WorldWideScience

Sample records for argon time projection

  1. Image Segmentation in Liquid Argon Time Projection Chamber Detector

    CERN Document Server

    Płoński, Piotr; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    The Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. An efficient and automatic reconstruction procedures are required to exploit potential of this imaging technology. Herein, a novel method for segmentation of images from LAr-TPC detectors is presented. The proposed approach computes a feature descriptor for each pixel in the image, which characterizes amplitude distribution in pixel and its neighbourhood. The supervised classifier is employed to distinguish between pixels representing particle's track and noise. The classifier is trained and evaluated on the hand-labeled dataset. The proposed approach can be a preprocessing step for reconstructing algorithms working directly on detector images.

  2. Electron Neutrino Classification in Liquid Argon Time Projection Chamber Detector

    CERN Document Server

    Płoński, Piotr; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    Neutrinos are one of the least known elementary particles. The detection of neutrinos is an extremely difficult task since they are affected only by weak sub-atomic force or gravity. Therefore large detectors are constructed to reveal neutrino's properties. Among them the Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. The computerized methods for automatic reconstruction and identification of particles are needed to fully exploit the potential of the LAr-TPC technique. Herein, the novel method for electron neutrino classification is presented. The method constructs a feature descriptor from images of observed event. It characterizes the signal distribution propagated from vertex of interest, where the particle interacts with the detector medium. The classifier is learned with a constructed feature descriptor to decide whether the images represent the electron neutrino or cascade produced by photons. The proposed ap...

  3. Detection of scintillation light in coincidence with ionizing tracks in a liquid argon time projection chamber

    CERN Document Server

    Cennini, P; Rubbia, Carlo; Sergiampietri, F; Bueno, A G; Campanelli, M; Goudsmit, P; Rubbia, André; Periale, L; Suzuki, S; Chen, C; Chen, Y; He, K; Huang, X; Li, Z; Lu, F; Ma, J; Xu, G; Xu, Z; Zhang, C; Zhang, Q; Zheng, S; Cavanna, F; Mazza, D; Piano Mortari, G; Petrera, S; Rossi, C; Mannocchi, G; Picchi, P; Arneodo, F; De Mitri, I; Palamara, O; Cavalli, D; Ferrari, A; Sala, P R; Borio di Tigliole, A A; Cesana, A; Terrani, M; Zavattari, C; Baibusinov, S; Bettini, A; Carpanese, C; Centro, Sandro; Favaretto, D; Pascoli, D; Pepato, Adriano; Pietropaolo, F; Ventura, Sandro; Benetti, P; Calligarich, E; Campo, S; Coco, S; Dolfini, R; Ghedi, B; Gigli-Berzolari, A; Mauri, F; Mazzone, L; Montanari, C; Piazzoli, A; Rappoldi, A; Raselli, G L; Rebuzzi, D; Rossella, M; Scannicchio, D A; Torre, P; Vignoli, C; Cline, D; Otwinowski, S; Wang, H; Woo, J

    1999-01-01

    A system to detect light from liquid argon scintillation has been implemented in a small, ICARUS-like, liquid argon time projection chamber. The system, which uses a VUV-sensitive photomultiplier to collect the light, has recorded many ionizing tracks from cosmic-rays in coincidence with scintillation signals. Our measurements demonstrate that scintillation light detection can provide an effective method for absolute time measurement of events and eventually a useful trigger signal. (19 refs).

  4. First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; et al.

    2016-10-13

    Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino ($\

  5. First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber

    CERN Document Server

    Acciarri, R; Asaadi, J; Baller, B; Bolton, T; Bromberg, C; Cavanna, F; Church, E; Edmunds, D; Ereditato, A; Farooq, S; Fitzpatrick, R S; Fleming, B; Hackenburg, A; Horton-Smith, G; James, C; Lang, K; Luo, X; Mehdiyev, R; Page, B; Palamara, O; Rebel, B; Schukraft, A; Scanavini, G; Soderberg, M; Spitz, J; Szelc, A M; Weber, M; Yang, T; Zeller, G P

    2016-01-01

    Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino ($\

  6. Convolutional neural networks applied to neutrino events in a liquid argon time projection chamber

    Science.gov (United States)

    Acciarri, R.; Adams, C.; An, R.; Asaadi, J.; Auger, M.; Bagby, L.; Baller, B.; Barr, G.; Bass, M.; Bay, F.; Bishai, M.; Blake, A.; Bolton, T.; Bugel, L.; Camilleri, L.; Caratelli, D.; Carls, B.; Castillo Fernandez, R.; Cavanna, F.; Chen, H.; Church, E.; Cianci, D.; Collin, G. H.; Conrad, J. M.; Convery, M.; Crespo-Anadón, J. I.; Del Tutto, M.; Devitt, D.; Dytman, S.; Eberly, B.; Ereditato, A.; Escudero Sanchez, L.; Esquivel, J.; Fleming, B. T.; Foreman, W.; Furmanski, A. P.; Garvey, G. T.; Genty, V.; Goeldi, D.; Gollapinni, S.; Graf, N.; Gramellini, E.; Greenlee, H.; Grosso, R.; Guenette, R.; Hackenburg, A.; Hamilton, P.; Hen, O.; Hewes, J.; Hill, C.; Ho, J.; Horton-Smith, G.; James, C.; de Vries, J. Jan; Jen, C.-M.; Jiang, L.; Johnson, R. A.; Jones, B. J. P.; Joshi, J.; Jostlein, H.; Kaleko, D.; Karagiorgi, G.; Ketchum, W.; Kirby, B.; Kirby, M.; Kobilarcik, T.; Kreslo, I.; Laube, A.; Li, Y.; Lister, A.; Littlejohn, B. R.; Lockwitz, S.; Lorca, D.; Louis, W. C.; Luethi, M.; Lundberg, B.; Luo, X.; Marchionni, A.; Mariani, C.; Marshall, J.; Martinez Caicedo, D. A.; Meddage, V.; Miceli, T.; Mills, G. B.; Moon, J.; Mooney, M.; Moore, C. D.; Mousseau, J.; Murrells, R.; Naples, D.; Nienaber, P.; Nowak, J.; Palamara, O.; Paolone, V.; Papavassiliou, V.; Pate, S. F.; Pavlovic, Z.; Porzio, D.; Pulliam, G.; Qian, X.; Raaf, J. L.; Rafique, A.; Rochester, L.; von Rohr, C. Rudolf; Russell, B.; Schmitz, D. W.; Schukraft, A.; Seligman, W.; Shaevitz, M. H.; Sinclair, J.; Snider, E. L.; Soderberg, M.; Söldner-Rembold, S.; Soleti, S. R.; Spentzouris, P.; Spitz, J.; St. John, J.; Strauss, T.; Szelc, A. M.; Tagg, N.; Terao, K.; Thomson, M.; Toups, M.; Tsai, Y.-T.; Tufanli, S.; Usher, T.; Van de Water, R. G.; Viren, B.; Weber, M.; Weston, J.; Wickremasinghe, D. A.; Wolbers, S.; Wongjirad, T.; Woodruff, K.; Yang, T.; Zeller, G. P.; Zennamo, J.; Zhang, C.

    2017-03-01

    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.

  7. Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber

    CERN Document Server

    Acciarri, R; An, R; Asaadi, J; Auger, M; Bagby, L; Baller, B; Barr, G; Bass, M; Bay, F; Bishai, M; Blake, A; Bolton, T; Bugel, L; Camilleri, L; Caratelli, D; Carls, B; Fernandez, R Castillo; Cavanna, F; Chen, H; Church, E; Cianci, D; Collin, G H; Conrad, J M; Convery, M; Crespo-Anadón, J I; Del Tutto, M; Devitt, D; Dytman, S; Eberly, B; Ereditato, A; Sanchez, L Escudero; Esquivel, J; Fleming, B T; Foreman, W; Furmanski, A P; Garvey, G T; Genty, V; Goeldi, D; Gollapinni, S; Graf, N; Gramellini, E; Greenlee, H; Grosso, R; Guenette, R; Hackenburg, A; Hamilton, P; Hen, O; Hewes, J; Hill, C; Ho, J; Horton-Smith, G; James, C; de Vries, J Jan; Jen, C -M; Jiang, L; Johnson, R A; Jones, B J P; Joshi, J; Jostlein, H; Kaleko, D; Karagiorgi, G; Ketchum, W; Kirby, B; Kirby, M; Kobilarcik, T; Kreslo, I; Laube, A; Li, Y; Lister, A; Littlejohn, B R; Lockwitz, S; Lorca, D; Louis, W C; Luethi, M; Lundberg, B; Luo, X; Marchionni, A; Mariani, C; Marshall, J; Caicedo, D A Martinez; Meddage, V; Miceli, T; Mills, G B; Moon, J; Mooney, M; Moore, C D; Mousseau, J; Murrells, R; Naples, D; Nienaber, P; Nowak, J; Palamara, O; Paolone, V; Papavassiliou, V; Pate, S F; Pavlovic, Z; Porzio, D; Pulliam, G; Qian, X; Raaf, J L; Rafique, A; Rochester, L; von Rohr, C Rudolf; Russell, B; Schmitz, D W; Schukraft, A; Seligman, W; Shaevitz, M H; Sinclair, J; Snider, E L; Soderberg, M; Söldner-Rembold, S; Soleti, S R; Spentzouris, P; Spitz, J; John, J St; Strauss, T; Szelc, A M; Tagg, N; Terao, K; Thomson, M; Toups, M; Tsai, Y -T; Tufanli, S; Usher, T; Van de Water, R G; Viren, B; Weber, M; Weston, J; Wickremasinghe, D A; Wolbers, S; Wongjirad, T; Woodruff, K; Yang, T; Zeller, G P; Zennamo, J; Zhang, C

    2016-01-01

    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level.

  8. Monitoring Liquid Argon Time Projection Chambers With A Raspberry Pi Camera

    Science.gov (United States)

    Patteson, Crystal

    2016-03-01

    The MicroBooNE detector is the first of three liquid argon (LAr) time projection chambers (TPCs) that are central to the short-baseline neutrino program at Fermilab. These chambers consist of thousands of stainless steel or beryllium-copper sense wires that detect ionization electrons produced when neutrinos interact with liquid argon nuclei inside the detector. The wires are several hundred microns in diameter to several meters in length. The construction of such LAr TPCs often takes place in an assembly hall, which is different from the detector hall where the experiment will operate, as was the case with MicroBooNE. Since in situ access to the chamber and its wires in the beamline enclosure can be limited, we investigate the possibility of using a Raspberry Pi single-board computer connected to a low-cost camera installed inside the cryostat as a cost-efficient way to verify the integrity of the wires after transport. We also highlight other benefits of this monitoring device implemented in MicroBooNE, including detector hall surveillance and verification of the status of LED indicators on detector electronics. The author would like to thank Dr. Matthew Toups for his encouragement and guidance on this research project.

  9. The liquid Argon Time Projection Chamber mid and long term strategy and on-going R&D

    CERN Document Server

    Rubbia, André

    2005-01-01

    The imaging liquid Argon Time Projection Chamber has reached a high level of maturity thanks to the many years of R&D effort conducted by the ICARUS Collaboration. In this paper, we discuss possible future and independent applications of this novel technique.

  10. Performance study of the effective gain of the double phase liquid Argon LEM Time Projection Chamber

    CERN Document Server

    Cantini, C; Gendotti, A; Horikawa, S; Periale, L; Murphy, S; Natterer, G; Regenfus, C; Resnati, F; Sergiampietri, F; Rubbia, A; Viant, T; Wu, S

    2014-01-01

    The Large Electron Multipliers (LEMs) are key components of double phase liquid argon TPCs. The drifting charges after being extracted from the liquid are amplified in the LEM positioned half a centimeter above the liquid in pure argon vapor at 87 K. The LEM is characterised by the size of its dielectric rim around the holes, the thickness of the LEM insulator, the diameter of the holes as well as their geometrical layout. The impact of those design parameters on the amplification were checked by testing seven different LEMs with an active area of 10$\\times$10 cm$^2$ in a double phase liquid argon TPC of 21 cm drift. We studied their response in terms of maximal reachable gain and impact on the collected charge uniformity as well as the long term stability of the gain. We show that we could reach maximal gains of around 150 which corresponds to a signal-to-noise ratio ($S/N$) of about 800 for a minimal ionising particle (MIP) signal on 3 mm readout strips. We could also conclude that the dielectric surfaces i...

  11. Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); et al.

    2015-04-21

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.

  12. Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States

    CERN Document Server

    Acciarri, R; Artrip, D; Baller, B; Bromberg, C; Cavanna, F; Carls, B; Chen, H; Deptuch, G; Epprecht, L; Dharmapalan, R; Foreman, W; Hahn, A; Johnson, M; Jones, B J P; Junk, T; Lang, K; Lockwitz, S; Marchionni, A; Mauger, C; Montanari, C; Mufson, S; Nessi, M; Back, H Olling; Petrillo, G; Pordes, S; Raaf, J; Rebel, B; Sinins, G; Soderberg, M; Spooner, N J C; Stancari, M; Strauss, T; Terao, K; Thorn, C; Tope, T; Toups, M; Urheim, J; Van de Water, R; Wang, H; Wasserman, R; Weber, M; Whittington, D; Yang, T

    2015-01-01

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: $i)$ Argon Purity and Cryogenics, $ii)$ TPC and High Voltage, $iii)$ Electronics, Data Acquisition and Triggering, $iv)$ Scintillation Light Detection, $v)$ Calibration and Test Beams, and $vi)$ Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.

  13. Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector

    CERN Document Server

    Antonello, M

    2013-01-01

    Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach of three-dimensional reconstruction for the LAr TPC with a practical application to track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of real data tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.

  14. Precise 3D Track Reconstruction Algorithm for the ICARUS T600 Liquid Argon Time Projection Chamber Detector

    Directory of Open Access Journals (Sweden)

    M. Antonello

    2013-01-01

    Full Text Available Liquid Argon Time Projection Chamber (LAr TPC detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach to 3D reconstruction for the LAr TPC with a practical application to the track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of stopping particle tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.

  15. A prototype liquid Argon Time Projection Chamber for the study of UV laser multi-photonic ionization

    CERN Document Server

    Rossi, B; Ereditato, A; Haug, S; Hanni, R; Hess, M; Janos, S; Juget, F; Kreslo, I; Lehmann, S; Lutz, P; Mathieu, R; Messina, M; Moser, U; Nydegger, F; Schutz, H U; Weber, M S; Zeller, M

    2009-01-01

    This paper describes the design, realization and operation of a prototype liquid Argon Time Projection Chamber (LAr TPC) detector dedicated to the development of a novel online monitoring and calibration system exploiting UV laser beams. In particular, the system is intended to measure the lifetime of the primary ionization in LAr, in turn related to the LAr purity level. This technique could be exploited by present and next generation large mass LAr TPCs for which monitoring of the performance and calibration plays an important role. Results from the first measurements are presented together with some considerations and outlook.

  16. Measuring Muon-Neutrino Charged-Current Differential Cross Sections with a Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, Joshua B. [Yale Univ., New Haven, CT (United States)

    2011-01-01

    More than 80 years after its proposed existence, the neutrino remains largely mysterious and elusive. Precision measurements of the neutrino's properties are just now beginning to take place. Such measurements are required in order to determine the mass of the neutrino, how many neutrinos there are, if neutrinos are different than anti-neutrinos, and more. Muon-neutrino charged-current differential cross sections on an argon target in terms of the outgoing muon momentum and angle are presented. The measurements have been taken with the ArgoNeuT Liquid Argon Time Projection Chamber (LArTPC) experiment. ArgoNeuT is the first LArTPC to ever take data in a low energy neutrino beam, having collected thousands of neutrino and anti-neutrino events in the NuMI beamline at Fermilab. The results are relevant for long baseline neutrino oscillation experiments searching for non-zero $\\theta_{13}$, CP-violation in the lepton sector, and the sign of the neutrino mass hierarchy, among other things. Furthermore, the differential cross sections are important for understanding the nature of the neutrino-nucleus interaction in general. These measurements represent a significant step forward for LArTPC technology as they are among the first neutrino physics results with such a device.

  17. Performance Of A Liquid Argon Time Projection Chamber Exposed To The WANF Neutrino Beam

    CERN Document Server

    Arneodo, F; Bonesini, M; Borio di Tigliole, A; Boschetti, B; Bueno, A; Calligarich, E; Casagrande, F; Cavalli, D; Cavanna, F; Cennini, P; Centro, Sandro; Cesana, E; Cline, D; Curioni, A; De Mitri, I; De Vecchi, C; Dolfini, R; Ferrari, A; Ghezzi, A; Guglielmi, A; Kisiel, J; Mannocchi, G; Martinez de la Ossa, A; Matthey, C; Mauri, F; Montanari, C; Navas, S; Negri, P; Nicoletto, Marino; Otwinowski, S; Paganoni, M; Palamara, O; Pepato, Adriano; Periale, L; Piano Mortari, G; Picchi, P; Pietropaolo, F; Puccini, A; Pullia, A; Ragazzi, S; Rancati, T; Rappoldi, A; Raselli, G L; Redaelli, N; Rondio, E; Rubbia, André; Rubbia, Carlo; Sala, P R; Sergiampietri, F; Sobczyk, J; Suzuki, S; Tabarelli de Fatis, T; Terrani, M; Terranova, F; Tonazzo, A; Ventura, Sandro; Vignoli, C; Wang, H; Zalewska A

    2006-01-01

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low multiplicity neutrino interactions.

  18. Commissioning of the ArDM experiment at the Canfranc underground laboratory: first steps towards a tonne-scale liquid argon time projection chamber for Dark Matter searches

    Science.gov (United States)

    Calvo, J.; Cantini, C.; Crivelli, P.; Daniel, M.; Di Luise, S.; Gendotti, A.; Horikawa, S.; Montes, B.; Mu, W.; Murphy, S.; Natterer, G.; Nguyen, K.; Periale, L.; Quan, Y.; Radics, B.; Regenfus, C.; Romero, L.; Rubbia, A.; Santorelli, R.; Sergiampietri, F.; Viant, T.; Wu, S.

    2017-03-01

    The Argon Dark Matter (ArDM) experiment consists of a liquid argon (LAr) time projection chamber (TPC) sensitive to nuclear recoils, resulting from scattering of hypothetical Weakly Interacting Massive Particles (WIMPs) on argon targets. With an active target mass of 850 kg ArDM represents an important milestone towards developments for large LAr Dark Matter detectors. Here we present the experimental apparatus currently installed underground at the Laboratorio Subterráneo de Canfranc (LSC), Spain. We show data on gaseous or liquid argon targets recorded in 2015 during the commissioning of ArDM in single phase at zero E-field (ArDM Run I). The data confirms the overall good and stable performance of the ArDM tonne-scale LAr detector.

  19. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Huajie [Princeton Univ., NJ (United States)

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  20. Scintillation time dependence and pulse shape discrimination in liquid argon

    CERN Document Server

    Lippincott, W H; Gastler, D; Hime, A; Kearns, E; McKinsey, D N; Nikkel, J A; Stonehill, L C

    2008-01-01

    Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background and statistics-limited level of electronic recoil contamination to be $7.6\\times10^{-7}$ between 60 and 128 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 72 keVr. Finally, we develop a maximum likelihood method of pulse shape discrimination using the measured scintillation time dependence and predict the sensitivity to WIMP-nucleon scattering in three configurations of a liquid argon dark matter detector.

  1. Proposal for a Full-Scale Prototype Single-Phase Liquid Argon Time Projection Chamber and Detector Beam Test at CERN

    CERN Document Server

    Kutter, T

    2015-01-01

    The Deep Underground Neutrino Experiment (DUNE) will use a large liquid argon (LAr) detector to measure the CP violating phase, determine the neutrino mass hier- archy and perform precision tests of the three-flavor paradigm in long-baseline neutrino oscillations. The detector will consist of four modules each with a fiducial mass of 10 kt of LAr and due to its unprecedented size will allow sensitive searches for proton decay and the detection and measurement of electron neutrinos from core collapse supernovae [1]. The first 10 kt module will use single-phase LAr detection technique and be itself modular in design. The successful manufacturing, installation and operation of several full-scale detector components in a suitable configuration represents a critical engineering milestone prior to the construction and operation of the first full 10 kt DUNE detector module at the SURF underground site. A charged particle beam test of a prototype detector will provide critical calibration measurements as well as inva...

  2. Attosecond time delay in valence photoionization and photorecombination of argon: a TDLDA study

    CERN Document Server

    Magrakvelidze, Maia; Dixit, Gopal; Ivanov, Misha; Chakraborty, Himadri S

    2015-01-01

    We determine and analyze the quantum phases and time delays in photoionization and photorecombination of valence 3p and 3s electrons of argon using the Kohn-Sham local density functional approach. The time-dependent local density approximation (TDLDA) is used to account for the electron correlation. Resulting attosecond Wigner-Smith time delays show excellent agreements with two recent independent experiments on argon that measured the relative 3s-3p time delay in photoionization [Physical Review Letters {\\bf 106}, 143002 (2011)] and the delay in 3p photorecombination [Physical Review Letters {\\bf 112}, 153002 (2014)

  3. Drift time measurement in the ATLAS liquid argon electromagnetic calorimeter using cosmic muons

    DEFF Research Database (Denmark)

    Aad..[], G.; Dam, Mogens; Hansen, Jørgen Beck

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the co......The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact...

  4. Time Passes - Argon Isotopes as Tracers of Fluids in the Earth's Crust

    Science.gov (United States)

    Kelley, Simon P.

    2016-04-01

    Recent experimental measurements of noble gas solubility in silicate minerals (e.g. Jackson et al. 2013, 2015) means that we can begin to explore the use of noble gas partition between minerals and fluids to understand their residence and transport in the Earth's crust. One starting point for this exploration is the distribution of noble gases and halogens in crustal fluids which was reviewed by Kendrick and Burnard (2013). In particular, K&B (2013) noted that time is a key parameter in understanding noble gas tracers in crustal processes; yielding information such as the residence time of water in a reservoir based on 4He acquired from aquifer rocks, and the 40Ar/39Ar age of fluid inclusions based on trapped fluid and minerals in quartz. Argon isotope variations in natural systems have been measured during studies of 40Ar/39Ar ages to quantify the rates and timescales of crustal processes. There are also studies of fluids in similar rocks, notably in fluid inclusions, providing the opportunity to quantify the variations in the crust. Partition of argon between mineral phases under conditions of varying fluid availability can be compared in systems where 40Ar/39Ar measurements indicate the preservation of non-radiogenic argon (both excess and atmospheric) in the minerals. Rather than a simple picture of radiogenic argon contents increasing with crustal age, and gradual depletion of atmospheric argon in deeper fluids, what emerges is a sometimes dynamic and sometimes static system in different zones of the crust. While it can be shown that the hydrous fluid in sandstone reservoirs contained excess argon, analyses of authigenic minerals rarely exhibit 40Ar/39Ar ages in excess of the growth age. In this scenario, the incompatible nature of argon means that the fluid acts as an effective infinite reservoir and radiogenic argon dominates the potassium rich authigenic minerals. The controls on noble gas distribution are also well illustrated by deep crustal rocks such as

  5. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antos, J; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baron, S; Baroncelli, A; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Bedajanek, I; Beddall, A J; Beddall, A; Bednár, P; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besana, M I; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Bosteels, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camarri, P; Cambiaghi, M; Cameron, D; Campabadal Segura, F; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernadez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N; Cataldi, G; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chen, H; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; Cherkaoui El Moursli, R; Tcherniatine, V; Chesneanu, D; Cheu, E; Cheung, S L; Chevalier, L; Chevallier, F; Chiarella, V; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, M; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Clark, A; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coelli, S; Coggeshall, J; Cogneras, E; Cojocaru, C D; Colas, J; Cole, B; Colijn, A P; Collard, C; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Conde Muiño, P; Coniavitis, E; Consonni, M; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Coura Torres, R; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Cranshaw, J; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cwetanski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Silva, P V M; Da Via, C; Dabrowski, W; Dai, T; Dallapiccola, C; Dallison, S J; Daly, C H; Dam, M; Danielsson, H O; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, M; Davison, A R; Dawson, I; Dawson, J W; Daya, R K; De, K; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz-Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S; Deberg, H; Dedes, G; Dedovich, D V; Defay, P O; Degenhardt, J; Dehchar, M; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Deng, W; Denisov, S P; Dennis, C; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, D J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djilkibaev, R; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobos, D; Dobson, E; Dobson, M; Dodd, J; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A; Doyle, A T; Drasal, Z; Driouichi, C; Dris, M; Dubbert, J; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen , M; Duflot, L; Dufour, M A; Dunford, M; Duperrin, A; Duran Yildiz, H; Dushkin, A; Duxfield, R; Dwuznik, M; Düren, M; Ebenstein, W L; Ebke, J; Eckert, S; Eckweiler, S; Edmonds, K; Edwards, C A; Eerola, P; Egorov, K; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Ely, R; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Epshteyn, V S; Ereditato, A; Eriksson, D; Ermoline, I; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evans, H; Fabbri, L; Fabre, C; Facius, K; Fakhrutdinov, R M; Falciano, S; Falou, A C; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Fayard, L; Fayette, F; Febbraro, R; Federic, P; Fedin, O L; Fedorko, I; Fedorko, W; Feligioni, L; Felzmann, C U; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferland, J; Fernandes, B; Fernando, W; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Fiascaris, M; Fiedler, F; Filipcic, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Flores Castillo, L R; Flowerdew, M J; Föhlisch, F; Fokitis, M; Fonseca Martin, T; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; Freestone, J; French, S T; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallas, M V; Gallo, V; Gallop, B J; Gallus, P; Galyaev, E; Gan, K K; Gao, Y S; Gaponenko, A; Garcia-Sciveres, M; García, C; García Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Gatti, C; Gaudio, G; Gaumer, O; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J C; Gazis, E N; Ge, P; Gee, C N P; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Genest, M H; Gentile, S; Georgatos, F; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghez, P; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilbert, L M; Gilchriese, M; Gilewsky, V; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giovannini, P; Giraud, P F; Girtler, P; Giugni, D; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glazov, A; Glitza, K W; Glonti, G L; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goggi, V; Goldfarb, S; Goldin, D; Golling, T; Gollub, N P; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Gonella, L; Gong, C; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorisek, A; Gornicki, E; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Grabowska-Bold, I; Grafström, P; Grahn, K J; Granado Cardoso, L; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Green, B; Greenshaw, T; Greenwood, Z D; Gregor, I M; Grenier, P; Griesmayer, E; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Grishkevich, Y V; Groer, L S; Grognuz, J; Groh, M; Groll, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guarino, V J; Guicheney, C; Guida, A; Guillemin, T; Guler, H; Gunther, J; Guo, B; Gupta, A; Gusakov, Y; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hackenburg, R; Hadavand, H K; Hadley, D R; Haefner, P; Härtel, R; Hajduk, Z; Hakobyan, H; Haller, J; Hamacher, K; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansl-Kozanecka, T; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harrington, R D; Harris, O M; Harrison, K; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hashemi, K; Hassani, S; Hatch, M; Haug, F; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, D; Hayakawa, T; Hayward, H S; Haywood, S J; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, M; Hellman, S; Helsens, C; Hemperek, T; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Henss, T; Hernández Jiménez, Y; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hessey, N P; Hidvegi, A; Higón-Rodriguez, E; Hill, D; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holmgren, S O; Holy, T; Holzbauer, J L; Homma, Y; Homola, P; Horazdovsky, T; Hori, T; Horn, C; Horner, S; Horvat, S; Hostachy, J Y; Hou, S; Houlden, M A; Hoummada, A; Howe, T; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Hughes, E W; Hughes, G; Hughes-Jones, R E; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilyushenka, Y; Imori, M; Ince, T; Ioannou, P; Iodice, M; Irles Quiles, A; Ishikawa, A; Ishino, M; Ishmukhametov, R; Isobe, T; Issakov, V; Issever, C; Istin, S; Itoh, Y; Ivashin, A V; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M; Jahoda, M; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D; Jansen, E; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jarron, P; Jeanty, L; Jen-La Plante, I; Jenni, P; Jez, P; Jézéquel, S; Ji, W; Jia, J; Jiang, Y; Jimenez-Belenguer, M; Jin, G; Jin, S; Jinnouchi, O; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joos, D; Joram, C; Jorge, P M; Juranek, V; Jussel, P; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kalinowski, A; Kama, S; Kanaya, N; Kaneda, M; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Karagounis, M; Karagoz Unel, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasmi, A; Kass, R D; Kastanas, A; Kastoryano, M; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kayumov, F; Kazanin, V A; Kazarinov, M Y; Kazi, S I; Keates, J R; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Kelly, M; Kennedy, J; Kenyon, M; Kepka, O; Kerschen, N; Kersevan, B P; Kersten, S; Kessoku, K; Khakzad, M; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoriauli, G; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kilvington, G; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kind, O; Kind, P; King, B T; Kirk, J; Kirsch, G P; Kirsch, L E; Kiryunin, A E; Kisielewska, D; Kittelmann, T; Kiyamura, H; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimentov, A; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E E; Kluge, T; Kluit, P; Klute, M; Kluth, S; Knecht, N S; Kneringer, E; Ko, B R; Kobayashi, T; Kobel, M; Koblitz, B; Kocian, M; Kocnar, A; Kodys, P; Köneke, K; König, A C; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kohn, F; Kohout, Z; Kohriki, T; Kokott, T; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kolos, S; Kolya, S D; Komar, A A; Komaragiri, J R; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konovalov, S P; Konstantinidis, N; Koperny, S; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kostka, P; Kostyukhin, V V; Kotamäki, M J; Kotov, S; Kotov, V M; Kotov, K Y; Koupilova, Z; Kourkoumelis, C; Koutsman, A; Kowalewski, R; Kowalski, H; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kreisel, A; Krejci, F; Krepouri, A; Kretzschmar, J; Krieger, P; Krobath, G; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumshteyn, Z V; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurchaninov, L L; Kurochkin, Y A; Kus, V; Kuznetsova, E; Kvasnicka, O; Kwee, R; La Rotonda, L; Labarga, L; Labbe, J; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lamanna, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lane, J L; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Laurelli, P; Lavrijsen, W; Laycock, P; Lazarev, A B; Lazzaro, A; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M; Lebedev, A; Lebel, C; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lefebvre, M; Legendre, M; LeGeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leitner, R; Lelas, D; Lellouch, D; Lellouch, J; Leltchouk, M; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leroy, C; Lessard, J R; Lester, C G; Leung Fook Cheong, A; Levêque, J; Levin, D; Levinson, L J; Levitski, M S; Levonian, S; Lewandowska, M; Leyton, M; Li, H; Li, J; Li, S; Li, X; Liang, Z; Liang, Z; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Liko, D; Lilley, J N; Lim, H; Limosani, A; Limper, M; Lin, S C; Lindsay, S W; Linhart, V; Linnemann, J T; Liolios, A; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, T; Liu, Y; Livan, M; Lleres, A; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Lockwitz, S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Lopes, L; Lopez Mateos, D; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Lovas, L; Love, J; Love, P; Lowe, A J; Lu, F; Lu, J; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luisa, L; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lutz, G; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Macana Goia, J A; Maccarrone, G; Macchiolo, A; Macek, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magalhaes Martins, P J; Magradze, E; Magrath, C A; Mahalalel, Y; Mahboubi, K; Mahmood, A; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makouski, M; Makovec, N; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Maltezos, S; Malyshev, V; Malyukov, S; Mambelli, M; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandic, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manjavidze, I D; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti i Garcia, S; Martin, A J; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, T A; Martin dit Latour, B; Martinez, M; Martinez Outschoorn, V; Martini, A; Martyniuk, A C; Maruyama, T; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massaro, G; Massol, N; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsunaga, H; Matsushita, T; Mattravers, C; Maxfield, S J; May, E N; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzanti, P; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCubbin, N A; McFarlane, K W; McGlone, H; Mchedlidze, G; McLaren, R A; McMahon, S J; McMahon, T R; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T M; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melachrinos, C; Melamed-Katz, A; Mellado Garcia, B R; Meng, Z; Menke, S; Meoni, E; Merkl, D; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A M; Messmer, I; Metcalfe, J; Mete, A S; Meyer, J P; Meyer, J; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijovic, L; Mikenberg, G; Mikuz, M; Miller, D W; Mills, W J; Mills, C M; Milov, A; Milstead, D A; Minaenko, A A; Miñano, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Misawa, S; Miscetti, S; Misiejuk, A; Mitrevski, J; Mitsou, V A; Miyagawa, P S; Mjörnmark, J U; Mladenov, D; Moa, T; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohn, B; Mohr, W; Mohrdieck-Möck, S; Moles-Valls, R; Molina-Perez, J; Moloney, G; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Moore, R W; Mora Herrera, C; Moraes, A; Morais, A; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morii, M; Morley, A K; Mornacchi, G; Morozov, S V; Morris, J D; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Muenstermann, D; Muir, A; Munwes, Y; Murillo Garcia, R; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nairz, A M; Nakamura, K; Nakano, I; Nakatsuka, H; Nanava, G; Napier, A; Nash, M; Nation, N R; Nattermann, T; Naumann, T; Navarro, G; Nderitu, S K; Neal, H A; Nebot, E; Nechaeva, P; Negri, A; Negri, G; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neusiedl, A; Neves, R N; Nevski, P; Newcomer, F M; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicoletti, G; Niedercorn, F; Nielsen, J; Nikiforov, A; Nikolaev, K; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, H; Nilsson, P; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nordberg, M; Nordkvist, B; Notz, D; Novakova, J; Nozaki, M; Nozicka, M; Nugent, I M; Nuncio-Quiroz, A -E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Ochi, A; Oda, S; Odaka, S; Odier, J; Odino, G A; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Olcese, M; Olchevski, A G; Oliveira, M; Oliveira Damazio, D; Oliver, J; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Omachi, C; Onofre, A; Onyisi, P U E; Oram, C J; Ordonez, G; Oreglia, M J; Oren, Y; Orestano, D; Orlov, I; Oropeza Barrera, C; Orr, R S; Ortega, E O; Osculati, B; Ospanov, R; Osuna, C; Otec, R; Ottersbach, J P; Ould-Saada, F; Ouraou, A; Ouyang, Q; Owen, M; Owen, S; Oyarzun, A; Ozcan, V E; Ozone, K; Ozturk, N; Pacheco Pages, A; Padhi, S; Padilla Aranda, C; Paganis, E; Pahl, C; Paige, F; Pajchel, K; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Papadopoulou, Th D; Park, S J; Park, W; Parker, M A; Parker, S I; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passardi, G; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Patricelli, S; Patwa, A; Pauly, T; Peak, L S; Pecsy, M; Pedraza Morales, M I; Peleganchuk, S V; Peng, H; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, P; Peshekhonov, V D; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Pfeifer, B; Phan, A; Phillips, A W; Piacquadio, G; Piccinini, M; Piegaia, R; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Ping, J; Pinto, B; Pizio, C; Placakyte, R; Plamondon, M; Plano, W G; Pleier, M A; Poblaguev, A; Poddar, S; Podlyski, F; Poffenberger, P; Poggioli, L; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popovic, D S; Poppleton, A; Popule, J; Portell Bueso, X; Porter, R; Pospelov, G E; Pospichal, P; Pospisil, S; Potekhin, M; Potrap, I N; Potter, C J; Potter, C T; Potter, K P; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Prasad, S; Pravahan, R; Preda, T; Pretzl, K; Pribyl, L; Price, D; Price, L E; Prichard, P M; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przysiezniak, H; Psoroulas, S; Ptacek, E; Puigdengoles, C; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qi, M; Qian, J; Qian, W; Qian, Z; Qin, Z; Qing, D; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radics, B; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammes, M; Ratoff, P N; Rauscher, F; Rauter, E; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renkel, P; Rescia, S; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richards, A; Richards, R A; Richter, R; Richter-Was, E; Ridel, M; Rieke, S; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E R; Roa Romero, D A; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J; Robinson, M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Rodriguez, D; Rodriguez Garcia, Y; Roe, S; Røhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romanov, V M; Romeo, G; Romero Maltrana, D; Roos, L; Ros, E; Rosati, S; Rosenbaum, G A; Rosenberg, E I; Rosselet, L; Rossetti, V; Rossi, L P; Rotaru, M; Rothberg, J; Rottländer, I; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, G; Rühr, F; Ruggieri, F; Ruiz-Martinez, A; Rumyantsev, L; Rusakovich, N A; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybkin, G; Rzaeva, S; Saavedra, A F; Sadrozinski, H F W; Sadykov, R; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchis Lozano, M A; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sanny, B; Sansoni, A; Santamarina Rios, C; Santi, L; Santoni, C; Santonico, R; Santos, J; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sasaki, O; Sasaki, T; Sasao, N; Satsounkevitch, I; Sauvage, G; Savard, P; Savine, A Y; Savinov, V; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schlereth, J L; Schmid, P; Schmieden, K; Schmitt, C; Schmitz, M; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schreiner, A; Schroeder, C; Schroer, N; Schroers, M; Schuler, G; Schultes, J; Schultz-Coulon, H C; Schumacher, J W; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Scott, W G; Searcy, J; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Seliverstov, D M; Sellden, B; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shimojima, M; Shin, T; Shmeleva, A; Shochet, M J; Shupe, M A; Sicho, P; Sidoti, A; Siebel, A; Siegert, F; Siegrist, J; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjoelin, J; Sjursen, T B; Skubic, P; Skvorodnev, N; Slater, M; Slavicek, T; Sliwa, K; Sloper, J; Sluka, T; Smakhtin, V; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Soluk, R; Sondericker, J; Sopko, V; Sopko, B; Sosebee, M; Sosnovtsev, V V; Sospedra Suay, L; Soukharev, A; Spagnolo, S; Spanó, F; Speckmayer, P; Spencer, E; Spighi, R; Spigo, G; Spila, F; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahl, T; Stahlman, J; Stamen, R; Stancu, S N; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Stastny, J; Staude, A; Stavina, P; Stavropoulos, G; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stevenson, K; Stewart, G; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Soh, D A; Su, D; Suchkov, S I; Sugaya, Y; Sugimoto, T; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, T; Suzuki, Y; Sviridov, Yu M; Sykora, I; Sykora, T; Szymocha, T; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taga, A; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Taylor, C; Taylor, F E; Taylor, G N; Taylor, R P; Taylor, W; Teixeira-Dias, P; Ten Kate, H; Teng, P K; Tennenbaum-Katan, Y D; Terada, S; Terashi, K; Terron, J; Terwort, M; Testa, M; Teuscher, R J; Tevlin, C M; Thadome, J; Thananuwong, R; Thioye, M; Thoma, S; Thomas, J P; Thomas, T L; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomson, E; Thun, R P; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timmermans, C J W P; Tipton, P; Tique Aires Viegas, F J; Tisserant, S; Tobias, J; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomasek, L; Tomasek, M; Tomasz, F; Tomoto, M; Tompkins, D; Tompkins, L; Toms, K; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tovey, S N; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Triplett, N; Trischuk, W; Trivedi, A; Trocmé, B; Troncon, C; Trzupek, A; Tsarouchas, C; Tseng, J C L; Tsiafis, I; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J W; Tsuno, S; Tsybychev, D; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Tuts, P M; Twomey, M S; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urkovsky, E; Urquijo, P; Urrejola, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Varela Rodriguez, F; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vasilyeva, L; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vetterli, M C; Vichou, I; Vickey, T; Viehhauser, G H A; Villa, M; Villani, E G; Villaplana Perez, M; Villate, J; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Viret, S; Virzi, J; Vitale, A; Vitells, O V; Vivarelli, I; Vives Vaques, F; Vlachos, S; Vlasak, M; Vlasov, N; Vogel, A; Vokac, P; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vudragovic, D; Vuillermet, R; Vukotic, I; Wagner, P; Wahlen, H; Walbersloh, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Wang, C; Wang, H; Wang, J; Wang, J C; Wang, S M; Ward, C P; Warsinsky, M; Wastie, R; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webel, M; Weber, J; Weber, M D; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Werthenbach, U; Wessels, M; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; White, S; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik, L A M; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wraight, K; Wright, C; Wright, D; Wrona, B; Wu, S L; Wu, X; Wulf, E; Xella, S; Xie, S; Xie, Y; Xu, D; Xu, N; Yamada, M; Yamamoto, A; Yamamoto, S; Yamamura, T; Yamanaka, K; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yao, W M; Yao, Y; Yasu, Y; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S P; Yu, D; Yu, J; Yu, M; Yu, X; Yuan, J; Yuan, L; Yurkewicz, A; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zambrano, V; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zeitnitz, C; Zeller, M; Zema, P F; Zemla, A; Zendler, C; Zenin, O; Zenis, T; Zenonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhan, Z; Zhang, H; Zhang, J; Zhang, Q; Zhang, X; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, Y; Zhuang, X; Zhuravlov, V; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivkovic, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; zur Nedden, M; Zutshi, V

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.7% in the endcaps. This leads to an estimated contribution to the constant term of 0.29% in the barrel and 0.53% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61 +- 0.07 mm/microsecond at 88.5 K and 1 kV/mm.

  6. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ami, S. Ben; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M. I.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Yildiz, H. Duran; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hernández Jiménez, Y.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossetti, V.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Tennenbaum-Katan, Y. D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29^{+0.05}_{-0.04})% in the barrel and (0.54^{+0.06}_{-0.04})% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61±0.07 mm/μs at 88.5 K and 1 kV/mm.

  7. ALICE Time Projection Chamber

    CERN Multimedia

    Lippmann, C

    2013-01-01

    The Time Projection Chamber (TPC) is the main device in the ALICE 'central barrel' for the tracking and identification (PID) of charged particles. It has to cope with unprecedented densities of charges particles.

  8. Proton Scattering on Liquid Argon

    Science.gov (United States)

    Bouabid, Ryan; LArIAT Collaboration

    2017-01-01

    LArIAT (Liquid Argon In A Test-beam) is a liquid argon time projection chamber (LArTPC) positioned in a charged particle beamline whose primary purpose is to study the response of LArTPC's to charged particle interactions. This previously unmeasured experimental data will allow for improvement of Monte Carlo simulations and development of identification techniques, important for future planned LArTPC neutrino experiments. LArIAT's beamline is instrumented to allow for the identification of specific particles as well as measurement of those particles' incoming momenta. Among the particles present in the beamline, the analysis presented here focuses on proton-Argon interactions. This study uses particle trajectories and calorimetric information to identify proton-Argon interaction candidates. We present preliminary data results on the measurement of the proton-Argon cross-section. Liquid Argon In A Test Beam. The work is my analysis made possible through the efforts of LArIAT detector, data, and software.

  9. DELPHI time projection chamber

    CERN Multimedia

    1989-01-01

    The time projection chamber is inserted inside the central detector of the DELPHI experiment. Gas is ionised in the chamber as a charged particle passes through, producing an electric signal from which the path of the particle can be found. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  10. Future liquid Argon detectors

    CERN Document Server

    Rubbia, A

    2013-01-01

    The Liquid Argon Time Projection Chamber offers an innovative technology for a new class of massive detectors for rare-event detection. It is a precise tracking device that allows three-dimensional spatial reconstruction with mm-scale precision of the morphology of ionizing tracks with the imaging quality of a "bubble chamber", provides $dE/dx$ information with high sampling rate, and acts as high-resolution calorimeter for contained events. First proposed in 1977 and after a long maturing process, its holds today the potentialities of opening new physics opportunities by providing excellent tracking and calorimetry performance at the relevant multi-kton mass scales, outperforming other techniques. In this paper, we review future liquid argon detectors presently being discussed by the neutrino physics community.

