WorldWideScience

Sample records for argonne high flux reactor

  1. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  2. HFBR handbook, 1992: High flux beam reactor

    International Nuclear Information System (INIS)

    Welcome to the High Flux Beam Reactor (HFBR), one of the world premier neutron research facilities. This manual is intended primarily to acquaint outside users (and new Brookhaven staff members) with (almost) everything they need to know to work at the HFBR and to help make the stay at Brookhaven pleasant as well as profitable. Safety Training Programs to comply with US Department of Energy (DOE) mandates are in progress at BNL. There are several safety training requirements which must be met before users can obtain unescorted access to the HFBR. The Reactor Division has prepared specific safety training manuals which are to be sent to experimenters well in advance of their expected arrival at BNL to conduct experiments. Please familiarize yourself with this material and carefully pay strict attention to all the safety and security procedures that are in force at the HFBR. Not only your safety, but the continued operation of the facility, depends upon compliance

  3. Control Rods in high-Flux Swimming-Pool Reactors

    International Nuclear Information System (INIS)

    Control-rod problems in open swimming-pool high-flux and high specific power research reactors are examined in the light of the calibrations and experiments made during the construction of the SILOE reactor. Control-rod operating experience for this reactor at 13 MW is also described. 2. The following are considered in turn: (a) Reactivity balances and reactivity values for the different types of rod tested (cadmium, B4C , rare earths and combinations of these different elements). (b) Flux peaks set up in the core by the presence of the control rods, their incidence on the specific power, the fast fluxes that can be obtained and means of increasing them. (c ) The technological problems involved in constructing the rods. (d) In-pile cooling, vibration, deformation and scram-time problems. 3. In conclusion, current studies on control rods in open swimming-pool reactors operating in the 10 - 30 1W range are briefly summarized. (author)

  4. Annual Report 1991. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    In 1991 the operation of the High Flux Reactor was carried out as planned. The availability was more than 100% of scheduled operating time. The average utilization of the reactor was 69% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. Development activities addressed upgrading of irradiation devices, neutron capture therapy, neutron radiography and neutron transmutation doping of silicon. General activities in support of running irradiation programmes progressed in the normal way

  5. Annual report 1989 operation of the high flux reactor

    International Nuclear Information System (INIS)

    In 1989 the operation of the High Flux Reactor Petten was carried out as planned. The availability was more than 100% of scheduled operating time. The average occupation of the reactor by experimental devices was 72% of the practical occupation limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons and for radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  6. Annual report 1990. Operation of the high flux reactor

    International Nuclear Information System (INIS)

    In 1990 the operation of the High Flux Reactor was carried out as planned. The availability was 96% of scheduled operating time. The average utilization of the reactor was 71% of the practical limit. The reactor was utilized for research programmes in support of nuclear fission reactors and thermonuclear fusion, for fundamental research with neutrons, for radioisotope production, and for various smaller activities. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  7. 1984 Operation of the high flux reactor

    International Nuclear Information System (INIS)

    The programme resources in 1984 were largely devoted to the replacement of the old reactor vessel and its peripheral equipment. The original vessel had been in operation for more than 20 years and doubts had arisen about the condition of the aluminium tank after so long an exposure to neutrons. The operation, which had never been attempted before on a reactor of that size and complexity was planned and prepared over a number of years to take advantage of the occasion to provide a much improved vessel, incorporating the latest design features. The plant was shut down at the end of November 1983 and the 14 months operation began with a short cooling-off period for decay of short lived radioactivity followed by removal of the old tank and its dissection into pieces convenient for consolidation and storage as radioactive waste. After decontamination of the shielding pool, the new vessel and neutron beam tubes were installed and the reactor was recommissioned. Routine 45 MW operation was resumed on 14 February 1985 and has been uneventful since then

  8. Annual progress report 1988, operation of the high flux reactor

    International Nuclear Information System (INIS)

    In 1988 the High Flux Reactor Petten was routinely operated without any unforeseen event. The availability was 99% of scheduled operation. Utilization of the irradiation positions amounted to 80% of the practical occupation limit. The exploitation pattern comprised nuclear energy deployment, fundamental research with neutrons, and radioisotope production. General activities in support of running irradiation programmes progressed in the normal way. Development activities addressed upgrading of irradiation devices, neutron radiography and neutron capture therapy

  9. Fuel management at the Petten high flux reactor

    International Nuclear Information System (INIS)

    Several years ago the shipment of spent fuel of the High Flux Reactor (HFR) at Petten has come to a standstill resulting in an ever growing stock of fuel elements that are labelled 'fully burnt up'. Examination of those elements showed that a reasonably number of them have a relatively high 235U mass left. A reactor physics analysis showed that the use of such elements in the peripheral core zone allows the loading of four instead of five fresh fuel elements in many cycle cores. For the assessment of safety and performance parameters of HFR cores a new calculational tool is being developed. It is based on AEA Technology's Reactor physics code suite Winfrith Improved Multigroup Scheme (WIMS). NRG produced pre- and post-processing facilities to feed input data into WIMS's 2D transport code CACTUS and to extract relevant parameters from the output. The processing facilities can be used for many different types of application. (author)

  10. Surveillance programme and upgrading of the High Flux Reactor Petten

    International Nuclear Information System (INIS)

    The High Flux Reactor (HFR) at Petten (The Netherlands), a 45 MW light water cooled and moderated research reactor in operation during more than 30 years, has been kept up to date by replacing ageing components. In 1984, the HFR was shut down for replacement of the aluminium. reactor vessel which had been irradiated during more than 20 years. The demonstration that the new vessel contains no critical defect requires knowledge of the material properties of the aluminium alloy Al 5154 with and without neutron irradiation and of the likely defect presence through the periodic in-service inspections. An irradiation damage surveillance programme has been started in 1985 for the new vessel material to provide information on fracture mechanics properties. After the vessel replacement, the existing process of continuous upgrading and replacement of ageing components was accelerated. A stepwise upgrade of the control room is presently under realization. (author)

  11. Operation of the High Flux Reactor. Annual report 1985

    International Nuclear Information System (INIS)

    This year was characterized by the end of a major rebuilding of the installation during which the reactor vessel and its peripheral components were replaced by new and redesigned equipment. Both operational safety and experimental use were largely improved by the replacement. The reactor went back to routine operation on February 14, 1985, and has been operating without problem since then. All performance parameters were met. Other upgrading actions started during the year concerned new heat exchangers and improvements to the reactor building complex. The experimental load of the High Flux Reactor reached a satisfactory level with an average of 57%. New developments aimed at future safety related irradiation tests and at novel applications of neutrons from the horizontal beam tubes. A unique remote encapsulation hot cell facility became available adding new possibilities for fast breeder fuel testing and for intermediate specimen examination. The HFR Programme hosted an international meeting on development and use of reduced enrichment fuel for research reactors. All aspects of core physics, manufacture technology, and licensing of novel, proliferation-free, research reactor fuel were debated

  12. Neutronics modeling of the High Flux Isotope Reactor using COMSOL

    International Nuclear Information System (INIS)

    Highlights: → Neutron flux distributions in HFIR were calculated with SCALE v6 and COMSOL v3.5. → Diffusion theory employed in COMSOL coefficient partial differential equation mode. → Two-group 2D flux distributions compare well to benchmarked 3D stochastic models. → Adaptive mesh refinement algorithm used to refine mesh and improve accuracy. → First step in a long-term project to upgrade research reactor analytical methods. - Abstract: The High Flux Isotope Reactor located at the Oak Ridge National Laboratory is a versatile 85 MWth research reactor with cold and thermal neutron scattering, materials irradiation, isotope production, and neutron activation analysis capabilities. HFIR staff members are currently in the process of updating the thermal hydraulic and reactor transient modeling methodologies. COMSOL Multiphysics has been adopted for the thermal hydraulic analyses and has proven to be a powerful finite-element-based simulation tool for solving multiple physics-based systems of partial and ordinary differential equations. Modeling reactor transients is a challenging task because of the coupling of neutronics, heat transfer, and hydrodynamics. This paper presents a preliminary COMSOL-based neutronics study performed by creating a two-dimensional, two-group, diffusion neutronics model of HFIR to study the spatially-dependent, beginning-of-cycle fast and thermal neutron fluxes. The 238-group ENDF/B-VII neutron cross section library and NEWT, a two-dimensional, discrete-ordinates neutron transport code within the SCALE 6 code package, were used to calculate the two-group neutron cross sections required to solve the diffusion equations. The two-group diffusion equations were implemented in the COMSOL coefficient form PDE application mode and were solved via eigenvalue analysis using a direct (PARDISO) linear system solver. A COMSOL-provided adaptive mesh refinement algorithm was used to increase the number of elements in areas of largest numerical

  13. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buxbaum, Robert

    2010-06-30

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  14. The High Flux Reactor Petten, present status and prospects

    International Nuclear Information System (INIS)

    The High Flux Reactor (HFR) in Petten, The Netherlands, is a light water cooled and moderated multipurpose research reactor of the closed-tank in pool type. It is operated with highly enriched Uranium fuel at a power of 45 MW. The reactor is owned by the European Communities and operated under contract by the Dutch ECN. The HFR programme is funded by The Netherlands and Germany, a smaller share comes from the specific programmes of the Joint Research Centre (JRC) and from third party contract work. Since its first criticality in 1961 the reactor has been continuously upgraded by implementing developments in fuel element technology and increasing the power from 20 MW to the present 45 MV. In 1984 the reactor vessel was replaced by a new one with an improved accessibility for experiments. In the following years also other ageing equipment has been replaced (primary heat exchangers, pool heat exchanger, beryllium reflector elements, nuclear and process instrumentation, uninterruptable power supply). Control room upgrading is under preparation. A new safety analysis is near to completion and will form the basis for a renewed license. The reactor is used for nuclear energy related research (structural materials and fuel irradiations for LWR's, HTR's and FBR's, fusion materials irradiations). The beam tubes are used for nuclear physics as well as solid state and materials sciences. Radioisotope production at large scale, processing of gemstones and silicon with neutrons, neutron radiography and activation analysis are actively pursued. A clinical facility for boron neutron capture therapy is being designed at one of the large cross section beam tubes. It is foreseen to operate the reactor at least for a further decade. The exploitation pattern may undergo some changes depending on the requirements of the supporting countries and the JRC programmes. (author)

  15. Rebuilding the Brookhaven high flux beam reactor: A feasibility study

    International Nuclear Information System (INIS)

    After nearly thirty years of operation, Brookhaven's High Flux Beam Reactor (HFBR) is still one of the world's premier steady-state neutron sources. A major center for condensed matter studies, it currently supports fifteen separate beamlines conducting research in fields as diverse as crystallography, solid-state, nuclear and surface physics, polymer physics and structural biology and will very likely be able to do so for perhaps another decade. But beyond that point the HFBR will be running on borrowed time. Unless appropriate remedial action is taken, progressive radiation-induced embrittlement problems will eventually shut it down. Recognizing the HFBR's value as a national scientific resource, members of the Laboratory's scientific and reactor operations staffs began earlier this year to consider what could be done both to extend its useful life and to assure that it continues to provide state-of-the-art research facilities for the scientific community. This report summarizes the findings of that study. It addresses two basic issues: (i) identification and replacement of lifetime-limiting components and (ii) modifications and additions that could expand and enhance the reactor's research capabilities

  16. Fabrication of control rods for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A

  17. Fabrication of control rods for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sease, J.D.

    1998-03-01

    The High Flux Isotope Reactor (HFIR) is a research-type nuclear reactor that was designed and built in the early 1960s and has been in continuous operation since its initial criticality in 1965. Under current plans, the HFIR is expected to continue in operation until 2035. This report updates ORNL/TM-9365, Fabrication Procedure for HFIR Control Plates, which was mainly prepared in the early 1970's but was not issued until 1984, and reflects process changes, lessons learned in the latest control rod fabrication campaign, and suggested process improvements to be considered in future campaigns. Most of the personnel involved with the initial development of the processes and in part campaigns have retired or will retire soon. Because their unlikely availability in future campaigns, emphasis has been placed on providing some explanation of why the processes were selected and some discussions about the importance of controlling critical process parameters. Contained in this report is a description of the function of control rods in the reactor, the brief history of the development of control rod fabrication processes, and a description of procedures used in the fabrication of control rods. A listing of the controlled documents and procedures used in the last fabrication campaigns is referenced in Appendix A.

  18. On the cycle and neutron fluxes of the high flux reactor at ill Grenoble

    International Nuclear Information System (INIS)

    The fuel evolution and neutron fluxes of the high flux reactor at ILL Grenoble were investigated for the full fuel cycle. Two different code systems, namely MONTEBURNS and MCNP + CINDER'90, were employed for a realistic 3-D geometry description of the reactor core and experimental channels of interest. Both codes correctly reproduce the history of the fuel burn-up. Calculated neutron flux in the reactor core is 2.16 x 1015 n/s cm2 gym- and decreases down to 1.65 x 1015 n/s cm2 - and 6.7 x 1014 n/s cm2 in the experimental channels V4 and H9 respectively. Thermal neutron contribution is ∼85.2% in V4 and ∼98.3% in H9. We show that neutron fluxes in the experimental channels V4 and H9 are not perturbed/changed due to the burn-up of the fuel element and/or movement of the control rod. This result should simplify most of the irradiation experiments (and data analysis in particular), which employ the experimental channels as above. (authors)

  19. Testing of research reactor fuel in the high flux reactor (Petten)

    International Nuclear Information System (INIS)

    The two types of fuel most frequently used by the main research reactors are metallic: highly enriched uranium (>90%) and silicide low enriched uranium (3. However, a need exists for research on new reactor fuel. This would permit some plants to convert without losses in flux or in cycle length and would allow new reactor projects to achieve higher possibilities especially in fluxes. In these cases research is made either on silicide with higher density, or on other types of fuel (UMo, etc.). In all cases when new fuel is proposed, there is a need, for safety reasons, to test it, especially regarding the mechanical evolution due to burn-up (swelling, etc.). Initially, such tests are often made with separate plates, but lately, using entire elements. Destructive examinations are often necessary. For this type of test, the High Flux Reactor, located in Petten (The Netherlands) has many specific advantages: a large core, providing a variety of interesting positions with high fluence rate; a downward coolant flow simplifies the engineering of the device; there exists easy access with all handling possibilities to the hot-cells; the high number of operating days (>280 days/year), together with the high flux, gives a possibility to reach quickly the high burn-up needs; an experienced engineering department capable of translating specific requirements to tailor-made experimental devices; a well equipped hot-cell laboratory on site to perform all necessary measurements (swelling, γ-scanning, profilometry) and all destructive examinations. In conclusion, the HFR reactor readily permits experimental research on specific fuels used for research reactors with all the necessary facilities on the Petten site. (author)

  20. Neutron diffraction facilities at the high flux reactor, Petten

    Science.gov (United States)

    Ohms, C.; Youtsos, A. G.; Bontenbal, A.; Mulder, F. M.

    2000-03-01

    The High Flux Reactor in Petten is equipped with twelve beam tubes for the extraction of thermal neutrons for applications in materials and medical science. Beam tubes HB4 and HB5 are equipped with diffractometers for residual stress and powder investigations. Recently at HB4 the Large Component Neutron Diffraction Facility has been installed. It is a unique facility with respect to its capability of handling heavy components up to 1000 kg in residual stress testing. Its basic features are described and the first applications on thick piping welds are shown. The diffractometer at HB5 can be set up for powder and stress measurements. Recent applications include temperature dependent measurements on phase transitions in intermetallic compounds and on Li ion energy storage materials.

  1. Safety and quality management at the high flux reactor Petten

    International Nuclear Information System (INIS)

    The High Flux Reactor (HFR) is one high power multi-purpose materials testing research reactor of the tank-in-pool type, cooled and moderated by light-water. It is operated at 45 MW at a prescribed schedule of 11 cycles per year, each comprising 25 operation days and three shut-down days. Since the licence for the operation of HFR was granted in 1962, a total of 14 amendments to the original licence have been made following different modifications in the installations. In the meantime, international nuclear standards were developed, especially in the framework of the NUSS programme of the IAEA, which were adopted by the Dutch Licensing Authorities. In order to implement the new standards, the situation at the HFR was comprehensively reviewed in the course of an audit performed by the Dutch Licensing Authorities in 1988. This also resulted in formulating the task of setting-up an 'HFR - Integral Quality Assurance Handbook' (HFR-IQAD) involving both organizations JRCIAM and ECN, which had the unique framework and basic guideline to assure the safe and efficient operation and exploitation of the HFR and to promote safety and quality in all aspects of HFR related activities. The assurance of safe and efficient operation and exploitation of the HFR is condensed together under the concepts of safety and quality of services and is achieved through the safety and quality management. (orig.)

  2. High Flux Isotope Reactor system RELAP5 input model

    International Nuclear Information System (INIS)

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model

  3. High Flux Isotope Reactor system RELAP5 input model

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.G.; Wendel, M.W.

    1993-01-01

    A thermal-hydraulic computational model of the High Flux Isotope Reactor (HFIR) has been developed using the RELAP5 program. The purpose of the model is to provide a state-of-the art thermal-hydraulic simulation tool for analyzing selected hypothetical accident scenarios for a revised HFIR Safety Analysis Report (SAR). The model includes (1) a detailed representation of the reactor core and other vessel components, (2) three heat exchanger/pump cells, (3) pressurizing pumps and letdown valves, and (4) secondary coolant system (with less detail than the primary system). Data from HFIR operation, component tests, tests in facility mockups and the HFIR, HFIR specific experiments, and other pertinent experiments performed independent of HFIR were used to construct the model and validate it to the extent permitted by the data. The detailed version of the model has been used to simulate loss-of-coolant accidents (LOCAs), while the abbreviated version has been developed for the operational transients that allow use of a less detailed nodalization. Analysis of station blackout with core long-term decay heat removal via natural convection has been performed using the core and vessel portions of the detailed model.

  4. Overview of irradiation facilities and experiments currently in the Oak Ridge High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    The Oak Ridge High Flux Isotope Reactor (HFIR) is an 85 MW research reactor with a variety of irradiation facilities. The target region has the highest continuous thermal neutron flux available in the western world and facilities in the beryllium reflector provide opportunities to irradiate experiments of various sizes in a variety of neutron spectrums. Major programs utilizing these facilities include Fusion Materials, Advanced Neutron Source (ANS), New Production Reactor, and Modular High Temperature Gas-Cooled Reactor

  5. RELAP5 model of the high flux isotope reactor with low enriched fuel thermal flux profiles

    Energy Technology Data Exchange (ETDEWEB)

    Banfield, J.; Mervin, B.; Hart, S.; Ritchie, J.; Walker, S.; Ruggles, A.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee Knoxville, Knoxville, TN 37996-2300 (United States)

    2012-07-01

    The High Flux Isotope Reactor (HFIR) currently uses highly enriched uranium (HEU) fabricated into involute-shaped fuel plates. It is desired that HFIR be able to use low enriched uranium (LEU) fuel while preserving the current performance capability for its diverse missions in material irradiation studies, isotope production, and the use of neutron beam lines for basic research. Preliminary neutronics and depletion simulations of HFIR with LEU fuel have arrived to feasible fuel loadings that maintain the neutronics performance of the reactor. This article illustrates preliminary models developed for the analysis of the thermal-hydraulic characteristics of the LEU core to ensure safe operation of the reactor. The beginning of life (BOL) LEU thermal flux profile has been modeled in RELAP5 to facilitate steady state simulation of the core cooling, and of anticipated and unanticipated transients. Steady state results are presented to validate the new thermal power profile inputs. A power ramp, slow depressurization at the outlet, and flow coast down transients are also evaluated. (authors)

  6. Extraction of gadolinium from high flux isotope reactor control plates

    International Nuclear Information System (INIS)

    Gadolinium-153 is an important radioisotope used in the diagnosis of various bone disorders. Recent medical and technical developments in the detection and cure of osteoporosis, a bone disease affecting an estimated 50 million people, have greatly increased the demand for this isotope. The Oak Ridge National Laboratory (ORNL) has produced 153Gd since 1980 primarily through the irradiation of a natural europium-oxide powder followed by the chemical separation of the gadolinium fraction from the europium material. Due to the higher demand for 153Gd, an alternative production method to supplement this process has been investigated. This process involves the extraction of gadolinium from the europium-bearing region of highly radioactive, spent control plates used at the High Flux Isotope Reactor (HFIR) with a subsequent re-irradiation of the extracted material for the production of the 153Gd. Based on the results of experimental and calculational analyses, up to 25 grams of valuable gadolinium (≥60% enriched in 152Gd) resides in the europium-bearing region of the HFIR control components of which 70% is recoverable. At a specific activity yield of 40 curies of 153Gd for each gram of gadolinium re-irradiated, 700 one-curie sources can be produced from each control plate assayed

  7. Neutron scattering at the high-flux isotope reactor

    International Nuclear Information System (INIS)

    The title facilities offer the brightest source of neutrons in the national user program. Neutron scattering experiments probe the structure and dynamics of materials in unique and complementary ways as compared to x-ray scattering methods and provide fundamental data on materials of interest to solid state physicists, chemists, biologists, polymer scientists, colloid scientists, mineralogists, and metallurgists. Instrumentation at the High- Flux Isotope Reactor includes triple-axis spectrometers for inelastic scattering experiments, a single-crystal four diffractometer for crystal structural studies, a high-resolution powder diffractometer for nuclear and magnetic structure studies, a wide-angle diffractometer for dynamic powder studies and measurements of diffuse scattering in crystals, a small-angle neutron scattering (SANS) instrument used primarily to study structure-function relationships in polymers and biological macromolecules, a neutron reflectometer for studies of surface and thin-film structures, and residual stress instrumentation for determining macro- and micro-stresses in structural metals and ceramics. Research highlights of these areas will illustrate the current state of neutron science to study the physical properties of materials

  8. High Flux Isotope Reactor cold neutron source reference design concept

    International Nuclear Information System (INIS)

    In February 1995, Oak Ridge National Laboratory's (ORNL's) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH2) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH2 cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept

  9. High Flux Isotope Reactor cold neutron source reference design concept

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Lucas, A.T.; Hyman, C.R. [and others

    1998-05-01

    In February 1995, Oak Ridge National Laboratory`s (ORNL`s) deputy director formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. In May 1995, a team was formed to examine the feasibility of retrofitting a liquid hydrogen (LH{sub 2}) cold source facility into an existing HFIR beam tube. The results of this feasibility study indicated that the most practical location for such a cold source was the HB-4 beam tube. This location provides a potential flux environment higher than the Institut Laue-Langevin (ILL) vertical cold source and maximizes the space available for a future cold neutron guide hall expansion. It was determined that this cold neutron beam would be comparable, in cold neutron brightness, to the best facilities in the world, and a decision was made to complete a preconceptual design study with the intention of proceeding with an activity to install a working LH{sub 2} cold source in the HFIR HB-4 beam tube. During the development of the reference design the liquid hydrogen concept was changed to a supercritical hydrogen system for a number of reasons. This report documents the reference supercritical hydrogen design and its performance. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and testing, (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the conceptual design phase and establishes the baseline reference concept.

  10. Development of a High Flux Research Reactor with Assembly- Integral Flux Traps

    International Nuclear Information System (INIS)

    In recent years, the demand for irradiation services has increased as research reactors face a number of challenges. These challenges include reduction in enrichment, the need for economical use of fuel, and the medical isotope crisis brought about by the temporary shutdowns of the NRU and HFR. These challenges have inspired the design of a revolutionary research reactor assembly concept making use of the new U-Mo monolithic fuel form. Each assembly consists of a trapezoidal plate-fueled region and integral triangular flux trap. When placed in a hexagonal core, this structure permits multiple orientations of the flux trap with respect to those surrounding it. As a result, multiple orientations, sizes and shapes of the flux trap are possible. These flux trap parameters can be adjusted to provide the spectra needed to meet ever-changing experimental needs. This assembly concept was applied to the development of a 5 MWth research reactor core, and optimized for peak thermal flux. During the design process, attention was given to making the design economical, manufacturable, and maintainable. The design was able to produce a maximum unperturbed thermal flux of 1.2 x 1014 neutrons/cm2 s, 70% higher than existing research reactors of the same power rating. Despite this optimization for thermal flux, the reactor is still capable of producing fast fluxes in excess of 1 x 1014 neutrons/cm2 s in other regions of the core. The response of the resulting core to thermal hydraulic transients was also analyzed. (author)

  11. Reactor vessel dismantling at the high flux materials testing reactor Petten

    International Nuclear Information System (INIS)

    The project of replacing the reactor vessel of the high flux materials testing reactor (HFR) originated in 1974 when results of several research programs confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report describes the dismantling philosophy and organisation, the design of special underwater equipment, the dismantling of the reactor vessel and thermal column, and the conditioning and shielding activities resulting in a working area for the installation of the new vessel with no access limitations due to radiation. Finally an overview of the segmentation, waste disposal and radiation exposure is given. The total dismantling, segmentation and conditioning activities resulted in a total collective radiation dose of 300 mSv. (orig.)

  12. Dhruva reactor -- a high flux facility for neutron beam research

    International Nuclear Information System (INIS)

    Dhruva reactor, the highest flux thermal neutron source in India has been operating at full power of 100 MW over the past two years. Several advanced facilities like the cold source, guides, etc. are being installed for neutron beam research in condensed matter. A large number and variety of neutron spectrometers are operational. This paper deals with the basic advantages that one can derive from neutron scattering investigations and gives a brief description of the instruments that are developed and commissioned at Dhruva for neutron beam research. (author). 3 figs

  13. Level 1 Tornado PRA for the High Flux Beam Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bozoki, G.E.; Conrad, C.S.

    1994-05-01

    This report describes a risk analysis primarily directed at providing an estimate for the frequency of tornado induced damage to the core of the High Flux Beam Reactor (HFBR), and thus it constitutes a Level 1 Probabilistic Risk Assessment (PRA) covering tornado induced accident sequences. The basic methodology of the risk analysis was to develop a ``tornado specific`` plant logic model that integrates the internal random hardware failures with failures caused externally by the tornado strike and includes operator errors worsened by the tornado modified environment. The tornado hazard frequency, as well as earlier prepared structural and equipment fragility data, were used as input data to the model. To keep modeling/calculational complexity as simple as reasonable a ``bounding`` type, slightly conservative, approach was applied. By a thorough screening process a single dominant initiating event was selected as a representative initiator, defined as: ``Tornado Induced Loss of Offsite Power.`` The frequency of this initiator was determined to be 6.37E-5/year. The safety response of the HFBR facility resulted in a total Conditional Core Damage Probability of .621. Thus, the point estimate of the HFBR`s Tornado Induced Core Damage Frequency (CDF) was found to be: (CDF){sub Tornado} = 3.96E-5/year. This value represents only 7.8% of the internal CDF and thus is considered to be a small contribution to the overall facility risk expressed in terms of total Core Damage Frequency. In addition to providing the estimate of (CDF){sub Tornado}, the report documents, the relative importance of various tornado induced system, component, and operator failures that contribute most to (CDF){sub Tornado}.

  14. High flux isotope reactor cold source preconceptual design study report

    International Nuclear Information System (INIS)

    In February 1995, the deputy director of Oak Ridge National Laboratory (ORNL) formed a group to examine the need for upgrades to the High Flux Isotope Reactor (HFIR) system in light of the cancellation of the Advanced Neutron Source Project. One of the major findings of this study was that there was an immediate need for the installation of a cold neutron source facility in the HFIR complex. The anticipated cold source will consist of a cryogenic LH2 moderator plug, a cryogenic pump system, a refrigerator that uses helium gas as a refrigerant, a heat exchanger to interface the refrigerant with the hydrogen loop, liquid hydrogen transfer lines, a gas handling system that includes vacuum lines, and an instrumentation and control system to provide constant system status monitoring and to maintain system stability. The scope of this project includes the development, design, safety analysis, procurement/fabrication, testing, and installation of all of the components necessary to produce a working cold source within an existing HFIR beam tube. This project will also include those activities necessary to transport the cold neutron beam to the front face of the present HFIR beam room. The cold source project has been divided into four phases: (1) preconceptual, (2) conceptual design and research and development (R and D), (3) detailed design and procurement, and (4) installation and operation. This report marks the conclusion of the preconceptual phase and establishes the concept feasibility. The information presented includes the project scope, the preliminary design requirements, the preliminary cost and schedule, the preliminary performance data, and an outline of the various plans for completing the project

  15. High flux testing reactor Petten. Replacement of the reactor vessel and connected components. Overall report

    International Nuclear Information System (INIS)

    The project of replacing the HFR originated in 1974 when results of several research programmes confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report contains the detailed chronology of events concerning preparation and execution of the replacement. After a 14 months' outage the reactor resumed routine operation on 14th February, 1985. At the end of several years of planning and preparation the reconstruction proceded in the following steps: unloading of the old core, decay of short-lived radioactivity in December 1983, removal of the old tank and of its peripheral equipment in January-February 1984, segmentation and waste disposal of the removed components in March-April, decontamination of the pools, bottom penetration overhauling in May-June, installation of the new tank and other new components in July-September, testing and commissioning, including minor modifications in October-December, and, trials runs and start-up preparation in January-February 1985. The new HFR Petten features increased and improved experimental facilities. Among others the obsolete thermal columns was replaced by two high flux beam tubes. Moreover the new plant has been designed for future increases of reactor power and neutron fluxes. For the next three to four years the reactor has to cope with a large irradiation programme, claiming its capacity to nearly 100%

  16. High Flux Isotopes Reactor (HFIR) Cooling Towers Demolition Waste Management

    International Nuclear Information System (INIS)

    This paper describes the results of a joint initiative between Oak Ridge National Laboratory, operated by UT-Battelle, and Bechtel Jacobs Company, LLC (BJC) to characterize, package, transport, treat, and dispose of demolition waste from the High Flux Isotope Reactor (HFIR), Cooling Tower. The demolition and removal of waste from the site was the first critical step in the planned HFIR beryllium reflector replacement outage scheduled. The outage was scheduled to last a maximum of six months. Demolition and removal of the waste was critical because a new tower was to be constructed over the old concrete water basin. A detailed sampling and analysis plan was developed to characterize the hazardous and radiological constituents of the components of the Cooling Tower. Analyses were performed for Resource Conservation and Recovery Act (RCRA) heavy metals and semi-volatile constituents as defined by 40 CFR 261 and radiological parameters including gross alpha, gross beta, gross gamma, alpha-emitting isotopes and beta-emitting isotopes. Analysis of metals and semi-volatile constituents indicated no exceedances of regulatory limits. Analysis of radionuclides identified uranium and thorium and associated daughters. In addition 60Co, 99Tc, 226Rm, and 228Rm were identified. Most of the tower materials were determined to be low level radioactive waste. A small quantity was determined not to be radioactive, or could be decontaminated. The tower was dismantled October 2000 to January 2001 using a detailed step-by-step process to aid waste segregation and container loading. The volume of waste as packaged for treatment was approximately 1982 cubic meters (70,000 cubic feet). This volume was comprised of plastic (∼47%), wood (∼38%) and asbestos transite (∼14%). The remaining ∼1% consisted of the fire protection piping (contaminated with lead-based paint) and incidental metal from conduit, nails and braces/supports, and sludge from the basin. The waste, except for the

  17. COMPARISON OF COOLING SCHEMES FOR HIGH HEAT FLUX COMPONENTS COOLING IN FUSION REACTORS

    OpenAIRE

    Phani Kumar Domalapally; Slavomir Entler

    2015-01-01

    Some components of the fusion reactor receives high heat fluxes either during the startup and shutdown or during the operation of the machine. This paper analyzes different ways of enhancing heat transfer using helium and water for cooling of these high heat flux components and then conclusions are drawn to decide the best choice of coolant, for usage in near and long term applications.

  18. Status of research reactor fuel test in the High Flux Reactor (Petten)

    Energy Technology Data Exchange (ETDEWEB)

    Guidez, J.; Casalta, S. [European Commission, JRC, NL-1755 ZG Petten (Netherlands); Wijtsma, F.J.; Thijssen, P.J.M.; Hendriks, J.A.; Dassei, G. [NRG Petten (Netherlands); Vacelet, H. [Cerca Framatome, F-26104 Romans (France); Languille, A. [CEA Cadarache, F-13108 Saint Paul Lez Durance (France)

    2001-07-01

    Even if the research reactors are using very well known MTR-fuel, a need exists for research in this field mainly for the reasons of industrial qualification of fuel assemblies (built with qualified fuel), improvement or modifications on a qualified fuel ( e.g. increase of density), and qualification of a new fuels such as UMo. For these types of tests, the High Flux Reactor located in Petten (the Netherlands) has a lot of specific advantages: 1) a large core with various interesting positions ranging from high to low fluence rate; 2) a high number of operating days (>280 days/year) that gives - with the high flux available - a possibility to reach quickly high burnup; 3) a downward coolant flow that simplifies the device engineering; 4) all possibilities of non-destructive and destructive examinations in the hot-cells (visual inspection, swelling, {gamma}-scanning, macro- and light microscopy, SEM and EPMA examinations, tomography). Two types of tests can be performed at the plant: either a full-scale test or a test of plates in dedicated devices. A presentation is made of the irradiation test on four UMo plates, begun in March 2000 in the device UMUS. A status report is provided of the full-scale test to be done in the near future, especially the UMo tests to begin the next year. In conclusion it appears that the HFR, that had already given an excellent contribution to silicide fuel qualification in the 1980s, will also give a significant contribution to the current UMo qualification programs. (author)

  19. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews

  20. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Rebecca [Bryant Research, LLC; Kszos, Lynn A [ORNL

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one

  1. Operating manual for the High Flux Isotope Reactor. Volume I. Description of the facility

    International Nuclear Information System (INIS)

    This volume contains a comprehensive description of the High Flux Isotope Reactor Facility. Its primary purpose is to supplement the detailed operating procedures, providing the reactor operators with background information on the various HFIR systems. The detailed operating procdures are presented in another report

  2. Operating manual for the High Flux Isotope Reactor: operating procedures

    International Nuclear Information System (INIS)

    Procedures are presented for reactor operation; instrumentation and control; reactor components; research facilities; cooling systems; containment heating, venting, and air conditioning; emergency procedures; waste systems; on-site utilities; records and data accumulation; auxiliary equipment; and technical specification requirements

  3. Development of High Flux Isotope Reactor (HFIR) subcriticality monitoring methods

    International Nuclear Information System (INIS)

    Use of subcritical source multiplication measurements during refueling has been investigated as a possible replacement for out-of-reactor subcriticality measurements formerly made on fresh HFIR fuel elements at the ORNL Critical Experiment Facility. These measurements have been used in the past for preparation of estimated critical rod positions, and as a partial verification, prior to reactor startup, that the requirements for operational shutdown margin would be met. Results of subcritical count rate data collection during recent HFIR refuelings and supporting calculations are described illustrating the intended measurement method and its expected uncertainty. These results are compared to historical uses of the out-of-reactor core measurements and their accuracy requirements, and a planned in-reactor test is described which will establish the sensitivity of the method and calibrate it for future routine use during HFIR refueling. 2 refs., 1 fig., 2 tabs

  4. COMPARISON OF COOLING SCHEMES FOR HIGH HEAT FLUX COMPONENTS COOLING IN FUSION REACTORS

    Directory of Open Access Journals (Sweden)

    Phani Kumar Domalapally

    2015-04-01

    Full Text Available Some components of the fusion reactor receives high heat fluxes either during the startup and shutdown or during the operation of the machine. This paper analyzes different ways of enhancing heat transfer using helium and water for cooling of these high heat flux components and then conclusions are drawn to decide the best choice of coolant, for usage in near and long term applications.

  5. 1980 Annual status report: operation of the high flux reactor

    International Nuclear Information System (INIS)

    HFR Petten has been operated in 1980 in fulfilment of the 1980/83 JRC Programme Decision. Both reactor operation and utilization data have been met within a few percent of the goals set out in the annual working schedule, in support of a large variety of research programmes. Major improvements to experimental facilities have been introduced during the year and future modernization has been prepared

  6. The response time analysis of high log neutron flux rate for heavy water reactors

    International Nuclear Information System (INIS)

    The heavy water reactor such as Wolssung no. 1 has a protection/safety system named special safety system. The system has four safety systems ; shutdown no. 1, shutdown no. 2, emergency core cooling system and containment system. In this paper, the response time of high log neutron flux rate, one of the reactor trip loops of shutdown no.1/no.2, was analysed based on the description of final safety analysis report and compared to the plant measurement

  7. Measurements of nuclear heating in the Petten High Flux Reactor

    International Nuclear Information System (INIS)

    The knowledge of the magnitude and distribution of the nuclear heating in all positions of the reactor core is an essential basis for the design of irradiation facilities. The principle for determining the nuclear heating is based on the caloric method. The nuclear heating is generated in a small sample suspended in the centre of a He-filled container. Since in steady state condition, the heat generation in the sample equals the heat removal over the gas annulus, the temperature difference is related to the nuclear heating in the sample. This relation is determined by means of an appropriate calibration. Two sets of three calorimeters with different sample materials, stainless steel, aluminium and graphite, are fitted in a measuring probe, which is placed in a thimble. The probe is vertically displacable in the thimble. (Auth.)

  8. The operating experience and incident analysis for High Flux Engineering Test Reactor

    International Nuclear Information System (INIS)

    The paper describes the incidents analysis for High Flux Engineering test reactor (HFETR) and introduces operating experience. Some suggestion have been made to reduce the incidents of HFETR. It is necessary to adopt new improvements which enhance the safety and reliability of operation. (author)

  9. Specifications for high flux isotope reactor fuel elements HFIR-FE-3

    International Nuclear Information System (INIS)

    This specification covers requirements for two types of aluminum-base fuel elements which together will be used as the fuel assembly in the High Flux Isotope Reactor (HFIR). Requirements are included for materials of construction, fabrication, assembly, inspection, and quality control to produce fuel elements in accordance with Company drawings

  10. Simulation of subcooled flow instability for high flux research reactors using the extended code ATHLET

    International Nuclear Information System (INIS)

    Covering the wide range of reactor safety analysis of power reactors, consisting of leak and transients, the thermohydraulic code ATHLET is being developed by the German Society for Plant and Reactor Safety (GRS). In order to extend the application range of the code to the safety analysis of low and medium flux research reactors, a model was developed and implemented permitting a description of the steam formation in the subcooled boiling regime. Considering the specific features of high flux research reactors given by both high heat flux and high flow velocity, further extension to the model of void condensation in subcooled flow has been extended and a new correlation of critical heat flux (CHF) is implemented. To validate the extended program, the thermal-hydraulic test loop (THTL) of oak ridge national laboratory (ORNL) was modeled and an extensive series of experiments concerning the onset of thermohydraulic flow instability (OFI) in subcooled boiling regime were calculated. The comparison between experiments and ATHLET post calculation shows that the extended code can accurately simulate the thermohydraulic conditions of flow instability in a wide range of heat flux up to 15 MW/m2 and inlet flow velocity up to 20 m/s. The thermohydraulic design limit characterized by the mass flux, at which the flow just becomes unstable (OFI), has been predicted in very good agreement with the experiment. However the calculated pressure drop at OFI is overestimated by a maximum deviation of about 25%. The calculated exit bulk temperature of subcooled coolant and the maximum wall temperature at OFI show a maximum deviation from experiment of 12% and 7% respectively. (author)

  11. Final report of the HFIR [High Flux Isotope Reactor] irradiation facilities improvement project

    International Nuclear Information System (INIS)

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987

  12. Next generation fuel irradiation capability in the High Flux Reactor Petten

    International Nuclear Information System (INIS)

    This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.

  13. Simulation of subcooled flow instability for high flux research reactors using the extended code ATHLET

    International Nuclear Information System (INIS)

    Covering the wide range of reactor safety analysis of power reactors, consisting of leak and transients, the thermohydraulic code ATHLET is being developed by the Gesellschaft for Anlagen- und Reaktorsicherheit (GRS-Society for Plant and Reactor Safety) (Lerchel, G., Austregesilo, H., 1998. ATHLET Mode 1.2 Cycle A, User's Manual, GRS-p-1/Vol. 1, Rev. 1, GRS). In order to extend the code's range of application to the safety analysis of research reactors, a model was developed and implemented permitting a description of the steam formation in the subcooled boiling regime (Hainoun, A., 1994. Modellierung des unterkuehlten Siedens in ATHLET und Anwendung in wassergekuehlten Forschungsreaktoren, D 294 Diss. Univ. Bochum, Juel-2961). Considering the specific features of high flux research reactors given by both high heat flux and high flow velocity, the model of void condensation in subcooled flow has been extended and a new correlation of critical heat flux (CHF) is implemented. To validate the extended program, the Thermal-Hydraulic Test Loop (THTL) of Oak Ridge National Laboratory (ORNL) was modeled with ATHLET and an extensive series of experiments concerning the onset of thermohydraulic flow instability (OFI) in subcooled boiling regime were calculated. The comparison between experiments and ATHLET-postcalculation shows that the extended code can accurately simulate the thermohydraulic conditions of flow instability in a wide range of heat flux up to 15 MW m-2 and inlet flow velocity up to 20 m s-1. The thermohydraulic design limit characterized by the mass flux, at which the flow just becomes unstable (OFI), has been predicted in very good agreement with the experiment. However the calculated pressure drop at OFI is overestimated by a maximum deviation of about 25%. The calculated exit bulk temperature of subcooled coolant and the maximum wall temperature at OFI show a maximum deviation from experiment of 12 and 7%, respectively

  14. A conceptual high flux reactor design with scope for use in ADS applications

    Indian Academy of Sciences (India)

    Usha Pal; V Jagannathan

    2007-02-01

    A 100 MWt reactor design has been conceived to support flux level of the order of 1015 n/cm2/s in selected flux trap zones. The physics design considers high enriched metallic alloy fuel in the form of annular plates placed in a D2O moderator tank in a hexagonal lattice arrangement. By choosing a tight lattice pitch in the central region and double the lattice pitch in the outer region, it is possible to have both high fast flux and thermal flux trap zones. By design the flux level in the seed fuel has been kept lower than in the high flux trap zones so that the burning rate of the seed is reduced. Another important objective of the design is to maximize the time interval of refueling. As against a typical refueling interval of a few weeks in such high flux reactor cores, it is desired to maximize this period to as much as six months or even one year. This is possible to achieve by eliminating the conventional control absorbers and replacing them with a suitable amount of fertile material loading in the reactor. Requisite number of seedless thorium–aluminum alloy plates are placed at regular lattice locations vacated by seed fuel in alternate fuel layers. It is seen that these thorium plates are capable of acquiring asymptotic fissile content of 14 g/kg in about 100 days of irradiation at a flux level of 8 × 1014 n/cm2 /s. In summary, the core has a relatively higher fast flux in the central region and high thermal flux in the outer region. The present physics design envisages a flat core excess reactivity for the longest possible cycle length of 6 months to one year. It is also possible to modify the design for constant subcriticality for about the same period or longer duration by considering neutron spallation source at the centre and curtailing the power density in the inner core region by shielding it with a layer of thoria fuel loading.

  15. Job and Task Analysis project at Brookhaven National Laboratory's high flux beam reactor

    International Nuclear Information System (INIS)

    The presenter discussed the Job and Task Analysis (JTA) project conducted at Brookhaven National Laboratory's High Flux Beam Reactor (HFBR). The project's goal was to provide JTA guidelines for use by DOE contractors, then, using the guidelines conduct a JTA for the reactor operator and supervisor positions at the HFBR. Details of the job analysis and job description preparation as well as details of the task selection and task analysis were given. Post JTA improvements to the HFBR training programs were covered. The presentation concluded with a listing of the costs and impacts of the project

  16. Neutron Radiography Facility at IBR-2 High Flux Pulsed Reactor: First Results

    Science.gov (United States)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Rutkauskas, A. V.; Bokuchava, G. D.; Savenko, B. N.; Pakhnevich, A. V.; Rozanov, A. Yu.

    A neutron radiography and tomography facilityhave been developed recently at the IBR-2 high flux pulsed reactor. The facility is operated with the CCD-camera based detector having maximal field of view of 20x20 cm, and the L/D ratio can be varied in the range 200 - 2000. The first results of the radiography and tomography experiments with industrial materials and products, paleontological and geophysical objects, meteorites, are presented.

  17. Advanced Multiphysics Thermal-Hydraulics Models for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Prashant K [ORNL; Freels, James D [ORNL

    2015-01-01

    Engineering design studies to determine the feasibility of converting the High Flux Isotope Reactor (HFIR) from using highly enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL). This work is part of an effort sponsored by the US Department of Energy (DOE) Reactor Conversion Program. HFIR is a very high flux pressurized light-water-cooled and moderated flux-trap type research reactor. HFIR s current missions are to support neutron scattering experiments, isotope production, and materials irradiation, including neutron activation analysis. Advanced three-dimensional multiphysics models of HFIR fuel were developed in COMSOL software for safety basis (worst case) operating conditions. Several types of physics including multilayer heat conduction, conjugate heat transfer, turbulent flows (RANS model) and structural mechanics were combined and solved for HFIR s inner and outer fuel elements. Alternate design features of the new LEU fuel were evaluated using these multiphysics models. This work led to a new, preliminary reference LEU design that combines a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone. Preliminary results of estimated thermal safety margins are presented. Fuel design studies and model enhancement continue.

  18. Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Gehin, Jess C [ORNL

    2009-04-01

    A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.

  19. Approach to development of high flux research reactor with pebble-bed core

    International Nuclear Information System (INIS)

    Full text: The research nuclear reactor of a basin-type IRT with the designed power of 1 MW was put into operation in 'Sosny' settlement not far from Minsk-city in the Republic of Belarus in 1962. In 1971 after its modernization the power was increased up to 4 MW and maximum density of neutron flux in the core was: Thermal 5·1013 neutr./cm2.s Fast (E>0.8 MeV) 2·1013 neutr./cm2.s The reactor has been used for carrying out investigations in the field of solid-state physics, radiation construction materials, radiobiology, gaseous chemically reacting coolants and others. After the Chernobyl NPP accident, in the former USSR the requirements on safety of nuclear reactors have become sufficiently stricter. As to some parameters these requirements became the same as for reactors of nuclear power plants. In this connection the reactor in 'Sosny' settlement did not answer these new requirements by a number of performances such as seismicity of building, efficiency of control and protection system, corrosion in the reactor vessel and others, and it was shutdown in 1987 and its decommissioning was performed during 1988-1999. At the Joint Institute of Power and Nuclear Research -'SOSNY' have been carried out investigations on feasibility of creation of the research reactor with pebble-bed core. The concept of such reactor supposes using the following technical approaches: - Using as fuel the brought sphere micro fuel elements with the diameter of 500-750 mkm to an industrial level; - Organization of reactor operation in the regime with minimum possible fueling with 235U; - Implementation of hydraulic loading - unloading of micro fuel elements with the frequency of one or several days. Physical calculations of the core were carried out with the help of MCU-RFFI program based on the Monte-Carlo method. Two configurations of the pebble-bed core in the high flux reactor have been considered. The first configuration is the core with a neutron trap and an annular fuel layer formed

  20. Proposed fuel pin irradiation facilities for the high flux isotope reactor

    International Nuclear Information System (INIS)

    The Global Nuclear Energy Partnership (GNEP) is proposing to develop a sodium-cooled fast-spectrum reactor (SFR) to transmute and consume actinides from spent nuclear fuel. The proposed fuels include metal and oxide forms mixed actinides (U-Np-Pu-Am-Cm) as well as target concepts with perhaps both Am-Cm. The High Flux Isotope Reactor (HFIR) was built for the purpose of transmuting plutonium to various higher actinides including Am, Cm, and Cf Since a fast-spectrum irradiation facility does not exist in the United States, HFIR can fulfill a first step in the GNEP- mission that being to establish a near-term domestic capability to irradiate materials in a fast neutron spectrum. Modifications to the HFIR central target region to accomplish this goal are described. A second ongoing project for HFIR is to design capsules and installation tools and procedures to irradiate short rods of innovative nuclear fuel types and cladding materials under prototypic light water reactor (LWR) operating conditions at an accelerated rate relative to expected reactor performance. This second proposal would be for a facility representative of thermal reactor conditions rather than the GNEP concept. In order to maintain power densities within the fuel at levels normally seen by LWR reactors, an entirely new experiment and test capsule design will be needed. (authors)

  1. Evaluation of HFIR [High Flux Isotope Reactor] pressure-vessel integrity considering radiation embrittlement

    International Nuclear Information System (INIS)

    The High Flux Isotope Reactor (HFIR) pressure vessel has been in service for 20 years, and during this time, radiation damage was monitored with a vessel-material surveillance program. In mid-November 1986, data from this program indicated that the radiation-induced reduction in fracture toughness was greater than expected. As a result, a reevaluation of vessel integrity was undertaken. Updated methods of fracture-mechanics analysis were applied, and an accelerated irradiations program was conducted using the Oak Ridge Research Reactor. Results of these efforts indicate that (1) the vessel life can be extended 10 years if the reactor power level is reduced 15% and if the vessel is subjected to a hydrostatic proof test each year; (2) during the 10-year life extension, significant radiation damage will be limited to a rather small area around the beam tubes; and (3) the greater-than-expected damage rate is the result of the very low neutron flux in the HFIR vessel relative to that in samples of material irradiated in materials-testing reactors (a factor of ∼104 less), that is, a rate effect

  2. External event probabilistic risk assessment for the High Flux Isotope Reactor (HFIR)

    International Nuclear Information System (INIS)

    The High Flux Isotope Reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988 a level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 x 10-4. In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic, wind, and fires. The overall external event contribution to core damage frequency is about 50% of the internal event initiated contribution and is dominated by seismic events

  3. Optimization of Depletion Modeling and Simulation for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Betzler, Benjamin R [ORNL; Ade, Brian J [ORNL; Chandler, David [ORNL; Ilas, Germina [ORNL; Sunny, Eva E [ORNL

    2015-01-01

    Monte Carlo based depletion tools used for the high-fidelity modeling and simulation of the High Flux Isotope Reactor (HFIR) come at a great computational cost; finding sufficient approximations is necessary to make the use of these tools feasible. The optimization of the neutronics and depletion model for the HFIR is based on two factors: (i) the explicit representation of the involute fuel plates with sets of polyhedra and (ii) the treatment of depletion mixtures and control element position during depletion calculations. A very fine representation (i.e., more polyhedra in the involute plate approximation) does not significantly improve simulation accuracy. The recommended representation closely represents the physical plates and ensures sufficient fidelity in regions with high flux gradients. Including the fissile targets in the central flux trap of the reactor as depletion mixtures has the greatest effect on the calculated cycle length, while localized effects (e.g., the burnup of specific isotopes or the power distribution evolution over the cycle) are more noticeable consequences of including a critical control element search or depleting burnable absorbers outside the fuel region.

  4. Calculation of critical experiment parameters for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Six critical experiments were performed shortly before the initial ascension to power of the High Flux Isotope Reactor (HFIR). Critical configurations were determined at various control rod positions by varying the soluble boron content in the light water coolant. Calculated k-effective was 2% high at beginning-of-life (BOL) typical conditions, but was 1.0 at end-of-life (EOL) typical conditions. Axially averaged power distributions for a given radial location were frequently within experimental error. At specific r,z locations with the core, the calculated power densities were significantly different from the experimentally derived values. A reassessment of the foil activation data seems desirable

  5. Proposed Fuel Pin Irradiation Facilities for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    The Global Nuclear Energy Partnership (GNEP) is proposing to develop a sodium-cooled fast-spectrum reactor (SFR) to transmute and consume actinides from spent nuclear fuel. The proposed fuels include metal and oxide mixed actinides (U-Np-Pu-Am-Cm) as well as target concepts with perhaps only Am-Cm. The High Flux Isotope Reactor was built for the purpose of transmuting plutonium to various higher actinides including Am, Cm, and Cf. Since a fast-spectrum irradiation facility does not exist in the United States, HFIR can fulfill a first step in the GNEP mission; that being to establish a near-term capability to irradiate materials in a fast neutron spectrum in addition to efforts to gain access to international facilities through partnering arrangements. Modifications to the HFIR central target region to accomplish this goal are described. A second on-going project for HFIR is to design capsules and installation tools and procedures to irradiate short rods of innovative nuclear fuel types and cladding materials under prototypic LWR operating conditions at an accelerated rate relative to expected reactor performance. This second proposal would be for a facility representative of thermal reactor conditions rather than the GNEP concept. In order to maintain power densities within the fuel at levels normally seen by LWR reactors, an entirely new experiment and test capsule design will be needed than has been available in the past

  6. Establishing Specifications for Low Enriched Uranium Fuel Operations Conducted Outside the High Flux Isotope Reactor Site

    Energy Technology Data Exchange (ETDEWEB)

    Pinkston, Daniel [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL

    2010-10-01

    The National Nuclear Security Administration (NNSA) has funded staff at Oak Ridge National Laboratory (ORNL) to study the conversion of the High Flux Isotope Reactor (HFIR) from the current, high enriched uranium fuel to low enriched uranium fuel. The LEU fuel form is a metal alloy that has never been used in HFIR or any HFIR-like reactor. This report provides documentation of a process for the creation of a fuel specification that will meet all applicable regulations and guidelines to which UT-Battelle, LLC (UTB) the operating contractor for ORNL - must adhere. This process will allow UTB to purchase LEU fuel for HFIR and be assured of the quality of the fuel being procured.

