service life of the structural components up to 60 years. Indigenously developed modified E3 16-1 5 electrodes were used for the fabrication of PFBR components to enhance the structural reliability of the components. The modifications from AWS/ASME SFA 5.4 include stringent composition limits, narrow range of ferrite content, and impact toughness after aging at 1023K for 100h, tensile properties at elevated (service) temperatures and intergranular corrosion (IGC) test as per ASTM A262 Practice E. Since the improved version alloy is rich in nitrogen content than the existing alloy, it has become necessary to develop a welding consumable with reasonably good weldability that is suitable for the fabrication of future FBR components. At present there are no commercially available welding consumables to weld these steels and the development is under way. In this work, a matching consumable methodology was adopted to develop the welding consumable. However, as per specification targeting the chemistry, solidification mode and delta ferrite was challenging, since the solidification mode of the weld metal shifts to fully austenitic region due to dilution of nitrogen from the base metal, which may increase the risk of hot cracking susceptibility

  7. Development of high purity vanadium alloys for fusion reactors

    International Nuclear Information System (INIS)

    Vanadium alloys are most attractive candidate materials for liquid Li self-cooled blanket system of fusion reactors. This paper summarizes the program and its activities of the NIFS (National Institute for Fusion Science), Japan for developments of high purity V-4Cr-4Ti alloys. The results from NIFS-Heats show various benefits by reducing the level of oxygen. Significant improvement of the impact properties of the welded joint by reducing oxygen level is one of examples in recent studies. Collaboration is in progress, in which those heats are being characterized by a number of research groups including Japanese universities, and international collaboration partners in the US, Russia and China. The impact tests of irradiated specimens are in progress for further investigation. Significant progress has been made recently on the insulator ceramic coating in static conditions in the Japan-USA Cooperation Program. The understanding on the condition of in-situ CaO coating in liquid Li was enhanced. Based on these achievements, a flowing loop test is being planned to investigate the effects of temperature gradient and Li chemistry. (Y. Tanaka)

  8. Construction of VHTRC (Very High Temperature Reactor Critical Assembly)

    International Nuclear Information System (INIS)

    This report describes the design, the safety analyses and the results of main pre-operation tests of VHTRC (Very High Temperature Reactor Critical Assembly) which has been constructed by the modification of the critical assembly, SHE (Semi-Homogeneous Experiment). The VHTRC is aimed at a 1/2 scale mock up of the experimental VHTR in the second detailed design stage. The three main features of VHTRC are that 1) the core is made of graphite blocks, and 2) the core is loaded with the coated particle fuel compacts using low enriched uranium, and that 3) the core including the graphite reflector can be heated up to 210 deg C using the electric heaters. The assembly is designed to keep the aseismatic strength of 0.3 G acceleration in both horizontal and vertical directions even at the core temperature, 210 deg C. The integrities of every components are investigated by the safety analyses and are proved by the pre-operation tests. On 13, May 1985, a basic core reached critical point for the first time. The experimental analysis showed that the critical mass calculated with the SRAC code system was only 3 % lower than the experimental value. This fact confirms that the VHTRC has been constructed very precisely within the design criteria and that the SRAC code system can give accurate results for the basic core configuration. (author)

  9. Growth of a dry spot under a vapor bubble at high heat flux and high pressure

    CERN Document Server

    Nikolayev, Vadim; Lagier, G -L; Hegseth, J

    2016-01-01

    We report a 2D modeling of the thermal diffusion-controlled growth of a vapor bubble attached to a heating surface during saturated boiling. The heat conduction problem is solved in a liquid that surrounds a bubble with a free boundary and in a semi-infinite solid heater by the boundary element method. At high system pressure the bubble is assumed to grow slowly, its shape being defined by the surface tension and the vapor recoil force, a force coming from the liquid evaporating into the bubble. It is shown that at some typical time the dry spot under the bubble begins to grow rapidly under the action of the vapor recoil. Such a bubble can eventually spread into a vapor film that can separate the liquid from the heater thus triggering the boiling crisis (critical heat flux).