  11. A multi-term solution of the space-time Boltzmann equation for electrons in gaseous and liquid Argon

    CERN Document Server

    Boyle, G J; Tattersall, W J; McEachran, R P; White, R D

    2015-01-01

    In a recent paper [1] the scattering and transport of excess electrons in liquid argon in the hydrodynamic regime was investigated, generalizing the seminal works of Lekner and Cohen [2,3] with modern scattering theory techniques and kinetic theory. In this paper, the discussion is extended to the non-hydrodynamic regime through the development of a full multi-term space-time solution of Boltzmann's equation for electron transport in gases and liquids using a novel operator-splitting method. A Green's function formalism is considered that enables flexible adaptation to various experimental systems. The spatio-temporal evolution of electrons in liquids in the hydrodynamic regime is studied for a benchmark model Percus-Yevick liquid as well as for liquid argon. The temporal evolution of Franck-Hertz oscillations are observed for liquids, with striking differences in the spatio-temporal development of the velocity distribution function components between the uncorrelated gas and true liquid approximations in arg...

  12. Study on statistical breakdown delay time in argon gas using a W-band millimeter-wave gyrotron

    Science.gov (United States)

    Kim, Dongsung; Kim, Sung Gug; Sawant, Ashwini; Yu, Dongho; Choe, MunSeok; Choi, EunMi

    2016-04-01

    In this study, we investigated plasma initiation delay times for argon volume breakdown at the W-band frequency regime. The threshold electric field is defined as the minimum electric field amplitude needed for plasma breakdown at various pressures. The measured statistical delay time showed an excellent agreement with the theoretical Gaussian distribution and the theoretically estimated formative delay time. Also, we demonstrated that the normalized effective electric field as a function of the product of pressure and formative time shows an outstanding agreement to that of 1D particle-in-cell simulation coupled with a Monte Carlo collision model [H. C. Kim and J. P. Verboncoeur, Phys. Plasmas 13, 123506 (2006)].

  13. Time-resolved characterization of a filamentary argon discharge at atmospheric pressure in a capillary using emission and absorption spectroscopy

    Science.gov (United States)

    Schröter, Sandra; Pothiraja, Ramasamy; Awakowicz, Peter; Bibinov, Nikita; Böke, Marc; Niermann, Benedikt; Winter, Jörg

    2013-11-01

    An argon/nitrogen (0.999/0.001) filamentary pulsed discharge operated at atmospheric pressure in a quartz tube is characterized using voltage-current measurements, microphotography, optical emission spectroscopy (OES) and absorption spectroscopy. Nitrogen is applied as a sensor gas for the purpose of OES diagnostic. The density of argon metastable atoms Ar(3P2) is determined using tunable diode laser absorption spectroscopy (TDLAS). Using a plasma chemical model the measured OES data are applied for the characterization of the plasma conditions. Between intense positive pulses the discharge current oscillates with a damped amplitude. It is established that an electric current flows in this discharge not only through a thin plasma filament that is observed in the discharge image but also through the whole cross section of the quartz tube. A diffuse plasma fills the quartz tube during a time between intense current pulses. Ionization waves are propagating in this plasma between the spike and the grounded area of the tube producing thin plasma channels. The diameter of these channels increases during the pause between the propagation of ionization waves probably because of thermal expansion and diffusion. Inside the channels electron densities of ˜2 × 1013 cm-3, argon metastable densities ˜1014 cm-3 and a reduced electric field about 10 Td are determined.

  14. ICARUS and status of liquid argon technology

    CERN Document Server

    Menegolli, Alessandro

    2012-01-01

    ICARUS T600 is the largest liquid Argon Time Projection Chamber (LAr TPC) detector ever realized. It operates underground at the LNGS laboratory in Gran Sasso. It has been smoothly running since summer 2010, collecting data with the CNGS (Cern to Gran Sasso) beam and with cosmic particles. Liquid Argon TPCs are indeed 'electronic bubble chambers', providing a completely uniform imaging calorimetry with unprecedented accuracy on such massive volumes. ICARUS T600 is internationally considered as a milestone towards the realization of the next generation of massive detectors (tens of ktons) for neutrino and rare event physics. Results will be presented on the data collected so far with the detector.

  15. Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors

    Science.gov (United States)

    Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin

    2017-01-01

    Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.

  16. Developing Detectors for Scintillation Light in Liquid Argon for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Bruce [Fermilab

    2016-12-22

    The Deep Underground Neutrino experiment will conduct a broad program of physics research by studying a beam of neutrinos from Fermilab, atmospheric neutrinos, neutrinos from potential supernovae, and potential nucleon decay events. In pursuit of these studies, the experiment will deploy four 10kt fiducial mass liquid argon time projection chambers underground in Lead, South Dakota. Liquid argon time projection chambers allow high-resolution tracking and energy measurements. A precise timing signal is needed to provide the necessary time stamp to localize events in the drift direction. As liquid argon is a natural scintillator, a photon detection system will be deployed to provide such a signal, especially for non-beam events. In the baseline design for the single-phase time projection chamber, the detectors are contained within the anode plane assemblies. The design of two prototypes utilizing wavelength shifters and light guides are presented, and aspects of the research and development program are discussed.

  17. The Effect of Argon Ambient Pressure and Annealing Time on Bulk MgB2 Superconductor

    Science.gov (United States)

    Erdem, Murat; Ozturk, Ozgur; Asikuzun, Elif; Kaya, Seydanur; Safran, Serap; Kilic, Ahmet; Terzioglu, Cabir

    2015-03-01

    The effects of Ar ambient pressure (vacuum, 0B, 10B and 20B) and annealing times (0.5 h and 1 h) on microstructural, superconducting and mechanical properties of bulk superconducting MgB2 are investigated. The samples are produced using the solid state reaction method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements were performed for determination of the crystal structure, and surface morphology of MgB2 samples, respectively. The superconducting properties were studied by AC magnetic susceptibility and DC resistivity measurements. Increasing the Ar pressure decreased the lattice parameters and hence the average grain size. Increasing the annealing time results in larger lattice parameters and larger grain formation. The susceptibility measurements revealed two step transition which is reminiscent of granular superconductors. The intra-grain transition temperature is determined to be 38.4 K for all samples. The inter-grain transition temperatures of 37.2 K is obtained for samples produced under Ar ambient. The samples produced under Ar ambient have better superconducting properties than the ones produced in vacuum. Increasing the annealing time under vacuum further decreases the superconducting properties probably due to Mg loss. This research is supported by Kastamonu University Scientific Research Projects Coordination Department under the Grant No. KUBAP-03/2012-03.

  18. The ALICE time projection chamber

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    This time projection chamber is part of the ALICE detector on the new LHC accelerator at CERN. Particles produced in collisions at the core of the detector will follow paths outward through the various sub-detector layers. If these particles carry a charge, they will ionise the gas contained within this chamber producing an electric signal as the ions drift in the chamber's electric field.

  19. Argon in action

    CERN Multimedia

    Corinne Pralavorio

    2015-01-01

    Over the past few days, the SPS has been accelerating argon ions, which have started to be sent to the NA61/SHINE experiment. This operating mode, using a new type of ion, required a number of modifications to the accelerator.   Picture 1: a “super-cycle” of the SPS, featuring a proton cycle for the LHC, followed by an argon ion cycle for the North Area. Today, the accelerators are once again juggling particles and even performing completely new tricks. The SPS is supplying beams of argon ions for the first time, at energies never before achieved for this type of beam. They are destined for the NA61/SHINE experiment (see box) located in the North Area, which began receiving the beams on 11 February. Argon ions have a relatively large mass, as they consist of 40 nucleons, so they can be used in a similar way to lead ions. The main difficulty in accelerating them lies in the SPS, where the variation in acceleration frequency is limited. “The SPS was designed for a...

  20. The CAST Time Projection Chamber

    CERN Document Server

    Autiero, D; Cébrian, S; Carmona, J M; Chesi, Enrico Guido; Davenport, M; Delattre, M; Di Lella, L; Formenti, F; Gomez, H; Hasinoff, M; Irastorza, I G; Lakic, B; Luzón, G; Morales, J; Musa, L; Ortiz, A; Placci, A; Rodríguez, A; Ruz, J; Villar, J A; Zioutas, K

    2007-01-01

    One of the three X-ray detectors of the CAST experiment searching for solar axions is a Time Projection Chamber (TPC) with a multi-wire proportional counter (MWPC) as a readout structure. Its design has been optimized to provide high sensitivity to the detection of the low intensity X-ray signal expected in the CAST experiment. A low hardware threshold of 0.8 keV is safely set during normal data taking periods, and the overall efficiency for the detection of photons coming from conversion of solar axions is 62 %. Shielding has been installed around the detector, lowering the background level to 4.10 x 10^-5 counts/cm^2/s/keV between 1 and 10 keV. During phase I of the CAST experiment the TPC has provided robust and stable operation, thus contributing with a competitive result to the overall CAST limit on axion-photon coupling and mass.

  1. Investigations on the time evolution of the plasma density in argon electron-beam plasma at intermediate pressure

    Science.gov (United States)

    Xiaoyan, BAI; Chen, CHEN; Hong, LI; Wandong, LIU

    2017-03-01

    The time evolution of the argon electron-beam plasma at intermediate pressure and low electron beam intensity was presented. By applying the amplitude modulation with the frequency of 20 Hz on the stable beam current, the plasma evolution was studied. A Faraday cup was used for the measurement of the electron beam current and a single electrostatic probe was used for the measurement of the ion current. Experimental results indicated that the ion current was in phase with the electron beam current in the pressure range from 200 Pa to 3000 Pa and in the beam current range lower than 20 mA, the residual density increased approximately linearly with the maximum density in the log-log plot and the fitting coefficient was irrelative to the pressure. And then three kinds of kinetic models were developed and the simulated results given by the kinetic model, without the consideration of the excited atoms, mostly approached to the experimental results. This indicated that the effect of the excited atoms on the plasma density can be ignored at intermediate pressure and low electron beam current intensity, which can greatly simplify the kinetic model. In the end, the decrease of the plasma density when the beam current was suddenly off was studied based on the simplified model and it was found that the decease characteristic at intermediate pressure was approximate to the one at high pressure at low electron beam intensity, which was in good accordance with the experimental results. Supported by National Natural Science Foundations of China (No. 11375187) and the Foundation of State key Laboratory of China (No. SKLIPR1510).

  2. The SAMURAI Time Projection Chamber

    Science.gov (United States)

    Dye, Steven

    2011-10-01

    The SAMURAI Time Projection Chamber (TPC) will be used to study particle collisions by colliding a beam of particles with a stationary gas which will be contained in a field cage inside the TPC. When the beam collides with the gas, charged particles are accelerated into the pad plane by an electric field. The paths of these particles will be curved by a magnetic field created by the SAMURAI magnet at the RIKEN facility in Japan. The charged particles will then collide with the pad plane which will be located on the bottom of the TPC. The pad plane will take these collisions and create electrical signals and send them to supporting electronics where the data can be interpreted. The TPC will be used to help determine the Equation of State for asymmetric nuclear matter. Measurements of neutron, proton, 3H and 3He flow will be taken with the NEBULA array which consists of nebula scintillators. The poster will contain information on the laser calibration system and the electronics that will be used for the TPC. The electronics used are the same electronics used in the STAR TPC experiment.

  3. The CAST time projection chamber

    Science.gov (United States)

    Autiero, D.; Beltrán, B.; Carmona, J. M.; Cebrián, S.; Chesi, E.; Davenport, M.; Delattre, M.; Di Lella, L.; Formenti, F.; Irastorza, I. G.; Gómez, H.; Hasinoff, M.; Lakic, B.; Luzón, G.; Morales, J.; Musa, L.; Ortiz, A.; Placci, A.; Rodrigurez, A.; Ruz, J.; Villar, J. A.; Zioutas, K.

    2007-06-01

    One of the three x-ray detectors of the CERN Axion Solar Telescope (CAST) experiment searching for solar axions is a time projection chamber (TPC) with a multi-wire proportional counter (MWPC) as a readout structure. Its design has been optimized to provide high sensitivity to the detection of the low intensity x-ray signal expected in the CAST experiment. A low hardware threshold of 0.8 keV is set to a safe level during normal data taking periods, and the overall efficiency for the detection of photons coming from conversion of solar axions is 62%. Shielding has been installed around the detector, lowering the background level to 4.10 × 10-5 counts cm-2 s-1 keV-1 between 1 and 10 keV. During phase I of the CAST experiment the TPC has provided robust and stable operation, thus contributing with a competitive result to the overall CAST limit on axion photon coupling and mass.

  4. Visualization in Real-Time Experiment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project will be to migrate some of the outputs from the WFF Mission Planning Lab (MPL) into a real-time visualization system.  The MPL is...

  5. The world's largest time projection chamber

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Peter Glassel, the technical coordinator for the ALICE time projection chamber, is seen sitting inside the detector; the largest in the world at nearly 100 cubic metres. Thousands of wires are connected to read out electronic data produced as particles are created in lead-lead collisions at the centre of the detector. These particles will cause the medium within the time projection chamber to ionise along their tracks allowing the particle paths to be recreated.

  6. Effect of Low Electric Fields on Alpha Scintillation Light Yield in Liquid Argon

    CERN Document Server

    Agnes, P; Alexander, T; Alton, A K; Asner, D M; Back, H O; Baldin, B; Biery, K; Bocci, V; Bonfini, G; Bonivento, W; Bossa, M; Bottino, B; Brigatti, A; Brodsky, J; Budano, F; Bussino, S; Cadeddu, M; Cadoni, M; Calaprice, F; Canci, N; Candela, A; Caravati, M; Cariello, M; Carlini, M; Catalanotti, S; Cavalcante, P; Chepurnov, A; Cicalò, C; Cocco, A G; Covone, G; D'Angelo, D; D'Incecco, M; Davini, S; De Cecco, S; De Deo, M; De Vincenzi, M; Derbin, A; Devoto, A; Di Eusanio, F; Di Pietro, G; Dionisi, C; Edkins, E; Empl, A; Fan, A; Fiorillo, G; Fomenko, K; Forster, G; Franco, D; Gabriele, F; Galbiati, C; Giagu, S; Giganti, C; Giovanetti, G K; Goretti, A M; Granato, F; Gromov, M; Guan, M; Guardincerri, Y; Hackett, B R; Herner, K; Hughes, D; Humble, P; Hungerford, E V; Ianni, A; James, I; Johnson, T N; Jollet, C; Keeter, K; Kendziora, C L; Koh, G; Korablev, D; Korga, G; Kubankin, A; Li, X; Lissia, M; Loer, B; Lombardi, P; Longo, G; Ma, Y; Machulin, I N; Mandarano, A; Mari, S M; Maricic, J; Marini, L; Martoff, C J; Meregaglia, A; Meyers, P D; Milincic, R; Miller, J D; Montanari, D; Monte, A; Mount, B J; Muratova, V N; Musico, P; Napolitano, J; Agasson, A Navrer; Odrowski, S; Oleinik, A; Orsini, M; Ortica, F; Pagani, L; Pallavicini, M; Pantic, E; Parmeggiano, S; Pelczar, K; Pelliccia, N; Pocar, A; Pordes, S; Pugachev, D A; Qian, H; Randle, K; Ranucci, G; Razeti, M; Razeto, A; Reinhold, B; Renshaw, A L; Rescigno, M; Riffard, Q; Romani, A; Rossi, B; Rossi, N; Rountree, D; Sablone, D; Saggese, P; Sands, W; Savarese, C; Schlitzer, B; Segreto, E; Semenov, D A; Shields, E; Singh, P N; Skorokhvatov, M D; Smirnov, O; Sotnikov, A; Stanford, C; Suvorov, Y; Tartaglia, R; Tatarowicz, J; Testera, G; Tonazzo, A; Trinchese, P; Unzhakov, E V; Verducci, M; Vishneva, A; Vogelaar, B; Wada, M; Walker, S; Wang, H; Wang, Y; Watson, A W; Westerdale, S; Wilhelmi, J; Wojcik, M M; Xiang, X; Xiao, X; Xu, J; Yang, C; Zhong, W; Zhu, C; Zuzel, G

    2016-01-01

    Measurements were made of scintillation light yield of alpha particles from the $^{222}$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a $\\sim$2% increase in light yield compared to alphas in no field.

  7. Effect of low electric fields on alpha scintillation light yield in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D' Angelo, D.; D' Incecco, M.; Davini, S.; Cecco, S. De; Deo, M. De; Vincenzi, M. De; Derbin, A.; Devoto, A.; Eusanio, F. Di; Pietro, G. Di; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Agasson, A. Navrer; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.

    2017-01-01

    Measurements were made of scintillation light yield of alpha particles from the $^{222}$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field.

  8. Results from the first use of low radioactivity argon in a dark matter search

    Science.gov (United States)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2016-04-01

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).

  9. Low radioactivity argon dark matter search results from the DarkSide-50 experiment

    CERN Document Server

    Agnes, P; Albuquerque, I F M; Alexander, T; Alton, A K; Arisaka, K; Back, H O; Baldin, B; Biery, K; Bonfini, G; Bossa, M; Bottino, B; Brigatti, A; Brodsky, J; Budano, F; Bussino, S; Cadeddu, M; Cadonati, L; Cadoni, M; Calaprice, F; Canci, N; Candela, A; Cao, H; Cariello, M; Carlini, M; Catalanotti, S; Cavalcante, P; Chepurnov, A; Cocco, A G; Covone, G; Crippa, L; D'Angelo, D; D'Incecco, M; Davini, S; De Cecco, S; De Deo, M; De Vincenzi, M; Derbin, A; Devoto, 25 A; Di Eusanio, F; Di Pietro, G; Edkins, E; Empl, A; Fan, A; Fiorillo, G; Fomenko, K; Forster, G; Franco, D; Gabriele, F; Galbiati, C; Giganti, C; Goretti, A M; Granato, F; Grandi, L; Gromov, M; Guan, M; Guardincerri, Y; Hackett, B R; Herner, K; Hungerford, E V; Ianni, Al; Ianni, An; James, I; Jollet, C; Keeter, K; Kendziora, C L; Kobychev, V; Koh, G; Korablev, D; Korga, G; Kubankin, A; Li, X; Lissia, M; Lombardi, P; Luitz, S; Ma, Y; Machulin, I N; Mandarano, A; Mari, S M; Maricic, J; Marini, L; Martoff, C J; Meregaglia, A; Meyers, P D; Miletic, T; Milincic, R; Montanari, D; Monte, A; Montuschi, M; Monzani, M; Mosteiro, P; Mount, B J; Muratova, V N; Musico, P; Napolitano, J; Nelson, A; Odrowski, S; Orsini, M; Ortica, F; Pagani, L; Pallavicini, M; Pantic, E; Parmeggiano, S; Pelczar, K; Pelliccia, N; Perasso, S; Pocar, A; Pordes, S; Pugachev, D A; Qian, H; Randle, K; Ranucci, G; Razeto, A; Reinhold, B; Renshaw, A L; Romani, A; Rossi, B; Rossi, N; Rountree, D; Sablone, D; Saggese, P; Saldanha, R; Sands, W; Sangiorgio, S; Savarese, C; Segreto, E; Semenov, D A; Shields, E; Singh, P N; Skorokhvatov, M D; Smallcomb, M; Smirnov, O; Sotnikov, A; Stanford, C; Suvorov, Y; Tartaglia, R; Tatarowicz, J; Testera, G; Tonazzo, A; Trinchese, P; Unzhakov, E V; Vishneva, A; Vogelaar, B; Wada, M; Walker, S; Wang, H; Wang, Y; Watson, A W; Westerdale, S; Wilhelmi, J; Wojcik, M M; Xiang, X; Xu, J; Yang, C; Yoo, J; Zavatarelli, S; Zec, A; Zhong, W; Zhu, C; Zuzel, G

    2015-01-01

    The DarkSide-50 dark matter search reports the first results obtained using a target of low-radioactivity argon extracted from underground sources. The experiment is located at the Laboratori Nazionali del Gran Sasso and uses a two-phase time projection chamber as a detector. A total of 155 kg of low radioactivity argon has been obtained, and we have determined that underground argon is depleted in Ar-39 by a factor (1.4 +- 0.2) x 10^3 relative to atmospheric argon. The underground argon was also found to contain (2.05 +- 0.13) mBq/kg of Kr-85. We found no evidence for dark matter in the form of WIMPs in 70.9 live-days of data with a fiducial mass of (36.9 +- 0.6) kg. When combined with our preceding search with an atmospheric argon target, we set a 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section of 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43 cm^2 ) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2 ).

  10. A pressurized argon gas TPC as DUNE near detector

    CERN Document Server

    Martin-Albo, J

    2016-01-01

    DUNE is a new international experiment for neutrino physics and nucleon decay searches. It will consist of two detectors, about 1300 km apart, exposed to a multi-megawatt neutrino beam that will be built at Fermilab. One of the two detectors will be installed several hundred meters downstream of the neutrino production point with the primary role of characterising the energy spectrum and composition of the beam as well as performing precision measurements of neutrino cross sections. For the design of this so-called near detector, the DUNE Collaboration is considering, among other technologies, a pressurized argon gas time projection chamber. Such a detector, thanks to its low density and low detection thresholds, would allow the detailed measurement in argon of nuclear effects at the neutrino interaction vertex, which are considered at present one of the most important sources of systematic uncertainty for neutrino oscillation measurements.

  11. Argon metastables in HiPIMS: validation of the ionization region model by direct comparison to time resolved tunable diode-laser diagnostics

    Science.gov (United States)

    Stancu, G. D.; Brenning, N.; Vitelaru, C.; Lundin, D.; Minea, T.

    2015-08-01

    The volume plasma interactions of high power impulse magnetron sputtering (HiPIMS) discharges operated with a Ti target is analyzed in detail by combining time-resolved diagnostics with modeling of plasma kinetics. The model employed is the ionization region model (IRM) with an improved and detailed treatment of the kinetics of the argon metastable (Arm) state, called m-IRM. The diagnostics used is tunable diode-laser absorption spectroscopy (TD-LAS) of the Arm state, which gives the line-of-sight density integrated along the laser path parallel to the target surface. The TD-LAS recordings exhibit quite complex temporal evolutions Arm(t), with distinct features that are shown to reflect the time evolution of the plasma (the electron density and temperature), and of the argon gas (gas rarefaction and refill). The Arm(t) function is thus a tracer for the most important aspects of internal discharge physics, and therefore suitable for model testing and validation. The IRM model is constructed to be locked to obey specific experimental macroscopic discharge parameters, specifically the discharge current ID(t) and the voltage UD(t). It has to this purpose been run with the appropriate process gas pressures (from 0.67 to 2.67 Pa), with the experimentally applied voltage pulse profiles UD(t), and with the resulting current pulse profiles ID(t) (with maxima from 0.5 to 70 A). It is shown that the model reproduces the features in the TD-LAS measurements: both the Arm(t) evolution in single pulses, and how the pulse shapes change with gas pressure and with pulse amplitude. The good agreement between the measurements and model output is in this work taken to validate the basic assumptions of the m-IRM. In addition, the m-IRM results have been used to unravel the connections between volume plasma kinetics and various features recorded in the TD-LAS measurement, and to generalize the foremost characteristics of the studied discharges.

  12. Opacity of Shock-Generated Argon Plasmas

    Institute of Scientific and Technical Information of China (English)

    王藩侯; 陈敬平; 周显明; 李西军; 经福谦; 孟续军; 孙永盛

    2001-01-01

    Argon plasmas with uniform density and temperature are generated by a planar shock wave through argon gas. The opacities of argon plasma, covering the thermodynamic states at temperatures of 1.4-2.2eV and in densities of 0.0083- 0.015 g/cm3, are investigated by measuring the emitted radiance versus time at several visible wavelengths. Comparison of the measured opacities with those calculated demonstrates that the average atom model can be used well to describe the essential transport behaviour of photons in argon plasma under the abovementioned thermodynamic condition. A simplified and self-consistent method to deduce the reflectivity R(λ) at the baseplate surface is applied. It demonstrates that the values of R(λ) are all around 0.4 in the experiments, which are basically in agreement with those given by Erskine previously (1994 J. Quant. Spectrosc. Radiat.Transfer 51 97).

  13. Evidence for Argon Content in Pure Oxygen from Thermal Data

    Science.gov (United States)

    Steur, Peter P. M.; Yang, Inseok; Pavese, Franco

    2017-02-01

    Since many years it is known that argon impurities in oxygen change the temperature of the oxygen triple point by +12 K{\\cdot }mol^{-1} (positive, while most impurities decrease the temperature) without any effect on the melting range of this transition, for the impurity concentrations usually encountered in nominally pure gases. It has been hypothesized that thermal measurements on the α -β solid-to-solid transition at 23.8 K or the β -γ solid-to-solid transition at 43.8 K may give reliable evidence regarding the argon content. However, such measurements require very long times for full completion of each transition (with prohibitive costs if liquid helium is used) and for the α -β solid-to-solid transition the heat pulse method cannot be applied reliably. The availability of closed-cycle refrigerators permits the first obstacle to be surmounted. The automatic system earlier developed at INRIM during the EU Multicells project and used extensively for the project on the isotopic effect in neon is perfectly suited for such measurements. Thus, the uncertainties of the temperature measurements are similar to those obtained previously (of the order of 0.1 mK or less). Three argon-in-oxygen mixtures were prepared gravimetrically and certified at KRISS, just as was previously done for the work on the neon isotopic compositions. Results of continuous-current measurements on the α -β solid-to-solid transition, along with the triple-point data obtained with the heat pulse method, are presented for one cell with a known doped argon content, to be compared with similar data from a cell with oxygen of very high purity. In addition, some preliminary data for the β -γ solid-to-solid transition are given. The measurements on the mixture with the highest argon content, about 1002 μmol{\\cdot } mol^{-1}, imply a (linear) sensitivity of (116 ± 7) K{\\cdot }mol^{-1} for the α -β transition. This sensitivity may be different at much lower argon contents, and follow

  14. Large Area Pico-second Photodetectors (LAPPD) in Liquid Argon

    Science.gov (United States)

    Dharmapalan, Ranjan; Lappd Collaboration

    2015-04-01

    The Large Area Pico-second Photodetector (LAPPD) project has recently produced the first working devices with a small form factor and pico-second timing resolution. A number of current and proposed neutrino and dark matter experiments use liquid argon as a detector medium. A flat photodetector with excellent timing resolution will help with background suppression and improve the overall sensitivity of the experiment. We present the research done and some preliminary results to customize the LAPPD devices to work in a cryogenic environment. Argonne National Laboratory (LDRD) and DOE.

  15. Argon Collection And Purification For Proliferation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-09

    In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event was a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.

  16. Liquid Argon TPC Signal Formation, Signal Processing and Hit Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Baller, Bruce [Fermilab

    2017-03-11

    This document describes the early stage of the reconstruction chain that was developed for the ArgoNeuT and MicroBooNE experiments at Fermilab. These experiments study accelerator neutrino interactions that occur in a Liquid Argon Time Projection Chamber. Reconstructing the properties of particles produced in these interactions requires knowledge of the micro-physics processes that affect the creation and transport of ionization electrons to the readout system. A wire signal deconvolution technique was developed to convert wire signals to a standard form for hit reconstruction, to remove artifacts in the electronics chain and to remove coherent noise.

  17. Project Management in Real Time: A Service-Learning Project

    Science.gov (United States)

    Larson, Erik; Drexler, John A., Jr.

    2010-01-01

    This article describes a service-learning assignment for a project management course. It is designed to facilitate hands-on student learning of both the technical and the interpersonal aspects of project management, and it involves student engagement with real customers and real stakeholders in the creation of real events with real outcomes. As…

  18. The scintillation of liquid argon

    CERN Document Server

    Heindl, T; Hofmann, M; Krücken, R; Oberauer, L; Potzel, W; Wieser, J; Ulrich, A

    2015-01-01

    A spectroscopic study of liquid argon from the vacuum ultraviolet at 110 nm to 1000 nm is presented. Excitation was performed using continuous and pulsed 12 keV electron beams. The emission is dominated by the analogue of the so called 2nd excimer continuum. Various additional emission features were found. The time structure of the light emission has been measured for a set of well defined wavelength positions. The results help to interpret literature data in the context of liquid rare gas detectors in which the wavelength information is lost due to the use of wavelength shifters.

  19. LIQUID ARGON CALORIMETER PERFORMANCE AT HIGH RATES

    CERN Document Server

    Kukhtin, V; The ATLAS collaboration

    2011-01-01

    The performance of the ATLAS liquid argon endcap and forward calorimeters has been projected at the planned high luminosity LHC option HL-LHC by exposing small calorimeter modules of the electromagnetic, hadronic, and forward calorimeters to high intensity proton beams at IHEP/Protvino accelerator. The results of HV current and of pulse shape analysis, and also the dependence of signal amplitude on beam intensity are presented.

  20. Liquid argon dielectric breakdown studies with the MicroBooNE purification system

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; Carls, B.; James, C.; Johnson, B.; Jostlein, H.; Lockwitz, S.; Lundberg, B.; Raaf, J. L.; Rameika, R.; Rebel, B.; Zeller, G. P.; Zuckerbrot, M.

    2014-11-01

    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per-trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  1. Liquid Argon Dielectric Breakdown Studies with the MicroBooNE Purification System

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R. [Fermilab; Carls, B. [Fermilab; James, C. [Fermilab; Johnson, B. [Fermilab; Jostlein, H. [Fermilab; Lockwitz, S. [Fermilab; Lundberg, B. [Fermilab; Raaf, J. L. [Fermilab; Rameika, R. [Fermilab; Rebel, B. [Fermilab; Zeller, G. P. [Fermilab; Zuckerbrot, M. [Fermilab

    2014-11-04

    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per-trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  2. Liquid Argon Dielectric Breakdown Studies with the MicroBooNE Purification System

    CERN Document Server

    Acciarri, R; James, C; Johnson, B; Jostlein, H; Lockwitz, S; Lundberg, B; Raaf, J L; Rameika, R; Rebel, B; Zeller, G P; Zuckerbrot, M

    2014-01-01

    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per- trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  3. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy β and nuclear recoils in liquid argon with DEAP-1

    Science.gov (United States)

    Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boudjemline, K.; Boulay, M. G.; Broerman, B.; Bueno, J. F.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chouinard, R.; Cleveland, B. T.; Cranshaw, D.; Dering, K.; Duncan, F.; Fatemighomi, N.; Ford, R.; Gagnon, R.; Giampa, P.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Grace, E.; Graham, K.; Grant, D. R.; Hakobyan, R.; Hallin, A. L.; Hamstra, M.; Harvey, P.; Hearns, C.; Hofgartner, J.; Jillings, C. J.; Kuźniak, M.; Lawson, I.; La Zia, F.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Lippincott, W. H.; Mathew, R.; McDonald, A. B.; McElroy, T.; McFarlane, K.; McKinsey, D. N.; Mehdiyev, R.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J.; Noble, A. J.; O'Dwyer, E.; Olsen, K.; Ouellet, C.; Pasuthip, P.; Peeters, S. J. M.; Pollmann, T.; Rau, W.; Retière, F.; Ronquest, M.; Seeburn, N.; Skensved, P.; Smith, B.; Sonley, T.; Tang, J.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Ward, M.

    2016-12-01

    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keVee. In the surface dataset using a triple-coincidence tag we found the fraction of β events that are misidentified as nuclear recoils to be cross-section sensitivity of 10-46 cm2, assuming negligible contribution from nuclear recoil backgrounds.

  4. Projective Synchronization in Time-Delayed Chaotic Systems

    Institute of Scientific and Technical Information of China (English)

    FENG Cun-Fang; ZHANG Yan; WANG Ying-Hai

    2006-01-01

    For the first time, we report on projective synchronization between two time delay chaotic systems with single time delays. It overcomes some limitations of the previous wort, where projective synchronization has been investigated only in finite-dimensional chaotic systems, so we can achieve projective synchronization in infinite-dimensional chaotic systems. We give a general method with which we can achieve projective synchronization in time-delayed chaotic systems. The method is illustrated using the famous delay-differential equations related to optical bistability. Numerical simulations fully support the analytical approach.

  5. Extensive writing projects: tips for completing them on time.

    Science.gov (United States)

    Oermann, M

    1999-01-01

    Have you considered writing a book, preparing a grant, editing a "topic" issue for a journal, or completing a thesis or dissertation? Some nurse authors are interested in large projects like these, but hesitate because of the project size. This experienced author, who has just finished her eighth book, gives you tips for completing extensive writing projects on time.

  6. ArgonCube: a novel, fully-modular approach for the realization of large-mass liquid argon TPC neutrino detectors

    CERN Document Server

    Amsler, C; Asaadi, J; Auger, M; Barbato, F; Bay, F; Bishai, M; Bleiner, D; Borgschulte, A; Bremer, J; Cavus, E; Chen, H; De Geronimo, G; Ereditato, A; Fleming, B; Goldi, D; Hanni, R; Kose, U; Kreslo, I; La Mattina, F; Lanni, F; Lissauer, D; Luthi, M; Lutz, P; Marchionni, A; Mladenov, D; Nessi, M; Noto, F; Palamara, O; Raaf, J L; Radeka, V; Rudolph Von Rohr, Ch; Smargianaki, D; Soderberg, M; Strauss, Th; Weber, M; Yu, B; Zeller, G P; Zeyrek, M; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2015-01-01

    The Liquid Argon Time Projection Chamber is a prime candidate detector for future neutrino oscillation physics experiments, underground neutrino observatories and proton decay searches. A large international project based on this technology is currently being considered at the future LBNF facility in the United States on the very large mass scale of 40 kton. In this document, following the long standing R&D work conducted over the last years in several laboratories in Europe and in the United States, we intend to propose a novel Liquid Argon TPC approach based on a fully-modular, innovative design, the ArgonCube. The related R&D work will proceed along two main directions; one aimed at on the assessment of the proposed modular detector design, the other on the exploitation of new signal readout methods. Such a strategy will provide high performance while being cost-effective and robust at the same time. According to our plans, we will firstly realize a detector prototype hosted in a cryostat that is a...

  7. First test of a high voltage feedthrough for liquid Argon TPCs connected to a 300 kV power supply

    CERN Document Server

    Cantini, C; Bueno, L Molina; Murphy, S; Radics, B; Regenfus, C; Rigaut, Y-A; Rubbia, A; Sergiampietri, F; Viant, T; Wu, S

    2016-01-01

    Voltages above a hundred kilo-volt will be required to generate the drift field of future very large liquid Argon Time Projection Chambers. The most delicate component is the feedthrough whose role is to safely deliver the very high voltage to the cathode through the thick insulating walls of the cryostat without compromising the purity of the argon inside. This requires a feedthrough that is typically meters long and carefully designed to be vacuum tight and have small heat input. Furthermore, all materials should be carefully chosen to allow operation in cryogenic conditions. In addition, electric fields in liquid argon should be kept below a threshold to reduce risks of discharges. The combination of all above requirements represents significant challenges from the design and manufacturing perspective. In this paper, we report on the successful operation of a feedthrough satisfying all the above requirements. The details of the feedthrough design and its manufacturing steps are provided. Very high voltages...

  8. Comparison of Diode and Argon Laser Lesions in Rabbit Retina

    Institute of Scientific and Technical Information of China (English)

    Hui Zhang; Xiaoxin Li; Bin Li; Jiping Da

    2004-01-01

    Purpose: To compare the histological alteration of retina with various spot intensities between diode and argon lasers in order to instruct the clinical use of 810 nm diode laser.Methods: Transpupillary retinal photocoagulations were performed on 42 eyes of 27pigmented rabbits. Histopathologic alteration of lesions in different intensities and different time intervals after irradiation produced by diode and argon laser was observed and compared using light microscopy. Areas of various lesions measured by image analysis system (CMIAS) were compared quantitatively.Results: Histopathologically, two-week-old grade 2 lesions produced by diode laser induced the disappearance of outer nuclear cells. More than a half of all showed reduction in number of outer nuclear layer cells in argon. Fibroblasts appeared in the diode grade 3lesions 5 days after irradiation. CMIAS data showed that all the areas of diode lesions immediately after photocoagulation were to be larger than those of argon laser lesions in the same spot intensity (P < 0.05). However, twenty-four hours after photocoagulation, the area of the diode lesions increased less than that of the argon laser lesions (8%vs.23%).Conclusion: The acute histological effect caused by 810 nm diode laser and argon green laser is similar,while the expansion of lesion area 24 hours after photocoagulation was less with the diode laser compared to the argon. This may be the first report in the literature regarding quantitative analysis of the delayed reaction of argon green lasers.

  9. Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1

    CERN Document Server

    Boulay, M G; Chen, M; Golovko, V V; Harvey, P; Mathew, R; Lidgard, J J; McDonald, A B; Pasuthip, P; Pollman, T; Skensved, P; Graham, K; Hallin, A L; McKinsey, D N; Lippincott, W H; Nikkel, J; Jillings, C J; Duncan, F; Cleveland, B; Lawson, I

    2009-01-01

    The DEAP-1 low-background liquid argon detector has been used to measure scintillation pulse shapes of beta decays and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination down to an electron-equivalent energy of 20 keVee. The relative intensities of singlet/triplet states in liquid argon have been measured as a function of energy between 15 and 500 keVee for both beta and nuclear recoils. Using a triple-coincidence tag we find the fraction of beta events that are mis-identified as nuclear recoils to be less than 6x10^{-8} between 43-86 keVee and that the discrimination parameter agrees with a simple analytic model. The discrimination measurement is currently limited by nuclear recoils induced by cosmic-ray generated neutrons, and is expected to improve by operating the detector underground at SNOLAB. The analytic model predicts a beta mis-identification fraction of 10^{-10} for an electron-equivalent energy threshold of 20 keVee. This reduction allows for a sensitive search ...

  10. Explanation of the memory effect in argon

    Directory of Open Access Journals (Sweden)

    Marković Vidosav

    2005-01-01

    Full Text Available Memory effect - the long time variation of the electrical breakdown time delay on the relaxation time td (τ was observed in argon 24 hours after relaxation times and explained by the long-lived metastable states remaining from the preceding glow. However, the quenching processes reducing the effective lifetime of metastable states several orders of magnitude below that relevant for the time scale of observation were neglected. By applying approximate gas phase models it was found that the early afterglow kinetics up to hundreds of milliseconds is dominated by the decay of molecular argon ions Ar2+ and the approximate value of their ambipolar diffusion coefficient is determined. After that, nitrogen atoms present as impurities and recombined on the cathode surface and/or field emission determine the breakdown time delay down to the cosmic rays and natural radioactivity level.

  11. A radial Time Projection Chamber for the ALPHA-g antimatter gravity measurement at CERN

    Science.gov (United States)

    Martin, Lars; Amaudruz, Pierre-André; Bishop, Daryl; Capra, Andrea; Fujiwara, Makoto; Henderson, Robert; Kurchaninov, Leonid; Menary, Scott; Olchanski, Konstantin

    2016-09-01

    Antimatter is believed to be affected by gravity in exactly the same way as ordinary matter for a variety of good reasons, however this has never been measured directly. The ALPHA-g project is a new antihydrogen trap based on the previous ALPHA design (Antihydrogen Laser Physics Apparatus, the first experiment to trap antihydrogen in 2010). As in previous ALPHA experiments the trapped antihydrogen is detected via its charged annihilation products after switching off the trap. In order to be sensitive to small gravitational effects the setup extends more than 2 m in the vertical direction, requiring the particle detection system to cover a large volume with good tracking accuracy. The design chosen to replace the previous experiments' Silicon detectors is a radial field time-projection-chamber (rTPC) filled with an Argon/CO2 mixture. Results of extensive Garfield simulations and prototype tests are presented and evaluated in terms of vertex resolution and its consequences for the gravity measurement. Additionally we give a progress report on the construction of the final detector, which is scheduled to be on-line in late 2017 for a first stage up/down measurement.

  12. Monolithic Time Delay Integrated APD Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the proposed program by Epitaxial Technologies is to develop monolithic time delay integrated avalanche photodiode (APD) arrays with sensitivity...

  13. Numerical study of the effect of gas temperature on the time for onset of particle nucleation in argon-silane low-pressure plasmas

    CERN Document Server

    Bhandarkar, U; Girshick, S L

    2003-01-01

    Particle nucleation in silane plasmas has attracted interest for the past decade, both due to the basic problems of plasma chemistry involved and the importance of silane plasmas for many applications. A better understanding of particle nucleation may facilitate the avoidance of undesirable particle contamination as well as enable the controlled production of nanoparticles for novel applications. While understanding of particle nucleation has significantly advanced over the past years, a number of questions have not been resolved. Among these is the delay of particle nucleation with an increasing gas temperature, which has been observed in experiments in argon-silane plasmas. We have developed a quasi-one-dimensional model to simulate particle nucleation and growth in silane containing plasmas. In this paper we present a comparative study of the various effects that have been proposed as explanations for the nucleation delay. Our results suggest that the temperature dependence of the Brownian diffusion coeffi...

  14. A Novel Cosmic Ray Tagger System for Liquid Argon TPC Neutrino Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M. [Bern U., LHEP; Del Tutto, M. [Oxford U.; Ereditato, A. [Bern U.; Fleming, B. [Yale U.; Goeldi, D. [Bern U., LHEP; Gramellini, E. [Yale U.; Guenette, R. [Oxford U.; Ketchum, W. [Fermilab; Kreslo, I. [U. Bern, AEC; Laube, A. [Oxford U.; Lorca, D. [U. Bern, AEC; Luethi, M. [U. Bern, AEC; Rudolf von Rohr, C. [U. Bern, AEC; Sinclair, J. R. [U. Bern, AEC; Soleti, S. R. [Oxford U.; Weber, M. [U. Bern, AEC

    2016-12-14

    The Fermilab Short Baseline Neutrino (SBN) program aims to observe and reconstruct thousands of neutrino-argon interactions with its three detectors (SBND, MicroBooNE and ICARUS-T600), using their hundred of tonnes Liquid Argon Time Projection Chambers to perform a rich physics analysis program, in particular focused in the search for sterile neutrinos. Given the relatively shallow depth of the detectors, the continuos flux of cosmic ray particles which crossing their volumes introduces a constant background which can be falsely identified as part of the event of interest. Here we present the Cosmic Ray Tagger (CRT) system, a novel technique to tag and identify these crossing particles using scintillation modules which measure their time and coordinates relative to events internal to the neutrino detector, mitigating therefore their effect in the event tracking reconstruction.

  15. The Parkes Pulsar Timing Array Project

    CERN Document Server

    Manchester, R N; Bailes, M; Coles, W A; van Straten, W; Keith, M J; Shannon, R M; Bhat, N D R; Brown, A; Burke-Spolaor, S G; Champion, D J; Chaudhary, A; Edwards, R T; Hampson, G; Hotan, A W; Jameson, A; Jenet, F A; Kesteven, M J; Khoo, J; Kocz, J; Maciesiak, K; Oslowski, S; Ravi, V; Reynolds, J R; Sarkissian, J M; Verbiest, J P W; Wen, Z L; Wilson, W E; Yardley, D; Yan, W M; You, X P

    2012-01-01

    A "pulsar timing array" (PTA), in which observations of a large sample of pulsars spread across the celestial sphere are combined, allows investigation of "global" phenomena such as a background of gravitational waves or instabilities in atomic timescales that produce correlated timing residuals in the pulsars of the array. The Parkes Pulsar Timing Array (PPTA) is an implementation of the PTA concept based on observations with the Parkes 64-m radio telescope. A sample of 20 millisecond pulsars is being observed at three radio-frequency bands, 50cm (~700 MHz), 20cm (~1400 MHz) and 10cm (~3100 MHz), with observations at intervals of 2 - 3 weeks. Regular observations commenced in early 2005. This paper describes the systems used for the PPTA observations and data processing, including calibration and timing analysis. The strategy behind the choice of pulsars, observing parameters and analysis methods is discussed. Results are presented for PPTA data in the three bands taken between 2005 March and 2011 March. For...

  16. Thin Time-Of-Flight PET project

    CERN Multimedia

    The pre-R&D aims at designing and producing a compact and thin Time-Of-Flight PET detector device with depth of interaction measurement capability, which employs layered silicon sensors as active material, with a readout consisting of a new generation of very-low noise and very fast electronics based on SiGe Heterojunction Bipolar Transistors (HBT) components.