  7. Reactor D and D at Argonne National Laboratory - lessons learned

    International Nuclear Information System (INIS)

    This paper focuses on the lessons learned during the decontamination and decommissioning (D and D) of two reactors at Argonne National Laboratory-East (ANL-E). The Experimental Boiling Water Reactor (EBWR) was a 100 MW(t), 5 MSV(e) proof-of-concept facility. The Janus Reactor was a 200 kW(t) reactor located at the Biological Irradiation Facility and was used to study the effects of neutron radiation on animals

  8. Response of materials to high heat fluxes during operation in fusion reactors

    International Nuclear Information System (INIS)

    Very high energy deposition on first wall and other components of a fusion reactor is expected due to plasma instabilities during both normal and off-normal operating conditions. Off-normal operating conditions result from plasma disruptions where the plasma loses confinement and dumps its energy on the reactor components. High heat flux may also result from normal operating conditions due to fluctuations in plasma edge conditions. This high energy dump in a short time results in very high surface temperatures and may consequently cause melting and vaporization of these materials. The net erosion rates resulting from melting and vaporization are very important to estimate the lifetime of such components. The response of different candidate materials to this high heat fluxes is determined for different energy densities and deposition times. The analysis used a previously developed model to solve the heat conduction equation in two moving boundaries. One moving boundary is at the surface to account for surface recession due to vaporization and the second moving boundary is to account for the solid-liquid interface inside the material. The calculations are done parametrically for both the expected energy deposited and the deposition time. These ranges of energy and time are based on recent experimental observations in current fusion devices. The candidate materials analyzed are stainless steel, carbon, and tungsten. 8 refs., 9 figs

  9. Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element

    International Nuclear Information System (INIS)

    The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results are related to the existing models and a mechanistic model for the ''annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs

  10. Dynamic response of the high flux isotope reactor structure caused by nearby heavy load drop

    International Nuclear Information System (INIS)

    A heavy load of 50,000 lb is assumed to drop from 10 ft above the bottom of the High Flux Isotope Reactor (HFIR) pool at the loading station. The consequences of the dynamic impact to the bottom slab of the pool and to the nearby HFIR reactor vessel are analyzed by applying the ABAQUS computer code The results show that both the BM vessel structure and its supporting legs are subjected to elastic disturbances only and, therefore, will not be damaged. The bottom slab of the pool, however, will be damaged to about half of the slab thickness. The velocity response spectrum at the concrete floor next to the HFIR vessel as a result of the vibration caused by the impact is obtained. It is concluded, that the damage caused by heavy load drop at the loading station is controlled by the slab damage and the nearby HFIR vessel and the supporting legs will not be damaged

  11. Facility modification for severe accident mitigation at the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    As a part of the recently completed Safety Analysis Report (SAR) for the High Flux Isotope Reactor (HFIR), a detailed MELCOR model was developed for use in the analysis of selected events that lead to core damage. This detailed MELCOR model included the HFIR's reactor coolant system, dynamic confinement, building and yard piping, and a model of the outside waste collection storage tanks. Analyses of several accident sequences involving large breaks in the cold leg piping in the heat exchanger cells and pipe tunnel were conducted with the model. From the results of these simulations, a need for modification of the HFIR confinement was identified. These confinement modifications resulted in over a 12 hour delay in the release of primary system water (an any fission products it contains) outside of the HFIR confinement. This delay would provide valuable time to prevent or mitigate any releases to the environment due to a break in the primary system of the HFIR

  12. High resolution powder neutron diffraction at a low-flux reactor

    International Nuclear Information System (INIS)

    Complete text of publication follows. The high resolution powder neutron diffractometer, PUS, was installed at the 2 MW JEEP II reactor at Institute for Energy Technology, Kjeller in 1997. Flexibility and optimisation of the relationship between intensity (signal/noise ratio) and resolution were keywords for the design of the instrument [1]. Wavelengths in the range 0.7 - 2.6 A are available from the focussing composite Ge monochromator. Different Soller slit collimators in the incident neutron beam allow either a high resolution or a high intensity mode. The detector system consists of two units position units, each covering 20 deg in 2Θ, and a complete 120 degrees powder pattern are collected from measurements with the detector-units in three different positions. The presentation focus is on some selected examples, like crystal and magnetic structures of metal hydrides, high TC-superconductors and perovskite related oxides, to show the potential of high resolution powder neutron diffraction at a low-flux reactor, like the JEEP II reactor at Kjeller. (author) [1] B.C. Hauback, H. Fjellvag, O. Steinsvoll, K. Johansson, O.T. Buset and J. Jorgensen, to be submitted (1999)

  13. Calculations for HFIR [High Flux Isotope Reactor] fuel plate non- bonding and fuel segregation uncertainty factors

    International Nuclear Information System (INIS)

    The effects of non-bonds and of fuel segregation on the package factors of the heat flux in the High Flux Isotope Reactor (HFIR) are examined. The effects of the two defects are examined both separately and together. It is concluded that the peaking factors that are used in the present HFIR thermal analysis code are conservative and thus no changes in the peaking factors are necessary to continue to ensure that HFIR is safe. A study was made of the effect of the non-bond spot diameter on the peaking factor. The conclusion is that the spot can have diameter more than three times the maximum value allowed by the specifications before the peaking factor is greater than the maximum value specified in the present HFIR thermal analysis code. 6 refs., 7 figs., 8 tabs

  14. Alize 3 - first critical experiment for the franco-german high flux reactor - calculations

    International Nuclear Information System (INIS)

    The results of experiments in the light water cooled D2O reflected critical assembly ALIZE III have been compared to calculations. A diffusion model was used with 3 fast and epithermal groups and two overlapping thermal groups, which leads to good agreement of calculated and measured power maps, even in the case of strong variations of the neutron spectrum in the core. The difference of calculated and measured keff was smaller than 0.5 per cent δk/k. Calculations of void and structure material coefficients of the reactivity of 'black' rods in the reflector, of spectrum variations (Cd-ratio, Pu-U-ratio) and to the delayed photoneutron fraction in the D2O reflector were made. Measurements of the influence of beam tubes on reactivity and flux distribution in the reflector were interpreted with regard to an optimum beam tube arrangement for the Franco- German High Flux Reactor. (author)

  15. The method of life extension for the High Flux Isotope Reactor vessel

    International Nuclear Information System (INIS)

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in the nil ductility temperature (NDT). This temperature is sometimes referred to as the brittle-ductile transition temperature (DBT) for fracture. The life extension of the High Flux Isotope Reactor (HFIR) vessel is calculated by using the method of fracture mechanics. A hydrostatic pressure test (hydrotest) is performed in order to determine a safe vessel static pressure. It is then followed by using fracture mechanics to project the reactor life from the safe hydrostatic pressure. The life extension calculation provides the following information on the remaining life of the reactor as a function of the nil ductility temperature increase: (1) the probability of vessel fracture due to hydrotest vs vessel life at several hydrotest pressures, (2) the hydrotest time interval vs the uncertainty of the nil ductility temperature increase rate, and (3) the hydrotest pressure vs the uncertainty of the nil ductility temperature increase rate. It is understood that the use of a complete range of uncertainties of the nil ductility temperature increase is equivalent to the entire range of radiation damage that can be experienced by the vessel steel. From the numerical values for the probabilities of the vessel fracture as a result of hydrotest, it is estimated that the reactor vessel life can be extended up to 50 EFPY (100 MW) with the minimum vessel operating temperature equal to 85 F

  16. Estimation of HFIR [High-Flux Isotope Reactor] core flow rate using a back propagation network

    International Nuclear Information System (INIS)

    The corrosion of aluminum dispersion fuel of Oak Ridge National Laboratory's High-Flux Isotope Reactor (HFIR) has recently been under review. The surface temperature of the fuel under high-flux conditions increases as the oxide layer grows or crud deposits on the fuel. This additional temperature rise in turn speeds the oxide buildup creating an unstable situation. Since the low thermal conductivity of the corrosion product film may compromise the thermal limits of the reactor, and also, erosion of the aluminum plates may lead to leakage of fission products from the plates, a careful monitoring of corrosion would be useful for the HFIR. In addition, an examination of HFIR operating data indicates that excessive corrosion has a noticeable effect on core flow rate and pressure drop. Typically, as the thickness of oxide layer increases, the flow rate gradually decreases and the pressure drop increases; therefore, it has been recommended that the core pressure drop and flow characteristics be monitored during each fuel cycle. The purpose of this study is to investigate the feasibility of applying neural networks to predict the flow rate in the HFIR core using a set of other HFIR operating data. The back propagation network (BPN) is a multilayer, fully connected heteroassociative network. During the training stage, the BPN learning algorithm computes the weights between pairs such that the difference between the actual output and the network output is minimized in a least-squares sense

  17. Status of FeCrAl ODS Irradiations in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuel Cycle Research and Development (FCRD)

    2016-08-19

    FeCrAl oxide-dispersion strengthened (ODS) alloys are an attractive sub-set alloy class of the more global FeCrAl material class for nuclear applications due to their high temperature steam oxidation resistance and hypothesized enhanced radiation tolerance. A need currently exists to determine the radiation tolerance of these newly developed alloys. To address this need, a preliminary study was conducted using the High Flux Isotope Reactor (HFIR) to irradiate an early generation FeCrAl ODS alloy, 125YF. Preliminary post-irradiation examination (PIE) on these irradiated specimens have shown good radiation tolerance at elevated temperatures (≥330°C) but possible radiation-induced hardening and embrittlement at irradiations of 200°C to a damage level of 1.9 displacement per atom (dpa). Building on this experience, a new series of irradiations are currently being conceptualized. This irradiation series called the FCAD irradiation program will irradiate the latest generation FeCrAl ODS and FeCr ODS alloys to significantly higher doses. These experiments will provide the necessary information to determine the mechanical performance of irradiated FeCrAl ODS alloys at light water reactor and fast reactor conditions.

  18. Remote dismantlement activities for the Argonne CP-5 Research Reactor

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE's) Robotics Technology Development Program (RTDP) is participating in the dismantlement of a mothballed research reactor, Chicago Pile Number 5 (CP-5), at Argonne National Laboratory (ANL) to demonstrate technology developed by the program while assisting Argonne with their remote system needs. Equipment deployed for CP-5 activities includes the dual-arm work platform (DAWP), which will handle disassembly of reactor internals, and the RedZone Robotics-developed 'Rosie' remote work vehicle, which will perform size reduction of shield plugs, demolition of the biological shield, and waste packaging. Remote dismantlement tasks are scheduled to begin in February of 1997 and to continue through 1997 and beyond

  19. Loading beryllium targets to extend the high flux isotope reactor's cycle length

    International Nuclear Information System (INIS)

    Various arrangements of beryllium loadings to create an internal neutron reflector in the flux trap region of the Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) have been investigated. In particular, the impact upon fuel cycle length has been studied by performing calculations using the HFIR MCNP-based model HFV4.0. This study included examining perturbations in reactivity, flux, and power distribution caused by the various beryllium loadings. The HFIR Cycle 400 core configuration was used as a reference to calculate the impact of beryllium loadings upon cycle length. Three different configurations of beryllium loadings were investigated and compared against the Cycle 400 benchmark calculations; Cases 1 through 3 modeled combinations of 12 and 18 beryllium rods loaded into unused experimental sites. Calculated eigenvalues have shown that potential increases in reactivity between 0.56 and 0.79 dollars are attainable, depending on the various beryllium configurations. These results correspond to possible increases in fuel cycle length ranging between 2.3% and 3.3%. On the basis of their practicality, cost versus benefit, and greater potential for implementation, Cases 2 and 3 (both with 18 beryllium rods) were studied further and are herein reported in greater detail. Neutron flux distributions for Cases 2 and 3 were calculated at the horizontal mid-plane of the flux trap region, which showed no significant changes in the thermal flux magnitude and radial profile in comparison to Cycle 400. Likewise, safety analysis related parameters were contrasted, revealing power increments of up to 2% near the inside edge of the inner fuel element, well below the maximum acceptable value of 9%, a standing guideline employed for experiments at the HFIR. Additionally, the average neutron heat generation rate in beryllium rods and the maximum heat generation rate were evaluated to confirm that the design provides adequate coolant flow inside the rod and around the

  20. Total quality management for addressing suspect parts at the Oak Ridge High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Martin Marietta Energy System (MMES) Research Reactors Division (RRD), operator of the High Flux Isotope Reactor (HFIR) recently embarked on an aggressive Program to address the issue of suspect Parts and to enhance their procurement process. Through the application of TQM process improvement, RRD has already achieved improved efficiency in specifying, procuring, and accepting replacement items for its largest research reactor. These process improvements have significantly decreased the risk of installing suspect parts in the HFIR safety systems. To date, a systematic plan has been implemented, which includes the following elements: Process assessment and procedure review; Procedural enhancements; On-site training and technology transfer; Enhanced receiving inspections; Performance supplier evaluations and source verifications integrated processes for utilizing commercial grade products in nuclear safety-related applications. This paper will describe the above elements, how a partnership between MMES and Gilbert/Commonwealth facilitated the execution of the plan, and how process enhancements were applied. We will also present measures for improved efficiency and productivity, that MMES intends to continually address with Quality Action Teams

  1. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  2. Calculational study on irradiation of americium fuel samples in the Petten High Flux Reactor

    International Nuclear Information System (INIS)

    A calculational study on the irradiation of americium samples in the Petten High Flux Reactor (HFR) has been performed. This has been done in the framework of the international EFTTRA cooperation. For several reasons the americium in the samples is supposed to be diluted with a neutron inert matrix, but the main reason is to limit the power density in the sample. The low americium nuclide density in the sample (10 weight % americium oxide) leads to a low radial dependence of the burnup. Three different calculational methods have been used to calculate the burnup in the americium sample: Two-dimensional calculations with WIMS-6, one-dimensional calculations with WIMS-6, and one-dimensional calculations with SCALE. The results of the different methods agree fairly well. It is concluded that the radiotoxicity of the americium sample can be reduced upon irradiation in our scenario. This is especially the case for the radiotoxicity between 100 and 1000 years after storage. (orig.)

  3. Large break loss-of-coolant accident analyses for the high flux isotope reactor

    International Nuclear Information System (INIS)

    The US Department of Energy's High Flux Isotope Reactor (HFIR) was analyzed to evaluate it's response to a spectrum of loss-of-coolant accidents (LOCAs) with potential for leading to core damage. The MELCOR severe accident analysis code (version 1.7.1) was used to evaluate the overall dynamic response of HFIR. Before conducting LOCA analyses, the steady-state thermal-hydraulic parameters evaluated by MELCOR for various loop sections were verified against steady-state operating data. Thereafter, HFIR depressurization tests were simulated to evaluate the system pressure change for a given depletion in coolant inventory. Interesting and important safety-related phenomena were observed. The current analyses (which should be considered preliminary) that occur over a period from 1 to 3 seconds do not lead to core wide fuel melting. Core fluid flashing during the initial rapid depressurization does cause fuel temperature excursions due to adiabatic-like heatup. 3 refs., 4 figs

  4. Efforts to Reduce Radioactive Wastes at High Flux Advanced Neutron Application Reactor (HANARO) in Korea

    International Nuclear Information System (INIS)

    The High-flux Advanced Neutron Application Reactor (HANARO) has the equipment to treat the gaseous radioactive waste generated within itself but it does not have proper ways to treat the waste in either a liquid or solid form. For the last 5 years, every effort has been made to reduce the radioactive wastes in HANARO. Improvements of the equipment and operating procedures regarding the generation of radioactive waste in the field have resulted in an effective reduction of the radioactive waste. In addition, as an outgrowth of the research efforts in connection with the demand in the field, several new methods have been developed to effectively treat the radioactive waste. Efforts to reduce and treat the radioactive waste in HANARO will continue and that will contribute greatly to an improvement of the reliability and safety of HANARO. (authors)

  5. Aging, maintenance and modernization of instrumentation at the ORNL High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    This paper describes actions taken at ORNL to upgrade and modernize systems associated with the High Flux Isotope Reactor (HFIR). Three systems are described. The first is a redesigned resistance temperature device commonly used as a temperature detector at HFIR. The aging of existing devices, and lack of spare devices prompted the redesign of new temperature sensors which used commercial grade sensors in a redesigned assembly which allows easier maintenance. The second is a newly designed neutron detector system to replace existing aging devices. The new design uses commercial ionization chambers, in a cheaper, simpler, and less complicated design which could fit in the previous space, and provide monitoring for control and for protection. The third is the development and implementation of a new test procedure for checking the safety performance of the magnetic safety rod release system. This new procedure allows for electronic testing of the modules with considerably lessened chances that a rod will be dropped during the weekly testing

  6. The High Flux Isotope Reactor (HFIR) cold source project at ORNL

    International Nuclear Information System (INIS)

    Following the decision to cancel the Advanced Neutron Source (ANS) Project at Oak Ridge National Laboratory (ORNL), it was determined that a hydrogen cold source should be retrofitted into an existing beam tube of the High Flux Isotope Reactor (HFIR) at ORNL. The preliminary design of this system has been completed and an 'approval in principle' of the design has been obtained from the internal ORNL safety review committees and the U.S. Department of Energy (DOE) safety review committee. The cold source concept is basically a closed loop forced flow supercritical hydrogen system. The supercritical approach was chosen because of its enhanced stability in the proposed high heat flux regions. Neutron and gamma physics of the moderator have been analyzed using the 3D Monte Carlo code MCNP1 A D structural analysis model of the moderator vessel, vacuum tube, and beam tube was completed to evaluate stress loadings and to examine the impact of hydrogen detonations in the beam tube. A detailed ATHENA2 system model of the hydrogen system has been developed to simulate loop performance under normal and off-normal transient conditions. Semi-prototypic hydrogen loop tests of the system have been performed at the Arnold Engineering Design Center (AEDC) located in Tullahoma, Tennessee to verify the design and benchmark the analytical system model. A 3.5 kW refrigerator system has been ordered and is expected to be delivered to ORNL by the end of this calendar year. Our present schedule shows the assembling of the cold source loop on site during the fall of 1999 for final testing before insertion of the moderator plug assembly into the reactor beam tube during the end of the year 2000. (author)

  7. Elaboration of mini plates with U-Mo for irradiation in a high flux reactor

    International Nuclear Information System (INIS)

    Full text: International new efforts for the reconversion of HEU in research, testing and radioisotopes production reactors, have greatly incremented U-Mo fuels qualification activities. These qualifications require the resolution of undesired interaction at high fluxes between UMo particles and the aluminum matrix in the case of dispersed fuels and the development of U-Mo monolithic fuels. These efforts are being manifested in the planning and execution of additional series of irradiation tests of mini plates and full size plates. Recently, CNEA has elaborated mini plates with different proposals for the irradiation at the ATR reactor (250 MWTH, maximum thermal neutron flux 1015 n.cm-2.seg-1) at Idaho National Laboratory, USA. Uranium 7% (w/w) molybdenum (U-7Mo) particles were coated with silicon. Chemical vapour deposition (CVD) of silane and high temperature diffusion of silicon were used. Hydrided, milled and dehydrated (HMD) particles heat treated at 1000 C degrees during four hours and centrifugal atomized powder were coated and the results compared. Mini plates were elaborated with both kinds of particles. Mini plates were also elaborated with U-7Mo and silicon particles dispersed in the aluminium matrix. Monolithic mini plates were also developed by co lamination of U-7Mo with a Zircaloy-4 cladding. The different steps of this process are detailed and the method is shown to be versatile, can be easily scaled up and is performed with small modifications of usual equipment in fuel plants. The irradiation experiment is called RERTR-7A, includes a total of 32 mini plates and it is planed to finalize by mid 2006. (author)

  8. Reactor Physics Studies of Reduced-Tantaulum-Content Control and Safety Elements for the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Some of the unirradiated High Flux Isotope Reactor (HFIR) control elements discharged during the late 1990s were observed to have cladding damage--local swelling or blistering. The cladding damage was limited to the tantalum/europium interface of the element and is thought to result from interaction of hydrogen and europium to form a compound of lower density than europium oxide, thus leading to a ''blistering'' of the control plate cladding. Reducing the tantalum loading in the control plates should help preclude this phenomena. The impact of the change to the control plates on the operation of the reactor was assessed. Regarding nominal, steady-state reactor operation, the impact of the change in the power distribution in the core due to reduced tantalum content was calculated and found to be insignificant. The magnitude and impact of the change in differential control element worth was calculated, and the differential worths of reduced tantalum elements vs the current elements from equivalent-burnup critical configurations were determined to be unchanged within the accuracy of the computational method and relevant experimental measurements. The location of the critical control elements symmetric positions for reduced tantalum elements was found to be 1/3 in. less withdrawn relative to existing control elements regardless of the value of fuel cycle burnup (time in the fuel cycle). The magnitude and impact of the change in the shutdown margin (integral rod worth) was assessed and found to be unchanged. Differential safety element worth values for the reduced-tantalum-content elements were calculated for postulated accident conditions and were found to be greater than values currently assumed in HFIR safety analyses

  9. Power Distribution Analysis for the ORNL High Flux Isotope Reactor Critical Experiment 3

    International Nuclear Information System (INIS)

    The mission of the Reduced Enrichment for Research and Test Reactors Program is to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civilian nuclear applications by working to convert research and test reactors, as well as radioisotope production processes, to low-enriched uranium (LEU) fuel and targets. Oak Ridge National Laboratory (ORNL) is currently reviewing the design bases and key operating criteria including fuel operating parameters, enrichment-related safety analyses, fuel performance, and fuel fabrication in regard to converting the fuel of the High Flux Isotope Reactor (HFIR) from HEU to LEU. The purpose of this study is to validate Monte Carlo methods currently in use for conversion analyses. The methods have been validated for the prediction offlux values in the reactor target, reflector, and beam tubes, but this study focuses on the prediction of the power density profile in the core. Power distributions were calculated in the fuel elements of the HFIR, a research reactor at ORNL, via MCNP and were compared to experimentally obtained data. This study was performed to validate Monte Carlo methods for power density calculations and to observe biases. A current three-dimensional MCNP model was modified to replicate the 1965 HFIR Critical Experiment 3 (HFIRCE-3). In this experiment, the power profile was determined by counting the gamma activity at selected locations in the core. 'Foils' (chunks of fuel meat and clad) were punched out of the fuel elements in HFIRCE-3 following irradiation, and experimental relative power densities were obtained by measuring the activity of these foils and comparing each foil's activity to the activity of a normalizing foil. This analysis consisted of calculating corresponding activities by inserting volume tallies into the modified MCNP model to represent the punchings. The average fission density was calculated for each foil location and then normalized to the reference foil

  10. Water flow characteristics of Baumkuchen type fuel elements for Kyoto University high neutron flux reactor

    International Nuclear Information System (INIS)

    The Kyoto University high neutron flux reactor is a light water-moderated and cooled, divided core type reactor with heavy water reflector. In the core, six inside fuel elements and twelve outside fuel elements are arranged in double ring form, and two cylindrical, divided cores are placed at 15 cm distance. The flow rate distribution and pressure loss in the fuel elements constitute the base of the thermo-hydraulic design of the core, therefore the model fuel elements of full size were made, and the water flow experiment was carried out to examine their characteristics. It was found that the flow velocity in channels was strongly affected by the accuracy of channel gaps. The calculation of pressure loss in fuel elements, the experiments on inside fuel elements and outside fuel elements, and the results of experiments such as the calibration of the cooling channels in outside fuel elements, the relation between total flow rate and pressure loss, and the characteristics of flow at the time of reverse flow are reported. The general characteristics of flow in fuel elements were in good agreement with the prediction. In the pressure loss in fuel elements, the friction between fuel plates and the resistance of nozzles were the controlling factors under the rated operating conditions of the HFR. (Kako, I.)

  11. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Koyanagi, Takaaki [ORNL; Kiggans, Jim [ORNL; Cetiner, Nesrin [ORNL; McDuffee, Joel [ORNL

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  12. Application of expert systems to heat exchanger control at the 100-megawatt high-flux isotope reactor

    International Nuclear Information System (INIS)

    The High-Flux Isotope Reactor (HFIR) is a 100-MW pressurized water reactor at the Oak Ridge National Laboratory. It is used to produce isotopes and as a source of high neutron flux for research. Three heat exchangers are used to remove heat from the reactor to the cooling towers. A fourth heat exchanger is available as a spare in case one of the operating heat exchangers malfunctions. It is desirable to maintain the reactor at full power while replacing the failed heat exchanger with the spare. The existing procedures used by the operators form the initial knowledge base for design of an expert system to perform the switchover. To verify performance of the expert system, a dynamic simulation of the system was developed in the MACLISP programming language. 2 refs., 3 figs

  13. A Level 1+ Probabilistic Safety Assessment of the High Flux Australian Reactor. Vol 1

    International Nuclear Information System (INIS)

    The Department of Industry, Science and Tourism selected PLG, an EQE International Company, to systematically and independently evaluate the safety of the High Flux Australian Reactor (HIFAR), located at Lucas Heights, New South Wales. PLG performed a comprehensive probabilistic safety assessment (PSA) to quantify the risks posed by operation of HIFAR . The PSA identified possible accident scenarios, estimated their likelihood of occurrence, and assigned each scenario to a consequence category; i.e., end state. The accident scenarios developed included the possible release of radioactive material from irradiated nuclear fuel and of tritium releases from reactor coolant. The study team developed a recommended set of safety criteria against which the results of the PSA may be judged. HIFAR was found to exceed one of the two primary safety objectives and two of the five secondary safety objectives. Reactor coolant leaks, earthquakes, and coolant pump trips were the accident initiators that contributed most to scenarios that could result in fuel overheating. Scenarios initiated by earthquakes were the reason the frequency criterion for the one primary safety objective was exceeded. Overall, the plant safety status has been shown to be generally good with no evidence of major safety-related problems from its operation. One design deficiency associated with the emergency core cooling system was identified that should be corrected as soon as possible. Additionally, several analytical issues have been identified that should be investigated further. The results from these additional investigations should be used to determine whether additional plant and procedural changes are required, or if further evaluations of postulated severe accidents are warranted. Supporting information can be found in Appendix A for the seismic analysis and in the Appendix B for selected other external events

  14. Probability of fracture and life extension estimate of the high-flux isotope reactor vessel

    International Nuclear Information System (INIS)

    The state of the vessel steel embrittlement as a result of neutron irradiation can be measured by its increase in ductile-brittle transition temperature (DBTT) for fracture, often denoted by RTNDT for carbon steel. This transition temperature can be calibrated by the drop-weight test and, sometimes, by the Charpy impact test. The life extension for the high-flux isotope reactor (HFIR) vessel is calculated by using the method of fracture mechanics that is incorporated with the effect of the DBTT change. The failure probability of the HFIR vessel is limited as the life of the vessel by the reactor core melt probability of 10-4. The operating safety of the reactor is ensured by periodic hydrostatic pressure test (hydrotest). The hydrotest is performed in order to determine a safe vessel static pressure. The fracture probability as a result of the hydrostatic pressure test is calculated and is used to determine the life of the vessel. Failure to perform hydrotest imposes the limit on the life of the vessel. The conventional method of fracture probability calculations such as that used by the NRC-sponsored PRAISE CODE and the FAVOR CODE developed in this Laboratory are based on the Monte Carlo simulation. Heavy computations are required. An alternative method of fracture probability calculation by direct probability integration is developed in this paper. The present approach offers simple and expedient ways to obtain numerical results without losing any generality. In this paper, numerical results on (1) the probability of vessel fracture, (2) the hydrotest time interval, and (3) the hydrotest pressure as a result of the DBTT increase are obtained

  15. A Level 1+ Probabilistic Safety Assessment of the High Flux Australian Reactor. Vol 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Department of Industry, Science and Tourism selected PLG, an EQE International Company, to systematically and independently evaluate the safety of the High Flux Australian Reactor (HIFAR), located at Lucas Heights, New South Wales. PLG performed a comprehensive probabilistic safety assessment (PSA) to quantify the risks posed by operation of HIFAR . The PSA identified possible accident scenarios, estimated their likelihood of occurrence, and assigned each scenario to a consequence category; i.e., end state. The accident scenarios developed included the possible release of radioactive material from irradiated nuclear fuel and of tritium releases from reactor coolant. The study team developed a recommended set of safety criteria against which the results of the PSA may be judged. HIFAR was found to exceed one of the two primary safety objectives and two of the five secondary safety objectives. Reactor coolant leaks, earthquakes, and coolant pump trips were the accident initiators that contributed most to scenarios that could result in fuel overheating. Scenarios initiated by earthquakes were the reason the frequency criterion for the one primary safety objective was exceeded. Overall, the plant safety status has been shown to be generally good with no evidence of major safety-related problems from its operation. One design deficiency associated with the emergency core cooling system was identified that should be corrected as soon as possible. Additionally, several analytical issues have been identified that should be investigated further. The results from these additional investigations should be used to determine whether additional plant and procedural changes are required, or if further evaluations of postulated severe accidents are warranted. Supporting information can be found in Appendix A for the seismic analysis and in the Appendix B for selected other external events refs., 139 tabs., 85 figs. Prepared for Department of Industry, Science and Tourism

  16. Irradiation effects in fused quartz 'Suprasil' as a detector of fission fragments under high flux of reactor neutrons

    International Nuclear Information System (INIS)

    A systematic study about the registration characteristics of synthetic fused quartz 'Suprasil I' use as a detector of fission fragments under high flux of reactor neutrons and the effects of irradiation on it was performed. Fission fragments of 252Cf, gamma radiation doses of of 60Co up to 150 MGy, and integrated neutrons fluxes up to 1020 n/cm2 were used. A model to explain the effects on track registration and development characteristics of 'Suprasil I' irradiated on reactors were proposed, based on the obtained results for efficiency an for annealing. (C.G.C.)

  17. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    International Nuclear Information System (INIS)

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration/Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  18. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Guida, Tracey [University of Pittsburgh

    2010-02-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration /Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  19. Job/task analysis for I ampersand C [Instrumentation and Controls] instrument technicians at the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    To comply with Department of Energy Order 5480.XX (Draft), a job/task analysis was initiated by the Maintenance Management Department at Oak Ridge National Laboratory (ORNL). The analysis was applicable to instrument technicians working at the ORNL High Flux Isotope Reactor (HFIR). This document presents the procedures and results of that analysis. 2 refs., 2 figs

  20. Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Selby, Douglas L [ORNL; Bilheux, Hassina Z [ORNL; Meilleur, Flora [ORNL; Jones, Amy [ORNL; Bailey, William Barton [ORNL; Vandergriff, David H [ORNL

    2015-01-01

    This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentation on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very

  1. Modeling and Simulations for the High Flux Isotope Reactor Cycle 400

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Chandler, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Ade, Brian J [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Sunny, Eva E [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Betzler, Benjamin R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR); Pinkston, Daniel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)

    2015-03-01

    A concerted effort over the past few years has been focused on enhancing the core model for the High Flux Isotope Reactor (HFIR), as part of a comprehensive study for HFIR conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel. At this time, the core model used to perform analyses in support of HFIR operation is an MCNP model for the beginning of Cycle 400, which was documented in detail in a 2005 technical report. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed to serve as reference for the design of an LEU fuel for HFIR. The recent enhancements in modeling and simulations for HFIR that are discussed in the present report include: (1) revision of the 2005 MCNP model for the beginning of Cycle 400 to improve the modeling data and assumptions as necessary based on appropriate primary reference sources HFIR drawings and reports; (2) improvement of the fuel region model, including an explicit representation for the involute fuel plate geometry that is characteristic to HFIR fuel; and (3) revision of the Monte Carlo-based depletion model for HFIR in use since 2009 but never documented in detail, with the development of a new depletion model for the HFIR explicit fuel plate representation. The new HFIR models for Cycle 400 are used to determine various metrics of relevance to reactor performance and safety assessments. The calculated metrics are compared, where possible, with measurement data from preconstruction critical experiments at HFIR, data included in the current HFIR safety analysis report, and/or data from previous calculations performed with different methods or codes. The results of the analyses show that the models presented in this report provide a robust and reliable basis for HFIR analyses.

  2. A Review of Proposed Upgrades to the High Flux Isotope Reactor and Potential Impacts to Reactor Vessel Integrity

    International Nuclear Information System (INIS)

    The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) was scheduled in October 2000 to implement design upgrades that include the enlargement of the HB-2 and HB-4 beam tubes. Higher dose rates and higher radiation embrittlement rates were predicted for the two beam-tube nozzles and surrounding vessel areas. ORNL had performed calculations for the upgraded design to show that vessel integrity would be maintained at acceptable levels. Pacific Northwest National Laboratory (PNNL) was requested by the U.S. Department of Energy Headquarters (DOE/HQ) to perform an independent peer review of the ORNL evaluations. PNNL concluded that the calculated probabilities of failure for the HFIR vessel during hydrostatic tests and for operational conditions as estimated by ORNL are an acceptable basis for selecting pressures and test intervals for hydrostatic tests and for justifying continued operation of the vessel. While there were some uncertainties in the embrittlement predictions, the ongoing efforts at ORNL to measure fluence levels at critical locations of the vessel wall and to test materials from surveillance capsules should be effective in dealing with embrittlement uncertainties. It was recommended that ORNL continue to update their fracture mechanics calculations to reflect methods and data from ongoing research for commercial nuclear power plants. Such programs should provide improved data for vessel fracture mechanics calculations.

  3. Temperature dependence of swelling in Type 316 stainless steel irradiated in HFIR [High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    The temperature dependence of swelling was investigated in solution-annealed (SA) and 20% cold-worked (CW) type 316 stainless steel irradiated to 30 dpa at 300 to 6000C in the High Flux Isotope Reactor (HFIR). At irradiation temperatures ≤ 4000C, a high concentration (2 to 4 x 1023 m-3) of small bubbles (1.5 to 4.5 nm diam) formed uniformly in the matrix. Swelling was low (0C. At 5000C, there was a mixture of bubbles and voids, but at 6000C, most of the cavities were voids. Maximum swelling (∼5%) occurred at 5000C. By contrast, cavities in 20% CW specimens were much smaller, with diameters of 6 and 9 nm at 500 and 6000C, respectively, suggesting that they were primarily bubbles. The cavity number density in the CW 316 at both 500 and 6000C (∼1 x 1022 m-3) was about one order of magnitude less than at 4000C. Swelling increased slightly as irradiation temperature increased, peaking at 6000C (0.3%). These results indicate that SA 316 swells more than CW 316 at 500 and 6000C, but both SA and CW 316 are resistant to void swelling in HFIR at 4000C and below to 30 dpa. 15 refs

  4. Extraction of gadolinium from high flux isotope reactor control plates. [Alternative method

    Energy Technology Data Exchange (ETDEWEB)

    Kohring, M.W.

    1987-04-01

    Gadolinium-153 is an important radioisotope used in the diagnosis of various bone disorders. Recent medical and technical developments in the detection and cure of osteoporosis, a bone disease affecting an estimated 50 million people, have greatly increased the demand for this isotope. The Oak Ridge National Laboratory (ORNL) has produced /sup 153/Gd since 1980 primarily through the irradiation of a natural europium-oxide powder followed by the chemical separation of the gadolinium fraction from the europium material. Due to the higher demand for /sup 153/Gd, an alternative production method to supplement this process has been investigated. This process involves the extraction of gadolinium from the europium-bearing region of highly radioactive, spent control plates used at the High Flux Isotope Reactor (HFIR) with a subsequent re-irradiation of the extracted material for the production of the /sup 153/Gd. Based on the results of experimental and calculational analyses, up to 25 grams of valuable gadolinium (greater than or equal to60% enriched in /sup 152/Gd) resides in the europium-bearing region of the HFIR control components of which 70% is recoverable. At a specific activity yield of 40 curies of /sup 153/Gd for each gram of gadolinium re-irradiated, 700 one-curie sources can be produced from each control plate assayed.

  5. Reactivity Accountability Attributed to Reflector Poisons in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL; Maldonado, G Ivan [ORNL; Primm, Trent [ORNL

    2009-12-01

    The objective of this study is to develop a methodology to predict the reactivity impact as a function of outage time between cycles of 3He, 6Li, and other poisons in the High Flux Isotope Reactor s (HFIR) beryllium reflector. The reactivity worth at startup of the HFIR has been incorrectly predicted in the past after the reactor has been shut-down for long periods of time. The incorrect prediction was postulated to be due to the erroneous calculation of 3He buildup in the beryllium reflector. It is necessary to develop a better estimate of the start-of-cycle symmetric critical control element positions since if the estimated and actual symmetrical critical control element positions differ by more than $1.55 in reactivity (approximately one-half inch in control element startup position), HFIR is to be shutdown and a technical evaluation is performed to resolve the discrepancy prior to restart. 3He is generated and depleted during operation, but during an outage, the depletion of 3He ceases because it is a stable isotope. 3He is born from the radioactive decay of tritium, and thus the concentration of 3He increases during shutdown. SCALE, specifically the TRITON and CSAS5 control modules including the KENO V.A, COUPLE, and ORIGEN functional modules were utilized in this study. An equation relating the down time (td) to the change in symmetric control element position was generated and validated against measurements for approximately 40 HFIR operating cycles. The newly-derived correlation was shown to improve accuracy of predictions for long periods of down time.

  6. Simulating High Flux Isotope Reactor Core Thermal-Hydraulics via Interdimensional Model Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Adam R [ORNL

    2014-05-01

    A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a twodimensional slice oriented perpendicular to the fuel plate s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in SolidWorks. Derivations of the involute construction equations are presented. Geometries were then imported into COMSOL Multiphysics for simulation and modeling. Both models are described in detail so as to highlight their respective attributes in the 3D model, the pursuit of an accurate, reliable, and complete solution; in the coupled model, the intent to simplify the modeling domain as much as possible without affecting significant alterations to the solution. The coupled model was created with the goal of permitting larger portions of the reactor core to be modeled at once without a significant sacrifice to solution integrity. As such, particular care is given to validating incorporated model simplifications. To the greatest extent possible, the decrease in solution time as well as computational cost are quantified versus the effects such gains have on the solution quality. A variant of the coupled model which sufficiently balances these three solution characteristics is presented alongside the more comprehensive 3D model for comparison and validation.

  7. Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Germina [ORNL; Primm, Trent [ORNL

    2011-05-01

    An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.

  8. A Preliminary Calculation of Annular Core Design for a High-flux Advanced Research Reactor

    International Nuclear Information System (INIS)

    Many of research reactors in operation over the world become old and the number of research reactors is expected to be reduced around 1/3 within a next decade. So it may be necessary to prepare in advance for the future demands of research reactors with a high performance. Therefore, based on the HANARO experiences through design to operation, a concept development of an improved research reactor is under doing. In this paper, 10 MW conceptual annular core is proposed and its basic characteristics were analyzed as a preliminary step

  9. Tritium trapping in silicon carbide in contact with solid breeder under high flux isotope reactor irradiation

    International Nuclear Information System (INIS)

    The trapping of tritium in silicon carbide (SiC) injected from ceramic breeding materials was examined via tritium measurements using imaging plate (IP) techniques. Monolithic SiC in contact with ternary lithium oxide (lithium titanate and lithium aluminate) as a ceramic breeder was irradiated in the High Flux Isotope Reactor (HFIR) in Oak Ridge, Tennessee, USA. The distribution of photo-stimulated luminescence (PSL) of tritium in SiC was successfully obtained, which separated the contribution of 14C β-rays to the PSL. The tritium incident from ceramic breeders was retained in the vicinity of the SiC surface even after irradiation at 1073 K over the duration of ∼3000 h, while trapping of tritium was not observed in the bulk region. The PSL intensity near the SiC surface in contact with lithium titanate was higher than that obtained with lithium aluminate. The amount of the incident tritium and/or the formation of a Li2SiO3 phase on SiC due to the reaction with lithium aluminate under irradiation likely were responsible for this observation

  10. Tensile and impact testing of an HFBR [High Flux Beam Reactor] control rod follower

    International Nuclear Information System (INIS)

    The Materials Technology Group of the Department of Nuclear Energy (DNE) at Brookhaven National Laboratory (BNL) undertook a program to machine and test specimens from a control rod follower from the High Flux Beam Reactor (HFBR). Tensile and Charpy impact specimens were machined and tested from non-irradiated aluminum alloys in addition to irradiated 6061-T6 from the HFBR. The tensile test results on irradiated material showed a two-fold increase in tensile strength to a maximum of 100.6 ksi. The impact resistance of the irradiated material showed a six-fold decrease in values (3 in-lb average) compared to similar non-irradiated material. Fracture toughness (KI) specimens were tested on an unirradiated compositionally and dimensionally similar (to HFBR follower) 6061 T-6 material with Kmax values of 24.8 ± 1.0 Ksi√in (average) being obtained. The report concludes that the specimens produced during the program yielded reproducible and believable results and that proper quality assurance was provided throughout the program. 9 figs., 6 tabs

  11. Postirradiation properties of the 6061-T6 aluminum High Flux Isotope Reactor hydraulic tube

    International Nuclear Information System (INIS)

    A tube of 6061 aluminum alloy in a T6 temper, precipitation-hardened with Mg2Si, was examined after irradiation in the core of the High Flux Isotope Reactor to fluences up to 1.3 x 1023 neutrons (n)/cm2 (0.1 MeV) and 3.1 x 1023 n/cm2 (thermal) in contact with the cooling water at a temperature of about 550C. The alloy displayed up to 2.5 percent swelling due mainly to a precipitate of transmutation-produced silicon of which more than 6 weight percent was formed. Some cavities were also observed. Tension tests in the temperature range 55 to 2000C showed radiation-induced increases in yield stresses and ultimate stresses of 50 to 80 percent; elongation was reduced from the range 10 to 15 percent to about 5 percent at 550C and to about 3 percent at test temperatures above 1000C. The fracture mode was changed from transgranular tearing around inclusions to a mixture of transgranular tearing and ductile intergranular separation. These changes are attributed primarily to the radiation-induced silicon precipitate. A rim of intergranular cracks formed at the originally oxidized surfaces of the tube duringtension testing and became deeper with increasing neutron irradiation and increasing temperature

  12. Postirradiation properties of the 6061-T6 aluminum high flux isotope reactor hydraulic tube

    International Nuclear Information System (INIS)

    A tube of 6061 aluminum alloy in a T6 temper, precipitation-hardened with Mg2Si, was examined after irradiation in the core of the High Flux Isotope Reactor to fluences up to 1.3 x 1023 neutrons (n)/cm2 (0.1 MeV) and 3.1 x 1023 n/cm2 (thermal) in contact with the cooling water at a temperature of about 550C. The alloy displayed up to 2.5 percent swelling due mainly to a precipitate of transmutaion-produced silicon of which more than 6 weight perent was formed. Some cavities were also observed. Tension tests in the temperature range 55 to 2000C showed radiation-induced increases in yield stresses and ultimate stresses of 50 to 80 percent; elongation was reduced from the range 10 to 15 percent to about 5 percent at 55C0 and to about 3 percent at test temperatures above 100C0. The fracture mode was changed from transgranular tearing around inclusions to a mixture of transgranular tearing and ductile intergradular separation. These changes are attributed primarily to the radiation-induced silicon precipitate. A rim of intergranular cracks formed at the originally oxidized surfaces of the tube during tension testing and became deeper with increasing neutron irradiation and increasing temperature

  13. The survey on the supporting ground on the construction site of High Flux Reactor Building in Research Reactor Institute of Kyoto University

    International Nuclear Information System (INIS)

    As part of the seismic design of the High Flux Reactor building which is planned to be constructed by Kyoto University Research Reactor Institute, the stability of the supporting ground has been analyzed. This report concerns the ground survey which has been carried out to obtain the basic data on the supporting ground. The outline of the ground around the construction site of High Flux Reactor has been already made clear by the last survey. Therefore, the purpose of this ground survey is mainly to make clear the mechanical properties of the soil. The survey has been carried out concerning the supporting ground and several layers deeper than that. The main items obtained are as follows. (1) modulus of deformation (2) breaking strength and creep strength (3) coefficient of permeability (4) ground water level. (author)

  14. Study of thermohydraulic instability and design limits of high flux research reactors using the extended code ATHLET

    International Nuclear Information System (INIS)

    Covering the wide range of reactor safety analysis of power reactors, consisting of leak and transients, the thermohydraulic code ATHLET is being developed by the German Society for Plant and Reactor Safety (GRS). In order to extend the application range of the code to the safety analysis of low and medium flux research reactors, a model was developed and implemented permitting a description of the steam formation in the subcooled boiling regime. Considering the specific features of high flux research reactors given by both high heat flux and high flow velocity, further extension to the model of void condensation in subcooled flow has been extended and a new correlation of critical heat flux (CHF) is implemented. To validate the extended Program, the Thermal Hydraulic Test Loop (THTL) of Oak ridge National Laboratory (ORNL) was modeled and an extensive series of experiments concerning the onset of thermohydraulic flow instability (OFI) in subcooled boiling regime were calculated. The comparison between experiments and ATHLET-postcalculation shows that the extended code can accurately simulate the thermohydraulic conditions of flow instability in a wide range of heat flux up to 15 MW/m2 and inlet flow velocity up to 20 m/s. The thermohydraulic design limit characterized by the mass flux, at which the flow just becomes unstable (OFI), has been predicted in very good agreement with the experiment. However the calculated pressure drop at OFI is overestimated by a maximum deviation of about 25%. The calculated exit bulk temperature of subcooled coolant and the maximum wall temperature at OFI show a maximum deviation from experiment of 12% and 7% respectively. The extended code has been applied successfully to simulate the flow reversal in the fuel element of German high flux research reactor FRM-II. This phenomenon is expected in case of shutdown pumps failure. The results show the code's capability to simulate the flow reversal from down ward to up ward direction

  15. Critical heat flux (CHF) characteristics of high conversion pressurized water reactor with double flat core

    International Nuclear Information System (INIS)

    Thermal-hydraulic feasibility of a high conversion pressurized water reactor (HCPWR) with a double flat core was studied from a view point of minimum departure from nucleate boiling ratio (MDNBR). The proposed HCPWR improves uranium utilization under the same electrical output as a conventional 3-loop PWR. The critical heat flux (CHF) data of Bettis Atomic Power Laboratory were used to evaluate the predictive capability of KfK, EPRI-B and W and EPRI-Columbia correlations for triangular tight lattice cores. Among them, considering a predictive erroe band of 20%, the KfK correlation had the most promising features for a design purpose. The KfK correlation was applied to COBRA-IV-I steady-state subchannel analysis of the double-flat-core HCPWR under the same boundary conditions as the 3-loop PWR. As a result, it was revealed that the MDNBR of a reference design (fuel rod diameter: 9.5mm, control rod thimble diameter: 11.0mm and rod pitch: 11.4mm) satisfied the lower limit of MDNBR for a current PWR with a sufficient margin. Parametric studies clarified that: (1) The DNBR was increased with increasing the rod pitch or decreasing the control rod thimble diameter. (2) The radial peaking factor was recommended to be less than 1.72 under the present reference core disign. (3) A smaller fuel rod diameter required a larger pitch-to-diameter ratio (p/d) to satisfy the lower limit of MDNBR. Based on the steady-state MDNBR analysis results, the feasibility of the double-flat-core HCPWR was proved under proper considerations of core design and radial power distribution. (author)

  16. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  17. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward

    International Nuclear Information System (INIS)

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high

  18. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    International Nuclear Information System (INIS)

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  19. Delivery of completed irradiation vehicles and the quality assurance document to the High Flux Isotope Reactor for irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Petrie, Christian M. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); McDuffee, Joel Lee [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Katoh, Yutai [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    This report details the initial fabrication and delivery of two Fuel Cycle Research and Development (FCRD) irradiation capsules (ATFSC01 and ATFSC02), with associated quality assurance documentation, to the High Flux Isotope Reactor (HFIR). The capsules and documentation were delivered by September 30, 2015, thus meeting the deadline for milestone M3FT-15OR0202268. These irradiation experiments are testing silicon carbide composite tubes in order to obtain experimental validation of thermo-mechanical models of stress states in SiC cladding irradiated under a prototypic high heat flux. This document contains a copy of the completed capsule fabrication request sheets, which detail all constituent components, pertinent drawings, etc., along with a detailed summary of the capsule assembly process performed by the Thermal Hydraulics and Irradiation Engineering Group (THIEG) in the Reactor and Nuclear Systems Division (RNSD). A complete fabrication package record is maintained by the THIEG and is available upon request.

  20. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual report for FY 2009

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Sease, John D [ORNL; Guida, Tracey [University of Pittsburgh; Jolly, Brian C [ORNL

    2010-02-01

    This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.

  1. Neutron Diffraction Patterns Measured with a High-Resolution Powder Diffractometer Installed on a Low-Flux Reactor

    International Nuclear Information System (INIS)

    A powder diffractometer has been recently installed on the IEA-R1 reactor at IPEN-CNEN/SP. IEA-R1 is a light-water open-pool research reactor. At present it operates at 4.5 MW thermal with the possible maximum power of 5 MW. At 4.5 MW the in-core flux is ca. 7x1013 cm-2s-1. In spite of this low flux, installation of both a position-sensitive detector (PSD) and a double-bent silicon monochromator has turned possible to design the new instrument as a high-resolution powder diffractometer. In this work, we present results of the application of the Rietveld method to several neutron powder diffraction patterns. The diffraction patterns were measured in the new instrument with samples of compounds having different structures in order to evaluate the main characteristics of the instrument. (author)

  2. Neutronic flux stability of production uranium graphite reactor conversion core relative to high-frequency oscillations

    International Nuclear Information System (INIS)

    Preliminary methodical simplified investigation into stability of the neutron field in the conversion load of industrial uranium-graphite reactors with regard to basic characteristics of the load in transient processes was carried out. Analysis was based on the calculated research into the behaviour of simplified single-point and one-dimensional models of the reactor core in transient regimes during the interconnected description of dynamics of neutron-physical and thermal properties of the load. Fundamental assumptions on the reactor characteristics used in the calculated model. In the context of accepted approximations the obtained results preclude the possibility for the occurrence of spontaneous high frequency oscillations resulting from the positive reactivity effect on the fuel temperature in the conversion load

  3. The study on the stability of the supporting ground on the construction site of High Flux Reactor building in Research Reactor Institute of Kyoto University

    International Nuclear Information System (INIS)

    This report provides the results of the study on the stability of the supporting gwound which has been carried out as a part of the seismic design of the High Flux Reactor building which is planned to be constructed by Kyoto University, Research Reactor Institute. In this work the finite element method is used. The stresses and displacements of the ground are calculated under the following conditions; (1) Stress-strain relationships for the individual elements are linear. (2) The problem is analyzed on two-dimensional plane strain distributions. (3) No-tension analysis is applied to the calculation for earthquake load. (4) The mechanical properties of the ground are obtained from the soil survey which has been performed at the construction site of High Flux Reactor building. The results are summarized as follows; (1) The settlement of the building is estimated to be about 2 -- 5 cm for long-time loading, including the result from elastic theory, while the relative settlement is about 0.3 cm at both ends of the building. (2) Safety factor is larger than 1.4 for long-time loading. (3) Maximum angle of the deformation of the building due to the earthquake load is estimated to be about 9.2 x 10-3 degree (1.6 x 10-4 rad). (4) Safety factor is larger than 1.2 -- 1.3 for earthquake load. Judging from these results described above, the ground at the construction site of the High Flux Reactor is appropriate for the supporting ground of the reactor building, and the mat foundation can be adopted for the foundation form. (author)

  4. Analysis of flow reversal of the high flux research reactor frm-ii using the safety code ATHLET

    International Nuclear Information System (INIS)

    In the framework of the reactor safety analysis of the german high flux reactor FRM-II, a design basis accident characterized by loss of shutdown pumps after scram has been investigated, using the thermal hydraulic safety code ATHLET, in order to estimate the mechanical and thermal stresses caused by the spontaneous evaporation of coolant as consequent of flow reversal from forced downward to natural upward circulation. ATHLET is being developed by the german society for reactor safety (GRS) for the application in the safety analysis of power reactors and has been extended and verified and verified to cover the application range for safety analysis of research reactors. The results of simulation show that at the moment of flow stagnation directly before the onset of flow reversal accompanying with a suddenly evaporation of coolant is occurred with significant void increasing to more than 90% causing a suddenly pressure peak of more than 6 bar at the channel outlet beginning with 2 bar, which induces mechanical shock affecting the fuel element structure

  5. Technical Safety Requirement Violation at the High Flux Beam Reactor Decommissioning Project, Brookhaven, United States of America

    International Nuclear Information System (INIS)

    At Brookhaven National Laboratory (BNL) on 6 July 2009, a technical safety requirement (TSR) violation was declared at the high flux beam reactor (HFBR) project, which was a limited scope decontamination and decommissioning project associated with the permanently shutdown reactor. The violation extended from performing decommissioning activities within the facility under the incorrect mode. The draining of the spent fuel pool was performed in the warm standby mode when it should have been in the operation mode. The TSR was developed contrary to the United States Department of Energy (DOE) TSR guidance, which recommends that facility operations should only be carried out in the operation mode. The facility TSR allowed operations to be carried out in both modes. The HFBR operation mode focused on the removal of a small number of highly irradiated components with associated limited conditions of operation (LCO), while the warm standby mode focused on all other tasks in the facility and did not require entry into the LCO

  6. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David Howard [ORNL; Freels, James D [ORNL; Ilas, Germina [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Primm, Trent [ORNL; Renfro, David G [ORNL; Sease, John D [ORNL; Pinkston, Daniel [ORNL

    2011-02-01

    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.