  10. High burnup fast reactor fuel: processing and waste management experiences

    International Nuclear Information System (INIS)

    The routine processing of mixed Plutonium/Uranium oxide fuels from the Prototype Fast Reactor (PFR) at Dounreay began in September 1980 and the design features of the modified Dounreay Fast Reactor (DFR) reprocessing plant and experience of the first active campaign were described in a paper to the British Nuclear Engineering Society in November 1981 (1). Since then progress in processing the fuel discharged from PFR has been covered briefly in a number of papers to international conferences and the Public Inquiry held in 1986 into the outline planning application for the proposed European Demonstration Reprocessing Plant. During this decade considerable experience in the operation of fast reactors and associated fuel plants has been accumulated providing confidence in the system before entering the next development phase - that of its commercial demonstration. Confidence in the UK draws on the successful operation of the PFR and the associated Dounreay fuel reprocessing and BNF Sellafield fabrication plants. Of equal importance is public confidence in safe operation and in the management of wastes generated by a fast reactor system. The present paper is a review of fast reactor reprocessing and waste management at the Dounreay Nuclear Establishment (DNE) as a contribution to the present status of the fast reactor system

  11. Numerical Study of High Heat Flux Performances of Flat-Tile Divertor Mock-ups with Hypervapotron Cooling Concept

    Science.gov (United States)

    Chen, Lei; Liu, Xiang; Lian, Youyun; Cai, Laizhong

    2015-09-01

    The hypervapotron (HV), as an enhanced heat transfer technique, will be used for ITER divertor components in the dome region as well as the enhanced heat flux first wall panels. W-Cu brazing technology has been developed at SWIP (Southwestern Institute of Physics), and one W/CuCrZr/316LN component of 450 mm×52 mm×166 mm with HV cooling channels will be fabricated for high heat flux (HHF) tests. Before that a relevant analysis was carried out to optimize the structure of divertor component elements. ANSYS-CFX was used in CFD analysis and ABAQUS was adopted for thermal-mechanical calculations. Commercial code FE-SAFE was adopted to compute the fatigue life of the component. The tile size, thickness of tungsten tiles and the slit width among tungsten tiles were optimized and its HHF performances under International Thermonuclear Experimental Reactor (ITER) loading conditions were simulated. One brand new tokamak HL-2M with advanced divertor configuration is under construction in SWIP, where ITER-like flat-tile divertor components are adopted. This optimized design is expected to supply valuable data for HL-2M tokamak. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2011GB110001 and 2011GB110004)

  12. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    Energy Technology Data Exchange (ETDEWEB)

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge

  13. Corrosion Issues of High Temperature Reactor Structural Metallic Materials

    International Nuclear Information System (INIS)

    Cooling helium of high temperature reactors (HTRs) is expected to contain a low level of impurities: oxidizing gases and carbon-bearing species. Reference structural materials for pipes and heat exchangers are chromia former nickel base alloys, typically alloys 617 and 230. And as is generally the case in any high temperature process, their long term corrosion resistance relies on the growth of a surface chromium oxide that can act as a barrier against corrosive species. This implies that the HTR environment must allow for oxidation of these alloys to occur, while it remains not too oxidizing against in-core graphite. First, studies on the surface reactivity under various impure helium containing low partial pressures of H2, H2O, CO, and CH4 show that alloys 617 and 230 oxidize in many atmosphere at intermediate temperatures (up to 890-970 degrees C, depending on the exact gas composition). However when heated above a critical temperature, the surface oxide becomes unstable. It was demonstrated that at the scale/alloy interface, the surface oxide interacts with the carbon from the material. These investigations have established an environmental area that promotes oxidation. When exposed in oxidizing HTR helium, alloys 617 and 230 actually develop a sustainable surface scale over thousands of hours. On the other hand, if the scale is destabilized by reaction with the carbon, the oxide is not protective anymore, and the alloy surface interacts with gaseous impurities. In the case of CH4-containing atmospheres, this causes rapid carburization in the form of precipitation of coarse carbides on the surface and in the bulk. Carburization was shown to induce an extensive embrittlement of the alloys. In CH4-free helium mixtures, alloys decarburize with a global loss of carbon and dissolution of the pre-existing carbides. As carbides take part in the alloy strengthening at high temperature, it is expected that decarburization impacts the creep properties. Carburization and