  17. Potassium-argon (argon-argon), structural fabrics

    Science.gov (United States)

    Cosca, Michael A.; Rink, W. Jack; Thompson, Jereon

    2014-01-01

    Definition: 40Ar/39Ar geochronology of structural fabrics: The application of 40Ar/39Ar methods to date development of structural fabrics in geologic samples. Introduction: Structural fabrics develop during rock deformation at variable pressures (P), temperatures (T), fluid compositions (X), and time (t). Structural fabrics are represented in rocks by features such as foliations and shear zones developed at the mm to km scale. In ideal cases, the P-T-X history of a given structural fabric can be constrained using stable isotope, cation exchange, and/or mineral equilibria thermobarometry (Essene 1989). The timing of structural fabric development can be assessed qualitatively using geologic field observations or quantitatively using isotope-based geochronology. High-precision geochronology of the thermal and fluid flow histories associated with structural fabric development can answer fundamental geologic questions including (1) when hydrothermal fluids transported and deposited ore minerals, ...

  18. Argon laser induced changes to the carbonate content of enamel

    Energy Technology Data Exchange (ETDEWEB)

    Ziglo, M.J. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta, Private Practice, Regina, Saskatchewan (Canada); Nelson, A.E., E-mail: aenelson@dow.com [Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta (Canada); Heo, G.; Major, P.W. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada)

    2009-05-15

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm{sup -2}) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  19. Distributed consensus on minimum time rendezvous via cyclic alternating projection

    OpenAIRE

    Hu, Chunhe; Chen, Zongji

    2014-01-01

    In this paper, we propose a distributed algorithm to solve planar minimum time multi-vehicle rendezvous problem with non-identical velocity constraints on cyclic digraph (topology). Motivated by the cyclic alternating projection method that can compute a point's projection on the intersection of some convex sets, we transform the minimum time rendezvous problem into finding the distance between the position plane and the intersection of several second-order cones in position-time space. The d...

  20. New Proactive Time Buffer Heuristics for Robust Project Scheduling

    Science.gov (United States)

    Elshaer, Raafat; Yamamoto, Hidehiko

    Robust scheduling is aiming at constructing proactive schedules capable of dealing with multiple disruptions during project execution. Insertion a time buffer, before an activity start time, is a method to improve the robustness (stability) of a baseline schedule. In this paper, we introduce new heuristics for inserting time buffers in a given baseline schedule while the project due date is predefined and stochastic activity duration is considered. Computational results obtained from a set of benchmark projects show that the proposed heuristics capable of generating proactive schedules with acceptable quality and solution robustness.

  1. Projective Synchronization Between Two Nonidentical Variable Time Delayed Systems

    Institute of Scientific and Technical Information of China (English)

    FENG Cun-Fang; WANG Ying-Hai

    2012-01-01

    In this paper, we propose a method for the projective synchronization between two different chaotic systems with variable time delays. Using active control approach, the suitable controller is constructed to make the states of two different diverse time delayed systems asymptotically synchronize up to the desired scaling factor. Based on the Lyapunov stability theory, the sufficient condition for the projective synchronization is calculated theoretically. Numerical simulations of the projective synchronization between Maekey-Glass system and Ikeda system with variable time delays are shown to validate the effectiveness of the proposed algorithm.

  2. Depleted argon from underground sources

    Energy Technology Data Exchange (ETDEWEB)

    Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

    2011-09-01

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  3. ECO INVESTMENT PROJECT MANAGEMENT THROUGH TIME APPLYING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Tamara Gvozdenović

    2007-06-01

    Full Text Available he concept of project management expresses an indispensable approach to investment projects. Time is often the most important factor in these projects. The artificial neural network is the paradigm of data processing, which is inspired by the one used by the biological brain, and it is used in numerous, different fields, among which is the project management. This research is oriented to application of artificial neural networks in managing time of investment project. The artificial neural networks are used to define the optimistic, the most probable and the pessimistic time in PERT method. The program package Matlab: Neural Network Toolbox is used in data simulation. The feed-forward back propagation network is chosen.

  4. Timely loss recognition and termination of unprofitable projects

    Institute of Scientific and Technical Information of China (English)

    Anup; Srivastava; Shyam; Sunder; Senyo; Tse

    2015-01-01

    Ideally,firms should discontinue projects that become unprofitable.Managers,however,continue to operate such projects because of their limited employment horizons and empire-building motivations(Jensen,1986; Ball,2001).Prior studies suggest that timely loss recognition in accounting earnings enables lenders,shareholders,and boards of directors to identify unprofitable projects; thereby,enabling them to force managers to discontinue such projects before large value erosion occurs.However,this conjecture has not been tested empirically.Consistent with this notion,we find that timely loss recognition increases the likelihood of timely closures of unprofitable projects.Moreover,managers,by announcing late discontinuations of such projects,reveal their inability to select good projects and/or to contain losses,when projects turn unprofitable.Accordingly,thereafter,the fund providers and board of directors are likely to demand improved timeliness of loss recognition and stringent scrutiny of firms’ capital expenditure plans.Consistently,we find that firms that announce large discontinuation losses reduce capital expenditures and improve timeliness of loss recognition in subsequent years.Our study provides evidence that timely loss reporting affects "real" economic decisions and creates economic benefits.

  5. Timely loss recognition and termination of unprofitable projects

    Directory of Open Access Journals (Sweden)

    Anup Srivastava

    2015-09-01

    Full Text Available Ideally, firms should discontinue projects that become unprofitable. Managers, however, continue to operate such projects because of their limited employment horizons and empire-building motivations (Jensen, 1986; Ball, 2001. Prior studies suggest that timely loss recognition in accounting earnings enables lenders, shareholders, and boards of directors to identify unprofitable projects; thereby, enabling them to force managers to discontinue such projects before large value erosion occurs. However, this conjecture has not been tested empirically. Consistent with this notion, we find that timely loss recognition increases the likelihood of timely closures of unprofitable projects. Moreover, managers, by announcing late discontinuations of such projects, reveal their inability to select good projects and/or to contain losses, when projects turn unprofitable. Accordingly, thereafter, the fund providers and board of directors are likely to demand improved timeliness of loss recognition and stringent scrutiny of firms’ capital expenditure plans. Consistently, we find that firms that announce large discontinuation losses reduce capital expenditures and improve timeliness of loss recognition in subsequent years. Our study provides evidence that timely loss reporting affects “real” economic decisions and creates economic benefits.

  6. Mask cycle time reduction for foundry projects

    Science.gov (United States)

    Balasinski, A.

    2011-11-01

    One of key deliverables of foundry based manufacturing is low cycletime. Building new and enhancing existing products by mask changes involves significant logistical effort, which could be reduced by standardizing data management and communication procedures among design house, mask shop, and foundry (fab) [1]. As an example, a typical process of taping out can take up to two weeks in addition to technical effort, for database handling, mask form completion, management approval, PO signoff and JDV review, translating into loss of revenue. In order to reduce this delay, we are proposing to develop a unified online system which should assist with the following functions: database edits, final verifications, document approvals, mask order entries, and JDV review with engineering signoff as required. This would help a growing number of semiconductor products to be flexibly manufactured at different manufacturing sites. We discuss how the data architecture based on a non-relational database management system (NRDMBS) extracted into a relational one (RDMBS) should provide quality information [2], to reduce cycle time significantly beyond 70% for an example 2 week tapeout schedule.

  7. Technical Design Study for the PANDA Time Projection Chamber

    CERN Document Server

    Ball, M; Dørheim, S; Höppner, C; Ketzer, B; Konorov, I; Neubert, S; Paul, S; Rauch, J; Uhl, S; Vandenbroucke, M; Berger, M; Berger-Chen, J -C; Cusanno, F; Fabbietti, L; Münzer, R; Arora, R; Frühauf, J; Kiš, M; Leifels, Y; Kleipa, V; Hehner, J; Kunkel, J; Kurz, N; Peters, K; Risch, H; Schmidt, C J; Schmitt, L; Schwab, S; Soyk, D; Voss, B; Weinert, J; Beck, R; Kaiser, D; Lang, M; Schmitz, R; Walther, D; Bühler, P; Müllner, P; Zmeskal, J; Hermann, N

    2012-01-01

    This document illustrates the technical layout and the expected performance of a Time Projection Chamber as the central tracking system of the PANDA experiment. The detector is based on a continuously operating TPC with Gas Electron Multiplier (GEM) amplification.

  8. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase 2 project, we propose to develop, construct, and deliver to NASA a computed axial tomography time-domain terahertz (CT TD-THz) non destructive...

  9. The Use of Project Time Management Processes and the Schedule Performance of Construction Projects in Mexico

    Directory of Open Access Journals (Sweden)

    Rómel G. Solís-Carcaño

    2015-01-01

    Full Text Available Delays have been frequently reported as the cause of several conflicts that affect the different parties involved in construction projects. Project Time Management (PTM includes a number of planning and controlling processes that are recommended for complying with requirements related to project time. The study reported in this paper aimed at assessing the use of PTM processes and its relation with project schedule performance (i.e., timely completion. Seven PTM processes and seventy-seven tasks associated with them were identified from the literature that is globally relevant to project management. The study included the assessment of fourteen school construction projects executed by a public agency in the Yucatan Peninsula, Mexico. These projects were monitored during the construction phase in order to measure two different variables: the use of processes related to PTM (i.e., schedule planning and controlling processes and the project schedule performance. For each of these projects a Use Index was obtained for assessing the first variable, while the Schedule Performance Index and the Schedule Variance were computed to assess the second one. The results demonstrated there is statistical dependence between these two variables. Most of the projects that attained timely completion also made a greater use of the PTM processes.

  10. SYNERGIC IMPACT ON SLIPPAGE, COST AND TIME IN CONSTRUCTION PROJECT

    Directory of Open Access Journals (Sweden)

    C. K .Georgekutty

    2012-07-01

    Full Text Available Construction Industry in Kerala has a physical environment which influence cost, time. This is a peculiar issue of a developing country, which leads to many setbacks in completion of projects. This approach has made many challenges in the growth of construction. Material management is an important aspect in project planning andcontrol. It contributes a major portion of expense in construction projects. Controlling procurement and carrying cost can reduce total project cost. To identify the reason for setbacks and suggest an appropriate workable solution under the special circumstances is the aim of this study. A questionnaire survey has been conducted among hundred selected ongoing housing projects in Kochi and nearby districts. Based on the study, only 15% of the projects are expected to complete in time. Though all materials are equally important in construction, some of the key materials specifically control the project cost. A dynamic control over the materials can control project cost. Continues process will optimize the total project cost.

  11. Conversion of an atomic to a molecular argon ion and low pressure argon relaxation

    Science.gov (United States)

    M, N. Stankov; A, P. Jovanović; V, Lj Marković; S, N. Stamenković

    2016-01-01

    The dominant process in relaxation of DC glow discharge between two plane parallel electrodes in argon at pressure 200 Pa is analyzed by measuring the breakdown time delay and by analytical and numerical models. By using the approximate analytical model it is found that the relaxation in a range from 20 to 60 ms in afterglow is dominated by ions, produced by atomic-to-molecular conversion of Ar+ ions in the first several milliseconds after the cessation of the discharge. This conversion is confirmed by the presence of double-Gaussian distribution for the formative time delay, as well as conversion maxima in a set of memory curves measured in different conditions. Finally, the numerical one-dimensional (1D) model for determining the number densities of dominant particles in stationary DC glow discharge and two-dimensional (2D) model for the relaxation are used to confirm the previous assumptions and to determine the corresponding collision and transport coefficients of dominant species and processes. Project supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ON171025).

  12. Studies on the drift properties and spatial resolution using a microMEGAS-equipped time projection chamber

    Indian Academy of Sciences (India)

    Rosario L Reserva; Dennis C Arogancia; Angelina M Bacala; Khalil Boudjemline; Dan Burke; Paul Colas; Madhu Dixit; Arnaud Giganon; Ioannis Giomataris; Hermogenes C Gooc Jr; Yukihiro Kato; Keisuke Fujii; Hiroyuki Fujishima; Masahiro Habu; Takatoshi Higashi; Makoto Kobayashi; Hirotoshi Kuroiwa; Vincent Lepeltier; Takeshi Matsuda; Osamu Nitoh; Kirsten Sachs; Ronald Dean Settles; Akira Sugiyama; Philippe Rosier; Sachio Matsushita; Keiichi Nakamura; Takashi Watanabe; Atsushi Yamaguchi; Hiroshi Yamaoka; Thomas Zeruerras

    2007-12-01

    R & D studies on the performance as well as on the gas properties of the microMEGAS-based time projection chamber with standard readout were carried out in June 2005 using 4 GeV/c pion beam in a magnetic field from 0 to 1 T at the proton synchrotron beam line at KEK, Japan. Analysis of the electron drift velocity, diffusion constant and point resolution of padrow measurement for MicroMEGAS TPC filled with 95% argon and 5% isobutane gas are presented. The underlying physical mechanism which determines the optimal TPC performance are briefly discussed. Preliminary measurements of gas properties and spatial resolution in close agreement with the analytical calculation and MAGBOLTZ simulation are summarized and presented in this paper.

  13. Observation of the Dependence of Scintillation from Nuclear Recoils in Liquid Argon on Drift Field

    CERN Document Server

    Alexander, T; Cao, H; Cocco, A G; DeJongh, F; Fiorillo, G; Galbiati, C; Ghag, C; Grandi, L; Kendziora, C; Lippincott, W H; Loer, B; Love, C; Manenti, L; Martoff, C J; Meng, Y; Montanari, D; Mosteiro, P; Olvitt, D; Pordes, S; Qian, H; Rossi, B; Saldanha, R; Tan, W; Tatarowicz, J; Walker, S; Wang, H; Watson, A W; Westerdale, S; Yoo, J

    2013-01-01

    We have exposed a dual-phase Liquid Argon Time Projection Chamber (LAr-TPC) to a low energy pulsed narrowband neutron beam, produced at the Notre Dame Institute for Structure and Nuclear Astrophysics to study the scintillation light yield of recoiling nuclei in a LAr-TPC. A liquid scintillation counter was arranged to detect and identify neutrons scattered in the LAr-TPC target and to select the energy of the recoiling nuclei. We report the observation of a significant dependence on drift field of liquid argon scintillation from nuclear recoils of 11 keV. This observation is important because, to date, estimates of the sensitivity of noble liquid TPC dark matter searches are based on the assumption that electric field has only a small effect on the light yield from nuclear recoils.

  14. Benchmarking TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems

    CERN Document Server

    Baptista, B; Chiu, C; Conrad, J M; Ignarra, C M; Jones, B J P; Katori, T; Mufson, S

    2012-01-01

    Scintillation light from liquid argon is produced at 128 nm and thus must be shifted to visible wavelengths in light detection systems used for Liquid Argon Time Projection Chambers (LArTPCs). To date, designs have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we show that the response of lightguides coated with TPB in a UV Transmitting (UVT) acrylic matrix is very similar to that of a coating using a polystyrene (PS) matrix. We obtain a factor of three higher light yield than has been previously reported from lightguides. This paper provides information on the response of the lightguides so that these can be modeled in simulations for future LArTPCs. This paper also identifies areas of R&D for potential improvements in the lightguide response

  15. An impact hypothesis for Venus argon anomalies

    Science.gov (United States)

    Kaula, W. M.; Newman, W. I.

    1997-03-01

    The Ar-36+38 argon-excess anomally of Venus has been hypothesized to have its origin in the impact of an outer solar system body of about 100-km diameter. A critical evaluation is made of this hypothesis and its competitors; it is judged that its status must for the time being remain one of 'Sherlock Holmes' type, in that something so improbable must be accepted when all alternatives are eliminated.

  16. The Liquid Argon Purity Demonstrator

    CERN Document Server

    Adamowski, M; Dvorak, E; Hahn, A; Jaskierny, W; Johnson, C; Jostlein, H; Kendziora, C; Lockwitz, S; Pahlka, B; Plunkett, R; Pordes, S; Rebel, B; Schmitt, R; Stancari, M; Tope, T; Voirin, E; Yang, T

    2014-01-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  17. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  18. A Measurement of the Absorption of Liquid Argon Scintillation Light by Dissolved Nitrogen at the Part-Per-Million Level

    CERN Document Server

    Jones, B J P; Conrad, J M; Ignarra, C M; Katori, T; Toups, M

    2013-01-01

    We report on a measurement of the absorption length of scintillation light in liquid argon due to dissolved nitrogen at the part-per-million (ppm) level. We inject controlled quantities of nitrogen into a high purity volume of liquid argon and monitor the light yield from an alpha source. The source is placed at different distances from a cryogenic photomultiplier tube assembly. By comparing the light yield from each position we extract the absorption cross section of nitrogen. We find that nitrogen absorbs argon scintillation light with strength of $\\left(1.51\\pm 0.15\\right)\\times10^{-4} \\;\\mathrm{cm^{-1} ppm^{-1}}$, corresponding to an absorption cross section of $\\left(4.99 \\pm 0.51 \\right)\\times10^{-21}\\;\\mathrm{cm^{2} molecule^{-1}}$. We obtain the relationship between absorption length and nitrogen concentration over the 0 to 50 ppm range and discuss the implications for the design and data analysis of future large liquid argon time projection chamber (LArTPC) detectors. Our results indicate that for a ...

  19. Abnormal epidermal changes after argon laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, R.A.; Knobler, R.M.; Aberer, E.; Klein, W.; Kocsis, F.; Ott, E. (Univ. of Vienna (Austria))

    1991-02-01

    A 26-year-old woman with a congenital port-wine stain on the forehead was treated three times at 2-month intervals with an argon laser. Six months after the last treatment, moderate blanching and mild scaling confined to the treated area was observed. A biopsy specimen of the treated area revealed a significant decrease in ectatic vessels. However, epidermal changes similar to those of actinic keratosis with disorganized cell layers and marked cytologic abnormalities were seen. Analysis of peripheral blood lymphocytes for a defect in DNA repair was negative. Multiple, argon laser-induced photothermal effects may be responsible for the changes observed in our case and may lead to premalignant epidermal transformation.

  20. Study of nuclear recoils in liquid argon with monoenergetic neutrons

    CERN Document Server

    Regenfus, C; Amsler, C; Creus, W; Ferella, A; Rochet, J; Walter, M

    2012-01-01

    For the development of liquid argon dark matter detectors we assembled a setup in the laboratory to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (E_kin=2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from {\\alpha}-particles at working points relevant to dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the populations of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

  1. Nonlinear projective filtering; 1, Application to real time series

    CERN Document Server

    Schreiber, T

    1998-01-01

    We discuss applications of nonlinear filtering of time series by locally linear phase space projections. Noise can be reduced whenever the error due to the manifold approximation is smaller than the noise in the system. Examples include the real time extraction of the fetal electrocardiogram from abdominal recordings.

  2. Railway network design with multiple project stages and time sequencing

    Science.gov (United States)

    Kuby, Michael; Xu, Zhongyi; Xie, Xiaodong

    This paper presents a spatial decision support system for network design problems in which different kinds of projects can be built in stages over time. It was developed by the World Bank and China's Ministry of Railways to plan investment strategies for China's overburdened railway system. We first present a mixed-integer program for the single-period network design problem with project choices such as single or multiple tracks and/or electrification with economies of scale. Then, because such projects can be built all at once or in stages, we developed a heuristic backwards time sequencing procedure with a cost adjustment factor to solve the ``project staging'' problem. Other innovations include a preloading routine; coordinated modeling of arcs, paths, and corridors; and a custom-built GIS.

  3. Time-resolved spectroscopy in the Rijnhuizen Tokamak Project tokamak

    NARCIS (Netherlands)

    Box, F. M. A.; Howard, J.; VandeKolk, E.; Meijer, F. G.

    1997-01-01

    At the Rijnhuizen Tokamak Project tokamak spectrometers are used to diagnose the velocity distribution and abundances of impurity ions. Quantities can be measured as a function of time, and the temporal resolution depends on the line emissivity and can be as good as 0.2 ms for the strongest lines. S

  4. ALICE Time Projection Chamber (TPC) Readout Sector in Lab

    CERN Multimedia

    2003-01-01

    The Time Projection Chamber (TPC) is the main particle tracking detector in ALICE. Charged particles crossing the gas of the TPC knock electrons out of their atoms, which drift in the eletric field. By measuring the arrival of electrons at the end of the chamber, at segments such as the one shown here, the TPC will reconstruct the paths of the original charged particles.

  5. Effects of argon gas flow rate and guide shell on oxygen concentration in Czochralski silicon growth

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    φ200 mm silicon single crystals were grown in the φ450 mm hot zone of a Czochralski (CZ) furnace. By modifying the pattern and the velocity of the argon flow, the silicon single crystals with different oxygen concentrations were obtained. Through numerical simulation, the velocity of the argon gas flow was plotted for the first time. The experiment results were analyzed and the optimum condition of the argon flow with the lowest oxygen concentration was obtained.

  6. Evolution of Martian atmospheric argon: Implications for sources of volatiles

    Science.gov (United States)

    Hutchins, Kevin S.; Jakosky, Bruce M.

    We have examined processes affecting isotopes of argon (36Ar, 38Ar, 40Ar) in order to determine important atmospheric sources and sinks. Our simple model for argon evolution incorporates production of radiogenic argon in the mantle, outgassing of all argon species by extrusive and intrusive volcanism, and loss to space by knock-on sputtering above the exobase. Sputtering has been shown previously to be an important loss process for atmospheric species, especially isotopes of noble gases, which have few other mechanisms of escape. The integrated evolution of argon (36Ar, 38Ar, and 40Ar, respectively) is modeled in terms of these variables: (1) the planetary concentration of potassium, (2) the fraction of juvenile argon released catastrophically during the first 600 Myr., (3) potential variation in the time-history of sputtering loss from that suggested by Luhmann et al. [1992], and (4) the volume of total outgassing to the surface as compared to outgassing contributed by volcanic release. Our results indicate that Mars has lost between 85-95% of 36Ar and 70-88% of outgassed 40Ar. Due to this substantial loss, the planet must have outgassed the equivalent of between 10 and 100 times the total volume of gases released by extrusive and intrusive volcanics. This indicates that volcanic outgassing, alone, is insufficient to explain the present-day abundances of 36Ar and 40Ar in the Martian atmosphere. Similar calculations for 20Ne suggest outgassed volumes of between 100 and 1800 times in excess of that due to volcanism. This results in a distinct Ne/Ar elemental fractionation, with a preference for outgassing argon, of the order of 10 to 17. Although the results must be evaluated within the model uncertainties, the results are compelling in that they unequivocally show the existence of additional sources of atmospheric volatiles and helps define a means to identify them.

  7. Measurement of neutrino interactions in gaseous argon with T2K

    CERN Document Server

    ,

    2016-01-01

    The T2K near-detector, ND280, employs three large argon gas TPCs (Time Projection Chambers) for particle tracking and identification. The gas inside the TPCs can be used as an active target to study the neutrino interactions in great detail. The low density of the gas leads to very low track energy thresholds, allowing the reconstruction of very low momentum tracks, e.g. protons with kinetic energies down to $\\mathcal{O}$(1 MeV). Since different nuclear interaction models vary considerably in their predictions of those low momentum track multiplicities, this makes neutrino interactions on gases a powerful probe to test those models. The TPCs operate with an argon-based gas mixture (95% by volume) and have been exposed to the T2K neutrino beam since the beginning of the experiment in 2010. Due to the low total mass of the gas, neutrino argon interactions happen only rarely, compared to the surrounding scintillator-based detectors. We expect about 600 such events in the recorded data so far (about 200 in the fi...

  8. A new, very massive modular Liquid Argon Imaging Chamber to detect low energy off-axis neutrinos from the CNGS beam. (Project MODULAr)

    CERN Document Server

    Baibussinov, B; Battistoni, G; Benetti, P; Borio, A; Calligarich, E; Cambiaghi, M; Cavanna, F; Centro, Sandro; Cocco, A G; Dolfini, R; Berzolari, A Gigli; Farnese, C; Fava, A; Ferrari, A; Fiorillo, G; Gibin, D; Guglielmi, A M; Mannocchi, G; Mauri, F; Menegolli, A; Meng, G; Montanari, C; Palamara, O; Periale, L; Piazzoli, A; Picchi, P; Pietropaolo, F; Rappoldi, A; Raselli, G L; Rubbia, Carlo; Sala, P; Satta, G; Varanini, F; Ventura, Sandro; Vignoli, C

    2007-01-01

    The paper is considering an opportunity for the CERN/GranSasso (CNGS) neutrino complex, concurrent time-wise with T2K and NOvA, to search for theta_13 oscillations and CP violation. Compared with large water Cherenkov (T2K) and fine grained scintillators (NOvA), the LAr-TPC offers a higher detection efficiency and a lower backgrounds, since virtually all channels may be unambiguously recognized. The present proposal, called MODULAr, describes a 20 kt fiducial volume LAr-TPC, following very closely the technology developed for the ICARUS-T60o, and is focused on the following activities, for which we seek an extended international collaboration: (1) the neutrino beam from the CERN 400 GeV proton beam and an optimised horn focussing, eventually with an increased intensity in the framework of the LHC accelerator improvement program; (2) A new experimental area LNGS-B, of at least 50000 m3 at 10 km off-axis from the main Laboratory, eventually upgradable to larger sizes. A location is under consideration at about ...

  9. Performance of the 10 m{sup 3} ICARUS liquid argon prototype

    Energy Technology Data Exchange (ETDEWEB)

    Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Battistoni, G.; Benetti, P.; Bernardini, E.; Bischofberger, M.; Di Tigliole, A.B.A. Borio; Brunetti, R.; Bueno, A.; Calligarich, E.; Campanelli, M.; Carpanese, C.; Cavalli, D.; Cavanna, F.; Cennini, P.; Centro, S.; Cesana, A.; Chen, C.; Chen, D.; Chen, Y.; Cline, D.; De Vecchi, C.; Credico, A. Di; Dolfini, R.; Ferrari, A.; Ferri, F.; Berzolari, A.G.A. Gigli; Gil-Botella, I.; Grandi, L.; Grillo, A.; Haag, A.; He, K.; Huang, X.; Kruse, A.; Laffranchi, M.; Li, Z.; Lisowski, M.; Lu, F.; Ma, J.; Matthey, C.; Mauri, F.; Mazza, D.; Meng, G.; Montanari, C.; Muraro, S.; Navas-Concha, S.; Nicoletto, M.; Nurzia, G.; Otwinowski, S.; Ouyang, Q.; Palamara, O. E-mail: ornella.palamara@lngs.infn.it; Pascoli, D.; Periale, L.; Petrera, S.; Mortari, G.P.G. Piano; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Rancati, T.; Rappoldi, A.; Raselli, G.L.; Rico, J.; Romualdi, B.; Rossella, M.; Rotilio, A.; Rubbia, A.; Rubbia, C.; Sala, P.; Scannicchio, D.; Scapparone, E.; Segreto, E.; Sergiampietri, F.; Sinanis, N.; Tatananni, E.; Terrani, M.; Ventura, S.; Vignoli, C.; Wang, H.; Woo, J.; Xu, G.; Xu, Z.; Zhang, C.; Zhang, Q.; Zhen, S

    2003-02-11

    We report on the performance of a liquid Argon Time Projection Chamber, operating in a 10 m{sup 3} cryostat. This device built in the framework of the ICARUS T600 programme to serve as a full test facility for the adopted cryogenics and mechanical solutions, was successfully tested in 2000 as the last step before the tests of the first 600 t ICARUS module 1 year later. In a final run at the Gran Sasso Laboratory, whose outcome provides the main subject of this paper, also the readout and imaging capabilities of the installed wire chamber and the overall performance of the detector have been successfully tested.

  10. Temporal evolution of electron beam generated Argon plasma in pasotron device

    Science.gov (United States)

    Khandelwal, Neha; Pal, U. N.; Prakash, Ram; Choyal, Y.

    2016-10-01

    The plasma- assisted slow wave oscillator (PASOTRON) is a high power microwave source in which the electron beam in the interaction region is confined by the background plasma. The plasma is generated by impact ionization of background gas with the electron beam. A model has been developed for temporal evolution of Argon plasma in pasotron device. In this model, we consider electron beam of energy E interacting with Argon gas. The resulting ionization creates quasi neutral argon plasma composed of argon Ar atoms, singly ionized ions Ar+1and electrons having energy from 0 to E. Electron impact excitation, ionization, radiative decay, radiative recombination and three body recombination processes are considered in this model. Population of ground and excited states of argon atom, ground state of argon ion as well as the population of electron energy groups is calculated by solving time dependent rate equations. Temporal evolution of electron beam generated plasma is given.

  11. Assessment of Smolt Condition for Travel Time Analysis Project, 1987-1997 Project Review.

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, Robin M.; Hans, Karen M.; Beeman, John W. [US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA

    1997-12-01

    The assessment of Smolt Condition for Travel Time Analysis Project (Bonneville Power Administration Project 87-401) monitored attributes of salmonid smolt physiology in the Columbia and Snake River basins from 1987 to 1997, under the Northwest Power Planning Council Fish and Wildlife Program, in cooperation with the Smolt Monitoring Program of the Fish Passage Center. The primary goal of the project was to investigate the physiological development of juvenile salmonids related to migration rates. The assumption was made that the level of smolt development, interacting with environmental factos such as flow, would be reflected in travel times. The Fish Passage Center applied the physiological measurements of smolt condition to Water Budget management, to regulate flows so as to decrease travel time and increase survival.

  12. First demonstration of a sub-keV electron recoil energy threshold in a liquid argon ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Sangiorgio, S., E-mail: samuele@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); Joshi, T.H. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); Coleman, J. [Department of Physics, University of Liverpool, Oxford St, Liverpool L69 7Ze (United Kingdom); Foxe, M. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Hagmann, C. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); Jovanovic, I. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Kazkaz, K. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States); Mavrokoridis, K. [Department of Physics, University of Liverpool, Oxford St, Liverpool L69 7Ze (United Kingdom); Mozin, V.; Pereverzev, S.; Sorensen, P. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States)

    2013-11-11

    We describe the first demonstration of a sub-keV electron recoil energy threshold in a dual-phase liquid argon time projection chamber. This is an important step in an effort to develop a detector capable of identifying the ionization signal resulting from nuclear recoils with energies of order a few keV and below. We obtained this result by observing the peaks in the energy spectrum at 2.82 keV and 0.27 keV, following the K- and L-shell electron capture decay of {sup 37}Ar respectively. The {sup 37}Ar source preparation is described in detail, since it enables calibration that may also prove useful in dark matter direct detection experiments. An internally placed {sup 55}Fe x-ray source simultaneously provided another calibration point at 5.9 keV. We discuss the ionization yield and electron recombination in liquid argon at those three calibration energies. -- Highlights: • We measure sub-keV electron recoils in a dual-phase argon time projection chamber. • Ar-37 is produced via neutron irradiation and used as calibration source. • Ar-37 electron captures at 2.82 and 0.27 keV are measured together with Fe-55 x-rays. • Spurious single ionization electrons provided absolute calibration of charge signal. • Modified Thomas–Imel model describes low-energy electron-recoils in liquid Ar.

  13. Tracks within the NA49 Time Projection Chamber

    CERN Multimedia

    1996-01-01

    Display of a stage of the track reconstruction in the NA49 Main Time Projection Chambers. The measured ionization produced by charged particles has been reduced to space points by a cluster finder algorithm. Tracks are being searched for and fitted to the measured points. After a laborious and recursive process more than 98% of all charged particles traversing the detector are found and reconstructed.

  14. Attainable superheat of argon-helium, argon-neon solutions.

    Science.gov (United States)

    Baidakov, Vladimir G; Kaverin, Aleksey M; Andbaeva, Valentina N

    2008-10-16

    The method of lifetime measurement has been used to investigate the kinetics of spontaneous boiling-up of superheated argon-helium and argon-neon solutions. Experiments were made at a pressure of p = 1.5 MPa and concentrations up to 0.33 mol% in the range of nucleation rates from 10 (4) to 10 (8) s (-1) m (-3). The homogeneous nucleation regime has been distinguished. With good agreement between experimental data and homogeneous nucleation theory in temperature and concentration dependences of the nucleation rate, a systematic underestimation by 0.25-0.34 K has been revealed in superheat temperatures over the saturated line attained by experiment as compared with theoretical values calculated in a macroscopic approximation. The revealed disagreement between theory and experiment is connected with the dependence of the properties of new-phase nuclei on their size.

  15. Order reduction in time integration caused by velocity projection

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Martion [Martin Luther University, Halle (Germany); Cardona, Alberto [Universdad Nacional Lioral, Santa Fe (Argentina); Bruls, Olivier [University of Liege, Liège (Belgium)

    2015-07-15

    Holonomic constraints restrict the configuration of a multibody system to a subset of the configuration space. They imply so called hidden constraints at the level of velocity coordinates as well as the original constraint equations may be obtained considering both types of constraints as well as the original constraint equations may be obtained considering both types of constraints in each time step (Stabilized index-2 formulation) or using projection techniques. Both approaches are well established in the time integration of differential-algebraic equations. Recently, we have introduced a generalized-α Lie group time integration method for the stablilized index -2 formulation that achieves second order convergence for all solution components In the present paper, we show that a separate velocity projection would be less favourable since it may result in an order reduction and in large transient errors after each projection step. This undesired numerical behaviour is analysed by a one-step error recursion that considers the coupled error propagation in differential and algebraic solution components. This one-step error recursion has been used before to prove second order convergence for the application of generalized-α methods to constrained systems.

  16. Time Projection Compton Spectrometer (TPCS). User`s guide

    Energy Technology Data Exchange (ETDEWEB)

    Landron, C.O. [Sandia National Labs., Albuquerque, NM (United States); Baldwin, G.T. [International Atomic Energy Agency, Vienna (Austria)

    1994-04-01

    The Time Projection Compton Spectrometer (TPCS) is a radiation diagnostic designed to determine the time-integrated energy spectrum between 100 keV -- 2 MeV of flash x-ray sources. This guide is intended as a reference for the routine operator of the TPCS. Contents include a brief overview of the principle of operation, detailed component descriptions, detailed assembly and disassembly procedures, guide to routine operations, and troubleshooting flowcharts. Detailed principle of operation, signal analysis and spectrum unfold algorithms are beyond the scope of this guide; however, the guide makes reference to sources containing this information.

  17. First demonstration of a sub-keV electron recoil energy threshold in a liquid argon ionization chamber

    CERN Document Server

    Sangiorgio, S; Coleman, J; Foxe, M; Hagmann, C; Joshi, T H; Jovanovic, I; Kazkaz, K; Mavrokoridis, K; Mozin, V; Pereverzev, S; Sorensen, P

    2013-01-01

    We make a first demonstration of a sub-keV electron recoil energy threshold in a dual-phase liquid argon time-projection chamber. This is an important step in a program to build a detector capable of identifying the ionization signal resulting from nuclear recoils at a few keV and below. We obtained this result by observing the peaks in the energy spectrum at 2.82 keV and 0.27 keV, following the K- and L-shell electron capture decay of Ar-37. We describe the details of the Ar-37 source preparation, as this calibration technique may prove useful, e.g. for dark matter direct detection experiments. A Fe-55 internal x-ray source was also measured simultaneously and provided another calibration point at 5.9 keV. We discuss the ionization yield and electron recombination in liquid argon at the three calibration energies.

  18. Novel Front-end Electronics for Time Projection Chamber Detectors

    CERN Document Server

    García García, Eduardo José

    This work has been carried out in the European Organization for Nuclear Research (CERN) and it was supported by the European Union as part of the research and development towards the European detector the (EUDET) project, specifically for the International Linear Collider (ILC). In particle physics there are several different categories of particle detectors. The presented design is focused on a particular kind of tracking detector called Time Projection Chamber (TPC). The TPC provides a three dimensional image of electrically charged particles crossing a gaseous volume. The thesis includes a study of the requirements for future TPC detectors summarizing the parameters that the front-end readout electronics must fulfill. In addition, these requirements are compared with respect to the readouts used in existing TPC detectors. It is concluded that none of the existing front-end readout designs fulfill the stringent requirements. The main requirements for future TPC detectors are high integration, an increased n...

  19. Project scheduling method with time using MRP system – A case study: Construction project in Libya

    Directory of Open Access Journals (Sweden)

    Abdallah Ali Imetieg

    2015-04-01

    Full Text Available Materials Requirements and Planning (MRP is a system of production planning and inventory control, which is used to manage manufacturing processes. Most MRP systems are software-based and are used to ensure that the materials are available for production, that the products are available for delivery to customers, that the lowest possible material and product level is maintained in store, as well as to plan delivery schedules and purchasing activities. Upon completion of scheduling, begins the process of follow-up, which includes the achievement of the project goals in terms of quantity, quality and costs in accordance with deadlines. MRP system was applied to project of 5000 housing units in Solug area, which is close to Benghazi city, Libya, with the aim to provide necessary cash flow to pay dues on time without delay to all involved project sub-contractors and material suppliers, to ensure the smooth flow of operations, as well as to diminish costs by reduction of temporary storages and rented areas. There is a correlation between time and cost of each activity. If the required time is shorter than the scheduled time of the certain activity, it would demand more resources, which further leads to the increase in direct costs of the given activity. Therefore, the output of MRP is important since commands are issued through planning in order to launch the suggested orders with the required quantities and within the limited time period.

  20. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  1. Argon isotope fractionation induced by stepwise heating

    Science.gov (United States)

    Trieloff, Mario; Falter, Martina; Buikin, Alexei I.; Korochantseva, Ekaterina V.; Jessberger, Elmar K.; Altherr, Rainer

    2005-03-01

    Noble gas isotopes are widely used to elucidate the history of the rocks in which they have been trapped, either from distinct reservoirs or by accumulation following radioactive decay. To extract noble gases from their host rocks, stepwise heating is the most commonly used technique to deconvolve isotopically different components, e.g., atmospheric, in situ radiogenic, or excess radiogenic from mantle or crustal reservoirs. The accurate determination of the isotopic composition of these different components is of crucial importance, e.g., for ages obtained by 40Ar- 39Ar stepheating plateaus. However, diffusion theory-based model calculations predict that the stepwise thermal extraction process from mineral phases induces isotope fractionation and, hence, adulterates the original composition. Such effects are largely unconsidered, as they are small and a compelling experimental observation is lacking. We report the first unequivocal evidence for significant mass fractionation of argon isotopes during thermal extraction, observed on shungite, a carbon-rich Precambrian sedimentary rock. The degree of fractionation, as monitored by 38Ar/ 36Ar and 40Ar/ 36Ar ratios, very well agrees with theoretical predictions assuming an inverse square root dependence of diffusion coefficient and atomic mass, resulting in easier extraction of lighter isotopes. Hence, subatmospheric 40Ar/ 36Ar ratios obtained for argon extracted at low temperatures may not represent paleoatmospheric argon. Shungite argon resembles modern atmospheric composition, but constraints on the timing of trapping appear difficult to obtain, as shungites are multicomponent systems. In 40Ar- 39Ar stepwise heating, the isotope fractionation effect could cause systematic underestimations of plateau ages, between 0.15 and 0.4% depending on age, or considerably higher if samples contain appreciable atmospheric Ar. The magnitude of this effect is similar to the presently achieved uncertainties of this increasingly

  2. Attosecond-correlated dynamics of two electrons in argon

    Indian Academy of Sciences (India)

    V Sharma; N Camus; B Fischer; M Kremer; A Rudenko; B Bergues; M Kuebel; N G Johnson; M F Kling; T Pfeifer; J Ullrich; R Moshammer

    2014-01-01

    In this work we explored strong field-induced decay of doubly excited transient Coulomb complex Ar** → Ar2++2. We measured the correlated two-electron emission as a function of carrier envelop phase (CEP) of 6 fs pulses in the non-sequential double ionization (NSDI) of argon. Classical model calculations suggest that the intermediate doubly excited Coulomb complex loses memory of its formation dynamics. We estimated the ionization time difference between the two electrons from NSDI of argon and it is 200 ± 100 as (N Camus et al, Phys. Rev. Lett. 108, 073003 (2012)).

  3. The CERES/NA45 Radial Drift Time Projection Chamber

    CERN Document Server

    Adamova, D; Antonczyk, D; Appelshäuser, H; Belaga, V; Bielcikova, J; Braun-Munzinger, P; Campagnolo, R; Cherlin, A; Damjanovic, S; Dietel, T; Dietrich, L; Drees, A; Dubitzky, W; Esumi, S I; Filimonov, K; Fraenkel, Zeev; Garabatos, C; Glässel, P; Hering, G; Holeczek, J; Kushpil, V; Marin, A; Milosevic, J; Milov, A; Mikowiec, D; Musa, L; Panebratsev, Yu A; Pechenova, O; Petretracek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Richter, M; Sako, H; Schäfer, E; Schmitz, W; Schükraft, J; Seipp, W; Sharma, A; Shimansky, S; Stachel, J; Sumbera, M; Tilsner, H; Tserruya, Itzhak; Wessels, J P; Wienoldh, T; Windelband, B; Wurm, J P; Xie, W; Yurevich, S; Yurevich, V

    2008-01-01

    The design, calibration, and performance of the first radial drift Time Projection Chamber (TPC) are presented. The TPC was built and installed at the CERES/NA45 experiment at the CERN SPS in the late nineties, with the objective to improve the momentum resolution of the spectrometer. The upgraded experiment took data twice, in 1999 and in 2000. After a detailed study of residual distortions a spatial resolution of 340 um in the azimuthal and 640 um in the radial direction was achieved, corresponding to a momentum resolution of Dp/p = sqrt{(1% * p/GeV)^2 + (2%)^2}.

  4. A Time Projection Chamber with GEM-Based Readout

    CERN Document Server

    Attié, David; Bellerive, Alain; Bezshyyko, Oleg; Bhattacharya, Deb Sankar; Bhattacharya, Purba; Bhattacharya, Sudeb; Caiazza, Stefano; Colas, Paul; De Lentdecker, Gilles; Dehmelt, Klaus; Desch, Klaus; Diener, Ralf; Dixit, Madhu; Fleck, Ivor; Fujii, Keisuke; Fusayasu, Takahiro; Ganjour, Serguei; Gao, Yuanning; Gros, Philippe; Hayman, Peter; Hedberg, Vincent; Ikematsu, Katsumasa; Jönsson, Leif; Kaminski, Jochen; Kato, Yukihiro; Kawada, Shin-ichi; Killenberg, Martin; Kleinwort, Claus; Kobayashi, Makoto; Krylov, Vladyslav; Li, Bo; Li, Yulan; Lundberg, Björn; Lupberger, Michael; Majumdar, Nayana; Matsuda, Takeshi; Mehdiyev, Rashid; Mjörnmark, Ulf; Müller, Felix; Münnich, Astrid; Mukhopadhyay, Supratik; Ogawa, Tomohisa; Oskarsson, Anders; Österman, Lennart; Peterson, Daniel; Riallot, Marc; Rosemann, Christoph; Roth, Stefan; Schade, Peter; Schäfer, Oliver; Settles, Ronald Dean; Shirazi, Amir Noori; Smirnova, Oxana; Sugiyama, Akira; Takahashi, Tohru; Tian, Junping; Timmermans, Jan; Titov, Maksym; Tsionou, Dimitra; Vauth, Annika; Wang, Wenxin; Watanabe, Takashi; Werthenbach, Ulrich; Yang, Yifan; Yang, Zhenwei; Yonamine, Ryo; Zenker, Klaus; Zhang, Fan

    2016-01-01

    For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent GEM-based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.

  5. Novel Front-end Electronics for Time Projection Chamber Detectors

    OpenAIRE

    2012-01-01

    Este trabajo ha sido realizado en la Organización Europea para la Investigación Nuclear (CERN) y forma parte del proyecto de investigación Europeo para futuros aceleradores lineales (EUDET). En física de partículas existen diferentes categorías de detectores de partículas. El diseño presentado esta centrado en un tipo particular de detector de trayectoria de partículas denominado TPC (Time Projection Chamber) que proporciona una imagen en tres dimensiones de las partículas eléctricamente c...