  7. Response of aluminium and its alloys to exposure in the high flux isotope reactor

    International Nuclear Information System (INIS)

    Pure aluminum and some aluminum alloys were irradiated to very high neutron fluences in the cooling water at 328 K in the high flux region of HFIR. Displacement levels of 270 dpa and transmutation-produced silicon levels of 7.15 wt% were reached. Damage microstructures consisted of dislocations, cavities and precipitates which caused substantial strengthening and associated loss in ductility. Formation of cavities and related swelling were considerably reduced by alloying elements and by the presence of fine Mg2Si precipitate. (author)

  8. Design Study for a Low-enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Ellis, Ronald James [ORNL; Gehin, Jess C [ORNL; Ilas, Germina [ORNL; Miller, James Henry [ORNL; Sease, John D [ORNL

    2007-11-01

    This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology

  9. DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2007

    International Nuclear Information System (INIS)

    This report documents progress made during fiscal year 2007 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low enriched uranium fuel (LEU). Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. A high volume fraction U/Mo-in-Al fuel could attain the same neutron flux performance as with the current, HEU fuel but materials considerations appear to preclude production and irradiation of such a fuel. A diffusion barrier would be required if Al is to be retained as the interstitial medium and the additional volume required for this barrier would degrade performance. Attaining the high volume fraction (55 wt. %) of U/Mo assumed in the computational study while maintaining the current fuel plate acceptance level at the fuel manufacturer is unlikely, i.e. no increase in the percentage of plates rejected for non-compliance with the fuel specification. Substitution of a zirconium alloy for Al would significantly increase the weight of the fuel element, the cost of the fuel element, and introduce an as-yet untried manufacturing process. A monolithic U-10Mo foil is the choice of LEU fuel for HFIR. Preliminary calculations indicate that with a modest increase in reactor power, the flux performance of the reactor can be maintained at the current level. A linearly-graded, radial fuel thickness profile is preferred to the arched profile currently used in HEU fuel because the LEU fuel media is a metal alloy foil rather than a powder. Developments in analysis capability and nuclear data processing techniques are underway with the goal of verifying the preliminary calculations of LEU flux performance. A conceptual study of the operational cost of an LEU fuel fabrication facility yielded the conclusion that the annual fuel cost to the HFIR would increase significantly from the current, HEU fuel cycle. Though manufacturing can be accomplished with existing technology

  10. Successful removal of more than 200 spent HEU fuel assemblies from the high flux reactor at Petten

    International Nuclear Information System (INIS)

    Earlier this year, a shipment of 210 spent Highly Enriched Uranium (HEU) Material Test Reactor (MTR) fuel assemblies representing more than 100kg of HEU (pre-irradiation) were shipped from the High Flux Reactor (HFR) in Petten, Netherlands to the US Department of Energy's Savannah River Site. The HFR is owned by the European Commission, Joint Research Centre (JRC) while the Nuclear Research and consultancy Group (NRG) is the reactor operator and license holder. Since the start of the Foreign Research Reactor Program in 1996, this was the largest shipment of MTR fuel elements originating from a single facility. A total of five NAC-LWT casks were used to support this shipment. Multiple technical, licensing, interface and scheduling challenges needed to be overcome to meet the project objectives. During the five months of project planning and execution, the project team (JRC, NRG, Transrad, NAC, DOE and Westinghouse) has been working in close cooperation and good spirit to achieve a safe and successful shipment. The paper presents how the team completed this important shipment for the future of the HFR. (author)

  11. The high flux reactor Petten, A multi-purpose research and test facility for the future of nuclear energy

    International Nuclear Information System (INIS)

    The High Flux Reactor (HFR) at Petten, is owned by the European Commission (EC) and managed by the Institute for Advanced Materials (IAM) of the Joint Research Centre (JRC) of the EC. Its operation has been entrusted since 1962 to the Netherlands Energy Research Foundation (ECN). The HFR is one of the most powerful multi-purpose research and test reactors in the world. Together with the ECN hot cells at Petten, it has provided since three decades an integral and full complement of irradiation and examination services as required by current and future research and development for nuclear energy, industry and research organizations. Since 1963, the HFR has recognized record of consistent, reliable and high availability of more than 250 days of operation per year. The HFR has 20 in-core and 12 poolside irradiation positions, plus 12 beam tubes. With a variety of dedicated irradiation devices, and with its long-standing experience in executing small and large irradiation projects, the HFR is particularly suited for fuel, materials and components testing for all reactor lines, including thermonuclear fusion reactors. In addition, processing with neutrons and gamma rays, neutron-based research and inspection services are employed by industry and research, such as activation analysis, boron neutron capture therapy, neutron radiography and neutron diffraction. Moreover, in recent years, HFRs' mission has been broadened within the area of radioisotopes production, where, within a few years, the HFR has attained the European leadership in production volume

  12. Risk and safety analysis in support of the operation at the High Flux Isotope Reactor at Oak Ridge

    International Nuclear Information System (INIS)

    The High Flux Isotope Reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988 a Level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 x 10-4. It was dominated by flow blockages and loss of all AC power. In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic, wind, and fires. The overall external event contribution to core damage frequency is about 50 percent of the internal event initiated contribution and is dominated by seismic events. Several design and safety analysis studies were undertaken to support the restart of the HFIR. The first study involved a fracture mechanics analysis and redesign of the reactor operating conditions and safety system setting to provide a basis for future operation. Another study involved performing a risk analysis by combining the Level 1 PRA results with offsite consequence analyses under conservative assumptions about the fission product removal within the plant. Additional studies were performed to establish a long-term decay heat removal design basis. Finally, updated and upgraded loss-of-cooling accident studies were performed and are still underway. 5 refs., 11 figs., 6 tabs

  13. Risk and safety analysis in support of the operation at the High Flux Isotope Reactor at oak ridge

    International Nuclear Information System (INIS)

    The High Flux Isotope Reactor (HFIR) is a high performance isotope production and research reactor which has been in operation at Oak Ridge National Laboratory (ORNL) since 1965. In late 1986 the reactor was shut down as a result of the discovery of unexpected neutron embrittlement of the reactor vessel. In January of 1988 a Level 1 Probabilistic Risk Assessment (PRA) (excluding external events) was published as part of the response to the many reviews that followed the shutdown and for use by ORNL to prioritize action items intended to upgrade the safety of the reactor. A conservative estimate of the core damage frequency initiated by internal events for HFIR was 3.11 x 10-4. It was dominated by flow blockages and loss of all AC power. In June 1989 a draft external events initiated PRA was published. The dominant contributions from external events came from seismic events, wind, and fires. The overall external event contribution to core damage frequency is about 50 percent of the internal event initiated contribution and is dominated by seismic events. Several design and safety analysis studies were undertaken to support the restart of the HFIR. The first study involved a fracture mechanics analysis and redesign of the reactor operating conditions and safety system settings to provide a basis for future operation. Another study involved performing a risk analysis by combining the Level 1 PRA results with offsite consequences analysis under conservative assumptions about the fission product removal within the plant. Additional studies were performed to establish a long-term decay heat removal design basis. Finally, updated and upgraded loss-of-cooling accident studies were performed and are still underway

  14. Experimental and analytical studies of high heat flux components for fusion experimental reactor

    International Nuclear Information System (INIS)

    In this report, the experimental and analytical results concerning the development of plasma facing components of ITER are described. With respect to developing high heat removal structures for the divertor plates, an externally-finned swirl tube was developed based on the results of critical heat flux (CHF) experiments on various tube structures. As the result, the burnout heat flux, which also indicates incident CHF, of 41 ± 1 MW/m2 was achieved in the externally-finned swirl tube. The applicability of existing CHF correlations based on uniform heating conditions was evaluated by comparing the CHF experimental data with the smooth and the externally-finned tubes under one-sided heating condition. As the results, experimentally determined CHF data for straight tube show good agreement, for the externally-finned tube, no existing correlations are available for prediction of the CHF. With respect to the evaluation of the bonds between carbon-based material and heat sink metal, results of brazing tests were compared with the analytical results by three dimensional model with temperature-dependent thermal and mechanical properties. Analytical results showed that residual stresses from brazing can be estimated by the analytical three directional stress values instead of the equivalent stress value applied. In the analytical study on the separatrix sweeping for effectively reducing surface heat fluxes on the divertor plate, thermal response of the divertor plate has been analyzed under ITER relevant heat flux conditions and has been tested. As the result, it has been demonstrated that application of the sweeping technique is very effective for improvement in the power handling capability of the divertor plate and that the divertor mock-up has withstood a large number of additional cyclic heat loads. (J.P.N.) 62 refs

  15. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition

  16. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and Mars. These reactors require robust automatic control systems using low mass, rapid...

  17. High-Speed Neutron and Gamma Flux Sensor for Monitoring Surface Nuclear Reactors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs compact nuclear reactors to power future bases on the moon and/or Mars. These reactors require robust automatic control systems using low mass, rapid...

  18. Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Adams

    2007-05-25

    Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratory’s Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007).

  19. Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011

    Energy Technology Data Exchange (ETDEWEB)

    Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

    2012-03-01

    This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

  20. Development of a high temperature, high sensitivity fission counter for liquid metal reactor in-vessel flux monitoring

    International Nuclear Information System (INIS)

    Advanced liquid metal reactor concepts such as the Sodium Advanced Fast Reactor (SAFR) and the Power Reactor Inherently Safe Module (PRISM) have relatively large pressure vessels that necessitate in-vessel placement of the neutron detectors to achieve adequate count rates during source range operations. It is estimated that detector sensitivities of 5 to 10 counts/center dot/s/center dot//sup /minus/1//center dot/[neutron/(cm2/center dot/s)]/sup /minus/1/ will be required for the initial core loading. The Instrumentation and Controls Division of Oak Ridge National Laboratory has designed and fabricated a fission counter to meet this requirement which is also capable of operating in uncooled instrument thimbles at primary coolant temperatures of 500 to 600/degree/C. Components are fabricated from Inconel-600, and high temperature alumina insulators are employed. The transmission line electrode configuration is utilized to minimize capacitive loading effects

  1. Chronology of the beryllium replacement shutdown at the High Flux Isotope Reactor (HFIR), 1983

    International Nuclear Information System (INIS)

    In addition to the permanent beryllium reflector, several other components were replaced. The outer shroud and lower tracks were replaced. The new control rod access plugs and the upper tracks were installed. Replacement of collimator tubes for HB-1 and -2 are tentatively slated for the next permanent beryllium changeout. Inspection of the reactor vessel, the vessel-to-nozzle welds, core support structure, and vessel internal cladding showed them to be in acceptable condition. The highest, accumulative radiation doses received by Reactor Operations personnel during the shutdown, in mrem, were 665, 606, and 560; the highest for P and E personnel were 520, 505, and 475

  2. High flux materials testing reactor HFR Petten. Characteristics of facilities and standard irradiation devices

    International Nuclear Information System (INIS)

    For the materials testing reactor HFR some characteristic information is presented. Besides the nuclear data for the experiment positions short descriptions are given of the most important standard facilities for material irradiation and radionuclide production. One paragraph deals with the experimental set-ups for solid state and nuclear structure investigations. The information in this report refers to a core type, which is operational since March 1977. The numerical data compiled have been up-dated to June 1978

  3. Development of control rod driving mechanism for high neutron flux reactor in Kyoto University (KUHFR)

    International Nuclear Information System (INIS)

    KUHFR is a coupling type reactor of 30 MW power output, which have two light-water-moderated and cooled cores inside the heavy water reflector. There are six sets of control rod driving mechanism (CRDM) in each core, each set driving one control rod. The newly developed driving system for CRDM is a unique one not employed in any other reactor. The main specifications required are as follows: Drive length 650 mm, driving speed 100 mm/min; control rod magnet deenergizing time 0.3 sec or less, control rod falling time to 90% stroke 1 sec or less, finished O.D. 190 mm or less. There were difficulties in selecting the driving system, because various control rod driving systems adopted in power and research reactors have both merits and demerits. As a result of investigation, three systems have been produced for trial, experimented and compared, and the moving coil type CRDM has been employed because it is suitable in many points, e.g. it allows continuous motion of control rods. The construction of moving coil type CRDM is explained. In the progress of development from No. 1 to No. 3 system is described, starting at the magnetic circuit calculation. As the running performance of the CRDM, the relationship between the plunger shift in a coil and upward force, and the differential linear running performance, following properties and stopping characteristics of control rods for coil movement are described. (Wakatsuki, Y.)

  4. Assessment of similarity of HFBR [High Flux Beam Reactor] with separate effects test

    International Nuclear Information System (INIS)

    A Separate Effects Test (SET) facility was constructed in 1963 to demonstrate the feasibility of the HFBR design and to determine the core power limits for a safe flow reversal event. The objective of the task reported here is to review the capability of the test to scale the dominant phenomena in the HFBR during a flow reversal event and the applicability of the range of the power level obtained from the test to the HFBR. The conclusion of this report was that the flow during the flow reversal event will not be similar in the two facilities. The causes of the dissimilarity are the differences in the core inlet friction, bypass path friction, the absence of the check valve in the test, and the materials used to represent the fuel plates. The impact of these differences is that the HFBR will undergo flow reversal sooner than the test and will have a higher flow rate in the final Natural Circulation Period. The shorter duration of the flow reversal event will allow less time for the plate to heat up and the larger flow in the Natural Circulation Period will lead to higher critical heat flux limits in the HFBR than in the test. Based on these observations, it was concluded that the HFBR can undergo flow reversal safely for heat fluxes up to 46,700 (BTU/hr ft2), the heat flux limit obtained from the 1963 test

  5. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    Energy Technology Data Exchange (ETDEWEB)

    Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclear Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.

  6. Preliminary Assessment of the Impact on Reactor Vessel dpa Rates Due to Installation of a Proposed Low Enriched Uranium (LEU) Core in the High Flux Isotope Reactor (HFIR)

    International Nuclear Information System (INIS)

    An assessment of the impact on the High Flux Isotope Reactor (HFIR) reactor vessel (RV) displacements-per-atom (dpa) rates due to operations with the proposed low enriched uranium (LEU) core described by Ilas and Primm has been performed and is presented herein. The analyses documented herein support the conclusion that conversion of HFIR to low-enriched uranium (LEU) core operations using the LEU core design of Ilas and Primm will have no negative impact on HFIR RV dpa rates. Since its inception, HFIR has been operated with highly enriched uranium (HEU) cores. As part of an effort sponsored by the National Nuclear Security Administration (NNSA), conversion to LEU cores is being considered for future HFIR operations. The HFIR LEU configurations analyzed are consistent with the LEU core models used by Ilas and Primm and the HEU balance-of-plant models used by Risner and Blakeman in the latest analyses performed to support the HFIR materials surveillance program. The Risner and Blakeman analyses, as well as the studies documented herein, are the first to apply the hybrid transport methods available in the Automated Variance reduction Generator (ADVANTG) code to HFIR RV dpa rate calculations. These calculations have been performed on the Oak Ridge National Laboratory (ORNL) Institutional Cluster (OIC) with version 1.60 of the Monte Carlo N-Particle 5 (MCNP5) computer code.

  7. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    Energy Technology Data Exchange (ETDEWEB)

    Knight, R.W.; Morin, R.A.

    1999-12-01

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U{sub 3}O{sub 8} powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated.

  8. Fabrication procedures for manufacturing High Flux Isotope Reactor fuel elements - 2

    International Nuclear Information System (INIS)

    The original fabrication procedures written in 1968 delineated the manufacturing procedures at that time. Since 1968, there have been a number of procedural changes. This rewrite of the fabrication procedures incorporates these changes. The entire fuel core of this reactor is made up of two fuel elements. Each element consists of one annular array of fuel plates. These annuli are identified as the inner and outer fuel elements, since one fits inside the other. The inner element consists of 171 identical fuel plates, and the outer element contains 369 identical fuel plates differing slightly from those in the inner element. Both sets of fuel plates contain U3O8 powder as the fuel, dispersed in an aluminum powder matrix and clad with aluminum. Procedures for manufacturing and inspection of the fuel elements are described and illustrated

  9. Validation of a Monte Carlo based depletion methodology via High Flux Isotope Reactor HEU post-irradiation examination measurements

    International Nuclear Information System (INIS)

    The purpose of this study is to validate a Monte Carlo based depletion methodology by comparing calculated post-irradiation uranium isotopic compositions in the fuel elements of the High Flux Isotope Reactor (HFIR) core to values measured using uranium mass-spectrographic analysis. Three fuel plates were analyzed: two from the outer fuel element (OFE) and one from the inner fuel element (IFE). Fuel plates O-111-8, O-350-I, and I-417-24 from outer fuel elements 5-O and 21-O and inner fuel element 49-I, respectively, were selected for examination. Fuel elements 5-O, 21-O, and 49-I were loaded into HFIR during cycles 4, 16, and 35, respectively (mid to late 1960s). Approximately one year after each of these elements were irradiated, they were transferred to the High Radiation Level Examination Laboratory (HRLEL) where samples from these fuel plates were sectioned and examined via uranium mass-spectrographic analysis. The isotopic composition of each of the samples was used to determine the atomic percent of the uranium isotopes. A Monte Carlo based depletion computer program, ALEPH, which couples the MCNP and ORIGEN codes, was utilized to calculate the nuclide inventory at the end-of-cycle (EOC). A current ALEPH/MCNP input for HFIR fuel cycle 400 was modified to replicate cycles 4, 16, and 35. The control element withdrawal curves and flux trap loadings were revised, as well as the radial zone boundaries and nuclide concentrations in the MCNP model. The calculated EOC uranium isotopic compositions for the analyzed plates were found to be in good agreement with measurements, which reveals that ALEPH/MCNP can accurately calculate burn-up dependent uranium isotopic concentrations for the HFIR core. The spatial power distribution in HFIR changes significantly as irradiation time increases due to control element movement. Accurate calculation of the end-of-life uranium isotopic inventory is a good indicator that the power distribution variation as a function of space and

  10. Short-lived radionuclides produced on the ORNL 86-inch cyclotron and High-Flux Isotope Reactor

    International Nuclear Information System (INIS)

    The production of short-lived radionuclides at ORNL includes the preparation of target materials, irradiation on the 86-in. cyclotron and in the High Flux Isotope Reactor (HFIR), and chemical processing to recover and purify the product radionuclides. In some cases the target materials are highly enriched stable isotopes separated on the ORNL calutrons. High-purity 123I has been produced on the 86-in. cyclotron by irradiating an enriched target of 123Te in a proton beam. Research on calutron separations has led to a 123Te product with lower concentrations of 124Te and 126Te and, consequently to lower concentrations of the unwanted radionuclides, 124I and 126I, in the 123I product. The 86-in. cyclotron accelerates a beam of protons only but is unique in providing the highest available beam current of 1500 μA at 21 MeV. This beam current produces relatively large quantities of radionuclides such as 123I and 67Ga

  11. Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R. T. [ORNL; Ellis, R. J. [ORNL; Gehin, J. C. [ORNL; Clarno, K. T. [ORNL; Williams, K. A. [ORNL; Moses, D. L. [ORNL

    2006-11-01

    Neutronics and thermal-hydraulics studies show that, for equivalent operating power [85 MW(t)], a low-enriched uranium (LEU) fuel cycle based on uranium-10 wt % molybdenum (U-10Mo) metal foil with radially, “continuously graded” fuel meat thickness results in a 15% reduction in peak thermal flux in the beryllium reflector of the High Flux Isotope Reactor (HFIR) as compared to the current highly enriched uranium (HEU) cycle. The uranium-235 content of the LEU core is almost twice the amount of the HEU core when the length of the fuel cycle is kept the same for both fuels. Because the uranium-238 content of an LEU core is a factor of 4 greater than the uranium-235 content, the LEU HFIR core would weigh 30% more than the HEU core. A minimum U-10Mo foil thickness of 84 μm is required to compensate for power peaking in the LEU core although this value could be increased significantly without much penalty. The maximum U-10Mo foil thickness is 457μm. Annual plutonium production from fueling the HFIR with LEU is predicted to be 2 kg. For dispersion fuels, the operating power for HFIR would be reduced considerably below 85 MW due to thermal considerations and due to the requirement of a 26-d fuel cycle. If an acceptable fuel can be developed, it is estimated that $140 M would be required to implement the conversion of the HFIR site at Oak Ridge National Laboratory from an HEU fuel cycle to an LEU fuel cycle. To complete the conversion by fiscal year 2014 would require that all fuel development and qualification be completed by the end of fiscal year 2009. Technological development areas that could increase the operating power of HFIR are identified as areas for study in the future.

  12. Neutronics Conversion Analyses of the Laue-Langevin Institute (ILL) High Flux Reactor (RHF)

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Calzavara, Y. [Inst. Laue-Langevin (ILL), Grenoble (France)

    2014-09-30

    The following report describes the neutronics results obtained with the MCNP model of the RHF U7Mo LEU reference design that has been established in 2010 during the feasibility analysis. This work constitutes a complete and detailed neutronics analysis of that LEU design using models that have been significantly improved since 2010 and the release of the feasibility report. When possible, the credibility of the neutronics model is tested by comparing the HEU model results with experimental data or other codes calculations results. The results obtained with the LEU model are systematically compared to the HEU model. The changes applied to the neutronics model lead to better comparisons with experimental data or improved the calculation efficiency but do not challenge the conclusion of the feasibility analysis. If the U7Mo fuel is commercially available, not cost prohibitive, a back-end solution is established and if it is possible to manufacture the proposed element, neutronics analyses show that the performance of the reactor would not be challenged by the conversion to LEU fuel.

  13. Status of the conversion working plan in the High Flux Reactor (Petten, The Netherlands)

    International Nuclear Information System (INIS)

    The conversion from HEU to LEU has often many disadvantages: flux penalties, increase of fuel consumption, cost and delay to obtain a new license etc. But to fulfill the non-proliferation programme, and to simplify the future fuel supply, the HFR renewed in 1998 studies on conversion possibilities. To minimize the conversion costs, these studies were made with a progressive conversion that avoids the need of one new core and permits to begin the conversion with a replacement of 5 elements at each cycle. Hence the conversion can be made in 7 cycles, without special elements and with a normal bum-up for each element. To avoid an increase of fuel consumption, an increase of the fuel cycle length from 24.7 to 28.3 days was also considered. This point allows reducing the number of annual cycles from 1 to 10 and enables in one cycle to have the possibility of four successive irradiations for Molybdenum production (7 days) in one irradiation position. A working plan for fuel licensing has been sent to the safety authorities and is presented in the paper. (author)

  14. Impact of the High Flux Isotope Reactor HEU to LEU Fuel Conversion on Cold Source Nuclear Heat Generation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, David [ORNL

    2014-03-01

    Under the sponsorship of the US Department of Energy National Nuclear Security Administration, staff members at the Oak Ridge National Laboratory have been conducting studies to determine whether the High Flux Isotope Reactor (HFIR) can be converted from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. As part of these ongoing studies, an assessment of the impact that the HEU to LEU fuel conversion has on the nuclear heat generation rates in regions of the HFIR cold source system and its moderator vessel was performed and is documented in this report. Silicon production rates in the cold source aluminum regions and few-group neutron fluxes in the cold source moderator were also estimated. Neutronics calculations were performed with the Monte Carlo N-Particle code to determine the nuclear heat generation rates in regions of the HFIR cold source and its vessel for the HEU core operating at a full reactor power (FP) of 85 MW(t) and the reference LEU core operating at an FP of 100 MW(t). Calculations were performed with beginning-of-cycle (BOC) and end-of-cycle (EOC) conditions to bound typical irradiation conditions. Average specific BOC heat generation rates of 12.76 and 12.92 W/g, respectively, were calculated for the hemispherical region of the cold source liquid hydrogen (LH2) for the HEU and LEU cores, and EOC heat generation rates of 13.25 and 12.86 W/g, respectively, were calculated for the HEU and LEU cores. Thus, the greatest heat generation rates were calculated for the EOC HEU core, and it is concluded that the conversion from HEU to LEU fuel and the resulting increase of FP from 85 MW to 100 MW will not impact the ability of the heat removal equipment to remove the heat deposited in the cold source system. Silicon production rates in the cold source aluminum regions are estimated to be about 12.0% greater at BOC and 2.7% greater at EOC for the LEU core in comparison to the HEU core. Silicon is aluminum s major transmutation product and

  15. Measurements of neutron flux in the RA reactor

    International Nuclear Information System (INIS)

    This report includes results of the following measurements performed at the RA reactor: thermal neutron flux in the experimental channels, epithermal and fast neutron flux, neutron flux in the biological shield, neutron flux distribution in the reactor cell

  16. 177Lu radiochemical separation from 176Yb irradiated in high-flux research reactor SM

    International Nuclear Information System (INIS)

    Ytterbium and lutetium behaviour has been studied during electrolysis of aqueous solutions containing their chlorides and alkali metal citrate (Li, Na, K). The conditions providing the efficient extraction of ytterbium macro amounts into a mercury-pool cathode have been determined. Laboratory-scale experiments were performed to elaborate chromatographic procedures for 177Lu purification from ytterbium macro amounts and accompanying impurities including hafnium (177Lu radioactive decay product). The conditions providing the efficient separation of 177Lu from the above-mentioned impurities using cation-exchange (in α-hydroxy isobutyric acid) and extraction-chromatographic (impregnated with di-2-ethylhexyl phosphoric acid teflon powder as stationary phase and nitric or hydrochloric acids as eluant) methods have been found. Isotopically enriched ytterbium preparation (176Yb - 95.15; 174Yb - 2.47 atomic %) was purified from lutetium impurity and samples of the purified starting material were irradiated in the central neutron trap and beryllium reflector channel of the SM reactor. 177Lu was extracted from the irradiated targets by electroreduction of ytterbium on the mercury-pool cathode from lithium citrate solution. Cation exchange and extraction chromatography methods were used for subsequent purification of 177Lu. The radiochemical processing took about 50 hours. The results of analysis obtained by the spectrometry of X-ray and gamma radiation, mass-spectrometry and emission spectroscopy are as follows: Chemical form: 177LuCl3, solution in hydrochloric acid; solvent (HCl) concentration: 0.01 - 0.1 mol/l; 177Lu specific activity: ≥ 20 Ci/mg; 177mLu to 177Lu activity ratio: ≤ 0.02 %; total gamma emitters (Co-58, Co-60, Zn-65, Mn-54, Fe-59, Cr-51) to 177Lu activity ratio: ≤ 0.01 %; total mass of non-radioactive impurities (Cu, Zn, Al, Fe, Pb) to 177Lu activity ratio: ≤ 500 μg/Ci; total alpha emitters to 177Lu activity ratio ≤ 1x10-5 %. (author)

  17. Design, construction and installation of an epithermal neutron beam for BNCT at the High Flux Reactor Petten

    International Nuclear Information System (INIS)

    Following the formation in 1987, of both the European Collaboration group on Boron Neutron Capture Therapy (BNCT) and the Petten BNCT group, steps were taken to design and implement an epithermal neutron beam for BNCT applications at the High Flux Reactor (HFR) at Petten. The installation would serve as a European facility, while once the modality of BNCT is proven would be the pathfinder for implementation of BNCT at other European nuclear sites. Due to its favorable nuclear and geometric characteristics, the beam tube HB11 was chosen as the candidate beam tube for BNCT applications. To reconfigure the beam tube to produce the required epithermal neutrons, it was first necessary to remove the existing mirror system and then to install the appropriate filter materials. Due to the fixed operating schedule of the HFR, with only one long shut-down period per year during the summer weeks for maintenance and upgrading actions, installation of the new facility was planned for the summer stop period in 1990

  18. Transmutation of /sup 90/Sr and /sup 137/Cs in a high-flux fast reactor with a thermalized central region

    Energy Technology Data Exchange (ETDEWEB)

    Taube, M.

    1976-10-01

    The fission products /sup 90/Sr and /sup 137/Cs produced by fission reactors of 30 GW(th) can be transmutated into stable nuclides by neutron irradiation with a thermal flux of 2 x 10/sup 16/ n cm/sup -2/ s/sup -1/. The rates of transmutation are 15 and 3.3 times greater, respectively, than that of spontaneous beta decay. The transmutation would take place in a central thermalized region of a high-flux fast burner reactor of 7 GW(th). In the case where the power reactors of 23 GW(th) are breeders with a high breeding gain of G = 0.38, the total system, inclusive of the high-flux burner, remains a breeding system, with G/sub total/ = 0.09. Details of the neutronics calculations and simplified thermohydraulics are given. The high-flux burner is fueled with a molten salt of chlorides of plutonium and sodium with a power density of 10 kW cm/sup -3/. The ''self-liquidation'' of such a system is discussed.

  19. Large break loss of coolant severe accident sequences at the HFIR [High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    An assessment of many potential HFIR severe accident phenomena was conducted during the HFIR design effort, and many severe accident mitigating features were designed into the plant. These evaluation typically incorporated a ''bounding'' or highly conservative analysis approach and employed tools and techniques representative of the state of knowledge in the mid-1960s. Recently, programs to address severe accident issues were initiated at the Oak Ridge National Laboratory (ORNL) to support the HFIR probabilistic risk assessment (PRA) and equipment qualification and accident management studies. This paper presents the results of environment condition calculations conducted to evaluate a response of HFIR's heat exchanger cell environment to a double-ended rupture of a 0.25 m diameter coolant loop downstream of the circulating pump and check valve. The confinement calculations were performed using an atmospheric fission product source for the heat exchanger cell consistent with, but more conservative than that stipulated in Regulatory Guide 1.89. The results of the calculations indicate that the heat exchanger cell atmospheric temperature peaks at 377 K 225 seconds into the transient and then begins decreasing at approximately 1.7 K per minute. 8 refs., 5 figs

  20. EL-2 reactor: Thermal neutron flux distribution

    International Nuclear Information System (INIS)

    The flux distribution of thermal neutrons in EL-2 reactor is studied. The reactor core and lattices are described as well as the experimental reactor facilities, in particular, the experimental channels and special facilities. The measurement shows that the thermal neutron flux increases in the central channel when enriched uranium is used in place of natural uranium. However the thermal neutron flux is not perturbed in the other reactor channels by the fuel modification. The macroscopic flux distribution is measured according the radial positioning of fuel rods. The longitudinal neutron flux distribution in a fuel rod is also measured and shows no difference between enriched and natural uranium fuel rods. In addition, measurements of the flux distribution have been effectuated for rods containing other material as steel or aluminium. The neutron flux distribution is also studied in all the experimental channels as well as in the thermal column. The determination of the distribution of the thermal neutron flux in all experimental facilities, the thermal column and the fuel channels has been made with a heavy water level of 1825 mm and is given for an operating power of 1000 kW. (M.P.)

  1. Advanced liquid metal reactor development at Argonne National Laboratory during the 1980s

    International Nuclear Information System (INIS)

    Argonne National Laboratory's (ANL'S) effort to pursue the exploitation of liquid metal cooled reactor (LMR) characteristics has given rise to the Integral Fast Reactor (IFR) concept, and has produced substantial technical advancement in concept implementation which includes demonstration of high burnup capability of metallic fuel, demonstration of injection casting fabrication, integral demonstration of passive safety response, and technical feasibility of pyroprocessing. The first half decade of the 90's will host demonstration of the IFR closed fuel cycle technology at the prototype scale. The EBR-II reactor will be fueled with ternary alloy fuel in HT-9 cladding and ducts, and pyroprocessing and injection casting refabrication of EBR-II fuel will be conducted using near-commercial sized equipment at the Fuel cycle Facility (FCF) which is co-located adjacent to EBR-II. Demonstration will start in 1992. The demonstration of passive safety response achievable with the IFR design concept, (already done in EBR-II in 1986) will be repeated in the mid 90's using the IFR prototype recycle fuel from the FCF. The demonstration of scrubbing of the reprocessing fission product waste stream, with recycle of the transuranics to the reactor for consumption, will also occur in the mid 90's. 30 refs

  2. Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratory's Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007). Argonne National Laboratory-East (ANL-E) is owned by the U.S. Department of Energy (DOE) and is operated under a contract with the University of Chicago. Fundamental and applied research in the physical, biomedical, and environmental sciences are conducted at ANL-E and the laboratory serves as a major center of energy research and development. Building 315, which was completed in 1962, contained two cells, Cells 5 and 4, for holding Zero Power Reactor (ZPR)-6 and ZPR-9, respectively. These reactors were built to increase the knowledge and understanding of fast reactor technology. ZPR-6 was also referred to as the Fast Critical Facility and focused on fast reactor studies for civilian power production. ZPR-9 was used for nuclear rocket and fast reactor studies. In 1967, the reactors were converted for plutonium use. The reactors operated from the mid-1960's until 1982 when they were both shut down. Low levels of radioactivity were expected to be present due to the operating power levels of the ZPR's being restricted to well below 1,000 watts. To evaluate the presence of radiological contamination, DOE characterized the ZPRs in 2001. Currently, the Melt Attack and Coolability Experiments (MACE) and Melt Coolability and Concrete Interaction (MCCI) Experiments are being conducted in Cell 4 where the ZPR-9 is located (ANL 2002 and 2006). ANL has performed final

  3. Decontamination and decommissioning of the JANUS reactor at the Argonne National Laboratory-East site

    International Nuclear Information System (INIS)

    Argonne National Laboratory has begun the decontamination and decommissioning (D ampersand D) of the JANUS Reactor Facility. The project is managed by the Technology Development Division's D ampersand D Program personnel. D ampersand D procedures are performed by sub-contractor personnel. Specific activities involving the removal, size reduction, and packaging of radioactive components and facilities are discussed

  4. Final Report Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    Harpeneau, Evan M. [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2011-06-24

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions.

  5. Final Report - Independent Verification Survey of the High Flux Beam Reactor, Building 802 Fan House Brookhaven National Laboratory Upton, New York

    International Nuclear Information System (INIS)

    On May 9, 2011, ORISE conducted verification survey activities including scans, sampling, and the collection of smears of the remaining soils and off-gas pipe associated with the 802 Fan House within the HFBR (High Flux Beam Reactor) Complex at BNL. ORISE is of the opinion, based on independent scan and sample results obtained during verification activities at the HFBR 802 Fan House, that the FSS (final status survey) unit meets the applicable site cleanup objectives established for as left radiological conditions

  6. Design, fabrication, and testing of gadolinium-shielded metal fuel samples in the hydraulic tube of the high flux isotope reactor

    International Nuclear Information System (INIS)

    The use of hydraulic rabbit capsules inserted into and ejected from the core of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) during full power operation allows for precise control of the neutron fluence in fueled experiments. Rabbit capsules with strong thermal neutron absorbers must be used to screen out thermal neutrons, thereby reducing the heat generation rate while maintaining the fast neutron flux that produces displacement damage similar to fast reactor type conditions. However, rapid insertion and ejection of rabbit capsules containing a strong neutron absorber causes a reactivity response in the reactor that has the potential to engage the HFIR safety response system which could result in an unplanned shutdown. Therefore, a set of tests were performed to provide the data needed to establish limits on the reactivity worth that can be ejected from the hydraulic facility without causing a reactor shutdown. This paper will describe the design, operation, and results of the reactivity measurements undertaken to understand the reactor response to insertion of the gadolinium-lined rabbit capsules. (author)

  7. Production of Medical Radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for Cancer Treatment and Arterial Restenosis Therapy after PTCA

    Science.gov (United States)

    Knapp, F. F. Jr.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  8. Production of medical radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for cancer treatment and arterial restenosis therapy after PTCA

    International Nuclear Information System (INIS)

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed

  9. Assumptions and Criteria for Performing a Feasability Study of the Conversion of the High Flux Isotope Reactor Core to Use Low-Enriched Uranium Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Primm, R.T., III; Ellis, R.J.; Gehin, J.C.; Moses, D.L.; Binder, J.L.; Xoubi, N. (U. of Cincinnati)

    2006-02-01

    A computational study will be initiated during fiscal year 2006 to examine the feasibility of converting the High Flux Isotope Reactor from highly enriched uranium fuel to low-enriched uranium. The study will be limited to steady-state, nominal operation, reactor physics and thermal-hydraulic analyses of a uranium-molybdenum alloy that would be substituted for the current fuel powder--U{sub 3}O{sub 8} mixed with aluminum. The purposes of this document are to (1) define the scope of studies to be conducted, (2) define the methodologies to be used to conduct the studies, (3) define the assumptions that serve as input to the methodologies, (4) provide an efficient means for communication with the Department of Energy and American research reactor operators, and (5) expedite review and commentary by those parties.

  10. Spheromak reactor with poloidal flux-amplifying transformer

    Science.gov (United States)

    Furth, Harold P.; Janos, Alan C.; Uyama, Tadao; Yamada, Masaaki

    1987-01-01

    An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.

  11. Neutron flux measurements in PUSPATI Triga Reactor

    International Nuclear Information System (INIS)

    Neutron flux measurement in the PUSPATI TRIGA Reactor (PTR) was initiated after its commissioning on 28 June 1982. Initial measured thermal neutron flux at the bottom of the rotary specimen rack (rotating) and in-core pneumatic terminus were 3.81E+11 n/cm2 sec and 1.10E+12n/cm2 sec respectively at 100KW. Work to complete the neutron flux data are still going on. The cadmium ratio, thermal and epithermal neutron flux are measured in the reactor core, rotary specimen rack, in-core pneumatic terminus and thermal column. Bare and Cadmium covered gold foils and wires are used for the above measurement. The activities of the irradiated gold foils and wires are determined using Ge(Li) and hyperpure germinium detectors. (author)

  12. Determination flux in the Reactor JEN-1

    International Nuclear Information System (INIS)

    This report summarized several irradiations that have been made to determine the neutron flux distributions in the core of the JEN-1 reactor. Gold foils of 380 μ gr and Mn-Ni (12% de Ni) of 30 mg have been employed. the epithermal flux has been determined by mean of the Cd radio. The resonance integral values given by Macklin and Pomerance have been used. (Author) 9 refs

  13. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    Science.gov (United States)

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed. PMID:7869995

  14. Reactor antineutrino fluxes - status and challenges

    CERN Document Server

    Huber, Patrick

    2016-01-01

    In this contribution we describe the current understanding of reactor antineutrino fluxes and point out some recent developments. This is not intended to be a complete review of this vast topic but merely a selection of observations and remarks, which despite their incompleteness, will highlight the status and the challenges of this field.

  15. Fast neutron flux in heavy water reactors

    International Nuclear Information System (INIS)

    The possibility of calculating the fast neutron flux in a natural uranium-heavy water lattice by superposition of the individual contributions of the different fuel elements was verified using a one-dimension Monte-Carlo code. The results obtained are in good agreement with experimental measurements done in the core and reflector of the reactor AQUILON. (author)

  16. HFIR [High-Flux Isotope Reactor] irradiation facilities improvements: Completion of the HIFI [High Irradiation Facilities Improvements] project

    International Nuclear Information System (INIS)

    The HFIR Irradiation Facilities Improvements (HIFI) Project has now been completed. In August 1986, Phase I of the project was completed, providing the capability to perform instrumented irradiation experiments in the target region of the HFIR. In June 1987, Phase II of the project was completed with the assembly in the reactor mockup of all the components necessary to operate up to eight 46-mm-diam instrumented experiments in the removable beryllium region of the HFIR. In conjuntion with the installation of Phase I components, the first instrumented target capsule was installed to determine more accurately the probable temperature in the uninstrumented target capsules previously irradiated as part of the Japan/US fusion materials program. Data from this experiment indicate close agreement with expected temperatures in all positions except those at the extreme ends of the capsule. These data provide a more accurate axial gamma heating rate profile that will allow for better design of future HFIR target irradiation capsules

  17. Type B investigation of the iridium contamination event at the High Flux Isotope Reactor on September 7, 1993

    International Nuclear Information System (INIS)

    On the title date, at ORNL, area radiation alarms sounded during a routine transfer of a shielding cask (containing 60 Ci192Ir) from the HFIR pool side to a transport truck. Small amounts of Ir were released from the cask onto the reactor bay floor. The floor was cleaned, and the cask was shipped to a hot cell at Building 3047 on Oct. 3, 1993. The event was caused by rupture of one of the Ir target rods after it was loaded into the cask for normal transport operations; the rupture was the result of steam generation in the target rod soon after it was placed in the cask (water had entered the target rod through a tiny defect in a weld while it was in the reactor under pressure). While the target rods were in the reactor and reactor pool, there was sufficient cooling to prevent steam generation; when the target rod was loaded into the dry transport cask, the temperature increased enough to result in boiling of the trapped water and produced high enough pressure to result in rupture. The escaping steam ejected some of the Ir pellets. The event was reported as Occurrence Report Number ORO--MMES-X10HFIR-1993-0030, dated Sept. 8, 1993. Analysis indicated that the following conditions were probable causes: less than adequate welding procedures, practices, or techniques, material controls, or inspection methods, or combination thereof, could have led to weld defects, affecting the integrity of target rod IR-75; less than adequate secondary containment in the cask allowed Ir pellets to escape

  18. Neutron flux spectra and radiation damage parameters for the Russian Bor-60 and SM-2 reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karasiov, A.V. [D.V. Efremov Scientific Rresearch Institute of Electrophysical Apparatus, St. Petersburg (Russian Federation); Greenwood, L.R. [Pacific Northwest Laboratory, Richland, WA (United States)

    1995-04-01

    The objective is to compare neutron irradiation conditions in Russian reactors and similar US facilities. Neutron fluence and spectral information and calculated radiation damage parameters are presented for the BOR-60 (Fast Experimental Reactor - 60 MW) and SM-2 reactors in Russia. Their neutron exposure characteristics are comparable with those of the Experimental Breeder Reactor (ERB-II), the Fast Flux Test Facility (FFTF), and the High Flux Isotope Reactor (HFIR) in the United States.

  19. Experimental Plan and Irradiation Target Design for FeCrAl Embrittlement Screening Tests Conducted Using the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    The objective of the FeCrAl embrittlement screening tests being conducted through the use of Oak Ridge National Laboratories (ORNL) High Flux Isotope Reactor is to provide data on the radiation-induced changes in the mechanical properties including radiation-induced hardening and embrittlement through systematic testing and analysis. Data developed on the mechanical properties will be supported by extensive microstructural evaluations to assist in the development of structure-property relationships and provide a sound, fundamental understanding of the performance of FeCrAl alloys in intense neutron radiation fields. Data and analysis developed as part of this effort will be used to assist in the determination of FeCrAl alloys as a viable material for commercial light water reactor (LWR) applications with a primary focus as an accident tolerant cladding.

  20. Experimental Plan and Irradiation Target Design for FeCrAl Embrittlement Screening Tests Conducted Using the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-26

    The objective of the FeCrAl embrittlement screening tests being conducted through the use of Oak Ridge National Laboratories (ORNL) High Flux Isotope Reactor is to provide data on the radiation-induced changes in the mechanical properties including radiation-induced hardening and embrittlement through systematic testing and analysis. Data developed on the mechanical properties will be supported by extensive microstructural evaluations to assist in the development of structure-property relationships and provide a sound, fundamental understanding of the performance of FeCrAl alloys in intense neutron radiation fields. Data and analysis developed as part of this effort will be used to assist in the determination of FeCrAl alloys as a viable material for commercial light water reactor (LWR) applications with a primary focus as an accident tolerant cladding.

  1. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  2. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs

  3. Decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East. Project final report

    International Nuclear Information System (INIS)

    The decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East (ANL-E) was completed in October 1997. Descriptions and evaluations of the activities performed and analyses of the results obtained during the JANUS D and D Project are provided in this Final Report. The following information is included: objective of the JANUS D and D Project; history of the JANUS Reactor facility; description of the ANL-E site and the JANUS Reactor facility; overview of the D and D activities performed; description of the project planning and engineering; description of the D and D operations; summary of the final status of the JANUS Reactor facility based upon the final survey results; description of the health and safety aspects of the project, including personnel exposure and OSHA reporting; summary of the waste minimization techniques utilized and total waste generated by the project; and summary of the final cost and schedule for the JANUS D and D Project

  4. Project plan for the decontamination and decommissioning of the Argonne National Laboratory Experimental Boiling Water Reactor

    International Nuclear Information System (INIS)

    In 1956, the Experimental Boiling Water Reactor (EBWR) Facility was first operated at Argonne National Laboratory (ANL) as a test reactor to demonstrate the feasibility of operating an integrated power plant using a direct cycle boiling water reactor as a heat source. In 1967, ANL permanently shut down the EBWR and placed it in dry lay-up. This project plan presents the schedule and organization for the decontamination and decommissioning of the EBWR Facility which will allow it to be reused by other ANL scientific research programs. The project total estimated cost is $14.3M and is projected to generate 22,000 cubic feet of low-level radioactive waste which will be disposed of at an approved DOE burial ground. 18 figs., 3 tabs

  5. Department of Energy's High Flux Beam Reactor (HFBR), September 15--19, 1980: An independent on-site safety review

    International Nuclear Information System (INIS)

    The intent of this on-site safety review was to make a broad management assessment of HFBR operations, rather than conduct a detailed in-depth audit. The result of the review should only be considered as having identified trends or indications. The Team's observations and recommendations for the most part are based upon licensed reactor facility practices used to meet industry standards. These standards form the basis for many of the comments in this report. The Team believes that a uniform minimum standard of performance should be achieved in the operation of DOE reactors. In order to assure that this is accomplished, clear standards are necessary. Consistent with the past AEC and ERDA policy, the team has used the standards of the commercial nuclear power industry. It is recognized that this approach is conservative in that the HFBR reactor has a significantly greater degree of inherent safety (low pressure, temperature, power, etc.) than a licensed reactor

  6. Specialists' meeting on advanced controls for fast reactors, Argonne, Illinois, USA June 20-22, 1989

    International Nuclear Information System (INIS)

    The Specialists' Meeting on ''Advanced Controls for Fast Reactors'' was held in Argonne, Illinois, USA, from June 20 to 22, 1989. The meeting was sponsored by the International Atomic Energy Agency on the recommendation of the IAEA International Working Group on Fast Reactors and was hosted by Argonne National Laboratory and the US Department of Energy. It was attended by 20 participants and observers from Argentina, France, Germany, Japan, India, the USSR, the United Kingdom, the United States of America, and the IAEA. The purpose of the meeting was to provide an opportunity for participating countries to review and discuss their views on design and technology for advanced control in fast reactors. During the meeting papers were presented by the participants on behalf of their countries and organizations. Presentations were followed by open discussions on the subjects covered by the papers and summaries of the discussions were drafted. After the formal sessions were completed, a final discussion session was held and summaries, general conclusions and recommendations were approved by consensus. A separate abstract was prepared for each of the 22 papers presented at this meeting. Refs, figs, tabs, diagrams and photos

  7. Type A Verification Report For The High Flux Beam Reactor Stack And Grounds, Brookhaven National Laboratory, Upton, New York DCN: 5098-SR-08-0

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA).