  14. Mathematical analysis for internal filtration of convection-enhanced high-flux hemodialyzer.

    Science.gov (United States)

    Lee, Jung Chan; Lee, Kyungsoo; Kim, Hee Chan

    2012-10-01

    Structural modifications using a conventional hemodialyzer improved the internal filtration and clearance of middle molecular weight wastes by enhanced convection effect. In this study, we employed a mathematical model describing the internal filtration rate as well as the hemodynamic and hematologic parameters in highflux dialyzer to interpret the previous reported experimental results. Conventional high-flux hemodialysis and convection-enhanced high-flux hemodialysis were configured in the mathematical forms and integrated into the iterative numerical method to predict the internal filtration phenomena inside the dialyzers during dialysis. The distributions of blood pressure, dialysate pressure, oncotic pressure, blood flow rates, dialysate flow rates, local ultrafiltration, hematocrit, protein concentration and blood viscosity along the axial length of dialyzer were calculated in order to estimate the internal filtration volume. The results show that the filtration volumes by internal filtration is two times higher in a convection-enhanced high-flux hemodialyzer than in a conventional high-flux hemodialzer and explains the experimental result of improved clearance of middle molecular size waste in convection-enhanced high-flux hemodialyzer.

  15. Methods to assess high-resolution subsurface gas concentrations and gas fluxes in wetland ecosystems

    DEFF Research Database (Denmark)

    Elberling, Bo; Kühl, Michael; Glud, Ronnie N.;

    2013-01-01

    The need for measurements of soil gas concentrations and surface fluxes of greenhouse gases at high temporal and spatial resolution in wetland ecosystem has lead to the introduction of several new analytical techniques and methods. In addition to the automated flux chamber methodology for high......-resolution estimates of greenhouse gas fluxes across the soil-atmosphere interface, these high-resolution methods include microsensors for quantification of spatiotemporal concentration dynamics in O2 and N2O at micrometer scales, fiber-optic optodes for long-term continuous point measurements of O2 concentrations...... and peat soils are highly heterogeneous, containing a mosaic of dynamic macropore systems created by both macrofauna and flora leading to distinct spatial and temporal variations in gas concentration on a scale of millimeters and minutes. Applications of these new methodologies allow measurements...

  16. A new frontier in CO2 flux measurements using a highly portable DIAL laser system

    Science.gov (United States)

    Queiβer, Manuel; Granieri, Domenico; Burton, Mike

    2016-01-01

    Volcanic CO2 emissions play a key role in the geological carbon cycle, and monitoring of volcanic CO2 fluxes helps to forecast eruptions. The quantification of CO2 fluxes is challenging due to rapid dilution of magmatic CO2 in CO2-rich ambient air and the diffuse nature of many emissions, leading to large uncertainties in the global magmatic CO2 flux inventory. Here, we report measurements using a new DIAL laser remote sensing system for volcanic CO2 (CO2DIAL). Two sites in the volcanic zone of Campi Flegrei (Italy) were scanned, yielding CO2 path-amount profiles used to compute fluxes. Our results reveal a relatively high CO2 flux from Campi Flegrei, consistent with an increasing trend. Unlike previous methods, the CO2DIAL is able to measure integrated CO2 path-amounts at distances up to 2000 m using virtually any solid surface as a reflector, whilst also being highly portable. This opens a new frontier in quantification of geological and anthropogenic CO2 fluxes. PMID:27652775

  17. Evaporation at microscopic scale and at high heat flux

    International Nuclear Information System (INIS)