  6. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    1997-01-01

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  7. A 2-Dimensional Fluid Model for an Argon Rf Discharge

    NARCIS (Netherlands)

    Passchier, J. D. P.; W. J. Goedheer,

    1993-01-01

    A fluid model for an argon rf discharge in a cylindrical discharge chamber is presented. The model contains the particle balances for electrons and ions and the electron energy balance. A nonzero autobias voltage is obtained by imposing the condition that the time-averaged current toward the powered

  8. Optimizing the Time Performance of Subcontractors in Building Projects

    Directory of Open Access Journals (Sweden)

    Andy K.W Ng

    2010-07-01

    Full Text Available The main contractors of Hong Kong building projects tend to subcontract most of their work. However, many of the subcontractors complain that they are not being fully utilized due main contractors’ poor site coordination of temporary works and interfacing works and plant supports etc. A list of critical site coordination problems caused by main contractors that had adversely influence to the time performance of subcontractors was prepared. A questionnaire survey was conducted to collect data to generate multiple regression equations that explain how the critical site coordination problems affected the time performance of different types of subcontractor. The survey results were validated by neural network analysis. Backward elimination method was adopted to identify the ‘most critical’ site coordination problems that enable main contractors to formulate measures to enhance their site management system.

  9. Optimizing the Time Performance of Subcontractors in Building Projects

    Directory of Open Access Journals (Sweden)

    Andrew D.F Price

    2010-07-01

    Full Text Available  The main contractors of Hong Kong building projects tend to subcontract most of their work. However, many of the subcontractors complain that they are not being fully utilized due main contractors’ poor site coordination of temporary works and interfacing works and plant supports etc. A list of critical site coordination problems caused by main contractors that had adversely influence to the time performance of subcontractors was prepared. A questionnaire survey was conducted to collect data to generate multiple regression equations that explain how the critical site coordination problems affected the time performance of different types of subcontractor. The survey results were validated by neural network analysis. Backward elimination method was adopted to identify the ‘most critical’ site coordination problems that enable main contractors to formulate measures to enhance their site management system.

  10. Composing Experimental Environment of PRIDE Argon cell

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Seonho; Jang, Yongkuk; Cho, Il Je [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In PRIDE depleted Uranium feed material and a depleted Uranium mixed with some surrogate material are used for performing engineering scale Pyroprocessing. PRIDE has to maintain inert atmosphere because of the characteristic of Electrolytic Reduction technology, Electro refining technology, Electrowinning technology. The impurity concentration of the Argon cell has to be under 50 ppm(Oxygen, moisture). Atmospheric pressure changes and temperature changes can affect the Argon cell's impurity concentration. In this paper, how to compose the Argon cell impurity concentration under 50 ppm to make the exact optimal experimental environment(Oxygen, moisture) will be introduced. Composing the exact optimal experimental environment by supplying Argon gas have been introduced in this paper. Continuously supplying Argon gas which is heavier than the Oxygen through the bottom of the Argon cell the oxygen eventually discharged through the high vent fan and lower the impurity concentration of Oxygen.

  11. Liquid argon scintillation light studies in LArIAT

    Energy Technology Data Exchange (ETDEWEB)

    Kryczynski, Pawel [Fermilab

    2016-10-12

    The LArIAT experiment is using its Liquid Argon Time Projection Chamber (LArTPC) in the second run of data-taking at the Fermilab Test Beam Facility. The goal of the experiment is to study the response of LArTPCs to charged particles of energies relevant for planned neutrino experiments. In addition, it will help to develop and evaluate the performance of the simulation, analysis, and reconstruction software used in other LAr neutrino experiments. Particles from a tertiary beam detected by LArIAT (mainly protons, pions and muons) are identified using a set of beamline detectors, including Wire Chambers, Time of Flight counters and Cherenkov counters, as well as a simplified sampling detector used to detect muons. In its effort towards augmenting LArTPC technology for other neutrino experiments, LArIAT also takes advantage of the scintillating capabilities of LAr and is testing the possibility of using the light signal to help reconstruct calorimetric information and particle ID. In this report, we present results from these studies of the scintillation light signal to evaluate detector performance and calorimetry.

  12. Commissioning of the ATLAS liquid argon calorimeters

    CERN Document Server

    Rezaie, Erfan

    ATLAS, a multi-purpose detector built at the LHC at CERN, requires an extensive commissioning campaign to be ready for proton-proton collisions. In this work, we focus on the commissioning of the liquid Argon (LAr) calorimeters, with emphasis on commissioning with cosmic rays. First we outline one phase of the commissioning work, which involves testing of the front-end electronics of the two endcap calorimeters. We then describe two cosmic ray generators as input to a Monte-Carlo simulation of cosmic rays in ATLAS, and compare their results. Finally, we explain a technique developed for this work which uses information from the Tile calorimeters to predict the timing of cosmic rays within the LAr calorimeters, because cosmic rays occur randomly in time whereas the electronics are clocked at [Special characters omitted.] . The results from this analysis tool are compared to default tools, using both simulated and real cosmic ray data in the calorimeters.

  13. Structural determination of argon trimer

    Directory of Open Access Journals (Sweden)

    Xiguo Xie

    2015-09-01

    Full Text Available Rare gas clusters are model systems to investigate structural properties at finite size. However, their structures are difficult to be determined with available experimental techniques because of the strong coupling between the vibration and the rotation. Here we experimentally investigated multiple ionization and fragmentation dynamics of argon trimer by ultrashort intense laser fields and reconstructed their structures with Coulomb explosion technique. The measured structure distribution was compared with our finite-temperature ab initio calculations and the discrepancy was discussed. The present study provides a guidance for the development of theoretical methods for exploring the geometric structure of rare gas clusters.

  14. Time-resolved MR angiography with limited projections.

    Science.gov (United States)

    Huang, Yuexi; Wright, Graham A

    2007-08-01

    A method for reconstruction of time-resolved MRI called highly-constrained backprojection (HYPR) has been developed. To evaluate the HYPR reconstruction in relation to data sparsity and temporal dynamics, computer simulations were performed, investigating signal modulations under different situations that reflect dynamic contrast-enhanced MR angiography (MRA). In vivo studies were also performed with gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA) for abdominal MRA in a canine model to demonstrate the application of HYPR for three-dimensional (3D) time-resolved MRA. When contrast dynamics vary over space, large vessels (e.g., veins) tend to introduce signal interference to small vessels (e.g., arteries) in HYPR, particularly when the vessels are in close proximity. The enhancement of background tissue signals may also alter the arterial and venous temporal profiles in HYPR. However, the artifacts are manifest as intensity modulation rather than structural interference, and therefore have little impact on structural diagnosis. Increasing the number of projections per time point increases temporal blur while reducing corruption of temporal behavior from adjacent tissues. Uniformly interleaved acquisition order, such as the bit-reversed order, is important to reduce artifacts. With high signal-to-noise ratio (SNR) and limited artifacts, HYPR reconstruction has potential to greatly improve time-resolved MRA in clinical practice.

  15. New product development projects evaluation under time uncertainty

    Directory of Open Access Journals (Sweden)

    Thiago Augusto de Oliveira Silva

    2009-12-01

    Full Text Available The development time is one of the key factors that contribute to the new product development success. In spite of that, the impact of the time uncertainty on the development has been not fully exploited, as far as decision supporting models to evaluate this kind of projects is concerned. In this context, the objective of the present paper is to evaluate the development process of new technologies under time uncertainty. We introduce a model which captures this source of uncertainty and develop an algorithm to evaluate projects that incorporates Monte Carlo Simulation and Dynamic Programming. The novelty in our approach is to thoroughly blend the stochastic time with a formal approach to the problem, which preserves the Markov property. We base our model on the distinction between the decision epoch and the stochastic time. We discuss and illustrate the applicability of our model through an empirical example.O tempo de desenvolvimento é um dos fatores-chave que contribuem para o sucesso do desenvolvimento de novos produtos. Apesar disso, o impacto da incerteza de tempo no desenvolvimento tem sido pouco considerado em modelos de avaliação e valoração deste tipo de projetos. Neste contexto, este trabalho tem como objetivo avaliar projetos de desenvolvimento de novas tecnologias mediante o tempo incerto. Introduzimos um modelo capaz de captar esta fonte de incerteza e desenvolvemos um algoritmo para a valoração do projeto que integra Simulação de Monte Carlo e Programação Dinâmica. A novidade neste trabalho é conseguir integrar meticulosamente o tempo estocástico a uma estrutura formal para tomada de decisão que preserva a propriedade de Markov. O principal ponto para viabilizar este fato é distinção entre o momento de revisão e o tempo estocástico. Ilustramos e discutimos a aplicabilidade deste modelo por meio de um exemplo empírico.

  16. Beam commissioning of the SπRIT time projection chamber

    Science.gov (United States)

    Jhang, Genie; Barney, Jon; Estee, Justin; Isobe, Tadaaki; Kaneko, Masanori; Kurata-Nishimura, Mizuki; Cerizza, Giordano; Santamaria, Clementine; Lee, Jung Woo; Lasko, Paweł; Łukasik, Jerzy; Lynch, William G.; McIntosh, Alan B.; Murakami, Tetsuya; Pawłowski, Piotr; Shane, Rebecca; Tangwancharoen, Suwat; Tsang, Manyee Betty; Baba, Hidetada; Hong, Byungsik; Kim, Young Jin; Lee, Hyo Sang; Otsu, Hideaki; Pelczar, Krzysztof; Sakurai, Hiroyoshi; Suzuki, Daisuke; Xiao, Zhigang; Yennello, Sherry J.; Zhang, Yan

    2016-07-01

    The SπRIT Time Projection Chamber (TPC) was constructed at Michigan State University in the U.S.A. and transported to the Radioactive Isotope Beam Factory at RIKEN in Japan. In October 2015, the SπRIT TPC was commissioned with 200 AMeV 79Se beams outside the SAMURAI dipole magnet. The experimental setup consists of the SπRIT TPC, a Multiplicity Trigger Array, a KATANA array, and a Active Veto array. The TPC is fully equipped with a newly-developed read-out electronics system, GET electronics. The trigger logic to select events of the TPC based on the ancillary detectors was tested. The analysis software, SpiRITROOT, was developed to analyze the SπRIT TPC data to determine the best trigger logic for upcoming experiments.

  17. NIFFTE Time Projection Chamber for Fission Cross Section Measurements

    Science.gov (United States)

    Castillo, Ryan; Neutron Induced Fission Fragment Tracking Experiment Collaboration

    2011-10-01

    In order to design safer and more efficient Generation IV nuclear reactors, more accurate knowledge of fission cross sections is needed. The goal of the Time Projection Chamber (TPC) used by the Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) collaboration is to measure the cross sections of several fissile materials to within 1% uncertainty. The ability of the TPC to produce 3D ``pictures'' of charged particle trajectories will eliminate unwanted alpha particles in the data. Another important source of error is the normalization of data the U-235 standard. NIFFTE will use the H(n,n)H reaction instead, which is known to better than 0.2%. The run control and monitoring system will eventually allow for nearly complete automation and off-site monitoring of the experiment. This presentation will cover the need for precision measurements and an overview of the experiment. This work was supported by the U.S. Department of Energy Division of Energy Research.

  18. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark

    2011-04-13

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  19. Argon purge gas cooled by chill box

    Science.gov (United States)

    Spiro, L. W.

    1966-01-01

    Cooling argon purge gas by routing it through a shop-fabricated chill box reduces charring of tungsten inert gas torch head components. The argon gas is in a cooled state as it enters the torch and prevents buildup of char caused by the high concentrations of heat in the weld area during welding operations.

  20. Study of a Novel Concept for a Liquid Argon Calorimeter \

    CERN Multimedia

    2002-01-01

    % RD33 \\\\ \\\\ The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter prototype is proposed as a generic R\\&D project for a novel concept of calorimetry in proton-proton and electron-positron collider detectors: the $^{\\prime$Thin Gap Turbine$^{\\prime}$ (TGT). The TGT calorimeter has a modular construction, is flexible in its longitudinal and transverse granularity, and offers a uniform energy response and resolution, independent of the production angle of incident particles. An important aspect of the project is the development of fast, radiation-hard front-end electronics which is operating in the cold.

  1. A Factor of Four Increase in Attenuation Length of Dipped Lightguides for Liquid Argon TPCs Through Improved Coating

    CERN Document Server

    Moss, Z; Bugel, L; Conrad, J M; Sachdev, K; Toups, M; Wongjirad, T

    2016-01-01

    This paper describes new techniques for producing lightguides for detection of scintillation light in liquid argon time projection chambers. These can be used in future neutrino experiments such as SBND and DUNE. These new results build on a dipped-coating technique that was previously reported and is reviewed here. The improvements to the approach indicate a factor of four improvement in attenuation length of the lightguides compared to past studies. The measured attenuation lengths, which are >2 m, are consistent with the bulk attenuation length of the material. Schematics for a mechanical dipping system are provided in this paper. This system is shown to result in coatings with < 10% variations

  2. Relationship between time management in construction industry and project management performance

    Science.gov (United States)

    Nasir, Najuwa; Nawi, Mohd Nasrun Mohd; Radzuan, Kamaruddin

    2016-08-01

    Nowadays, construction industry particularly in Malaysia struggle in achieving status of eminent time management for construction project. Project managers have a great responsibility to keep the project success under time of project completion. However, studies shows that delays especially in Malaysian construction industry still unresolved due to weakness in managing the project. In addition, quality of time management on construction projects is generally poor. Due to the progressively extended delays issue, time performance becomes an important subject to be explored to investigate delay factors. The method of this study is review of literature towards issues in construction industry which affecting time performance of project in general by focusing towards process involved for project management. Based on study, it was found that knowledge, commitment, cooperation are the main criteria as an overall to manage the project into a smooth process during project execution until completion. It can be concluded that, the strength between project manager and team members in these main criteria while conducting the project towards good time performance is highly needed. However, there is lack of establishment towards factors of poor time performance which strongly related with project management. Hence, this study has been conducted to establish factors of poor time performance and its relations with project management.

  3. Monitoring and calibration of the ALICE time projection chamber

    CERN Document Server

    Larsen, Dag Toppe

    The aim of the A Large Ion Collider Experiment (ALICE) experiment at CERN is to study the properties of the Quark–Gluon Plasma (QGP). With energies up to 5.5 A T eV for Pb+Pb collisions, the Large Hadron Collider (LHC) sets a new benchmark for heavy- ion collisions, and opens the door to a so far unexplored energy domain. A closer look at some of the physics topics of ALICE is given in Chapter 1. ALICE consists of several sub-detectors and other sub-systems. The various sub- detectors are designed for exploring different aspects of the particle production of an heavy-ion collision. Chapter 2 gives some insight into the design. The main tracking detector is the Time Projection Chamber (TPC). It has more than half million read-out channels, divided into 216 Read-out Partitions (RPs). Each RP is a separate Front-End Electronics (FEE) entity, as described in Chapter 3. A complex Detector Control System (DCS) is needed for configuration, monitoring and control. The heart of it on the RP side is a small embedded ...

  4. Simulation of a Neutron Time Projection Chamber Detector

    Science.gov (United States)

    Mintz, Jessica; Foxe, Michael; Bowden, Nathaniel; Heffner, Mike; Bernstein, Adam; Jovanovic, Igor

    2009-10-01

    A neutron time projection chamber (nTPC) prototype constructed at Lawrence Livermore National Laboratory is a promising detector for directional detection of shielded special nuclear material, exhibiting powerful background rejection and neutron/gamma discrimination. The location of the fast neutron source is determined by detection of preferentially forward-pointed proton recoils in our hydrogen/methane-filled nTPC. A simulation of the nTPC in a real environment is conducted, characterizing the angular spread of detected proton recoils by taking into account the detector design, detector environment, and various analysis cuts. Accuracy of nTPC pointing to the neutron source is determined by simulation. Comparison of the simulation results with the experimental data undergoing the identical data analysis indicates the accuracy of the detector model and detector limitations. Among the limitations, particular attention is given to several classes of events which may reduce the pointing accuracy, including multiple scatters within the chamber and neutron scatters off of the surrounding material.

  5. Neutron Time Projection Chamber for Nuclear Security and Verification Applications

    Science.gov (United States)

    Jovanovic, I.; Bowden, N. S.; Carosi, G. P.; Heffner, M.; Roecker, C.

    2011-12-01

    Detection of fast neutrons produced by fission is a powerful method for discovering, verifying the presence, or monitoring significant quantities of special nuclear material (SNM) at up to moderate distances. Fast neutrons are relatively rare in the natural background and can be very penetrating, even in situations when the energetic gamma-rays are well shielded. Fast neutrons point in the direction of their source and can thus be considered for use in imaging, a feature desirable for rapid, high-signal-to-noise detection of concealed SNM and for nuclear verification. We describe the development and performance of a prototype neutron time projection chamber (nTPC) and its use for directional neutron detection and high-resolution neutron imaging. The nTPC is based on ˜0.025 m3 of a hydrogen-methane mixture and utilizes a readout system with low channel count and is optimized for low event rates. We experimentally demonstrate robust operation, reliable particle identification, event-by-event directional reconstruction over the entire 4π solid angle, and insensitivity to gamma-rays. High-efficiency and high-resolution modes of operation based on single and double neutron scatters, respectively, have also been demonstrated.

  6. 3-D tracking in a miniature time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Vahsen, S.E., E-mail: sevahsen@hawaii.edu [University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States); Hedges, M.T.; Jaegle, I.; Ross, S.J.; Seong, I.S.; Thorpe, T.N.; Yamaoka, J. [University of Hawaii, 2505 Correa Road, Honolulu, HI 96822 (United States); Kadyk, J.A.; Garcia-Sciveres, M. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2015-07-11

    The three-dimensional (3-D) detection of millimeter-scale ionization trails is of interest for detecting nuclear recoils in directional fast neutron detectors and in direction-sensitive searches for weakly interacting massive particles (WIMPs), which may constitute the Dark Matter of the universe. We report on performance characterization of a miniature gas target Time Projection Chamber (TPC) where the drift charge is avalanche-multiplied with Gas Electron Multipliers (GEMs) and detected with the ATLAS FE-I3 Pixel Application Specific Integrated Circuit (ASIC). We report on measurements of gain, gain resolution, point resolution, diffusion, angular resolution, and energy resolution with low-energy X-rays, cosmic rays, and alpha particles, using the gases Ar:CO{sub 2} (70:30) and He:CO{sub 2} (70:30) at atmospheric pressure. We discuss the implications for future, larger directional neutron and Dark Matter detectors. With an eye to designing and selecting components for these, we generalize our results into analytical expressions for detector performance whenever possible. We conclude by demonstrating the 3-D directional detection of a fast neutron source.

  7. Time Projection Chambers for the T2K Near Detectors

    CERN Document Server

    ,

    2010-01-01

    The T2K experiment is designed to study neutrino oscillation properties by directing a high intensity neutrino beam produced at J-PARC in Tokai, Japan, towards the large Super-Kamiokande detector located 295 km away, in Kamioka, Japan. The experiment includes a sophisticated near detector complex, 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to better understand neutrino interactions at the energy scale below a few GeV. A key element of the near detectors is the ND280 tracker, consisting of two active scintillator-bar target systems surrounded by three large time projection chambers (TPCs) for charged particle tracking. The data collected with the tracker is used to study charged current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. The tracker is surrounded by the former UA1/Nomad dipole magnet and the TPCs measure the charges, momenta, and ...

  8. Dynamics of the ions in Liquid Argon Detectors and electron signal quenching

    CERN Document Server

    Romero, L; Montes, B

    2016-01-01

    A study of the dynamics of the positive charges in liquid argon has been carried out in the context of the future massive time projection chambers proposed for dark matter and neutrino physics. The ions spend considerably longer times in the active volume with respect to the electrons given their small mobility coefficient in liquid. The space charge can be additionally increased by the injection in the target volume of the ions produced by electron multiplying devices located in a gas phase above the liquid. The impact of the positive current on the uniformity of the field has been evaluated as well as the probability of the charge signal quenching due to the electron-ion recombination along the drift. The results show a potential concern for the operation of massive detectors with drift of many meters when located on surface.

  9. Long-term operation of a double phase LAr LEM Time Projection Chamber with a simplified anode and extraction-grid design

    CERN Document Server

    Cantini, C; Gendotti, A; Horikawa, S; Murphy, S; Natterer, G; Periale, L; Resnati, F; Rubbia, A; Sergiampietri, F; Viant, T; Wu, S

    2013-01-01

    We report on the successful operation of a double phase Liquid Argon Large Electron Multiplier Time Projection Chamber (LAr LEM-TPC) equipped with two dimensional projective anodes with dimensions 10$\\times$10 cm$^2$, and with a maximum drift length of 21 cm. The anodes were manufactured for the first time from a single multilayer printed circuit board (PCB). Various layouts of the readout views have been tested and optimised. In addition, the ionisation charge was efficiently extracted from the liquid to the gas phase with a single grid instead of two previously. We studied the response and the gain of the detector to cosmic muon tracks. To study long-term stability over several weeks, we continuously operated the chamber at fixed electric field settings. We reproducibly observe that after an initial decrease with a characteristic time of $\\tau\\approx 1.6$ days, the observed gain is stable. In 46 days of operation, a total of 14.6 million triggers have been collected at a stable effective gain of $G_\\infty\\s...

  10. Cryogenic System for the Test Facilities of the ATLAS Liquid Argon Calorimeter Modules

    CERN Document Server

    Bremer, J; Chalifour, M; Haug, F; Passardi, Giorgio; Tischhauser, Johann

    1998-01-01

    To perform cold tests on the different modules of the ATLAS liquid argon calorimeter, a cryogenic system has been constructed and is now operated at the CERN North Experimental Area. Three different test cryostats will house the modules, which can also be exposed to particle beams for calibration purposes. The three cryostats share a common liquid argon and liquid nitrogen distribution system. The system is rather complex since it has to allow operations of the three cryostats at the same time. Liquid nitrogen is used as cold source for both the cool-down of the cryostats and for normal operation of the cryostats filled with liquid argon.

  11. Measurement of Scintillation and Ionization Yield and Scintillation Pulse Shape from Nuclear Recoils in Liquid Argon

    CERN Document Server

    Cao, H; Avetisyan, R; Back, H O; Cocco, A G; DeJongh, F; Fiorillo, G; Galbiati, C; Grandi, L; Guardincerri, Y; Kendziora, C; Lippincott, W H; Love, C; Lyons, S; Manenti, L; Martoff, C J; Meng, Y; Montanari, D; Mosteiro, P; Olvitt, D; Pordes, S; Qian, H; Rossi, B; Saldanha, R; Sangiorgio, S; Siegl, K; Strauss, S Y; Tan, W; Tatarowicz, J; Walker, S; Wang, H; Watson, A W; Westerdale, S; Yoo, J

    2014-01-01

    We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase Liquid Argon Time Projection Chamber (LAr-TPC) to a low energy pulsed narrowband neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We report measurements of the scintillation and ionization yields for nuclear recoils with energies from 10.3 to 57.2 keV and for applied electric fields from 0 to 1000 V/cm. We also report the observation of an anti-correlation between scintillation and ionization from nuclear recoils, which is similar to the anti-correlation between scintillation and ionization from electron recoils. A comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field yielded a first evidence of sensitivity to direct...

  12. Tissue gas and blood analyses of human subjects breathing 80% argon and 20% oxygen

    Science.gov (United States)

    Horrigan, D. J.; Wells, C. H.; Guest, M. M.; Hart, G. B.; Goodpasture, J. E.

    1979-01-01

    Eight human volunteers, individually studied in a hyperbaric chamber, breathed: (1) air at 1 ATA; (2) 80% argon and 20% oxygen at 1 ATA for 30 min; (3) air at 1 ATA for 30 min; (4) 100% O2 at 1 ATA for 30 min; (5) air at 1 ATA for 30 min; (6) 100% O2 at 2 ATA for 60 min; and (7) 80% argon and 20% oxygen at 1 ATA for 30 min. Oxygen, carbon dioxide, nitrogen, and argon tensions were measured in muscle and subcutaneous tissue by mass spectroscopic analyses. Venous blood obtained at regular intervals was analyzed for coagulation and fibrinolytic factors. Inert gas narcosis was not observed. After breathing argon for 30 min, muscle argon tensions were almost three times the subcutaneous tensions. Argon wash-in mirrored nitrogen wash-out. Argon wash-in and wash-out had no effect on tissue PO2 or PCO2. Coagulation and fibrinolytic changes usually associated with vascular bubbles were absent.

  13. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baron, S; Baroncelli, A; Barr, A J; Barreiro, F; BarreiroGuimarães da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Bathe, S; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Bedajanek, I; Beddall, A J; Beddall, A; Bednár, P; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Booth, J R A; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Bosteels, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Brett, N D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camarri, P; Cambiaghi, M; Cameron, D; Campabadal-Segura, F; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans-Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernadez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N; Cataldi, G; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chen, H; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; Cherkaoui El Moursli, R; Tcherniatine, V; Chesneanu, D; Cheu, E; Cheung, S L; Chevalier, L; Chevallier, F; Chiarella, V; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, M; Choudalakis, G; Chouridou, S; Chren, D; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Clark, A; Cleland, W; Clemens, J C; Clement, B; Clement, C; Clements, D; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coelli, S; Coggeshall, J; Cogneras, E; Cojocaru, C D; Colas, J; Cole, B; Colijn, A P; Collard, C; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Coluccia, R; Conde Muiño, P; Coniavitis, E; Consonni, M; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Coura Torres, R; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Cranshaw, J; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cwetanski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Silva, P V M; Da Via, C; Dabrowski, W; Dai, T; Dallapiccola, C; Dallison, S J; Daly, C H; Dam, M; Danielsson, H O; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davison, A R; Dawson, I; Dawson, J W; Daya, R K; De, K; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S; Deberg, H; Dedes, G; Dedovich, D V; Defay, P O; Degenhardt, J; Dehchar, M; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Deng, W; Denisov, S P; Dennis, C; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietrich, J; Diglio, S; Dindar Yagci, K; Dingfelder, D J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djilkibaev, R; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Dobbs, M; Dobos, D; Dobson, E; Dobson, M; Dodd, J; Dogan, O B; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A; Doyle, A T; Drasal, Z; Driouichi, C; Dris, M; Dubbert, J; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen , M; Duflot, L; Dufour, M-A; Dunford, M; Duperrin, A; Duran-Yildiz, H; Dushkin, A; Duxfield, R; Dwuznik, M; Düren, M; Ebenstein, W L; Ebke, J; Eckert, S; Eckweiler, S; Edmonds, K; Edwards, C A; Eerola, P; Egorov, K; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Ely, R; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Epshteyn, V S; Ereditato, A; Eriksson, D; Ermoline, I; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evans, H; Fabbri, L; Fabre, C; Faccioli, P; Facius, K; Fakhrutdinov, R M; Falciano, S; Falou, A C; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Fayard, L; Fayette, F; Febbraro, R; Federic, P; Fedin, O L; Fedorko, I; Fedorko, W; Feligioni, L; Felzmann, C U; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferland, J; Fernandes, B; Fernando, W; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Fiascaris, M; Fiedler, F; Filipcic, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Flores-Castillo, L R; Flowerdew, M J; Föhlisch, F; Fokitis, M; Fonseca Martin, T; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; Freestone, J; French, S T; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallas, M V; Gallop, B J; Gallus, P; Galyaev, E; Gan, K K; Gao, Y S; Gaponenko, A; Garcia-Sciveres, M; Garcí­a, C; Garcí­a Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Gatti, C; Gaudio, G; Gaumer, O; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J-C; Gazis, E N; Ge, P; Gee, C N P; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Genest, M H; Gentile, S; Georgatos, F; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghez, P; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilbert, L M; Gilchriese, M; Gilewsky, V; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giovannini, P; Giraud, P F; Girtler, P; Giugni, D; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glazov, A; Glitza, K W; Glonti, G L; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goggi, V; Goldfarb, S; Goldin, D; Golling, T; Gollub, N P; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Gonella, L; Gong, C; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorisek, A; Gornicki, E; Goryachev, S V; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Granado Cardoso, L; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Green, B; Greenshaw, T; Greenwood, Z D; Gregor, I M; Grenier, P; Griesmayer, E; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Grishkevich, Y V; Groer, L S; Grognuz, J; Groh, M; Groll, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guarino, V J; Guicheney, C; Guida, A; Guillemin, T; Guler, H; Gunther, J; Guo, B; Gupta, A; Gusakov, Y; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hackenburg, R; Hadavand, H K; Hadley, D R; Haefner, P; Härtel, R; Hajduk, Z; Hakobyan, H; Haller, J; Hamacher, K; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansl-Kozanecka, T; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harrington, R D; Harris, O B; Harris, O M; Harrison, K; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hashemi, K; Hassani, S; Hatch, M; Haug, F; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, D; Hayakawa, T; Hayward, H S; Haywood, S J; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, M; Hellman, S; Helsens, C; Hemperek, T; Henderson, R C W; Henke, M; Henrichs, A; Henriques-Correia, A M; Henrot-Versille, S; Hensel, C; Henß, T; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hessey, N P; Hidvegi, A; Higón-Rodriguez, E; Hill, D; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hirose, M; Hirsch, F; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holmgren, S O; Holy, T; Holzbauer, J L; Homma, Y; Homola, P; Horazdovsky, T; Hori, T; Horn, C; Horner, S; Horvat, S; Hostachy, J-Y; Hou, S; Houlden, M A; Hoummada, A; Howe, T; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Hughes, E W; Hughes, G; Hughes-Jones, R E; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilyushenka, Y; Imori, M; Ince, T; Ioannou, P; Iodice, M; Irles-Quiles, A; Ishikawa, A; Ishino, M; Ishmukhametov, R; Isobe, T; Issakov, V; Issever, C; Istin, S; Itoh, Y; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, J N; Jackson, P; Jaekel, M; Jahoda, M; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D; Jansen, E; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jarron, P; Jeanty, L; Jelen, K; Jen-La Plante, I; Jenni, P; Jez, P; Jézéquel, S; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, G; Jin, S; Jinnouchi, O; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joos, D; Joram, C; Jorge, P M; Juranek, V; Jussel, P; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinovskaya, L V; Kalinowski, A; Kama, S; Kanaya, N; Kaneda, M; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Karagounis, M; Karagoz Unel, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasmi, A; Kass, R D; Kastanas, A; Kastoryano, M; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kayumov, F; Kazanin, V A; Kazarinov, M Y; Kazi, S I; Keates, J R; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Kelly, M; Kennedy, J; Kenyon, M; Kepka, O; Kerschen, N; Kersevan, B P; Kersten, S; Kessoku, K; Khakzad, M; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoriauli, G; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kilvington, G; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kind, O; Kind, P; King, B T; Kirk, J; Kirsch, G P; Kirsch, L E; Kiryunin, A E; Kisielewska, D; Kittelmann, T; Kiyamura, H; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimentov, A; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Klute, M; Kluth, S; Knecht, N S; Kneringer, E; Ko, B R; Kobayashi, T; Kobel, M; Koblitz, B; Kocian, M; Kocnar, A; Kodys, P; Köneke, K; König, A C; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kohn, F; Kohout, Z; Kohriki, T; Kokott, T; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kolos, S; Kolya, S D; Komar, A A; Komaragiri, J R; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konovalov, S P; Konstantinidis, N; Koperny, S; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kostka, P; Kostyukhin, V V; Kotamäki, M J; Kotov, S; Kotov, V M; Kotov, K Y; Koupilova, Z; Kourkoumelis, C; Koutsman, A; Kowalewski, R; Kowalski, H; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kreisel, A; Krejci, F; Krepouri, A; Kretzschmar, J; Krieger, P; Krobath, G; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumshteyn, Z V; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kupco, A; Kurashige, H; Kurata, M; Kurchaninov, L L; Kurochkin, Y A; Kus, V; Kuykendall, W; Kuznetsova, E; Kvasnicka, O; Kwee, R; La Rosa, M; La Rotonda, L; Labarga, L; Labbe, J; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lamanna, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lane, J L; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Laurelli, P; Lavrijsen, W; Laycock, P; Lazarev, A B; Lazzaro, A; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M; Lebedev, A; Lebel, C; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lefebvre, M; Legendre, M; LeGeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leitner, R; Lelas, D; Lellouch, D; Lellouch, J; Leltchouk, M; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leroy, C; Lessard, J-R; Lester, C G; Leung Fook Cheong, A; Levêque, J; Levin, D; Levinson, L J; Levitski, M S; Levonian, S; Lewandowska, M; Leyton, M; Li, H; Li, J; Li, S; Li, X; Liang, Z; Liang, Z; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Liko, D; Lilley, J N; Lim, H; Limosani, A; Limper, M; Lin, S C; Lindsay, S W; Linhart, V; Linnemann, J T; Liolios, A; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lissauer, D; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, T; Liu, Y; Livan, M; Lleres, A; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Lockwitz, S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Lopes, L; Lopez Mateos, D; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Lovas, L; Love, J; Love, P; Lowe, A J; Lu, F; Lu, J; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luisa, L; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lutz, G; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macek, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magalhaes Martins, P J; Magradze, E; Magrath, C A; Mahalalel, Y; Mahboubi, K; Mahmood, A; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makouski, M; Makovec, N; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Maltezos, S; Malyshev, V; Malyukov, S; Mambelli, M; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandic, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manjavidze, I D; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti i Garcia, S; Martin, A J; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, T A; Martin dit Latour, B; Martinez, M; Martinez Outschoorn, V; Martini, A; Martynenko, V; Martyniuk, A C; Maruyama, T; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massaro, G; Massol, N; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsumoto, H; Matsunaga, H; Matsushita, T; Mattravers, C; Maxfield, S J; May, E N; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzanti, P; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCubbin, N A; McFarlane, K W; McGlone, H; Mchedlidze, G; McLaren, R A; McMahon, S J; McMahon, T R; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T M; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melamed-Katz, A; Mellado Garcia, B R; Meng, Z; Menke, S; Meoni, E; Merkl, D; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A M; Messmer, I; Metcalfe, J; Mete, A S; Meyer, J-P; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Micu, L; Middleton, R P; Migas, S; Mijovic, L; Mikenberg, G; Mikuz, M; Miller, D W; Mills, W J; Mills, C M; Milov, A; Milstead, D A; Minaenko, A A; Miñano, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Mir, L M; Mirabelli, G; Misawa, S; Miscetti, S; Misiejuk, A; Mitrevski, J; Mitsou, V A; Miyagawa, P S; Mjörnmark, J U; Mladenov, D; Moa, T; Mockett, P; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohn, B; Mohr, W; Mohrdieck-Möck, S; Moles-Valls, R; Molina-Perez, J; Moloney, G; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Moore, R W; Mora-Herrera, C; Moraes, A; Morais, A; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morii, M; Morley, A K; Mornacchi, G; Morozov, S V; Morris, J D; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Muenstermann, D; Muir, A; Murillo Garcia, R; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nairz, A M; Nakamura, K; Nakano, I; Nakatsuka, H; Nanava, G; Napier, A; Nash, M; Nation, N R; Nattermann, T; Naumann, T; Navarro, G; Nderitu, S K; Neal, H A; Nebot, E; Nechaeva, P; Negri, A; Negri, G; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neusiedl, A; Neves, R N; Nevski, P; Newcomer, F M; Nicholson, C; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicoletti, G; Niedercorn, F; Nielsen, J; Nikiforov, A; Nikolaev, K; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, H; Nilsson, P; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nomoto, H; Nordberg, M; Nordkvist, B; Notz, D; Novakova, J; Nozaki, M; Nozicka, M; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Ochi, A; Oda, S; Odaka, S; Odier, J; Odino, G A; Ogren, H; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Olcese, M; Olchevski, A G; Oliveira, M; Oliveira Damazio, D; Oliver, J; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Omachi, C; Onofre, A; Onyisi, P U E; Oram, C J; Ordonez, G; Oreglia, M J; Oren, Y; Orestano, D; Orlov, I; Oropeza Barrera, C; Orr, R S; Ortega, E O; Osculati, B; Osuna, C; Otec, R; Ottersbach, J P; Ould-Saada, F; Ouraou, A; Ouyang, Q; Owen, M; Owen, S; Ozcan, V E; Ozone, K; Ozturk, N; Pacheco Pages, A; Padhi, S; Padilla Aranda, C; Paganis, E; Pahl, C; Paige, F; Pajchel, K; Pal, A; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Papadopoulou, Th D; Park, S J; Park, W; Parker, M A; Parker, S I; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passardi, G; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Patricelli, S; Patwa, A; Pauly, T; Peak, L S; Pecsy, M; Pedraza Morales, M I; Peleganchuk, S V; Peng, H; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, P; Peshekhonov, V D; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Pfeifer, B; Phan, A; Phillips, A W; Piacquadio, G; Piccinini, M; Piegaia, R; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Ping, J; Pinto, B; Pirotte, O; Pizio, C; Placakyte, R; Plamondon, M; Plano, W G; Pleier, M-A; Poblaguev, A; Poddar, S; Podlyski, F; Poffenberger, P; Poggioli, L; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popovic, D S; Poppleton, A; Popule, J; Portell Bueso, X; Porter, R; Pospelov, G E; Pospichal, P; Pospisil, S; Potekhin, M; Potrap, I N; Potter, C J; Potter, C T; Potter, K P; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Prasad, S; Pravahan, R; Preda, T; Pretzl, K; Pribyl, L; Price, D; Price, L E; Prichard, P M; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przysiezniak, H; Psoroulas, S; Ptacek, E; Puigdengoles, C; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qi, M; Qian, J; Qian, W; Qian, Z; Qin, Z; Qing, D; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radics, B; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammes, M; Ratoff, P N; Rauscher, F; Rauter, E; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renkel, P; Rescia, S; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richards, A; Richards, R A; Richter, D; Richter, R; Richter-Was, E; Ridel, M; Rieke, S; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E R; Roa-Romero, D A; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, M; Robson, A; Rocha de Lima, J G; Roda, C; Rodriguez, D; Rodriguez Garcia, Y; Roe, S; Røhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romanov, V M; Romeo, G; Romero-Maltrana, D; Roos, L; Ros, E; Rosati, S; Rosenbaum, G A; Rosenberg, E I; Rosselet, L; Rossi, L P; Rotaru, M; Rothberg, J; Rottländer, I; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, G; Rühr, F; Ruggieri, F; Ruiz-Martinez, A; Rumyantsev, L; Rusakovich, N A; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybkin, G; Rzaeva, S; Saavedra, A F; Sadrozinski, H F-W; Sadykov, R; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salihagic, D; Salnikov, A; Salt, J; Salvachua-Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchis Lozano, M A; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sanny, B; Sansoni, A; Santamarina Rios, C; Santi, L; Santoni, C; Santonico, R; Santos, D; Santos, J; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sasaki, O; Sasaki, T; Sasao, N; Satsounkevitch, I; Sauvage, G; Savard, P; Savine, A Y; Savinov, V; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schlereth, J L; Schmid, P; Schmidt, M P; Schmieden, K; Schmitt, C; Schmitz, M; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schreiner, A; Schroeder, C; Schroer, N; Schroers, M; Schuler, G; Schultes, J; Schultz-Coulon, H-C; Schumacher, J; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Scott, W G; Searcy, J; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Seliverstov, D M; Sellden, B; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, C; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shimojima, M; Shin, T; Shmeleva, A; Shochet, M J; Shupe, M A; Sicho, P; Sidoti, A; Siebel, A; Siegert, F; Siegrist, J; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjoelin, J; Sjursen, T B; Skubic, P; Skvorodnev, N; Slater, M; Slavicek, T; Sliwa, K; Sloper, J; Sluka, T; Smakhtin, V; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solfaroli-Camillocci, E; Solodkov, A A; Solovyanov, O V; Soluk, R; Sondericker, J; Sopko, V; Sopko, B; Sosebee, M; Sosnovtsev, V V; Sospedra-Suay, L; Soukharev, A; Spagnolo, S; Spanò, F; Speckmayer, P; Spencer, E; Spighi, R; Spigo, G; Spila, F; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahl, T; Stamen, R; Stancu, S N; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Stastny, J; Staude, A; Stavina, P; Stavropoulos, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stevenson, K; Stewart, G; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Soh, D A; Su, D; Suchkov, S I; Sugaya, Y; Sugimoto, T; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, T; Suzuki, Y; Sviridov, Yu M; Sykora, I; Sykora, T; Szymocha, T; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taga, A; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Taylor, C; Taylor, F E; Taylor, G N; Taylor, R P; Taylor, W; Teixeira-Dias, P; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Terwort, M; Testa, M; Teuscher, R J; Tevlin, C M; Thadome, J; Thananuwong, R; Thioye, M; Thoma, S; Thomas, J P; Thomas, T L; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomson, E; Thun, R P; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timmermans, C J W P; Tipton, P; Tique-Aires-Viegas, F J; Tisserant, S; Tobias, J; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomasek, L; Tomasek, M; Tomasz, F; Tomoto, M; Tompkins, D; Tompkins, L; Toms, K; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tovey, S N; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Triplett, N; Trivedi, A; Trocmé, B; Troncon, C; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiafis, I; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Tuts, P M; Twomey, M S; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urkovsky, E; Urquijo, P; Urrejola, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Varela Rodriguez, F; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vasilyeva, L; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vetterli, M C; Vichou, I; Vickey, T; Viehhauser, G H A; Villa, M; Villani, E G; Villaplana Perez, M; Villate, J; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Viret, S; Virzi, J; Vitale, A; Vitells, O V; Vivarelli, I; Vives Vaques, F; Vlachos, S; Vlasak, M; Vlasov, N; Vogt, H; Vokac, P; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vudragovic, D; Vuillermet, R; Vukotic, I; Wagner, P; Wahlen, H; Walbersloh, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Wang, C; Wang, H; Wang, J; Wang, J C; Wang, S M; Ward, C P; Warsinsky, M; Wastie, R; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webel, M; Weber, J; Weber, M D; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Werthenbach, U; Wessels, M; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; White, S; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik, L A M; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wraight, K; Wright, C; Wright, D; Wrona, B; Wu, S L; Wu, X; Wulf, E; Xella, S; Xie, S; Xie, Y; Xu, D; Xu, N; Yamada, M; Yamamoto, A; Yamamoto, S; Yamamura, T; Yamanaka, K; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yao, W-M; Yao, Y; Yasu, Y; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S P; Yu, D; Yu, J; Yu, M; Yu, X; Yuan, J; Yuan, L; Yurkewicz, A; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zambrano, V; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zeitnitz, C; Zeller, M; Zema, P F; Zemla, A; Zendler, C; Zenin, O; Zenis, T; Zenonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhan, Z; Zhang, H; Zhang, J; Zhang, Q; Zhang, X; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, Y; Zhuang, X; Zhuravlov, V; Zilka, B; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivkovic, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; zur Nedden, M; Zutshi, V

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  14. Project time boxing and milestones as drivers for open design projects

    DEFF Research Database (Denmark)

    Tollestrup, Christian H. T.

    2015-01-01

    -boxed project module with five milestones for 2nd.MSc semester in an Industrial Design Engineering program. The project period is broken down into six phases that follow a prediction of the expected process, following the key learning objectives for the project module. The students need to demonstrate......The Curriculums and programs in Problem Based Learning (PBL) utilizes the project-format in a team based setting for rehearsing the competencies of applying the design-oriented skills and knowledge learned in courses and workshops. If the project period is self-organised, there is a tendency...

  15. Liquid Argon Hadronic EndCap Production Database

    CERN Document Server

    Oram, C J; Wielers, M

    2004-01-01

    This document describes the contents of the Liquid Argon Hadronic EndCap (HEC) Production Database. At the time of the PRR (Production Readiness Review), the groups responsible for the production of the LAr HEC components and modules were required to provide a detailed plan as to what data should be stored in the production database and how the data should be accessed, displayed and queried in all reasonable foreseeable circumstances. This document describes the final database.

  16. Robust Optimization for Time-Cost Tradeoff Problem in Construction Projects

    OpenAIRE

    Ming Li; Guangdong Wu

    2014-01-01

    Construction projects are generally subject to uncertainty, which influences the realization of time-cost tradeoff in project management. This paper addresses a time-cost tradeoff problem under uncertainty, in which activities in projects can be executed in different construction modes corresponding to specified time and cost with interval uncertainty. Based on multiobjective robust optimization method, a robust optimization model for time-cost tradeoff problem is developed. In order to illus...