  8. RELAP5/MOD2.5 analysis of the HFBR [High Flux Beam Reactor] for a loss of power and coolant accident

    International Nuclear Information System (INIS)

    A set of postulated accidents were evaluated for the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory. A loss of power accident (LOPA) and a loss of coolant accident (LOCA) were analyzed. This work was performed in response to a DOE review that wanted to update the understanding of the thermal hydraulic behavior of the HFBR during these transients. These calculations were used to determine the margins to fuel damage at the 60 MW power level. The LOPA assumes all the backup power systems fail (although this event is highly unlikely). The reactor scrams, the depressurization valve opens, and the pumps coast down. The HFBR has down flow through the core during normal operation. To avoid fuel damage, the core normally goes through an extended period of forced down flow after a scram before natural circulation is allowed. During a LOPA, the core will go into flow reversal once the buoyancy forces are larger than the friction forces produced during the pump coast down. The flow will stagnate, reverse direction, and establish a buoyancy driven (natural circulation) flow around the core. Fuel damage would probably occur if the critical heat flux (CHF) limit is reached during the flow reversal event. The RELAP5/MOD2.5 code, with an option for heavy water, was used to model the HFBR and perform the LOPA calculation. The code was used to predict the time when the buoyancy forces overcome the friction forces and produce upward directed flow in the core. The Monde CHF correlation and experimental data taken for the HFBR during the design verification phase in 1963 were used to determine the fuel damage margin. 20 refs., 40 figs., 11 tabs

  9. Investigation of the delay in pressure vessel embrittlement specimen analysis for the Oak Ridge National Laboratory High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Analysis of the investigative data pertaining to this incident reveals the following conditions as key findings and probable causes: (1) The contractor failed to properly implement the surveillance program for monitoring reactor pressure vessel embrittlement. (2) Contractor and DOE organizations provided less than adequate oversight and independent overview, especially by not requiring operating organizations to provide documented evidence to substantiate claims that there was ''no problem'' with respect to embrittlement. (3) Although the temperature limitation for reactor pressurization identified in the Technical Specifications was never violated, the basis of this safety limitation was violated. (4) The basis for concluding that there would be no embrittlement of the pressure vessel steel over the expected life of the reactor is questionable. (5) The contractor and DOE failed to make the surveillance program visible by incorporating it in the Technical Specifications. (6) The Accident Analysis/Final Safety Analysis Report was never adequately reviewed and updated subsequent to its initial issuance. (7) Surveillance specimen analysis was incomplete and never transmitted to reactor operating personnel in a usable format prior to November 1986. (8) There was extensive delays (many years) in the testing, analysis, and reporting of surveillance program results

  10. Measurement of adjoint flux at the RB reactor

    International Nuclear Information System (INIS)

    The adjoint flux is of the great importance for determination of kinetic parameters of nuclear reactor (ρ, l and βeff) and for the interpretation of experiments with reactivity perturbations. In experimental reactor physics there are a few methods for the adjoint flux measurements. The method of reactivity perturbations with adequate samples is used for thermal reactors. According to the theory of reactivity perturbations the reactivity change due to sample of thermal neutrons absorbing material is proportional to product of flux and adjoint flux of thermal neutrons (Φ2(r)Φ=2(r)). The reactivity change due to fissionable nuclide is proportional to product of thermal neutron flux and adjoint flux of fast neutrons (Φ2(r)Φ=2(r)). The axial distribution of adjoint flux is determined by reactivity measurements and measurements of axial distribution of thermal neutron flux. Thi results of this measurement will be used for interpretation of other experiments with reactivity perturbations at the RB reactor

  11. High temperature reactors

    International Nuclear Information System (INIS)

    With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements

  12. Pursuing nuclear energy with no nuclear contamination - from neutron flux reactor to deuteron flux reactor

    International Nuclear Information System (INIS)

    Pursuing nuclear energy with no nuclear contamination has been a long endeavor since the first fission reactor in 1942. Four major concepts have been the key issues: i.e. resonance, negative feed back, self-sustaining, nuclear radiation. When nuclear energy was just discovered in laboratory, the key issue was to enlarge it from the micro-scale to the macro-scale. Slowing-down the neutrons was the key issue to enhance the fission cross-section in order to build-up the neutron flux through the chain-reactions using resonance between neutron and fissile materials. Once the chain-reaction was realized, the negative feed-back was the key issue to keep the neutron flux at the allowable level. The negative reaction coefficient was introduced by the thermal expansion, and the resonant absorption in cadmium or boron was used to have a self-sustaining fission reactor with neutron flux. Then the strong neutron flux became the origin of all nuclear contamination, and a heavy shielding limits the application of the nuclear energy. The fusion approach to nuclear energy was much longer; nevertheless, it evolved with the similar issues. The resonance between deuteron and triton was resorted to enlarge the fusion cross section in order to keep a self-sustaining hot plasma. However, the 14 MeV neutron emission became the origin of all nuclear contamination again. Deuteron plus helium-3 fusion reaction was proposed to avoid neutron emission although there are two more difficulties: the helium-3 is supposed to be carried back from the moon; and much more higher temperature plasma has to be confined while 50 years needed to realized the deuteron-triton plasma already. Even if deuteron plus helium-3 fusion plasma might be realized in a much higher temperature plasma, we still have the neutron emission from the deuteron-deuteron fusion reaction in the deuteron plus helium-3 fusion plasma. Polarized deuteron-deuteron fusion reaction was proposed early in 1980's to select the neutron

  13. Analytical study on flux distribution in 5 MW HEU [high enriched uranium] and LEU [low enriched uranium] TRR [Teheran Research Reactor] core

    International Nuclear Information System (INIS)

    In HEU to LEU fuel conversion LEU core suffers unformidable changes in core arrangement and fuel element design structure. These lead to some redesign calculations as regard to heat removal and control potentiality. In this paper, some results related to flux distribution are given. Two core configurations with 18 (flat) plates/FE and two types of control elements, oval (8 pl/FE) and Fork-type (12 pl/FE) fork-type were considered. In oval type control element thermal flux depression in LEU fuel as compared to HEU fuel is about 30%. In case of LEU fuel flux distributions are mainly cosine and general power distribution follows more or less the flux shape. Two shuffling patterns were studied and indicate some slight changes in flux level. Our calculations showed that based on reactor operational requirements to an optimum fuel loading and fuel element design characteristics can be reached. (Author)

  14. A high-speed data acquisition system to measure low-level current from self-powered flux detectors in CANDU nuclear reactors

    International Nuclear Information System (INIS)

    Self-powered flux detectors are used in CANDU nuclear power reactors to determine the spatial neutron flux distribution in the reactor core for use by both the reactor control and safety systems. To establish the dynamic response of different types of flux detectors, the Chalk River Nuclear Laboratories have an ongoing experimental irradiation program in the NRU research reactor for which a data acquistion system has been developed. The system described in this paper is used to measure the currents from the detectors both at a slow, regular logging interval, and at a rapid, adaptive rate following a reactor shutdown. Currents that range from 100 pA to 1 mA full scale can be measured from up to 38 detectors and stored at sampling rates of up to 20 samples per second. The dynamic characteristics of the detectors can be computed from the stored records. The data acquisition system comprises a DEC LSI-11/23 microcomputer, dual cartridge disks, floppy disks, a hard copy and a video display terminal. The RT-11 operating system is used and all application programs are written in FORTRAN

  15. Technological research on Recycling of Actinides and fission products (RAS). Irradiations in the High Flux Reactor (HFR), Petten, Netherlands

    International Nuclear Information System (INIS)

    The purpose of the title irradiations is to study the efficiency and technical feasibility of possible transmutation processes for those long-lived actinides and fission products, that contribute to long-term radiotoxicity and leaking risks of geological storage. A cooperative research program (EFFTRA or Experimental Feasibility of Targets for TRAnsmutation) has been set up for irradiations of technetium, iodine and americium in the thermal reactor HFR and the fast reactor Phenix. A radiation program for fission products is in progress in the HFR. An inert matrix concept is developed, in which the actinide is mixed with a ceramic material, which hardly reacts with neutrons and actinides and containment materials. Irradiation experiments with candidate inert matrices will be carried out in the HFR. Also, the feasibility of transmutation of americium in a thermal spectrum will be demonstrated by means of a long-range experiment in the HFR. Plans are elaborated for the irradiation of plutonium in inert matrices in the HFR to realize an efficient transmutation of existing supplies, both military and civil, of plutonium. 8 figs., 4 tabs., 18 refs

  16. 'Experience with decommissioning of research and test reactors at Argonne National Laboratory'

    International Nuclear Information System (INIS)

    A large number of research reactors around the world have reached the end of their useful operational life. Many of these are kept in a controlled storage mode awaiting decontamination and decommissioning (D and D). At Argonne National Laboratory located near Chicago in the United States of America, significant experience has been gained in the D and D of research and test reactors. These experiences span the entire range of activities in D and D - from planning and characterization of the facilities to the eventual disposition of all waste. A multifaceted D nd D program has been in progress at the Argonne National Laboratory - East site for nearly a decade. The program consists of three elements: - D and D of nuclear facilities on the site that have reached the end of their useful life; - Development and demonstrations of technologies that help in safe and cost effective D and D; - Presentation of training courses in D and D practices. Nuclear reactor facilities have been constructed and operated at the ANL-E site since the earliest days of nuclear power. As a result, a number of these early reactors reached end-of-life long before reactors on other sites and were ready for D and D earlier. They presented an excellent set of test beds on which D and D practices and technologies could be demonstrated in environments that were similar to commercial reactors, but considerably less hazardous. As shown, four reactor facilities, plutonium contaminated glove boxes and hot cells, a cyclotron facility and assorted other nuclear related facilities have been decommissioned in this program. The overall cost of the program has been modest relative to the cost of comparable projects undertaken both in the U.S. and abroad. The safety record throughout the program was excellent. Complementing the actual operations, a set of D and D technologies are being developed. These include robotic methods of tool handling and operation, chemical and laser decontamination techniques, sensors

  17. Long Distance Reactor Antineutrino Flux Monitoring

    Science.gov (United States)

    Dazeley, Steven; Bergevin, Marc; Bernstein, Adam

    2015-10-01

    The feasibility of antineutrino detection as an unambiguous and unshieldable way to detect the presence of distant nuclear reactors has been studied. While KamLAND provided a proof of concept for long distance antineutrino detection, the feasibility of detecting single reactors at distances greater than 100 km has not yet been established. Even larger detectors than KamLAND would be required for such a project. Considerations such as light attenuation, environmental impact and cost, which favor water as a detection medium, become more important as detectors get larger. We have studied both the sensitivity of water based detection media as a monitoring tool, and the scientific impact such detectors might provide. A next generation water based detector may be able to contribute to important questions in neutrino physics, such as supernova neutrinos, sterile neutrino oscillations, and non standard electroweak interactions (using a nearby compact accelerator source), while also providing a highly sensitive, and inherently unshieldable reactor monitoring tool to the non proliferation community. In this talk I will present the predicted performance of an experimental non proliferation and high-energy physics program. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344. Release number LLNL-ABS-674192.

  18. LWR fuel rod testing facilities in high flux reactor (HFT) Petten for investigation of power cycling and ramping behaviour

    International Nuclear Information System (INIS)

    LWR fuel rod irradiation experiments are being performed in HFR's Pool Side Facility (PSF) by means of pressurized boiling water capsules (BWFC). For more than 6 years the major application of these devices has been in performing irradiation programs to investigate the power ramp behaviour of PWR and BWR rods which have been pre-irradiated in power reactors. Irradiation devices with various types of monitoring instrumentation are available, e.g. for fuel rod length, fuel stack length, fuel rod internal pressure and fuel rod central temperature measurements. The application scope covers PWR and BWR fuel rods, with burn-up levels up to 45 MWd/kg(U), max. linear heat generation rates up to 700 W/cm and simulation of constant power change rates between 0.05 and 1000 W/cm.min. The paper describes the different designs of LWR fuel rod testing facilities and associated non-destructive testing devices in use at the HFR Petten. It also addresses the new test capabilities that will become available after exchange of the HFR vessel in 1983. Furthermore it shows some typical results. (author)

  19. Study of the Potential Impact of Gamma-Induced Radiolytic Gases on Loading of Cesium Onto Crystalline Silicotitanate Sorbent at ORNL's High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mattus, A.J.

    2001-02-12

    The use of an engineered form of crystalline silicotitanate as a potential sorbent for the removal and concentration of cesium from the high-level waste at the Savannah River Site was investigated. Results conclusively showed this sorbent to be unaffected by gamma-induced radiolytic gas formation during column loading. Closely controlled column-loading experiments were performed at the Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) in a gamma field with a conservative dose rate expected to exceed that in a full-scale column by a factor of nearly 16. Operation of column loading under expected nominal full-scale field conditions in the HFIR pool showed that radiolytic gases were formed at a previously calculated generation rate of 0.4 mL per liter of feed solution. When the resulting cesium-loading curve in the gamma field was compared with that of a control experiment in the absence of a gamma field, no discernable difference in the curves (within analytical error) was detected. Both curves were in good agreement with the VERSE computer-generated curve. Results conclusively indicate that the production of radiolytic gases within a full-scale column is not expected to result in reduced capacity or associated gas generation problems during operation at the Savannah River Site.

  20. Absolute measurement of neutron fluxes inside the reactor core

    International Nuclear Information System (INIS)

    The subject of this work is the development and study of two methods of neutron measurements in nuclear reactors, the new method of high neutron flux measurements and the Li6-semiconductor neutron spectrometer. This work is presented in four sections: Section I. The introduction explains the need for neutron measurements in reactors. A critical survey is given of the existing methods of high neutron flux measurement and methods of fast neutron spectrum determination. Section II. Theoretical basis of the work of semiconductor counters and their most important characteristics are given. Section III. The main point of this section is in presenting the basis of the new method which the author developed, i.e., the long-tube method, and the results obtained by it, with particular emphasis on absolute measurement of high neutron fluxes. Advantages and limitations of this method are discussed in details at the end of this section. Section IV. A comparison of the existing semiconductor neutron spectrometers is made and their advantages and shortcomings underlined. A critical analysis of the obtained results with the Li6-semiconductor spectrometer with plane geometry is given. A new type of Li6-semiconductor spectrometer is described, its characteristics experimentally determined, and a comparison of it with a classical Li6-spectrometer made (author)

  1. Radiological protection considerations during the treatment of glioblastoma patients by boron neutron capture therapy at the high flux reactor in Petten, The Netherlands

    International Nuclear Information System (INIS)

    A clinical trial of Boron Neutron Capture Therapy (BNCT) for glioblastoma patients has been in progress at the High Flux Reactor (HFR) at Petten since October 1997. The JRC (as licence holder of the HFR) must ensure that radiological protection measures are provided. The BNCT trial is a truly European trial, whereby the treatment takes place at a facility in the Netherlands under the responsibility of clinicians from Germany and patients are treated from several European countries. Consequently, radiological protection measures satisfy both German and Dutch laws. To respect both laws, a BNCT radioprotection committee was formed under the chairmanship of an independent radioprotection expert, with members representing all disciplines in the trial. A special nuance of BNCT is that the radiation is provided by a mixed neutron/gamma beam. The radiation dose to the patient is thus a complex mix due to neutrons, gammas and neutron capture in boron, nitrogen and hydrogen, which, amongst others, need to be correctly calculated in non-commercial and validated treatment planning codes. Furthermore, due to neutron activation, measurements on the patient are taken regularly after treatment. Further investigations along these lines include dose determination using TLDs and boron distribution measurements using on-line gamma ray spectroscopy. (author)

  2. Neutron flux and fluence determination for BWR reactors

    International Nuclear Information System (INIS)

    Measurements of gamma emission rates from Fe and Cu dosimeters extracted from a BWR type reactor vessel were carried out in order to determine their total activity. The dosimeter's activity is related to the neutron flux there by taking into account the reactor material's embrittlement caused by neutron bombardment. The dosimeters were taken out after the first reactor operation cycle. From gamma radioactivity measurements of these dosimeters, neutron flux and fluence were calculated. These parameters are used in the determination of shift and adjusted reference temperature values needed for the development of pressure-temperature curves used during reactor operation

  3. INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    The objective of the verification survey was to obtain evidence by means of measurements and sampling to confirm that the final radiological conditions meet the established cleanup goals. This objective was achieved via multiple verification components including document reviews, instrument scans, and sample analysis to determine the accuracy and adequacy of FSS documentation. During the period between August 18 to 25 and September 24 to 29, 2010, ORISE conducted measurements and sampling of the HFBR 'Outside Areas' at the BNL site. ORISE performed gamma walkover scans in all eight SUs with SUs 2, 4, 6, 7, and 8 receiving high density scans of accessible areas. The remainder of SUs received low density scans. While scanning, ORISE team members observed a significant spike in count rate activity in SU 8. Just as quickly as the count rate increased the count rate decreased. A previous pass in the area did not identify any activity associated with soil contamination. The team determined that both detector instrument electronics functioned normally, and that the increased activity was due to a site activity. All individual sample concentrations and corresponding mean concentrations evaluated were determined to be below the established cleanup goal. A review of the data collected by ORISE has not identified any areas of contamination exceeding cleanup goals.

  4. Detailed flux calculations for the conceptual design of the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    A detailed MCNP model of the Advanced Neutron Source Reactor has been developed. All reactor components inside the reflector tank were included, and all components were highly segmented. Neutron and photon multigroup flux spectra have been calculated for each segment in the model, and thermal-to-fast neutron flux ratios were determined for each component segment. Axial profiles of the spectra are provided for all components of the reactor. Individual segment statistical uncertainties were limited wherever possible, and the group fluxes for all important reflector components have a standard deviation below 10%

  5. Environmental assessment related to the decontamination and decommissioning of the Argonne National Laboratory CP-5 research reactor

    International Nuclear Information System (INIS)

    Five alternatives for the decontamination and decommissioning of the Argonne National Labortory CP-5 research reactor are considered. Results of this study on environmental changes and impacts due to the action indicate that there will be no adverse impact on land use; decommissioning of the facility will release about 1.2 ha (3 acres) of a previously restricted area for unrestricted use, whereas radioactive-waste burial will occupy only an estimated 0.03 ha (0.07 acre. Some of the biotic habitat, vegetation, and animal life of the 1.2-ha (3-acre) waste-storage yard will be disturbed or destroyed during decontamination of the yard. The impact will be negligible in terms of the local ecosystem. There will be minimal socioeconomic impact on the area. Radiological impacts on the population from nonaccidental releases of the radionuclides 3H, 60Co, 55Fe, and 63Ni will include a dose commitment possibly as high as 0.19 mrem to the lungs of an individual working onsite and located about 100 m (300 ft) to the northeast of the reactor building. The cumulative dose to the population within an 80-km (50-mi) radius is 8.33 person-rem; this is about 10-5 of the annual natural-background dose for this area. The risks of significant radiological impacts on the population from accidents of natural catastrophies at the reactor site are extremely small. A cumulative occupational dose of about 21 person-rem will be received by the work force of up to about 50 persons participating in the dismantling activities. Population doses during the transportation of reactor scrap and wastes from dismantlement will be about 50% of the cumulative population dose within 80 km of the site. A cumulative occupational dose of about 24 person-rem could be received by the drivers of the transport trucks shipping the radioactive wastes to Richland, Washington

  6. In-pile tritium release behaviour of lithiummetatitanate produced by extrusion-spheroidisation-sintering process in EXOTIC-9/1 in the high flux reactor, Petten

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, M.M.W. [N.R.G., P.O. Box 25, 1755 ZG Petten (Netherlands)], E-mail: peeters@nrg-nl.com; Magielsen, A.J.; Stijkel, M.P.; Laan, J.G. van der [N.R.G., P.O. Box 25, 1755 ZG Petten (Netherlands)

    2007-10-15

    The irradiation programme EXOTIC (extraction of tritium in ceramics) is carried out within the European framework for the development of the helium cooled pebble bed concept. The EXOTIC-9/1 is the latest experiment in the series of EXOTICs that are irradiated in the high flux reactor in Petten. Tritium release and inventory in lithium containing ceramic pebbles are key properties to be tested in a TBM. New production routes of pebbles are developed, leading to different thermomechanical and tritium release properties. The objective of the EXOTIC-9/1 is to study in-pile tritium release behaviour of the latest developed lithiummetatitanate pebbles (Li{sub 2}TiO{sub 3}). The pebbles are produced by a extrusion-spheroidisation-sintering process at CEA. The new pebbles differ with respect to porosity from the lithiummetatitanate ceramics tested in the previous EXOTIC 8 programme. The pebbles have diameter in the range from 0.6 to 0.8 mm. Irradiation of EXOTC-9/1 started at 24 March 2005, and will continue until the end of 2006, in total about 400 irradiation days. The temperature is varied between 340 and 580 deg. C. Begin of Life (BOL) tritium production rate is 0.56 mCi/min. Based upon the in-pile tritium release measurements and the analysis of the tritium residence time it can be concluded that tritium release in the new batch of the high density Li{sub 2}TiO{sub 3} pebbles irradiated in EXOTIC 9/1 is rather slow compared to the ceramics irradiated in the EXOTIC 8 irradiation campaign. In this paper, the in-pile tritium behaviour will be reported during normal operation and during transients in temperature, purge gas chemistry and gasflow. The collected data is compared to tritium release data from ceramics irradiated in previous EXOTIC experiments with respect to tritium inventory, residence time and porosity.

  7. Decontamination and decommissioning of the Experimental Boiling Water Reactor at Argonne National Laboratory

    International Nuclear Information System (INIS)

    The Experimental Boiling Water Reactor (EBWR), located on the Argonne National Laboratory-East (ANL-E) site, started operations in 1957. The initial rating was 20 MW(t). The rating was eventually increased to 70 MW(t) in 1959 and 100 MW(t) in 1962. The reactor was shut down in 1967 and all of the fuel was removed from the facility. The facility was placed in dry lay-up until 1986. ANL-E personnel started the decontamination and decommissioning (D ampersand D) effort in 1986. Supporting equipment such as the external steam system and some of the upper reactor components, the core riser and the top fuel shroud, were removed at that time. Characterization of the facility was also undertaken. The contract to complete the EBWR D ampersand D Project was issued in December 1993. The initial schedule called for the final effort to be divided into five phases that were to be completed over a four year period. However, this schedule was subsequently consolidated, at the request of ANL-E, to a thirteen month period, with the on-site work to be completed by the end of 1994. The EBWR D ampersand D Project is approximately 88% complete. A small quantity of reactor internals remains to be volume reduced along with the removal of the SFSP water treatment system. Upon completion of this work the facility will be decontaminated and a final survey completed. The planned completion of on-site work is scheduled for July 1995

  8. Optimization of neutron flux distribution in Isotope Production Reactor

    International Nuclear Information System (INIS)

    In order to optimize the thermal neutrons flux distribution in a Radioisotope Production and Research Reactor, the influence of two reactor parameters was studied, namely theVmod/Vcomb ratio and the core volume. The reactor core is built with uranium oxide pellets (UO2) mounted in rod clusters, with an enrichment level of ∼3 %, similar to LIGHT WATER POWER REATOR (LWR) fuel elements. (author)

  9. Mechanical properties and microstructure of copper alloys and copper alloy-stainless steel laminates for fusion reactor high heat flux applications

    Science.gov (United States)

    Leedy, Kevin Daniel

    A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel

  10. Excitation of neutron flux waves in reactor core transients

    International Nuclear Information System (INIS)

    An analysis of the excitation of neutron flux waves in reactor core transients has been performed. A perturbation theory solution has been developed for the time-dependent thermal diffusion equation in which the absorption cross section undergoes a rapid change, as in a PWR rod ejection accident (REA). In this analysis the unperturbed reactor flux states provide the basis for the spatial representation of the flux solution. Using a simplified space-time representation for the cross section change, the temporal integrations have been carried out and analytic expressions for the modal flux amplitudes determined. The first order modal excitation strength is determined by the spatial overlap between the initial and final flux states, and the cross section perturbation. The flux wave amplitudes are found to be largest for rapid transients involving large reactivity perturbations

  11. Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments

    CERN Document Server

    Cucoanes, Andi; Cabrera, Anatael; Fallot, Muriel; Onillon, Anthony; Obolensky, Michel; Yermia, Frederic

    2015-01-01

    This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications o...

  12. Decontamination and decommissioning of the Argonne Thermal Source Reactor at Argonne National Laboratory - East project final report.

    Energy Technology Data Exchange (ETDEWEB)

    Fellhauer, C.; Garlock, G.; Mathiesen, J.

    1998-12-02

    The ATSR D&D Project was directed toward the following goals: (1) Removal of radioactive and hazardous materials associated with the ATSR Reactor facility; (2) Decontamination of the ATSR Reactor facility to unrestricted use levels; and (3)Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure). These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the ATSR Reactor facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The reactor aluminum, reactor lead, graphite piles in room E-111, and the contaminated concrete in room E-102 were the primary areas of concern. NES, Incorporated (Danbury, CT) characterized the ATSR Reactor facility from January to March 1998. The characterization identified a total of thirteen radionuclides, with a total activity of 64.84 mCi (2.4 GBq). The primary radionuclides of concern were Co{sup 60}, Eu{sup 152}, Cs{sup 137}, and U{sup 238}. No additional radionuclides were identified during the D&D of the facility. The highest dose rates observed during the project were associated with the reactor tank and shield tank. Contact radiation levels of 30 mrem/hr (0.3 mSv/hr) were measured on reactor internals during dismantlement of the reactor. A level of 3 mrem/hr (0.03 mSv/hr) was observed in a small area (hot spot) in room E-102. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem/yr (50 mSv/yr); the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  13. OPAL REACTOR: Calculation/Experiment comparison of Neutron Flux Mapping in Flux Coolant Channels

    Energy Technology Data Exchange (ETDEWEB)

    Barbot, L.; Domergue, C.; Villard, J. F.; Destouches, C. [CEA, Paris (France); Braoudakis, G.; Wassink, D.; Sinclair, B.; Osborn, J. C.; Huayou, Wu [ANSTO, Syeney (Australia)

    2013-07-01

    The measurement and calculation of the neutron flux mapping of the OPAL research reactor are presented. Following an investigation of fuel coolant channels using sub-miniature fission chambers to measure thermal neutron flux profiles, neutronic calculations were performed. Comparison between calculation and measurement shows very good agreement.

  14. New flux detectors for CANDU 6 reactors

    International Nuclear Information System (INIS)

    CANDU reactors utilize large numbers of in-core self-powered detectors for control and protection. In the original design, the detectors (coaxial cables) were wound on carrier tubes and immersed in the heavy water moderator. Failures occurred due to corrosion and other factors, and replacement was very costly because the assemblies were not designed with maintenance in mind. A new design was conceived based on straight detectors, of larger diameter, in a sealed package of individual 'well' tubes. This protected the detectors from hostile environments and enabled individual failed sensors to be replaced by inserting spares in vacant neighbouring tubes. The new design was made retrofittable to older CANDU reactors. Provision was made for on-line scanning of the core with a miniature fission chamber. The modified detectors were tested in a lengthy development program and found to exhibit superior performance to that of the original detectors. Most of the CANDU reactors have now adopted the new design. In the case of the Gentilly-2 and Point Lepreau reactors, advantage was taken of the opportunity to redesign the detector layout (using better codes and the increased flexibility in positioning detectors) to achieve better coverage of abnormal events, leading to higher trip setpoints and wider operating margins

  15. Computer code development for the analysis of reactivity transients using neutron transport theory and coupled thermofluid-dynamics for high-flux research reactors. Final report

    International Nuclear Information System (INIS)

    A new neutron transport code for time-dependent analyses of nuclear systems has been developed. The code system is based on the well-known discrete ordinates code DORT, which solves the steady-state neutron transport equation for an arbitrary number of energy groups and the most common regular 2D-geometries. For the implementation of time-dependence a fully implicit first-order time-integration scheme was employed to minimise errors due to temporal discretisation. This requires various modifications to the transport equation, the extensive use of sophisticated acceleration mechanisms and strongly tightened convergence criteria. To perform coupled analyses, an interface to the GRS (Gesellschaft fuer Reaktorsicherheit) system code ATHLET was developed. From the nodal power densities ATHLET calculates thermal-hydraulic system parameters, which are in turn used to generate appropriate nuclear cross sections. The code system has been applied to analyse the reactor dynamics of the research reactor FRM-II. After extensive steady-state analyses, several design basis accidents have been simulated: Loss of offsite power, loss of secondary heat sink and unintended withdrawl of control rod. Results from applying neutron transport theory were compared to diffusion theory and point kinetics calculations. Additionally, two hypothetical transients with large reactivity insertions of 3$ and 12% were considered to show the capability of the code system to cope with inhomogeneous reactivity insertions and strong flux distortions. (orig.)

  16. Experiments on critical heat flux for CAREM reactor

    International Nuclear Information System (INIS)

    The prediction of critical heat flux (CHF) in rod bundles of light water reactors is basically performed with the aid of empirical correlations derived from experimental data. Many CHF correlations have been proposed and are widely used in the analysis of the thermal margin during normal operation, transient, and accident conditions. Correlations found in the open literature are not sufficiently verified for the thermal-hydraulic conditions that appear in the CAREM core under normal operation: high pressure, low flow, and low qualities. To compensate this deficiency, an experimental investigation on CHF in such thermal-hydraulic conditions is being carried out. The experiments have been performed in the Institute of Physics and Power Engineering of Russian Federation. A short description of facilities, details of the experimental program and some trends in the preliminary results obtained are presented in this work. (author)

  17. Experiments on Critical Heat Flux for CAREM -25 Reactor

    International Nuclear Information System (INIS)

    The prediction of critical heat flux (CHF) in rod bundles of light water reactors is basically performed with the aid of empirical correlations derived from experimental data.Many CHF correlations have been proposed and are widely used in the analysis of the thermal margin during normal operation, transient, and accident conditions.Correlations found in the open literature are not sufficiently verified for the thermal hydraulic conditions that appear in the CAREM core under normal operation: high pressure, low flow, and low qualities.To compensate this deficiency, an experimental investigation on CHF in such thermal-hydraulic conditions was carried out.The experiments have been performed in the Institute of Physics and Power Engineering of Russian Federation.A short description of facilities, details of the experimental program and some preliminary results obtained are presented in this work

  18. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    Directory of Open Access Journals (Sweden)

    Imam Mahmoud M.

    2002-01-01

    Full Text Available The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a to provide a thermal neutron flux in the neutron transmutation silicon doping, (b to provide a thermal flux in the neutron activation analysis position, and (c to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, necessary to determine the thermal neutron flux at above mentioned positions. In the present work, the neutron flux in the ET-RR-2 reactor system was calculated by applying the three dimensional diffusion depletion code TRITON. According to these calculations, the reactor system is composed of the core, surrounding external irradiation grid, beryllium block, thermal column and the water reflector in the reactor tank next to the tank wall. As a result of these calculations, the thermal neutron fluxes within the thermal column and at irradiation positions within the thermal column were obtained. Apart from this, the burn up results for the start up core calculated according to the TRITION code were compared with those given by the reactor designer.

  19. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 5 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the concrete duct from Trench 5 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 5 was appropriate based on recent verification results from Trenches 2, 3, and 4, and the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch pipe from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 5. Based on the pre-excavation sample results of the soil overburden the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that resolved each ORISE comment adequately (BNL 2010a). ORISE referred to the revised HFBR Underground Utilities FSP FSS data to conduct the Type A verification

  20. Monitoring Akkuyu Nuclear Reactor Using Anti-Neutrino Flux Measurement

    CERN Document Server

    Ozturk, Sertac; Ozcan, V Erkcan; Unel, Gokhan

    2016-01-01

    We present a simulation based study for monitoring Akkuyu Nuclear Power Plant's activity using anti-neutrino flux originating from the reactor core. A water Cherenkov detector has been designed and optimization studies have been performed using Geant4 simulation toolkit. A first study for the design of a monitoring detector facility for Akkuyu Nuclear Power Plant has been discussed in this paper.

  1. Which reactor antineutrino flux may be responsible for the anomaly?

    CERN Document Server

    Giunti, Carlo

    2016-01-01

    We investigate which among the reactor antineutrino fluxes from the decays of the fission products of $^{235}\\text{U}$, $^{238}\\text{U}$, $^{239}\\text{Pu}$, and $^{241}\\text{Pu}$ may be responsible for the reactor antineutrino anomaly. We find that it is the $^{235}\\text{U}$ flux, which contributes to the rates of all reactor neutrino experiments. From the fit of the data we obtain the precise determination $ \\sigma_{^{235}\\text{U}} = ( 6.34 \\pm 0.10 ) \\times 10^{-43} \\, \\text{cm}^2 / \\text{fission} $ of the $^{235}\\text{U}$ cross section per fission, which is more precise than the calculated value and differs from it by $2.0\\sigma$.

  2. High temperature gas reactor

    International Nuclear Information System (INIS)

    The present invention provides a reflector block structure of a high temperature gas reactor in which graphite blocks are not failed even a containing cylinder loaded to a fuel exchanger collides against to secured reflectors upon loading and withdrawing fuel constitutional elements. Namely, a protection plate made of a metal material such as stainless steel is covered on the secured reflector blocks disposed to the upper most step among secured graphite reflector blocks constituting the reactor core. In addition, positioning guide grooves are formed on the protection plate for guiding the containing cylinder loaded to the fuel exchanger to the column of the reactor core constitutional elements. With such a constitution, even if the containing cylinder of fuel exchanger is hoisted down and collided against the inner circumferential edge of the secured reflector blocks due to deviation of the position and the direction upon exchange of fuels, the reflector blocks are not failed since the above-mentioned portion is covered with the metal protection plate. In addition, the positioning guide grooves lead the fuel exchanger to a predetermined column correctly. (I.S.)

  3. LETTER REPORT - INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT FAN HOUSE, BUILDING 704 BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education (ORISE) personnel visited the Brookhaven National Laboratory (BNL) on August 17 through August 23, 2010 to perform visual inspections and conduct independent measurement and sampling of the 'Outside Areas' at the High Flux Beam Reactor (HFBR) decommissioning project. During this visit, ORISE was also able to evaluate Fan House, Building 704 survey units (SUs) 4 and 5, which are part of the Underground Utilities portion of the HFBR decommissioning project. ORISE performed limited alpha plus beta scans of the remaining Fan House foundation lower walls and remaining pedestals while collecting static measurements. Scans were performed using gas proportional detectors coupled to ratemeter-scalers with audible output and encompassed an area of approximately 1 square meter around the static measurement location. Alpha plus beta scans ranged from 120 to 460 cpm. Twenty smears for gross alpha and beta activity and tritium were collected at judgmentally selected locations on the walls and pedestals of the Fan House foundation. Attention was given to joints, cracks, and penetrations when determining each sample location. Removable concentrations ranged from -0.43 to 1.73 dpm/100 cm2 for alpha and -3.64 to 7.80 dpm/100 cm2 for beta. Tritium results for smears ranged from -1.9 to 9.0 pCi/g. On the concrete pad, 100% of accessible area was scanned using a large area alpha plus beta gas proportional detector coupled to a ratemeter-scaler. Gross scan count rates ranged from 800 to 1500 cpm using the large area detector. Three concrete samples were collected from the pad primarily for tritium analysis. Tritium concentrations in concrete samples ranged from 53.3 to 127.5 pCi/g. Gamma spectroscopy results of radionuclide concentrations in concrete samples ranged from 0.02 to 0.11 pCi/g for Cs-137 and 0.19 to 0.22 pCi/g for Ra-226. High density scans for gamma radiation levels were performed in accessible areas in each SU, Fan House

  4. PODESY program for flux mapping of CNA II reactor:

    International Nuclear Information System (INIS)

    The PODESY program, developed by KWU, calculates the spatial flux distribution of CNA II reactor through a three-dimensional expansion of 90 incore detector measurements. The calculation is made in three steps: a) short-term calculation which considers the control rod positions and it has to be done each time the flux mapping is calculated; b) medium-term calculation which includes local burn-up dependent calculation made by diffusion methods in macro-cell configurations (seven channels in hexagonal distribution), and c) long-term calculation, or macroscopic flux determination, that is a fitting and expansion of measured fluxes, previously corrected by local effects, using the eigen functions of the modified diffusion equation. The paper outlines development of step (c) of the calculation. The incore detectors have been located in the central zone of the core. In order to obtain low errors in the expansion procedure it is necessary to include additional points, whose flux values are assumed to be equivalent to detector measurements. These flux values are calculated with detector measurements and a spatial flux distribution calculated by a PUMA code. This PUMA calculation employs a smooth burn-up distribution (local burn-up variations are considered in step (b) of the whole calculation) representing the state of core evolution at the calculation time. The core evolution referred to ends when the equilibrium core condition is reached. Additionally, a calculation method to be employed in the plant in case of incore detector failures, is proposed. (Author)

  5. Thermal neutron flux distribution in ET-RR-2 reactor thermal column

    OpenAIRE

    Imam Mahmoud M.; Roushdy Hassan

    2002-01-01

    The thermal column in the ET-RR-2 reactor is intended to promote a thermal neutron field of high intensity and purity to be used for following tasks: (a) to provide a thermal neutron flux in the neutron transmutation silicon doping, (b) to provide a thermal flux in the neutron activation analysis position, and (c) to provide a thermal neutron flux of high intensity to the head of one of the beam tubes leading to the room specified for boron thermal neutron capture therapy. It was, therefore, ...

  6. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 3; Trench 1 at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed Final Status Survey (FSS) of the 42-inch duct and 14-inch line in Trench 1 from Building 801 to the Stack. Sample results have been submitted as required to demonstrate that the cleanup goal of (le)15 mrem/yr above background to a resident in 50 years has been met. Four rounds of sampling, from pre-excavation to FSS, were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the U.S. Department of Energy (DOE) to perform independent verifications of decontamination and decommissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task for the HFBR Underground Utilities. ORISE, together with DOE, determined that a Type A verification of Trench 1 was appropriate based on recent verification results from Trenches 2, 3, 4, and 5, and the minimal potential for residual radioactivity in the area. The removal of underground utilities has been performed in three stages to decommission the HFBR facility and support structures. Phase 3 of this project included the removal of at least 200 feet of 36-inch to 42-inch duct from the west side to the south side of Building 801, and the 14-inch diameter Acid Waste Line that spanned from 801 to the Stack within Trench 1. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the gamma spectroscopy results for 14 FSS soil samples, four core samples, and one duplicate sample collected from Trench 1. Sample results for the radionuclides of concern were below the established cleanup goals. However, in sample PH-3

  7. Thermal flux flattering and increase of reactor output

    International Nuclear Information System (INIS)

    It is worthwhile, when building power reactors, to have excess reactivity in order to increase rating by fitting closely together the heat sources and the cooling possibilities. The power per unit volume of a graphite reactor can then be increased, given the power of the most heavily loaded channel. The solutions adopted for G.1, G.2, and E.D.F.1 are described here, and also the improvements based on the actual neutron flux flattening, the introduction of several zones for the coolant, the variation of uranium rod and coolant channel diameters according to their location, and finally the change in lattice pitch. The perturbation of neutron flux due to variation of mean absorption in the lattice is also discussed. (author)

  8. High solids fermentation reactor

    Science.gov (United States)

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  9. Modeling space–time evolution of flux in a traveling wave reactor

    International Nuclear Information System (INIS)

    Highlights: • Monte-Carlo MCNPX was used to analyze flux profile in a traveling wave reactor. • Results show steady propagation of flux (2 cm/year) over life of the reactor. • High discharge burn-up of 394 GWd/MTU was observed for the prototype compact model. - Abstract: Simulations have been carried out using Monte Carlo code MCNPX to evaluate the space and time evolution of flux in a prototype traveling wave reactor under constant thermal power condition. A 3-D box-shaped model of the reactor is developed. The reactor core is divided into two primary regions: the smaller, enriched region with fissile material; and the larger non-enriched region with fertile material. This enrichment strategy is aimed to allow breed-and-burn in the core. The core, on the outside, is surrounded by shielding material of uniform thickness. To facilitate the study, these two primary regions in the core are further divided into thin slab-like regions referred to as cells. Results show propagation of flux profile from the enriched region to the non-enriched region at a near constant speed. Analyses of time evolution of local power density (power fraction) at specified locations in the core are presented. Space and time evolution of the overall core burn-up and localized burn-up are discussed

  10. Argonne National Laboratory, High Energy Physics Division, semiannual report of research activities, July 1, 1989--December 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This report discusses research being conducted at the Argonne National Laboratory in the following areas: Experimental High Energy Physics; Theoretical High Energy Physics; Experimental Facilities Research; Accelerator Research and Development; and SSC Detector Research and Development.

  11. Argonne National Laboratory, High Energy Physics Division, semiannual report of research activities, July 1, 1989--December 31, 1989

    International Nuclear Information System (INIS)

    This report discusses research being conducted at the Argonne National Laboratory in the following areas: Experimental High Energy Physics; Theoretical High Energy Physics; Experimental Facilities Research; Accelerator Research and Development; and SSC Detector Research and Development

  12. Extraterrestrial high energy neutrino fluxes

    International Nuclear Information System (INIS)

    With the aid of using the most recent cosmic ray spectra up to 2x1020 eV, production spectra of high-energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh-energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high-energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND-type detector are discussed in the context of the Weinberg-Salam model with sin2 theta/sub ω/ = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high-energy neutrino production models are also discussed. It appears that important high-energy neutrino astronomy may be possible with DUMAND, but very long observing times are required

  13. Extraterrestrial high energy neutrino fluxes

    Science.gov (United States)

    Stecker, F. W.

    1979-01-01

    Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  14. Extraterrestrial high energy neutrino fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Stecker, F.W.

    1979-06-01

    With the aid of using the most recent cosmic ray spectra up to 2x10/sup 20/ eV, production spectra of high-energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh-energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high-energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND-type detector are discussed in the context of the Weinberg-Salam model with sin/sup 2/ theta/sub ..omega../ = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high-energy neutrino production models are also discussed. It appears that important high-energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  15. Advanced high temperature heat flux sensors

    Science.gov (United States)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  16. Critical heat flux prediction for the annular core research reactor

    International Nuclear Information System (INIS)

    This paper reports on best estimate predictions of Critical Heat Flux Ratio (CHFR) obtained to support the upgrade of the Annular Core Research Reactor (ACRR) at Sandia National Laboratories for 2 to 4 MWt. The CHF productions are based on the University of New Mexico's (UNM)-CHF correlations in conjunction with the Global Conditions Hypothesis (GCH). Results indicate that for the range of inlet water temperature of 293 to 333 K, CHFR predictions range from 3.9 to 2.1, which is more than sufficient to support the proposed ACRR upgrade

  17. Gamma-ray fluxes in Oklo natural reactors

    CERN Document Server

    Gould, C R; Sonzogni, A A; 10.1103/PhysRevC.86.054602

    2012-01-01

    Uncertainty in the operating temperatures of Oklo reactor zones impacts the precision of bounds derived for time variation of the fine structure constant $\\alpha$. Improved $^{176}$Lu/$^{175}$Lu thermometry has been discussed but its usefulness may be complicated by photo excitation of the isomeric state $^{176m}$Lu by $^{176}$Lu($\\gamma,\\gamma^\\prime $) fluorescence. We calculate prompt, delayed and equilibrium $\\gamma$-ray fluxes due to fission of $^{235}$U in pulsed mode operation of Oklo zone RZ10. We use Monte Carlo modeling to calculate the prompt flux. We use improved data libraries to estimate delayed and equilibrium spectra and fluxes. We find $\\gamma$-ray fluxes as a function of energy and derive values for the coefficients $\\lambda_{\\gamma,\\gamma^\\prime}$ that describe burn-up of $^{176}$Lu through the isomeric $^{176m}$Lu state. The contribution of the ($\\gamma,\\gamma^\\prime $) channel to the $^{176}$Lu/$^{175}$Lu isotopic ratio is negligible in comparison to the neutron burn-up channels. Lutetium...

  18. Argonne National Laboratory High Energy Physics Division semiannual report of research activities, January 1, 1989--June 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This paper discuss the following areas on High Energy Physics at Argonne National Laboratory: experimental program; theory program; experimental facilities research; accelerator research and development; and SSC detector research and development.

  19. Argonne National Laboratory High Energy Physics Division semiannual report of research activities, January 1, 1989--June 30, 1989

    International Nuclear Information System (INIS)

    This paper discuss the following areas on High Energy Physics at Argonne National Laboratory: experimental program; theory program; experimental facilities research; accelerator research and development; and SSC detector research and development

  20. Evaluation of critical heat flux performances for design strategy of new research reactor nuclear fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Bang, In Cheol; Lee, Kwi Lim; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2006-02-15

    The present project investigated stable burnout heat flux correlations applicable to research reactor operation conditions of low pressure, low temperature and high flow rate. In addition, in series of thermal limits important to safety of the reactor, ONB and OFI correlations also were investigated. There are some world CHF databases for tube-inside flow. In order to design a research reactor, DNB is final design limit factor and so the collection of the data or correlation are very important. The optimal core cooling capability can be done by considering neutronics, economical efficiency, materials limit together through engineering judgement based on DNB correlations. The project collected the materials and correlations applicable to research reactor conditions. The correlations give a fundamental base for analyzing thermal limit factors and will be used helpfully in review of regulatory body and designer for safety evaluation.

  1. Flux flow and flux dynamics in high-Tc superconductors

    Science.gov (United States)

    Bennett, L. H.; Turchinskaya, M.; Swartzendruber, L. J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D. L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed.

  2. Flux flow and flux dynamics in high-Tc superconductors

    International Nuclear Information System (INIS)

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed

  3. Axial flux distribution in a lattice position in the NRX reactor

    International Nuclear Information System (INIS)

    The axial thermal flux distribution in a lattice position in the NRX reactor has been measured at a number of moderator levels. The results have been fitted to sine functions and values are given for the positions of the flux maxima and the extrapolated flux lengths. Results of measurements of the axial fast flux distribution are also given. (author)

  4. High flux transmutation of fission products and actinides

    International Nuclear Information System (INIS)

    Long-lived fission products and minor actinides accumulated in spent nuclear fuel of power reactors comprise the major part of high level radwaste. Their incineration is important from the point of view of radwaste management. Transmutation of these nuclides by means of neutron irradiation can be performed either in conventional nuclear reactors, or in specialized transmutation reactors, or in ADS facilities with subcritical reactor and neutron source with application of proton accelerator. Different types of transmutation nuclear facilities can be used in order to insure optimal incineration conditions for radwaste. The choice of facility type for optimal transmutation should be based on the fundamental data in the physics of nuclide transformations. Transmutation of minor actinides leads to the increase of radiotoxicity during irradiation. It takes significant time compared to the lifetime of reactor facility to achieve equilibrium without effective transmutation. High flux nuclear facilities allow to minimize these draw-backs of conventional facilities with both thermal and fast neutron spectrum. They provide fast approach to equilibrium and low level of equilibrium mass and radiotoxicity of transmuted actinides. High flux facilities are advantageous also for transmutation of long-lived fission products as they provide short incineration time

  5. High Pressure Boiling Water Reactor

    International Nuclear Information System (INIS)

    Some four hundred Boiling Water Reactors (BWR) and Pressurized Water Reactors (PWR) have been in operation for several decades. The presented concept, the High Pressure Boiling Water Reactor (HP-BWR) makes use of the operating experiences. HP-BWR combines the advantages and leaves out the disadvantages of the traditional BWRs and PWRs by taking in consideration the experiences gained during their operation. The best parts of the two traditional reactor types are used and the troublesome components are left out. HP-BWR major benefits are; 1. Safety is improved; -Gravity operated control rods -Large space for the cross formed control rods between fuel boxes -Bottom of the reactor vessel is smooth and is without penetrations -All the pipe connections to the reactor vessel are well above the top of the reactor core -Core spray is not needed -Internal circulation pumps are used. 2. Environment friendly; -Improved thermal efficiency, feeding the turbine with ∼340 oC (15 MPa) steam instead of ∼285 oC (7MPa) -Less warm water release to the recipient and less uranium consumption per produced kWh and consequently less waste is produced. 3. Cost effective, simple; -Direct cycle, no need for complicated steam generators -Moisture separators and steam dryers are inside the reactor vessel and additional separators and dryers can be installed inside or outside the containment -Well proved simple dry containment or wet containment can be used. (author)

  6. The SINQ project. High flux without enrichment problems?

    International Nuclear Information System (INIS)

    A spallation neutron source (SINQ) designed for operation in a continuous mode is presently under construction at The Paul Scherrer Institute in Switzerland and is scheduled for completion in 1994. The waste beam from an isochronous proton cyclotron which is being upgraded to deliver around 1.5 mA of 590 MeV protons will be used after passing through two targets for meson production. The neutron flux in the D2O moderator surrounding the Pb-Bi spallation target is anticipated to amount to some 1014 n/cm2s per mA of beam current on target. This will put SINQ in the regime of most of the medium flux reactors which are presently being considered for operation with low fuel enrichment. Since SINQ will be the world's first spallation neutron source of that design and power level it is difficult to predict, how far the technology can be taken to build spallation neutron sources whose time average neutron flux would reach to level of advanced high flux reactors now possible with highly enriched uranium as fuel material. Another uncertainty factor is the reliability and operational stability of an accelerator needed to achieve such a high power source, which also has never been built so far. Taking everything together, it must be stated that at the very minimum a substantial development effort in a number of fields would be required, most likely leading over various intermediate stages before spallation neutron sources can compete in flux level with advanced high flux reactor designs. (orig.)

  7. Analysis of calculated neutron flux response at detectors of G.A. Siwabessy multipurpose reactor (RSG-GAS Reactor)

    International Nuclear Information System (INIS)

    Multi Purpose Reactor G.A. Siwabessy (RSG-GAS) reactor core possesses 4 fission-chamber detectors to measure intermediate power level of RSG-GAS reactor. Another detector, also fission-chamber detector, is intended to measure power level of RSG-GAS reactor. To investigate influence of space to the neutron flux values for each detector measuring intermediate and power levels has been carried out. The calculation was carried out using combination of WIMS/D4 and CITATION-3D code and focused on calculation of neutron flux at different detector location of RSG-GAS typical working core various scenarios. For different scenarios, all calculation results showed that each detector, located at different location in the RSG-GAS reactor core, causes different neutron flux occurred in the reactor core due to spatial time effect

  8. Flux attenuation at NREL's High-Flux Solar Furnace

    Science.gov (United States)

    Bingham, Carl E.; Scholl, Kent L.; Lewandowski, Allan A.

    1994-10-01

    The High-Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) has a faceted primary concentrator and a long focal-length-to-diameter ratio (due to its off-axis design). Each primary facet can be aimed individually to produce different flux distributions at the target plane. Two different types of attenuators are used depending on the flux distribution. A sliding-plate attenuator is used primarily when the facets are aimed at the same target point. The alternate attenuator resembles a venetian blind. Both attenuators are located between the concentrator and the focal point. The venetian-blind attenuator is primarily used to control the levels of sunlight failing on a target when the primary concentrators are not focused to a single point. This paper will demonstrate the problem of using the sliding-plate attenuator with a faceted concentrator when the facets are not aimed at the same target point. We will show that although the alternate attenuator necessarily blocks a certain amount of incoming sunlight, even when fully open, it provides a more even attenuation of the flux for alternate aiming strategies.

  9. A Level 1+ Probabilistic Safety Assessment of the high flux Australian reactor. Vol. 2. Appendix C: System analysis models and results

    International Nuclear Information System (INIS)

    This section contains the results of the quantitative system/top event analysis. Section C. 1 gives the basic event coding scheme. Section C.2 shows the master frequency file (MFF), which contains the split fraction names, the top events they belong to, the mean values of the uncertainty distribution that is generated by the Monte Carlo quantification in the System Analysis module of RISKMAN, and a brief description of each split fraction. The MFF is organized by the systems modeled, and within each system, the top events associated with the system. Section C.3 contains the fault trees developed for the system/top event models and the RISKMAN reports for each of the system/top event models. The reports are organized under the following system headings: Compressed/Service Air Supply (AIR); Containment Isolation System (CIS); Heavy Water Cooling System (D20); Emergency Core Cooling System (ECCS; Electric Power System (EPS); Light Water Cooling system (H20); Helium Gas System (HE); Mains Water System (MW); Miscellaneous Top Events (MISC); Operator Actions (OPER) Reactor Protection System (RPS); Space Conditioner System (SCS); Condition/Status Switch (SWITCH); RCB Ventilation System (VENT); No. 1 Storage Block Cooling System (SB)

  10. A Level 1+ Probabilistic Safety Assessment of the high flux Australian reactor. Vol. 2. Appendix C: System analysis models and results

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This section contains the results of the quantitative system/top event analysis. Section C. 1 gives the basic event coding scheme. Section C.2 shows the master frequency file (MFF), which contains the split fraction names, the top events they belong to, the mean values of the uncertainty distribution that is generated by the Monte Carlo quantification in the System Analysis module of RISKMAN, and a brief description of each split fraction. The MFF is organized by the systems modeled, and within each system, the top events associated with the system. Section C.3 contains the fault trees developed for the system/top event models and the RISKMAN reports for each of the system/top event models. The reports are organized under the following system headings: Compressed/Service Air Supply (AIR); Containment Isolation System (CIS); Heavy Water Cooling System (D20); Emergency Core Cooling System (ECCS); Electric Power System (EPS); Light Water Cooling system (H20); Helium Gas System (HE); Mains Water System (MW); Miscellaneous Top Events (MISC); Operator Actions (OPER) Reactor Protection System (RPS); Space Conditioner System (SCS); Condition/Status Switch (SWITCH); RCB Ventilation System (VENT); No. 1 Storage Block Cooling System (SB)

  11. Argonne National Laboratory high-performance network support of APS experiments

    International Nuclear Information System (INIS)

    Under the Scientific Facilities Initiative, IPNS is planning to double its operation to 32 weeks/yr. Additional scientific and technical support staff will be added for the greatly expanded user program. The IPNS Upgrade Feasibility Study was published in April 1995 and is a thoroughly documented study on a 1-MW pulsed spallation neutron source at Argonne, including cost and schedule. A new booster target (235U-Mo alloy) has been designed that will increase the neutron flux by a factor of ∼3 and construction will begin soon. A new small angle diffractometer (SAND) is in the final stages of commissioning, a prototype inelastic scattering spectrometer for Chemical Excitations (CHEX) was recently constructed and an upgraded quasielastic spectrometer (QENS) has been designed. IPNS has gained considerable operating experience with solid methane moderators, including controlled heating at periodic intervals in order to anneal the accumulated radiation induced stored energy

  12. Proceedings of the Oak Ridge National Laboratory/Brookhaven National Laboratory workshop on neutron scattering instrumentation at high-flux reactors

    International Nuclear Information System (INIS)

    For the first three decades following World War II, the US, which pioneered the field of neutron scattering research, enjoyed uncontested leadership in the field. By the mid-1970's, other countries, most notably through the West European consortium at Institut Laue-Langevin (ILL) in Grenoble, France, had begun funding neutron scattering on a scale unmatched in this country. By the early 1980's, observers charged with defining US scientific priorities began to stress the need for upgrading and expansion of US research reactor facilities. The conceptual design of the ANS facility is now well under way, and line-item funding for more advanced design is being sought for FY 1992. This should lead to a construction request in FY 1994 and start-up in FY 1999, assuming an optimal funding profile. While it may be too early to finalize designs for instruments whose construction is nearly a decade removed, it is imperative that we begin to develop the necessary concepts to ensure state-of-the-art instrumentation for the ANS. It is in this context that this Instrumentation Workshop was planned. The workshop touched upon many ideas that must be considered for the ANS, and as anticipated, several of the discussions and findings were relevant to the planning of the HFBR Upgrade. In addition, this report recognizes numerous opportunities for further breakthroughs on neutron instrumentation in areas such as improved detection schemes (including better tailored scintillation materials and image plates, and increased speed in both detection and data handling), in-beam monitors, transmission white beam polarizers, multilayers and supermirrors, and more. Each individual report has been cataloged separately

  13. The high temperature reactor

    International Nuclear Information System (INIS)

    The outstanding characteristics of the HTR could not save this well-proved sort from an eventful fate. They did ensure, however, that despite all hindrances and delays, extensive experiences with the HTR are available today which form a broad fundament for this type which is regarded as very important for the future. The most important starting point for the future might be the fact that now all industrial groups interested in the HTR have gathered for a joint deliberation of the situation and decision making. The guiding lines seem to be drawn already: there are broad fields of application on the heat market, but power generation also offers incentives, connected with reasons of fuel-saving. All things considered, today's world energy situation represents the biggest challenge and the most powerful impetus to this reactor which possesses the important basic lines of the innovation required in energy converting processes. (orig.)

  14. Australia's new high performance research reactor

    International Nuclear Information System (INIS)

    A contract for the design and construction of the Replacement Research Reactor was signed in July 2000 between ANSTO and INVAP from Argentina. Since then the detailed design has been completed, a construction authorization has been obtained, and construction has commenced. The reactor design embodies modern safety thinking together with innovative solutions to ensure a highly safe and reliable plant. Also significant effort has been placed on providing the facility with diverse and ample facilities to maximize its use for irradiating material for radioisotope production as well as providing high neutron fluxes for neutron beam research. The project management organization and planing is commensurate with the complexity of the project and the number of players involved. (author)

  15. Generation of annular, high-charge electron beams at the Argonne wakefield accelerator

    Science.gov (United States)

    Wisniewski, E. E.; Li, C.; Gai, W.; Power, J.