    This thesis theoretically investigates the transport processes in the vicinity of the triple gas-liquid-solid contact line and its impact on macroscopic evaporation. In the first part of the thesis, the hydrodynamics close to the contact line at partial wetting is studied. Specifically, evaporation into the atmosphere of pure vapor driven by heating of the substrate is considered. The question of singularity relaxation is addressed. The main finding of the thesis is that the Kelvin effect (dependence of saturation temperature on pressure) is sufficient by itself to relax the hydrodynamic contact line singularity. The proposed microregion (the contact line vicinity) model for small interface slopes is solved numerically. Asymptotic solutions are found for some specific cases. The governing length scales of the problem are identified and the multi-scale nature of the phenomenon is addressed. Parametric studies revealing the role of the thermal resistance of vapor-liquid interface, slip length, thermo-capillary term, the vapor recoil and surface forces are also performed. An extension of the lubrication approximation for high slopes of the gas-liquid interface at evaporation is discussed. In the second part of the thesis, the previously established microregion model is coupled to a simplified single vapor bubble growth numerical simulation. The bubble departure from the heater at boiling is also studied. It was proposed in the thesis, that under high heat loads, the increase of the apparent contact angle causes the vapor bubble to spread over the heated substrate. Such a behavior may cause the heater dry-out that occurs during the boiling crisis. (author)

  18. A novel MOCVD reactor for growth of high-quality GaN-related LED layers

    Science.gov (United States)

    Hu, Shaolin; Liu, Sheng; Zhang, Zhi; Yan, Han; Gan, Zhiyin; Fang, Haisheng

    2015-04-01

    Gallium nitride (GaN), a direct bandgap semiconductor widely used in bright light-emitting diodes (LEDs), is mostly grown by metal-organic chemical vapor deposition (MOCVD) method. A good reactor design is critical for the production of high-quality GaN thin films. In this paper, we presented a novel buffered distributed spray (BDS) MOCVD reactor with vertical gas sprayers and horizontal gas inlets. Experiments based on a 36×2″ BDS reactor were conducted to examine influence of the process parameters, such as the operating pressure and the gas flow rate, on the growth efficiency and on the layer thickness uniformity. Transmission electron microscopy (TEM) and photoluminescence (PL) are further conducted to evaluate quality of the epitaxial layers and to check performance of the reactor. Results show that the proposed novel reactor is of high performance in growing high-quality thin films, including InGaN/GaN multiquantum wells (MQWs) structures.

  19. Commercial scale performance predictions for high-temperature electrolysis plants coupled to three advanced reactor types

    International Nuclear Information System (INIS)

    This paper presents results of system analyses that have been developed to assess the hydrogen-production performance of commercial-scale high-temperature electrolysis (HTE) plants driven by three different advanced reactor - power-cycle combinations: a high-temperature helium-cooled reactor coupled to a direct Brayton power cycle, a supercritical CO2-cooled reactor coupled to a direct recompression cycle, and a sodium-cooled fast reactor coupled to a Rankine cycle. The system analyses were performed using UniSim software. The work described in this report represents a refinement of previous analyses in that the process flow diagrams include realistic representations of the three advanced reactors directly coupled to the power cycles and integrated with the high-temperature electrolysis process loops. In addition, this report includes parametric studies in which the performance of each HTE concept is determined over a wide range of operating conditions. Results of the study indicate that overall thermal-to-hydrogen production efficiencies (based on the low heating value of the produced hydrogen) in the 45 - 50% range can be achieved at reasonable hydrogen production rates with the high-temperature helium-cooled reactor concept, 42 - 44% with the supercritical CO2-cooled reactor and about 33 - 34% with the sodium-cooled reactor. (authors)

  20. A test study on treatment of high-strength polyester wastewater with anaerobic reactor

    Institute of Scientific and Technical Information of China (English)

    韩洪军; 陈秀荣; 徐春艳

    2002-01-01

    The treatment of polyester wastewater using Up-flow activated sludge bed anaerobic filer ( UASB-AF), demonstrated that UASB-AF reactors has a high efficiency, its volume loading is 10 ~ 12 kgCOD/( m3 @d) ,HRT is 22 ~24 h, and the removal of COD is about 80%. The reactor has advantage of fast starting andenduring pulse loading.