  17. An Innovative Time-Cost-Quality Tradeoff Modeling of Building Construction Project Based on Resource Allocation

    OpenAIRE

    Wenfa Hu; Xinhua He

    2014-01-01

    The time, quality, and cost are three important but contradictive objectives in a building construction project. It is a tough challenge for project managers to optimize them since they are different parameters. This paper presents a time-cost-quality optimization model that enables managers to optimize multiobjectives. The model is from the project breakdown structure method where task resources in a construction project are divided into a series of activities and further into construction l...

  18. MicroBooNE and the Road to Large Liquid Argon Neutrino Detectors

    Science.gov (United States)

    Karagiorgi, G.

    Liquid Argon Time Projection Chambers (LArTPC's) provide a promising technology for multi-kiloton scale detectors aiming to address-among other pressing particle physics questions-the possibility of short and long baseline electron neutrino and antineutrino appearance. MicroBooNE, a 170 ton LArTPC under construction, is the next necessary step in a phased R&D effort toward construction and stable operation of larger-scale LArTPC's. This development effort also leans heavily on the ArgoNeuT and LAr1 LArTPC R&D experiments at Fermilab. In addition to advancing the LArTPC technology, these projects also provide unique physics opportunities. For example, Micro-BooNE will be located in the Booster Neutrino Beamline at Fermilab, at ∼470 m from neutrino production. Thus, in addition to measuring a suite of low energy neutrino cross sections on argon, MicroBooNE will investigate the anomalous low energy excess seen by the MiniBooNE experiment. Furthermore, the neutrino beam energy and relatively short baseline provide MicroBooNE with sensitivity to high-∼m2 neutrino oscillations. These proceedings summarize the role of the MicroBooNE detector in the US LArTPC R&D program, present its physics reach, and briefly discuss the physics potential of a dedicated near-future neutrino oscillation program at the Booster Neutrino Beamline, as a way to maximize the physics output of the Fermilab LArTPC R&D projects.

  19. Electron avalanches in liquid argon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.

    2004-03-19

    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  20. Clinical periodontics with the argon laser

    Science.gov (United States)

    Finkbeiner, R. L.

    1995-04-01

    The argon laser has proven to be a valuable tool for the thermodynamic debridement of the periodontal lesion, incisions and tissue fusion. Illustrations of clinical applications and discussion of laser parameters will be provided.

  1. Argon Laser Photoablation for Postburn Conjunctival Pigmentation

    Directory of Open Access Journals (Sweden)

    Seong Joon Ahn

    2014-01-01

    Full Text Available We report a case of an ocular burn injury from boiling water which resulted in conjunctival pigmentation, 1 week following injury. For cosmetic purposes, 2 sessions of argon laser photoablation were performed. One month after laser treatment, conjunctival pigmentation had been successfully removed and the patient was very satisfied with the results. Argon laser photoablation may be an effective way to remove postburn conjunctival pigmentation.

  2. Solar neutrino detection in a large volume double-phase liquid argon experiment

    CERN Document Server

    Franco, D; Agnes, P; Agostino, L; Bottino, B; Davini, S; De Cecco, S; Fan, A; Fiorillo, G; Galbiati, C; Goretti, A M; Hungerford, E V; Ianni, Al; Ianni, An; Jollet, C; Marini, L; Martoff, C J; Meregaglia, A; Pagani, L; Pallavicini, M; Pantic, E; Pocar, A; Renshaw, A L; Rossi, B; Rossi, N; Suvorov, Y; Testera, G; Tonazzo, A; Wang, H; Zavatarelli, S

    2015-01-01

    The direct search for dark matter WIMP particles through their interaction with nuclei at the "neutrino floor" sensitivity, where neutrino-induced coherent scattering on nuclei starts contributing to the background, requires detectors capable of collecting exposures of the order of 1~ktonne yr free of background resulting from beta and gamma decays and cosmogenic and radiogenic neutrons. The same constraints are required for precision measurements of solar neutrinos elastically scattering on electrons. Two-phase liquid argon time projection chambers (LAr TPCs) are prime candidates for the ambitious program to explore the nature of dark matter. The large target, high scintillation light yield and good spatial resolution in all three cartesian directions concurrently allows a high precision measurement of solar neutrino fluxes. We studied the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equival...

  3. Measurements of ion mobility in argon and neon based gas mixtures

    Science.gov (United States)

    Deisting, Alexander; Garabatos, Chilo; Szabo, Alexander; Vranic, Danilo

    2017-02-01

    As gaseous detectors are operated at high rates of primary ionisation, ions created in the detector have a considerable impact on the performance of the detector. The upgraded ALICE Time Projection Chamber (TPC) will operate during LHC Run 3 with a substantial space charge density of positive ions in the drift volume. In order to properly simulate such space charges, knowledge of the ion mobility K is necessary. To this end, a small gaseous detector was constructed and the ion mobility of various gas mixtures was measured. To validate the corresponding signal analysis, simulations were performed. Results are shown for several argon and neon based mixtures with different CO2 fractions. A decrease of K was measured for increasing water content.

  4. Measurements of ion mobility in argon and neon based gas mixtures

    CERN Document Server

    Deisting, Alexander; Szabo, Alexander; Vranic, Danilo

    2016-01-01

    As gaseous detectors are operated at high rates of primary ionisation, ions created in the detector have a considerable impact on the performance of the detector. The upgraded ALICE Time Projection Chamber (TPC) will operate during LHC Run$\\,3$ with a substantial space charge density of positive ions in the drift volume. In order to properly simulate such space charges, knowledge of the ion mobility $K$ is necessary. To this end, a small gaseous detector was constructed and the ion mobility of various gas mixtures was measured. To validate the corresponding signal analysis, simulations were performed. Results are shown for several argon and neon based mixtures with different $\\textrm{CO}_2$ fractions. A decrease of $K$ was measured for increasing water content.

  5. Accelerating time to benefit: Deconstructing innovative organizational practices in five projects

    DEFF Research Database (Denmark)

    Svejvig, Per; Geraldi, Joana; Grex, Sara

    2017-01-01

    Despite the ubiquitous pressure for speed, our approaches to accelerate projects remain constrained to the old-fashioned understanding of the project as a vehicle to deliver products and services, not value. This article explores an attempt to accelerate time to benefit. We describe and deconstruct...... the implementation of a large intervention undertaken in five project-based organizations in Denmark – the Project Half Double where the same project methodology has been applied in five projects, each of them in five distinct organizations in Denmark, as a bold attempt to realize double the benefit in half...... of the time. Although all cases valued speed and speed to benefit, and implemented most practices proposed by the methodology, only three of the five projects were more successful in decreasing time to speed. Based on a multi-case study comparison between these five different projects and their respective...

  6. Estimating Performance Time for Air Force Military Construction Projects

    Science.gov (United States)

    2005-03-01

    Arditi et al, (1985) NEDO, (1988) Mansfield et al, (1994) Naoum, (1991) Assaf et al, (1995) Chan and Kumaraswam y, (1997) Kaming et al, (1997...00 0, 00 0 Project Cost D ur at io n (d ay s) Regression Line Data Upper/Lower Quartiles 212 Bibliography Arditi ,D., G.T. Akan, and S. Gurdamer

  7. Potassium-argon/argon-40-argon-39 geochronology of Cenozoic alkali basalts from the South China Sea

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa; YANG Yaomin; WANG Kunshan

    2008-01-01

    Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea,the characteristics of volcanic activi-ty of the South China Sea after spreading were studied.The potassium - argon ages of eight alkali basalt samples from the South China Sea,and the argon - argon ages of two samples among them are reported.Apparent ages of the whole rock are 3.80 to 7.91 Ma with an average value of 5.43 Ma (potassium- argon,whole rock),and there is little difference among samples at the same location,e.g.,4.76~5.78 Ma for location S04-12.The argon - argon ages for the two samples are 6.06 and 4.71 Ma,which lie within the age scope of potassium - argon method.The dating results indicate that rock-forming age is from late Miocene to Pli-ocene,which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea.Volcanic activities occur after the cessation of spreading of the South China Sea,which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea.These dating results,combined with geochemical characteristics of these basalts,the published chronological data for the South China Sea and its adjacent regions,and the updated geophysical data near Hainan Island,suggest that after the cessation of spreading of the South China Sea,there occur widely distributing magmatic activities which primarily is alkali basalt,and the volcanic activity continues to Quaternary.The activity may be relative to Hainan mantle plume originated from core/mantle boundary.

  8. Readiness of the ATLAS liquid argon calorimeter for LHC collisions

    Science.gov (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Bathe, S.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, J. R. A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, S. V.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. B.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martynenko, V.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nicholson, C.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.

    2010-12-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along η (averaged over φ) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.

  9. Simulations of argon accident scenarios in the ATLAS experimental cavern a safety analysis

    CERN Document Server

    Balda, F

    2002-01-01

    Some characteristic accidents in the ATLAS experimental cavern (UX15) are simulated by means of STAR-CD, a code using the "Finite-Volume" method. These accidents involve different liquid argon leaks from the barrel cryostat of the detector, thus causing the dispersion of the argon into the Muon Chamber region and the evaporation of the liquid. The subsequent temperature gradients and distribution of argon concentrations, as well as their evolution in time are simulated and discussed, with the purpose of analysing the dangers related to asphyxiation and to contact with cryogenic fluids for the working personnel. A summary of the theory that stands behind the code is also given. In order to validate the models, an experimental test on a liquid argon spill performed earlier is simulated, showing that the program is able to output reliable results. At the end, some safety-related recommendations are listed.

  10. Investigation of Non-Equilibrium Argon and Hydrogen Plasmas.

    Science.gov (United States)

    Braun, Christopher Gifford

    1987-09-01

    Theoretical and experimental investigations are made into non-equilibrium argon and hydrogen partially -ionized plasmas characteristic of glow discharge devices such as thyratrons and discharge tubes. For an argon plasma, the development and use of a collisional-radiative, steady -state, three-energy-level model is presented and experimental measurements on pulsed argon plasmas are briefly mentioned. Two different theoretical argon plasma models are discussed; the first is numerically solved using a non-Maxwellian electron distribution function, while the second is solved analytically, including atom-atom inelastic collisions, assuming Maxwellian electron and atom distribution functions. For a hydrogen plasma, experimental measurements using fluorescence and laser-induced fluorescence have been made in a modified hydrogen thyratron over a wide current density range (from 100 to 8,000 A/cm('2)) for the atomic hydrogen population densities n = 2,3,4. A pronounced rise in the atomic hydrogen excited state populations is observed after the end of the current pulse. A new method to measure the time-resolved electron density has been developed and results are presented. A time-dependent model for atomic hydrogen plasmas typical of a thyratron has been constructed, and preliminary results are shown. This model includes ten atomic energy levels (n = 1 to n = 9 and the continuum), takes into account energy balance with an externally supplied current density and assumes a Maxwellian electron distribution function. Implications of these measurements and theoretical analysis upon the operation of thyratrons are discussed. (Copies available exclusively from Micrographics Department, Doheny Library, University of Southern California, Los Angeles, CA 90089 -0182.).

  11. Time Contingency Assessment in Construction Projects in Egypt using Artificial Neural Networks Model

    Directory of Open Access Journals (Sweden)

    Hazem Yahia

    2011-07-01

    Full Text Available Time schedule is an essential tool for construction project management. For instance, it can materially help to identify the expected financial requirements. It is also an important tool for the time control process. Construction project time schedule is greatly affected by many uncertain but predictable factors. Hence, a certain percentage of time contingency should be added to the scheduled time to arrive at more reliable time schedule. In this research, the most important factors affecting time contingency in construction projects were identified based on a comprehensive survey among a collected sample of the Egyptian construction experts. In addition, a neural networks model was developed in order to help project planner to have a more reliable prediction for the amount of time contingency that should be added to the scheduled completion time. This paper explains the data collection process, lists the main factors affecting time contingency and discusses the model development methodology.

  12. A Gravitational Wave Pulsar Timing Backend for DSN Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a state-of-the-art pulsar timing processor to be installed at the DSN to demonstrate precision pulsar timing capability along with a novel signal processing...

  13. Liquid argon calorimeter performance at high rates

    CERN Document Server

    Seifert, F; The ATLAS collaboration

    2012-01-01

    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $10^{12}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  14. Liquid Argon Calorimeter performance at High Rates

    CERN Document Server

    Seifert, F; The ATLAS collaboration

    2013-01-01

    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $3\\cdot10^{11}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  15. Metal clusters on supported argon layers; Metallcluster auf dielektrischen Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Bernhard

    2011-10-21

    The deposition of small sodium clusters on supported Ar(001)-surfaces is simulated. Theoretical description is achieved by a hierarchical model consisting of time-dependent DFT and molecular dynamics. The valence electrons of the sodium atoms are considered by Kohn-Sham-Scheme with self interaction correction. The interaction of argon atoms and sodium ions is described by atom-atom potentials whereas the coupling to the QM electrons is done by local pseudo-potentials. A decisive part of the model is the dynamical polarizability of the rare-gas atoms. The optional metal support is considered by the method of image charges. The influence of the forces caused by image charges and the influence of the number of argon monolayers on structure, optical response and deposition dynamics of Na{sub 6} and Na{sub 8} is investigated. There is very little influence on cluster structure and only a small shift of the cluster perpendicular to the surface. Concerning optical response the position of the Mie plasmon peak stays robust whereas the details of spectral fragmentation react very sensitively to changes. The forces caused by image charges of the metal support play only a little role with the dynamics of deposition while the thickness of the argon surface strongly influences the dissipation. (orig.)

  16. Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon

    Institute of Scientific and Technical Information of China (English)

    XU Guimin; ZHANG Guanjun; SHI Xingmin; MA Yue; WANG Ning; LI Yuan

    2009-01-01

    A coaxial dielectric barrier discharge plasma jet Was designed,which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply,and an atmospheric pressure glow-like discharge Was achieved.Two kinds of typical bacteria,i.e.,the Staphylococcus aureus(S.aurens)and Escherichia coil(E.coil),were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma.The killing log value (KLV)of S.aureus reached up to 5.38 with a treatment time of 90 s and that of E.coil up to 5.36 with 60 s,respectively.According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment.it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation,while the heat,electric field and UV photons had little effect.

  17. Attenuation of vacuum ultraviolet light in liquid argon

    CERN Document Server

    Neumeier, A; Oberauer, L; Potzel, W; Schönert, S; Dandl, T; Heindl, T; Ulrich, A; Wieser, J

    2015-01-01

    The transmission of liquid argon has been measured, wavelength resolved, for a wavelength interval from 118 to 250 nm. The wavelength dependent attenuation length is presented for pure argon. It is shown that no universal wavelength independent attenuation length can be assigned to liquid argon for its own fluorescence light due to the interplay between the wavelength dependent emission and absorption. A decreasing transmission is observed below 130 nm in both chemically cleaned and distilled liquid argon and assigned to absorption by the analogue of the first argon excimer continuum. For not perfectly cleaned argon a strong influence of impurities on the transmission is observed. Two strong absorption bands at 126.5 and 141.0 nm with approximately 2 and 4 nm width, respectively, are assigned to traces of xenon in argon. A broad absorption region below 180 nm is found for unpurified argon and tentatively attributed to the presence of water in the argon sample.

  18. X-Ray Pulsar Based Navigation and Time Determination Project

    Data.gov (United States)

    National Aeronautics and Space Administration — DARPA recently initiated the XNAV program to undertake development of GPS independent, precision navigation and time determination based on observations of certain...

  19. Beleaguered Egypt project running out of funds and time.

    Science.gov (United States)

    1992-01-01

    Started in 1979 as part of the International Planned Parenthood Federation (IPPF), the Family of the Future (FOF) social marketing project accounts for 35% of all contraceptives used in Egypt. FOF left the IPPF in 1981 to work as a nonprofit, semiprivate organization under the supervision of Egypt's Ministry of Health and has become the third largest social marketing project in the world. FOF has, however, gone through 5 executive directors in the last 6 years, prompting critics to think that the Board of Directors is hand-picked by the Egyptian Ministry of Health. additional allegations of financial mismanagement have caused the U.S. Agency for International Development (USAID) to cancel over $1.5 million in annual funding and product support for the program. Until recently, FOF has benefited from products and operations and technical assistance totalling near $20 million as part of a USAID 10-year, $118-million Egyptian effort. FOF has responded to the funding cut by downsizing its staff and preparing to raise contraceptive prices. Even though USAID has solicited proposals for competitive replacement programs, the new executive director is optimistic that funding cuts leading to organizational change and price increases will ultimately help FOF become self-sufficient. Once USAID-provided supplies have been depleted, FOF will most likely turn to IPPF for assistance.

  20. Nonlinear Time Reversal Acoustic Method of Friction Stir Weld Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the project is demonstration of the feasibility of Friction Stir Weld (FSW) assessment by novel Nonlinear Time Reversal Acoustic (TRA) method. Time...

  1. A Time for Immersion, A Time for Reflection: The Multigenre Research Project and Portfolio Assessment.

    Science.gov (United States)

    Romano, Tom

    This paper describes the senior honors thesis (a multigenre research paper), and narrates the process by which a senior English major at the University of New Hampshire and her project advisor worked together on this semester-long project. In the first section, the multigenre research paper is defined as a work that combines poems, monologues,…

  2. Abstract algebra, projective geometry and time encoding of quantum information

    CERN Document Server

    Planat, M R P; Planat, Michel R. P.; Saniga, Metod

    2005-01-01

    Algebraic geometrical concepts are playing an increasing role in quantum applications such as coding, cryptography, tomography and computing. We point out here the prominent role played by Galois fields viewed as cyclotomic extensions of the integers modulo a prime characteristic $p$. They can be used to generate efficient cyclic encoding, for transmitting secrete quantum keys, for quantum state recovery and for error correction in quantum computing. Finite projective planes and their generalization are the geometric counterpart to cyclotomic concepts, their coordinatization involves Galois fields, and they have been used repetitively for enciphering and coding. Finally the characters over Galois fields are fundamental for generating complete sets of mutually unbiased bases, a generic concept of quantum information processing and quantum entanglement. Gauss sums over Galois fields ensure minimum uncertainty under such protocols. Some Galois rings which are cyclotomic extensions of the integers modulo 4 are al...

  3. Social Psychology of Facts, Processes and Projects. Object and Time

    Directory of Open Access Journals (Sweden)

    Gil, Adriana

    2006-05-01

    Full Text Available A dimension that must be considered, in the reflection that social sciences offer to society, is temporality. I would like to highlight the implicit idea of temporality within the different forms of psychosocial knowledge. In this article I propose that the different types of social psychology orientations can be situated on an axis of temporality which makes a distinction between those orientations that assume that the object of social knowledge is a fact (that is an object without temporality, being change a mere succession of independent facts, and those orientations that assume that their object is a process (that is an object in movement or perpetual change. Finally, I propose a potential social psychology of projects as an essential part of my own concept of what social psychology is

  4. Surface-Borne Time-of-Reception Measurements (STORM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Invocon proposes the Surface-borne Time-Of-Reception Measurements (STORM) system as a method to locate the position of lightning strikes on aerospace vehicles....

  5. Time Domain Terahertz Axial Computed Tomography Non Destructive Evaluation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a high speed automated time domain terahertz computed axial tomography (TD-THz CT) non destructive...

  6. Novel Real-Time Flight Envelope Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries,...

  7. 3D Flash LIDAR Real-Time Embedded Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  8. X-Ray Pulsar Based Navigation and Time Determination Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm will build on the Phase I X-ray pulsar-based navigation and timing (XNAV) feasibility assessment to develop a detailed XNAV simulation capability to...

  9. Real Time Control Software for Electromagnetic Formation Flight Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the development of a maintainable and evolvable real-time control software system for Electromagnetic Formation Flight (EMFF). EMFF systems use...

  10. Real-Time Smart Tools for Processing Spectroscopy Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose novel and real-time smart software tools to process spectroscopy data. Material abundance or compositional maps will be generated for rover guidance,...

  11. Novel Real-Time Flight Envelope Monitoring System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an aircraft flight envelope monitoring system that will provide real-time in-cockpit estimations of aircraft flight envelope boundaries....

  12. 3D Flash LIDAR Real-Time Embedded Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — 3D Flash LIDAR (3DFL) is ideal for determining real-time spacecraft trajectory, speed and orientation to the planet surface, as well as evaluating potential hazards...

  13. Online Real-Time Tribology Failure Detection System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The investigation of the coating friction as a function of time is important to monitor the ball bearing heath. Despite the importance of the subject mater, there is...

  14. Deep Space Navigation and Timing Architecture and Simulation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm will develop a deep space navigation and timing architecture and associated simulation, incorporating state-of-the art radiometric, x-ray pulsar, and laser...

  15. Station Explorer X-Ray Timing and Navigation (SEXTANT) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Because of their predictable pulsations, pulsars are highly reliable celestial clocks that can provide the same high-precision timing as the atomic clock signals...

  16. Optical Real-Time Space Radiation Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Real-time dosimetry is needed to provide immediate feedback, so astronauts can minimize their exposure to ionizing radiation during periods of high solar activity....

  17. Radiation Tolerant Low Power Precision Time Source Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The availability of small, low power atomic clocks is now a reality for ground-based and airborne navigation systems. Kernco's Low Power Precision Time Source...

  18. The WArP Experiment: A Double-Phase Argon Detector for Dark Matter Searches

    Directory of Open Access Journals (Sweden)

    Andrea Zani

    2014-01-01

    Full Text Available Cryogenic noble liquids emerged in the previous decade as one of the best media to perform WIMP dark matter searches, in particular due to the possibility to scale detector volumes to multiton sizes. The WArP experiment was then developed as one of the first to implement the idea of coupling Argon in liquid and gas phase, in order to discriminate β/γ-interactions from nuclear recoils and then achieve reliable background rejection. Since its construction, other projects spawned, employing Argon and Xenon and following its steps. The WArP 100l detector was assembled in 2008 at the Gran Sasso National Laboratories (LNGS, as the final step of a years-long R&D programme, aimed at characterising the technology of Argon in double phase for dark matter detection. Though it never actually performed a physics run, a technical run was taken in 2011, to characterise the detector response.

  19. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture

    Science.gov (United States)

    Li, Xuechun; Li, Dian; Wang, Younian

    2016-09-01

    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  20. A new timing detector for the CT-PPS project

    Science.gov (United States)

    Arcidiacono, R.

    2017-02-01

    The CT-PPS detector will be installed close to the beam line on both sides of CMS, 200 m downstream the interaction point. This detector will measure forward scattered protons, allowing detailed studies of diffractive hadron physics and Central Exclusive Production. The main components of the CT-PPS detector are a silicon tracking system and a timing system. In this contribution we present the proposal of an innovative solution for the timing system, based on Ultra-Fast Silicon Detectors (UFSD). UFSD are a novel concept of silicon detectors potentially able to obtain the necessary time resolution (∼20 ps on the proton arrival time). The use of UFSD has also other attractive features as its material budget is small and the pixel geometries can be tailored to the precise physics distribution of protons. UFSD prototypes for CT-PPS have been designed by CNM (Barcelona) and FBK (Trento): we will present the status of the sensor productions and of the low-noise front-end electronics currently under development and test.

  1. A study of the electron image due to ionizing events in a two-dimensional liquid argon TPC with a 24 cm drift gap

    Science.gov (United States)

    Bonetti, S.; Braggiotti, A.; Buckley, E.; Campanella, M.; Carugno, G.; Cecchet, G.; Cennini, P.; Centro, S.; Ciocio, A.; Cittolin, S.; Dainese, B.; Ferro-Luzzi, M.; Gasparini, F.; Gonidec, A.; Manfredi, P. F.; Meroni, E.; Muñoz, R.; Perreau, J.-M.; Pietropaolo, F.; Ptohos, F.; Ragusa, F.; Rossi, P.; Rubbia, C.; Schinzel, D.; Schmidt, W. F.; Seidl, W.

    1990-01-01

    We have tested a liquid argon time projection chamber with a novel wire configuration based on electrostatic focussing which allows the realization of a nondestructive detection of the electron image produced by ionizing events. The chamber was tested in a 5 GeV pion beam at the CERN proton synchrotron. The measured pulse shapes at both 200 V/cm and 500 V/cm were in very good agreement with the expected shapes, calculated taking into account the electron lifetime, the response of the electronics and the longitudinal diffusion of the electron cloud. The measured electron drift velocity was in good agreement with the results of other workers as well as with our previous measurements. We have also analysed a sample of events containing delta rays in order to study the behaviour of low-energy electrons in the liquid argon. We find that for electron energies greater than 5 MeV the measured energy spectrum agrees very well with the predicted spectrum after corrections for acceptance and energy loss, hence demonstrating the feasibility of recognizing low-energy electrons in liquid argon.

  2. Robust Optimization for Time-Cost Tradeoff Problem in Construction Projects

    Directory of Open Access Journals (Sweden)

    Ming Li

    2014-01-01

    Full Text Available Construction projects are generally subject to uncertainty, which influences the realization of time-cost tradeoff in project management. This paper addresses a time-cost tradeoff problem under uncertainty, in which activities in projects can be executed in different construction modes corresponding to specified time and cost with interval uncertainty. Based on multiobjective robust optimization method, a robust optimization model for time-cost tradeoff problem is developed. In order to illustrate the robust model, nondominated sorting genetic algorithm-II (NSGA-II is modified to solve the project example. The results show that, by means of adjusting the time and cost robust coefficients, the robust Pareto sets for time-cost tradeoff can be obtained according to different acceptable risk level, from which the decision maker could choose the preferred construction alternative.

  3. Sensitivity analysis of socio-economic values of time for public transport projects

    DEFF Research Database (Denmark)

    Andersen, Jonas Lohmann Elkjær; Landex, Alex; Nielsen, Otto Anker

    2007-01-01

    The socio-economic time benefits of two light rail projects in Copenhagen are investigated using three different sets of values of time. The first set is the one the Ministry of Transport recommends for use in socio-economic analysis in Denmark; this is used as basis for comparison with the two...... supported by examples. Traffic modelling of the two light rail projects has been performed and the results are used to generate the time benefits. The time benefits for the two light rail projects using the expected new values of time will increase around 20% compared to the result when using the values...... recommended by the Ministry of Transport. Differentiated in-vehicle values prove to generate an even higher increase in time benefits, but vary depending on the projects....

  4. Fission Fragment Angular Distributions measured with a Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kleinrath, Verena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-28

    The subject is presented in a series of slides with the following organization: Introduction (What is anisotropy? Relevance (Theory and ratio cross section), Previous measurements); Experiment (Particle tracking in the fissionTPC, Neutron time of flight, Data analysis & uncertainty calculation, Preliminary result for 235U); and Future Work (Refine 235U result, Process 239Pu data).

  5. First operation and drift field performance of a large area double phase LAr Electron Multiplier Time Projection Chamber with an immersed Greinacher high-voltage multiplier

    CERN Document Server

    Badertscher, A; Degunda, U; Epprecht, L; Gendotti, A; Horikawa, S; Knecht, L; Lussi, D; Marchionni, A; Natterer, G; Nguyen, K; Resnati, F; Rubbia, A; Viant, T

    2012-01-01

    We have operated a liquid-argon large-electron-multiplier time-projection chamber (LAr LEM-TPC) with a large active area of 76 $\\times$ 40 cm$^2$ and a drift length of 60 cm. This setup represents the largest chamber ever achieved with this novel detector concept. The chamber is equipped with an immersed built-in cryogenic Greinacher multi-stage high-voltage (HV) multiplier, which, when subjected to an external AC HV of $\\sim$1 kV$_{\\mathrm{pp}}$, statically charges up to a voltage a factor of $\\sim$30 higher inside the LAr vessel, creating a uniform drift field of $\\sim$0.5 kV/cm over the full drift length. This large LAr LEM-TPC was brought into successful operation in the double-phase (liquid-vapor) operation mode and tested during a period of $\\sim$1 month, recording impressive three-dimensional images of very high-quality from cosmic particles traversing or interacting in the sensitive volume. The double phase readout and HV systems achieved stable operation in cryogenic conditions demonstrating their go...

  6. Project deliverables - a waste of time or a chance for knowledge transfer and dissemination?

    Science.gov (United States)

    Walter, Sylvia

    2016-04-01

    Deliverables are a common tool to measure a distinct output of a project. They should be meaningful in terms of the project's objectives and are normally constituted by e.g. a written report or document, a developed tool or software, an organized training or conference. They can be scientific or technical. The number of deliverables must be reasonable and commensurate to the project and its content. Deliverables as contractual obligations are often time consuming and often seen as a waste of "research" time, as one more administrative task without any use. However, deliverables are needed to verify the progress of a project and to convince the sponsor that the project is going in the right direction and the money well-invested. The presentation will deal with the question on how to use a deliverable in a profitable way for the project and what are the possibilities of use.

  7. Search for Millisecond Pulsars for the Pulsar Timing Array project

    Science.gov (United States)

    Milia, S.

    2012-03-01

    Pulsars are rapidly rotating highly magnetised neutron stars (i.e. ultra dense stars, where about one solar mass is concentrated in a sphere with a radius of ~ 10 km), which irradiate radio beams in a fashion similar to a lighthouse. As a consequence, whenever the beams cut our line of sight we perceive a radio pulses, one (or two) per pulsar rotation, with a frequency up to hundred of times a second. Owing to their compact nature, rapid spin and high inertia, pulsars are in general fairly stable rotators, hence the Times of Arrival (TOAs) of the pulses at a radio telescope can be used as the ticks of a clock. This holds true in particular for the sub­class of the millisecond pulsars (MSPs), having a spin period smaller than the conventional limit of 30 ms, whose very rapid rotation and relatively older age provide better rotational stability than the ordinary pulsars. Indeed, some MSPs rotate so regularly that they can rival the best atomic clocks on Earth over timespan of few months or years.This feature allows us to use MSPs as tools in a cosmic laboratory, by exploiting a procedure called timing, which consists in the repeated and regular measurement of the TOAs from a pulsar and then in the search for trends in the series of the TOAs over various timespans, from fraction of seconds to decades.For example the study of pulsars in binary systems has already provided the most stringent tests to date of General Relativity in strong gravitational fields and has unambiguously showed the occurrence of the emission of gravitational waves from a binary system comprising two massive bodies in a close orbit. In last decades a new exciting perspective has been opened, i.e. to use pulsars also for a direct detection of the so far elusive gravitational waves and thereby applying the pulsar timing for cosmological studies. In fact, the gravitational waves (GWs) going across our Galaxy pass over all the Galactic pulsars and the Earth, perturbing the space­time at the

  8. Positive and negative pulsed corona in argon

    NARCIS (Netherlands)

    Veldhuizen, E.M. van; Rutgers, W.R.; Ebert, U.

    2002-01-01

    Photographs are obtained of corona discharges in argon at atmospheric pressure using a high resolution, intensified CCD camera. Positive and negative polarity is applied at the curved electrode in a point-plane gap and a plane-plane gap with a protruding point. Branching is observed in the positive

  9. Optimization of Time Restriction in Construction Project Management Using Lingo and M.S.Excel

    Directory of Open Access Journals (Sweden)

    Komal Kiran

    2015-09-01

    Full Text Available This study is an attempt to identify the minimum time of a construction project using the critical path method and linear programming model. A systematic analysis is attempted by developing a work breakdown structure for entire project to establish work elements for quantifying various resources against time and cost. A network is established taking into consideration all the predecessor and successor activities. The network is then optimized through crashing of activities so as to obtain optimal solution and serves as a base for optimizing total project cost. Finally, linear programming model is used to formulate the system of crashing network for minimum time by LINGO model and Microsoft Excel. These models consider many considerations of project thus reducing the duration of project. Ultimately, comparison of both the software outputs and the manual calculations is done and the best verifier is determined.

  10. Influence of argon laser curing on resin bond strength.

    Science.gov (United States)

    Hinoura, K; Miyazaki, M; Onose, H

    1993-04-01

    Light cured resin composites are usually cured with halogen lamps whose light output decreases with time and distance to the resin surface. This study compared bond strengths of resins to tooth structure cured with either an argon laser or a conventional halogen light. The enamel and dentin of bovine incisors were ground on the buccal surface with wet #600 grit SiC paper. A 4 x 2 mm mold was placed on the tooth surface and Scotchbond 2/Silux and Clearfil Photobond/Photo Clearfil A were placed into the molds and cured using a Quick Light or an argon laser for exposure times of 10, 20, and 30 seconds, and distances of 0.0, 0.5, 1.0, and 1.5 mm from the resin surface. The intensity of the Quick Light was measured as 510 mW/cm2 at 470 +/- 15 nm and the intensity of the argon laser was adjusted to 510 mW/cm2 before curing. Shear bond tests at a crosshead speed of 1.0 mm/min were performed after 24 hours of storage in water. The bond strengths obtained with the halogen lamp and the laser were not significantly different at the same exposure times and at 0.0 or 0.5 mm from the resin surface. The laser cured bond strengths did not decrease with increasing distance whereas there was a significant decrease in halogen bond strengths at distances greater than 0.5 mm for both resins. The use of the laser might provide a clinical advantage in cases where the curing light source cannot be brought into proximity to the surface of the resin.

  11. 46 CFR 151.50-36 - Argon or nitrogen.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  12. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    NARCIS (Netherlands)

    Hobbs, G.; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Cognard, I.; Coles, W.; Cordes, J.; Demorest, P.; Desvignes, G.; Ferdman, R.D.; Finn, L.; Freire, P.; Gonzalez, M.; Hessels, J.; Hotan, A.; Janssen, G.; Jenet, F.; Jessner, A.; Jordan, C.; Kaspi, V.; Kramer, M.; Kondratiev, V.; Lazio, J.; Lazaridis, K.; Lee, K.J.; Levin, Y.; Lommen, A.; Lorimer, D.; Lynch, R.; Lyne, A.; Manchester, R.; McLaughlin, M.; Nice, D.; Oslowski, S.; Pilia, M.; Possenti, A.; Purver, M.; Ransom, S.; Reynolds, J.; Sanidas, S.; Sarkissian, J.; Sesana, A.; Shannon, R.; Siemens, X.; Stairs, I.; Stappers, B.; Stinebring, D.; Theureau, G.; van Haasteren, R.; van Straten, W.; Verbiest, J.P.W.; Yardley, D.R.B.; You, X.P.

    2010-01-01

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (similar to 10(-9)-10(-8) Hz) gravitational waves. Here we introduce the project, review the methods used to sear

  13. Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges

    Science.gov (United States)

    Pan, Jie; Li, Li; Wang, Yunuan; Xiu, Xianwu; Wang, Chao; Song, Yuzhi

    2016-11-01

    Atmospheric-pressure argon plasmas have received increasing attention due to their high potential in many industrial and biomedical applications. In this paper, a 1-D fluid model is used for studying the particle density characteristics of the argon plasmas generated by the pulsed dielectric barrier discharges. The temporal evolutions of the axial particle density distributions are illustrated, and the influences of changing the main discharge conditions on the averaged particle densities are researched by independently varying the various discharge conditions. The calculation results show that the electron density and the ion density reach two peaks near the momentary cathodes during the rising and the falling edges of the pulsed voltage. Compared with the charged particle densities, the densities of the resonance state atom Arr and the metastable state atom Arm have more uniform axial distributions, reach higher maximums and decay more slowly. During the platform of the pulsed voltage and the time interval between the pulses, the densities of the excited state atom Ar* are far lower than those of the Arr or the Arm. The averaged particle densities of the different considered particles increase with the increases of the amplitude and the frequency of the pulsed voltage. Narrowing the discharge gap and increasing the relative dielectric constant of the dielectric also contribute to the increase of the averaged particle densities. The effects of reducing the discharge gap distance on the neutral particle densities are more significant than the influences on the charged particle densities. supported by Natural Science Foundation of Shandong Province, China (No. ZR2015AQ008), and Project of Shandong Province Higher Educational Science and Technology Program of China (No. J15LJ04)

  14. Model-Based Real Time Assessment of Capability Left for Spacecraft Under Failure Mode Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is aimed at developing a model based diagnostics system for spacecraft that will allow real time assessment of its state, while it is impacted...

  15. Neutron decay measurements with a helium-filled time projection chamber

    Energy Technology Data Exchange (ETDEWEB)

    Schreckenbach, K. (Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)); Azuelos, G. (British Columbia Univ., Vancouver (Canada). TRIUMF Facility); Grivot, P. (Grenoble-1 Univ., 38 (France). Inst. des Sciences Nucleaires); Kossakowski, R.; Liaud, P. (Universite de Savoie, 73 - Chambery (France) Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules)

    1989-11-20

    A helium-filled time projection chamber was developed for in-beam detection of electrons from the free neutron decay. In a first experiment the neutron lifetime was determined as {tau}{sub n}=878(31) s. (orig.).

  16. Time-Frequency Analysis and Hermite Projection Method Applied to Swallowing Accelerometry Signals

    Directory of Open Access Journals (Sweden)

    Ervin Sejdić

    2010-01-01

    Full Text Available Fast Hermite projections have been often used in image-processing procedures such as image database retrieval, projection filtering, and texture analysis. In this paper, we propose an innovative approach for the analysis of one-dimensional biomedical signals that combines the Hermite projection method with time-frequency analysis. In particular, we propose a two-step approach to characterize vibrations of various origins in swallowing accelerometry signals. First, by using time-frequency analysis we obtain the energy distribution of signal frequency content in time. Second, by using fast Hermite projections we characterize whether the analyzed time-frequency regions are associated with swallowing or other phenomena (vocalization, noise, bursts, etc.. The numerical analysis of the proposed scheme clearly shows that by using a few Hermite functions, vibrations of various origins are distinguishable. These results will be the basis for further analysis of swallowing accelerometry to detect swallowing difficulties.

  17. Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.

    Science.gov (United States)

    Poirot-Delpech, Sophie; Raineau, Laurence

    2016-12-01

    The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.

  18. Function Projective Synchronization in Discrete-Time Chaotic System with Uncertain Parameters

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong; LI Xin

    2009-01-01

    The function projective synchronization of discrete-time chaotic systems is presented. Based on backstep-ping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate function projective synchronization (FPS) of discrete-time chaotic systems with uncertain parameters. With the aid of symbolic-numeric computation, we use the proposed scheme to illustrate FPS between two identical 3D Henon-like maps with uncertain parameters. Numeric simulations are used to verify the effectiveness of our scheme.

  19. Coherent and incoherent Thomson scattering on an argon/hydrogen microwave plasma torch with transient behaviour

    Science.gov (United States)

    Obrusník, A.; Synek, P.; Hübner, S.; van der Mullen, J. J. A. M.; Zajíčková, L.; Nijdam, S.

    2016-10-01

    A new method of processing time-integrated coherent Thomson scattering spectra is presented, which provides not only the electron density and temperature but also information about the transient behaviour of the plasma. Therefore, it is an alternative to single-shot Thomson scattering measurements as long as the scattering is coherent. The method is applied to a microwave plasma torch operating in argon or a mixture of argon with hydrogen at atmospheric pressure. Electron densities up to 8\\cdot {{10}21} m-3 (ionization degree above 10-3) were observed, which is more than two times higher than presented in earlier works on comparable discharges. Additionally, a parametric study with respect to the argon/hydrogen ratio and the input power was carried out and the results are discussed together with earlier Stark broadening measurements on the same plasma.

  20. Implementation of lean construction techniques for minimizing the risks effect on project construction time

    Directory of Open Access Journals (Sweden)

    Usama Hamed Issa

    2013-12-01

    Full Text Available The construction projects involve various risk factors which have various impacts on time objective that may lead to time-overrun. This study suggests and applies a new technique for minimizing risk factors effect on time using lean construction principles. The lean construction is implemented in this study using the last planner system through execution of an industrial project in Egypt. Evaluating the effect of using the new tool is described in terms of two measurements: Percent Expected Time-overrun (PET and Percent Plan Completed (PPC. The most important risk factors are identified and assessed, while PET is quantified at the project start and during the project execution using a model for time-overrun quantification. The results showed that total project time is reduced by 15.57% due to decreasing PET values, while PPC values improved. This is due to minimizing and mitigating the effect of most of the risk factors in this project due to implementing lean construction techniques. The results proved that the quantification model is suitable for evaluating the effect of using lean construction techniques. In addition, the results showed that average value of PET due to factors affected by lean techniques represents 67% from PET values due to all minimized risk factors.

  1. Adaptive Control and Function Projective Synchronization in 2D Discrete-Time Chaotic Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yin; CHEN Yong; LI Biao

    2009-01-01

    This study addresses the adaptive control and function projective synchronization problems between 2D Rulkov discrete-time system and Network discrete-time system.Based on backstepping design with three controllers, a systematic, concrete and automatic scheme is developed to investigate the function projective synchronization of discrete-time chaotic systems.In addition, the adaptive control function is applied to achieve the state synchronization of two discrete-time systems.Numerical results demonstrate the effectiveness of the proposed control scheme.

  2. Space versus Time: Unimodular versus Non-Unimodular Projective Ring Geometries?

    CERN Document Server

    Saniga, Metod

    2008-01-01

    Finite projective (lattice) geometries defined over rings instead of fields have recently been recognized to be of great importance for quantum information theory. We believe that there is much more potential hidden in these geometries to be unleashed for physics. There exist specific rings over which the projective spaces feature two principally distinct kinds of basic constituents (points and/or higher-rank linear subspaces), intricately interwoven with each other -- unimodular and non-unimodular. We conjecture that these two projective "degrees of freedom" can rudimentary be associated with spatial and temporal dimensions of physics, respectively. Our hypothesis is illustrated on the projective line over the smallest ring of ternions. Both the fundamental difference and intricate connection between time and space are demonstrated, and even the ring geometrical germs of the observed macroscopic dimensionality (3+1) of space-time and the arrow of time are outlined. Some other conceptual implications of this ...

  3. Generalized projective synchronization in time-delayed systems: nonlinear observer approach.

    Science.gov (United States)

    Ghosh, Dibakar

    2009-03-01

    In this paper, we consider the projective-anticipating, projective, and projective-lag synchronization in a unified coupled time-delay system via nonlinear observer design. A new sufficient condition for generalized projective synchronization is derived analytically with the help of Krasovskii-Lyapunov theory for constant and variable time-delay systems. The analytical treatment can give stable synchronization (anticipatory and lag) for a large class of time-delayed systems in which the response system's trajectory is forced to have an amplitude proportional to the drive system. The constant of proportionality is determined by the control law, not by the initial conditions. The proposed technique has been applied to synchronize Ikeda and prototype models by numerical simulation.

  4. Argon laser application to endodontics

    Science.gov (United States)

    Blankenau, Richard J.; Ludlow, Marvin; Anderson, David

    1993-07-01

    The application of laser technology to endodontics has been studied for some time. At the present time several major problems are being investigated: (1) removal of infected tissues, (2) sterilization of canals, (3) obturation of canals, and (4) preservation of the vitality of supporting tissues. This list is not intended to imply other problems do not exist or have been solved, but it is a starting point. This paper reviews some of the literature that relates to laser applications to endodontics and concludes with some of the findings from our investigation.

  5. The liquid argon TPC for the ICARUS experiment

    CERN Document Server

    Arneodo, F

    1997-01-01

    The ICARUS project aims at the realisation of a large liquid argon TPC to be run at the Underground Laboratories of Gran Sasso in Italy. An intense R&D; activity has put on firm grounds this new detector technology and experimentally confirmed its feasibility on a few ton scale. Based on these solid achievements, the collaboration is now confident of being able to build and safely operate a multi-kton detector. The reseach program of the experiment involves the systematic study of a wide spectrum of physical phenomena covering many orders of magnitude in the energy deposited in the detector: from the few MeV of solar neutrino interactions, to the about one GeV of the proton decay and atmospheric neutrinos, up to the higher energies of neutrinos from accelerators.