    2013-01-01

    We present and discuss the results from the experimental generation of high-charge annular(ring-shaped)electron beams at the Argonne Wakefield Accelerator (AWA). These beams were produced by using laser masks to project annular laser profiles of various inner and outer diameters onto the photocathode of an RF gun. The ring beam is accelerated to 15 MeV, then it is imaged by means of solenoid lenses. Transverse profiles are compared for different solenoid settings. Discussion includes a comparison with Parmela simulations, some applications of high-charge ring beams,and an outline of a planned extension of this study.

  16. Investigating The Neutron Flux Distribution Of The Miniature Neutron Source Reactor MNSR Type

    International Nuclear Information System (INIS)

    Neutron flux distribution is the important characteristic of nuclear reactor. In this article, four energy group neutron flux distributions of the miniature neutron source reactor MNSR type versus radial and axial directions are investigated in case the control rod is fully withdrawn. In addition, the effect of control rod positions on the thermal neutron flux distribution is also studied. The group constants for all reactor components are generated by the WIMSD code, and the neutron flux distributions are calculated by the CITATION code. The results show that the control rod positions only affect in the planning area for distribution in the region around the control rod. (author)

  17. Triga Mark III Reactor Operating Power and Neutron Flux Study by Nuclear Track Methodology

    Science.gov (United States)

    Espinosa, G.; Golzarri, J. I.; Raya-Arredondo, R.; Cruz-Galindo, S.; Sajo-Bohus, L.

    The operating power of a TRIGA Mark III reactor was studied using Nuclear Track Methodology (NTM). The facility has a Highly Enriched Uranium core that provides a neutron flux of around 2 x 1012 n cm-2 s-1 in the TO-2 irradiation channel. The detectors consisted of a Landauer® CR-39 (allyl diglycol polycarbonate) chip covered with a 3 mm Plexiglas® converter. After irradiation, the detectors were chemically etched in a 6.25M-KOH solution at 60±1 °C for 6 h. Track density was determined by a custom-made Digital Image Analysis System. The results show a direct proportionality between reactor power and average nuclear track density for powers in the range 0.1-7 kW. Data reproducibility and relatively low uncertainty (±3%) were achieved. NTM is a simple, fast and reliable technique that can serve as a complementary procedure to measure reactor operating power. It offers the possibility of calibrating the neutron flux density in any low power reactor.

  18. A high temperature reactor for ship propulsion

    International Nuclear Information System (INIS)

    The initial thermal hydraulic and physics design of a high temperature gas cooled reactor for ship propulsion is described. The choice of thermodynamic cycle and thermal power is made to suit the marine application. Several configurations of a Helium cooled, Graphite moderated reactor are then analysed using the WIMS and MONK codes from AEA Technology. Two geometries of fuel elements formed using micro spheres in prismatic blocks, and various arrangements of control rods and poison rods are examined. Reactivity calculations through life are made and a pattern of rod insertion to flatten the flux is proposed and analysed. Thermal hydraulic calculations are made to find maximum fuel temperature under high power with optimized flow distribution. Maximum temperature after loss of flow and temperatures in the reactor vessel are also computed. The temperatures are significantly below the known limits for the type of fuel proposed. It is concluded that the reactor can provide the required power and lifetime between refueling within likely space and weight constraints. (author)

  19. Neutron flux determinations in the reactors G2 and G3 during operation

    International Nuclear Information System (INIS)

    After demonstrating the sensitivity of the distribution of power in a production reactor to a deformation caused by dissymmetries of reactivity in the reactor, the authors describe the method of neutron flux determination devised for the reactors G2 and G3 under working conditions; the detector used is a tungsten or nickel wire, the γ activity of which is measured with an ionisation chamber. Several flux determinations are given as examples to illustrate the sensitivity of the method. (author)

  20. Experimental estimation of the neutron flux density at the reconstructed Rossendorf research reactor

    International Nuclear Information System (INIS)

    The Rossendorf Research Reactor was reconstructed in the years 1986-1989. During start up of the reactor the neutron flux density was investigated in the reactor core and the outer irradiation channels by the help of activation probes and self-powered neutron detectors. The report includes the most important experimental results and a brief description of the measuring techniques. (orig.)

  1. Determination of neutronic fluxes in research nuclear reactor of Triga Mark I and WWRS types

    International Nuclear Information System (INIS)

    In this paper is presented the determination of the thermal, epithermal and fast neutron fluxes, using neutron activation analysis technique, for two research nuclear reactors of different design: the Triga Mark I reactor was designed by Gulf General Atomic Co in USA and the WWRS reactor was designed in the URSS, both in the 50's years. (Author)

  2. Numerical effects in the neutron flux calculations into WWER type reactors vessels by Monte Carlo Method

    International Nuclear Information System (INIS)

    The calculation of neutron fluxes and fluence into reactor pressure vessel is a regulatory requirement in the stages of the design, operation and plan lifetime extension. Being the reactor vessel a part of the primary circuit, its integrity should be preserved under all operation regimes. The reactor vessel is considered a unique and non-substitutable part of the NPP that undergoes degradation. The main source of the aging comes from the fast neutron damage induced in the steel crystalline lattice. In the case of the WWER-type reactors, the vessel fragilization has been identified as one of the main problems concerning the safety of NPPs. Due to the proximity of the core edge to the vessel inner surface; the vessel steel is exposed to high fast neutron fluence. The effect of this irradiation on the mechanical properties becomes more acute because of the impurities measured in the current Russian steel alloys. In the present paper, a PC version of the Monte Carlo 3-D HEXANN-EVALU system is used for the estimation of the WWER reactor pressure vessel irradiation. It was selected on the basis of its flexible options that on the other hand need to be quantified in connection with the desired magnitudes. The parameters that control the random walk of neutrons as well as the efficiency increasing options included in the code are studied in order to identify their impact in the final results for fluxes and fluence in the reactor pressure vessel. As a result an optimal set of parameters is suggested

  3. High flux expansion divertor studies in NSTX

    CERN Document Server

    Soukhanovskii, V A; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Maqueda, R; Menard, J E; Mueller, D; Paul, S F; Raman, R; Roquemore, A L

    2009-01-01

    High flux expansion divertor studies have been carried out in the National Spherical Torus Experiment using steady-state X-point height variations from 22 to 5-6 cm. Small-ELM H-mode confinement was maintained at all X-point heights. Divertor flux expansions from 6 to 26-28 were obtained, with associated reduction in X-point connection length from 5-6 m to 2 m. Peak divertor heat flux was reduced from 7-8 MW/m$^2$ to 1-2 MW/m$^2$. In low X-point configuration, outer strike point became nearly detached. Among factors affecting deposition of parallel heat flux in the divertor, the flux expansion factor appeared to be dominant

  4. Survey of the thermal and fast neutron flux distribution in the core of IPR-R1 reactor

    International Nuclear Information System (INIS)

    A methodology to obtain the neutron flux distribution inside the core of a reactor is presented, aiming to analyze specifications for increasing reactor power. The activation measurement technique with irradiation of steel eletrodes of 700 mm of lenght, put in acrylic rods was used. In the detection process and in the counting of activation product, a Ge (Li) detector with high resolution and a scanning mechanical system, constructed and projected in CDTN (Nuclear Technology Development Center) were used. (E.G.)

  5. Results from post-mortem tests with materials from the old core-box of the High Flux Reactor (HFR) at Petten

    International Nuclear Information System (INIS)

    Results are reported from hardness measurements, tensile tests and fracture mechanics experiments (fatigue crack growth and fracture toughness) on 5154 aluminum specimens fabricated from remnants of the old HFR core box. The specimen material was exposed to a maximum thermal neutron fluence of 7.5 * 1026 n/m2(E 26n/m2, but with a thermal to fast neutron ratio of about 4, shows more radiation hardening : 67HR15N, 0.2 - yield strength 580 MPa and 1.5% total elongation. Fatigue crack growth rates range from 5 * 10-5mm/cycle to 10-3mm/cycle for ΔK ranging from 8 to 20 MPa√m. The most highly exposed (7.5 * 10 26n/m2) materials shows accelerated fatigue crack growth due to unstable crack extension at ΔK of about 15 MPa√m. The lowermost meaningful measure of plane strain fracture toughness is 18 MPa√m. Except for the fracture toughness, which is a factor of about 3 higher, the results show reasonable agreement with the expected mechanical properties estimated in the 'safe end-of-life' assessment of the old HFR vessel

  6. Dissolution of low burnup Fast Flux Test reactor fuel

    International Nuclear Information System (INIS)

    The first Fast-Flux Test Facility reactor fuel [mixed (U,Pu)O2 composition] has been used in dissolution tests for fuel reprocessing. The fuel tested here had a peak burnup of 0.22 at. %, with peak centerline temperatures of 19970C. Linear dissolution rates of 0.99 to 1.57 mm/h were determined for dissolver solution and fresh acid, respectively. Insoluble residues from dissolution at 950C ranged from 0.18 to 0.28% of the original fuel. From 2 to 37 wt % of the residue was recoverable plutonium. Dissolution at 290C yielded residues of 0.56 to 0.64% of the original fuel. The major elements present in the HF leached residue included Ru, Mo, and Rh. The recovered cladding from the 950C dissolution contained the equivalent of 198 mg of 239Pu per 100 g of hulls, while the cladding from the 290c experiments contained only 0.21 mg of 239Pu per 100 g of hulls. 9 references, 5 figures

  7. Plasma–Surface Interactions Under High Heat and Particle Fluxes

    Directory of Open Access Journals (Sweden)

    Gregory De Temmerman

    2013-01-01

    Full Text Available The plasma-surface interactions expected in the divertor of a future fusion reactor are characterized by extreme heat and particle fluxes interacting with the plasma-facing surfaces. Powerful linear plasma generators are used to reproduce the expected plasma conditions and allow plasma-surface interactions studies under those very harsh conditions. While the ion energies on the divertor surfaces of a fusion device are comparable to those used in various plasma-assited deposition and etching techniques, the ion (and energy fluxes are up to four orders of magnitude higher. This large upscale in particle flux maintains the surface under highly non-equilibrium conditions and bring new effects to light, some of which will be described in this paper.

  8. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements.

    Science.gov (United States)

    Kaiba, Tanja; Žerovnik, Gašper; Jazbec, Anže; Štancar, Žiga; Barbot, Loïc; Fourmentel, Damien; Snoj, Luka

    2015-10-01

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. PMID:26141293

  9. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. PMID:25597686

  10. Fast current pulse amplifier for neutron flux monitoring system of Prototype Fast Breeder Reactor

    International Nuclear Information System (INIS)

    The neutron flux monitoring system (NFMS) for Prototype Fast Breeder Reactor (PFBR) measures the neutron power and the reactivity changes in the core in all the states such as shut down, fuel handling, reactor startup, intermediate and power ranges using high temperature cylindrical fission chambers, four section fission counter and high temperature boron coated counter. Fast Current Pulse Amplifier has been developed to use in NFMS of PFBR that amplifies single/four numbers of input current pulses independently, discriminates and electronically wire - OR them to give differential pulse output along with the Campbell output. The paper describes the design, development of integrated single/Quad channel fast current pulse amplifier based on in-house developed ASIC, Hybrid IC, in built test features, LV and HV supplies. (author)

  11. High flux isotope reactor technical specifications

    International Nuclear Information System (INIS)

    Technical specifications are presented concerning safety limits and limiting safety system settings; limiting conditions for operation; surveillance requirements; design features; administrative controls; and accidents and anticipated transients

  12. Solid-State Neutron Flux Monitoring Instruments for Nuclear Reactors

    International Nuclear Information System (INIS)

    This paper describes solid-state picoammeters, log-N amplifiers and period meters which have been developed for the flux monitoring and control system of the material testing reactor (JMTR). Recent developments and improvements of insulated-gate field-effect transistors (MOS FET's) have enabled us to realize a perfectly transistorized direct coupled electrometer. The examination of the behaviour of the MOS FET for the ambient temperature variation shows that the voltage drift referred to the gate is higher than that of the ordinary FET, but low enough for picoammeter application. For log-N amplifier applications, selection of the first stage FET or adjustment of the drain current for the individual FET is necessary. The paper also describes the method of compensating the temperature dependence of the log-diode. Balancing out the variation due to the temperature dependent saturation current with an identical diode and compensating the slope by the use of an amplifier having a temperature-dependent gain, a variation of less than 0.1 decades is attained in the range of 3 x 10-12 to 3 x 10-4 A for an ambient temperature variation of 25°C. The authors discuss the non-linear representation of the period-indication to compromise requirements of the expanded scale for the convenience of operation and of compressed scale necessary for period trip. Finally, a description is given of complete picoammeter circuits covering the ranges of 10-10 to 10-4A, the 8-decade log-N amplifier covering 3 x 10-12 to 3 x 10-4 A, and the period meter. (author)

  13. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W.; MacPherson, R.E.

    1983-03-01

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm/sup 2/, 1000/sup 0/C cladding temperature, and (2) 40 h at 40 W/cm/sup 2/, 1200/sup 0/C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 1370/sup 0/C.

  14. Development of a fuel-rod simulator and small-diameter thermocouples for high-temperature, high-heat-flux tests in the Gas-Cooled Fast Reactor Core Flow Test Loop

    International Nuclear Information System (INIS)

    The Core Flow Test Loop was constructed to perform many of the safety, core design, and mechanical interaction tests in support of the Gas-Cooled Fast Reactor (GCFR) using electrically heated fuel rod simulators (FRSs). Operation includes many off-normal or postulated accident sequences including transient, high-power, and high-temperature operation. The FRS was developed to survive: (1) hundreds of hours of operation at 200 W/cm2, 10000C cladding temperature, and (2) 40 h at 40 W/cm2, 12000C cladding temperature. Six 0.5-mm type K sheathed thermocouples were placed inside the FRS cladding to measure steady-state and transient temperatures through clad melting at 13700C

  15. Technical basis in support of the conversion of the University of Missouri Research Reactor (MURR) core from highly-enriched to low-enriched uranium - core neutron physics

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Feldman, E. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Foyto, L [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Kutikkad, K [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; McKibben, J C [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Peters, N. [Univ. of Missouri, Columbia, MO (United States). Columbia Research Reactor; Stevens, J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2012-09-01

    This report contains the results of reactor design and performance for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support of the U. S. government.

  16. Transport calculation of neutron flux distribution in reflector of PW reactor

    International Nuclear Information System (INIS)

    Two-dimensional transport calculation of the neutron flux and spectrum in the equatorial plain of PW reactor, using computer program DOT 3, is presented. Results show significant differences between neutron fields in which test samples and reactor vessel are exposed. (author)

  17. Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated

  18. High flux source of cold rubidium atoms

    International Nuclear Information System (INIS)

    We report on the production of a continuous, slow, and cold beam of 87Rb atoms with an extremely high flux of 3.2x1012 atoms/s, a transverse temperature of 3 mK, and a longitudinal temperature of 90 mK. We describe the apparatus created to generate the atom beam. Hot atoms are emitted from a rubidium candlestick atomic beam source and transversely cooled and collimated by a 20 cm long atomic collimator section, boosting overall beam flux by a factor of 50. The Rb atomic beam is then decelerated and longitudinally cooled by a 1 m long Zeeman slower

  19. High flux source of cold rubidium atoms

    Science.gov (United States)

    Slowe, Christopher; Vernac, Laurent; Hau, Lene Vestergaard

    2005-10-01

    We report on the production of a continuous, slow, and cold beam of Rb87 atoms with an extremely high flux of 3.2×1012atoms/s, a transverse temperature of 3mK, and a longitudinal temperature of 90mK. We describe the apparatus created to generate the atom beam. Hot atoms are emitted from a rubidium candlestick atomic beam source and transversely cooled and collimated by a 20cm long atomic collimator section, boosting overall beam flux by a factor of 50. The Rb atomic beam is then decelerated and longitudinally cooled by a 1m long Zeeman slower.

  20. Neutronic modeling and thermal neutron flux measurement of the MCR6 rod in the NRU reactor

    International Nuclear Information System (INIS)

    The six-barrel Multiple-Capsule Water Cooled Rods (MCR6) in the NRU reactor have been used to produce isotopes such as I-131 and Ir-192. This paper describes the modeling of the MCR6 rods and the simulation method used to predict the neutron fluxes. The sensitivity of various radioisotope loadings of MCR6 rods upon flux and power perturbations of neighbouring rods is investigated. This paper also presents the results of thermal neutron flux measurements in one of the MCR6 rods from gold wire detectors using the neutron activation technique. The measured fluxes match very well with the simulated fluxes, within ±2%. (author)

  1. Neutronic modeling and thermal neutron flux measurement of the MCR6 rod in the NRU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Leung, T.C. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2009-07-01

    The six-barrel Multiple-Capsule Water Cooled Rods (MCR6) in the NRU reactor have been used to produce isotopes such as I-131 and Ir-192. This paper describes the modeling of the MCR6 rods and the simulation method used to predict the neutron fluxes. The sensitivity of various radioisotope loadings of MCR6 rods upon flux and power perturbations of neighbouring rods is investigated. This paper also presents the results of thermal neutron flux measurements in one of the MCR6 rods from gold wire detectors using the neutron activation technique. The measured fluxes match very well with the simulated fluxes, within {+-}2%. (author)

  2. Software for determination of the thermal neutron flux in a nuclear reactor

    International Nuclear Information System (INIS)

    In this study thermal neutron flux distribution was performed using the activity of the irradiated activation detectors: Au and In foils. The neutron flux in the IEA-R1 nuclear reactor at IPEN/SP in the pneumatic station was then house software and the results were compared. The data permits a discussion about the performed of this software. (author)

  3. SUMMARY AND RESULTS LETTER REPORT - INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PROJECT, PHASE 3: TRENCHES 2, 3, AND 4 BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education (ORISE) personnel visited the Brookhaven National Laboratory (BNL) on September 7 through September 10, 2010, and September 20 through Seeptember 24, 2010. ORISE performed visual inspections, conducted independent measurement, and sampling of Trenches 2, 3, and 4, which are part of Phase 3 for the High Flux Beam Reactor (HFBR) Underground Utilities Removal Project. Trenches 2 and 3 were addressed during the first visit and Trench 4 during the second visit to BNL. Spatial orientation to Building 801 and minimal survey area inside Trenches 2 and 3 limited satellite reception and the ability to utilize a global positioning system (GPS) as real-time data capture for the gamma scan surveys in these trenches. However, Trench 4 provided suitable conditions in which gamma scan data could be collected using the GPS. ORISE performed high-density gamma scans of accessible surface areas using shielded sodium iodide detectors coupled to ratemeter-scalers with audible output. Scans for Trench 2 ranged from 4,000 to 22,000 gross counts per minute (cpm); Trench 3 from 3,000 to 5,000 gross cpm and Trench 4 from 2,600 to 9,500 gross cpm. ORISE personnel flagged the area where the elevated counts were observed in Trench 2 for further investigation. Additional scane valuations were performed on remaining pipes and associated end-caps in the trenches with no elevated activity detected. Eleven judgemental soil samples (5098M0041 through 5098M0051) were obtained throughout Trenches 2, 3, and 4. The sample locations were selected based on count rates observed during the scan survey or because of contamination potential from pipeline removal activities. ORISE personnel judgmentally selected the location for sample M0043 in response to the 22,000 cpm observed during the scan survey, and to ascertain whether the elevataed counts were a result of soil contamination or radioactive shine from the trench's spatial orientation to the Target Room in

  4. Slow neutron flux extrapolation distances in R-5 and CIRUS reactors

    International Nuclear Information System (INIS)

    In order to calculate the core reactivity, fuel channel power outputs and neutron flux levels in the R-5 reactor at Trombay, axial flux extrapolation distances are required. For this, an analysis is carried out considering the reactor core as a two region neutron multiplying system in axial direction. The slow neutron diffusion equations for both the regions are solved analytically by applying suitable boundary conditions. Application of this method for the estimation of top extrapolation distances in CIRUS, has given results which agree well with accepted values for the reactor. (author)

  5. High flux lithium antineutrino source with variable hard spectrum

    CERN Document Server

    Lyashuk, V I

    2016-01-01

    The high flux antineutrino source with hard antineutrino spectrum based on neutron activation of 7Li and subsequent fast beta-decay (T 1/2 = 0.84 s) of the 8Li isotope with emission of antineutrino with energy up to 13 MeV - is discussed. Creation of the intensive isotope neutrino source of hard spectrum will allow to increase the detection statistics of neutrino interaction and it is especially urgent for oscillation experiments. The scheme of the proposed neutrino source is based on the continuous transport of the created 8Li to the neutrino detector, which moved away from the place of neutron activation. Analytical expressions for lithium antineutrino flux is obtained. The discussed source will ensure to increase the cross section for reactions with deuteron from several times to tens compare to the reactor antineutrino spectrum. An another unique feature of the installation is the possibility to vary smoothly the hardness of the antineutrino spectrum.

  6. Role of plasma enhanced atomic layer deposition reactor wall conditions on radical and ion substrate fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Sowa, Mark J., E-mail: msowa@ultratech.com [Ultratech/Cambridge NanoTech, 130 Turner Street, Building 2, Waltham, Massachusetts 02453 (United States)

    2014-01-15

    Chamber wall conditions, such as wall temperature and film deposits, have long been known to influence plasma source performance on thin film processing equipment. Plasma physical characteristics depend on conductive/insulating properties of chamber walls. Radical fluxes depend on plasma characteristics as well as wall recombination rates, which can be wall material and temperature dependent. Variations in substrate delivery of plasma generated species (radicals, ions, etc.) impact the resulting etch or deposition process resulting in process drift. Plasma enhanced atomic layer deposition is known to depend strongly on substrate radical flux, but film properties can be influenced by other plasma generated phenomena, such as ion bombardment. In this paper, the chamber wall conditions on a plasma enhanced atomic layer deposition process are investigated. The downstream oxygen radical and ion fluxes from an inductively coupled plasma source are indirectly monitored in temperature controlled (25–190 °C) stainless steel and quartz reactors over a range of oxygen flow rates. Etch rates of a photoresist coated quartz crystal microbalance are used to study the oxygen radical flux dependence on reactor characteristics. Plasma density estimates from Langmuir probe ion saturation current measurements are used to study the ion flux dependence on reactor characteristics. Reactor temperature was not found to impact radical and ion fluxes substantially. Radical and ion fluxes were higher for quartz walls compared to stainless steel walls over all oxygen flow rates considered. The radical flux to ion flux ratio is likely to be a critical parameter for the deposition of consistent film properties. Reactor wall material, gas flow rate/pressure, and distance from the plasma source all impact the radical to ion flux ratio. These results indicate maintaining chamber wall conditions will be important for delivering consistent results from plasma enhanced atomic layer deposition

  7. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 2 D/F WASTE LINE REMOVAL, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK

    International Nuclear Information System (INIS)

    Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 2; the D/F Waste Line removal at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed the final status survey (FSS) of the D/F Waste Line that provided the conduit for pumping waste from Building 750 to Building 801. Sample results have been submitted as required to demonstrate that the cleanup goals of 15 mrem/yr above background to a resident in 50 years have been met. Four rounds of sampling, from pre-excavation to final status survey (FSS), were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the US Departmental of Energy (DOE) to perform independent verifications of decontamination and decomissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task at the HFBR. ORISE together with DOE determined that a Type A verification of the D/F Waste Line was appropriate based on its method of construction and upon the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages in the process to decommission the HFBR facility and support structures. Phase 2 of this project included the grouting and removal of 1100 feet of 2-inch pipe and 640 feet of 4-inch pipe that served as the D/F Waste Line. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that addressed each ORISE comment adequately (BNL 2010a). ORISE referred to the revised Phase 2 D/F Waste Line removal FSP FSS data to conduct the Type A verification and determine whether the intent odf

  8. Second annual progress report on United States-Japan collaborative testing in the High Flux Isotope Reactor and the Oak Ridge Research Reactor for the period ending September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J.L.; Grossbeck, M.L.; Mansur, L.K.; Rowcliffe, A.F.; Siman-Tov, I.I.; Thoms, K.R.; Tanaka, M.P.; Hamada, S.; Kendo, T.; Hishinuma, A.

    1986-08-01

    The second year of the program of US-Japan collaborative testing in the HFIR and ORR has been successfully completed. Two of eight phase-I target capsules were irradiated, and postirradiation testing was begun. Two spectral-tailoring capsules, MFE-6J and -7J, were fabricated and installed in the ORR. The JEOL JEM 2000FX microscope was installed at ORNL and is now being operated routinely. Microstructural data of the JPCA in the SA, 10%, and 20% cold-worked conditions and type J316 in the SA and 20% cold-worked conditions reveal that all specimens examined clearly show a high concentration of fine helium bubbles after irradiation to about 30 dpa at 300/sup 0/C (in HFIR). Precipitation of MC was observed in 20% cold-worked JPCA. Swelling of all specimens was less than 1%.

  9. Second annual progress report on United States-Japan collaborative testing in the High Flux Isotope Reactor and the Oak Ridge Research Reactor for the period ending September 30, 1985

    International Nuclear Information System (INIS)

    The second year of the program of US-Japan collaborative testing in the HFIR and ORR has been successfully completed. Two of eight phase-I target capsules were irradiated, and postirradiation testing was begun. Two spectral-tailoring capsules, MFE-6J and -7J, were fabricated and installed in the ORR. The JEOL JEM 2000FX microscope was installed at ORNL and is now being operated routinely. Microstructural data of the JPCA in the SA, 10%, and 20% cold-worked conditions and type J316 in the SA and 20% cold-worked conditions reveal that all specimens examined clearly show a high concentration of fine helium bubbles after irradiation to about 30 dpa at 3000C (in HFIR). Precipitation of MC was observed in 20% cold-worked JPCA. Swelling of all specimens was less than 1%

  10. Fast flux fluid fuel reactor: A concept for the next generation of nuclear power production

    International Nuclear Information System (INIS)

    Nuclear energy has not become the preferred method of electrical energy production largely because of economic, safety, and proliferation concerns and challenges posed by nuclear waste disposal. Economies is the most important factor. To reduce the capital costs, the authors propose a compact configuration with a very high power density and correspondingly reduced reactor component sizes. Enhanced efficiency made possible by higher operating temperatures will also improve the economics of the design, and design simplicity will keep capital, operational, and maintenance costs down. The most direct solution to the nuclear waste problem is to eliminate waste production or, at least, minimize its amount and long-term radiotoxicity. This can be achieved by very high burnups, ideally 100%, and by the eventual transmutation of the long-lived fission products in situ. Very high burnups also improve the economics by optimal exploitation of the fuel. Safety concerns can be addressed by an inherently safe reactor design. Because of the intrinsic nature of nuclear materials, there probably is no definitive answer to proliferation concerns for systems that generate neutrons; however, it is important to minimize proliferation risks. The thorium cycle is a promising option because (a) plutonium is produced only in very small quantities, (b) the presence of 232U makes handling the fuel very difficult and therefore proliferation resistant, and (c) 233U is a fissile isotope that is less suitable than 239Pu for making weapons and can be diluted with other uranium isotopes. An additional benefit of the thorium cycle is that it increases nuclear fuel resources by one order of magnitude. A fast flux fluid fuel reactor is a concept that can satisfy all the foregoing requirements. The fluid fuel systems have a very simple structure. Because integrity of the fuel is not an issue, these systems can operate at very high temperatures, can have high power densities, and can achieve very high

  11. Sensibility studies of the equivalent thermal neutron flux on the heat exchanger of a sodium cooled fast reactor. (1. Pt.)

    International Nuclear Information System (INIS)

    This paper reports on sensibility studies of the equivalent thermal neutron flux on the heat exchanger for a sodium cooled fast reactor. Graphs and diagrams of the neutron flux in function of the reactor geometry, contribution of the fission sources in the core and the blanket of the reactor are given

  12. Measurement and calculation of the neutron flux distribution in the RP-10 reactor

    International Nuclear Information System (INIS)

    In this work implementing experimental methods are implemented for easy reproduction for measuring the spatial distribution or thermal neutron flux in the RP-10 reactor core. Using two measuring methods: the passive and the active ones. In the passive method was used the activation technique using foils such as gold, manganese, and indium. These were irradiated in the reactor core and treated through the Westcott's formalism. In the active method was used the Self Powered Neutron Detectors (SPNs) for which was necessary to condition the detectors response for the data acquisition. The knowledge of the spatial distribution of RP-10 reactor neutrons flux will contribute in the understanding of other interesting parameters of reactor physics such as power density, reactivity, buckling, etc.. Wish knowledge is important for reactor operation. Fuel burnup calculations as well as others related to safety. (author)

  13. Flux measurements in a nuclear research reactor by using an aluminum nitride detector

    International Nuclear Information System (INIS)

    A small polycrystalline aluminium nitride detector with a thickness of 381 μm was used to measure a 200,000 Ci Co60 source and to measure the flux in a research reactor where the neutron flux is about 1014/cm2 s, which is nearly the same order as in the commercial power plant. If the applied voltage is greater than or equal to 2000 V and if the measurements are done in a short period of time so that the heat energy does not build up in the aluminium nitride, then the measured electric current is linearly proportional to the input flux. It is assumed of course that the energy spectrum of the input flux remains constant. This linearity relation is illustrated by the results of a measurement in which the reactor power has been controlled so that the flux becomes a step function

  14. Reference equilibrium core with central flux irradiation facility for Pakistan research reactor-1

    International Nuclear Information System (INIS)

    In order to assess various core parameters a reference equilibrium core with Low Enriched Uranium (LEU) fuel for Pakistan Research Reactor (PARR-1) was assembled. Due to increased volume of reference core, the average neutron flux reduced as compared to the first higher power operation. To get a higher neutron flux an irradiation facility was created in centre of the reference equilibrium core where the advantage of the neutron flux peaking was taken. Various low power experiments were performed in order to evaluate control rods worth and neutron flux mapping inside the core. The neutron flux inside the central irradiation facility almost doubled. With this arrangement reactor operation time was cut down from 72 hours to 48 hours for the production of the required specific radioactivity. (author)

  15. EU Development of High Heat Flux Components

    OpenAIRE

    Linke, J.; Lorenzetto, P.; Majerus, P.; Merola, M.; Pitzer, D.; Rödig, M.

    2005-01-01

    The development of plasma facing components for next step fusion devices in Europe is strongly focused to ITER. Here a wide spectrum of different design options for the divertor target and the first wall have been investigated with tungsten, CFC, and beryllium armor. Electron beam simulation experiments have been used to determine the performance of high heat flux components under ITER specific thermal loads. Beside thermal fatigue loads with power density levels up to 20MWm(-2), off normal e...

  16. High performance light water reactor

    International Nuclear Information System (INIS)

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  17. Measurement of the thermal flux distribution in the IEA-R1 reactor

    International Nuclear Information System (INIS)

    The knowledge of the neutron flux distribution in research reactors is important because it gives the power distribution over the core, and it provides better conditions to perform experiments and sample irradiations. The measured neutron flux distribution can also be of interest as a means of comparison for the calculational methods of reactor analysis currently in use at this institute. The thermal neutron flux distribution of the IEA-R1 reactor has been measured with the miniature chamber WL-23292. For carrying out the measurements, it was buit a guide system that permit the insertion of the mini-chamber i between the fuel of the fuel elements. It can be introduced in two diferent positions a fuel element and in each it spans 26 axial positions. With this guide system the thermal neutron flux distribution of the IEA-R1 nuclear reactor can be obtained in a fast and efficient manner. The element measured flux distribution shows clearly the effects of control rods and reflectors in the IEA-R1 reactor. The difficulties encountered during the measurements are mentioned with detail as well as the procedures adopteed to overcome them. (Author)

  18. Validation of neutron flux redistribution factors in JSI TRIGA reactor due to control rod movements

    International Nuclear Information System (INIS)

    For efficient utilization of research reactors, such as TRIGA Mark II reactor in Ljubljana, it is important to know neutron flux distribution in the reactor as accurately as possible. The focus of this study is on the neutron flux redistributions due to control rod movements. For analyzing neutron flux redistributions, Monte Carlo calculations of fission rate distributions with the JSI TRIGA reactor model at different control rod configurations have been performed. Sensitivity of the detector response due to control rod movement have been studied. Optimal radial and axial positions of the detector have been determined. Measurements of the axial neutron flux distribution using the CEA manufactured fission chambers have been performed. The experiments at different control rod positions were conducted and compared with the MCNP calculations for a fixed detector axial position. In the future, simultaneous on-line measurements with multiple fission chambers will be performed inside the reactor core for a more accurate on-line power monitoring system. - Highlights: • Neutron flux redistribution due to control rod movement in JSI TRIGA has been studied. • Detector response sensitivity to the control rod position has been minimized. • Optimal radial and axial detector positions have been determined

  19. Reactor core design of Gas Turbine High Temperature Reactor 300

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute (JAERI) has been designing Japan's original gas turbine high temperature reactor, Gas Turbine High Temperature Reactor 300 (GTHTR300). The greatly simplified design based on salient features of the High Temperature Gas-cooled Reactor (HTGR) with a closed helium gas turbine enables the GTHTR300 a highly efficient and economically competitive reactor to be deployed in early 2010s. Also, the GTHTR300 fully taking advantage of various experiences accumulated in design, construction and operation of the High Temperature Engineering Test Reactor (HTTR) and existing fossil fired gas turbine systems reduces technological development concerning a reactor system and electric generation system. Original design features of this system are the reactor core design based on a newly proposed refueling scheme named sandwich shuffling, conventional steel material usage for a reactor pressure vessel (RPV), an innovative coolant flow scheme and a horizontally installed gas turbine unit. The GTHTR300 can be continuously operated without the refueling for 2 years. Due to these salient features, the capital cost of the GTHTR300 is less than a target cost of 200,000 yen (1667 US$)/kW e, and the electric generation cost is close to a target cost of 4 yen (3.3 US cents)/kW h. This paper describes the original design features focusing on the reactor core design and the in-core structure design, including the innovative coolant flow scheme for cooling the RPV. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan

  20. High density operation for reactor-relevant power exhaust

    Science.gov (United States)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  1. High density operation for reactor-relevant power exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Wischmeier, M., E-mail: marco.wischmeier@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)

    2015-08-15

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  2. Neutronics Code Development at Argonne National Laboratory

    International Nuclear Information System (INIS)

    As part of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of U.S. DOE, a suite of modern fast reactor simulation tools is being developed at Argonne National Laboratory. The general goal is to reduce the uncertainties and biases in various areas of reactor design activities by providing enhanced prediction capabilities. Under this fast reactor simulation program, a high-fidelity deterministic neutron transport code named UNIC is being developed. The end goal of this development is to produce an integrated neutronics code that enables the high fidelity description of a nuclear reactor and simplifies the multi-step design process by direct and accurate coupling with thermal-hydraulics and structural mechanics calculations. (author)

  3. Calculation of neutron flux in PUSPATI TRIGA MARK II reactor using Monte-Carlo n-particle approach

    International Nuclear Information System (INIS)

    A Monte Carlo simulation of neutron flux at the TRIGA MARK II PUSPATI (RTP) nuclear research reactor at Agensi Nuklear Malaysia was carried out using the MCNP5 program. The objective of the work is to simulate the neutron flux inside the reactor core. Calculations of neutron flux for fast and thermal neutron were carried out under the conditions in which the control rod was either fully withdrawn from or fully inserted into the reactor. (Author)

  4. Measurement of photon flux with a miniature gas ionization chamber in a Material Testing Reactor

    Science.gov (United States)

    Fourmentel, D.; Filliatre, P.; Villard, J. F.; Lyoussi, A.; Reynard-Carette, C.; Carcreff, H.

    2013-10-01

    Nuclear heating measurements in Material Testing Reactors (MTR) are crucial for the design of the experimental devices and the prediction of the temperature of the hosted samples. Nuclear heating in MTR materials (except fuel) is mainly due to the energy deposition by the photon flux. Therefore, the photon flux is a key input parameter for the computer codes which simulate nuclear heating and temperature reached by samples/devices under irradiation. In the Jules Horowitz MTR under construction at the CEA Cadarache, the maximal expected nuclear heating levels will be about 15 to 18 W g-1 and it will be necessary to assess this parameter with the best accuracy. An experiment was performed at the OSIRIS reactor to combine neutron flux, photon flux and nuclear heating measurements to improve the knowledge of the nuclear heating in MTR. There are few appropriate sensors for selective measurement of the photon flux in MTR even if studies and developments are ongoing. An experiment, called CARMEN-1, was conducted at the OSIRIS MTR and we used in particular a gas ionization chamber based on miniature fission chamber design to measure the photon flux. In this paper, we detail Monte-Carlo simulations to analyze the photon fluxes with ionization chamber measurements and we compare the photon flux calculations to the nuclear heating measurements. These results show a good accordance between photon flux measurements and nuclear heating measurement and allow improving the knowledge of these parameters.

  5. Automatic control of neutron flux in experimental channels of the WWR-M type reactors

    International Nuclear Information System (INIS)

    The flowsheet of the neutron flux local regulator intended for maintaining the given level of neutron flux distribution in experimental channels of the WWR-M type reactor under stationary and transition modes, is suggested. The functional diagram of the electron regulation block (ERB) in considered. The regulator is tested when the reactor operates with the capacity of 13 MWt along with the staff system of automated regulation and without it. The experiments carried out demonstrate the stable operation of the entire control system and good performance characteristics of the ERR block. The conclusion is made that the suggested method of neutron flux automated regulation in experimental channels can be successfully extended to a higher number of experimental channels and applied at other research reactors. Small size fission chambers and direct charging detectors can be used in local systems as sensors

  6. Background Radiation Measurements at High Power Research Reactors

    CERN Document Server

    Ashenfelter, J; Baldenegro, C X; Band, H R; Barclay, G; Bass, C D; Berish, D; Bowden, N S; Bryan, C D; Cherwinka, J J; Chu, R; Classen, T; Davee, D; Dean, D; Deichert, G; Dolinski, M J; Dolph, J; Dwyer, D A; Fan, S; Gaison, J K; Galindo-Uribarri, A; Gilje, K; Glenn, A; Green, M; Han, K; Hans, S; Heeger, K M; Heffron, B; Jaffe, D E; Kettell, S; Langford, T J; Littlejohn, B R; Martinez, D; McKeown, R D; Morrell, S; Mueller, P E; Mumm, H P; Napolitano, J; Norcini, D; Pushin, D; Romero, E; Rosero, R; Saldana, L; Seilhan, B S; Sharma, R; Stemen, N T; Surukuchi, P T; Thompson, S J; Varner, R L; Wang, W; Watson, S M; White, B; White, C; Wilhelmi, J; Williams, C; Wise, T; Yao, H; Yeh, M; Yen, Y -R; Zhang, C; Zhang, X

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $\\gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  7. Background radiation measurements at high power research reactors

    Science.gov (United States)

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y.-R.; Zhang, C.; Zhang, X.

    2016-01-01

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  8. Survey of the thermal and fast neutron flux distribution in the core of IPR-R1 reactor

    International Nuclear Information System (INIS)

    A methodology to obtain the neutron flux distribution inside the core is presented, aiming to analize the project of reactor increasing power. The technique of measures by activation with irradiation of steel eletrodes of 700 mm of lenght, put in acrylic rods was used. In the detection process and in the counting of activation product, a Ge(Li) detector with high resolution and a scanning mechanical system, constructed and projected in CDTN (Nuclear Technology Development Center) were used. (E.G.)

  9. Burnout at very high heat fluxes

    International Nuclear Information System (INIS)

    The paper provides a brief overview of the present state-of-the art in the field of the critical heat flux (CHF) in subcooled flow conditions, with particular regard to high liquid velocity and highly subcooled conditions. These thermofluid-high values of the CHF (dynamic conditions to reach very (up to 80 MW/m2) as requested by fusion technology requirements. After reporting the general feature of the problems, some details are given about the main parameters affecting CHF in subcooled flow boiling (subcooling, pressure, duct diameter and length, fluid velocity, duct orientation and flow direction, heat flux distribution), and the respective knowledge and possible enhancement techniques for CHF (extended surfaces, hypervapotron, surface roughness, swirl flow, helically coiled wires) are reviewed. As fundamental aspects of highly subcooled flow boiling are not known and, on the other hand, such knowledge is necessary for any possible enhancement technique evalutation and for a theoretical modelling of the phenomenon, recent experiments carried out over the last five years on CHF in subcooled flow boiling are reviewed together with the main correlations and models curently used for data prediction, and suggestions for particular and general research guidelines are given. (orig.)

  10. High temperature gas-cooled reactor technology

    International Nuclear Information System (INIS)

    The high temperature gas-cooled reactor (HTGR) with a direct cycle helium system has drawn attention as the next generation nuclear power plant that is closest to commercialization. Fuji Electric participated in the design, manufacture and construction of JAPCO's Tokai-1 plant, a 'Colder Hall' type reactor, which was the first commercial nuclear power plant in Japan, and JAERI's high temperature engineering test reactor (HTTR), which was the first high temperature gas-cooled reactor in Japan. Fuji Electric, a pioneer of gas-cooled reactors, worked on the design, construction and development of these reactors. This paper provides brief descriptions of the air-cooled spent fuel storage system of the HTTR, material test facilities for the HTTR, and the development of an inherently safe and highly efficient commercial HTGR power plant as examples of Fuji Electric's recent activities in the HTGR field. (author)

  11. High conversion burner type reactor

    International Nuclear Information System (INIS)

    Purpose: To simply and easily dismantle and reassemble densified fuel assemblies taken out of a high conversion ratio area thereby improve the neutron and fuel economy. Constitution: The burner portion for the purpose of fuel combustion is divided into a first burner region in adjacent with the high conversion ratio area at the center of the reactor core, and a second burner region formed to the outer circumference thereof and two types of fuels are charged therein. Densified fuel assemblies charged in the high conversion ratio area are separatably formed as fuel assemblies for use in the two types of burners. In this way, dense fuel assembly is separated into two types of fuel assemblies for use in burner of different number and arranging density of fuel elements which can be directly charged to the burner portion and facilitate the dismantling and reassembling of the fuel assemblies. Further, since the two types of fuel assemblies are charged in the burner portion, utilization factor for the neutron fuels can be improved. (Kamimura, M.)

  12. Device for estimating neutron flux distribution in BWR type reactor

    International Nuclear Information System (INIS)

    Purpose: To convert the neutron flux distribution obtained by the migration of TIP (moving type neutron detector) into the power distribution and to accurately estimate the neutron flux distribution between LPRMs (neutron detectors) on the basis of the thus converted power distribution. Constitution: A computer calculates the infinite multiplication factor K sub(infinity)sup(+) (K) from a TIP indication signal and a control rod positioning signal, and converts the resulting value into a value corresponding to K sub(infinity)sup(+) (K) in a case where the control rods are not inserted, thus sending the value to a K sub(infinity)sup( b) (K) memory device, the TIP indication value computer estimates and calculates the TIP indication value from K sub(infinity)sup( b) (K) stored in the memory device when the surveilance of the neutron flux distribution is required, and the control rod positioning signal and LPRM indication value signal at that time, and sends the resulting value to an indicator and a recording device. (Nakamura, S.)

  13. Effects of Nanofluid for In-Vessel Retention External Reactor Vessel Cooling on Critical Heat Flux using Pool Boiling Experiments

    International Nuclear Information System (INIS)

    In-vessel retention (IVR) is one of the severe accident management (SAM) strategies that are used in some nuclear power plants: AP600, AP1000, Loviisa and APR1400. One way of IVR is the method of external reactor vessel cooling (ERVC). When core melts and deposits on the bottom of reactor vessel, ERVC is starting to flood the reactor cavity to remove the decay heat through the wall of the reactor vessel. This process can improve the plant economics by reducing regulatory requirements. And increased safety margin leads to gain public acceptance. In this system, the heat removal is restricted by thermal limit called by critical heat flux (CHF). Besides, as advanced light water reactors such as South Korea's APR-1400, thermal safety margin is deceased. So, it is essential to get more safety margin. There are some approaches to enhance the ERVC: using the coating on the vessel outer surface, increasing the reactor cavity flood level, streamlining the gap between the vessel and the vessel insulation. Many investigations have been performed to evaluate the coolability of IVR In this paper, we firstly investigated the coating effects in the critical heat flux among the above mentioned approach methods. During the boiling phenomenon, a thin layer was formed on the heater surface in the nanofluid. This coating mechanism is well known theoretically. Nanofluids are colloidal dispersions of nanoparticles in traditional heat transfer fluids. One of the most interesting characteristics of nanofluids is their capability to enhance the critical heat flux (CHF) significantly. Nanofluid is made by typical particle materials. Materials of nanoparticles include metals (e.g., silver, copper, gold), metal oxides (e.g., titania, alumina, silica, zirconia), carbon allotrope (e.g., carbon nanotube, graphite). We selected the grapheneoxide nanofluid which is a kind of carbon allotrope. Graphene-oxide is attractive material with the high thermal conductivity and stable dispersion ability in

  14. Neutron flux measurements with Monte Carlo verification at the thermal column of a TRIGA MARK II reactor: Feasibility study for a BNCT facility

    International Nuclear Information System (INIS)

    The treatment of the malignant brain tumor through Boron Neutron Capture Therapy (BNCT) requires a high-flux neutron source. The Malaysian TRIGA Mark II reactor was investigated for a proposed BNCT facility. The neutron flux was measured along the central stringer of the thermal column and the outermost positions of the other stringers. The unfolding foil method was applied here. We have used Al, As, Au, Co, In, Mo, Ni and Re foils and Cd as a cover with 19 useful reactions in this study. The infinitely diluted foil activity was calculated and used in the SAND-II code (Spectrum Analysis by Neutron Detectors) to calculate the neutron flux. The reactor was also simulated using Monte Carlo code (MCNP5) and the neutron flux was calculated along the thermal column. The measured and calculated neutron flux along the thermal column show good agreement. The minimum epithermal neutron intensity required for BNCT is achieved up to position 22 with a mixed neutron-gamma beam. A suggested MCNP simulated modification of the reactor thermal column increased the neutron flux at distant positions from the reactor core but the epithermal neutron part was below the minimum requirement for a BNCT facility. The photon flux calculations along the thermal column show relatively high results which should be filtered. The calculation of the neutron and gamma dose in a head phantom (water) indicated that the available neutron spectrum requires modifications to increase the epithermal part of the neutrons and filter the gamma ray contamination. (author)

  15. The behavior of reactor power and flux resulting from changes in core-coolant temperature for a miniature neutron source reactor

    International Nuclear Information System (INIS)

    In this work, measurements were performed to verify the theoretical predictions of reactor power and flux parameters that result from changes in core inlet temperature (Tin) and the temperature difference between the coolant inlet and outlet (ΔT) in the Nigeria Research Reactor-1 (NIRR-1), which is a Miniature Neutron Source Reactor (MNSR). The measured data shows that there is a strong dependence of the reactor power on coolant temperature in agreement with the design of MNSR. The experimental parameters were found to be in good agreement with data obtained using a semi-empirical relationship between the reactor power, flux parameters, core inlet temperature, and the coolant temperature rise. The relationship was therefore used to predict the power level of NIRR-1 from its neutron flux parameters to which it has been found to be proportional. The variation of Tin and ΔT with the reactor power and flux was also investigated and the results obtained are hereby discussed

  16. Visualization of neutron flux and power distributions in TRIGA Mark II reactor as an educational tool

    International Nuclear Information System (INIS)

    Modern Monte Carlo computer codes (e.g. MCNP) for neutron transport allow calculation of detailed neutron flux and power distribution in complex geometries with resolution of ∼1 mm. Moreover they enable the calculation of individual particle tracks, scattering and absorption events. With the use of advanced software for 3D visualization (e.g. Amira, Voxler, etc.) one can create and present neutron flux and power distribution in a 'user friendly' way convenient for educational purposes. One can view axial, radial or any other spatial distribution of the neutron flux and power distribution in a nuclear reactor from various perspectives and in various modalities of presentation. By visualizing the distribution of scattering and absorption events and individual particle tracks one can visualize neutron transport parameters (mean free path, diffusion length, macroscopic cross section, up-scattering, thermalization, etc.) from elementary point of view. Most of the people remember better, if they visualize the processes. Therefore the representation of the reactor and neutron transport parameters is a convenient modern educational tool for the (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. The visualization of neutron flux and power distributions in Jozef Stefan Institute TRIGA Mark II research reactor is treated in the paper. The distributions are calculated with MCNP computer code and presented using Amira and Voxler software. The results in the form of figures are presented in the paper together with comments qualitatively explaining the figures. (authors)

  17. Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    CERN Document Server

    An, F P; Band, H R; Bishai, M; Blyth, S; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J -H; Cheng, J; Cheng, Y P; Cheng, Z K; Cherwinka, J J; Chu, M C; Chukanov, A; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dolgareva, M; Dove, J; Dwyer, D A; Edwards, W R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, R P; Guo, X H; Guo, Z; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Huo, W; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Joshi, J; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lee, J H C; Lei, R T; Leitner, R; Li, C; Li, D J; Li, F; Li, G S; Li, Q J; Li, S; Li, S C; Li, W D; Li, X N; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, S; Lin, S K; Lin, Y -C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, J L; Liu, J C; Loh, C W; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Lv, Z; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Malyshkin, Y; Caicedo, D A Martinez; McDonald, K T; McKeown, R D; Mitchell, I; Mooney, M; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevskiy, A; Pan, H -R; Park, J; Patton, S; Pec, V; Peng, J C; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Treskov, K; Tsang, K V; Tull, C E; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, X; Wang, Y F; Wang, Z; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, C -H; Wu, Q; Wu, W J; Xia, D M; Xia, J K; Xing, Z Z; Xu, J Y; Xu, J L; Xu, Y; Xue, T; Yang, C G; Yang, H; Yang, L; Yang, M S; Yang, M T; Ye, M; Ye, Z; Yeh, M; Young, B L; Yu, Z Y; Zeng, S; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, X T; Zhang, Y M; Zhang, Y X; Zhang, Y M; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y B; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2016-01-01

    A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GW$_{\\mathrm{th}}$ nuclear reactors and detected by eight antineutrino detectors deployed in two near (510~m and 560~m flux-weighted baselines) and one far (1580~m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be $0.946\\pm0.020$ ($0.992\\pm0.021$) for the Huber+Mueller (ILL+Vogel) model. A 2.9 $\\sigma$ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6~MeV was found in the measured spectrum, with a local significance of 4.4 $\\sigma$. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent p...

  18. Two-field and drift-flux models with applications to nuclear reactor safety

    International Nuclear Information System (INIS)

    The ideas of the two-field (6 equation model) and drift-flux (4 equation model) description of two-phase flows are presented. Several example calculations relating to reactor safety are discussed and comparisons of the numerical results and experimental data are shown to be in good agreement

  19. Flux perturbation factor in cobalt samples for the reactor production of Co-60

    International Nuclear Information System (INIS)

    Total flux perturbation factor (F) is experimentally determined for hollow cylinder cobalt samples irradiated in the RA-3 reactor. F factor is studied for different thicknesses of the material and the values are compared with those theoretically estimated by Dwork for a similar. (author)

  20. Two-field and drift-flux models with application to nuclear reactor safety

    International Nuclear Information System (INIS)

    The ideas of the two-field (6 equation model) and drift-flux (4 equation model) description of two-phase flows are presented. Several example calculations relating to reactor safety are discussed and comparisons of the numerical results and experimental data are shown to be in good agreement. 16 refs., 32 figs

  1. The Indian high temperature reactor programme

    International Nuclear Information System (INIS)

    Bhabha Atomic Research Centre (BARC), in India, is currently developing concepts of high temperature nuclear reactors capable of supplying process heat at a temperature around 873-1273K. These nuclear reactors are being developed with the objective of providing energy to facilitate combined production of hydrogen, electricity, and drinking water. Under the programme, currently India is developing a Compact High Temperature Reactor (CHTR) as a technology demonstrator for associated technologies. CHTR is mainly 233U-thorium fuelled, lead-bismuth cooled and beryllium oxide moderated reactor. This reactor, initially being developed to generate about 100 kW(th) power, will have a core life of around 15 years and will have several advanced passive safety features to enable its operation as compact power pack in remote areas not connected to the electrical grid. The reactor is being designed to operate at 1273K, to facilitate demonstration of technologies for high temperature process heat applications such as hydrogen production by splitting water through high efficiency thermo-chemical process. Molten lead based coolant has been selected for the reactor so as to achieve a higher level of safety. For this reactor, developmental work in the areas of fuel, structural materials, coolant technologies, and passive systems are being done in BARC. Experimental facilities are being set up to demonstrate associated technologies. In parallel, design work has been initiated for the development of a 600 MW(th) High Temperature Reactor for commercial hydrogen production by high temperature thermo-chemical water splitting processes. Technologies being developed for CHTR would be utilized for the development of this reactor. Various analytical studies have been carried out in order to compare different options as regards fuel configuration and coolants. Initial studies carried out indicate selection of pebble bed reactor configuration with either lead or molten salt-based cooling by

  2. Research reactors - an overview

    Energy Technology Data Exchange (ETDEWEB)

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  3. Improving flux tilt control while adjuster control rods are removed from the Pickering NGS A reactor

    International Nuclear Information System (INIS)

    Removal of adjuster control rods from the Pickering NGS A reactor core results in flux peaking and higher fuel powers in the centre region of the core. The present flux tilt control algorithm increases the level of the light water neutron absorber in the centre liquid zone controllers in an attempt to nullify flux peaking. However, due to the limited depth of the neutron absorption capability of the liquid zone controllers, the pre-removal zone powers can not be achieved. This results in saturation of liquid zone controller levels and reduced flux tilt control. Recent operating experience as shown that in certain situations the reduced flux tilt control capability with adjusters removed results in uncorrected side to side azimuthal flux tilts. To increase tilt control in these situations an improved flux tilt control algorithm has been developed which switches the zone power flux tilt control targets to more realistic obtainable values as adjusters are removed. In this paper the computer simulations and analysis performed to develop and test the improved flux tilt algorithm is described. Also the improved performance of the new algorithm in one event will be demonstrated. 2 refs., 9 figs

  4. Determination of the neutron flux in the reactor zones with the strong neutron absorption and leakage

    International Nuclear Information System (INIS)

    The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. The proposed procedures have been applied for the determination of the neutron flux in the internal neutron converter used with the RB reactor core configuration number 114. This paper shows: a) that the full heterogeneous core of complicate geometry, as the RB reactor core configuration No. 114, can be reliably calculated using the equivalence approach implemented in the VEGA2DAN code as a complement to the KENO-V.a multigroup Monte Carlo code; and b) a possibility of the RB reactor core configuration No. 114 for the irradiation of large samples in the field of fast neutrons.

  5. Review of neutron flux measurements in the RA reactor from 1959 - 1962

    International Nuclear Information System (INIS)

    Reactor core of the experimental RA reactor in Vinca consists of 2% enriched uranium and heavy water. Reactor started operation with 56 fuel elements. At the beginning of 1962 number of fuel elements was increased to 68 and it reached 84 at the end of the cycle. Physical parameters were measured for each 'new' core for cold unpoisoned core as well as for simulated hot poisoned core conditions. For the core with 84 fuel elements measurements were done only for cold poisoned core conditions. This paper summarizes the results of measuring thermal, epithermal and fast neutron fluxes in the experimental channels during the past period. Measurement of fast neutron flux in the fuel element cavity along the vertical axis is presented separately

  6. Relationship between core size, coolant choice, fuel type, and neutron flux in a fast irradiation test reactor

    International Nuclear Information System (INIS)

    Currently, the United States has no domestic capability for large volume irradiation testing in a fast-spectrum system to support the development of advanced fuels or materials. The recently-proposed Global Nuclear Energy Partnership includes provisions for a sodium-cooled Advanced Burner Test Reactor which could provide this testing capability. In addition to sodium, lead-bismuth eutectic and helium coolants are being considered for future energy systems. In this paper, sodium, lead-bismuth eutectic, and helium-cooled systems are evaluated to determine the impact on fast flux and fuel enrichment resulting from varying core diameter, fuel volume fraction, fuel type, and coolant. While fast flux is most strongly influenced by core diameter at fixed power, fuel enrichment is a more complicated function of all four parameters. In the end, the combination of high fast flux and low enrichment can best be achieved by a sodium-cooled system. (authors)

  7. Calculation of the inventory and near-field release rates of radioactivity from neutron-activated metal parts discharged from the high flux isotope reactor and emplaced in solid waste storage area 6 at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Emplacement of contaminated reactor components involves disposal in lined and unlined auger holes in soil above the water table. The radionuclide inventory of disposed components was calculated. Information on the composition and weight of the components, as well as reasonable assumptions for the neutron flux fueling use, the time of neutron exposure, and radioactive decay after discharge, were employed in the inventory calculation. Near-field release rates of 152Eu, 154Eu, and 155Eu from control plates and cylinders were calculated for 50 years after emplacement. Release rates of the europium isotopes were uncertain. Two release-rate-limiting models were considered and a range of reasonable values were assumed for the time-to-failure of the auger-hole linear and aluminum cladding and europium solubility in SWSA-6 groundwater. The bounding europium radionuclide near-field release rates peaked at about 1.3 Ci/year total for /sup 152,154,155/Eu in 1987 for the lower bound, and at about 420 Ci/year in 1992 for the upper bound. The near-field release rates of 55Fe, 59Ni, 60Co, and 63Ni from stainless steel and cobalt alloy components, as well as of 10Be, 41Ca, and 55Fe from beryllium reflectors, were calculated for the next 100 years, assuming bulk waste corrosion was the release-rate-limiting step. Under the most conservative assumptions for the reflectors, the current (1986) total radionuclide release rate was calculated to be about 1.2 x 10-4 Ci/year, decreasing by 1992 to a steady release of about 1.5 x 10-5 Ci/year due primarily to 41Ca. 50 refs., 13 figs., 8 tabs

  8. Numerical effects in the neutron flux calculations into WWER-type reactor vessels by Monte Carlo method

    International Nuclear Information System (INIS)

    The calculation of neutron fluxes and fluence into reactor pressure vessel is a regulatory requirement in the stages of the design, operation and plan lifetime extension. The reactor vessel is considered a unique and non-substitutable part of the NPP that undergoes degradation. The main source of the aging comes from the fast neutron damage induced in the steel crystalline lattice. Due to the proximity of the core edge to the vessel inner surface; the vessel steel is exposed to high fast neutron fluence. The effect of this irradiation on the mechanical properties becomes more acute because of the impurities measured in the Russian steel alloys. In the present paper, a PC version of the Monte Carlo 3-D HEXANN-EVALU system is used for the estimation of the WWER reactor pressure vessel irradiation. It was selected on the basis of its flexible options that on the other hand need to be quantified in connection with the desired magnitudes. The parameters that control the random walk of neutrons as well as the efficiency increasing options included in the code are studied in order to identify their impact in the final results for fluxes and fluence in the reactor pressure vessel. As a result an optimal set of parameters is suggested. (authors)

  9. Helium-cooled high temperature reactors

    International Nuclear Information System (INIS)

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg

  10. Determination of the neutron fluxes in the research nuclear reactors: the Triga Mark I and the WRS

    International Nuclear Information System (INIS)

    In this paper is presented the determination of the thermal, epithermal and fast neutron fluxes, using neutron activation analysis technique, for two research nuclear reactors of different design: the TRIGA Mark I reactor was designed by Gulf General Atomic Co in US and the W WRS reactor was designed in the URSS, both in the 50's years. (Author)

  11. Definition of neutron fluxes of the reactor WWR-SMINP of AS RUz

    International Nuclear Information System (INIS)

    Full text: In September 1959 in INP of AS RU the nuclear reactor WWR -SM dry 2 MW - has been started the first research reactor of this series in Central Asia. After modernization in 1979 the reactor WWR-SM started to work from capacity 10 MW. It has allowed lifting a level of performance of state scientifically technical programs and branch tasks in the field of metallurgy, medicine, agriculture, biotechnology, etc. In modern conditions, alongside the scientific orientations, the special attention is given to questions of optimization modes of operation of the reactor and nuclear safety. For safe work of the reactor WWR-SM with heat fission assemblies 36 %-s' (HFA such as IRT-3M) and 19.7 % (4 HFA such as IRT-4M) enrichment on 235U fuel UO2-Al are required an establishments of modes of operation providing both economy of fuel, and creation of optimum condition of irradiation on carrying out of scientific researches and manufacture of isotopes. Besides the detailed neutron, physical and hydraulic parameters of the active zone of the reactor, including spectral structure of neutron flux are necessary for rational use of vertical and horizontal channels of the reactor WWR-SM for these purposes. The control and tightness of environment spent HFA is necessary for prevention of radioactive pollution. Such control is carried out continuously on water level radioactivity of first contour of gas on air from a ventilation path from under cover of the reactor. Besides on operation conditions check of of tightness condition of elements H FA is carried out at the end of 20 %, 40 % and 60 % of burning out. The purpose on the given work is carrying out of measurements and calculation of some physic and technical parameters (capacity, neutron fluxes in the active zone and channels of the reactor WWR-SM, etc.) on use HFA such as IRT-3M with fuel 36 % of enrichments of 235U. After transition of the reactor to low enrichments (36 % enrichment on uranium-235) for the first time have

  12. High-energy fluxes of atmospheric neutrinos

    CERN Document Server

    Sinegovskaya, T S; Sinegovsky, S I

    2013-01-01

    High-energy neutrinos from decays of mesons, produced in collisions of cosmic ray particles with air nuclei, form unavoidable background for detection of astrophysical neutrinos. More precise calculations of the high-energy neutrino spectrum are required since measurements in the IceCube experiment reach the intriguing energy region where a contribution of the prompt neutrinos and/or astrophysical ones should be discovered. Basing on the referent hadronic models QGSJET II-03, SIBYLL 2.1, we calculate high-energy spectra, both of the muon and electron atmospheric neutrinos, averaged over zenith-angles. The computation is made using three parameterizations of cosmic ray spectra which include the knee region. All calculations are compared with the atmospheric neutrino measurements by Frejus and IceCube. The prompt neutrino flux predictions obtained with thequark-gluon string model (QGSM) for the charm production by Kaidalov & Piskunova do not contradict to the IceCube measurements and upper limit on the astr...

  13. Organic cooled high flux, heating element working under radiations

    International Nuclear Information System (INIS)

    Heating elements described in this report are heated by direct or alternative current in the wall cooled by the liquid. The element temperature can be 500 deg. C and the heat flux in the test section 100 Watts/sq.cm. The type of heating element used in a loop working under an accelerator is supplied by a low voltage high current (1500 amps). This type is relatively simple, robust and convenient for experiments. When the heating element is used in loop l aided near the core of a research reactor, it is supplied with a lower electric current (750 amps). This improved type is more complicate and fragile due to the conditions of working and the safety device necessary for a reactor. The heating stainless steel pipe has an outside diameter of 20 mm and a thickness of 0.15 mm. We give the elements of calculation for this heating elements, a description of the two types built, and a report of the tests made by the constructor on a technological test loop. (author)

  14. A review of experiments and results from the transient reactor test (TREAT) facility

    International Nuclear Information System (INIS)

    The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop

  15. Calculation of self-shielding coefficients, flux depression and cadmium factor for thermal neutron flux measurement of the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    A calculation methodology of Flux Depression, Self-Shielding and Cadmium Factors is presented, using the ANISN code, for experiments conducted at the IPEN/MB-01 Research Reactor. The correction factors were determined considering thermal neutron flux and 0.125 e 0.250 mm diameter of 197 Au wires. (author)

  16. Hot Fuel Examination Facility's neutron radiography reactor

    International Nuclear Information System (INIS)

    Argonne National Laboratory-West is located near Idaho Falls, Idaho, and is operated by the University of Chicago for the United States Department of Energy in support of the Liquid Metal Fast Breeder Reactor Program, LMFBR. The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both nondestructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the nondestructive examination techniques utilized at HFEF is neutron radiography, which is provided by the NRAD reactor facility (a TRIGA type reactor) below the HFEF hot cell

  17. Resonance integral calculations for high temperature reactors

    International Nuclear Information System (INIS)

    Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)

  18. Epithermal neutron flux characterization of the TRIGA MARK II reactor, Ljubljana, Yugoslavia, for use in NAA

    International Nuclear Information System (INIS)

    The nonideality of the epithermal neutron flux distribution at a reactor site can be described by a 1/E1+α spectrum representation, with parameter α as a measure of nonideality. α-values were determined in 3 typical irradiation positions of the TRIGA MARK II reactor, Ljubljana, Yugoslavia, using the 'Cd-ratio for multi-monitor' method. The simpler 'Cd-ratio for dual monitor' method also yielded reliable results. This characterization is useful in the ko-method of NAA. (author) 18 refs.; 3 figs

  19. Determination of neutron flux distribution across the RB reactor with large central air hol

    International Nuclear Information System (INIS)

    The need for the irradiation of large samples in the fast neutron field was led to design of a strongly heterogeneous core at the RB heavy water reactor. This configuration, operates as the internal fast neutron converter, introduces many difficulties in reactor safety and criticality analysis. In this paper, the collision probability method in two-dimensional r-z geometry, implemented in the VEGA code is applied. The neutron flux calculated by the VEGA code is compared to the results obtained by the MCNP sup T sup M continuous-energy Monte Carlo code and to the measured distribution. Results of VEGA and MCNP codes show good agreement with measured values. (author)

  20. Assessment of gold flux monitor at irradiation facilities of MINT TRIGA MK II reactor

    International Nuclear Information System (INIS)

    Neutron source of MINTs TRIGA MK II reactor has been used for activation analysis for many years and neutron flux plays important role in activation of samples at various positions. Currently, two irradiation facilities namely the pneumatic transfer system and rotary rack are available to cater for short and long lived irradiation. Neutron flux variation for both irradiation facilities have been determined using gold wire and gold solution as flux monitor. However, the use of gold wire as flux monitor is costlier if compared to gold solution. The results from analysis of certified reference materials showed that gold solution as flux monitors yield satisfactory results and proved to safe cost on the purchasing of gold wire. Further experiment on self-shielding effects of gold solution at various concentrations has been carried out. This study is crucial in providing vital information on the suitable concentration for gold solution as flux monitor. In the near future, gold solution flux monitor will be applied for routine analysis and hence to improve the capability of the laboratory on neutron activation analysis. (Author)

  1. Investigation on mass flux distribution and asymmetrical cooling in a plate-type fuel reactor

    International Nuclear Information System (INIS)

    A program was developed to calculate the mass flux distribution in the whole core and the asymmetrical cooling of fuel pins for a plate type fuel reactor by applying the proper physical model. Three iterative algorithms for mass flux distribution calculation and two iterative algorithms for temperature field calculation of plate fuel element under asymmetrical cooling condition were proposed and compared by applying in a subassembly. The results showed that the flow distribution is mainly determined by the core structure, although it is also impacted by the power distribution in the core. The asymmetrical cooling condition seriously impacts the temperature field and power distribution of the fuel pins. (authors)

  2. Absolute measurements of the fast neutron flux in the reactor RA

    International Nuclear Information System (INIS)

    The absolute neutron flux in the vertical VK-5 hole of the reactor RA was determined by using the 27Al (n, alpha) 24Na reaction, and by counting the 24Na - 2.5 MeV gamma line photopeak activity. A method for the determination of σeff as a mean value between the two large limiting cases of neutron spectra is used. The flux at the power level of 5 MW was found to be (2.5±0.9)·1012n/cm2sec (author)

  3. Fast flux measurements by means of threshold detectors on the reactor 'Melusine'

    International Nuclear Information System (INIS)

    Using existing data on the (n,p) and (n,α) threshold reactions we have carried out fast flux measurements on the swimming pool type reactor 'Melusine'. Four common elements: P, S, Mg, Al were chosen because from the point of view of fast spectrum analysis they represent a fairly good energy range from 2.4 MeV to 8 MeV. The fission flux value found in the central element at a power of 1 MW is 1.4 x 1013 n/cm2/s ± 0.14. (author)

  4. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    International Nuclear Information System (INIS)

    Determination of thermal to fast neutron flux ratio (ffast) and fast neutron flux (φfast) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The ffast and subsequently φfast were determined using the absolute method. The ffast ranged from 48 to 155, and the φfast was found in the range 1.03x1010-4.89x1010 n cm-2 s-1. These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  5. High heat flux engineering in solar energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, C.P.

    1993-07-01

    Solar thermal energy systems can produce heat fluxes in excess of 10,000 kW/m{sup 2}. This paper provides an introduction to the solar concentrators that produce high heat flux, the receivers that convert the flux into usable thermal energy, and the instrumentation systems used to measure flux in the solar environment. References are incorporated to direct the reader to detailed technical information.

  6. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    Science.gov (United States)

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  7. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    Science.gov (United States)

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-10-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  8. Reactor analysis methods. 6. Angular Dependence of the Fast Flux in Reactor Lattices

    International Nuclear Information System (INIS)

    We study the high-energy ('fast') angular flux in an infinite lattice of fuel and moderator, finding that the flux is a bumpy, irregular function of azimuthal direction. We approximate the problem as an infinite lattice of identical pins (with cladding and gap homogenized into the fuel) in a sea of moderator. A unit cell in this lattice has a quarter-circle fuel pin inside a square of moderator, with the center of the circle at one corner of the square. To facilitate easy calculation with different transport codes, we have approximated this geometry by using square fuel pins, as shown in Fig. 1. In our idealized two-dimensional (2-D) problem, the pins and moderator are infinite in the axial direction. The materials have the following properties: 1. The fast-neutron source is in the fuel only. 2. There is within-group scattering in the fuel but almost none in the moderator. (Most scatters in the moderator will remove the neutron from the fast group.) 3. The fuel pin is n) to represent accurately, and difficult for Monte Carlo methods to sample adequately. We remark that the variation in the polar variable μ is relatively smooth (as is true in most 2-D problems). We further remark that homogenized pin cells do not produce complicated angular variations -this is a challenge encountered when we attack the transport problem with heterogeneous pin cells. (When Smith began using a long characteristic code to solve heterogeneous instead of homogenized pin cells he initially obtained large errors; subsequent discussion led us to perform the study reported here). Finally, we remark that the square fuel pins do not cause the complex behavior; preliminary investigations (and geometrical reasoning) indicate that round pins generate similar complexities. Within the discrete ordinates framework, this problem calls for a 'product' quadrature (which uses separate quadratures for the γ and μ integrals) because there is far more complexity in γ than in m. We have experimented

  9. Measurement of the epithermal neutron flux of the Argonauta reactor by the Sandwich method

    International Nuclear Information System (INIS)

    A common method of obtaining information about the neutron spectrum in the energy range of 1 eV to a few keV is by using resonance sandwich detectors. A sandwich detector is usually made up of three foils placed one on top of the other, each having the same thickness and being made of the same material which has a pronounced absorption resonance. To make an adequate evaluation, the sandwich method was compared with one using an isolated detector. The results obtained from approximate theoretical calculations were checked experimentally, using In, Au and Mn foils, in an isotropic 1/E flux in the Argonaut Reactor at I.E.N. As practical application of this method, the deviation from a 1/E spectrum of the epithermal neutron flux in the core and external graphite reflector of the Argonaut Reactor has been measured with the sandwich foils previously calibrated in a 1/E spectrum. (author)

  10. Experimental and MCNP calculations of neutron flux parameters in irradiation channel at Es-Salam reactor

    International Nuclear Information System (INIS)

    The Algerian research reactor (Es-Salam) is a 15 MW heavy water reactor type, operating since 1992. It became essential to characterize the neutron field in the most useful irradiation positions, in order to guarantee the accuracy in the application of k0-neutron activation analysis (k0-NAA). Experimental value of the thermal to epithermal neutron flux ratio (f) and of the deviation of the epithermal neutron spectrum from 1/E shape (α) were determined using different methods. This work focuses the verification of Monte Carlo neutron flux calculation in typical irradiation channel. Comparison of the results for parameter f obtained experimentally and by Monte Carlo simulations shows good agreement in the irradiation channel studied. The difference between both results is about 2.08%. (author)

  11. On-line fast flux measurements in the BR2 reactor

    International Nuclear Information System (INIS)

    Since 2001, CEA-Cadarache and the Belgian Nuclear Research Centre SCK-CEN are collaborating on the development and in-pile qualification of subminiature fission chambers (diameter of 1.5 mm). Initially, efforts concentrated on fission chambers for the in-pile measurement of thermal fluxes (with 235U as fissile material). Meanwhile successful long-term tests of the prototypes have been performed in various environments: in low temperature (40-100 degress Celsius) BR2 pool water (up to a thermal neutron fluence of 3 1021 n/cm2) and in the CALLISTO PWR loop (300 degrees Celsius, 155 bars). The long-term qualification of derived industrial detectors (Photonis CFUZ53) in CALLISTO is still ongoing. However, for various types of irradiations in research reactors, the knowledge of the evolution of the fast neutron flux is even of more interest than the thermal flux data. Therefore the collaboration program was extended to the development and the in-pile qualification of subminiature or miniature fission chambers (with 3 mm diameter) for fast neutron detection, for which 242Pu was selected as the optimal fissile material. In order to achieve the on-line in-pile measurement of fast neutron flux, the fission chambers will be operated in the Campbelling mode (based on the mean square fluctuation of the detector current). In this mode the gamma induced contribution to the signal can be efficiently suppressed. Moreover, a data processing software will take into account the evolution of the fissile deposit in order to assess on-line the fast flux sensitivity and to correct for the low energy neutron contributions. The final objective is to qualify a Fast Neutron Detector System (FNDS) able to provide on-line data for local fast neutron fluxes in Material Testing Reactors. The on-line measurement of the fast neutron flux would contribute significantly to the characterization of the irradiation conditions during test experiments with materials and innovative fuel elements

  12. NEUTRONIC REACTOR HAVING LOCALIZED AREAS OF HIGH THERMAL NEUTRON DENSITIES

    Science.gov (United States)

    Newson, H.W.

    1958-06-01

    A nuclear reactor for the irradiation of materials designed to provide a localized area of high thermal neutron flux density in which the materials to be irradiated are inserted is described. The active portion of the reactor is comprised of a cubicle graphite moderator of about 25 feet in length along each axis which has a plurality of cylindrical channels for accommodatirg elongated tubular-shaped fuel elements. The fuel elements have radial fins for spacing the fuel elements from the channel walls, thereby providing spaces through which a coolant may be passed, and also to serve as a heatconductirg means. Ducts for accommnodating the sample material to be irradiated extend through the moderator material perpendicular to and between parallel rows of fuel channels. The improvement is in the provision of additional fuel element channels spaced midway between 2 rows of the regular fuel channels in the localized area surrounding the duct where the high thermal neutron flux density is desired. The fuel elements normally disposed in the channels directly adjacent the duct are placed in the additional channels, and the channels directly adjacent the duct are plugged with moderator material. This design provides localized areas of high thermal neutron flux density without the necessity of providing additional fuel material.

  13. Drift Flux Distribution Parameter in Three-Phase Air-Lift Reactors

    OpenAIRE

    Popovic, M.K.; Wulfes, C.; Bajpai, R.K.

    2007-01-01

    Gas hold-up and liquid circulation velocity data in a three-phase system involving alginate beads in an internal-loop airlift reactor, reported by Lu et al. (1995), have been analyzed to evaluate the distribution parameter in drift flux model. The calculated distribution parameter values were significantly greater than 1.0 (the value used by Lu et al. in their modeling) and also affected by the solid volume fraction. An empirical correlation of this effect has been presented.

  14. Critical Heat Flux Phenomena at HighPressure & Low Mass Fluxes: NEUP Final Report Part I: Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael [Univ. of Wisconsin, Madison, WI (United States); Wu, Qiao [Oregon State Univ., Corvallis, OR (United States)

    2015-04-30

    This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embedded in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.

  15. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay

    CERN Document Server

    An, F P; Band, H R; Bishai, M; Blyth, S; Butorov, I; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J H; Cheng, J; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dove, J; Draeger, E; Dwyer, D A; Edwards, W R; Ely, S R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, X H; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, K Y; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, S C; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Caicedo, D A Martinez; McDonald, K T; McKeown, R D; Meng, Y; Mitchell, I; Kebwaro, J Monari; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Pan, H -R; Park, J; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Tsang, K V; Tull, C E; Tung, Y C; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C G; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Young, B L; Yu, G Y; Yu, Z Y; Zang, S L; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, Y M; Zhang, Y X; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y F; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2015-01-01

    This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9~GW$_{th}$ nuclear reactors with six detectors deployed in two near (effective baselines 512~m and 561~m) and one far (1,579~m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296,721 and 41,589 inverse beta decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55 $\\pm$ 0.04) $\\times$ 10$^{-18}$~cm$^2$/GW/day or (5.92 $\\pm$ 0.14) $\\times$ 10$^{-43}$~cm$^2$/fission. This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is $0.946\\pm0.022$ ($0.991\\pm0.023$) relative to the flux predicted with the Huber+Mueller (ILL+Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2$\\sigma$ over the full energy range with a local significance of up to $\\sim$4$\\sigma$ between 4-6 MeV. A reactor antineutrino spectrum...

  16. Locally manufactured films for neutron flux measurement in the MNSR type reactor

    International Nuclear Information System (INIS)

    Highlights: • Metal films deposited on Teflon are prepared to use as neutron monitors in the MNSR. • Ti, Al, V, and Ag films have been locally prepared by two different methods. • The thermal neutron flux was measured using Ti, Al, V, and Ag films. • V and Ag films were used as neutron monitors for the first time in MNSR type reactor. • With compared to published results in literature our neutron monitors are validated. - Abstract: Metal films deposited on Teflon are used in the Miniature Neutron Source Reactor (MNSR) for the first time to study their usability as neutron activation detectors for the thermal neutron flux measurements in the reactor. For this purpose Titanium, Aluminum, Vanadium, and Silver films deposited on Teflon have been locally prepared at room temperature using two methods: the vacuum arc deposition and DC Magnetron sputtering techniques. The thermal neutron flux in the MNSR inner irradiation site was measured using the prepared metal films. The results at the 95% level of confidence of the neutron flux using the metal films deposited on Teflon by the vacuum arc deposition for Titanium, Aluminum, and Vanadium were: (9.9 ± 0.3) × 1011, (1.4 ± 0.3) × 1012, (1.2 ± 0.2) × cm−2 s−1, respectively. The result at the same level of confidence of the neutron flux using the metal films deposited on Teflon by the DC Magnetron sputtering for Silver was: (1.5 ± 0.2) × 1011 cm−2 s−1. Good agreements are noticed between our obtained mean value (9.3 ± 0.9) × 1011 cm−2 s−1 and the previous published results

  17. Hydrodynamic transition delay in rectangular channels under high heat flux

    International Nuclear Information System (INIS)

    When upgrading a research nuclear reactor for a higher power output it can be expected that the cooling flow rate has to be increased. In the case of a reactor designed with a laminar cooling flow this upgrade may take the flow into the transition hydrodynamic regime. In this work we explore experimentally the laminar to turbulent transition in a rectangular channel with similar characteristics as the refrigerating passages between the fuel plates in a research reactor core. The measurements were performed under heat fluxes up to 10 W/cm2, which is similar to the heat flux found in pool type research reactors. Special care has been taken in the test section to minimize the entrance turbulence and to reproduce the superficial characteristics of the aluminium cladding of the nuclear fuel. We have measured the transition Reynolds number as the bulk Reynolds number at the point of minimum Nusselt number for each condition studied. It was observed that the bulk Reynolds number at which the transition to turbulence is detected depends on the heat flux at the walls. This result is in agreement with a recent theoretical analysis, which shows that property variations near the wall, particularly the reduction of viscosity, have a stabilizing effect on the flow.

  18. Simulation of the neutron flux in the irradiation facility at RA-3 reactor

    International Nuclear Information System (INIS)

    A facility for the irradiation of a section of patients' explanted liver and lung was constructed at RA-3 reactor, Comisión Nacional de Energía Atómica, Argentina. The facility, located in the thermal column, is characterized by the possibility to insert and extract samples without the need to shutdown the reactor. In order to reach the best levels of security and efficacy of the treatment, it is necessary to perform an accurate dosimetry. The possibility to simulate neutron flux and absorbed dose in the explanted organs, together with the experimental dosimetry, allows setting more precise and effective treatment plans. To this end, a computational model of the entire reactor was set-up, and the simulations were validated with the experimental measurements performed in the facility.

  19. Measurement of thermal, epithermal and fast neutron flux in the IEA-R1 reactor by the foil activation method

    International Nuclear Information System (INIS)

    Experimental and theoretical details of the foil activation method applied to neutrons flux measurements at the IEA-R1 reactor are presented. The thermal - and epithermal - neutron flux were determined form activation measurements of gold, cobalt and manganese foils; and for the fast neutron flux determination, aluminum, iron and nickel foils were used. The measurements of the activity induced in the metal foils were performed using a Ge-Li gamma spectrometry system. In each energy range of the reactor neutron spectrum, the agreement among the experimental flux values obtained using the three kind of materials, indicates the consistency of the theoretical approach and of the nuclear parameters selected. (Author)

  20. Upgrade of 400,000 gallon water storage tank at Argonne National Laboratory - West to UCR-15910 high hazard seismic requirements

    International Nuclear Information System (INIS)

    As part of the Integral Fast Reactor (IFR) Project at Argonne National Laboratory - West (ANL-W), it was necessary to strengthen an existing 400,000 gallon flat-bottom water storage tank to meet UCRL-15910 (currently formulated as DOE Standard DOE-STD0-1020-92, Draft) high hazard natural phenomena requirements. The tank was constructed in 1988 and preliminary calculations indicated that the existing base anchorage was insufficient to prevent buckling and potential failure during a high hazard seismic event. General design criteria, including ground motion input, load combinations, etc., were based upon the requirements of UCRL-15910 for high hazard facilities. The analysis and capacity assessment criteria were based on the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the foundation and installing additional anchor bolts and chairs, were necessary to increase the capacity of the tank anchorage/support system. The construction of the upgrades took place in 1992 while the tank remained in service to allow continued operation of the EBR-II reactor. The major phases of construction included the installation and testing of 144 1-1/4 inches x 15 inches, and 366 1 inches x 16 inches epoxied concrete anchors, placement of 220 cubic yards of concrete heavily reinforced, and installation of 24 1-1/2 inches x 60 inches tank anchor bolts and chairs. A follow-up inspection of the tank interior by a diver was conducted to determine if the interior tank coating had been damaged by the chair welding. The project was completed on schedule and within budget

  1. Upgrade of 400,000 gallon water storage tank at Argonne National Laboratory-West to UCRL-15910 high hazard seismic requirements

    International Nuclear Information System (INIS)

    As part of the Integral Fast Reactor (IFR) Project at Argonne National Laboratory West (ANL-W), it was necessary to strengthen an existing 400,000 gallon flat-bottom water storage tank to meet UCRL-15910 (currently formulated as DOE Standard DOE-STD-1020-92, Draft) high hazard natural phenomena requirements. The tank was constructed in 1988 and preliminary calculations indicated that the existing base anchorage was insufficient to prevent buckling and potential failure during a high hazard seismic event. General design criteria, including ground motion input, load combinations, etc., were based upon the requirements of UCRL-15910 for high hazard facilities. The analysis and capacity assessment criteria were based on the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the Generic Implementation Procedure developed by the Seismic Qualification Utilities Group (SQUG). Upgrade modifications, consisting of increasing the size of the foundation and installing additional anchor bolts and chairs, were necessary to increase the capacity of the tank anchorage/support system. The construction of the upgrades took place in 1992 while the tank remained in service to allow continued operation of the EBR-II reactor. The major phases of construction included the installation and testing of 144 1/14in. x 15in., and 366 1in. x 16in. epoxied concrete anchors, placement of 220 cubic yards of concrete heavily reinforced, and installation of 24 1-1/2in. x 60in. tank anchor bolts and chairs. A follow-up inspection of the tank interior by a diver was conducted to determine if the interior tank coating had been damaged by the chair welding. The project was completed on schedule and within budget

  2. Development of a 10-decade single-mode reactor flux monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, K.H.; Shepard, R.L.; Falter, K.G.; Reese, W.B.

    1988-03-31

    Conventional wide-range neutron channels employ three optional modes to monitor the required flux range from source levels to full power (typically 10 or more decades). Difficult calibrations are necessary to provide a continuous output signal when such a system switches from counting mode in the source range to mean-square voltage mode in the midrange to dc current mode in the power range. In an ORNL proof-of-principle test, a method of extended range counting was implemented with a fission counter and conventional wide-band pulse processing electronics to provide a single-mode, monotonically increasing signal that spanned /approximately 10/ decades of neutron flux. Ongoing work includes design, fabrication, and testing of a comlpete neutron flux monitoring system suitable for advanced liquid metal reactor designs. 6 refs., 4 figs.

  3. A High Flux Source of Cold Rubidium

    CERN Document Server

    Slowe, C; Hau, L V; Slowe, Christopher; Vernac, Laurent; Hau, Lene Vestergaard

    2004-01-01

    We report the production of a continuous, slow, and cold beam of 87-Rb atoms with an unprecedented flux of 3.2 x 10^12 atoms/s and a temperature of a few milliKelvin. Hot atoms are emitted from a Rb candlestick atomic beam source and transversely cooled and collimated by a 20 cm long atomic collimator section, augmenting overall beam flux by a factor of 50. The atomic beam is then decelerated and longitudinally cooled by Zeeman slowing.

  4. High Temperature reactors status 1977

    International Nuclear Information System (INIS)

    The objective of this report is to summarize the current state-of-the-art of HTR technology as part of follow-up studies of the development of advanced fission reactor systems. These studies have been performed at AB Atomenergi since fiscal year 1975/76 and are financed by governmental funds for energy R and D. In this report emphasis is given to the following main aspects of the HTR development: - a survey of the major HTR - R and D programmes; - the description of HTR technology including remaining development problems and uncertainties; - the analysis of the safety and environmental characteristics of the HTR systems; - the analysis of the incentives for the introduction of various HTR types. The report contains also information kindly provided directly by experts from several organisations developing the HTR-systems

  5. Localized fast neutron flux enhancement for damage experiments in a research reactor; Accroissement local du flux rapide pour des experiences de dommages dans un reacteur de recherche

    Energy Technology Data Exchange (ETDEWEB)

    Malouch, F

    2003-06-01

    In irradiation experiments on materials in the core of the Osiris reactor (CEA-Saclay) we seek to increase damage in irradiated samples and to reduce the duration of their stay in the core. Damage is essentially caused by fast neutrons (E {>=} 1 MeV); we have therefore pursued the possibility of a localized increase of their level in an irradiation experiment by using a flux converter device made up of fissile material arranged according to a suitable geometry that allows the converter to receive experiments. We have studied several parameters that are influential in the increase of fast neutron flux within the converter. We have also considered the problem of the converter's cooling in the core and its effect on the operation of the reactor. We have carried out a specific neutron calculation scheme based on the modular 2D-transport code APOLLO2 using a two-level transport method. Experimental validation of the flux calculation scheme was carried out in the ISIS reactor, the mock-up of OSIRIS, by optimizing the loading of fuel elements in the core. The experimental results show that the neutron calculation scheme computes the fluxes in close agreement with the measurements especially the fast flux. This study allows us to master the essential physical parameters needed for the design of a flux converter in an MTR reactor. (author)

  6. Gas turbine high temperature reactor, GTHTR-300

    International Nuclear Information System (INIS)

    The high temperature gas reactor (HTGR) has some characters without previously set reactors such as capability of taking out heat with high temperature, high specific safety, and so on. The gas turbine high temperature reactor (GTHTR) activating such characters has some advantages such as high power generation efficiency, feasibility on simplification of safety apparatus, and so on, and that has excellent economical efficiency. Recently, this GTHTR system is positively promoted on its investigation in South Africa, U.S.A., Russia, Holland, China, France, and so on. In JAERI, on a base of the feasibility study on GTHTR carried out fiscal year 1996 to 2000 as an entrusted research by the Science and Technology Agency, a design investigation on an actual use GTHTR (GTHTR-300) with excellent safety economical efficiency and operation feature and about 300 MW in electric output by using Japanese own technology has been progressed. The GTHTR-300 is an excellent system adopted Japanese initiative also for GTHTR as well as activated some reactor related technologies accumulated on HTGR R and D in Japan at a center of HTTR (high temperature engineering test reactor). Here were described on developing target, design concept, and a route to actual use of GTHTR. (G.K.)

  7. Neutron flux measurement in the thermal column of the Malaysian TRIGA mark II reactor with MCNP verification

    International Nuclear Information System (INIS)

    A study of the thermal column of the Malaysian TRIGA Mark II reactor, forming part of a feasibility study for BNCT was proposed in 2001. In the current study, pure metals were used to measure the neutron flux at selected points in the thermal column and the neutron flux determined using SAND-II. Monte Carlo simulation of the thermal column was also carried out. The reactor core was homogenized and calculations of the neutron flux through the graphite stringers performed using MCNP5. The results show good agreement between the measured flux and the MCNP calculated flux. An obvious extension from this is that the MCNP neutron flux output can be utilized as an input spectrum for SAND-II for the flux iteration. (author)

  8. Isotope correlation studies relative to high enrichment test reactor fuels

    International Nuclear Information System (INIS)

    Several correlations of fission product isotopic ratios with atom percent fission and neutron flux, for highly enriched 235U fuel irradiated in two different water moderated thermal reactors, have been evaluated. In general, excellent correlations were indicated for samples irradiated in the same neutron spectrum; however, significant differences in the correlations were noted with the change in neutron spectrum. For highly enriched 235U fuel, the correlation of the isotopic ratio 143Nd/145+146Nd with atom percent fission has wider applicability than the other fission product isotopic ratio evaluated. The 137Cs/135Cs atom ratio shows promise for correlation with neutron flux. Correlations involving heavy element ratios are very sensitive to the neutron spectrum

  9. IAEA high temperature gas cooled reactor activities

    International Nuclear Information System (INIS)

    IAEA activities on high temperature gas cooled reactors are conducted with the review and support of Member States, primarily through the International Working Group on Gas Cooled Reactors (IWGGCR). This paper summarises the results of the IAEA gas cooled reactor project activities in recent years along with ongoing current activities through a review of Co-ordinated Research Projects (CRPs), meetings and other international efforts. A series of three recently completed CRPs have addressed the key areas of reactor physics for LEU fuel, retention of fission products, and removal of post shutdown decay heat through passive heat transport mechanisms. These activities along with other completed and ongoing supporting CRPs and meetings are summarised with reference to detailed documentation of the results. (author)

  10. Measure of thermal neutron flux in the IPEN/MB-01 reactor using 197 Au wire activation detectors

    International Nuclear Information System (INIS)

    This dissertation has aimed at developing a neutron flux measurement technique by means of detectors activation analysis. The main task of this work was the implementation of this thermal neutron flux measurement technique, using gold wires as activation detectors in the IPEN/MB-01 reactor core. The neutron thermal flux spatial distribution was obtained by gold wire activation technique, with wire diameters of 0.125 mm and 0.250 mm in seven selected reactor experimental channels. The values of thermal flux were about 109 neutrons/cm2.s. This experiment has been the first one conducted with gold wires in the IPEN/MB-01 reactor, being this technique implemented for use by experiments in flux mapping of the core

  11. Workshop on high heat flux materials for TFCX

    International Nuclear Information System (INIS)

    The workshop reviewed the performance requirements for high-heat-flux material in TFCX, summarized existing materials and materials technologies for meeting these requirements, identified critical near-term materials R and D for high-heat flux components, and reviewed the status of materials test facilities for performing the necessary R and D

  12. ANL ITER high-heat-flux blanket-module heat transfer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.E.

    1992-02-01

    An Argonne National Laboratory facility for conducting tests on multilayered slab models of fusion blanket designs is being developed; some of its features are described. This facility will allow testing under prototypic high heat fluxes, high temperatures, thermal gradients, and variable mechanical loadings in a helium gas environment. Steady and transient heat flux tests are possible. Electrical heating by a two-sided, thin stainless steel (SS) plate electrical resistance heater and SS water-cooled cold panels placed symmetrically on both sides of the heater allow achievement of global one-dimensional heat transfer across blanket specimen layers sandwiched between the hot and cold plates. The heat transfer characteristics at interfaces, as well as macroscale and microscale thermomechanical interactions between layers, can be studied in support of the ITER engineering design effort. The engineering design of the test apparatus has shown that it is important to use multidimensional thermomechanical analysis of sandwich-type composites to adequately analyze heat transfer. This fact will also be true for the engineering design of ITER.

  13. ANL ITER high-heat-flux blanket-module heat transfer experiments. Fusion Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.E.

    1992-02-01

    An Argonne National Laboratory facility for conducting tests on multilayered slab models of fusion blanket designs is being developed; some of its features are described. This facility will allow testing under prototypic high heat fluxes, high temperatures, thermal gradients, and variable mechanical loadings in a helium gas environment. Steady and transient heat flux tests are possible. Electrical heating by a two-sided, thin stainless steel (SS) plate electrical resistance heater and SS water-cooled cold panels placed symmetrically on both sides of the heater allow achievement of global one-dimensional heat transfer across blanket specimen layers sandwiched between the hot and cold plates. The heat transfer characteristics at interfaces, as well as macroscale and microscale thermomechanical interactions between layers, can be studied in support of the ITER engineering design effort. The engineering design of the test apparatus has shown that it is important to use multidimensional thermomechanical analysis of sandwich-type composites to adequately analyze heat transfer. This fact will also be true for the engineering design of ITER.

  14. Extended Cooling System for High Power Reactors

    International Nuclear Information System (INIS)

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants (NPPs) and proposed for advanced light water reactors (LWRs). However, it is not clear that currently proposed external reactor vessel cooling (ERVC) could provide sufficient heat removal for higher power reactors. This paper proposes a dual retention strategy to realize fail-proof defense-in-depth in the APR1400 (Advanced Power Reactor 1400 MWe) and the OPR 1000 (Optimized Power Reactor 1000 MWe). The dual retention has the advantage of IVR-ERVC as well as ex-vessel cooling (EVC) strategies. The multilateral, multidisciplinary project calls for national and international cutting-edge technologies to research and produce (R and P) the D2R2 (Duel Retention Demonstration Reactor) equipped with OASIS (Optimized Advanced Safety Injection System) and ROSIS (Reactor Outer Safety Injection System) to cope with design-basis accidents and beyond in a coherent, continual, comprehensive manner. The enterprise aims to develop the design-basis and severe accident engineering solutions. The enterprise aims to develop the design-basis and severe accident engineering solutions. The former embraces ISAIAH (Injection System Annular Interactive Aero Hydrodynamics) and MESIAH (Methodical Evaluation System Interactive Aero Hydrodynamics). The latter comprises GODIVA (Geo metrics of Direct Injection Versatile Arrangement), SONATA (Simulation of Narrow Annular Thermomechanical Arrest or), TOCATA (Termination of Corium Ablation Thermal Attack) and STRADA (Solution to Reactor Advanced Design Alternatives). D2R2 will contribute to enhancement of both safety and economics for an advanced high power particular and nuclear power in general

  15. The Fabrication of Plutonium from Highly Irradiated Reactor Fuel

    International Nuclear Information System (INIS)

    Plutonium that has been separated from highly irradiated, or recycled, reactor fuel contains substantial percentages of 238Pu, 240 Pu, 241Pu and 242Pu. These isotopes and their daughter products are sources of increased gamma and neutron radiation, which affects the costs, the facilities and the techniques of fabricating the plutonium into reactor fuel elements. The commercial application of recycled power-reactor plutonium will depend, to a large extent, upon the ability of the fabricators to process, fabricate and use plutonium derived from highly irradiated fuels economically and safely. Experimental fuel elements are being fabricated at Argonne National Laboratory for a long-range study of the effects on reactor neutronics of various plutonium isotopic compositions that range from nearly pure 239Pu to plutonium that is principally 242Pu. A secondary purpose of this work was to determine the gamma and neutron rates of radiation dosage to personnel and to gain practical experience during the fabrication of typical compositions of plutonium from power reactors. The first step in this study was to develop a computer programme for calculating the rates of radiation dosage to personnel encountered during the fabrication of plutonium metal fuel elements of any isotopic composition versus time after fabrication. The effects of mass, geometry, shield composition and thickness, and time of operator exposure may be factored into the programme and the total operator radiation exposure predicted. The second stage was to compare the calculated exposures with measured radiation exposures during the fabrication of plutonium metal and oxide fuel elements containing 10, 30 and 50% of the higher plutonium isotopes. The fabrication of 2-kg batches of plutonium was accomplished unshielded gloveboxes with lightly leaded gloves. Glove-hand contact with the plutonium was avoided, and the operator time spent at the glovebox face was limited. The weekly exposure of each operator to

  16. Irradiation fuel for high converter reactor and neutron irradiation method for high converter reactor

    International Nuclear Information System (INIS)

    The present invention provides fuels capable of simulating irradiation of fuels for a high conversion reactor and an irradiation method of fuels for the high conversion reactor. Namely, fuel pins to be irradiated are disposed to the central portion of a fuel assembly. The fuels of the fuel assembly surrounding the central portion comprise driver fuels which generate neutral energy spectra higher than neutron energy spectra generated by other fuel assemblies. With such a constitution, fuels capable of simulating the state of a reactor core of a high conversion reactor can be provided by a portion of a reactor core in a thermal neutron reactor. In addition, the driver fuels comprise plutonium mixed oxide fuels. With such a constitution, the plutonium enrichment degree can be increased at the periphery of the driver fuels. Neutrons of the high neutron energy spectra generated by the driver fuels at high plutonium enrichment degree are irradiated to the fuels to be irradiated. As a result, fuels capable of simulating the state of a reactor core of a high converter reactor can be provided. (I.S.)

  17. Theoretical analysis of nuclear reactors (Phase I), I-V, Part V, Determining the fine flux distribution

    International Nuclear Information System (INIS)

    Mono energetic neutron transport equation was solved by Carlson numerical method in cylindrical geometry. Sn code was developed for the digital computer ZUSE Z23. Neutron flux distribution was determined for the RA reactor cell by applying S4 approximation. Reactor cell was treated as D2O-U-D2O system. Time of iteration was 185 s

  18. High temperature resistant materials and structural ceramics for use in high temperature gas cooled reactors and fusion plants

    International Nuclear Information System (INIS)

    Irrespective of the systems and the status of the nuclear reactor development lines, the availability, qualification and development of materials are crucial. This paper concentrates on the requirements and the status of development of high temperature metallic and ceramic materials for core and heat transferring components in advanced HTR supplying process heat and for plasma exposed, high heat flux components in Tokamak fusion reactor types. (J.P.N.)

  19. Temporal variation of the neutron flux in the carousel facility of a TRIGA reactor

    International Nuclear Information System (INIS)

    In this work we focused on identifying quantitatively the temporal (time-dependent) variation of neutron flux in the carousel facility (CF) of TRIGA reactor at the 'Jozef Stefan' Institute (IJS) for core No. 176, set up in April 2002. The measurements are based on neutron detectors (ionisation chambers), which surround the graphite reflector of the reactor core. In principle, the variations of the neutron flux produce a systematic error in the results obtained by absolute or 'quasi' absolute measuring techniques (such as neutron activation analysis (NAA) by the k0-standardization method), which assume constant conditions during irradiation. The results of our study show that for typical irradiation of 20 hours in channels of the CF aligned in the direction of the ionisation chamber (safety channel) the time-dependent variation of the neutron flux is about 6-8%. In the k0 method, which we are using for routine work at the IJS, this variation introduced a systematic error in the results up to 4.6%, depending on the half-life of investigated radionuclide. (author)

  20. Improved collision probability method for thermal-neutron-flux calculation in a cylindrical reactor cell

    International Nuclear Information System (INIS)

    An improved collision probability method for thermal-neutron-flux calculation in a cylindrical reactor cell has been developed. Expanding the neutron flux and source into a series of even powers of the radius, one' gets a convenient method for integration of the one-energy group integral transport equation. It is shown that it is possible to perform an analytical integration in the x-y plane in one variable and to use the effective Gaussian integration over another one. Choosing a convenient distribution of space points in fuel and moderator the transport matrix calculation and cell reaction rate integration were condensed. On the basis of the proposed method, the computer program DISKRET for the ZUSE-Z 23 K computer has been written. The suitability of the proposed method for the calculation of the thermal-neutron-flux distribution in a reactor cell can be seen from the test results obtained. Compared with the other collision probability methods, the proposed treatment excels with a mathematical simplicity and a faster convergence. (author)

  1. Modifications in the LEOPARD code in the calculation of the neutron flux in pressurized water reactors

    International Nuclear Information System (INIS)

    Three papers are brought together as a result of collaboration between the Nuclear Engineering Program of COPPE-UFRJ (Coordination of Engineering Post graduate Programs of the Federal University of Rio de Janeiro) and the Division of Nuclear Studies of the Department of Thermal generation of FURNAS S.A. aiming at the analysis of the neutronic behavior of PWR power reactors' core. Modifications were introduced in the methods of calculation utilized by the LEOPARD code. The results presented in the first two papers refer to the calculation of neutron flux in the homogenized reactor, only the dependence on energy being considered. Physical models and mathematical approximations are utilized as an alternative to those conventionally used in the code for the calculation of thermal and non-thermal flux. Some parameters, such as the average thermal cross sections of some elements showed to be sensible to the modifications introduced, and indicate that it is useful to carry on the study. In the third paper, comments are made on the MND (Mixed Number Density) method of effectuating the thermal average of the diffusion coefficient and of the absorption cross section, for application in the diffusion equation and consequent determination of flux in function of the spacial position. (I.C.R.)

  2. An experimental study of external reactor vessel cooling strategy on the critical heat flux using the graphene oxide nano-fluid

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. D.; Lee, S. W.; Kang, S.; Kim, S. M.; Seo, H.; Bang, I. C. [Ulsan National Inst. of Science and Technology UNIST, 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulasn Metropolitan City 689-798 (Korea, Republic of)

    2012-07-01

    External reactor vessel cooling (ERVC) for in-vessel retention (IVR) of corium as a key severe accident management strategy can be achieved by flooding the reactor cavity during a severe accident. In this accident mitigation strategy, the decay heat removal capability depends on whether the imposed heat flux exceeds critical heat flux (CHF). To provide sufficient cooling for high-power reactors such as APR1400, there have been some R and D efforts to use the reactor vessel with micro-porous coating and nano-fluids boiling-induced coating. The dispersion stability of graphene-oxide nano-fluid in the chemical conditions of flooding water that includes boric acid, lithium hydroxide (LiOH) and tri-sodium phosphate (TSP) was checked in terms of surface charge or zeta potential before the CHF experiments. Results showed that graphene-oxide nano-fluids were very stable under ERVC environment. The critical heat flux (CHF) on the reactor vessel external wall was measured using the small scale two-dimensional slide test section. The radius of the curvature is 0.1 m. The dimension of each part in the facility simulated the APR-1400. The heater was designed to produce the different heat flux. The magnitude of heat flux follows the one of the APR-1400 when the severe accident occurred. All tests were conducted under inlet subcooling 10 K. Graphene-oxide nano-fluids (concentration: 10 -4 V%) enhanced CHF limits up to about 20% at mass flux 50 kg/m{sup 2}s and 100 kg/m{sup 2}s in comparison with the results of the distilled water at same test condition. (authors)

  3. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  4. Use of higher order signal moments and high speed digital sampling technique for neutron flux measurement

    International Nuclear Information System (INIS)

    The second (conventional variance or Campbell signal) , , , the third , and the modified fourth order - 3*2 etc. central signal moments associated with the amplified (K) and filtered currents [i1, i2, x = K * (i2-2>),] from two electrodes of an ex-core neutron sensitive fission detector have been measured versus the reactor power of the 1 MW TRIGA reactor in Mexico City. Two channels of a high speed (400 kHz) multiplexing data sampler and A/D converter with 12 bit resolution and one megawords buffer memory were used. The data were further retrieved into a PC and estimates for auto- and cross-correlation moments up to the fifth order, coherence (/√), skewness (/(√/)3), excess (/2 - 3) etc. quantities were calculated off-line. A five mode operation of the detector was achieved including the conventional counting rates and currents in agreement with the theory and the authors previous results with analogue techniques. The signals were proportional to the neutron flux and reactor power in some flux ranges. The suppression of background noise is improved and the lower limit of the measurement range is extended as the order of moment is increased, in agreement with the theory. On the other hand the statistical uncertainty is increased. At increasing flux levels it was statistically more difficult to obtain flux estimates based on the higher order (≥3) moments

  5. Development of high intensity source of thermal positrons APosS (Argonne Positron Source)

    International Nuclear Information System (INIS)

    We present an update on the positron-facility development at Argonne National Laboratory. We will discuss advantages of using low-energy electron accelerator, present our latest results on slow positron production simulations, and plans for further development of the facility. We have installed a new converter/moderator assembly that is appropriate for our electron energy that allows increasing the yield about an order of magnitude. We have simulated the relative yields of thermalized positrons as a function of incident positron energy on the moderator. We use these data to calculate positron yields that we compare with our experimental data as well as with available literature data. We will discuss the new design of the next generation positron front end utilization of reflection moderator geometry. We also will discuss planned accelerator upgrades and their impact on APosS.