  6. ATLAS Liquid Argon Calorimeter Module Zero

    CERN Multimedia

    1993-01-01

    This module was built and tested with beam to validate the ATLAS electromagnetic calorimeter design. One original design feature is the folding. 10 000 lead plates and electrodes are folded into an accordion shape and immersed in liquid argon. As they cross the folds, particles are slowed down by the lead. As they collide with the lead atoms, electrons and photons are ejected. There is a knock-on effect and as they continue on into the argon, a whole shower is produced. The electrodes collect up all the electrons and this signal gives a measurement of the energy of the initial particle. The M0 was fabricated by French institutes (LAL, LAPP, Saclay, Jussieu) in the years 1993-1994. It was tested in the H6/H8 beam lines in 1994, leading to the Technical Design Report in 1996.

  7. Argon gas flow through glass nanopipette

    Science.gov (United States)

    Takami, Tomohide; Nishimoto, Kiwamu; Goto, Tadahiko; Ogawa, Shuichi; Iwata, Futoshi; Takakuwa, Yuji

    2016-12-01

    We have observed the flow of argon gas through a glass nanopipette in vacuum. A glass nanopipette with an inner diameter of 100 nm and a shank length of 3 mm was set between vacuum chambers, and argon gas was introduced from the top of the nanopipette to the bottom. The exit pressure was monitored with an increase in entrance pressure in the range of 50-170 kPa. Knudsen flow was observed at an entrance pressure lower than 100 kPa, and Poiseuille flow was observed at an entrance pressure higher than 120 kPa. The proposed pressure-dependent gas flow method provides a means of evaluating the glass nanopipette before using it for various applications including nanodeposition to surfaces and femtoinjection to living cells.

  8. An innovative time-cost-quality tradeoff modeling of building construction project based on resource allocation.

    Science.gov (United States)

    Hu, Wenfa; He, Xinhua

    2014-01-01

    The time, quality, and cost are three important but contradictive objectives in a building construction project. It is a tough challenge for project managers to optimize them since they are different parameters. This paper presents a time-cost-quality optimization model that enables managers to optimize multiobjectives. The model is from the project breakdown structure method where task resources in a construction project are divided into a series of activities and further into construction labors, materials, equipment, and administration. The resources utilized in a construction activity would eventually determine its construction time, cost, and quality, and a complex time-cost-quality trade-off model is finally generated based on correlations between construction activities. A genetic algorithm tool is applied in the model to solve the comprehensive nonlinear time-cost-quality problems. Building of a three-storey house is an example to illustrate the implementation of the model, demonstrate its advantages in optimizing trade-off of construction time, cost, and quality, and help make a winning decision in construction practices. The computational time-cost-quality curves in visual graphics from the case study prove traditional cost-time assumptions reasonable and also prove this time-cost-quality trade-off model sophisticated.

  9. An Innovative Time-Cost-Quality Tradeoff Modeling of Building Construction Project Based on Resource Allocation

    Directory of Open Access Journals (Sweden)

    Wenfa Hu

    2014-01-01

    Full Text Available The time, quality, and cost are three important but contradictive objectives in a building construction project. It is a tough challenge for project managers to optimize them since they are different parameters. This paper presents a time-cost-quality optimization model that enables managers to optimize multiobjectives. The model is from the project breakdown structure method where task resources in a construction project are divided into a series of activities and further into construction labors, materials, equipment, and administration. The resources utilized in a construction activity would eventually determine its construction time, cost, and quality, and a complex time-cost-quality trade-off model is finally generated based on correlations between construction activities. A genetic algorithm tool is applied in the model to solve the comprehensive nonlinear time-cost-quality problems. Building of a three-storey house is an example to illustrate the implementation of the model, demonstrate its advantages in optimizing trade-off of construction time, cost, and quality, and help make a winning decision in construction practices. The computational time-cost-quality curves in visual graphics from the case study prove traditional cost-time assumptions reasonable and also prove this time-cost-quality trade-off model sophisticated.

  10. Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach

    Institute of Scientific and Technical Information of China (English)

    冯存芳; 汪映海

    2011-01-01

    Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a genera./ method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach.%Projective synchronization in modulated time-delayed systems is studied by applying an active control method.Based on the Lyapunov asymptotical stability theorem,the controller and sufficient condition for projective synchronization are calculated analytically.We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems.This method allows us to adjust the desired scaling factor arbitrarily.The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices.Numerical simulations fully support the analytical approach.

  11. OPTIMIZATION OF TIMES AND COSTS OF PROJECT OF HORIZONTAL LAMINATOR PRODUCTION USING PERT/CPM TECHNICAL

    Directory of Open Access Journals (Sweden)

    Fernando Henrique Lermen

    2016-09-01

    Full Text Available The PERT/CPM is a technique widely used in both the scheduling and in the project feasibility in terms of cost control and time.  In order to optimize time and costs involved in production, the work presented here aims to apply the PERT/CPM technique in the production project of the Horizontal Laminator, a machine used to cut polyurethane foam blocks in the mattresses industries. For the application of PERT/CPM technique in the project of Horizontal Laminator production were identified the activities that compose the project, the dependence between them, the normal and accelerated durations and the normal and accelerated costs. In this study, deterministic estimates for the duration of the activities were considered. The results show that the project can be completed in 520 hours at a total cost of R$7,042.50, when all activities are performed in their normal durations.  When all the activities that compose the critical path are accelerated, the project can be completed in 333.3 hours at a total cost of R$9,263.01. If the activities slacks have been exploited, it can obtain a final total cost of R$6,157.8, without changing the new duration of the project. It is noteworthy that the final total cost of the project if the slacks are used, will be lower than the initial cost. Regarding the initial cost of the project, after the application of the PERT/CPM technique, it presents a decrease of 12.56% of the total project cost.

  12. Performance of the Electronic Readout of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Abreu, H; Aleksa, M; Aperio Bella, L; Archambault, JP; Arfaoui, S; Arnaez, O; Auge, E; Aurousseau, M; Bahinipati, S; Ban, J; Banfi, D; Barajas, A; Barillari, T; Bazan, A; Bellachia, F; Beloborodova, O; Benchekroun, D; Benslama, K; Berger, N; Berghaus, F; Bernat, P; Bernier, R; Besson, N; Binet, S; Blanchard, JB; Blondel, A; Bobrovnikov, V; Bohner, O; Boonekamp, M; Bordoni, S; Bouchel, M; Bourdarios, C; Bozzone, A; Braun, HM; Breton, D; Brettel, H; Brooijmans, G; Caputo, R; Carli, T; Carminati, L; Caughron, S; Cavalleri, P; Cavalli, D; Chareyre, E; Chase, RL; Chekulaev, SV; Chen, H; Cheplakov, A; Chiche, R; Citterio, M; Cojocaru, C; Colas, J; Collard, C; Collot, J; Consonni, M; Cooke, M; Copic, K; Costa, GC; Courneyea, L; Cuisy, D; Cwienk, WD; Damazio, D; Dannheim, D; De Cecco, S; De La Broise, X; De La Taille, C; de Vivie, JB; Debennerot, B; Delagnes, E; Delmastro, M; Derue, F; Dhaliwal, S; Di Ciaccio, L; Doan, O; Dudziak, F; Duflot, L; Dumont-Dayot, N; Dzahini, D; Elles, S; Ertel, E; Escalier, M; Etienvre, AI; Falleau, I; Fanti, M; Farooque, T; Favre, P; Fayard, Louis; Fent, J; Ferencei, J; Fischer, A; Fournier, D; Fournier, L; Fras, M; Froeschl, R; Gadfort, T; Gallin-Martel, ML; Gibson, A; Gillberg, D; Gingrich, DM; Göpfert, T; Goodson, J; Gouighri, M; Goy, C; Grassi, V; Gray, J; Guillemin, T; Guo, B; Habring, J; Handel, C; Heelan, L; Heintz, H; Helary, L; Henrot-Versille, S; Hervas, L; Hobbs, J; Hoffman, J; Hostachy, JY; Hoummada, A; Hrivnac, J; Hrynova, T; Hubaut, F; Huber, J; Iconomidou-Fayard, L; Iengo, P; Imbert, P; Ishmukhametov, R; Jantsch, A; Javadov, N; Jezequel, S; Jimenez Belenguer, M; Ju, XY; Kado, M; Kalinowski, A; Kar, D; Karev, A; Katsanos, I; Kazarinov, M; Kerschen, N; Kierstead, J; Kim, MS; Kiryunin, A; Kladiva, E; Knecht, N; Kobel, M; Koletsou, I; König, S; Krieger, P; Kukhtin, V; Kuna, M; Kurchaninov, L; Labbe, J; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lamarra, D; Lampl, W; Lanni, F; Laplace, S; Laskus, H; Le Coguie, A; Le Dortz, O; Le Maner, C; Lechowski, M; Lee, SC; Lefebvre, M; Leonhardt, K; Lethiec, L; Leveque, J; Liang, Z; Liu, C; Liu, T; Liu, Y; Loch, P; Lu, J; Ma, H; Mader, W; Majewski, S; Makovec, N; Makowiecki, D; Mandelli, L; Mangeard, PS; Mansoulie, B; Marchand, JF; Marchiori, G; Martin, D; Martin-Chassard, G; Martin dit Latour, B; Marzin, A; Maslennikov, A; Massol, N; Matricon, P; Maximov, D; Mazzanti, M; McCarthy, T; McPherson, R; Menke, S; Meyer, JP; Ming, Y; Monnier, E; Mooshofer, P; Neganov, A; Niedercorn, F; Nikolic-Audit, I; Nugent, IM; Oakham, G; Oberlack, H; Ocariz, J; Odier, J; Oram, CJ; Orlov, I; Orr, R; Parsons, JA; Peleganchuk, S; Penson, A; Perini, L; Perrodo, P; Perrot, G; Perus, A; Petit, E; Pisarev, I; Plamondon, M; Poffenberger, P; Poggioli, L; Pospelov, G; Pralavorio, P; Prast, J; Prudent, X; Przysiezniak, H; Puzo, P; Quentin, M; Radeka, V; Rajagopalan, S; Rauter, E; Reimann, O; Rescia, S; Resende, B; Richer, JP; Ridel, M; Rios, R; Roos, L; Rosenbaum, G; Rosenzweig, H; Rossetto, O; Roudil, W; Rousseau, D; Ruan, X; Rudert, A; Rusakovich, N; Rusquart, P; Rutherfoord, J; Sauvage, G; Savine, A; Schaarschmidt, J; Schacht, P; Schaffer, A; Schram, M; Schwemling, P; Seguin Moreau, N; Seifert, F; Serin, L; Seuster, R; Shalyugin, A; Shupe, M; Simion, S; Sinervo, P; Sippach, W; Skovpen, K; Sliwa, R; Soukharev, A; Spano, F; Stavina, P; Straessner, A; Strizenec, P; Stroynowski, R; Talyshev, A; Tapprogge, S; Tarrade, F; Tartarelli, GF; Teuscher, R; Tikhonov, Yu; Tocut, V; Tompkins, D; Thompson, P; Tisserant, S; Todorov, T; Tomasz, F; Trincaz-Duvoid, S; Trinh, Thi N; Trochet, S; Trocme, B; Tschann-Grimm, K; Tsionou, D; Ueno, R; Unal, G; Urbaniec, D; Usov, Y; Voss, K; Veillet, JJ; Vincter, M; Vogt, S; Weng, Z; Whalen, K; Wicek, F; Wilkens, H; Wingerter-Seez, I; Wulf, E; Yang, Z; Ye, J; Yuan, L; Yurkewicz, A; Zarzhitsky, P; Zerwas, D; Zhang, H; Zhang, L; Zhou, N; Zimmer, J; Zitoun, R; Zivkovic, L

    2010-01-01

    The ATLAS detector has been designed for operation at the Large Hadron Collider at CERN. ATLAS includes electromagnetic and hadronic liquid argon calorimeters, with almost 200,000 channels of data that must be sampled at the LHC bunch crossing frequency of 40 MHz. The calorimeter electronics calibration and readout are performed by custom electronics developed specifically for these purposes. This paper describes the system performance of the ATLAS liquid argon calibration and readout electronics, including noise, energy and time resolution, and long term stability, with data taken mainly from full-system calibration runs performed after installation of the system in the ATLAS detector hall at CERN.

  13. Finite-time analysis of global projective synchronization on coloured networks

    Indian Academy of Sciences (India)

    Cai Guoliang; Jiang Shengqin; Cai Shuiming; Tian Lixin

    2016-03-01

    A novel finite-time analysis is given to investigate the global projective synchronization on coloured networks. Some less conservative conditions are derived by utilizing finite-time control techniques and Lyapunov stability theorem. In addition, two illustrative numerical simulations are provided to verify the effectiveness of the proposed theoretical results.

  14. Anode-Coupled Readout for Light Collection in Liquid Argon TPCs

    CERN Document Server

    Moss, Z; Bugel, L; Collin, G H; Conrad, J M

    2015-01-01

    This paper will discuss a new method of signal read-out from photon detectors in ultra-large, underground liquid argon time projection chambers. In this design, the signal from the light collection system is coupled via capacitive plates to the TPC wire-planes. This signal is then read out using the same cabling and electronics as the charge information. This greatly benefits light collection: it eliminates the need for an independent readout, substantially reducing cost; It reduces the number of cables in the vapor region of the TPC that can produce impurities; And it cuts down on the number of feed-throughs in the cryostat wall that can cause heat-leaks and potential points of failure. We present experimental results that demonstrate the sensitivity of a LArTPC wire plane to photon detector signals. We also simulate the effect of a 1 $\\mu$s shaping time and a 2 MHz sampling rate on these signals in the presence of noise, and find that a single photoelectron timing resolution of $\\sim$30 ns can be achieved.

  15. Real-Time Projection-Based Augmented Reality System for Dynamic Objects in the Performing Arts

    Directory of Open Access Journals (Sweden)

    Jaewoon Lee

    2015-02-01

    Full Text Available This paper describes the case study of applying projection-based augmented reality, especially for dynamic objects in live performing shows, such as plays, dancing, or musicals. Our study aims to project imagery correctly inside the silhouettes of flexible objects, in other words, live actors or the surface of actor’s costumes; the silhouette transforms its own shape frequently. To realize this work, we implemented a special projection system based on the real-time masking technique, that is to say real-time projection-based augmented reality system for dynamic objects in performing arts. We installed the sets on a stage for live performance, and rehearsed particular scenes of a musical. In live performance, using projection-based augmented reality technology enhances technical and theatrical aspects which were not possible with existing video projection techniques. The projected images on the surfaces of actor’s costume could not only express the particular scene of a performance more effectively, but also lead the audience to an extraordinary visual experience.

  16. Time management challenges of major refurbishment projects : An analysis of 20 hydropower outages at Fortum

    OpenAIRE

    Nyqvist, Daniel

    2015-01-01

    While most western hydropower sites are already developed or protected by legislation, the aging hydropower park requires refurbishment actions. Especially to tackle the challenges of an increased fluctuation at the grid coming from the expansion of other renewable energy sources such as wind power. The company Fortum is carrying out a number of major refurbishment projects every year and want to enhance their time performance during the outage. Delayed projects are resulting in unexpected co...

  17. Real-time and dynamic schedule optimization of construction projects on the basis of lean construction

    Institute of Scientific and Technical Information of China (English)

    QI Shen-jun; DING Lie-yun; LUO Han-bin; DONG Xiao-yan

    2007-01-01

    Lean construction has been newly applied to construction industry. The best performance of a project can be achieved through the precise definition of construction product, rational work break structure, lean supply chain, decrease of resources waste, objective control and so forth. Referring to the characteristics of schedule planning of construction projects and lean construction philosophy, we proposed optimizing methodology of real-time and dynamic schedule of construction projects based on lean construction. The basis of the methodology is process reorganization and lean supply in construction enterprises. The traditional estimating method of the activity duration is fuzzy and random; however, a newly proposed lean forecasting method employs multi-components linear-regression, back-propagation artificial neural networks and learning curve. Taking account of the limited resources and the fixed duration of a project, the optimizing method of the real-time and dynamic schedule adopts the concept of resource driving. To optimize the schedule of a construction project timely and effectively, an intellectualized schedule management system was developed. It can work out the initial schedule, optimize the real-time and dynamic schedule, and display the schedule with the Gant Chart, the net-work graph and the space-time line chart. A case study was also presented to explain the proposed method.

  18. Background studies for a ton-scale argon dark matter detector (ArDM)

    CERN Document Server

    Kaufmann, L

    2006-01-01

    The ArDM project aims at operating a large noble liquid detector to search for direct evidence of Weakly Interacting Massive Particles (WIMP) as Dark Matter in the universe. Background sources relevant to ton-scale liquid and gaseous argon detectors, such as neutrons from detector components, muon-induced neutrons and neutrons caused by radioactivity of rock, as well as the internal $^{39}Ar$ background, are studied with simulations. These background radiations are addressed with the design of an appropriate shielding as well as with different background rejection potentialities. Among them the project relies on event topology recognition, event localization, density ionization discrimination and pulse shape discrimination. Background rates, energy spectra, characteristics of the background-induced nuclear recoils in liquid argon, as well as the shielding performance and rejection performance of the detector are described.

  19. Investigate Methods to Decrease Compilation Time-AX-Program Code Group Computer Science R& D Project

    Energy Technology Data Exchange (ETDEWEB)

    Cottom, T

    2003-06-11

    Large simulation codes can take on the order of hours to compile from scratch. In Kull, which uses generic programming techniques, a significant portion of the time is spent generating and compiling template instantiations. I would like to investigate methods that would decrease the overall compilation time for large codes. These would be methods which could then be applied, hopefully, as standard practice to any large code. Success is measured by the overall decrease in wall clock time a developer spends waiting for an executable. Analyzing the make system of a slow to build project can benefit all developers on the project. Taking the time to analyze the number of processors used over the life of the build and restructuring the system to maximize the parallelization can significantly reduce build times. Distributing the build across multiple machines with the same configuration can increase the number of available processors for building and can help evenly balance the load. Becoming familiar with compiler options can have its benefits as well. The time improvements of the sum can be significant. Initial compilation time for Kull on OSF1 was {approx} 3 hours. Final time on OSF1 after completion is 16 minutes. Initial compilation time for Kull on AIX was {approx} 2 hours. Final time on AIX after completion is 25 minutes. Developers now spend 3 hours less waiting for a Kull executable on OSF1, and 2 hours less on AIX platforms. In the eyes of many Kull code developers, the project was a huge success.

  20. FORMATION OF CARBON NANOSTRUCTURES USING ACETYLENE, ARGON-ACETYLENE AND ARGON-HYDROGEN-ACETYLENE PLASMAS

    OpenAIRE

    Marcinauskas, Liutauras; Grigonis, Alfonsas; Valincius, Vitas

    2013-01-01

    The amorphous carbon films were deposited on silicon-metal substrates by plasma jet chemical vapor deposition (PJCVD) and plasma enchanted CVD (PECVD). PJCVD carbon films have been prepared at atmospheric pressure in argon-acetylene and argon-hydrogen-acetylene plasma mixtures. The films deposited in Ar-C2H2 plasma are attributed to graphite-like carbon films. The formation of the nanocrystalline graphite was obtained in Ar-H2-C2H2 plasma. Addition of the hydrogen gas lead to the ...

  1. R&D Argon Detector at Ash River (RADAR) - Letter of Intent

    CERN Document Server

    Adamson, P; Guzowski, P; Habig, A; Holin, A; Huang, J; Kordosky, M; Kreymer, A E; Lang, K; Marshak, M; Mehdiyev, R; Miller, W H; Naples, D; Nichol, R J; Patterson, R B; Sousa, A; Thomas, J; Whitehead, L H

    2013-01-01

    The RADAR project proposes to deploy a 6 kton liquid argon TPC at the NOvA Far Detector building in Ash River, Minnesota, and expose it to the NuMI beam during NOvA running. It will significantly add to the physics capabilities of the NOvA program while providing LBNE with an R&D program based on full-scale TPC module assemblies. RADAR offers an excellent opportunity to improve the full Homestake LBNE project in physics reach, timeline, costs, and fostering international partnership. The anticipated duration of the project's construction is 5 years, with running happening between 2018 and 2023.

  2. Arc Root Motions in an Argon-Hydrogen Direct-Current Plasma Torch at Reduced Pressure

    Institute of Scientific and Technical Information of China (English)

    HUANG He-Ji; PAN Wen-Xia; WU Cheng-Kang

    2008-01-01

    Arc root motions in generating dc argon hydrogen plasma at reduced pressure are optically observed using a high-speed video camera. The time resolved angular position of the arc root attachment point is measured and analysed. The arc root movement is characterized as a chaotic and jumping motion along the circular direction on the anode surface.

  3. Genetic algorithm for project time-cost optimization in fuzzy environment

    Directory of Open Access Journals (Sweden)

    Khan Md. Ariful Haque

    2012-12-01

    Full Text Available Purpose: The aim of this research is to develop a more realistic approach to solve project time-cost optimization problem under uncertain conditions, with fuzzy time periods. Design/methodology/approach: Deterministic models for time-cost optimization are never efficient considering various uncertainty factors. To make such problems realistic, triangular fuzzy numbers and the concept of a-cut method in fuzzy logic theory are employed to model the problem. Because of NP-hard nature of the project scheduling problem, Genetic Algorithm (GA has been used as a searching tool. Finally, Dev-C++ 4.9.9.2 has been used to code this solver. Findings: The solution has been performed under different combinations of GA parameters and after result analysis optimum values of those parameters have been found for the best solution. Research limitations/implications: For demonstration of the application of the developed algorithm, a project on new product (Pre-paid electric meter, a project under government finance launching has been chosen as a real case. The algorithm is developed under some assumptions. Practical implications: The proposed model leads decision makers to choose the desired solution under different risk levels. Originality/value: Reports reveal that project optimization problems have never been solved under multiple uncertainty conditions. Here, the function has been optimized using Genetic Algorithm search technique, with varied level of risks and fuzzy time periods.

  4. Robust Proactive Project Scheduling Model for the Stochastic Discrete Time/Cost Trade-Off Problem

    Directory of Open Access Journals (Sweden)

    Hongbo Li

    2015-01-01

    Full Text Available We study the project budget version of the stochastic discrete time/cost trade-off problem (SDTCTP-B from the viewpoint of the robustness in the scheduling. Given the project budget and a set of activity execution modes, each with uncertain activity time and cost, the objective of the SDTCTP-B is to minimize the expected project makespan by determining each activity’s mode and starting time. By modeling the activity time and cost using interval numbers, we propose a proactive project scheduling model for the SDTCTP-B based on robust optimization theory. Our model can generate robust baseline schedules that enable a freely adjustable level of robustness. We convert our model into its robust counterpart using a form of the mixed-integer programming model. Extensive experiments are performed on a large number of randomly generated networks to validate our model. Moreover, simulation is used to investigate the trade-off between the advantages and the disadvantages of our robust proactive project scheduling model.

  5. Analysis of the liquid argon purity in the ICARUS T600 TPC

    Energy Technology Data Exchange (ETDEWEB)

    Amoruso, S.; Antonello, M.; Aprili, P.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Bekman, B.; Benetti, P.; Bernardini, E.; Bischofberger, M.; Borio di Tigliole, A.; Brunetti, R.; Bruzzese, R.; Bueno, A.; Buzzanca, M.; Calligarich, E.; Campanelli, M.; Carbonara, F.; Carpanese, C.; Cavalli, D.; Cavanna, F.; Cennini, P.; Centro, S.; Cesana, A.; Chen, C.; Chen, D.; Chen, D.B.; Chen, Y.; Cieslik, X.; Cline, D.; Cocco, A.G.; Dai, Z.; De Vecchi, C.; Dabrowska, A.; Di Cicco, A.; Dolfini, R.; Ereditato, A.; Felcini, M.; Ferrari, A.; Ferri, F.; Fiorillo, G.; Galli, S.; Ge, Y.; Gibin, D.; Gigli Berzolari, A.; Gil-Botella, I.; Graczyk, K.; Grandi, L.; Guglielmi, A.; He, K.; Holeczek, J.; Huang, X.; Juszczak, C.; Kielczewska, D.; Kisiel, J.; Kozlowski, T.; Laffranchi, M.; Lagoda, J.; Li, Z.; Lu, F.; Ma, J.; Mangano, G.; Markiewicz, M.; Martinez de la Ossa, A.; Matthey, C.; Mauri, F.; Meng, G.; Messina, M.; Montanari, C.; Muraro, S.; Navas-Concha, S. E-mail: navas@ugr.es; Nurzia, G.; Otwinowski, S.; Ouyang, Q.; Palamara, O.; Pascoli, D.; Periale, L.; Piano Mortari, G.B.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Polchlopek, W.; Rancati, T.; Rappoldi, A.; Raselli, G.L.; Rico, J.; Rondio, E.; Rossella, M.; Rubbia, A.; Rubbia, C.; Sala, P.; Santorelli, R.; Scannicchio, D.; Segreto, E.; Seo, Y.; Sergiampietri, F.; Sobczyk, J.; Spinelli, N.; Stepaniak, J.; Szarska, M.; Szeptycka, M.; Szleper, M.; Terrani, M.; Velotta, R.; Ventura, S.; Vignoli, C.; Wang, H.; Wang, X.; Woo, J.; Xu, G.; Xu, Z.; Zalewska, A.; Zalipska, J.; Zhang, C.; Zhang, Q.; Zhen, S.; Zipper, W

    2004-01-01

    The results reported in this paper are based on the analysis of the data recorded with the first half-module of the ICARUS T600 liquid argon Time Projection Chamber (LAr TPC), during a technical run that took place on surface in Pavia (Italy). We include results from the linearity, uniformity and calibration of the electronics, measurements on the electron drift velocity in LAr at different electric fields, as well as the LAr purity achievement of the detector. Two complementary techniques were used to measure the drift electron lifetime inside the active volume: the first, from the data of a purity monitor, gives a measurement localized in space; the second, based on the study of the signals produced by long minimum ionizing tracks crossing the detector, provides a LAr volume averaged value. Both methods yield consistent results over the whole data taking period and are compatible with an uniform LAr purity over the whole volume. The maximal drift electron lifetime value was recorded before the run stop and was about 1.8 ms. From an interpretation of the observed drift electron lifetime as a function of time, we conclude that the adopted technology would allow for drift distances exceeding 3 m.

  6. Large area liquid argon detectors for interrogation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gary, Charles; Kane, Steve; Firestone, Murray I.; Smith, Gregory [Adelphi Technology LLC, Purdue Technology Center, 5225 Exploration Drive, Indianapolis, IN 46241 (United States); Gozani, Tsahi; Brown, Craig; Kwong, John; King, Michael J. [Rapiscan Laboratories, 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Nikkel, James A.; McKinsey, Dan [Physics Department, Yale University, New Haven, CT 06520 (United States)

    2013-04-19

    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  7. Argon diffusion from biotite at high temperature and pressure

    Institute of Scientific and Technical Information of China (English)

    陈道公; 贾命命; 李彬贤; 陆全明; 谢鸿森; 侯渭

    1995-01-01

    t The experiments of argon diffusion dynamics for biotite were carried out at 700 -1000℃ and 0.5 - 2,0 GPa and the diffusion coefficient and activation energy using different models have been calculated. The results indicate that the pressure does affect the argon diffusion and its effect is opposite to that of temperature. When p increases, the activation energy increases and diffusion coefficient decreases. The relation between pressure, closure temperature and cooling rate has been obtained. It is postulated that in low T and high p conditions, the argon diffusion from the environment to the system could occur and incur the appearance of the external argon in minerals.

  8. Near-infrared scintillation of liquid argon

    CERN Document Server

    Alexander, T; Lippincott, W H; Rubinov, P

    2016-01-01

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  9. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  10. Speeding up development activities in student projects with time boxing and scrum

    DEFF Research Database (Denmark)

    Ovesen, Nis; Eriksen, Kaare; Tollestrup, Christian

    2011-01-01

    This research project investigates how procedures from agile software development can be of benefit to development activities in projects of design engineering students. The agile methods Scrum and Time boxing are evaluated through a student workshop focusing on near-future concepts for design...... competitions. Scrum meetings within the student design teams are conducted and video documented each hour throughout the workshop activities as a structured process evaluation tool. Based on a subsequent student survey it is argued that scrum and time boxing are strengthening the focus, communication...... and awareness of methodical efficiency of the student teams. It is therefore further argued that these methods are both applicable and useful to none-software projects, and that they may correspond to a general tendency of a faster pace in product development within the markets of lifestyle products....

  11. The Angstrom Project Alert System: real-time detection of extragalactic microlensing

    CERN Document Server

    Darnley, M J; Newsam, A; Duke, J P; Gould, A; Han, C; Ibrahimov, M A; Im, M; Jeon, Y B; Karimov, R G; Lee, C U; Park, B G

    2006-01-01

    The Angstrom Project is undertaking an optical survey of stellar microlensing events across the bulge region of the Andromeda Galaxy (M31) using a distributed network of two-meter class telescopes. The Angstrom Project Alert System (APAS) has been developed to identify in real time candidate microlensing and transient events using data from the Liverpool and Faulkes North robotic telescopes. This is the first time that real-time microlensing discovery has been attempted outside of the Milky Way and its satellite galaxies. The APAS is designed to enable follow-up studies of M31 microlensing systems, including searches for gas giant planets in M31. Here we describe the APAS and we present a few example light curves obtained during its commissioning phase which clearly demonstrate its real-time capability to identify microlensing candidates as well as other transient sources.

  12. Effects of Lean Work Organization and Industrialization on Workflow and Productive Time in Housing Renovation Projects

    NARCIS (Netherlands)

    Vrijhoef, Ruben

    2016-01-01

    This paper presents work aimed at improved organization and performance of production in housing renovation projects. The purpose is to explore and demonstrate the potential of lean work organization and industrialized product technology to improve workflow and productive time. The research included

  13. Operation and performance of Time Projection Chambers of SHINE / NA61 experiment at CERN

    CERN Document Server

    Aduszkiewicz, Antoni

    This paper characterizes the Time Projection Chambers (TPC) in the SHINE / NA61 exper- iment at CERN and their operation during the first run in 2007. An analysis of a change of the gas mixture in the TPCs for SHINE is included. Also the gas system of the TPCs is described.

  14. Report on Fission Time Projection Chamber M3FT-12IN0210052

    Energy Technology Data Exchange (ETDEWEB)

    James K. Jewell

    2012-08-01

    The Time Projection Chamber is a collaborative effort to implement an innovative approach and deliver unprecedented fission measurements to DOE programs. This 4?-detector system will provide unrivaled 3-D data about the fission process. Shown here is a half populated TPC (2?) at the LLNL TPC laboratory as it undergoes testing before being shipped to LANSCE for beam experiments.

  15. Prototype of the ALICE Time Projection Chamber (TPC) Field-Cage

    CERN Multimedia

    2003-01-01

    The ALICE Time Projection Chamber (TPC) is the main particle tracking detector in ALICE. Charged particles crossing the gas of the TPC knock electons out of their atoms, which then drift in in the electric field. By measuring the arrival of electrons at the end of the chamber, the TPC will reconstruct the paths of the original charged particles.

  16. Solution of nonlinear space time fractional differential equations via the fractional projective Riccati expansion method

    CERN Document Server

    Abdel-Salam, Emad A-B; Hassan, Gmal F

    2015-01-01

    In this paper, the fractional projective Riccati expansion method is proposed to solve fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional Burgers equation, the space-time fractional mKdV equation and time fractional biological population model. The solutions are expressed in terms of fractional hyperbolic functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The fractal index for the obtained results is equal to one. Counter examples to compute the fractal index are introduced in appendix.

  17. A combined AHP-GP model to allocate internal auditing time to projects

    Directory of Open Access Journals (Sweden)

    HA Kruger

    2006-06-01

    Full Text Available The optimal allocation of internal auditing time among competing projects is a multi-criteria problem that includes both qualitative and quantitative factors. This paper discusses an integrated approach where the analytic hierarchy process (AHP is used to deal with qualitative risk assessments and a goal programming (GP model to distribute available hours in such a way that risk is minimised. Additional considerations, such as maximum and minimum allowable project hours, risk reducing factors and risk levels, are also taken into account. Following a description of the models and framework, a brief case study is presented in which the framework was empirically evaluated.

  18. Solving Resource-constrained Multiple Project Scheduling Problem Using Timed Colored Petri Nets

    Institute of Scientific and Technical Information of China (English)

    WU Yu; ZHUANG Xin-cun; SONG Guo-hui; XU Xiao-dong; LI Cong-xin

    2009-01-01

    To solve the resource-constrained multiple project scheduling problem (RCMPSP) more effectively, a method based on timed colored Petri net (TCPN) was proposed. In this methodology, firstly a novel mapping mechanism between traditional network diagram such as CPM (critical path method)/PERT (program evaluation and review technique) and TCPN was presented. Then a primary TCPN (PTCPN) for solving RCMPSP was modeled based on the proposed mapping mechanism. Meanwhile, the object PTCPN was used to simulate the multiple projects scheduling and to find the approximately optimal value of RCMPSP. Finally, the performance of the proposed approach for solving RCMPSP was validated by executing a mould manufacturing example.

  19. The ATLAS liquid Argon calorimeters read-out system

    CERN Document Server

    Blondel, A; Fayard, L; La Marra, D; Léger, A; Matricon, P; Perrot, G; Poggioli, L; Prast, J; Riu, I; Simion, S

    2004-01-01

    The calorimetry of the ATLAS experiment takes advantage of different detectors based on the liquid Argon (LAr) technology. Signals from the LAr calorimeters are processed by various stages before being delivered to the Data Acquisition system. The calorimeter cell signals are received by the front-end boards, which digitize a predetermined number of samples of the bipolar waveform and sends them to the Read-Out Driver (ROD) boards. The ROD board receives triggered data from 1028 calorimeter cells, and determines the precise energy and timing of the signals by processing the discrete samplings of the pulse. In addition, it formats the digital stream for the following elements of the DAQ chain, and performs monitoring. The architecture and functionality of the ATLAS LAr ROD board are discussed, along with the final design of the Processing Unit boards housing the Digital Signal Processors (DSP). (9 refs).

  20. Studies on argon collisions with smooth and rough tungsten surfaces.

    Science.gov (United States)

    Ozhgibesov, M S; Leu, T S; Cheng, C H; Utkin, A V

    2013-09-01

    The aim of this work is to investigate argon scattering behaviors on the smooth and rough tungsten surfaces. Current work deals with numerical simulation of nanoscale heat transfer process accompanying with rarefied gas-solid substrate interactions using molecular dynamics (MD) method. Taking into account that this method is very time consuming, MD simulation using CUDA capable Graphic Cards is implemented. The results found that imperfection of the surface significantly influences on gas atom's momentum change upon collision. However, the energy exchange rate remains unchanged regardless to the surface roughness. This finding is in contrast with the results in extant literatures. We believed the results found in this paper are important for both numerical and theoretical analyses of rarefied gas flow in micro- and nano-systems where the choice of boundary conditions significantly influences flow.

  1. Photoionisation studies of homogeneous argon and krypton clusters using TPEPICO

    Energy Technology Data Exchange (ETDEWEB)

    Kamke, W.; Vries, J. de; Krauss, J.; Kaiser, E.; Kamke, B.; Hertel, I.V. (Freiburg Univ. (Germany, F.R.). Fakultaet fuer Physik)

    1989-12-01

    The photoionisation threshold region of homogeneous argon and krypton clusters Ar{sub n} and Kr{sub n} for n up to 24 formed in a free jet expansion has been studied in detail, using the threshold photoelectron photoion coincidence (TPEPICO) time of flight technique. Measurements performed at a variety of different expansion conditions (nozzle temperature and stagnation pressure) demonstrate that fragmentation of larger clusters contributes substantially to the shape of the TPEPICO spectra even for the smallest clusters and at all photon energies higher than about 200 meV to 400 meV above the ionisation threshold. The determination of ionisation potentials for these cluster ions is discussed and careful estimates are given and compared with recent theoretical values. (orig.).

  2. The Liquid Argon Software Toolkit (LArSoft): Goals, Status and Plan

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, Rush [Fermilab; Snider, Erica [Fermilab

    2016-08-17

    LArSoft is a toolkit that provides a software infrastructure and algorithms for the simulation, reconstruction and analysis of events in Liquid Argon Time Projection Chambers (LArTPCs). It is used by the ArgoNeuT, LArIAT, MicroBooNE, DUNE (including 35ton prototype and ProtoDUNE) and SBND experiments. The LArSoft collaboration provides an environment for the development, use, and sharing of code across experiments. The ultimate goal is to develop fully automatic processes for reconstruction and analysis of LArTPC events. The toolkit is based on the art framework and has a well-defined architecture to interface to other packages, including to GEANT4 and GENIE simulation software and the Pandora software development kit for pattern recognition. It is designed to facilitate and support the evolution of algorithms including their transition to new computing platforms. The development of the toolkit is driven by the scientific stakeholders involved. The core infrastructure includes standard definitions of types and constants, means to input experiment geometries as well as meta and event- data in several formats, and relevant general utilities. Examples of algorithms experiments have contributed to date are: photon-propagation; particle identification; hit finding, track finding and fitting; electromagnetic shower identification and reconstruction. We report on the status of the toolkit and plans for future work.

  3. Solar neutrino detection in a large volume double-phase liquid argon experiment

    Science.gov (United States)

    Franco, D.; Giganti, C.; Agnes, P.; Agostino, L.; Bottino, B.; Canci, N.; Davini, S.; De Cecco, S.; Fan, A.; Fiorillo, G.; Galbiati, C.; Goretti, A. M.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pocar, A.; Razeti, M.; Renshaw, A. L.; Rossi, B.; Rossi, N.; Suvorov, Y.; Testera, G.; Tonazzo, A.; Wang, H.; Zavatarelli, S.

    2016-08-01

    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne-yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all three cartesian directions. While enabling Dark Matter searches with sensitivity extending to the ``neutrino floor'' (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ~15% precision, and significantly improve the precision of the 7Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.

  4. Operation safety risk analysis method of hydropower project considering time-dependent effect

    Institute of Scientific and Technical Information of China (English)

    Zhang Sherong; Yan Lei

    2012-01-01

    In order to consider the time-dependent characteristic of risk factors of hydropower project, the method of stochastic process simulating structure resistance and load effect is adopted. On the basis of analyzing the structure characteristics and mode of operation, the operation safety risk rate assessment model of hydropower project is established on the comprehensive application of the improved analytic hierarchy process, the time-dependent reliability theory and the risk rate threshold. A scheme to demonstrate the time-dependent risk rate assessment method for an example of the earth-rock dam is particularly implemented by the proposed approach. The example shows that operation safety risk rate is closely related to both the service period and design standard ; considering the effect of time-dependent, the risk rate increases with time and the intersection of them reflects the technical service life of structures. It could provide scientific basis for the operation safety and risk decision of the hydropower project by predicting the trend of risk rate via this model.

  5. On-chip boost regulator with projected off- and on-time control*

    Institute of Scientific and Technical Information of China (English)

    Xiao-ru XU; Meng-lian ZHAO; Xiao-bo WU

    2009-01-01

    The boost type power supplies are widely used in portable consumer electronics to step up the input voltage to adapt for the high voltage applications like light-emitting diode (LED) driving and liquid crystal display (LCD) biasing. In these applications, a regulator with small volume, fewer external components and high efficiency is highly desired. This paper proposes a projected off- and on-time boost control scheme, based on which a monolithic IC with an on-chip VDMOS with 0.2 Ω on-stateresistance RDS-ON was implemented in 1.5 μm bipolar-CMOS-DMOS (BCD) process. A 12V, 0.3A boost regulator prototype ispresented as well. With projected off-time and modulated on-time in continuous conduction mode (CCM), a quasi fixed frequency,which is preferred for ripple control, is realized. With projected on-time and modulated off-time in discontinuous conduction mode (DCM), pulse frequency modulation (PFM) operation, which is beneficial to light load efficiency improvement, is achieved without extra control circuitry. Measurement results show that an efficiency of 3% higher than that of a conventional method under 0.5 W output is achieved while a step load transient response comparable to that of current mode control is maintained as well.

  6. The New Status of Argon-37 Artificial Neutrino Source Project

    CERN Document Server

    Abdurashitov, J N; Mirmov, I N; Veretenkin, E P; Yants, V E; Oshkanov, N N; Karpenko, A I; Maltsev, V V; Barsanov, V I; Trubin, K S; Zlokazov, S B; Khomyakov, Y S; Poplavsky, V M; Saraeva, T O; Vasiliev, B A; Mishin, O V; Bowles, T J; Teasdale, W A; Lande, K; Wildenhain, P S; Cleveland, B T; Elliott, S R; Haxton, W; Wilkerson, J F; Suzuki, A; Suzuki, Y; Nakahata, M

    2002-01-01

    Solution of the solar neutrino problem is significantly depends on the next generation of detectors that can measure the neutrino radiation from the Sun in intermediate energies. An intense (approx 1 MCi) sup 3 sup 7 Ar source would be an ideal tool for the calibration of new solar neutrino detectors. The technology of the production of such a source is based on the irradiation of a large mass of a Ca-containing target in a high-flux fast-neutron reactor. Produced sup 3 sup 7 Ar extracted from this target, will be purified and encapsulated in a source holder. A joint scientific collaboration of Russian, US and Japanese institutions are researching and developing the initial steps of this work and are funded by ISTC and CRDF.

  7. New level-resolved collision data for neutral argon, benchmarked against the ALEXIS plasma experiment

    Science.gov (United States)

    Arnold, Nicholas; Loch, Stuart; Ballance, Connor; Thomas, Ed

    2016-10-01

    Performing spectroscopic measurements of emission lines in low temperature laboratory plasmas is challenging because the plasma is often neutral-dominated and not in thermal equilibrium. The densities and temperatures are such that coronal models do not apply; meaning that generalized collisional-radiative (GCR) methods must be employed to theoretically analyze atomic processes. However, for most noble gases, detailed, level-resolved atomic data for neutral and low-charge states does not exist in the literature. We report on a new project, where we use existing atomic physics codes to calculate level-resolved atomic data for neutral and low charge states of argon and compare with previously published, term-resolved theoretical results. In addition, we use the Atomic Structure and Data Analysis (ADAS) suite of codes to calculate a GCR model for low temperature neutral argon, which we compare to published measurements of argon optical emission cross sections. Finally, we compare synthetic spectra generated from our data with observations taken from the Auburn Linear Experiment for Instability Studies (ALEXIS) in an attempt to develop new optical plasma diagnostics for electron temperature and plasma density measurements. This project is supported by the U.S. Department of Energy. Grant Number: DE-FG02-00ER54476.

  8. Complex New Product Development projects - How the Project Manager’s Information Sharing With Core Actors Changes Over Time

    DEFF Research Database (Denmark)

    Jepsen, Lisbeth Brøde

    2013-01-01

    A heavily burdened project manager must ensure effective information sharing with actors inside and outside the organization because this is a necessary condition for a new product development (NPD) project to achieve its objectives. Knowledge, however, on who actually assists a project manager...... with the information sharing during NPD projects is limited; therefore, this study of longitudinal objective email data (4658 emails) during a NPD project contributes to theory and practice by advancing our understanding of when and how the project manager establishes relationships with different core actors inside...

  9. Performance of a liquid argon accordion hadronic calorimeter prototype

    Energy Technology Data Exchange (ETDEWEB)

    Gingrich, D.M. [Alberta Univ., Edmonton, AB (Canada); Greeniaus, G. [Alberta Univ., Edmonton, AB (Canada); Kitching, P. [Alberta Univ., Edmonton, AB (Canada); Olsen, B. [Alberta Univ., Edmonton, AB (Canada); Pinfold, J.L. [Alberta Univ., Edmonton, AB (Canada); Rodning, N.L. [Alberta Univ., Edmonton, AB (Canada); Boos, E. [Alma-Ata (Kazakhstan); Schaoutnikov, B.O. [Alma-Ata (Kazakhstan); Aubert, B. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Bazan, A. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Beaugiraud, B. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Boniface, J. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Colas, J. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Jezequel, S. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Leflour, T. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Maire, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Rival, F. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Stipcevic, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Thion, J. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; VanDenPlas, D. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Wingerter-Seez, I. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Zolnierowski, Y.P. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Chmeissani, M. [Universidad Autonoma de Barcelona (Spain); Fernandez, E. [Universidad Autonoma de Barcelona (Spain); Garrido, L. [Universidad Autonoma de Barcelona (Spain); Martinez, M. [Universidad Autonoma de Barcelona (Spain); Padilla, C. [Universidad Autonoma de Barcelona (Spain); Gordon, H.A. [Brookhaven National Lab., Upton, NY (United States); RD3 Colla...