  6. Nodal equivalence theory for hexagonal geometry, thermal reactor analysis

    International Nuclear Information System (INIS)

    An important aspect of advanced nodal methods is the determination of equivalent few-group parameters for the relatively large homogenized regions used in the nodal flux solution. The theoretical foundation for light water reactor (LWR) assembly homogenization methods has been clearly established, and during the last several years, its successes have secured its position in the stable of dependable LWR analysis methods. Groupwise discontinuity factors that correct for assembly homogenization errors are routinely generated along with the group constants during lattice physics analysis. During the last several years, there has been interest in applying equivalence theory to other reactor types and other geometries. A notable effort has been the work at Argonne National Laboratory to incorporate nodal equivalence theory (NET) for hexagonal lattices into the nodal diffusion option of the DIF3D code. This work was originally intended to improve the neutronics methods used for the analysis of the Experimental Breeder Reactor II (EBR-II), and Ref. 4 discusses the success of that application. More recently, however, attempts were made to apply NET to advanced, thermal reactor designs such as the modular high-temperature gas reactor (MHTGR) and the new production heavy water reactor (NPR/HWR). The same methods that were successful for EBR-II have encountered problems for these reactors. Our preliminary analysis indicates that the sharp global flux gradients in these cores requires large discontinuity factors (greater than 4 or 5) to reproduce the reference solution. This disrupts the convergence of the iterative methods used to solve for the node-wise flux moments and partial currents. Several attempts to remedy the problem have been made over the last few years, including bounding the discontinuity factors and providing improved initial guesses for the flux solution, but nothing has been satisfactory

  7. Investigating the use of nanofluids to improve high heat flux cooling systems

    OpenAIRE

    Barrett, T R; Robinson, S.; Flinders, K; Sergis, A; Hardalupas, Y.

    2013-01-01

    The thermal performance of high heat flux components in a fusion reactor could be enhanced significantly by the use of nanofluid coolants, suspensions of a liquid with low concentrations of solid nanoparticles. However, before they are considered viable for fusion, the long-term behaviour of nanofluids must be investigated. This paper reports an experiment which is being prepared to provide data on nanofluid stability, settling and erosion in a HyperVapotron device. Procedures are demonstrate...

  8. Evaluation of the Initial Isothermal Physics Measurements at the Fast Flux Test Facility, a Prototypic Liquid Metal Fast Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2010-03-01

    The Fast Flux Test Facility (FFTF) was a 400-MWt, sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission reactor plant designed for the irradiation testing of nuclear reactor fuels and materials for the development of liquid metal fast breeder reactors (LMFBRs). The FFTF was fueled with plutonium-uranium mixed oxide (MOX) and reflected by Inconel-600. Westinghouse Hanford Company operated the FFTF as part of the Hanford Engineering Development Laboratory (HEDL) for the U.S. Department of Energy on the Hanford Site near Richland, Washington. Although the FFTF was a testing facility not specifically designed to breed fuel or produce electricity, it did provide valuable information for LMFBR projects and base technology programs in the areas of plant system and component design, component fabrication, prototype testing, and site construction. The major objectives of the FFTF were to provide a strong, disciplined engineering base for the LMFBR program, provide fast flux testing for other U.S. programs, and contribute to the development of a viable self-sustaining competitive U.S. LMFBR industry. During its ten years of operation, the FFTF acted as a national research facility to test advanced nuclear fuels, materials, components, systems, nuclear power plant operating and maintenance procedures, and active and passive reactor safety technologies; it also produced a large number of isotopes for medical and industrial users, generated tritium for the U.S. fusion research program, and participated in cooperative, international research work. Prior to the implementation of the reactor characterization program, a series of isothermal physics measurements were performed; this acceptance testing program consisted of a series of control rod worths, critical rod positions, subcriticality measurements, maximum reactivity addition rates, shutdown margins, excess reactivity, and isothermal temperature coefficient reactivity. The results of these

  9. Development of a neutron tomography system using a low flux reactor

    Science.gov (United States)

    Hungler, P. C.; Bennett, L. G. I.; Lewis, W. J.; Bevan, G. A.; Gabov, A.

    2011-09-01

    A neutron tomography instrument was designed and developed at the Royal Military College (RMC) of Canada with Queen's University to enhance these institutions' non-destructive evaluation capabilities. The neutron imaging system was built around a Safe Low-Power C(K)ritical Experiment (SLOWPOKE-2) nuclear research reactor. The low power and physical geometry of the reactor required that a novel design be developed to facilitate tomography. A unique rotisserie style rotary stage and clamping apparatus was developed. Furthermore, the low flux at the image plane (3×10 4 n cm -2 s -1), necessitated that the image acquisition and reconstruction processes be optimized. Tomographs of numerous samples were obtained using the new tomography instrument at RMC.

  10. Development of a neutron tomography system using a low flux reactor

    International Nuclear Information System (INIS)

    A neutron tomography instrument was designed and developed at the Royal Military College (RMC) of Canada with Queen's University to enhance these institutions' non-destructive evaluation capabilities. The neutron imaging system was built around a Safe Low-Power C(K)ritical Experiment (SLOWPOKE-2) nuclear research reactor. The low power and physical geometry of the reactor required that a novel design be developed to facilitate tomography. A unique rotisserie style rotary stage and clamping apparatus was developed. Furthermore, the low flux at the image plane (3x104 n cm-2 s-1), necessitated that the image acquisition and reconstruction processes be optimized. Tomographs of numerous samples were obtained using the new tomography instrument at RMC.

  11. Power and neutron flux calculation for the PUSPATI TRIGA Reactor using MCNP

    International Nuclear Information System (INIS)

    The Malaysian 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the calculation of neutron flux and power distribution in PUSPATI TRIGA REACTOR (RTP) 14th core configuration. The 3-D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA core and fuels. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data as well as S (α, β) thermal neutron scattering functions distributed with the MCNP code were used. Results of calculations are analyzed and discussed. (author)

  12. Calculation of neutron fluxes in biological shield of the TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    The complete calculation of neutron fluxes in biological shield and verification with experimental results is presented. Calculated results are obtained with TORT code (TORT-Three Dimensional Oak Ridge Discrete Ordinates Neutron/Photon Transport Code). Experimental results used for comparison are available from irradiation experiment with selected type of concrete and other materials in irradiation channel 4 in TRIGA Mark II reactor. These experimental results were used as a benchmark. Homogeneous type of problem (without inserted irradiation channel) and problem with asymmetry (inserted beam port 4, filled with different materials) were of interest for neutron flux calculation. Deviation from material data set up as original parameters is also considered (first of all presence of water in concrete and density of concrete) for type of concrete in biological shield and for selected type of concrete in irradiation channel. BUGLE-96 (47 neutron energy groups) library is used. Excellent agreement between calculated and experimental results for reaction rate is received.(author)

  13. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Sarmani, S.B. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia); Radir, M.H. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, 43000 Kajang, Selangor (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, National University of Malaysia (UKM), 43600 Bangi, Selangor (Malaysia)

    2011-05-15

    Determination of thermal to fast neutron flux ratio (f{sub fast}) and fast neutron flux ({phi}{sub fast}) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f{sub fast} and subsequently {phi}{sub fast} were determined using the absolute method. The f{sub fast} ranged from 48 to 155, and the {phi}{sub fast} was found in the range 1.03x10{sup 10}-4.89x10{sup 10} n cm{sup -2} s{sup -1}. These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  14. Determination of the Neutron Flux in the Reactor Zones with the Strong Neutron Absorption and Leakage

    International Nuclear Information System (INIS)

    The procedures for the numerical and experimental determination of the neutron flux in the zones with the strong neutron absorption and leakage are described in this paper. Numerical procedure is based on the application of the SCALE-4.4a code system where the Dancoff factors are determined by the VEGA2DAN code. Two main parts of the experimental methodology are measurement of the activity of irradiated foils and determination of the averaged neutron absorption cross-section in the foils by the SCALE-4.4a calculation procedure. The proposed procedures have been applied for the determination of the neutron flux in the internal neutron converter used with the RB reactor core configuration number 114. (author)

  15. Characterization of the neutron flux gradients in typical irradiation channels of a TRIGA Mark II reactor

    International Nuclear Information System (INIS)

    The neutron distribution in a defined volume (gradient) for different matrices (air, water, cellulose, biological material and silicon dioxide) in two typical irradiation channels (pneumatic tube (PT) and IC40-channel in the carousel facility) in the TRIGA Mark II reactor at the Jozef Stefan Institute (IJS) was studied. Experiment was based on inserting Fe wires (flux monitors) into the chosen matrices. The wires were cut into small pieces after irradiation and the induced activities of 59Fe measured. The results showed that for the studied geometry the average spatial thermal neutron flux inhomogeneities (for five studied matrices) are about 2.3% in the PT-channel and about 2.9% in the IC40-channel. (author)

  16. High βp bootstrap tokamak reactor

    International Nuclear Information System (INIS)

    Basic characteristics of a steady state tokamak fusion reactor is presented. The minimum required energy multiplication factor Q is found to be 20 to 30 for the feasibility of the fusion reactor. Such a high Q steady state tokamak operation is possible, within our present knowledge of the operational constraints and the current drive physics, when a large fraction of the plasma current is carried by the bootstrap current. Operation at high βp (≥2.0) and high qψ (=4-5) with relatively small εβp (3) and fusion output power (2.5 GW) and is consistent with the present knowledges of the plasma physics of the tokamak, namely the Troyon limit, the energy confinement scalings, the bootstrap current, the current drive efficiency (NB current drive with the total power of 70 MW and the beam energy of 1 MeV) with a favorable aspect on the formation of the cold and dense diverter plasma-condition. From the economical aspect of the tokamak fusion reactor, a more compact reactor is favorable. The use of the high field magnet with Bmax = 16T (for example Ti-doped Nb3Sn conductor) enables to reduce the total machine size to 50% of the above-described conventional design, namely Rp = 7m, Vp = 760m-3, PF = 2.8 GW. (author)

  17. Technical aspects of high converter reactors

    International Nuclear Information System (INIS)

    The meeting provided an opportunity to review and discuss national R and D programs, various technical aspects of and worldwide progress in the implementation of high conversion reactors. The meeting was attended by 66 participants from 18 countries and 2 international organizations. 33 papers were presented. A separate abstract was prepared for each of these papers. Refs, figs, tabs, slides and diagram

  18. Experimental results of angular neutron flux spectra leaking from slabs of fusion reactor candidate materials, (1)

    International Nuclear Information System (INIS)

    This report summarizes experimental data of angular neutron flux spectra measured on the slab assemblies of fusion reactor candidate materials using the neutron time-of-flight (TOF) method. These experiments have been performed for graphite (carbon), beryllium and lithium-oxide. The obtained data are very suitable for the benchmark tests to check the nuclear data and calculational code systems. For use of that purpose, the experimental conditions, definitions of key terms and results obtained are compiled in figures and numerical tables. (author)

  19. Measurement and calculation of spatial and energetic neutron flux in the IEA-R1 reactor core

    International Nuclear Information System (INIS)

    This work presents spatial and energetic flux distribution measured in the IEA-R1 reactor core. The thermal neutron flux was measured by gold activation foils (bare and covered with cadmium) in the fuel element number 108 (reaction: 197Au(n,γ)198Au) at 451W overall reactor power. The fast neutron flux was measured by indium activation foils (reaction: 115In(n,n')115mIn) in the fuel elements number 94 at 4510W overall reactor power. The neutron energy spectrum was adjusted by SAND II code with the data produced by the irradiation of seven activation detectors in the fuel element number 94 at 4510 W overall reactor power. The following reactions were used: 58Fe(n,γ)59Fe, 232Th(n,γ)233Th, 197Au(n,γ)198Au, 59Co(n,γ)60Co, 54Fe(n,p)54Mn, 24Mg(n,p)24Na,47Ti(n,p)47Sc, 48Ti(n,p)48Sc and 115In(n,n')115mIn. The experimental results compared to those obtained by CITATION (spatial distribution flux) and HAMMER (energetic distribution flux) code, showed good agreement. The results presented in this work are a good contribution for a better knowledge of spatial and energetic neutron flux distribution in the IEA-R1 reactor core, besides that the experimental procedure is easily applicable to another situations. (autor)

  20. Reduced enrichment neutronic study on high power research reactor

    International Nuclear Information System (INIS)

    The FG2DB two dimensional two group diffusion/burnup code and the CELL few group cell parameter code with 69 groups neutron cross section database have been used for reduced enrichment neutronic study on high power research reactor with LEU fuel elements of uranium density 3.6-7.2 g/cm3 and cladding thickness 0.38-0.56 mm. Results show the equivalence of fuel meat uranium density on the thickness changing. Control rod worth and other operation safety parameters of core are acceptable. Parts of the results have been fitted to linear or quadratic expression for easy application. The minimum critical value, excess reactivity, cycle length, fast and thermal fluxes and integrated fluxes, etc. are given. Analysis of these parameters shows that with the U-235 content increased by 20% or more, the LEU core main physical characteristics are similar to those of the HEU core; reduced enrichment almost has no influence on the fast neutron flux; the decreasing rate of the thermal neutron fluxes proportional approximately to the increasing rate of the U-235 content in fuel element; because of the cycle length prolonging, common radioisotope production and fuel element irradiation testing are apparently not influenced. (author)

  1. Response of actinides to flux changes in high-flux systems

    International Nuclear Information System (INIS)

    When discussing the transmutation of actinides in accelerator-based transmutation of waste (ATW) systems, there has been some concern about the dynamics of the actinides under high transient fluxes. For a pure neptunium feed, it has been estimated that the 238Np/237Np ratio increase due to an increasing flux may lead to an unstable, positive reactivity growth. In this analysis, a perturbation method is used to calculate the response of the entire set of actinides in a general way that allows for more species than just neptunium. The time response of the system can be calculated; i.e., a plot of fuel composition and reactivity versus time after a change in flux can be made. The effects of fission products can also be included. The procedure is extremely accurate on short time scales (∼ 1000 s) for the flux levels we contemplate. Calculational results indicate that the reactivity insertions are always smaller than previously estimated

  2. Thermal hydraulic studies of high temperature reactors

    International Nuclear Information System (INIS)

    The development of High Temperature Nuclear Reactors capable of supplying process heat at a temperature around 1273 K, is in Progress at BARC. These nuclear reactors are being developed with the objective of providing energy to facilitate combined production of hydrogen, electricity, and drinking water. The reject and waste heat in the overall energy scheme are utilised for electricity generation and desalination, respectively. Presently, technology development for a small power (100 kWth) Compact High Temperature Reactor (CHTR) capable of supplying high temperature process heat at 1273 K is being carried out. In addition conceptual details of a 10 MWth reactor supplying heat at 1273 K for commercial hydrogen production, are also being worked out. 3D CFD analysis of the CHTR reactor core has been carried out to estimate the core heat removal capability by natural circulation during normal operating conditions. PHOENICS, a generalized CFD code is used for the analysis. The full-scale core, including fuel tube, coolant channel, plenums, down comer, heat sink, moderator and reflector has been modeled and analysed in PHOENICS. Steady state analysis is carried out to find flow distribution in the coolant circuit and temperature distribution in the whole core. Analyses have also been carried out to simulate various operational transients and accidental conditions of the reactor. This paper deals with the detailed CFD analysis. The details on the selection of the appropriate turbulence model, turbulent Prandtl number and mesh distribution for the CFD analysis are described in the paper. The results of the steady state and transient analyses are also presented in the paper. Paper shows one of the results of 3D CFD analysis for CHTR core. This paper also deals with the core thermal hydraulic analysis of the conceptual design of the 10MWth High Temperature Pebble Bed Reactor. Preliminary thermal hydraulic analysis is carried out with FLiBe as the primary coolants. The

  3. Design study of high breeding fast reactor

    International Nuclear Information System (INIS)

    Aiming to increase fuel breeding capability as the most essential feature of fast breeders, an idea of the FP gas purge/tube-in-shell type metallic fuel assembly is proposed. It makes volume fraction of fuel high as more than 50% and realizes a very hard neutron spectrum in the core. The structure of the fuel assembly, its fabrication and the FP gas purging mechanism were assessed and it is clarified that the new concept of the fuel assembly is engineeringly feasible. FP gas purging does not affect shielding structure and can be managed by a small scale cover-gas treatment system because of good trapping characteristics of bonding sodium in the assembly as expected. The fuel handling system without forced cooling is possible. Other reactor components such as IHX were also evaluated. Thus, a concept of the total reactor system of a fast breeding reactor of 670 MWe with the ultra-high breeding ratio of 1.84 and the short reactor doubling time of 6.7 years was obtained. (author)

  4. Neutron flux characterisation of the Pavia TRIGA Mark II research reactor for radiobiological and microdosimetric applications.

    Science.gov (United States)

    Alloni, D; Prata, M; Salvini, A; Ottolenghi, A

    2015-09-01

    Nowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies. Experimental data on neutron fluxes have been collected analysing and measuring the gamma activity induced in thin target foils of different materials irradiated in different TRIGA experimental channels. The data on the induced gamma activities have been processed with the SAND II deconvolution code and finally compared with the spectra obtained with Monte Carlo simulations. The comparison between simulated and measured spectra showed a good agreement allowing a more precise characterisation of the neutron spectra and a validation of the adopted method. PMID:25958412

  5. Neutron flux characterisation of the Pavia Triga Mark II research reactor for radiobiological and microdosimetric applications

    International Nuclear Information System (INIS)

    Nowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies. Experimental data on neutron fluxes have been collected analysing and measuring the gamma activity induced in thin target foils of different materials irradiated in different TRIGA experimental channels. The data on the induced gamma activities have been processed with the SAND II deconvolution code and finally compared with the spectra obtained with Monte Carlo simulations. The comparison between simulated and measured spectra showed a good agreement allowing a more precise characterisation of the neutron spectra and a validation of the adopted method. (authors)

  6. Examples of utilizing high flux, high dose irradiation in activation analysis

    International Nuclear Information System (INIS)

    The science group of Kanazawa University has carried out the analysis of the main trace elements in meteorites and geochemically interesting rocks and minerals by the activation process using reactor neutrons, 14 MeV neutrons and 30 - 100 MeV bremsstrahlung. Also it has taken part in the international joint analysis of geochemical standard rock samples. As for a number of the samples among those, the high flux, high dose irradiation in the KUR core and the JMTR has been required, and the many objectives of activation analysis can be attained easily. In this report, why and in what case is the irradiation like this necessary is shown by examples. The meaning of activation analysis includes both the case of the assay of formed radionuclides and the case of the assay of rare gas isotopes by mass analysis among the cases of formed nuclides being stable. In most of the case of activation analysis, the assay of formed radionuclides is carried out by gamma ray spectrometry using (n, gamma) reaction, and high flux, high dose irradiation is required by specific reasons. In the analysis of trace elements by rare gas-forming nuclides, 40Ar/39Ar method in K-Ar age measurement is a well known example. Those examples are shown. (K.I.)

  7. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    International Nuclear Information System (INIS)

    The use of internally and externally cooled annular fuel rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and economic assessment. The investigation was conducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperature. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasibility issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density

  8. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  9. Calculation of neutron fluxes and radioactivities in and around the Tokai-1 reactor pressure vessel

    International Nuclear Information System (INIS)

    This paper describes work that has been performed by NNC Ltd and Fuji Electric for the study of decommissioning of Tokai power station (Tokai-1). The objective was for NNC to provide an independent validation of representative selection of the existing Fuji Electric calculations the results of which were obtained by the methods generally used in Japan based on the discrete ordinate code DOT 3.5, in estimating full power neutron fluxes and reaction rates in components located within the reactor biological shield of the Tokai 1 reactor. The calculational methods and modelling assumptions are described for the four regions in which fluxes and reaction rates were required, namely in regions above the core, regions to the side of the core, regions below the core and regions in the concrete walls of the bio shield gas duct penetrations. NNC has considerable experience in performing similar analyses for UK reactors and the methodology and computer codes employed here are based on experience gained in carrying out such work for AGR, PWR and Magnox reactor types. Thus, much of the component modelling has been achieved using the Monte Carlo code MCBEND supplemented, in the case of the gas duct penetrations, by the iterative kernel albedo code MULTISORD. Above, below and to the side of the core, results were obtained in some detail in nearly all of the structural components. In the case of the bioshild concrete, results were obtained in many regions at various depths and axial heights. Along the gas ducts, results were calculated at the concrete wall surfaces of the penetrations to the point where the total flux had reduced to a level of 103 n/cm2/s, this being the level at which the induced concrete activity can be regarded as negligible. Preliminary calculations were carried out using the duct streaming code MULTISORD in order to establish the approximate location where flux levels dropped to this level. MCBEND was then used to model the geometry in detail up to this point

  10. Neutron flux parameters for k{sub 0}-NAA method at the Malaysian nuclear agency research reactor after core reconfiguration

    Energy Technology Data Exchange (ETDEWEB)

    Yavar, A.R. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Sarmani, S. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Wood, A.K. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Fadzil, S.M. [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia); Masood, Z. [Analytical Chemistry Application Group, Industrial Technology Division, Malaysian Nuclear Agency (MNA), Bangi, Kajang, Selangor 43000 (Malaysia); Khoo, K.S., E-mail: khoo@ukm.m [School of Applied Physics, Faculty of Science and Technology, University Kebangsaan Malaysia (UKM), Bangi, Selangor 43600 (Malaysia)

    2011-02-15

    The Malaysian Nuclear Agency (MNA) research reactor, commissioned in 1982, is a TRIGA Mark II swimming pool type reactor. When the core configuration changed in June 2009, it became essential to re-determine such neutron flux parameters as thermal to epithermal neutron flux ratio (f), epithermal neutron flux shape factor ({alpha}), thermal neutron flux ({phi}{sub th}) and epithermal neutron flux ({phi}{sub epi}) in the irradiation positions of MNA research reactor in order to guarantee accuracy in the application of k{sub 0}-neutron activation analysis (k{sub 0}-NAA).The f and {alpha} were determined using the bare bi-isotopic monitor and bare triple monitor methods, respectively; Au and Zr monitors were utilized in present study. The results for four irradiation positions are presented and discussed in the present work. The calculated values of f and {alpha} ranged from 33.49 to 47.33 and -0.07 to -0.14, respectively. The {phi}{sub th} and the {phi}{sub epi} were measured as 2.03 x 10{sup 12} (cm{sup -2} s{sup -1}) and 6.05 x 10{sup 10} (cm{sup -2} s{sup -1}) respectively. These results were compared to those of previous studies at this reactor as well as to those of reactors in other countries. The results indicate a good conformity with other findings.

  11. High-Order Homogenization Method in Diffusion Theory for Reactor Core Simulation and Design Calculation

    International Nuclear Information System (INIS)

    Most modern nodal methods in use by the reactor vendors and utilities are based on the generalized equivalence theory (GET) that uses homogenized cross sections and flux discontinuity factors. These homogenized parameters, referred to as infinite medium parameters, are precomputed by performing single bundle fine-mesh calculations with zero current boundary conditions. It is known that for configurations in which the node-to-node leakage (e.g., surface current-to-flux ratio) is large the use of the infinite medium parameters could lead to large errors in the nodal solution. This would be the case for highly heterogeneous core configurations, typical of modern reactor core designs

  12. High-Order Homogenization Method in Diffusion Theory for Reactor Core Simulation and Design Calculation

    Energy Technology Data Exchange (ETDEWEB)

    Farzad Rahnema

    2003-09-30

    Most modern nodal methods in use by the reactor vendors and utilities are based on the generalized equivalence theory (GET) that uses homogenized cross sections and flux discontinuity factors. These homogenized parameters, referred to as infinite medium parameters, are precomputed by performing single bundle fine-mesh calculations with zero current boundary conditions. It is known that for configurations in which the node-to-node leakage (e.g., surface current-to-flux ratio) is large the use of the infinite medium parameters could lead to large errors in the nodal solution. This would be the case for highly heterogeneous core configurations, typical of modern reactor core designs.

  13. Spatial fluxes and energy distributions of reactor fast neutrons in two types of heat resistant concretes

    International Nuclear Information System (INIS)

    Measurements have been carried out to study the spatial fluxes and energy distributions of reactor fast neutrons transmitted through two types of heat resistant concretes, serpentine concrete and magnetic lemonite concrete. The physical, chemical and mechanical properties of these concretes were checked by well known techniques. In addition, the effect of heating at temperatures up to 500deg C on the crystaline water content was checked by the method of differential thermal analysis. Measurements were performed using a collimated beam of reactor neutrons emitted from a 10 MW research reactor. The neutron spectra transmitted through concrete barriers of different thickness were measured by a scintillation spectrometer with NE-213 liquid organic scintillator. Discrimination against undesired pulses due to gamma-rays was achieved by a method based on pulse shape discrimination technique. The operating principle of this technique is based on the comparison of two weighted time integrals of the detector signal. The measured pulse amplitude distribution was converted to neutron energy distribution by a computational code based on double differentiation technique. The spectrometer workability and the accuracy of the unfolding technique were checked by measuring the neutron spectra of neutrons from Pu-α-Be and 252Cf neutron sources. The obtained neutron spectra for the two concretes were used to derive the total cross sections for neutrons of different energies. (orig.)

  14. Miniaturized heat flux sensor for high enthalpy plasma flow characterization

    International Nuclear Information System (INIS)

    An improved miniaturized heat flux sensor is presented aiming at measuring extreme heat fluxes of plasma wind tunnel flows. The sensor concept is based on an in-depth thermocouple measurement with a miniaturized design and an advanced calibration approach. Moreover, a better spatial estimation of the heat flux profile along the flow cross section is realized with this improved small sensor design. Based on the linearity assumption, the heat flux is determined using the impulse response of the sensor relating the heat flux to the temperature of the embedded thermocouple. The non-integer system identification (NISI) procedure is applied that allows a calculation of the impulse response from transient calibration measurements with a known heat flux of a laser source. The results show that the new sensor leads to radially highly resolved heat flux measurement for a flow with only a few centimetres in diameter, the so far not understood non-symmetric heat flux profiles do not occur with the new sensor design. It is shown that this former effect is not a physical effect of the flow, but a drawback of the classical sensor design. (authors)

  15. Relation of middle molecules levels and oxidative stress to erythropoietin requirements in high-flux versus low-flux hemodialysis

    Directory of Open Access Journals (Sweden)

    Hala S El-Wakil

    2013-01-01

    Full Text Available The objective of this study is to investigate the serum beta-2-microglobulin (B2MG and advanced oxidation protein products (AOPP as middle molecule uremic toxins and protein carbonyl (PCO as oxidative stress marker in uremic patients undergoing high-flux versus low-flux hemodialysis (HD and to correlate their levels to the erythropoietin requirements for those patients. Twenty patients on chronic low-flux HD were recruited in the study. At the start of the study, all patients underwent high-flux HD for eight weeks, followed by low-flux HD for two weeks as a washout period. The patients were then subjected to another eight weeks of low-flux HD. Blood samples were obtained at the beginning and at the end of the high-flux period and the low-flux period. The mean erythropoietin dose for patients using high-flux HD was significantly lower than that for low-flux HD (P = 0.0062. Post-high flux, the B2MG and PCO levels were significantly lower than the pre-high-flux levels (P = 0.026 and 0.0005, respectively, but no significant change was observed in AOPP (P = 0.68. Post-low flux, the B2MG, AOPP and PCO were significantly higher than the pre-low-flux levels (P = 0.0002, 0.021 and <0.0001, respectively. Post-low flux, the B2MG and PCO were significantly higher than the post-high-flux levels (P <0.0001, but no significant difference was observed in AOPP (P = 0.11. High-flux HD results in reduction of some of the middle molecule toxins and PCO levels better than low-flux HD, and is associated with a better response to erythropoietin.

  16. High Torque Density Transverse Flux Machine without the Need to Use SMC Material for 3D Flux Paths

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2015-01-01

    This paper presents a new transverse flux permanent magnet machine. In a normal transverse flux machine, complicated 3-D flux paths often exist. Such 3-D flux paths would require the use of soft magnetic composites material instead of laminations for construction of the machine stator. In the new...... machine topology proposed in this paper, by advantageously utilizing the magnetic flux path provided by an additional rotor, use of laminations that allow 2-D flux paths only will be sufficient to accomplish the required 3-D flux paths. The machine also has a high torque density and is therefore an...

  17. Decision no. 2011-DC-0216 of the French nuclear safety authority from May 5, 2011, ordering the Laue Langevin Institute to proceed to a complementary safety evaluation of its basic nuclear facility (high flux reactor - INB no. 67) in the eyes of the Fukushima Daiichi nuclear power plant accident; Decision no. 2011-DC-0216 de l'Autorite de surete nucleaire du 5 mai 2011 prescrivant a l'Institut Laue Langevin (ILL) de proceder a une evaluation complementaire de la surete de son installation nucleaire de base (Reacteur a Haut Flux - INB n.67) au regard de l'accident survenu a la centrale nucleaire de Fukushima Daiichi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    As a consequence of the accident of the Fukushima Daiichi nuclear power plant (Japan), the French Prime Minister entrusted the French nuclear safety authority (ASN) with the mission to carry out a safety analysis re-evaluation of the French nuclear facilities, and in particular the nuclear power plants. A decision has been addressed by the ASN to each nuclear operator with the specifications of this safety re-evaluation analysis and the list of facilities in concern. This document is the decision addressed to the Laue Langevin Institute, operator of the high flux research reactor (RHF) of Grenoble (France). (J.S.)

  18. Critical heat flux predictions for the Sandia Annular Core Research Reactor

    International Nuclear Information System (INIS)

    This study provides best estimate predictions of the Critical Heat Flux (CHF) and the Critical Heat Flux Ratio (CHFR) to support the proposed upgrade of the Annual Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) from its present value of 2 MWt to 4 MWt. These predictions are based on the University of New Mexico (UNM) - CHF correlation, originally developed for uniformly heated vertical annuli. The UNM-CHF correlation is applicable to low-flow and low-pressure conditions, which are typical of those in the ACRR. The three hypotheses that examined the effect of the nonuniform axial heat flux distribution in the ACRR core are (1) the local conditions hypotheses, (2) the total power hypothesis, and (3) the global conditions hypothesis. These hypotheses, in conjunction with the UNM-CHF correlation, are used to estimate the CHF and CHFR in the ACRR. Because the total power hypothesis predictions of power per rod at CHF are approximately 15%-20% lower than those corresponding to saturation exit conditions, it can be concluded that the total power hypothesis considerably underestimates the CHF for nonuniformly heated geometries. This conclusion is in agreement with previous experimental results. The global conditions hypothesis, which is more conservative and more accurate of the other two, provides the most reliable predictions of CHF/CHFR for the ACRR. The global conditions hypothesis predictions of CHFR varied between 2.1 and 3.9, with the higher value corresponding to the lower water inlet temperature of 20 degrees C

  19. Speech by Ichiro Miyanaga, Executive Director, Japan Atomic Energy Research Institute at the 1984 international meeting on Reduced Enrichment for Research and Test Reactors, Argonne National Laboratory, October 17, 1984

    International Nuclear Information System (INIS)

    Full text: It is a great pleasure for me to extend my greetings and best wishes to all of you on this honorable occasion. I would like to take this opportunity to express my appreciation to Argonne National Laboratory for their continued support and cooperation through Joint Study with Japan Atomic Energy Research Institute as well as Kyoto University. Japan Atomic Energy Research Institute has been endeavoring to convert the present HEU fuels of research reactors to MEU fuels, as addressed by Prof. Kanda of Kyoto University in the first session of this meeting. For TRR-2 and JMTR, MEU cores are expected to attain their first criticality early the year 1986. Recognizing the final goal of RERTR program lies in using LEU fuels, we will soon start examinations and tests in JMTR for LEU fuel development according to the current feasibility study. The full core demonstration of JMTR with LEU silicide fuel would be expected in 1990. At the same time, Japan Atomic Energy Research Institute is engaged in-JRR-3M Construction Project. JRR-3M was originally designed to use MEU fuels. However, in consideration of recent progress in LEU fuel-technology, the design was changed to using LEU fuels. JRR-3M is scheduled to begin operation in 1989, which will be one of the first high performance research reactors with LEU fuels in the world. For implementing MEU and LEU Program, we have the so-called Five Agency Committee, the members of which are Science and Technology Agency, Ministry of Foreign Affairs, Ministry of Education, Science and Culture, and the direct implementors, Kyoto University and JAERI. The government members in this committee have played an important role for promoting the Program by review and consultation. Most concern we have now is about the stable supply of MEU for a necessary period and the reprocessing of LEU fuels which are the final goal in our reactors. For this reason, I would like to ask the U.S. Government to meet these requirements for us to perform

  20. Fast neutron reactions and fast neutron flux in the NRX reactor

    International Nuclear Information System (INIS)

    This report deals with fast neutron reactions and fast neutron flux in NRX. By fast neutrons it is meant those neutrons having an energy from ∼ 1 Mev to ∼ 25 Mev. The report is divided into three parts. In the first part measurements of (n,2n) cross sections in different irradiation positions of NRX are described. It is shown that from these experimental data, any (n,2n) cross section in NRX can be estimated. In the second part, measurements of the fast neutron flux in different irradiation positions of NRX are described. In the third part the values of the fast neutron flux found in Part II are used to estimate a variety of (n,p) and (n,a) cross sections in NRX. Fast neutron reactions in a reactor have been studied by many different workers. However, this report is not intended to give an exhaustive bibliography on fast neutron research; it will only refer the reader to a few publications where a great deal of information on fast neutron reactions as well as references to earlier work can be found, There is an excellent chapter on fast neutron research in the book of Hughes on Pile Neutron Research (Hughes 1953). A tabulation of the published measurements of threshold reactions for fission neutrons has appeared in Nucleonics (Rochlin 1959), Mellish et al. (1958) have discussed at length flux and cross section measurements with fast neutrons. The reader is also referred to recent work on this subject published in the Canadian Journal of Physics (Roy at el. 1958; Eastwood and Roy 1959; Roy 1959). (author)

  1. Split core experiments; Part I. Axial neutron flux distribution measurements in the reactor core with a central horizontal reflector

    International Nuclear Information System (INIS)

    A series of critical experiments were performed on the RB reactor in order to determine the thermal neutron flux increase in the central horizontal reflector formed by a split reactor core. The objectives of these experiments were to study the possibilities of improving the thermal neutron flux characteristics of the neutron beam in the horizontal beam tube of the RA research reactor. The construction of RA reactor enables to split the core in two, to form a central horizontal reflector in front of the beam tube. This is achieved by replacing 2% enriched uranium slugs in the fuel channel by dummy aluminium slugs. The purpose of the first series of experiments was to study the gain in thermal neutron component inside the horizontal reflector and the loss of reactivity as a function of the lattice pitch and central reflector thickness

  2. OECD high temperature reactor project Dragon

    International Nuclear Information System (INIS)

    Information is presented concerning the Dragon reactor support studies and fuel irradiation programs, HTGR and fuel graphite studies, primary circuit materials, reactor safety evaluation, and administration

  3. Filtration behavior of casein glycomacropeptide (CGMP) in an enzymatic membrane reactor: fouling control by membrane selection and threshold flux operation

    DEFF Research Database (Denmark)

    Luo, Jianquan; Morthensen, Sofie Thage; Meyer, Anne S.;

    2014-01-01

    . In this study, the filtration performance and fouling behavior during ultrafiltration (UF) of CGMP for the enzymatic production of 3′-sialyllactose were investigated. A 5kDa regenerated cellulose membrane with high anti-fouling performance, could retain CGMP well, permeate 3′-sialyllactose, and was found......Sialylated human milk oligosaccharides (HMOs) can be produced by enzymatic trans-sialidation using casein glycomacropeptide (CGMP) as the substrate. By performing the reaction in an enzymatic membrane reactor (EMR), simultaneous separation of the HMOs from CGMP and enzyme reuse can be achieved...... to be the most suitable membrane for this application. Low pH increased CGMP retention but produced more fouling. Higher agitation and lower CGMP concentration induced larger permeate flux and higher CGMP retention. Adsorption fouling and pore blocking by CGMP in/on membranes could be controlled by selecting...

  4. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  5. Calculation and comparisons with measurement of fast neutron fluxes in the material testing facilities of the NRU research reactor

    International Nuclear Information System (INIS)

    The NRU reactor at Chalk River provides three irradiation facilities to study the effects of fast neutrons (E> 1 MeV) on reactor materials for assessing material damage and deformation. The facilities comprise two types of fast neutron rods (Mark 4 and Mark 7), and a Material Test Bundle (MTB) irradiated in a loop site. This paper describes the neutronic simulation of these testing facilities using the WIMS-AECL and TRIAD codes, and comparisons with the fast neutron flux measurements using iron-wire activation techniques. It also provides comparisons of flux levels, neutron spectra, and size limitations of the experimental cavities between these test facilities. (author)

  6. Calculation and comparisons with measurement of fast neutron fluxes in the material testing facilities of the NRU research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Leung, T.C. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2012-07-01

    The NRU reactor at Chalk River provides three irradiation facilities to study the effects of fast neutrons (E> 1 MeV) on reactor materials for assessing material damage and deformation. The facilities comprise two types of fast neutron rods (Mark 4 and Mark 7), and a Material Test Bundle (MTB) irradiated in a loop site. This paper describes the neutronic simulation of these testing facilities using the WIMS-AECL and TRIAD codes, and comparisons with the fast neutron flux measurements using iron-wire activation techniques. It also provides comparisons of flux levels, neutron spectra, and size limitations of the experimental cavities between these test facilities. (author)

  7. Neutron flux measurements at the TRIGA reactor in Vienna for the prediction of the activation of the biological shield.

    Science.gov (United States)

    Merz, Stefan; Djuricic, Mile; Villa, Mario; Böck, Helmuth; Steinhauser, Georg

    2011-11-01

    The activation of the biological shield is an important process for waste management considerations of nuclear facilities. The final activity can be estimated by modeling using the neutron flux density rather than the radiometric approach of activity measurements. Measurement series at the TRIGA reactor Vienna reveal that the flux density next to the biological shield is in the order of 10(9)cm(-2)s(-1) at maximum power; but it is strongly influenced by reactor installations. The data allow the estimation of the final waste categorization of the concrete according to the Austrian legislation. PMID:21646026

  8. Flux flow and flux dynamics in high-T(sub c) superconductors

    Science.gov (United States)

    Bennett, L. H.; Turchinskaya, M.; Roytburd, A.; Swartzendruber, L. J.

    1990-01-01

    Because high temperature superconductors, including BYCO and BSCCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of, these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed.

  9. Spectrum and density of neutron flux in the irradiation beam line no. 3 of the IBR-2 reactor

    Science.gov (United States)

    Shabalin, E. P.; Verkhoglyadov, A. E.; Bulavin, M. V.; Rogov, A. D.; Kulagin, E. N.; Kulikov, S. A.

    2015-03-01

    Methodology and results of measuring the differential density of the neutron flux in irradiation beam line no. 3 of the IBR-2 reactor using neutron activation analysis (NAA) are presented in the paper. The results are compared to the calculation performed on the basis of the 3D MCNP model. The data that are obtained are required to determine the integrated radiation dose of the studied samples at various distances from the reactor.

  10. High temperature gas-cooled reactors - perspective of thermal reactor concept with high thermal efficiency

    International Nuclear Information System (INIS)

    The present HTR development is based worldwide on the extensive experience gained in the construction and operation of gas-cooled reactors of the Magnox type and on the successful operation of the experimental high temperature reactors Dragon, Peach Bottom and AVR. The advanced CO2-cooled reactors, as well as the HTR prototype power plants for St. Vrain and THTR, are all suffering considerable delays in construction and commissioning. The commercial HTR plants have not yet achieved the decisive breakthrough onto the market. Increasing interest is being shown in advanced HTR systems, i.e., HTR with gas turbine, HTR process heat reactors and gas-cooled fast breeders. The key problem in the coming years will be the closing of the fuel cycle. Development work in this connection has already started. (orig.)

  11. Theoretical and experimental study of collectrons for epithermal neutron flux in reactors

    International Nuclear Information System (INIS)

    A theoretical study of nuclear reactions and electric charge displacements arising in sensitivity to thermal and epithermal neutrons in collectrons allowed a computer code conception. Collectrons in Rhodium, Silver, Cobalt, Hafnium, Erbium, Gadolinium and Holmium have been tested in different radiation fields given by neutron or gamma filters irradiated in different places of Melusine and Siloe reactors. Some emitters were covered with different steel, nickel or zircaloy thicknesses. Theoretical and experimental results are consistent; that validate the computer code and show possibilities and necessity of covering collectron emitters to reduce or cancel the gamma sensitivity and to improve response instantaneity. A selective measurement of epithermal neutron flux can by this way, made by associating two types of collectrons

  12. Determination of the flux distribution in the void of the reactor cell by equivalent regions method

    International Nuclear Information System (INIS)

    Full text: This paper contains a study of flux distribution in the void of the reactor cell containing natural uranium rod ru=1.29 cm), channel around the fuel rod (r1=3.5 cm) and graphite moderator (rm=8.9 cm). The void is replaced by equivalent material having only neutron absorption cross section. A homogeneous neutron source is placed in this region, chosen to compensate the number of absorbed neutrons. Atoms of this region change neither the direction nor the energy of neutrons. Spherical harmonics method in P3 approximation was used for solving the problem. Equivalent region was divided into five zones having common absorption cross section 0.1 cm-1. A number of iterations were done to determine the neutron sources in each zone of the equivalent region in order to fulfill the condition of equal number of generated and absorbed neutrons in the unit volume with the minimum error

  13. Verification of MCNP simulation of neutron flux parameters at TRIGA MK II reactor of Malaysia.

    Science.gov (United States)

    Yavar, A R; Khalafi, H; Kasesaz, Y; Sarmani, S; Yahaya, R; Wood, A K; Khoo, K S

    2012-10-01

    A 3-D model for 1 MW TRIGA Mark II research reactor was simulated. Neutron flux parameters were calculated using MCNP-4C code and were compared with experimental results obtained by k(0)-INAA and absolute method. The average values of φ(th),φ(epi), and φ(fast) by MCNP code were (2.19±0.03)×10(12) cm(-2)s(-1), (1.26±0.02)×10(11) cm(-2)s(-1) and (3.33±0.02)×10(10) cm(-2)s(-1), respectively. These average values were consistent with the experimental results obtained by k(0)-INAA. The findings show a good agreement between MCNP code results and experimental results. PMID:22885391

  14. Summary of a workshop on high heat load x-ray optics held at Argonne National Laboratory

    International Nuclear Information System (INIS)

    A workshop on High Heat Load X-Ray Optics was held at Argonne National Laboratory on August 3-5, 1989. The workshop was cosponsored by the Advanced Photon Source and the European Synchrotron Radiation Facility and served as a satellite conference to SR189. The object of this workshop was to discuss recent advances in the art of cooling X-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed open-quote finite-elementclose quotes and open-quote finite-differenceclose quotes calculations comparing experiment with theory and extending theory to optimize performance

  15. Supervisory system to monitor the neutron flux of the IPR-R1 TRIGA research reactor at CDTN

    International Nuclear Information System (INIS)

    The IPR-R1 TRIGA Mark I nuclear research reactor at the Nuclear Technology Development Center - CDTN (Belo Horizonte) is a pool type reactor. It was designed for research, training and radioisotope production. The International Atomic Energy Agency- IAEA - recommends the use of friendly interfaces for monitoring and controlling the operational parameters of nuclear reactors. This paper reports the activities for implementing a supervisory system, using LabVIEW software, with the purpose to provide the IPR-R1 TRIGA research reactor with a modern, safe and reliable system to monitor the time evolution of the power of its core. The use of the LabVIEW will introduce modern techniques, based on electronic processor and visual interface in video monitor, substituting the mechanical strip chart recorders (ink-pen drive and paper) that monitor the current neutrons flux, which is proportional to the thermal power supplied by reactor core. The main objective of the system will be to follow the evolution of the neutronic flux originated in the Linear and Logarithmic channels. A great advantage of the supervisory software nowadays, in relation to computer programs currently used in the facility, is the existence of new resources such as the data transmission and graphical interfaces by net, grid lines display in the graphs, and resources for real time reactor core video recordings. The considered system could also in the future be optimized, not only for data acquisition, but also for the total control of IPR-R1 TRIGA reactor(author)

  16. Correlations of Nucleate Boiling Heat Transfer and Critical Heat Flux for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    Four types of steady-state boiling experiments were conducted to investigate the efficacy of two distinctly different heat transfer enhancement methods for external reactor vessel cooling under severe accident conditions. One method involved the use of a thin vessel coating and the other involved the use of an enhanced insulation structure. By comparing the results obtained in the four types of experiments, the separate and integral effect of vessel coating and insulation structure were determined. Correlation equations were obtained for the nucleate boiling heat transfer and the critical heat flux. It was found that both enhancement methods were quite effective. Depending on the angular location, the local critical heat flux could be enhanced by 1.4 to 2.5 times using vessel coating alone whereas it could be enhanced by 1.8 to 3.0 times using an enhanced insulation structure alone. When both vessel coating and insulation structure were used simultaneously, the integral effect on the enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods

  17. Magnetic Flux Compression Reactor Concepts for Spacecraft Propulsion and Power (MSFC Center Director's Discretionary Fund; Project No. 99-24). Part 1

    Science.gov (United States)

    Litchford, R. J.; Robertson, G. A.; Hawk, C. W.; Turner, M. W.; Koelfgen, S.; Litchford, Ron J. (Technical Monitor)

    2001-01-01

    This technical publication (TP) examines performance and design issues associated with magnetic flux compression reactor concepts for nuclear/chemical pulse propulsion and power. Assuming that low-yield microfusion detonations or chemical detonations using high-energy density matter can eventually be realized in practice, various magnetic flux compression concepts are conceivable. In particular, reactors in which a magnetic field would be compressed between an expanding detonation-driven plasma cloud and a stationary structure formed from a high-temperature superconductor are envisioned. Primary interest is accomplishing two important functions: (1) Collimation and reflection of a hot diamagnetic plasma for direct thrust production, and (2) electric power generation for fusion standoff drivers and/or dense plasma formation. In this TP, performance potential is examined, major technical uncertainties related to this concept accessed, and a simple performance model for a radial-mode reactor developed. Flux trapping effectiveness is analyzed using a skin layer methodology, which accounts for magnetic diffusion losses into the plasma armature and the stationary stator. The results of laboratory-scale experiments on magnetic diffusion in bulk-processed type II superconductors are also presented.

  18. Do you want to build such a machine? : Designing a high energy proton accelerator for Argonne National Laboratory

    International Nuclear Information System (INIS)

    Argonne National Laboratory's efforts toward researching, proposing and then building a high-energy proton accelerator have been discussed in a handful of studies. In the main, these have concentrated on the intense maneuvering amongst politicians, universities, government agencies, outside corporations, and laboratory officials to obtain (or block) approval and/or funds or to establish who would have control over budgets and research programs. These ''top-down'' studies are very important but they can also serve to divorce such proceedings from the individuals actually involved in the ground-level research which physically served to create theories, designs, machines, and experiments. This can lead to a skewed picture, on the one hand, of a lack of effect that so-called scientific and technological factors exert and, on the other hand, of the apparent separation of the so-called social or political from the concrete practice of doing physics. An exception to this approach can be found in the proceedings of a conference on ''History of the ZGS'' held at Argonne at the time of the Zero Gradient Synchrotron's decommissioning in 1979. These accounts insert the individuals quite literally as they are, for the most part, personal reminiscences of those who took part in these efforts on the ground level. As such, they are invaluable raw material for historical inquiry but generally lack the rigor and perspective expected in a finished historical work. The session on ''Constructing Cold War Physics'' at the 2002 annual History of Science Society Meeting served to highlight new approaches circulating towards history of science and technology in the post-WWII period, especially in the 1950s. There is new attention towards the effects of training large numbers of scientists and engineers as well as the caution not to equate ''national security'' with military preparedness, but rather more broadly--at certain points--with the explicit ''struggle for the hearts and minds of

  19. Thermal Energetic Reactor with High Reproduction of Fission Materials

    Directory of Open Access Journals (Sweden)

    Vladimir M. Kotov

    2012-01-01

    On the base of thermal reactors with high fission materials reproduction world atomic power engineering development supplying higher power and requiring smaller speed of raw uranium mining, than in the variant with fast reactors, is possible.

  20. Angle Software for Semiconductor Detector Gamma-Efficiency Calculations: Applicability to Reactor Neutron Flux Characterization

    International Nuclear Information System (INIS)

    ) flexibility with respect to input parameters and output data, including easy communication with another software and (6) suitability for didactical/training purposes. ANGLE frame is also convenient for accommodating other efficiency calculation methods of semi-empirical or absolute type, Monte Carlo for instance. In addition, it is a matter of little effort to extend its existing scope of applicability to further/particular user's needs and/or fields of interest (can be regarded as ''open-ended'' computer code). For reactor neutron flux characterization purposes, ANGLE applicability is related to flux monitor measurements. The emphasis is given to suitable metal foils and alloys which are being irradiated/ activated in characteristic reactor positions so as to give subsequently gamma spectrum information of flux density, shape, etc. (author)

  1. Comparison and performance analysis of the W-3 and EPRI correlations for critical heat flux in PWR reactors

    International Nuclear Information System (INIS)

    The present work presents a comparison between the W 3 and EPRI correlations for critical heat flux. Experimental data were used in order to verify the behavior of the above-mentioned correlations. The conclusions presented in this work allow a better definition of the correlations for the operating safety limits calculations of a PWR type reactor. (author)

  2. Neutron flux of 100kW in the irradiation terminals of the IPR-R1 Triga Reactor

    International Nuclear Information System (INIS)

    In this work, it was carried out a study of the neutron flux in the IPR-R1 TRIGA reactor irradiation facilities: rotary specimen rack (RSR), pneumatic transfer tube two (PTT2) and the central thimble (CT). The objective was to obtain the neutron flux profile on the RSR, which has forty irradiation positions, and also values for the thermal and epithermal neutron fluxes of some RSR positions and also of the PTT2 and of the CT facility. It was applied the neutron activation analysis of a reference material, Al-Au (0.1%) alloy. Irradiations were performed on 16 different dates. It was concluded that for the RSR, the average value of thermal and epithermal neutron fluxes depends on the vertical position of the reactor control rods. Neutron flux variations along the RSR form a characteristic profile, whose values depend on the location of the irradiation position in the reactor core and on the control rods vertical position. In the RSR, the obtained values of thermal and epithermal neutron flux were (8.1 +- 0.3) x 1011n.cm-2.s-1, and (3.4 +- 0.2)x1010 n.cm-2.s-1, respectively. For the PTT2 and the CT, the values for the epithermal neutron flux were respectively (3.3 +- 0.2) x 109n.cm-2.s-1 and (2.6 +- 0.1) x 1011n.cm-2.s-1. For these facilities, the thermal neutron flux was estimated, and the obtained values were (2.4 +- 0.2) x 1011 n.cm-2.s-1 and (2.8 +- 0.1)x1012n.cm-2.s-1 for the PTT2 and the CT, respectively. (author)

  3. ITER relevant high heat flux testing on plasma facing surfaces

    International Nuclear Information System (INIS)

    The current ITER design employs beryllium, carbon fiber reinforced composite and tungsten as plasma facing materials. Since these materials are exposed to high heat fluxes during the operation, it is essential to perform high heat flux for R and D of ITER components. Static heat loads corresponding to cycling loads during normal operation, are estimated to be up to 20 MW/m2 in the divertor targets and around 0.5 MW/m2 at the first wall in ITER. For the static high heat flux testing, tests in electron beam facilities, particle beam facilities, IR heater and in-pile tests have been performed. Another type, more critical heat loads, which have high power densities and short durations, corresponding to transient events, i.e. plasma disruption, vertical displacement events (VDEs) and edge localized modes (ELMs) deliver considerable heat flux onto the plasma facing materials. For this purpose, tests in electron beam (short pulses), plasma gun and high power laser facilities have been carried out. The present work summarizes the features of these facilities and recent experimental results as well as the current selection of ITER plasma facing components. (author)

  4. High quality flux control system for electron gun evaporation

    International Nuclear Information System (INIS)

    This paper reports on a high quality flux control system for electron gun evaporation developed and tested for the MBE growth of high temperature superconductors. The system can be applied to any electron gun without altering the electron gun itself. Essential elements of the system are a high bandwidth mass spectrometer, control electronics and a high voltage modulator to sweep the electron beam over the melt at high frequencies. the sweep amplitude of the electron beam is used to control the evaporation flux at high frequencies. The feedback loop of the system has a bandwidth of over 100 Hz, which makes it possible to grow superlattices and layered structures in a fast and precisely controlled manner

  5. Argonne Plasma Engineering Experiment (APEX) Tokamak

    International Nuclear Information System (INIS)

    The Argonne Plasma Engineering Experiment (APEX) Tokamak was designed to provide hot plasmas for reactor-relevant experiments with rf heating (current drive) and plasma wall experiments, principally in-situ low-Z wall coating and maintenance. The device, sized to produce energetic plasmas at minimum cost, is small (R = 51 cm, r = 15 cm) but capable of high currents (100 kA) and long pulse durations (100 ms). A design using an iron central core with no return legs, pure tension tapewound toroidal field coils, digital radial position control, and UHV vacuum technology was used. Diagnostics include monochrometers, x-ray detectors, and a microwave interferometer and radiometer for density and temperature measurements. Stable 100 ms shots were produced with electron temperatures in the range 500 to 1000 eV. Initial results included studies of thermal desorption and recoating of wall materials

  6. Experimental and MCNP5 based evaluation of neutron and gamma flux in the irradiation ports of the University of Utah research reactor

    Directory of Open Access Journals (Sweden)

    Noble Brooklyn

    2012-01-01

    Full Text Available Neutron and gamma flux environment of various irradiation ports in the University of Utah training, research, isotope production, general atomics reactor were experimentally assessed and fully modeled using the MCNP5 code. The experimental measurements were based on the cadmium ratio in the irradiation ports of the reactor, flux profiling using nickel wire, and gamma dose measurements using thermo luminescence dosimeter. Full 3-D MCNP5 reactor model was developed to obtain the neutron flux distributions of the entire reactor core and to compare it with the measured flux focusing at the irradiation ports. Integration of all these analysis provided the updated comprehensive neutron-gamma flux maps of the existing irradiation facilities of the University of Utah TRIGA reactor.