    1995-02-15

    A liquid argon hadronic calorimeter using the ``accordion`` geometry and the electrostatic transformer readout scheme has been tested at CERN, together with a liquid argon accordion electromagnetic prototype. The results obtained for pions on the linearity, the energy resolution and the uniformity of the calorimeter response are well within the requirements for operation at the LHC. ((orig.))

  10. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...

  11. Video Frames Reconstruction Based on Time-Frequency Analysis and Hermite Projection Method

    Directory of Open Access Journals (Sweden)

    Krylov Andrey

    2010-01-01

    Full Text Available A method for temporal analysis and reconstruction of video sequences based on the time-frequency analysis and Hermite projection method is proposed. The S-method-based time-frequency distribution is used to characterize stationarity within the sequence. Namely, a sequence of DCT coefficients along the time axes is used to create a frequency-modulated signal. The reconstruction of nonstationary sequences is done using the Hermite expansion coefficients. Here, a small number of Hermite coefficients can be used, which may provide significant savings for some video-based applications. The results are illustrated with video examples.

  12. Improved installation prototype for measurement of low argon-37 activity

    Science.gov (United States)

    Pakhomov, Sergei; Dubasov, Yuri

    2015-04-01

    On-site Inspection (OSI) is a key element of verification of State Parties' compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). An on-site inspection is launched to establish whether or not a nuclear explosion has been carried out. One of the most significant evidence of n underground nuclear explosion (UNE) is detection above background concentrations of argon-37 in near surface air. Argon-37 is formed in large amounts at interaction of neutrons of UNE with the potassium which is a part of the majority of rocks. Its estimated contents for the 100th days after explosion with a energy of 1000 t of TNT near a surface can vary from 1 to 1000 mBq/m3. The background concentrations of argon-37 in subsoil air vary 1 do100 mBq/m3. Traditionally, for argon-37 activity measurement the gas-proportional counters are used. But at Khlopin Radium institute the developments of the new type of highly sensitive and low-background installation capable to provide the required range of measurements of the argon-37 concentration are conducted. The liquid scintillation method of the registration of the low-energetic argon-37 electrons is the basic installation principle and as scintillator, the itself condensed air argon sample is used. Registration of scintillations of liquid argon is made by means of system from 3 PMT which cathodes are cooled near to the temperature of liquid nitrogen together with the measuring chamber in which placed the quartz glass ampule, containing the measured sample of the liquefied argon. For converse the short wavelength photons (λ = 127 nm) of liquid argon scintillations to more long-wave, corresponding to the range of PMT sensitivity, the polymer film with tetra-phenyl-butadiene (TPB) is provided. Even the insignificant impurities of nitrogen, oxygen and others gaseous in the liquid argon samples can to cause the quenching of scintillation, especially their slow components. To account this effect and it influence on change of registration

  13. CT assessment of liver hemodynamics in patients with hepatocellular carcinoma after argon-helium cryoablation

    Institute of Scientific and Technical Information of China (English)

    Xue-Jia Hao; Jin-Ping Li; Hui-Jie Jiang; Da-Qing Li; Zai-Sheng Ling

    2013-01-01

    BACKGROUND: Assessment  of  tumor  response  after  argon-helium  cryoablation  is  critical  in  guiding  future  therapy  for unresectable  hepatocellular  carcinoma.  This  study  aimed  to evaluate  liver  hemodynamics  in  hepatocellular  carcinoma after  argon-helium  cryoablation  with  computed  tomography perfusion. METHODS: The  control  group  comprised  40  volunteers without liver disease.  The  experimental  group  was  composed of  15  patients  with  hepatocellular  carcinoma  treated  with argon-helium  cryoablation.  Computed  tomography  perfusion parameters were measured: hepatic blood flow, hepatic blood volume,  mean  transit  time,  permeability  of  capillary  vessel surface, hepatic arterial fraction, hepatic arterial perfusion, and hepatic portal perfusion. RESULTS: After  treatment,  in  the  tumor  foci,  permeability of  capillary  vessel  surface  was  higher,  and  hepatic  blood flow,  hepatic  blood  volume,  hepatic  arterial  fraction,  and hepatic  arterial  perfusion  values  were  lower  (P0.05). CONCLUSION: Computed tomography perfusion can evaluate tumor response after argon-helium cryoablation.

  14. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  15. Merging of high speed argon plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 22180 (United States); Elton, R. [University of Maryland, College Park, Maryland 20742 (United States)

    2013-01-15

    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  16. Identification of Low Momentum Electrons in The Time Projection Chamber of The ALICE Detector.

    CERN Document Server

    Mwewa, Chilufya

    2013-01-01

    This paper presents results obtained in the study to identify noisy low momentum electrons in the Time Projection Chamber (TPC) of the ALICE detector. To do this, the Circle Hough Transform is employed under the openCV library in python programming. This is tested on simulated tracks in the transverse view of the TPC. It is found that the noisy low momentum electrons can be identified and their exact positions in the transverse plane can be obtained.

  17. Streamflow timing of mountain rivers in Spain: Recent changes and future projections

    Science.gov (United States)

    Morán-Tejeda, Enrique; Lorenzo-Lacruz, Jorge; López-Moreno, Juan Ignacio; Rahman, Kazi; Beniston, Martin

    2014-09-01

    Changes in streamflow timing are studied in 27 mountain rivers in Spain, in the context of climate warming. The studied rivers are characterized by a highflows period in spring due to snowmelt, although differences in the role of snow and consequently in the timing of flows are observed amongst cases. We calculated for every year of the studied period (1976-2008) various hydrological indices that enable locating the timing of spring flows within the annual hydrologic regime, including the day of 75% of mass, and the day of spring maximum. The evolution of these indices was compared with that of seasonal precipitation and temperature, and trends in time were calculated. Results show a general negative trend in the studied indices which indicates that spring peaks due to snowmelt are shifting earlier within the hydrological year. Spring temperatures, which show a significant increasing trend, are the main co-variable responsible for the observed changes in the streamflow timing. In a second set of analyses we performed hydrological simulations with the SWAT model, in order to estimate changes in streamflow timing under projected warming temperatures. Projections show further shifting of spring peak flows along with a more pronounced low water level period in the summer. The simulations also allowed quantifying the role of snowfall-snowmelt on the observed changes in streamflow.

  18. Incentive contract design in project management with serial tasks and uncertain completion times

    Science.gov (United States)

    Yang, Kai; Zhao, Ruiqing; Lan, Yanfei

    2016-04-01

    This article investigates an incentive contract design problem for a project manager who operates a project consisting of multiple tasks performed sequentially by different subcontractors in which all task completion times are uncertain and described by fuzzy variables. On the basis of an expected value criterion and a critical value criterion, two classes of fuzzy bilevel programming models are developed. In the case where the uncertain task completion times are mutually independent, each model can first be decomposed into multiple equivalent sub-models by taking advantage of the structural characteristics, and then a two-step optimization method is employed to derive the optimal incentive contract in each sub-model. In a more general case where the uncertain task completion times are correlative, the approximation approach (AA) technique is adopted first in order to evaluate the objective functions involving fuzzy parameters, which are usually difficult to convert into their crisp equivalents. Then, an AA-based hybrid genetic algorithm integrated with the golden search method and variable neighbourhood search is designed to solve the proposed fuzzy bilevel programming models. Finally, a numerical example of a construction project is conducted to demonstrate the modelling idea and the effectiveness of the proposed methods.

  19. Modified Pressure-Correction Projection Methods: Open Boundary and Variable Time Stepping

    KAUST Repository

    Bonito, Andrea

    2014-10-31

    © Springer International Publishing Switzerland 2015. In this paper, we design and study two modifications of the first order standard pressure increment projection scheme for the Stokes system. The first scheme improves the existing schemes in the case of open boundary condition by modifying the pressure increment boundary condition, thereby minimizing the pressure boundary layer and recovering the optimal first order decay. The second scheme allows for variable time stepping. It turns out that the straightforward modification to variable time stepping leads to unstable schemes. The proposed scheme is not only stable but also exhibits the optimal first order decay. Numerical computations illustrating the theoretical estimates are provided for both new schemes.

  20. Generalized Projective Synchronization between Two Complex Networks with Time-Varying Coupling Delay

    Institute of Scientific and Technical Information of China (English)

    SUN Mei; ZENG Chang-Yan; TIAN Li-Xin

    2009-01-01

    Generalized projective synchronization (GPS) between two complex networks with time-varying coupling delay is investigated. Based on the Lyapunov stability theory, a nonlinear controller and adaptive updated laws are designed. Feasibility of the proposed scheme is proven in theory. Moreover, two numerical examples are presented, using the energy resource system and Lü's system [Physica A 382 (2007) 672] as the nodes of the networks. GPS between two energy resource complex networks with time-varying coupling delay is achieved. This study can widen the application range of the generalized synchronization methods and will be instructive for the demand-supply of energy resource in some regions of China.

  1. LArGe: active background suppression using argon scintillation for the GERDA 0νββ-experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, M.; Budjas, D.; Schoenert, S. [Technische Universitaet Muenchen, Munich (Germany); Barnabe-Heider, M. [Technische Universitaet Muenchen, Munich (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Cattadori, C. [Universita degli Studi di Milano, Milan (Italy); INFN, Milan (Italy); Gangapshev, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Institut for Nuclear Research, Moscow (Russian Federation); Gusev, K. [Technische Universitaet Muenchen, Munich (Germany); Joint Institut for Nuclear Research, Dubna (Russian Federation); National Research Center Kurchatov Institut, Moscow (Russian Federation); Heisel, M.; Smolnikov, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Junker, M. [Laboratori Nazionali del Gran Sasso, Assergi (Italy); Klimenko, A.; Lubashevskiy, A. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Joint Institut for Nuclear Research, Dubna (Russian Federation); Pelczar, K. [Jagellonian University, Cracow (Poland); Zuzel, G. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Jagellonian University, Cracow (Poland)

    2015-10-15

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for future application in the GERDA experiment. Similar to GERDA, LArGe operates bare germanium detectors submersed into liquid argon (1 m{sup 3}, 1.4tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12 - 4.6) x 10{sup -2} cts/(keV kg year) (90 % C.L.), which is at the level of GERDA Phase I. Furthermore, for the first time we monitor the natural {sup 42}Ar abundance (parallel to GERDA), and have indication for the 2νββ-decay in natural germanium. These results show the effectivity of an active liquid argon veto in an ultra-low background environment. As a consequence, the implementation of a liquid argon veto in GERDA Phase II is pursued. (orig.)

  2. Gaseous time projection chambers for rare event detection: Results from the T-REX project. II. Dark matter

    CERN Document Server

    Irastorza, I G; Castel, J; Cebrián, S; Dafni, T; Galán, J; García, J A; Garza, J G; Gómez, H; Herrera, D C; Iguaz, F J; Luzón, G; Mirallas, H; Ruiz, E; Seguí, L; Tomás, A

    2015-01-01

    As part of the T-REX project, a number of R&D and prototyping activities have been carried out during the last years to explore the applicability of Micromegas-read gaseous TPCs in rare event searches like double beta decay (DBD), axion research and low-mass WIMP searches. While in the companion paper we focus on DBD, in this paper we focus on the results regarding the search for dark matter candidates, both axions and WIMPs. Small ultra-low background Micromegas detectors are used to image the x-ray signal expected in axion helioscopes like CAST at CERN. Background levels as low as $0.8\\times 10^{-6}$ c keV$^{-1}$cm$^{-2}$s$^{-1}$ have already been achieved in CAST while values down to $\\sim10^{-7}$ c keV$^{-1}$cm$^{-2}$s$^{-1}$ have been obtained in a test bench placed underground in the Laboratorio Subterr\\'aneo de Canfranc. Prospects to consolidate and further reduce these values down to $\\sim10^{-8}$ c keV$^{-1}$cm$^{-2}$s$^{-1}$will be described. Such detectors, placed at the focal point of x-ray te...

  3. Stone Soup Projects: Using real-time resources and creative partnering to meet multiple needs

    Science.gov (United States)

    McLean, S.; Searle, R.; Zala, K.

    2010-12-01

    Ocean Networks Canada oversees the VENUS and NEPTUNE Canada undersea cabled observatories. Its Centre for Enterprise and Engagement communicates the scientific discoveries and technological innovations happening at the two systems. Not surprisingly, funders in ocean science are interested in seeing evidence of increased recruitment of Highly Qualified Personnel into marine science and industry. This demand creates a series of opportunities for inspiring students, ranging from graduate school down to middle school, to pursue studies in chemistry, biology, physics, geology, engineering, and beyond. As the Engagement section is a small operation, we partner with others to produce educational assets incorporating real-time data from VENUS and NEPTUNE Canada observatories that enable frontline educators to create exciting ocean science experiences for students and the public. In one project, the lab component of an entire undergraduate course lets students conduct their own investigations into marine oxygen levels by using VENUS data. In another, Fine Arts graduate and undergraduate students are using high-tech tools to create a series of webisodes that map the principles of Ocean Literacy onto the science themes of VENUS and NEPTUNE Canada. In a third project, we hosted a website for a collaborative expedition to small coastal towns that focused on the marine science happening in the Salish Sea, British Columbia. Our projects and challenges for engaging students and the public with ocean science using real-time and other data offer strategies for outreach and education sections of similar organizations.

  4. The Solaris project. A timing survey for circumbinary planets around eclipsing binary stars.

    Science.gov (United States)

    Konacki, M.

    2014-03-01

    The SOLARIS project aims to detect from the ground circumbinary planets with the timing of eclipses of eclipsing binary stars. For the SOLARIS project, we were granted 2.5 million Euro to establish a network of four robotic 0.5-m telescopes on three continents (Australia, Africa and South America) to carry out high cadence, high precision photometry of a sample of eclipsing binary stars. Three of the telescopes are already installed and the fourth one will become operational in early 2014. The project's web site is www.projectsolaris.eu/. This effort is accompanied by our radial velocity (RV) survey for circumbinary planets which employs our novel iodine cell based technique tailored to provide very high precision RVs of double-lined binaries. Altogether these two efforts, targeting about 300 eclipsing binary stars, constitute the biggest ground based survey for circumbinary planets. Moreover, we expect that both these efforts will have a significant impact on the observational stellar astronomy. In particular for at least half of our sample we expect to deliver masses of the stars with an accuracy 10-1000 times better than the current state of the art.

  5. Practical reactor production of {sup 41}Ar from argon clathrate

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.R. E-mail: jmercer@pharmacy.ualberta.ca; Duke, M.J.M.; McQuarrie, S.A

    2000-06-01

    The radionuclide {sup 41}Ar has many ideal properties as a gas flow tracer. However, the modest cross-section of {sup 40}Ar for thermal neutron activation makes preparation of suitable activities of {sup 41}Ar technically difficult particularly for low flux reactors. Argon can however be trapped in a molecular complex called a clathrate that can then be irradiated. We prepared argon clathrate and explored its irradiation and stability characteristics. Argon clathrate can be used to provide gigabecquerel quantities of {sup 41}Ar even with low power reactors.

  6. Effect of Argon Plasma Treatment on Tribological Properties of UHMWPE/MWCNT Nanocomposites

    Directory of Open Access Journals (Sweden)

    Nitturi Naresh Kumar

    2016-08-01

    Full Text Available Ultra-high molecular weight polyethylene (UHMWPE is widely used in artificial joints in the replacement of knee, hip and shoulder that has been impaired as a result of arthritis or other degenerative joint diseases. The UHMWPE made plastic cup is placed in the joint socket in contact with a metal or ceramic ball affixed to a metal stem. Effective reinforcement of multi-walled carbon nanotubes (MWCNTs in UHMWPE results in improved mechanical and tribological properties. The hydrophobic nature of the nanocomposites surface results in lesser contact with biological fluids during the physiological interaction. In this project, we investigate the UHMWPE/MWCNTs nanocomposites reinforced with MWCNTs at different concentrations. The samples were treated with cold argon plasma at different exposure times. The water contact angles for 60 min plasma-treated nanocomposites with 0.0, 0.5, 1.0, 1.5, and 2.0 wt % MWCNTs were found to be 55.65°, 52.51°, 48.01°, 43.72°, and 37.18° respectively. Increasing the treatment time of nanocomposites has shown transformation from a hydrophobic to a hydrophilic nature due to carboxyl groups being bonded on the surface for treated nanocomposites. Wear analysis was performed under dry, and also under biological lubrication, conditions of all treated samples. The wear factor of untreated pure UHMWPE sample was reduced by 68% and 80%, under dry and lubricated conditions, respectively, as compared to 2 wt % 60 min-treated sample. The kinetic friction co-efficient was also noted under both conditions. The hardness of nanocomposites increased with both MWCNTs loading and plasma treatment time. Similarly, the surface roughness of the nanocomposites was reduced.

  7. Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget

    Energy Technology Data Exchange (ETDEWEB)

    Kollar, Lenka; Mathews, Caroline E.

    2009-07-01

    This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

  8. Time-Gated Optical Projection Tomography Allows Visualization of Adult Zebrafish Internal Structures

    Science.gov (United States)

    Foglia, Efrem Alessandro; Pistocchi, Anna; D'Andrea, Cosimo; Valentini, Gianluca; Cubeddu, Rinaldo; De Silvestri, Sandro; Cerullo, Giulio; Cotelli, Franco

    2012-01-01

    Optical imaging through biological samples is compromised by tissue scattering and currently various approaches aim to overcome this limitation. In this paper we demonstrate that an all optical technique, based on non-linear upconversion of infrared ultrashort laser pulses and on multiple view acquisition, allows the reduction of scattering effects in tomographic imaging. This technique, namely Time-Gated Optical Projection Tomography (TGOPT), is used to reconstruct three dimensionally the internal structure of adult zebrafish without staining or clearing agents. This method extends the use of Optical Projection Tomography to optically diffusive samples yielding reconstructions with reduced artifacts, increased contrast and improved resolution with respect to those obtained with non-gated techniques. The paper shows that TGOPT is particularly suited for imaging the skeletal system and nervous structures of adult zebrafish. PMID:23185643

  9. Highly Integrated Mixed-Mode Electronics for the readout of Time Projection Chambers

    CERN Document Server

    França Santos, Hugo Miguel; Musa, Luciano

    Time Projection Chambers (TPCs) are one of the most prevalent particle trackers for high-energy physics experiments. Future planed TPCs for the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) entail very high spatial resolution in large gas volumes, but impose low material budget for the end caps of the TPC cylinder. This constraint is not accomplished with the state-of-the-art front-end electronics because of its unsuited relatively large mass and of its associated water cooling system. To reach the required material budget, highly compact and power efficient dedicated TPC front-end electronics should be developed. This project aims at re-designing the different electronic elements with significant improvements in terms of performance, power efficiency and versatility, and developing an integrated circuit that merges all components of the front-end electronics. This chip ambitions a large volume production at low unitary cost and its employment in multiple detectors. The design of ...

  10. Real-Time Projection Shadow with Respect to Sun Position in Virtual Environments

    Directory of Open Access Journals (Sweden)

    Hoshang Kolivand

    2011-11-01

    Full Text Available This paper proposes a real-time software for outdoor rendering to control the shadows position with effect of sun's position. The position of sun plays an important rule for outdoor games. Calculation of sun's position, as a result, position and length of shadows require a lot of attention and preciseness. Julian dating is used to calculate the sun's position in the virtual dome. In addition, of computer graphics, building design is another field that this paper contributes on it. To create shadow, projection shadow is proposed. By calculating the sun's position in the specific date, time and location on the earth, shadow is generated. Length and angle of shadow are two parameters measured for building design and both of them are calculated in this real-time application. Therefore, it can be used for teachers to teach some part of physics about earth orbit and it can be used in building design and commercial games in virtual reality systems.

  11. Effects of metastable species in helium and argon atmospheric pressure plasma jets (APPJs) on inactivation of periodontopathogenic bacteria

    Science.gov (United States)

    Yoon, Sung-Young; Kim, Kyoung-Hwa; Seol, Yang-Jo; Kim, Su-Jeong; Bae, Byeongjun; Huh, Sung-Ryul; Kim, Gon-Ho

    2016-05-01

    The helium and argon have been widely used as discharge gases in atmospheric pressure plasma jets (APPJs) for bacteria inactivation. The APPJs show apparent different in bullet propagation speed and bacteria inactivation rate apparently vary with discharge gas species. This work shows that these two distinctive features of APPJs can be linked through one factor, the metastable energy level. The effects of helium and argon metastable species on APPJ discharge mechanism for reactive oxygen nitrogen species (RONS) generation in APPJs are investigated by experiments and numerical estimation. The discharge mechanism is investigated by using the bullet velocity from the electric field which is obtained with laser induced fluorescence (LIF) measurement. The measured electric field also applied on the estimation of RONS generation, as electron energy source term in numerical particle reaction. The estimated RONS number is verified by comparing NO and OH densities to the inactivation rate of periodontitis bacteria. The characteristic time for bacteria inactivation of the helium-APPJ was found to be 1.63 min., which is significantly less than that of the argon-APPJ, 12.1 min. In argon-APPJ, the argon metastable preserve the energy due to the lack of the Penning ionization. Thus the surface temperature increase is significantly higher than helium-APPJ case. It implies that the metastable energy plays important role in both of APPJ bullet propagation and bacteria inactivation mechanism.

  12. A multi-objective genetic algorithm model for time-cost trade-off analysis of construction projects

    OpenAIRE

    Senouci, Ahmed; Al-Derham, Hassan R.

    2006-01-01

    Time-cost trade-off analysis is one of the most important aspects of construction project planning and control. There are trade-offs between time and cost to complete the activities of a project. Existing methods for time-cost trade-off analysis are not efficient enough to solve large-scale CPM networks (hundreds of activities or more). This paper presents an advanced and robust multi-objective genetic algorithm model for the time-cost trade-off analysis of construction projects. The model al...

  13. Comment on "Generalized projective synchronization in time-delayed systems: nonlinear observer approach" [Chaos 19, 013102 (2009); 20, 029902 (2010)].

    Science.gov (United States)

    Theesar, S Jeeva Sathya; Balasubramaniam, P; Banerjee, Santo

    2012-09-01

    In Chaos 19, 013102 (2009), the author proposed generalized projective synchronization for time delay systems using nonlinear observer and obtained sufficient condition to ensure projective synchronization for modulated time varying delay. There are concerns with the obtained conditions as the result was applicable only to trivial case of time varying delay τ[over dot](1)(t)=dτ(1)(t)/dt<1. In this paper, we note the drawbacks of the proposed sufficient condition. The new improved sufficient condition for ensuring the projective synchronization of time varying delayed systems is presented. The proposed new criteria have been verified by adopting the Ikeda system.

  14. Investigation of transfer ionization processes in the collision of partially stripped carbon ions on Argon

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; Du Juan; SUN GuangZhi; CHEN Lin; CHEN XiMeng; DING BaoWei; FU HongBin; CUI Ying; SHAO JianXiong; LU YanXia; GAO ZhiMin; LIU YuWen

    2008-01-01

    The ratios of the cross section of the transfer-ionization to the single-electroncapture of Argon induced by Cq+ (q=1,2,3) ions are measured by means of position sensitive and time-of-flight techniques. Our experimental results are compared with the data of Heq+ (q=1,2)-Ar of DuBois. A qualitative interpretation is presented based on the Classical-Over-Barrier Model of Bohr,

  15. Investigation of transfer ionization processes in the collision of partially stripped carbon ions on Argon

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The ratios of the cross section of the transfer-ionization to the single-electron-capture of Argon induced by Cq+ (q=1,2,3) ions are measured by means of position sensitive and time-of-flight techniques. Our experimental results are compared with the data of Heq+ (q=1,2)-Ar of DuBois. A qualitative interpretation is presented based on the Classical-Over-Barrier Model of Bohr.

  16. Table-top setup for investigating the scintillation properties of liquid argon

    CERN Document Server

    Heindl, T; Fedenev, A; Hofmann, M; Krücken, R; Oberauer, L; Potzel, W; Wieser, J; Ulrich, A

    2015-01-01

    The spectral and temporal light emission properties of liquid argon have been studied in the context of its use in large liquid rare-gas detectors for detecting Dark Matter particles in astronomy. A table-top setup has been developed. Continuous and pulsed low energy electron beam excitation is used to stimulate light emission. A spectral range from 110 to 1000 nm in wavelength is covered by the detection system with a time resolution on the order of 1 ns.

  17. Recording A Sunrise: A Citizen Science Project to Enhance Sunrise/set Prediction Times

    Science.gov (United States)

    Wilson, Teresa; Chizek Frouard, Malynda; Bartlett, Jennifer L.

    2017-01-01

    Smartphones, with their ever increasing capabilities, are becoming quite instrumental for data acquisition in a number of fields. Understanding refraction and how it affects what we see on the horizon is no exception. Current algorithms that predict sunrise and sunset times have an error of one to four minutes at mid-latitudes (0° - 55° N/S) due to limitations in the atmospheric models they incorporate. At higher latitudes, slight changes in refraction can cause significant discrepancies, even including difficulties determining when the Sun appears to rise or set. A thorough investigation of the problem requires a substantial data set of observed rise/set times and corresponding meteorological data from around the world, which is currently lacking. We have developed a mobile application so that this data can be taken using smartphones as part of a citizen science project. The app allows the viewer to submit a video of sunrise/set and attaches geographic location along with meteorological data taken from a local weather station. The project will help increase scientific awareness in the public by allowing members of the community to participate in the data-taking process, and give them a greater awareness of the scientific significance of phenomenon they witness every day. The data from the observations will lead to more complete rise/set models that will provide more accurate times to the benefit of astronomers, navigators, and outdoorsmen. The app will be available on the Google Play Store.

  18. The Human Placenta Project: Placental Structure, Development, and Function in Real Time

    Science.gov (United States)

    Guttmacher, Alan E.; Maddox, Yvonne T.; Spong, Catherine Y.

    2014-01-01

    Despite its crucial role in the health of both the fetus and the pregnant woman, the placenta is the least understood human organ. Since a growing body of evidence also underscores the importance of placental development in the lifelong health of both mother and offspring, this lack of knowledge about placental structure and function is particularly concerning. Given modern approaches and technologies and the ability to develop new methods, we propose a coordinated “Human Placenta Project,” with the ultimate goal of understanding human placental structure, development, and function in real time. PMID:24661567

  19. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    CERN Document Server

    Arimoto, Y; Igarashi, Y; Iwashita, Y; Ino, T; Katayama, R; Kitahara, R; Kitaguchi, M; Matsumura, H; Mishima, K; Oide, H; Otono, H; Sakakibara, R; Shima, T; Shimizu, H M; Sugino, T; Sumi, N; Sumino, H; Taketani, K; Tanaka, G; Tanaka, M; Tauchi, K; Toyoda, A; Yamada, T; Yamashita, S; Yokoyama, H; Yoshioka, T

    2015-01-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  20. Development of time projection chamber for precise neutron lifetime measurement using pulsed cold neutron beams

    Energy Technology Data Exchange (ETDEWEB)

    Arimoto, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Higashi, N. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Igarashi, Y. [High Energy Accelerator Research Organization, Ibaraki (Japan); Iwashita, Y. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Ino, T. [High Energy Accelerator Research Organization, Ibaraki (Japan); Katayama, R. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Kitaguchi, M. [Kobayashi-Maskawa Institute, Nagoya University, Aichi (Japan); Kitahara, R. [Graduate School of Science, Kyoto University, Kyoto (Japan); Matsumura, H.; Mishima, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); Nagakura, N.; Oide, H. [Graduate School of Science, University of Tokyo, Tokyo (Japan); Otono, H., E-mail: otono@phys.kyushu-u.ac.jp [Research Centre for Advanced Particle Physics, Kyushu University, Fukuoka (Japan); Sakakibara, R. [Department of Physics, Nagoya University, Aichi (Japan); Shima, T. [Research Center for Nuclear Physics, Osaka University, Osaka (Japan); Shimizu, H.M.; Sugino, T. [Department of Physics, Nagoya University, Aichi (Japan); Sumi, N. [Faculty of Sciences, Kyushu University, Fukuoka (Japan); Sumino, H. [Department of Basic Science, University of Tokyo, Tokyo (Japan); Taketani, K. [High Energy Accelerator Research Organization, Ibaraki (Japan); and others

    2015-11-01

    A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources and the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with {sup 6}Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.

  1. SAMURAI-TPC: A Time Projection Chamber for Constraining the Asymmetry Energy at High Density

    Science.gov (United States)

    McIntosh, A. B.; Maass, N.; Yennello, S. J.; Barney, J.; Chajecki, Z.; Chan, C. F.; Dunn, J. W.; Estee, J.; Gilbert, J.; Lu, F.; Lynch, W. G.; Shane, R.; Tsang, M. B.; Famiano, M.; Isobe, T.; Sakurai, H.; Taketani, A.; Murakami, T.; Samurai-Tpc Collaboration

    2011-10-01

    The SAMURAI-TPC is a time projection chamber designed to measure pions and light charged particles. By measuring pion yield ratios and particle flow in heavy ion collisions around E = 200A MeV, we expect to constrain the behavior of the nuclear asymmetry energy around twice saturation density. In this talk, the design and construction of the TPC components will be discussed. Upon completion, the SAMURAI-TPC will be installed in the SAMURAI spectrometer at the Radioactive Isotope Beam Facility at RIKEN, Japan. This work is supported by the Department of Energy (DE-SC0004835).

  2. An analytical approach to space charge distortions for time projection chambers

    CERN Document Server

    Rossegger, S; Riegler, W

    2010-01-01

    In a time projection chamber (TPC), the possible ion feedback and also the primary ionization of high multiplicity events result in accumulation of ionic charges inside the gas volume (space charge). This charge introduces electrical field distortions and modifies the cluster trajectory along the drift path, affecting the tracking performance of the detector. In order to calculate the track distortions due to an arbitrary space charge distribution in the TPC, novel representations of the Green's function for a TPC geometry were worked out. This analytical approach finally permits accurate predictions of track distortions due to an arbitrary space charge distribution by solving the Langevin equation.

  3. The Human Placenta Project: placental structure, development, and function in real time.

    Science.gov (United States)

    Guttmacher, A E; Maddox, Y T; Spong, C Y

    2014-05-01

    Despite its crucial role in the health of both the fetus and the pregnant woman, the placenta is the least understood human organ. Since a growing body of evidence also underscores the importance of placental development in the lifelong health of both mother and offspring, this lack of knowledge about placental structure and function is particularly concerning. Given modern approaches and technologies and the ability to develop new methods, we propose a coordinated "Human Placenta Project", with the ultimate goal of understanding human placental structure, development, and function in real time.

  4. Construction and Assembly of the Wire Planes for the MicroBooNE Time Projection Chamber

    CERN Document Server

    Acciarri, R; Asaadi, J; Danaher, J; Fleming, B T; Gardner, R; Gollapinni, S; Grosso, R; Guenette, R; Littlejohn, B R; Lockwitz, S; Raaf, J L; Soderberg, M; John, J St; Strauss, T; Szelc, A M; Yu, B

    2016-01-01

    In this paper we describe how the readout planes for the MicroBooNE Time Projection Chamber were constructed, assembled and installed. We present the individual wire preparation using semi-automatic winding machines and the assembly of wire carrier boards. The details of the wire installation on the detector frame and the tensioning of the wires are given. A strict quality assurance plan ensured the integrity of the readout planes. The different tests performed at all stages of construction and installation provided crucial information to achieve the successful realisation of the MicroBooNE wire planes.

  5. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    degrees C and evidence was found for the solidification of the melt at 380-440 degrees C, i.e. simultaneously with the onset of decomposition. Between 400 degrees C and 520 degrees C (Ba(C4H9CO2)(2) decomposes in two main steps, first into BaCO3 with release of C4H9COC4H9 (5-nonanone), whereas final......The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...... conversion to BaO takes place with release of CO2. Elemental carbon that is left as a by-product is finally slowly burned by the residual oxygen present in the Ar atmosphere. (C) 2015 Elsevier B.V. All rights reserved....

  6. Identifying The Effective Factors for Cost Overrun and Time Delay in Water Construction Projects

    Directory of Open Access Journals (Sweden)

    D. Mirzai Matin

    2016-08-01

    Full Text Available Water construction projects in Iran frequently face problems which cause cost overrun and time delay, the two most common issues in construction projects in general. The objective of this survey is to identify and quantify these problems and thus help in avoiding them. This survey represents a collection of the most significant problems found in the literature, classified into 11 groups according to their source. The questionnaire form used contains 84 questions which were answered by random engineers who work in water construction projects. The Relative Importance Weight (RIW method is used to weight the importance of each one of the 84 problems. The focus of this survey is on overall top ten issues which are: bureaucracy in bidding method, inflation, economical condition of the government, not enough information gathered and surveys done before design, monthly payment difficulties, material cost changes, law changes by the government, financial difficulties, mode of financing and payment for completed work and changes made by the owner. A section for each of these issues provides additional information about them. In the full text of this survey the same weighting method is used to classify the main groups, and the results show that issues related to the groups of government, owner and consultant has the most significant impact. The last part of this survey describes the point of view of the engineers who took part in this survey and the recommendations they made.

  7. A Study of the Residual 39Ar Content in Argon from Underground Sources

    CERN Document Server

    Xu, J; Galbiati, C; Goretti, A; Guray, G; Hohman, T; Holtz, D; Ianni, A; Laubenstein, M; Loer, B; Love, C; Martoff, C J; Montanari, D; Mukhopadhyay, S; Nelson, A; Rountree, S D; Vogelaar, R B; Wright, A

    2012-01-01

    The discovery of argon from underground sources with significantly less 39Ar than atmospheric argon was an important step in the development of direct-detection dark matter experiments using argon as the active target. We report on the design and operation of a low background detector with a single phase liquid argon target that was built to study the 39Ar content of the underground argon. Underground argon from the Kinder Morgan CO2 plant in Cortez, Colorado was determined to have less than 0.65% of the 39Ar activity in atmospheric argon.

  8. Size Determination of Argon Clusters from a Rayleigh Scattering Experiment

    Institute of Scientific and Technical Information of China (English)

    LEI An-Le; ZHAI Hua-Jin; LIU Bing-Chen; LI Zhong; NI Guo-Yuan; XU Zhi-Zhan

    2000-01-01

    Argon clusters are produced in the process of adiabatic expansion of a high backing pressure gas into vacuum through a nozzle. The cluster size is determined by a Rayleigh scattering measurement. The scattered signal measured is proportional to the 2.78th power of gas stagnation pressure. The average cluster sizes vary from 100 to more than 12000 atoms/cluster with the argon gas backing pressures ranging between 3 to 45 atm.

  9. Ionization signals from electrons and alpha-particles in mixtures of liquid Argon and Nitrogen - perspectives on protons for Gamma Resonant Nuclear Absorption applications

    CERN Document Server

    Zeller, M; Delaquis, S; Ereditato, A; Janos, S; Kreslo, I; Messina, M; Moser, U; Rossi, B

    2010-01-01

    In this paper we report on a detailed study of ionization signals produced by Compton electrons and alpha-particles in a Time Projection Chamber (TPC) flled with different mixtures of liquid Argon and Nitrogen. The measurements were carried out with Nitrogen concentrations up to 15% and a drift electric feld in the range 0-50 kV/cm. A prediction for proton ionization signals is made by means of interpolation. This study has been conducted in view of the possible use of liquid Ar-N2 TPCs for the detection of gamma-rays in the resonant band of the Nitrogen absorption spectrum, a promising technology for security and medical applications.

  10. Power Consideration for Pulsed Discharges in Potassium Seeded Argon

    Institute of Scientific and Technical Information of China (English)

    XIA Sheng-Guo; HE Jun-Jia; LIU Ke-Fu

    2007-01-01

    Minimization of energy consumed in plasma generation is critical for applications, in which a large volume of plasmas is needed. We suggest that a high electron density atmospheric pressure plasmas can be generated by pulsed discharges in potassium seeded argon at an elevated temperature with a very small power input. The ionization efficiency and power budget of pulsed discharges in such plasmas are analytically studied. The results show that ionization efficiency of argon, especially at small reduced electric field E/N (the ratio of the electric field to the gas number density), is improved effectively in the presence of small amount of potassium additives. Power input of pulsed discharge to sustain a prescribed average level of ionization in potassium seeded argon is three orders of magnitude lower than that in pure argon. Further, unlike in pure argon, it is found that very short high-voltage pulses with very high repetition rates are unnecessary in potassium seeded argon. A pulse with 100ns of pulse duration, 5kHz of repetition rate, and 2Td (1 Td = 1 ×10-21 Vm2) of E/N is enough to sustain an electron density of 10l9m-3 in 1 atm 1500 K Ar+0.1% K mixture, with a very small power input of about 0.08 × 104 W/m3.

  11. Alternating current electrical properties of Argon plasma treated jute

    Directory of Open Access Journals (Sweden)

    Md. Masroor Anwer

    2012-09-01

    Full Text Available Low temperature plasma (LTP treatment, a kind of environment friendly surface modification technique, was applied to biodegradable and environment friendly jute fibre with the use of nonpolymerizing gas, namely argon, at various discharge power levels and exposure times with a definite flow rate. Scanning electron microscopy (SEM microphotographs reveal that the roughness of the fibre surfaces increases with the increase of discharge power and exposure time. This is caused due to the bombardment of high energetic ions on the fibre surface and the fibres become sputtered. The capacitance and the electrical conductance of raw and LTP treated jute fibre were measured as a function of frequency at room temperature. The dielectric constant, conductivity, dielectric loss-tangent and the surface morphology of raw and LTP treated jute as a function of frequency were studied at room temperature. It was observed that for all the samples the dielectric constant almost constant at lower frequencies and then decreases gradually in the high frequency region. In addition, dielectric constant increases with the increase of plasma treatment time as well as discharge power. It is also observed for all the samples that the conductivity increases as the frequency increases with a lower slope in the low frequency region and with a higher slope in the higher frequency region. In addition, the conductivity decreases with the increase of plasma exposure time as well as discharge power. The conductivity increases with frequency due to the hopping mechanism of electrons. The dependence of the dielectric loss-tangent with frequency at different treatment times and discharge powers for all the jute samples show small relaxation peaks in the very low frequency region. The dielectric loss-tangent decreases with the increase of both plasma treatment time and discharge power. In addition, the relaxation peaks are shifted to the higher frequency region as the plasma treatment

  12. Real-time Obstacle Avoidance of a Two-wheeled Mobile Robot via Minimum Projection Method

    Science.gov (United States)

    Fukui, Yoshiro; Nakamura, Hisakazu; Nishitani, Hirokazu

    This paper considers a real-time obstacle avoidance control problem of a two-wheeled nonholonomic mobile robot. In this research, we propose a discontinuous asymptotic stabilizing state feedback control law for the problem via the minimum projection method. The proposed method does not need path planning. Hence, the computational cost is reduced. Moreover, the method theoretically guarantees the asymptotic stability of the system. Owing to these advantages, we can redesign the control law in real-time depending on the location and the size of the obstacle. Therefore, the method can be used as a control law for searching unknown space. The effectiveness of the method is confirmed by experiments using a two-wheeled mobile robot, Khepera 2.

  13. Application of Project Time Management Tools and Techniques to the Construction Industry in the Gaza Strip

    Directory of Open Access Journals (Sweden)

    Nabil Sawalhi

    2012-11-01

    Full Text Available The objective of this paper is to investigate the level of applying theproject time management tools and techniques by public ownersand construction contractors in the Gaza Strip. This study hasbeen conducted by means of a survey questionnaire. Seventythreequestionnaires were distributed to target constructioncontractors and twenty-five questionnaires to public owners. Sixtycompleted questionnaires from contractors and twenty-threequestionnaires from public owners were received and analysed.The survey results indicated that contemporary project timemanagement tools and techniques are not widely used amonglocal contractors and owners. Lack of subcontractor’s knowledgeand awareness of the importance of project time managementtools and techniques are still major obstacles toward the efficientutilisation of such tools. This study recommended that there is anurgent need to establish a professional industry body such as anInstitute of Building to review and evaluate existing local projectmanagement practices. This professional body may be establishedby the government through the Ministry of Housing and PublicWorks or by the local university in cooperation with a similarinternational professional industry body. Current training effortshould be tailored to encourage owners and contractors to usework breakdown structures, resource optimisation, and networkscheduling.

  14. Photoelectron track length distributions measured in a negative ion time projection chamber

    CERN Document Server

    Prieskorn, Z R; Kaaret, P E; Black, J K

    2014-01-01

    We report photoelectron track length distributions between 3 and 8 keV in gas mixtures of Ne+CO2+CH3NO2 (260:80:10 Torr) and CO2+CH3NO2 (197.5: 15 Torr). The measurements were made using a negative ion time projection chamber (NITPC) at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL). We report the first quantitative analysis of photoelectron track length distributions in a gas. The distribution of track lengths at a given energy is best fit by a lognormal distribution. A powerlaw distribution of the form, f(E)=a(E/Eo)n, is found to fit the relationship between mean track length and energy. We find n=1.29 +/- 0.07 for Ne+CO2+CH3NO2 and n=1.20 +/- 0.09 for CO2+CH3NO2. Understanding the distribution of photoelectron track lengths in proportional counter gases is important for optimizing the pixel size and the dimensions of the active region in electron-drift time projection chambers (TPCs) and NITPC X-ray polarimeters.

  15. Projective multiscale time-integration for electrostatic particle-in-cell methods

    CERN Document Server

    Cazeaux, Paul

    2016-01-01

    The simulation of problems in kinetic plasma physics are often challenging due to strongly coupled phenomena across multiple scales. In this work, we propose a wavelet-based coarse-grained numerical scheme, based on the framework of Equation-Free Projective Integration, for a kinetic plasma system modeled by the Vlasov-Poisson equations. A kinetic particle-in-cell (PIC) code is used to simulate the meso scale dynamics for short time intervals. This allows the extrapolation over long time-steps of the behavior of a coarse wavelet-based discretization of the system. To validate the approach and the underlying concepts, we perform two 1D1V numerical experiments: nonlinear propagation and steepening of an ion wave, and the expansion of a plasma slab in vacuum. The direct comparisons to resolved PIC simulations show good agreement. We show that the speedup of the projective integration scheme over the full particle scheme scales linearly with the system size, demonstrating efficiency while taking into account full...

  16. Nonthermal atmospheric argon plasma jet effects on Escherichia coli biomacromolecules.

    Science.gov (United States)

    Hosseinzadeh Colagar, Abasalt; Memariani, Hamed; Sohbatzadeh, Farshad; Valinataj Omran, Azadeh

    2013-12-01

    Nonthermal atmospheric plasma jet, a promising technology based on ionized gas at low temperatures, can be applied for disinfection of contaminated surfaces. In this study, Escherichia coli cells and their macromolecules were exposed to the nonthermal atmospheric argon plasma jet for different time durations. Total protein, genomic DNA, and malondialdehyde (MDA) levels of E. coli were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining; agarose gel electrophoresis; and measurement of absorbance at 534 nm, respectively. After exposure, the spectroscopic results of liquid samples indicated that the survival reduction of E. coli can reach to 100 % in an exposure time of 600 s. Moreover, inactivation zones of E. coli, DNA degradation, and MDA levels were significantly increased. Additionally, banding patterns of total protein were changed and amino acid concentrations increased following ninhydrin test. The experimental results suggest that the nonthermal plasma could serve as an effective instrument for both sterilizing E. coli and degrading macromolecules from the surface of the objects being sterilized.