  7. High-flux, extended-pulse accelerators: Final report

    International Nuclear Information System (INIS)

    The purpose of the program was to investigate physical phenomena associated with high flux ion beam generation and to develop technology for intense ion beam accelerators with pulselengths in the ms range. At the time the work was initiated, the chief area of application for the technology was ion implantation and materials modification

  8. Use of different programs for calculating the flux density of neutrons activating sodium in the secondary circuit of a NPP with the BN-600 reactor

    International Nuclear Information System (INIS)

    Possibilities of application of the RADAR, TVK-2D and MMKFK program complexes to calculate the BN-600 type reactor shields are analyzed. TVK-2D program (ALGOL-DDR, BESM-6 computer) is designed for two-dimensional calculations of reactors in diffusion multigroup finite-difference approximation using classical and unified perturbation theory. The RADAR system (FORTRAN-4, BESM-6 computer) realizes Boltzmann equation solution by iterative synthesis method in multigroup diffusion approximation. The MMKFK complex (FORTRAN, BESM-6 computer) is used to calculate radiation transport in reactors and cells. The complex is improved: at large ratioes of neutron flux attenuation the methods of splitting and roulette are realized. Calculational results of the integral by energy and mean by zones values of neutron flux density in radial shield and sodium activity in the secondary coolant circuits are presented. Good conformity of the data obtained is pointed out. Conclusion is made about the applicability of the program systems investigated to calculate fast reactor shields at different stages of design. The RADAR system due to its quick operation will be more efficient at the initial stages, while the MMKFK system - at final ones, when high accuracy of calculation is required

  9. The dynamics of flux tubes in a high beta plasma

    CERN Document Server

    Vishniac, E T

    1994-01-01

    We suggest a new model for the structure of a magnetic field embedded high \\beta turbulent plasma, based on the popular notion that the magnetic field will tend to separate into individual flux tubes. We point out that interactions between the flux tubes will be dominated by coherent effects stemming from the turbulent wakes created as the fluid streams by the flux tubes. Balancing the attraction caused by shielding effects with turbulent diffusion we find that flux tubes have typical radii comparable to the local Mach number squared times the large scale eddy length, are arranged in a one dimensional fractal pattern, have a radius of curvature comparable to the largest scale eddies in the turbulence, and have an internal magnetic pressure comparable to the ambient pressure. When the average magnetic energy density is much less than the turbulent energy density the radius, internal magnetic field and curvature scale of the flux tubes will be smaller than these estimates. Realistic resistivity does not alter t...

  10. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    International Nuclear Information System (INIS)

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 108 ± 5.25% n/cm2s. (author)

  11. Neutron flux distribution inside the cylindrical core of minor excess of reactivity in the IPEN/MB-01 reactor and comparison with citation code and MCNP- 5 code

    Energy Technology Data Exchange (ETDEWEB)

    Aredes, Vitor Ottoni; Bitelli, Ulysses d' Utra; Mura, Luiz Ernesto C.; Santos, Diogo Feliciano dos; Lima, Ana Cecilia de Souza, E-mail: ubitelli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This study aims to determine the distribution of thermal neutron flux in the IPEN/MB-01 nuclear reactor core assembled with cylindrical core configuration of minor excess of reactivity with 568 fuel rods (28 fuel rods in diameter). The thermal neutron flux at the positions of irradiation derive from the method of reaction rate using gold foils. The experiment consists in inserting gold activations foils with and without cadmium coverage (cadmium boxes with 0.0502 cm thickness) in several positions throughout the active core. After irradiation, activity induced by nuclear reaction rates over gold foils is assessed by gamma ray spectrometry using a high-purity germanium (HPGe) detector. Experimental results are compared to those derived from calculations performed using a three dimensional CITATION diffusion code and MCNP-5 code and a proper nuclear data library. While calculated neutron flux data shows good agreement with experimental values in regions with little disturbance in the neutron flux, also showing that in the region of the reflectors of neutrons and near the control rods, the diffusion theory is not very precise. The average value of thermal neutron flux obtained experimentally compared to the calculated value by CITATION code and MCNP-5 code respectively show a difference of 1.18% and 0.84% at a nuclear power level of 74.65 ± 3.28 % watts. The average measured value of thermal neutron flux is 4.10 10{sup 8} ± 5.25% n/cm{sup 2}s. (author)

  12. Experimental and MCNP5 based evaluation of neutron and gamma flux in the irradiation ports of the University of Utah research reactor

    OpenAIRE

    Noble Brooklyn; Choe Dong-Ok; Jevremovic Tatjana

    2012-01-01

    Neutron and gamma flux environment of various irradiation ports in the University of Utah training, research, isotope production, general atomics reactor were experimentally assessed and fully modeled using the MCNP5 code. The experimental measurements were based on the cadmium ratio in the irradiation ports of the reactor, flux profiling using nickel wire, and gamma dose measurements using thermo luminescence dosimeter. Full 3-D MCNP5 reactor model was developed to obtain the neutron f...

  13. 3D AGENT methodology validation for prismatic high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    The Generation IV of nuclear reactors includes as highly competitive the design of a Very High Temperature Reactor (VHTR). This type of reactors can be of a prismatic block, or pebble-bed type. An example of a prismatic block nuclear reactor is the High Temperature Test Reactor (HTTR) operated by Japan Atomic Energy Agency; the reactor reached its full power of 30 MWth for the first time in 1999. The primary coolant is helium at the pressure of ∼4 MPa, with inlet-outlet temperatures of 395°C and 850 – 950°C, respectively. The fuel is 6% enriched uranium, and the moderator is made of graphite. Using the literature available data, a comprehensive validation study is performed to benchmark and assess the AGENT (Arbitrary GEometry Neutron Transport) methodology capabilities in predicting and capturing reactor physics details affected by double heterogeneity of the fuel. Using AGENT with explicit modeling of the fuel double heterogeneity, the HTTR neutronics parameters are compared to NEWT and KENO VI, as well as to experimental data as found in literature. Detailed analysis of spatial steady-state reaction rates and flux spatial maps are provided. The AGENT methodology is based on the method of characteristics and the only one in the world as applied to reactor systems, the R-function based reactor solid modeler, in providing an accurate deterministic solution for 3D steady-state reactor physics. The R-functions modeler presents no limits to reactor geometry and materials types with their distributions. (author)

  14. Request for Naval Reactors Comment on Proposed Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements and for Naval Reactors Approval to Transmit These Requirements to JPL

    Energy Technology Data Exchange (ETDEWEB)

    D. Kokkinos

    2005-04-28

    The purpose of this letter is to request Naval Reactors comments on the nuclear reactor high tier requirements for the PROMETHEUS space flight reactor design, pre-launch operations, launch, ascent, operation, and disposal, and to request Naval Reactors approval to transmit these requirements to Jet Propulsion Laboratory to ensure consistency between the reactor safety requirements and the spacecraft safety requirements. The proposed PROMETHEUS nuclear reactor high tier safety requirements are consistent with the long standing safety culture of the Naval Reactors Program and its commitment to protecting the health and safety of the public and the environment. In addition, the philosophy on which these requirements are based is consistent with the Nuclear Safety Policy Working Group recommendations on space nuclear propulsion safety (Reference 1), DOE Nuclear Safety Criteria and Specifications for Space Nuclear Reactors (Reference 2), the Nuclear Space Power Safety and Facility Guidelines Study of the Applied Physics Laboratory.

  15. Investigating the use of nanofluids to improve high heat flux cooling systems

    CERN Document Server

    Barrett, T R; Flinders, K; Sergis, A; Hardalupas, Y

    2013-01-01

    The thermal performance of high heat flux components in a fusion reactor could be enhanced significantly by the use of nanofluid coolants, suspensions of a liquid with low concentrations of solid nanoparticles. However, before they are considered viable for fusion, the long-term behaviour of nanofluids must be investigated. This paper reports an experiment which is being prepared to provide data on nanofluid stability, settling and erosion in a HyperVapotron device. Procedures are demonstrated for nanofluid synthesis and quality assessment, and the fluid sample analysis methods are described. The end results from this long-running experiment are expected to allow an initial assessment of the suitability of nanofluids as coolants in a fusion reactor.

  16. The prediction of Critical Heat Flux(CHF) on the outer wall of System-Integrated Modular Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yeon, Youjin; Nam, Gyeongho; Kim, Sangnyung [Kyunghee Univ., Yongin (Korea, Republic of)

    2014-05-15

    Unlike Pressurized Water Reactor (PWR), Korea's SMART includes all components of the primary system in one pressure vessel. For this reason, if station blackout (SBO) events occur, SMART is likely to cause more severe accidents than the conventional reactor. When a nuclear meltdown, one of the serious accidents, occurs, and if the process of cooling is done by Ex-Vessel Cooling system (EVCS), this study explored as to whether EVCS is proper for SMART by calculating Critical Heat Flux (CHF) depending on the angle of reactor vessel. If the coolant is lost due to Loss-of-Coolant Accident (LOCA) and SBO in the reactor core, a core is melt due to decay heat. Then heat is transferred to the outer wall of vessel, causing Nucleate Boiling at the outer wall of vessel. A rising heat flux caused by corium could reach CHF and do damage to vessel due to Departure from Nucleate Boiling (DNB), so such incidents should be prevented. For in-vessel retention of SMART-330, this study examined the feasibility of SMART-330 by conducting a literature search of CHF correlation for the conventional commercial reactor at the outer wall of pressure vessel. The findings of the study showed that the correlation equation for SULTAN experiment was the most suitable for SMART-330. Accordingly, when the value of mass flow rate is 100kg/s and pressure is 0.2MPa, a correlation equation is simply as follows. As a result, the minimum value was about 0.5MW/m{sup 2} and the maximum was 1.1MW/m{sup 2} at the angel of 90 .deg.. Additionally, when core meltdown occurs, the maximum value of heat flux was 0.78MW/m{sup 2} at 10,000 sec after started the melting core in the reactor. (The result of heat flux was calculated heat transfer correlation inside oxide pool with number of Ra) When operating Ex-Vessel Cooling System at the outer reactor, the maximum value of CHF was about 1.1MW/m{sup 2} and it was larger than 0.78MW/m{sup 2}, the value of heat flux in the outer reactor. Therefore, this study

  17. Maintenance management at the High Flux Isotope Reactor

    International Nuclear Information System (INIS)

    Maintenance procedures are described for mechanical and electrical equipment; nuclear and process instrumentation; operational maintenance; equipment and systems inspections; and HFIR quality assurance

  18. Design and construction of an automatic measurement electronic system and graphical neutron flux for the subcritical reactor

    International Nuclear Information System (INIS)

    The National Institute of Nuclear Research (ININ) has in its installations with a nuclear subcritical reactor which was designed and constructed with the main purpose to be used in the nuclear sciences education in the Physics areas and Reactors engineering. Within the nuclear experiments that can be realized in this reactor are very interesting those about determinations of neutron and gamma fluxes spectra, since starting from these some interesting nuclear parameters can be obtained. In order to carry out this type of experiments different radioactive sources are used which exceed the permissible doses by far to human beings. Therefore it is necessary the remote handling as of the source as of detectors used in different experiments. In this work it is presented the design of an electronic system which allows the different positions inside of the tank of subcritical reactor at ININ over the radial and axial axes in manual or automatic ways. (Author)

  19. Reactor physics and reactor strategy investigations into the fissionable material economy of the thorium and uranium cycle in fast breeder reactors and high temperature reactors

    International Nuclear Information System (INIS)

    In this work the properties governing the fissionable material economy of the uranium and thorium cycles are investigated for the advanced reactor types currently under development - the fast breeder reactor (FBR) and the high temperature reactor (HTR) - from the point of view of the optimum utilization of the available nuclear fuel reserves and the continuance of supply of these reserves. For this purpose, the two reactor types are first of all considered individually and are subsequently discussed as a complementary overall system

  20. Fabrication and high heat flux test of divertor cooling elements

    International Nuclear Information System (INIS)

    The plasma facing components in ITER are subjected to a high heat flux from fusion plasma. The heat flux is not only higher than that of existing tokamaks but also has a longer pulse duration (burn time). To minimize a peaking of the heat flux, the thermal deformation towards the plasma should be restrained. One-meter-long monoblock divertor modules with a sliding support structure were fabricated and tested at JAERI. Two kinds of support mechanisms were provided to minimize the thermal deformation of the modules in the upward and downward directions ; one is a pin type sliding structure and the other is a rail type support structure. Both modules were tested on the electron beam HHF test facility, JEBIS (JAERI Electron Beam Irradiation System), in JAERI. The steady-state heat flux of 15 MW/m2 was applied to the surface of the modules to simulate the design condition of ITER CDA. As a result of the HHF test, the performance of the sliding support structures was successfully demonstrated. Three dimensional elastic stress analyses were conducted using a finite element method. The result shows that the relatively high thermal stress is observed at the cooling tube ; and that the maximum thermal stress at the cooling tube exceeds its yield strength. It is necessary to perform the lifetime evaluation of the copper cooling tube against cyclic thermal stresses. (author)

  1. Development and modelling of fission chambers designed for high neutron fluxes: applications at the HFR reactor (ILL) and the MEGAPIE target (PSI); Developpement et modelisation de chambres a fission pour les hauts flux, mise en application au RHF (ILL) et a MEGAPIE (PSI)

    Energy Technology Data Exchange (ETDEWEB)

    Chabod, S

    2006-11-15

    The international project MEGAPIE (MEGAwatt PIlot Experiment) at the Paul Scherrer Institute aims to build and operate the first 1 MW liquid lead-bismuth spallation target. This work is dedicated to the characterization of the neutron flux and the actinide incineration potential of the target. This mission has required the development of an innovating neutron detector (DNM) made of 8 micro fission chambers, installed inside the central rod of the MEGAPIE target. The combination of uranium chambers with chambers without deposit allows an efficient compensation of the gamma radiation background. The optimisation and development work on the MEGAPIE chambers have enabled us to measure the {sigma}{sub f} * {phi} product at each level of the DNM with an uncertainty of less than 3 per cent. We have inferred from these data the value of the epithermal neutron flux (E > 1 eV) at 37 cm away from the window: 3.4*10{sup 13} n.cm{sup -2}.s{sup -1}, and the values of the neutron flux at 50, 60 and 74 cm: 1.2*10{sup 13}, 7.9*10{sup 12} and 3.9*10{sup 12} n.cm{sup -2}.s{sup -1} respectively. All these values are notably less important than those obtained from MCNPX simulations. Thermocouples installed in DMN have enabled us to know the temperature distribution inside the target. For a beam intensity of 1.2 mA, the temperature ranges from 360 to 420 Celsius degrees in the low part of the central rod. The thermal inertia of the system composed of the central rod and DNM has been assessed for brutal changes of the beam intensity and is worth about 60 s. (A.C.)

  2. High-temperature and breeder reactors - economic nuclear reactors of the future

    International Nuclear Information System (INIS)

    The thesis begins with a review of the theory of nuclear fission and sections on the basic technology of nuclear reactors and the development of the first generation of gas-cooled reactors applied to electricity generation. It then deals in some detail with currently available and suggested types of high temperature reactor and with some related subsidiary issues such as the coupling of different reactor systems and various schemes for combining nuclear reactors with chemical processes (hydrogenation, hydrogen production, etc.), going on to discuss breeder reactors and their application. Further sections deal with questions of cost, comparison of nuclear with coal- and oil-fired stations, system analysis of reactor systems and the effect of nuclear generation on electricity supply. (C.J.O.G.)

  3. Fusion reactors-high temperature electrolysis (HTE)

    International Nuclear Information System (INIS)

    Results of a study to identify and develop a reference design for synfuel production based on fusion reactors are given. The most promising option for hydrogen production was high-temperature electrolysis (HTE). The main findings of this study are: 1. HTE has the highest potential efficiency for production of synfuels from fusion; a fusion to hydrogen energy efficiency of about 70% appears possible with 18000C HTE units and 60% power cycle efficiency; an efficiency of about 50% possible with 14000C HTE units and 40% power cycle efficiency. 2. Relative to thermochemical or direct decomposition methods HTE technology is in a more advanced state of development, 3. Thermochemical or direct decomposition methods must have lower unit process or capital costs if they are to be more attractive than HTE. 4. While design efforts are required, HTE units offer the potential to be quickly run in reverse as fuel cells to produce electricity for restart of Tokamaks and/or provide spinning reserve for a grid system. 5. Because of the short timescale of the study, no detailed economic evaluation could be carried out.A comparison of costs could be made by employing certain assumptions. For example, if the fusion reactor-electrolyzer capital installation is $400/(KW(T) [$1000/KW(E) equivalent], the H2 energy production cost for a high efficiency (about 70 %) fusion-HTE system is on the same order of magnitude as a coal based SNG plant based on 1976 dollars. 6. The present reference design indicates that a 2000 MW(th) fusion reactor could produce as much at 364 x 106 scf/day of hydrogen which is equivalent in heating value to 20,000 barrels/day of gasoline. This would fuel about 500,000 autos based on average driving patterns. 7. A factor of three reduction in coal feed (tons/day) could be achieved for syngas production if hydrogen from a fusion-HTE system were used to gasify coal, as compared to a conventional syngas plant using coal-derived hydrogen

  4. Evaluation of neutron flux in the WWR-SM reactor channel and in the irradiating zone of U-150 cyclotron

    International Nuclear Information System (INIS)

    Full text: For effective work of a reactor, and correct planning of experiments related to the reactor irradiation of various materials it is required to control a neutron flux in the given irradiation point for a long irradiation period. For realization of research works on topazes ennobling under irradiation by reactor neutrons as well as by secondary neutrons produced in a cyclotron it is necessary to know the total neutron flux and spectra. To resolve the problem a technique for registration of neutrons with different energy and calculation of a neutrons spectrum in the given irradiation points in reactor channels and in cyclotron behind the nickel target has been developed. Neutron flux density and energy spectra were monitored by use of the following nuclear reactions: 59Co(n,γ)60Co, 197Au(n,γ)198Au, 58Ni(n,p)58Co, 24Mg(n,p)24Na, 48Ti(n,p)48Sc, 46Ti(n,p)46Sc, 54Fe(n,p)54Mn, 89Y(n,2n)88Y, 60Ni(np)60Co. Gamma spectrometer composed of HPGe detector (Rel. Eff. - 15%) and Digital Spectra Analyzer DSA-1000 (Canberra Ind., USA) was used to measure gamma activity of irradiated samples. Acquired gamma spectra were processed by means of Genie 2000 standard software package. The σ(E) functions and neutron spectra were calculated by using the least squares method and approximating the tabular and experimental data with power polynomials. The developed technique was applied for the adjustment of the topazes irradiation regimes in the reactor core and under secondary neutrons flux from a nickel target in the cyclotron. The given technique allows to calculate a logarithmic spectrum of neutrons in a energy range from 0,025 eV up to 12 MeV with the uncertainty of about 10 %. (author)

  5. Critical experiments and reactor physics calculations for low enriched high temperature gas cooled reactors

    International Nuclear Information System (INIS)

    On the recommendation of the IAEA International Working Group on Gas Cooled Reactors, the IAEA established a Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low-Enriched High Temperature Gas Cooled Reactors (HTGRs) in 1990. The objective of the CRP was to provide safety-related physics data for low-enriched uranium (LEU) fueled HTGRs for use in validating reactor physics codes used by the participating countries for analyses of their designs. Experience on low-enriched uranium, graphite-moderated reactor systems from research institutes and critical facilities in participating countries were brought into the CRP and shared among participating institutes. The status of experimental data and code validation for HTGRs and the remaining needs at the initiation of this CRP were addressed in detail at the IAEA Specialists Meeting on Uncertainties in Physics Calculations for HTGR Cores held at the Paul Scherrer Institute (PSI), Villigen, Switzerland in May, 1990. The main activities of the CRP were conducted within an international project at the PROTEUS critical experiment facility at the Paul Scherrer Institute, Villigen, Switzerland. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Fuel for the experiments was provided by the KFA Research Center, Juelich, Germany. Initial criticality was achieved on July 7, 1992. These experiments were conducted over a range of experimental parameters such as carbon-to-uranium ratio, core height-to-diameter ratio, and simulated moisture concentration. To assure that the experiments being conducted are appropriate for the design of the participants, specialists from each of the countries have participated

  6. Microstructural Study of High Irradiated Reactor Steels

    OpenAIRE

    SLUGEN Vladimir; PETRISKA Martin; SOJAK Stanislav; VETERNIKOVA Jana

    2009-01-01

    Positron Annihilation Spectroscopy (PAS) techniques in combination with other techniques were effectively used in the testing and selection process of optimal reactor steels for use in Generation III and IV reactors or thermonuclear fusion facilities. Conventional PAS lifetime technique and pulsed low energy positron system were applied on wide spectrum of reactor steels together with other techniques viz., Transmission Electron Microscopy and Mossbauer Spectroscopy focused on the role of Nic...

  7. High temperature reactors and their use in the FRG

    International Nuclear Information System (INIS)

    Various aspects of the strategy of building high temperature reactors in the FRG are discussed. The development of these reactors has a long tradition in the FRG and great sums of money are being invested in the research programme. In 1988 the AVR-15 experimental reactor is expected to be shut down in which the helium output temperature had been maintained at 950 degC for a long period of time. The THTR-300 demonstration power plant which is expected to be available at that time represents a link to further application of high temperature reactors in the FRG. A detailed description is presented of projects of further high temperature reactors with a wide range of power output. The BBC/HRB association with Swiss participation is now specifying the project of the HTR-500 reactor with a steam cycle and the delivery of technological steam. This reactor should be followed up by the construction of a reactor with an HHT gas turbine and of an HTR-PNP reactor for coal gasification. Alternatively developed are small HTR-100 universal reactors. Prospective projects also include the 80 MW modular system by KWU following up on the AVR-15 reactor. (Z.M.)

  8. Helium turbine power generation in high temperature gas reactor

    International Nuclear Information System (INIS)

    This paper presents studies on the helium turbine power generator and important components in the indirect cycle of high temperature helium cooled reactor with multi-purpose use of exhaust thermal energy from the turbine. The features of this paper are, firstly the reliable estimation of adiabatic efficiencies of turbine and compressor, secondly the introduction of heat transfer enhancement by use of the surface radiative heat flux from the thin metal plates installed in the hot helium and between the heat transfer coil rows of IHX and RHX, thirdly the use of turbine exhaust heat to produce fresh water from seawater for domestic, agricultural and marine fields, forthly a proposal of plutonium oxide fuel without a slight possibility of diversion of plutonium for nuclear weapon production and finally the investigation of GT-HTGR of large output such as 500 MWe. The study of performance of GT-HTGR reduces the result that for the reactor of 450 MWt the optimum thermal efficiency is about 43% when the turbine expansion ratio is 3.9 for the turbine efficiency of 0.92 and compressor efficiency of 0.88 and the helium temperature at the compressor inlet is 45degC. The produced amount of fresh water is about 8640 ton/day. It is made clear that about 90% of the reactor thermal output is totally used for the electric power generation in the turbine and for the multi-puposed utilization of the heat from the turbine exhaust gas and compressed helium cooling seawater. The GT-Large HTGR is realized by the separation of the pressure and temperature boundaries of the pressure vessel, the increase of burning density of the fuel by 1.4 times, the extention of the nuclear core diameter and length by 1.2 times, respectively, and the enhancement of the heat flux along the nuclear fuel compact surface by 1.5 times by providing riblets with the peak in the flow direction. (J.P.N.)

  9. Determination of nitrogen in wheat flour through Activation analysis using Fast neutron flux of a Thermal nuclear reactor

    International Nuclear Information System (INIS)

    In this work is done a technical study for determining Nitrogen (protein) and other elements in wheat flour Activation analysis, with Fast neutrons from a Thermal nuclear reactor. Initially it is given an introduction about the basic principles of the methods of analysis. Equipment used in Activation analysis and a brief description of the neutron source (Thermal nuclear reactor). The realized experiments for determining the flux form in the irradiation site, the half life of N-13 and the interferences due to the sample composition are included too. Finally, the obtained results by Activation and the Kjeldahl method are tabulated. (Author)

  10. High Performance Photocatalytic Oxidation Reactor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes a technology program for the development of an innovative photocatalytic oxidation reactor for the removal and mineralization of...

  11. Irradiation embrittlement mechanism of reactor pressure vessel steels of light water reactors. Effect of neutron flux on the embrittlement of low copper steels

    International Nuclear Information System (INIS)

    To investigate the effects of neutron flux on the mechanical properties of low copper reactor pressure vessel steels, we carried out neutron irradiation of Japanese plate and forging steels. We then tested subsize tensile and Charpy impact specimens in the joint research program between the Central Research Institute of Electric Power Industry and the University of California, Santa Barbara. The results showed that shifts in ductile-to-brittle transition temperature obtained from Charpy impact tests have no dependence on neutron flux through the neutron fluence levels although there are slight changes of shift in ductile-to-brittle transition temperature as neutron flux changes. Changes in yield stress and ultimate tensile stress obtained from tensile tests are independent of neutron flux but increase with increasing neutron fluence. Based on the mechanical property test results, we conclude that irradiation embrittlement of low copper steels has no detectable dependence on neutron flux in the neutron flux range of 7 x 1010-5 x 1012 n/cm2-s. (author)

  12. Generation of field-reversed-configurations with high bias flux using controlled reconnection

    International Nuclear Information System (INIS)

    The magnitude of poloidal flux and the ultimate size of field-reversed-configurations formed in field-reversed-theta-pinches depends on the amount of initial bias flux which can be trapped. Operation at high bias fluxes results in violent axial contractions and severe flux loss, thus preventing the attainment of high poloidal flux toroids. The use of controlled reconnection techniques permits stable generation at higher bias fluxes, and thus the generation of more energetic field-reversed-configurations

  13. Neutron flux calculation and fluence in the encircling of the core and vessel of a reactor BWR

    International Nuclear Information System (INIS)

    One of the main objectives related to the safety of any nuclear power plant, including the nuclear power plant of Laguna Verde is to ensure the structural integrity of reactor pressure vessel. To identify and quantify the damage caused by neutron irradiation in the vessel of any nuclear reactor, it is necessary to know both the neutron flux and the neutron fluence that the vessel has been receiving during its operation lifetime, and that the damage observed by mechanical testing are products of microstructural effects induced by neutron irradiation; therefore, it is important the study and prediction of the neutron flux in order to have a better understanding of the damage that these materials are receiving. The calculation here described uses the DORT code, which solves the neutron transport equation in discrete ordinates in two dimensions (x-y, r-θ and r-z), according to a regulatory guide, it should make an approximation of the neutron flux in three dimensions by the so called synthesis method. It is called in that way because it achieves a representation of 3 Dimensional neutron flux combining or summarizing the fluxes calculated by DORT r-θ, r-z and r. This work presents the application of synthesis method, according to Regulatory Guide 1190, to determine the 3 Dimensional fluxes in internal BWR reactor using three different spatial meshes. The results of the neutron flux and fluence, using three different meshes in the directions r, θ and z were compared with results reported in the literature obtaining a difference not larger than 9.61%, neutron flux reached its maximum, 1.58 E + 12 n/cm2s, at a height H 4 (239.07 cm) and angle 32.236o in the core shroud and 4.00 E + 09 n/cm2s at a height H 4 and angle 35.27o in the inner wall of the reactor vessel, positions that are consistent to within ±10% over the ones reported in the literature. (Author)

  14. Determination of neutron flux parameters at Apsara reactor for k0-NAA using Hogdahl and Westcott conventions

    International Nuclear Information System (INIS)

    In order to apply k0-based neutron activation analysis (k0-NAA) in general to all nuclides and especially to the nuclides following non l/v (n, γ) reactions, the neutron spectrum of E8 irradiation position of Apsara reactor has been characterized. Both Hogdahl and Westcott conventions were followed for the reaction rates. The parameters determined included epithermal neutron flux shape factor (α), subcadmium-to-epithermal neutron flux ratio (f), modified spectral index (MSI) r(α)√(Tn/T0), Westcott gLu(Tn)-factor, and absolute neutron temperature Tn. (author)

  15. Spatial distribution of the neutron flux in the IEA-R1 reactor core obtained by means of foil activation

    International Nuclear Information System (INIS)

    A three-dimensional distribution of the neutron flux in IEA-R1 reactor, obtained by activating gold foils, is presented. The foils of diameter 8mm and thickness 0,013mm were mounted on lucite plates and located between the fuel element plates. Foil activities were measured using a 3x3 inches Nal(Tl) scintilation detector calibrated against a 4πβγ coincidence detector. Foil positions were chosen to minimize the errors of measurement; the overall estimated error on the measured flux is 5%. (Author)

  16. Multipurpose Utilisation of a Medium Flux Research Reactor. Benefit for the Society

    International Nuclear Information System (INIS)

    The Budapest Research Reactor (BRR) was restarted after a major refurbishment and increase in power to 10 MW in 1992. Basically, the experience gained with the utilization of this multipurpose facility during the past 20 years is described here. The utilization aims for 3 major activities: i) Research and development base for the energy sector: scientific and safety support for the Paks NPP; research in energy saving and production. ii) A complex source of irradiations for materials testing and modification, diagnostics in nanotechnologies, engineering, healthcare etc. iii) Neutron beams from the horizontal channels of the reactor serve for exploratory as well as for applied research in a very wide range of disciplines. Graduate and professional training is also in the scope of our activity. The reactor went critical first in 1959. It served nearly 3 decades as a home base for learning nuclear sciences and technologies, to development nuclear energetics, which resulted in launching four power plant blocks in the eighties, as well as to establish neutron beam research in our country. Nearly 20 years passed now that the decision was made - after the falling of the Iron Curtain'' - the practically brand new 10 megawatt reactor should be commissioned and opened for the international user community. The reactor reached its nominal power in May 1993 and neutron beam experiments were available on 4 instruments at that time. Thanks to a continuous development the number of experimental stations now is 15, the research staffs has grown from 10 to nearly 50 scientists and research facilities have been improved considerably. A few important milestones should be mentioned: a liquid hydrogen cold source was installed and the neutron guide system was replaced by a supermirror guide configuration, yielding a factor of 50-80 gain in neutron intensity; a second guide hall was constructed to house a new time-of-flight instrument; BRR became a member of the European neutron

  17. Variability of methane fluxes over high latitude permafrost wetlands

    OpenAIRE

    Andrei Serafimovich; Hartmann, J.; Eric Larmanou; Torsten Sachs

    2013-01-01

    Atmospheric methane plays an important role in the global climate system. Due to significant amounts of organic material stored in the upper layers of high latitude permafrost wetlands and a strong Arctic warming trend, there is concern about potentially large methane emissions from Arctic and sub-Arctic areas. The quantification of methane fluxes and their variability from these regions therefore plays an important role in understanding the Arctic carbon cycle and changes in atmo...

  18. High Tc Superconductor Theoretical Models and Electromagnetic Flux Characteristics

    Institute of Scientific and Technical Information of China (English)

    JIN Jian-xun

    2006-01-01

    High Tc Superconductors (HTS) have special electromagnetic characteristics and phenomena. Effort has been made in order to theoretically understand the applied HTS superconductivity and HTS behaviors for practical applications, various theoretical models related to the HTS electromagnetic properties have been developed. The theoretical models and analytic methods are summarized with regard to understanding the HTS magnetic flux characteristic which is one of the most critical issues related to HTS applications such as for HTS magnetic levitation application.

  19. Applicability of copper alloys for DEMO high heat flux components

    Science.gov (United States)

    Zinkle, Steven J.

    2016-02-01

    The current state of knowledge of the mechanical and thermal properties of high-strength, high conductivity Cu alloys relevant for fusion energy high heat flux applications is reviewed, including effects of thermomechanical and joining processes and neutron irradiation on precipitation- or dispersion-strengthened CuCrZr, Cu-Al2O3, CuNiBe, CuNiSiCr and CuCrNb (GRCop-84). The prospects for designing improved versions of wrought copper alloys and for utilizing advanced fabrication processes such as additive manufacturing based on electron beam and laser consolidation methods are discussed. The importance of developing improved structural materials design criteria is also noted.

  20. Design Analysis of High-Speed Axial-Flux Generator

    Directory of Open Access Journals (Sweden)

    M. Sadeghierad

    2008-01-01

    Full Text Available Problem Statement: Axial flux permanent magnet machines are regarded as compact high efficiency generators for micro-turbines employed in the distributed power generation systems. High-speed rotor of the generator causes some designing and modeling problems. Sensitivity analysis tasks of the machine parameters are difficult and completely different in comparison with the problems associated with conventional machines. Approach: This article presents a modeling procedure with some details for performance predictions of High-Speed Axial Flux Generator (HSAFG. The FEM results are employed to validate the proposed model. Proper values of inner diameter to outer diameter ratio, plus back iron thickness of two rotor discs located in two ends are serious design problem for a HSAFG. Results: Impacts of these two parameters on the performance characteristics of a HSAFG are investigated in this paper. Their optimum values are determined for the machine by somewhat precise considerations of the output voltage and efficiency. Conclusions/Recommendations: It has been found out that the optimum performance of HSAFG regarding the voltage and efficiency is achieved by the value of inner to outer diameter ratio sited between 0.5-0.65. Moreover, the thickness of the rotor back iron can be designed by trial method to produce sufficient air gap flux and resultant terminal voltage. Adding extra back iron would just increase the rotor inertia with no benefit.

  1. Trends and techniques in neutron beam research for medium and low flux research reactors. Report of a consultants meeting

    International Nuclear Information System (INIS)

    The IAEA is making concerted efforts to promote R and D programmes for neutron beam research to assist the developing Member States in better utilization of their research reactors. A consultants meeting was organized on 16-19 March 1996 to review the current status and deliberate on the future trends in neutron beam based research using low and medium flux research reactors with the flux range of the order of up to 1013-1014 n/cm2/s, particularly in the light of recent advances in electronics and instrumentation. The participants focused on five specific topics: triple axis spectrometry, neutron depolarization studies, capillary optics, spin-echo spectrometry and small-angle neutron spectrometry. This TECDOC details the highlights of the discussions in the meeting along with the papers presented

  2. Status of the IDTF high-heat-flux test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, V.; Gorbenko, A.; Davydov, V.; Kokoulin, A.; Komarov, A.; Mazul, I.; Mudyugin, B.; Ovchinnikov, I.; Stepanov, N.; Rulev, R.; Volodin, A., E-mail: volodin@sintez.niiefa.spb.su

    2014-10-15

    Highlights: • In the Efremov Institute the IDTF (ITER Divertor Test Facility) was created for the high heat flux tests (HHFT) of the PFUs of the ITER divertor. • In summer 2012, the IDTF had been qualified for the testing of the outer vertical full-scale prototypes. • The HHFT of the test assembly of the outer vertical target full-scale prototype – was completed at the end of 2012. - Abstract: The ITER Divertor Test Facility (IDTF) was designed for the high heat flux tests of outer vertical targets, inner vertical targets and domes of the ITER divertor. This facility was created in the Efremov Institute under the Procurement Arrangement 1.7.P2D.RF (high heat flux tests of the plasma facing units of the ITER divertor). The heat flux is generated by an electron-beam system (EBS), 800 kW power and 60 kV maximum accelerating voltage. The component to be tested is mounted on a manipulator in the vacuum chamber capable of testing objects up to 2.5 m long and 1.5 m wide. The pressure in the vacuum chamber is about 3*10{sup −3} Pa. The parameters of the cooling system and the water quality (deionized water) are similar to the cooling conditions of the ITER divertor. The integrated control system regulates all IDTF subsystems and data acquisition from all diagnostic devices, such as pyrometers, IR-cameras, video cameras, flow, pressure and temperature sensors. Started in 2008, the IDTF was commissioned in 2012 with the testing the outer vertical full-scale prototypes and the completion of the PA 1.7.P2D.RF task. This paper details the main characteristics of the IDTF.

  3. Reliability Analysis of High Temperature Reactor Fuels

    International Nuclear Information System (INIS)

    This paper presents the results of reliability analysis of the TRISO -coated fuel particles for the High Temperature Test Reactor (HTTR), Japan. The reliability of fuel particle was evaluated based on the failure probability of each coating layer, and only the failure due to internal gas pressure and shrinkage of pyrolytic carbon (PyC) layer was considered The analysis results show that, no significant failure occurs up to about 45 MWd/kgU for the first core fuel particle and up to about 75 MWd/kgU for the reload core fuel particle. The fuel particle is predicted to fail completely at about 50 MWd/kgU for the first core fuel particle and at about 85 MWd/kgU for the reload core fuel particle. This results show that the TRISO -coated fuel particle for the HTTR to have high reliability. No failure occurs up to the maximum burnup design level, i.e. 33 MWd/kgU for the first core fuel particle and 60 MWd/kgU for the reload core fuel particle. The analysis results show also that the fuel particle reliability (coating layers) depends on the irradiation temperature. The failure occurs at lower burnup if the irradiation temperature increases. (author)

  4. A wide range in-core neutron monitoring system for high powered TRIGA reactors

    International Nuclear Information System (INIS)

    High power movable core TRIGA reactors present unique problems of determining power levels from a neutron flux measurement because of (1) difficulty of locating detectors; (2) water thermal effects and (3) effect of experimental facilities. A solution, along with experimental results, will be described that uses a beam tube to effectively make in-core flux measurements with an out-of-core detector. The application of this new type of detector assembly to wide range linear and log power measurement will also be discussed. (author)

  5. FPGA based computation of average neutron flux and e-folding period for start-up range of reactors

    International Nuclear Information System (INIS)

    Pulse processing instrumentation channels used for reactor applications, play a vital role to ensure nuclear safety in startup range of reactor operation and also during fuel loading and first approach to criticality. These channels are intended for continuous run time computation of equivalent reactor core neutron flux and e-folding period. This paper focuses only the computational part of these instrumentation channels which is implemented in single FPGA using 32-bit floating point arithmetic engine. The computations of average count rate, log of average count rate, log rate and reactor period are done in VHDL using digital circuit realization approach. The computation of average count rate is done using fully adaptive window size moving average method, while Taylor series expansion for logarithms is implemented in FPGA to compute log of count rate, log rate and reactor e-folding period. This paper describes the block diagrams of digital logic realization in FPGA and advantage of fully adaptive window size moving average technique over conventional fixed size moving average technique for pulse processing of reactor instrumentations. (author)

  6. BOTHER: a steady-state code that predicts margin to burnout heat flux for N-Reactor fuel elements

    International Nuclear Information System (INIS)

    In order to operate a nuclear reactor safely, some method must be available which can adequately describe the thermal-hydraulics of the reactor core. Further, some method must be available which can be used to predict the effects of changes in system operation. For example it is often necessary to know or be able to predict the effects of reduced coolant flow, front or rear peaked power distribution, etc., on the overall safe operation of the reactor. Because of the uniqueness of the N Reactor (horizontal pressure tubes with no crossflow between tubes or annular subchannels) the commonly available thermal-hydraulics codes are generally not directly applicable. For these reasons the BOTHER (BurnOut THErmal Ratio) computer code has been developed at UNI. Using experimental results for N Reactor flow splits and heat splits as well as enthalpy imbalance and critical heat flux data, BOTHER computes the steady state margin to burnout for N Reactor fuel elements. The equations used by BOTHER to perform the burnout calculations are described. A sample problem for MARK-IV fuel with input and output listings is also included

  7. High Energy Atmospheric Neutrino Fluxes From a Realistic Primary Spectrum

    Science.gov (United States)

    Campos Penha, Felipe; Dembinski, Hans; Gaisser, Thomas K.; Tilav, Serap

    2016-03-01

    Atmospheric neutrino fluxes depend on the energy spectrum of primary nucleons entering the top of the atmosphere. Before the advent of AMANDA and the IceCube Neutrino Observatory, measurements of the neutrino fluxes were generally below ~ 1TeV , a regime in which a simple energy power law sufficed to describe the primary spectrum. Now, IceCube's muon neutrino data extends beyond 1PeV , including a combination of neutrinos from astrophysical sources with background from atmospheric neutrinos. At such high energies, the steepening at the knee of the primary spectrum must be accounted for. Here, we describe a semi-analytical approach for calculating the atmospheric differential neutrino fluxes at high energies. The input is a realistic primary spectrum consisting of 4 populations with distinct energy cutoffs, each with up to 7 representative nuclei, where the parameters were extracted from a global fit. We show the effect of each component on the atmospheric neutrino spectra, above 10TeV . The resulting features follow directly from recent air shower measurements included in the fit. Felipe Campos Penha gratefully acknowledges financial support from CAPES (Processo BEX 5348/14-5), CNPq (Processo 142180/2012-2), and the Bartol Research Institute.

  8. High neutron flux quality for irradiation and BCNT conditions

    International Nuclear Information System (INIS)

    This paper presents methods for characterising the neutron field in irradiation and boron neutron capture therapy (BNCT) facilities, applications for which a high flux quality is needed. The irradiation facility considered consists of an isotopic (Am-Be) neutron source in a cylindrical cavity bored inside a solid paraffin cube measuring 51·51·51 cm, thus constituting a neutron Howitzer. The neutron flux distribution within the cavity above this source was investigated by measurements of aluminium foil activation and by calculations with the MCNP-4C code. The BNCT calculations were performed for different channel radii. Results from measurements and calculations are in good agreement despite the uncertainties in identifying the exact energies at which the two reactions measured, 27Al(n,γ)28Al and 27Al(n, p)27Mg, take place. The study provided useful information about the optimal irradiation and BNCT conditions. (author)

  9. Design and development of gas turbine high temperature reactor 300

    International Nuclear Information System (INIS)

    JAERI (Japan Atomic Energy Research Institute) has been designing a Japan's original gas turbine high temperature reactor, GTHTR300 (Gas Turbine High Temperature Reactor 300). The greatly simplified design based on salient features of the HTGR (High Temperature Gas-cooled reactor) with a closed helium gas turbine enables the GTHTR300 a high efficient and economically competitive reactor to be deployed in early 2010s. Also, the GTHTR300 fully taking advantage of various experiences accumulated in design, construction and operation of the HTTR (High Temperature Engineering Test Reactor) and fossil gas turbine systems reduces technological development concerning a reactor system and electric generation system. Original features of this system are core design with two-year refueling interval, conventional steel material usage for a reactor pressure vessel, innovative plant flow scheme and horizontally installed gas turbine unit. Due to these salient features, the capital cost of the GTHTR300 is less than a target cost of 200 thousands Yen/kWe, and the electric generation cost is close to a target cost of 4 Yen/kWh. This paper describes the original design features focusing on reactor core design, fuel design, in-core structure design and reactor pressure vessel design except PCU design. Also, R and D for developing the power conversion unit is briefly described. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  10. Development of thermal hydraulic analysis code for nuclear reactors with annular fuels and assessment of the KAIST DNB-type theoretical critical heat flux model

    International Nuclear Information System (INIS)

    The development of thermal hydraulic analysis code for Gas-Cooled Reactors (GCRs) and for annular fuel and its application to various types of nuclear reactors, and the assessment of the Korea Advanced Institute of Science and Technology (KAIST) Departure from Nucleate Boiling (DNB)-type theoretical Critical Heat Flux (CHF) model for rod bundles with non-uniform axial power shapes were investigated. Thermal hydraulic characteristics of thorium-based fuel assemblies with annular seed pins were analyzed using Thermal-Hydraulic analysis code for Annular Fuel (THAF) combined with Multichannel Analyzer for steady states and Transients in Rod Arrays (MATRA), and compared with those of existing thorium-based assemblies. This study investigates the possibilities of using annular fuel pins in a pressurized water reactor with emphasis on coolant flow distribution and heat transfer fraction in internal and external sub-channels. MATRA and THAF showed good agreements for the pressure drops at the internal sub-channels. Mass fluxes were high in inner sub-channels of the seed pins due to the grid form losses in the outer sub-channels. About 43% of heat generated from the seed pin flowed into the inner sub-channel. The remaining heat flowed into the outer sub-channel. The inner to outer wall heat flux ratio was approximately 1.2. Maximum temperatures of annular seed pins were slightly above 500 .deg. C. Minimum DNB Ratios (MDNBRs) of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Temperatures and enthalpies were higher in the inner sub-channels due to the fact that inter-channel mixing cannot occur in the inner sub-channels. A thermal-hydraulic analysis code for annular fuel-based Liquid Metal Reactors (LMRs) has been developed. About 41% of the heat generated from the fuel pin flowed into the inner sub-channel and the rest into the outer sub-channel. The inner to outer wall heat flux ratio was equal to approximately 1.44. A new 37

  11. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, K.L. (ed.)

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  12. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    International Nuclear Information System (INIS)

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well

  13. Hydrogen production from high temperature electrolysis and fusion reactor

    International Nuclear Information System (INIS)

    Production of hydrogen from high temperature electrolysis of steam coupled with a fusion reactor is studied. The process includes three major components: the fusion reactor, the high temperature electrolyzer and the power conversion cycle each of which is discussed in the paper. Detailed process design and analysis of the system is examined. A parametric study on the effect of process efficiency is presented

  14. Complementary system for monitoring and control of neutron flux during a fuel outage and during reactor start up stage

    International Nuclear Information System (INIS)

    The present work is an example for that, how with modern technical instruments is possible to compensate disadvantage and to increase technical resources of the old systems, without a change of given system totally with new one. The system detail design and implementation was possible mostly, due to the international conferences and courses organised by IAEA and technical information provided by the agency. The designed system plays a role of complementary system to the in-situ operational systems for monitoring and control of the reactor core neutron flux, allowing its measurement and control during a fuel outage and during reactor start up stage. Additionally, the system recalculates the reactivity in beta units and according to its value the reactor criticality fixed up reactivity is defined. (author)

  15. OECD high temperature reactor project Dragon

    International Nuclear Information System (INIS)

    The report comprises three parts entitled: Dragon reactor experiment, research and development and advanced applications, and administration. As for the chapter 'Dragon-reactor experiment', the irradiation program, experimental support and post-irradiation operation are successively discussed. Chapter entitled 'Research and development and advanced applications' is dealing with fuel and graphite (kernel, coating, consolidation studies, and HTR's graphite irradiation), primary circuit materials, the power reactor physics and kinetics, and the HTR technology; the financial situation and staff of the Dragon Project at termination work are especially emphasized in third chapter

  16. Neutron flux variability at the TRIGA MARK II reactor, Ljubljana, as a parameter with applying the k0-method of NAA

    International Nuclear Information System (INIS)

    Neutron flux behaviour during irradiation should be known when applying the k0 method of neutron activation analysis. During two 100-hour operating periods of the TRIGA MARK II reactor, Ljubljana, the flux was measured by means of a 197Au(n,γ)198Au monitor (Eγ=411.8 keV). Cadmium-covered irradiations were also performed to obtain the epithermal flux and thermal-to-epithermal flux ratio variations. Consistency was found between these results and the reactor operators' logbook record. (author) 5 refs.; 3 figs

  17. Preliminary Validation of Computational Model for Neutron Flux Prediction of Thai Research Reactor (TRR-1/M1)

    International Nuclear Information System (INIS)

    This study is a part of an on-going work to develop a computational model of Thai Research Reactor (TRR-1/M1) which is capable of accurately predicting the neutron flux level and spectrum. The computational model was created by MCNPX program and the CT (Central Trimble) in-core irradiation facility was selected as the location to be validated. The compari- son was performed with the flux measurement method routinely practiced at TRR-1/M1, that is, the foil activation technique. In this technique, gold foil is irradiated for a certain period of time and the activity of the irradiated target is measured to derive the thermal neutron flux. Additionally, the flux measurement with SPND (self-powered neutron detector) was also performed for comparison. The thermal neutron flux from the MCNPX simulation was found to be 1.79x1013 neutron/cm2s while that from the foil activation measurement was 4.68x1013 neutron/cm2s. On the other hand, the thermal neutron flux from the measurement using SPND was 2.47x1013 neutron/cm2s. An assessment of the differences between the three methods, the differences of the MCNPX with the foil activation technique were found to be 67.8% and the differences of the MCNPX with the SPND were found to be 27.8%.

  18. Characterization of the irradiation parameters in the IFMIF high flux test region

    Science.gov (United States)

    Daum, E.; Wilson, P. P. H.; Fischer, U.; Ehrlich, K.

    1998-10-01

    The purpose of the international fusion materials irradiation facility (IFMIF) is to provide typical D-T fusion irradiation conditions for future material testing and material development. In order to demonstrate the suitability of IFMIF for irradiation experiments a comprehensive characterization of the neutronics of the high flux test region (HFTR) has been carried out. For Fe, the neutron flux density was found to range between 4 × 10 14 and 10 15 n/s cm 2 which corresponds to 20-55 DPA/FPY in a maximum volume of 550 ± 180 cm 3. Gas production rates were calculated and a H/DPA ratio of 35-50 appm/DPA and a He/DPA ratio of 10-12 appm/DPA were found, which are very similar to those of a DEMO D-T fusion reactor. Additionally, an analysis of the primary knock-on spectra has been performed and a displacement damage characteristic in IFMIF almost ideal to the first wall of DEMO was found. IFMIF therefore provides an adequate environment for the simulation of D-T fusion reactor irradiation conditions.

  19. Characterization of the irradiation parameters in the IFMIF high flux test region

    International Nuclear Information System (INIS)

    The purpose of the international fusion materials irradiation facility (IFMIF) is to provide typical D-T fusion irradiation conditions for future material testing and material development. In order to demonstrate the suitability of IFMIF for irradiation experiments a comprehensive characterization of the neutronics of the high flux test region (HFTR) has been carried out. For Fe, the neutron flux density was found to range between 4 x 1014 and 1015 n/s cm2 which corresponds to 20-55 DPA/FPY in a maximum volume of 550 ± 180 cm3. Gas production rates were calculated and a H/DPA ratio of 35-50 appm/DPA and a He/DPA ratio of 10-12 appm/DPA were found, which are very similar to those of a DEMO D-T fusion reactor. Additionally, an analysis of the primary knock-on spectra has been performed and a displacement damage characteristic in IFMIF almost ideal to the first wall of DEMO was found. IFMIF therefore provides an adequate environment for the simulation of D-T fusion reactor irradiation conditions. (orig.)

  20. Cermet fuel reactors

    International Nuclear Information System (INIS)

    Cermet fueled nuclear reactors are attractive candidates for high performance space power systems. The cermet fuel consists of tungsten-urania hexagonal fuel blocks characterized by high strength at elevated temperatures, a high thermal conductivity and resultant high thermal shock resistance. The concept evolved in the 1960's with the objective of developing a reactor design which could be used for a wide range of mobile power generation systems including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests and in-reactor irradiation tests using cermet fuel were carried out by General Electric in the 1960's as part of the 710 Development Program and by Argonne National laboratory in a subsequent activity. Cermet fuel development programs are currently underway at Argonne National laboratory and Pacific Northwest Laboratory as part of the Multi-Megawatt Space Power Program. Key features of the cermet fueled reactor design are 1) the ability to achieve very high coolant exit temperatures, and 2) thermal shock resistance during rapid power changes, and 3) two barriers to fission product release - the cermet matrix and the fuel element cladding. Additionally, there is a potential for achieving a long operating life because of 1) the neutronic insensitivity of the fast-spectrum core to the buildup of fission products and 2) the utilization of a high strength refractory metal matrix and structural materials. These materials also provide resistance against compression forces that potentially might compact and/or reconfigure the core