  17. Novel Diamond Films Synthesis Strategy: Methanol and Argon Atmosphere by Microwave Plasma CVD Method Without Hydrogen

    Science.gov (United States)

    Yang, Li; Jiang, Caiyi; Guo, Shenghui; Zhang, Libo; Gao, Jiyun; Peng, Jinhui; Hu, Tu; Wang, Liang

    2016-09-01

    Diamond thin films are grown on silicon substrates by only using methanol and argon mixtures in microwave plasma chemical vapor deposition (MPCVD) reactor. It is worth mentioning that the novel strategy makes the synthesis reaction works smoothly without hydrogen atmosphere, and the substrates temperature is only 500 °C. The evidence of surface morphology and thickness under different time is obtained by characterizing the samples using scanning electron microscopy (SEM). X-ray diffractometer (XRD) spectrum reveals that the preferential orientation of (111) plane sample is obtained. The Raman spectra indicate that the dominant component of all the samples is a diamond. Moreover, the diamond phase content of the targeted films was quantitatively analyzed by X-ray photoelectron spectroscopy (XPS) method, and the surface roughness of diamond films was investigated by atomic force microscope (AFM). Meanwhile, the possible synthesis mechanism of the diamond films in methanol- and argon-mixed atmosphere was discussed.

  18. Performance of liquid argon neutrino detectors with enhanced sensitivity to scintillation light

    CERN Document Server

    Sorel, M

    2014-01-01

    Scintillation light is used in liquid argon neutrino detectors to provide a trigger signal, veto information against cosmic rays, and absolute event timing. In this work, we discuss additional opportunities offered by detectors with enhanced sensitivity to scintillation light, that is with light collection efficiencies of about $10^{-3}$. We focus on two key detector performance indicators for neutrino oscillation physics: calorimetric neutrino energy reconstruction and neutrino/antineutrino separation in a non-magnetized detector. Our simulations indicate that a neutrino energy resolution as good as 3.3\\% RMS for 4 GeV electron neutrino charged-current interactions can in principle be obtained in a large detector of this type, by using both charge and light information. By exploiting muon capture in argon and scintillation light information to veto muon decay electrons, we also obtain muon neutrino identification efficiencies of about 50\\%, and muon antineutrino misidentification rates at the few percent lev...

  19. Constraints of relic gravitational waves by Pulsar Timing Array: Forecasts for the FAST and SKA projects

    CERN Document Server

    Zhao, Wen; You, Xiao-Peng; Zhu, Zong-Hong

    2013-01-01

    Measurement of the pulsar timing residuals provides a direct way to detect relic gravitational waves at the frequency $f\\sim 1/{\\rm yr}$. In this paper, we investigate the constraints on the inflationary parameters, the tensor-to-scalar ratio $r$ and the tensor spectral index $n_t$, by the current and future Pulsar Timing Arrays (PTAs). We find that Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China and the planned Square Kilometer Array (SKA) projects have the fairly strong abilities to test the phantom-like inflationary models. If $r=0.1$, FAST could give the constraint on the spectral index $n_t<0.38$, and SKA gives $n_t<0.30$. While an observation with the total time T=20yr, the pulsar noise level $\\sigma_w=30$ns and the monitored pulsar number $n=200$, could even constrain $n_t<0.05$. These are much tighter than those inferred from the current results of Parkers Pulsar Timing Array (PPTA) and European Pulsar Timing Array (EPTA). Especially, by studying the effects of various o...

  20. Communication: Trapping a proton in argon: Spectroscopy and theory of the proton-bound argon dimer and its solvation

    Science.gov (United States)

    McDonald, D. C.; Mauney, D. T.; Leicht, D.; Marks, J. H.; Tan, J. A.; Kuo, J.-L.; Duncan, M. A.

    2016-12-01

    Ion-molecule complexes of the form H+Arn are produced in pulsed-discharge supersonic expansions containing hydrogen and argon. These ions are analyzed and mass-selected in a reflectron spectrometer and studied with infrared laser photodissociation spectroscopy. Infrared spectra for the n = 3-7 complexes are characterized by a series of strong bands in the 900-2200 cm-1 region. Computational studies at the MP2/aug-cc-pVTZ level examine the structures, binding energies, and infrared spectra for these systems. The core ion responsible for the infrared bands is the proton-bound argon dimer, Ar-H+-Ar, which is progressively solvated by the excess argon. Anharmonic vibrational theory is able to reproduce the vibrational structure, identifying it as arising from the asymmetric proton stretch in combination with multiple quanta of the symmetric argon stretch. Successive addition of argon shifts the proton vibration to lower frequencies, as the charge is delocalized over more ligands. The Ar-H+-Ar core ion has a first solvation sphere of five argons.

  1. New argon-argon (40Ar/39Ar) radiometric age dates from selected subsurface basalt flows at the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Hodges, Mary K.; Turrin, Brent D.; Champion, Duane E.; Swisher, Carl C.

    2015-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected samples for 12 new argon-argon radiometric ages from eastern Snake River Plain olivine tholeiite basalt flows in the subsurface at the Idaho National Laboratory. The core samples were collected from flows that had previously published paleomagnetic data. Samples were sent to Rutgers University for argon-argon radiometric dating analyses.

  2. Statistical downscaling of meteorological time series and climatic projections in a watershed in Turkey

    Science.gov (United States)

    Göncü, S.; Albek, E.

    2016-10-01

    In this study, meteorological time series from five meteorological stations in and around a watershed in Turkey were used in the statistical downscaling of global climate model results to be used for future projections. Two general circulation models (GCMs), Canadian Climate Center (CGCM3.1(T63)) and Met Office Hadley Centre (2012) (HadCM3) models, were used with three Special Report Emission Scenarios, A1B, A2, and B2. The statistical downscaling model SDSM was used for the downscaling. The downscaled ensembles were put to validation with GCM predictors against observations using nonparametric statistical tests. The two most important meteorological variables, temperature and precipitation, passed validation statistics, and partial validation was achieved with other time series relevant in hydrological studies, namely, cloudiness, relative humidity, and wind velocity. Heat waves, number of dry days, length of dry and wet spells, and maximum precipitation were derived from the primary time series as annual series. The change in monthly predictor sets used in constructing the multiple regression equations for downscaling was examined over the watershed and over the months in a year. Projections between 1962 and 2100 showed that temperatures and dryness indicators show increasing trends while precipitation, relative humidity, and cloudiness tend to decrease. The spatial changes over the watershed and monthly temporal changes revealed that the western parts of the watershed where water is produced for subsequent downstream use will get drier than the rest and the precipitation distribution over the year will shift. Temperatures showed increasing trends over the whole watershed unparalleled with another period in history. The results emphasize the necessity of mitigation efforts to combat climate change on local and global scales and the introduction of adaptation strategies for the region under study which was shown to be vulnerable to climate change.

  3. Balancing creativity and time efficiency in multi-team R&D projects: The alignment of formal and informal networks

    DEFF Research Database (Denmark)

    Kratzer, Jan; Gemuenden, Hans Georg; Lettl, Christopher

    2008-01-01

    and their effect on the challenge to balance project creativity and time efficiency. In order to analyse this issue data in two multi-team R&D projects in space industry are collected. There are two intriguing findings that are partly contradicting the state-of-the art knowledge. First, formally ascribed design......The business world is denoted by an increasing number of multi-team R&D projects, however, managerial knowledge about how to run them successfully is scarce. The present study attempts to shed light at this kind of projects by investigating the alignment of formal and informal network structures...

  4. The design and performance of a prototype water Cherenkov optical time-projection chamber

    CERN Document Server

    Oberla, E

    2015-01-01

    A first experimental test of tracking relativistic charged particles by `drifting' Cherenkov photons in a water-based optical time-projection chamber (OTPC) has been performed at the Fermilab Test Beam Facility. The prototype OTPC detector consists of a 77~cm long, 28~cm diameter, 40~kg cylindrical water mass instrumented with a combination of commercial $5.1\\times5.1$~cm$^2$ micro-channel plate photo-multipliers (MCP-PMT) and $6.7\\times6.7$~cm$^2$ mirrors. Five MCP-PMTs are installed in two columns along the OTPC cylinder in a small-angle stereo configuration. A mirror is mounted opposite each MCP-PMT on the far side of the detector cylinder, effectively doubling the photo-detection efficiency and providing a time-resolved image of the Cherenkov light on the opposing wall. Each MCP-PMT is coupled to an anode readout consisting of thirty 50 Ohm microstrips. A 180-channel data acquisition system digitizes the MCP-PMT signals on one end of the microstrips using the PSEC4 waveform sampling-and-digitizing chip op...

  5. Different Types of Projective Synchronization in a Class of Time-Delayed Chaotic Systems Using Active Control Approach

    Institute of Scientific and Technical Information of China (English)

    FENG Cun-Fang; WANG Ying-Hai

    2011-01-01

    We study different types of projective synchronization (projective-anticipating, projective, and projectivelag synchronization) in a class of time-delayed chaotic systems related to optical bistable or hybrid optical bistable devices.We relax some limitations of previous work, where the scaling factor a can not be any desired value.In this paper, we achieve projective-anticipating, projective, and projective-lag synchronization without the limitation of α.A suitable controller is chosen using active control approach.Based on the Lyapunov stability theory, we derive the sutficient stability condition through theoretical analysis.The analytical results are validated by the numerical simulations using Ikeda model and Mackey-Glass model.

  6. TPEPICO studies near ionization threshold of argon and krypton clusters

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, J.; Vries, J. de; Steger, H.; Kaiser, E.; Kamke, B.; Kamke, W. (Freiburg Univ. (Germany, F.R.). Fakultaet fuer Physik Freiburg Univ. (Germany, F.R.). Freiburger Materialforschungszentrum)

    1991-01-01

    Single photon ionization of argon- and krypton clusters has been studied in the region between threshold and the ionization potential of the corresponding atom. Synchrotron radiation from the electron storage ring BESSY is used to ionize the clusters; threshold-photoelectron-photoion-coincidence (TPEPICO)-time-of-flight technique is used to detect ions correlated with the emission of zero-kinetic-energy-electrons. The spectra of the clusters in the range of n=2 to 15 are discussed in view of the extensive fragmentation taking place in these systems. In order to characterize the properties of the clusters a method using scaling laws is applied. The principles and the deduction of Hagena's scaling parameter {Gamma}{sup *} are briefly reviewed. Using {Gamma}{sup *} an experimentally derived mean cluster size for molecular beams can be assigned. This allows one to clearly demonstrate the systematic variations of the measured spectra due to cluster fragmentation. As a general feature it is observed that, in the range studied, the peak in the measured ionization rate for a cluster ion (fragment) of a given size shifts to higher photon energies as the mean cluster size is increased. (orig.).

  7. Real-time multimedia communications in medical emergency - the CONCERTO project solution.

    Science.gov (United States)

    Martini, Maria G; Iacobelli, Lorenzo; Bergeron, Cyril; Hewage, Chaminda T; Panza, Gianmarco; Piri, Esa; Vehkapera, Janne; Amon, Peter; Mazzotti, Matteo; Savino, Ketty; Bokor, Laszlo

    2015-01-01

    The management of medical emergency, in particular cardiac emergency, requests prompt intervention and the possibility to communicate in real time from the emergency area / ambulance to the hospital as much diagnostic information as possible about the patient. This would enable a prompt emergency diagnosis and operation and the possibility to prepare the appropriate actions in the suitable hospital department. To address this scenario, the CONCERTO European project proposed a wireless communication system based on a novel cross-layer architecture, including the integration of building blocks for medical media content fusion, delivery and access. This paper describes the proposed system architecture, outlining the developed components and mechanisms, and the evaluation of the proposed system, carried out in a hospital with the support of medical staff. The technical results and the feedback received highlight the impact of the CONCERTO approach in the healthcare domain, in particular in enabling a prompt and reliable diagnosis in challenging medical emergency scenarios.

  8. A Time Projection Chamber for High Accuracy and Precision Fission Cross-Section Measurements

    Energy Technology Data Exchange (ETDEWEB)

    T. Hill; K. Jewell; M. Heffner; D. Carter; M. Cunningham; V. Riot; J. Ruz; S. Sangiorgio; B. Seilhan; L. Snyder; D. M. Asner; S. Stave; G. Tatishvili; L. Wood; R. G. Baker; J. L. Klay; R. Kudo; S. Barrett; J. King; M. Leonard; W. Loveland; L. Yao; C. Brune; S. Grimes; N. Kornilov; T. N. Massey; J. Bundgaard; D. L. Duke; U. Greife; U. Hager; E. Burgett; J. Deaven; V. Kleinrath; C. McGrath; B. Wendt; N. Hertel; D. Isenhower; N. Pickle; H. Qu; S. Sharma; R. T. Thornton; D. Tovwell; R. S. Towell; S.

    2014-09-01

    The fission Time Projection Chamber (fissionTPC) is a compact (15 cm diameter) two-chamber MICROMEGAS TPC designed to make precision cross-section measurements of neutron-induced fission. The actinide targets are placed on the central cathode and irradiated with a neutron beam that passes axially through the TPC inducing fission in the target. The 4p acceptance for fission fragments and complete charged particle track reconstruction are powerful features of the fissionTPC which will be used to measure fission cross-sections and examine the associated systematic errors. This paper provides a detailed description of the design requirements, the design solutions, and the initial performance of the fissionTPC.

  9. SAMURAI Time-Projection Chamber: A device for constraining the symmetry energy

    Science.gov (United States)

    Shane, R.; Andrews, K.; Barney, J.; Brophy, B.; Chajecki, Z.; Chan, C. F.; Dunn, J. W.; Ersoy, E.; Estee, J.; Gilbert, J.; Lu, F.; Lynch, W. G.; Tsang, M. B.; McIntosh, A. B.; Yennello, S. J.; Dye, S.; Elhoussieny, M.; Famiano, M.; Snow, C.; Isobe, T.; Sakurai, H.; Taketani, A.; Murakami, T.; Powell, W.

    2013-04-01

    The SAMURAI-TPC is a time-projection chamber to be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Facility at RIKEN, Japan. It is designed to detect charged pions as well as light charged particles up to oxygen produced in heavy ion collisions. Design of the TPC is based on the EOS TPC with similar dimensions. However, the TPC will be equipped with the newly designed General Electronics for TPCs (GET). One of the proposed experimental programs using the TPC is to measure pi+/pi- ratios from heavy-ion collisions which should provide constraints on the asymmetry term in the nuclear equation of state at densities about twice saturation density. In this talk, the design and construction of the detector will be discussed.

  10. AEP Ohio gridSMART Demonstration Project Real-Time Pricing Demonstration Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Widergren, Steven E.; Subbarao, Krishnappa; Fuller, Jason C.; Chassin, David P.; Somani, Abhishek; Marinovici, Maria C.; Hammerstrom, Janelle L.

    2014-02-01

    This report contributes initial findings from an analysis of significant aspects of the gridSMART® Real-Time Pricing (RTP) – Double Auction demonstration project. Over the course of four years, Pacific Northwest National Laboratory (PNNL) worked with American Electric Power (AEP), Ohio and Battelle Memorial Institute to design, build, and operate an innovative system to engage residential consumers and their end-use resources in a participatory approach to electric system operations, an incentive-based approach that has the promise of providing greater efficiency under normal operating conditions and greater flexibility to react under situations of system stress. The material contained in this report supplements the findings documented by AEP Ohio in the main body of the gridSMART report. It delves into three main areas: impacts on system operations, impacts on households, and observations about the sensitivity of load to price changes.

  11. Simulation of the time-projection chamber with triple GEMs for the LAMPS at RAON

    Science.gov (United States)

    Jhang, Genie; Lee, Jung Woo; Moon, Byul; Hong, Byungsik; Ahn, Jung Keun; Lee, Jong-Won; Lee, Kyong Sei; Kim, Young Jin; Lee, Hyo Sang

    2016-03-01

    The time-projection chamber (TPC) with triple gas-electron multipliers (GEMs) is designed for the large-acceptance multipurpose spectrometer (LAMPS) at the new radioactive ion-beam facility RAON, a pure Korean term for the accelerator complex, in Korea. The simulation environment has been set up to test the performance of the designed chamber, and the software package for analysis has been developed. Particle identification has been demonstrated to be possible up to 2 GeV/ c in momentum for particles with the charge number 1 and 2 by using the simulated heavy-ion events. The transverse-momentum resolutions are expected to be about 2% for protons and about 1.3% for pions in the relatively high-momentum region. The total reconstruction efficiencies are estimated to be about 90 and 80% for charged pions and protons, respectively.

  12. Resonant proton scattering on 46Ar using the Active-Target Time Projection Chamber

    Science.gov (United States)

    Bradt, J.; Ahn, T.; Ayyad Limonge, Y.; Bazin, D.; Beceiro Novo, S.; Carpenter, L.; Kuchera, M. P.; Lynch, W.; Mittig, W.; Rost, S.; Watwood, N.; Barney, J.; Datta, U.; Estee, J.; Gillibert, A.; Manfredi, J.; Morfouace, P.; Perez Loureiro, D.; Pollacco, E.; Sammut, J.; Sweany, S.

    2016-09-01

    A well-known technique for studying the single-particle properties of neutron-rich nuclei is to use resonant proton scattering on a parent nucleus to populate the isobaric analog states of the corresponding neutron-rich nucleus. The locations and amplitudes of these resonances are directly related to the structure of the nucleus of interest by isospin symmetry. We performed an experiment of this type at the National Superconducting Cyclotron Laboratory to commission the recently completed Active-Target Time Projection Chamber (AT-TPC). A 4.6-MeV/u radioactive beam of 46Ar was injected into the AT-TPC. The detector was filled with isobutane gas-which provided the protons for the reaction and served as the tracking medium-and placed inside a 2-T magnetic field. We will present preliminary results from this experiment and discuss the benefits of the active-target method for this type of measurement.

  13. Photostructured coating on a voltage degrader for a Time Projection Chamber (TPC)

    CERN Document Server

    Manaranche, C; Loquet, J L; Serdiouk, V; Scandurra, M; Zucchelli, P

    2002-01-01

    Fibreglass-reinforced epoxy (Stesalit) tubes and rods were coated with a photostructured metal layer system of copper, nickel and gold for a voltage degrader built in a particle detector at CERN, Geneva. The metal layers were applied with galvanotechnical processes involving an original photolithographic exposure in three dimensions to produce a complex electrical circuit design able to provide the correct potential to 420 different conductors. The Stesalit substrate material, even after a first layer of electroless copper, is electrically quite resistive, creating problems for the electrodeposition of the subsequent nickel layer. A mathematical simulation of the plating thickness distribution showed that the electrolytic nickel deposition was suitable for short rods but electroless nickel was needed for the long rods. The functional properties of the metallized Stesalit components are satisfactory: no degradation of the gas quality within the Time Projection Chamber is observed; the potential distribution al...

  14. Absolute Position Measurement in a Gas Time Projection Chamber via Transverse Diffusion of Drift Charge

    CERN Document Server

    Lewis, P M; Hedges, M T; Jaegle, I; Seong, I S; Thorpe, T N

    2014-01-01

    Time Projection Chambers (TPCs) with charge readout via micro pattern gaseous detectors can provide detailed measurements of charge density distributions. We here report on measurements of alpha particle tracks, using a TPC where the drift charge is amplified with Gas Electron Multipliers and detected with a pixel ASIC. We find that by measuring the 3-D topology of drift charge and fitting for its transverse diffusion, we obtain the absolute position of tracks in the drift direction. For example, we obtain a precision of 1~cm for 1~cm-long alpha track segments. To our knowledge this is the first demonstration of such a measurement in a gas TPC. This technique has several attractive features: it does not require knowledge of the initial specific ionization, is robust against bias from diffuse charge below detection threshold, and is also robust against high charge densities that saturate the detector response.

  15. LArGe - Active background suppression using argon scintillation for the GERDA $0\

    CERN Document Server

    Agostini, M; Budjáš, D; Cattadori, C; Gangapshev, A; Gusev, K; Heisel, M; Junker, M; Klimenko, A; Lubashevskiy, A; Pelczar, K; Schönert, S; Smolnikov, A; Zuzel, G

    2015-01-01

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for future application in the GERDA experiment. Similar to GERDA, LArGe operates bare germanium detectors submersed into liquid argon (1 m$^3$, 1.4 tons), which in addition is instrumented with photomultipliers to detect argon scintillation light. The scintillation signals are used in anti-coincidence with the germanium detectors to effectively suppress background events that deposit energy in the liquid argon. The background suppression efficiency was studied in combination with a pulse shape discrimination (PSD) technique using a BEGe detector for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times $10^3$ have been achieved. First background data of LArGe with a coaxial HPGe detector (without PSD) yield a background index of (0.12$-$4.6)$\\cdot 10^{-2}$ cts/(keV$\\cdot$kg$\\cdot$y) (90% C.L.), which is at the level of GERDA Phase I. Fu...

  16. Impact of Argon gas on optical and electrical properties of Carbon thin films

    Science.gov (United States)

    Usman, Arslan; Rafique, M. S.; Shaukat, S. F.; Siraj, Khurram; Ashfaq, Afshan; Anjum, Safia; Imran, Muhammad; Sattar, Abdul

    2016-12-01

    Nanostructured thin films of carbon were synthesized and investigated for their electrical, optical, structural and surface properties. Pulsed Laser Deposition (PLD) technique was used for the preparation of these films under Argon gas environment. A KrF Laser (λ=248 nm) was used as source of ablation and plasma formation. It was observed that the carbon ions and the background gas environment has deep impact on the morphology as well as on the microstructure of the films. Time of Flight (TOF) method was used to determine the energies of the ablated carbon ions. The morphology of film surfaces deposited at various argon pressure was analysed using an atomic force microscope. The Raman spectroscopic measurement reveal that there is shift in phase from sp3 to sp2 and a decrease in FWHM of G band, which is a clear indication of enhanced graphitic clusters. The electrical resistivity was also reduced from 85.3×10-1 to 2.57×10-1 Ω-cm. There is an exponential decrease in band gap Eg of the deposited films from 1.99 to 1.37 eV as a function of argon gas pressure.

  17. Scintillation light from cosmic-ray muons in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Whittington, Denver Wade [Indiana Univ., Bloomington, IN (United States). Physics Dept.; Mufson, S. [Indiana Univ., Bloomington, IN (United States). Astronomy Dept.; Howard, B. [Indiana Univ., Bloomington, IN (United States). Physics Dept.

    2016-05-01

    This paper reports the results of an experiment to directly measure the time-resolved scintillation signal from the passage of cosmic-ray muons through liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches. The experiment was carried out at the TallBo dewar facility at Fermilab using prototype light guide detectors and electronics developed for the Deep Underground Neutrino Experiment. Two models are presented for the time structure of the scintillation light, a phenomenological model and a physically-motivated model. Both models find tT = 1:52 ms for the decay time constant of the Ar 2 triplet state. These models also show that the identification of the “early” light fraction in the phenomenological model, FE 25% of the signal, with the total light from singlet decays is an underestimate. The total fraction of singlet light is FS 36%, where the increase over FE is from singlet light emitted by the wavelength shifter through processes with long decay constants. The models were further used to compute the experimental particle identification parameter Fprompt, the fraction of light coming in a short time window after the trigger compared with the light in the total recorded waveform. The models reproduce quite well the typical experimental value 0.3 found by dark matter and double b-decay experiments, which suggests this parameter provides a robust metric for discriminating electrons and muons from more heavily ionizing particles.

  18. The Molecular Pathway of Argon-Mediated Neuroprotection

    Directory of Open Access Journals (Sweden)

    Felix Ulbrich

    2016-10-01

    Full Text Available The noble gas argon has attracted increasing attention in recent years, especially because of its neuroprotective properties. In a variety of models, ranging from oxygen-glucose deprivation in cell culture to complex models of mid-cerebral artery occlusion, subarachnoid hemorrhage or retinal ischemia-reperfusion injury in animals, argon administration after individual injury demonstrated favorable effects, particularly increased cell survival and even improved neuronal function. As an inert molecule, argon did not show signs of adverse effects in the in vitro and in vivo model used, while being comparably cheap and easy to apply. However, the molecular mechanism by which argon is able to exert its protective and beneficial characteristics remains unclear. Although there are many pieces missing to complete the signaling pathway throughout the cell, it is the aim of this review to summarize the known parts of the molecular pathways and to combine them to provide a clear insight into the cellular pathway, starting with the receptors that may be involved in mediating argons effects and ending with the translational response.

  19. The Spectroscopic Detectability of Argon in the Lunar Atmosphere

    CERN Document Server

    Parker, J W; Gladstone, G R; Shull, J M; Parker, Joel Wm.

    1999-01-01

    Direct measurements of the abundance of argon in the lunar atmosphere were made in 1973 by instruments placed on the Moon during the Apollo 17 mission, but the total daytime abundance is unknown due to instrument saturation effects; thus, until we are able to return to the Moon for improved direct measurements, we must use remote sensing to establish the daytime abundance. In this paper, we present a complete analysis of the potential for measuring argon in the lunar atmosphere via emission-line or absorption-line observations. We come to the surprising conclusion that the lower limit established by the in situ lunar argon measurements implies that any absorption-line measurement of argon in the lower, dayside lunar atmosphere requires analysis in the optically-thick regime. In light of this result, we present the results of our EUVS sounding rocket observations of the lunar occultation of Spica, which provide a new upper limit on the abundance of argon in the daytime lunar atmosphere. We also re-analyze a re...

  20. Irradiation damage simulation of Zircaloy-4 using argon ions bombardment

    Institute of Scientific and Technical Information of China (English)

    Dequan Peng; Xinde Bai; Feng Pan

    2008-01-01

    To simulate irradiation damage, argon ion was implanted in the Zircaloy-4 with the fluence ranging from 1×1016 to 1×1017 cm-2, using accelerating implanter at an extraction voltage of 190 kV and liquid nitrogen temperature. Then the influence of argon ion implantation on the aqueous corrosion behavior of Zircaloy-4 was studied. The valence states of elements in the surface layer of the samples wcrc analyzed using X-ray photoelectron spectroscopy (XPS). Transmission clcctron microscopy (TEM) was used to examine the microstructure of the argon-implanted samples. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted Zircaloy-4 in 1 mol/L H2SO4 solution. It is found that there appear bubbles on the surface of the samples when the argon flucncc is 1×1016 cm-2. The microstructure of argon-implanted samples changes from amor-phous to partial amorphous, then to polycrystallinc, and again to amorphous. The corrosion resistance of implanted samples linearly declines with the increase of flucnce approximately, which is attributed to the linear increase of the irradiation damage.

  1. Characteristics of Knock in Hydrogen-Oxygen-Argon SI Engine

    Energy Technology Data Exchange (ETDEWEB)

    Killingsworth, N; Rapp, V; Flowers, D; Aceves, S; Chen, J; Dibble, R

    2010-02-23

    A promising approach for improving the efficiency of internal combustion engines is to employ a working fluid with a high specific heat ratio such as the noble gas argon. Moreover, all harmful emissions are eliminated when the intake charge is composed of oxygen, nonreactive argon, and hydrogen fuel. Previous research demonstrated indicated thermal efficiencies greater than 45% at 5.5 compression ratio in engines operating with hydrogen, oxygen, and argon. However, knock limits spark advance and increasing the efficiency further. Conditions under which knock occurs in such engines differs from typical gasoline fueled engines. In-cylinder temperatures using hydrogen-oxygen-argon are higher due to the high specific heat ratio and pressures are lower because of the low compression ratio. Better understanding of knock under these conditions can lead to operating strategies that inhibit knock and allow operation closer to the knock limit. In this work we compare knock with a hydrogen, oxygen, and argon mixture to that of air-gasoline mixtures in a variable compression ratio cooperative fuels research (CFR) engine. The focus is on stability of knocking phenomena, as well as, amplitude and frequency of the resulting pressure waves.

  2. Soil Contamination, Advanced integrated characterisation and time-lapse Monitoring, SoilCAM project highlights

    Science.gov (United States)

    French, H. K.; Van Der Zee, S. E.; Wehrer, M.; Godio, A.; Pedersen, L. B.; Tsocano, G.

    2013-12-01

    The SoilCAM project (2008- 2012, EU-FP7-212663) aimed at improving methods for monitoring subsurace contaminant distribution and biodegradation. Two test sites were chosen, Oslo airport Gardermoen, Norway where de-icing agents infiltrate the soil during snowmelt and the Trecate site in Italy where an inland crude oil spill occurred in 1994. A number of geophysical investigation techniques were combined with soil and water sampling techniques. Data obtained from time-lapse measurements were further analysed by numerical modelling of flow and transport at different scales in order to characterise transport processes in the unsaturated and saturated zones. Laboratory experiments provided physical and biogeochemical data for model parameterisation and to select remediation methods. The geophysical techniques were used to map geological heterogeneities and to conduct time-lapse measurements of processes in the unsaturated zone. Both cross borehole and surface electrodes were used for electrical resistivity and induced polarisation surveys. Results showed clear indications of areas highly affected by de-icing chemicals along the runway at Oslo airport. The time lapse measurements along the runway at the airport showed infiltration patterns during snowmelt and were used to validate 2D unsaturated flow and transport simulations using SUTRA. The simulations illustrate the effect of layering geological structures and membranes, buried parallel to the runway, on the flow pattern. Complex interaction between bio-geo-chemical processes in a 1D vertical profile along the runway were described with the ORCHESTRA model. Smaller scale field site measurements revealed increase of iron and manganese during degradation of de-icing chemicals. At the Trecate site a combination of georadar, electrical resistivity and radio magneto telluric provided a broad outline of the geology down to 50 m. Anomalies in the Induced polarisation and electrical resistivity data from the cross borehole

  3. The Simulation of the ATLAS Liquid Argon Calorimetry

    CERN Document Server

    Archambault, J P; Carli, T; Costanzo, D; Dell'Acqua, A; Djama, F; Gallas, M; Fincke-Keeler, M; Khakzad, M; Kiryunin, A; Krieger, P; Leltchouk, M; Loch, P; Ma, H; Menke, S; Monnier, E; Nairz, A; Niess, V; Oakham, G; Oram, C; Pospelov, G; Rajagopalan, S; Rimoldi, A; Rousseau, D; Rutherfoord, J; Seligman, W; Soukharev, A; Strízenec, P; Tóth, J; Tsukerman, I; Tsulaia, V; Unal, G; Grahn, K J

    2008-01-01

    In ATLAS, all of the electromagnetic calorimetry and part of the hadronic calorimetry is performed by a calorimeter system using liquid argon as the active material, together with various types of absorbers. The liquid argon calorimeter consists of four subsystems: the electromagnetic barrel and endcap accordion calorimeters; the hadronic endcap calorimeters, and the forward calorimeters. A very accurate geometrical description of these calorimeters is used as input to the Geant 4-based ATLAS simulation, and a careful modelling of the signal development is applied in the generation of hits. Certain types of Monte Carlo truth information ("Calibration Hits") may, additionally, be recorded for calorimeter cells as well as for dead material. This note is a comprehensive reference describing the simulation of the four liquid argon calorimeteter components.

  4. Liquid Argon Calorimetry with LHC-Performance Specifications

    CERN Multimedia

    2002-01-01

    % RD-3 Liquid Argon Calorimetry with LHC-Performance Specifications \\\\ \\\\Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. Among the techniques used so far, or under development, the liquid argon sampling calorimetry offers high radiation resistence, good energy resolution (electromagnetic and hadronic), excellent calibration stability and response uniformity. Its rate capabilities, however, do not yet match the requirements for LHC. \\\\ \\\\The aim of this proposal is to improve the technique in such a way that high granularity, good hermiticity and adequate rate capabilities are obtained, without compromising the above mentioned properties. To reach this goal, we propose to use a novel structure, the $^{\\prime\\prime}$accordion$^{\\prime\\prime}$, coupled to fast preamplifiers working at liquid argon temperature. Converter and readout electrodes are no longer planar and perpendicular to particles, as usual, but instead they are wiggled around a plane containing particles. ...

  5. Attenuation measurements of vacuum ultraviolet light in liquid argon revisited

    Energy Technology Data Exchange (ETDEWEB)

    Neumeier, A. [Physik-Department E15, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany); Dandl, T.; Himpsl, A. [Physik-Department E12, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany); Hofmann, M. [Physik-Department E15, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany); KETEK GmbH, Hofer Straße 3, 81737 München (Germany); Oberauer, L.; Potzel, W.; Schönert, S. [Physik-Department E15, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany); Ulrich, A., E-mail: andreas.ulrich@ph.tum.de [Physik-Department E12, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany)

    2015-11-11

    The attenuation of vacuum ultraviolet light in liquid argon in the context of its application in large liquid noble gas detectors has been studied. Compared to a previous publication several technical issues concerning transmission measurements in general are addressed and several systematic effects were quantitatively measured. Wavelength-resolved transmission measurements have been performed from the vacuum ultraviolet to the near-infrared region. On the current level of sensitivity with a length of the optical path of 11.6 cm, no xenon-related absorption effects could be observed, and pure liquid argon is fully transparent down to the short wavelength cut-off of the experimental setup at 118 nm. A lower limit for the attenuation length of pure liquid argon for its own scintillation light has been estimated to be 1.10 m based on a very conservative approach.

  6. Attenuation measurements of vacuum ultraviolet light in liquid argon revisited

    CERN Document Server

    Neumeier, A; Himpsl, A; Hofmann, M; Oberauer, L; Potzel, W; Schönert, S; Ulrich, A

    2015-01-01

    The attenuation of vacuum ultraviolet light in liquid argon in the context of its application in large liquid noble gas detectors has been studied. Compared to a previous publication several technical issues concerning transmission measurements in general are addressed and several systematic effects were quantitatively measured. Wavelength-resolved transmission measurements have been performed from the vacuum ultraviolet to the near-infrared region. On the current level of sensitivity with a length of the optical path of 11.6 cm, no xenon-related absorption effects could be observed, and pure liquid argon is fully transparent down to the short wavelength cut-off of the experimental setup at 118 nm. A lower limit for the attenuation length of pure liquid argon for its own scintillation light has been estimated to be 1.10 m based on a very conservative approach.

  7. Studies of Electron Avalanche Behavior in Liquid Argon

    CERN Document Server

    Kim, J G; Jackson, K H; Kadel, R W; Kadyk, J A; Peskov, Vladimir; Wenzel, W A

    2002-01-01

    Electron avalanching in liquid argon is being studied as a function of voltage, pressure, radiation intensity, and the concentrations of certain additives, especially xenon. The avalanches produced in an intense electric field at the tip of a tungsten needle are initiated by ionization from a moveable americium (241Am) gamma ray source. Photons from xenon excimers are detected as photomultiplier signals in coincidence with the current pulse from the needle. In pure liquid argon the avalanche behavior is erratic, but the addition of even a small amount of xenon (>100ppm) stabilizes the performance. Similar attempts with neon (30%) as an additive to argon have been unsuccessful. Tests with higher energy gamma rays (57Co) yield spectra and other performance characteristics quite similar to those using the 241Am source. Two types of signal pulses are commonly observed: a set of pulses that are sensitive to ambient pressure, and a set of somewhat smaller pulses that are not pressure dependent.

  8. A therapeutic experience on Port Wine hemangiomas with Argon Laser

    Directory of Open Access Journals (Sweden)

    Farahvash M

    1997-09-01

    Full Text Available Port wine stains are benign but cosmetically devasting congenital angiomas. The argon laser is a therapeutic device newly applied to this condition. Our program was begun 6 years ago. From the beginning, the study was conceived as a clinical investigation of both the port wine stain and its argon laser therapy. A total of 218 patients with port wine stains have been studied and many aspects of their clinical condition detailed. Employing the Argon laser, test spots have been carried out in patients and the results have been analyzed with clinical aspects of the lesions. Altogether, 501 treatments were performed in 218 patients. Good to excellent results were obtained in 81 patients. Moderate Result was obtained in 31 weak result in 65 patients. Most common complication were hyperpigmentation and depressed scar.

  9. The hands-on project office guaranteeing ROI and on-time delivery

    CERN Document Server

    Kesner, Richard M

    2003-01-01

    THE THREE PILLARS OF IT DELIVERY - PROBLEM RESOLUTION, SERVICE REQUESTS, AND PROJECTSIntroduction The Business Context The Internal Economy for Investing in IT Services and ProjectsThe Three Pillars of IT Delivery Managing Service DeliveryManaging Project Commitments IT Metrics and Reporting Tools THE PROJECT MANAGEMENT OFFICE BUSINESS MODELIntroduction: Revisiting the IT Organization IT Service and Project Delivery RolesThe Role of the Project Management Office: Measuring its ROI The PMO Value Proposition: An Initial ROI Estimate ALIGNMENT AND PLANNING - DOING THE RIGHT THINGS Introduction Ge

  10. Tests of Micro-Pattern Gaseous Detectors for active target time projection chambers in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Pancin, J., E-mail: pancin@ganil.fr [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Damoy, S.; Perez Loureiro, D. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Chambert, V.; Dorangeville, F. [IPNO, CNRS/IN2P3, Orsay (France); Druillole, F. [CEA, DSM/Irfu/SEDI, Gif-Sur-Yvette (France); Grinyer, G.F. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Lermitage, A.; Maroni, A.; Noël, G. [IPNO, CNRS/IN2P3, Orsay (France); Porte, C.; Roger, T. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France); Rosier, P. [IPNO, CNRS/IN2P3, Orsay (France); Suen, L. [GANIL, CEA/DSM-CNRS/IN2P3, Bvd H. Becquerel, Caen (France)

    2014-01-21

    Active target detection systems, where the gas used as the detection medium is also a target for nuclear reactions, have been used for a wide variety of nuclear physics applications since the eighties. Improvements in Micro-Pattern Gaseous Detectors (MPGDs) and in micro-electronics achieved in the last decade permit the development of a new generation of active targets with higher granularity pad planes that allow spatial and time information to be determined with unprecedented accuracy. A novel active target and time projection chamber (ACTAR TPC), that will be used to study reactions and decays of exotic nuclei at facilities such as SPIRAL2, is presently under development and will be based on MPGD technology. Several MPGDs (Micromegas and Thick GEM) coupled to a 2×2 mm{sup 2} pixelated pad plane have been tested and their performances have been determined with different gases over a wide range of pressures. Of particular interest for nuclear physics experiments are the angular and energy resolutions. The angular resolution has been determined to be better than 1° FWHM for short traces of about 4 cm in length and the energy resolution deduced from the particle range was found to be better than 5% for 5.5 MeV α particles. These performances have been compared to Geant4 simulations. These experimental results validate the use of these detectors for several applications in nuclear physics.

  11. Lidar Data Analysis for Time to Headway Determination in the DriveSafe Project Field Tests

    Directory of Open Access Journals (Sweden)

    İlker Altay

    2013-01-01

    Full Text Available The DriveSafe project was carried out by a consortium of university research centers and automotive OEMs in Turkey to reduce accidents caused by driver behavior. A huge amount of driving data was collected from 108 drivers who drove the instrumented DriveSafe vehicle in the same route of 25 km of urban and highway traffic in Istanbul. One of the sensors used in the DriveSafe vehicle was a forward-looking LIDAR. The data from the LIDAR is used here to determine and record the headway time characteristics of different drivers. This paper concentrates on the analysis of LIDAR data from the DriveSafe vehicle. A simple algorithm that only looks at the forward direction along a straight line is used first. Headway times based on this simple approach are presented for an example driver. A more accurate detection and tracking algorithm taken from the literature are presented later in the paper. Grid-based and point distance-based methods are presented first. Then, a detection and tracking algorithm based on the Kalman filter is presented. The results are demonstrated using experimental data.

  12. The Chandra ACIS Timing Survey Project: glimpsing a sample of faint X-ray pulsators

    Science.gov (United States)

    Israel, G. L.; Esposito, P.; Rodríguez Castillo, G. A.; Sidoli, L.

    2016-11-01

    We report on the discovery of 41 new pulsating sources in the data of the Chandra Advanced CCD Imaging Spectrometer, which is sensitive to X-ray photons in the 0.3-10 keV band. The archival data of the first 15 yr of Chandra observations were retrieved and analysed by means of fast Fourier transforms, employing a peak-detection algorithm able to screen candidate signals in an automatic fashion. We carried out the search for new X-ray pulsators in light curves with more than 50 photons, for a total of about 190 000 light curves out of about 430 000 extracted. With these numbers, the ChAndra Timing Survey at Brera And Roma astronomical observatories (CATS @ BAR) - as we called the project - represents the largest ever systematic search for coherent signals in the classic X-ray band. More than 50 per cent of the signals were confirmed by further Chandra (for those sources with two or more pointings), XMM-Newton or ROSAT data. The period distribution of the new X-ray pulsators above ˜2000 s resembles that of cataclysmic variables, while there is a paucity of sources with shorter period and low fluxes. Since there is not an obvious bias against these detections, a possible interpretation is in terms of a magnetic gating mechanism in accreting neutron stars. Finally, we note that CATS @ BAR is a living project and the detection algorithm will continue to be routinely applied to the new Chandra data as they become public. Based on the results obtained so far, we expect to discover about three new pulsators every year.

  13. Gaseous time projection chambers for rare event detection: Results from the T-REX project. I. Double beta decay

    CERN Document Server

    Irastorza, I G; Castel, J; Cebrián, S; Dafni, T; Galán, J; García, J A; Garza, J G; Gómez, H; Herrera, D C; Iguaz, F J; Luzón, G; Mirallas, H; Ruiz, E; Seguí, L; Tomás, A

    2015-01-01

    As part of the T-REX project, a number of R&D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Micromegas-read TPCs in rare event searches like double beta decay (DBD), axion research and low-mass WIMP searches. In both this and its companion paper, we compile the main results of the project and give an outlook of application prospects for this detection technique. While in the companion paper we focus on axions and WIMPs, in this paper we focus on the results regarding the measurement of the DBD of $^{136}$Xe in a high pressure Xe (HPXe) TPC. Particularly relevant are the results obtained in Xe + TMA mixtures with microbulk Micromegas, showing very promising results in terms of gain, stability of operation, and energy resolution at pressures up to 10 bar. TMA at levels of $\\sim$1\\% reduces electron diffusion by a factor of 10 with respect to pure Xe, improving the quality of the topological pattern, with a positive impact on the discrimination...

  14. Final Technical Report of project: "Contactless Real-Time Monitoring of Paper Mechanical Behavior During Papermaking"

    Energy Technology Data Exchange (ETDEWEB)

    Emmanuel Lafond; Paul Ridgway; Ted Jackson; Rick Russo; Ken Telschow; Vance Deason; Yves Berthelot; David Griggs; Xinya Zhang; Gary Baum

    2005-08-30

    The early precursors of laser ultrasonics on paper were Prof. Y. Berthelot from the Georgia Institute of Technology/Mechanical Engineering department, and Prof. P. Brodeur from the Institute of Paper Science and Technology, both located in Atlanta, Georgia. The first Ph.D. thesis that shed quite some light on the topic, but also left some questions unanswered, was completed by Mont A. Johnson in 1996. Mont Johnson was Prof. Berthelot's student at Georgia Tech. In 1997 P. Brodeur proposed a project involving himself, Y. Berthelot, Dr. Ken Telschow and Mr. Vance Deason from INL, Honeywell-Measurex and Dr. Rick Russo from LBNL. The first time the proposal was not accepted and P. Brodeur decided to re-propose it without the involvement from LBNL. Rick Russo proposed a separate project on the same topic on his side. Both proposals were finally accepted and work started in the fall of 1997 on the two projects. Early on, the biggest challenge was to find an optical detection method which could detect laser-induced displacements of the web surface that are of the order of .1 micron in the ultrasonic range. This was to be done while the web was having an out-of-plane amplitude of motion in the mm range due to web flutter; while moving at 10 m/s to 30 m/s in the plane of the web, on the paper machine. Both teams grappled with the same problems and tried similar methods in some cases, but came up with two similar but different solutions one year later. The IPST, GT, INL team found that an interferometer made by Lasson Technologies Inc. using the photo-induced electro-motive force in Gallium Arsenide was able to detect ultrasonic waves up to 12-15 m/s. It also developed in house an interferometer using the Two-Wave Mixing effect in photorefractive crystals that showed good promises for on-line applications, and experimented with a scanning mirror to reduce motion-induced texture noise from the web and improve signal to noise ratio. On its side, LBNL had the idea to

  15. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...

  16. Rotational spectrum and dynamics of tetrahydrofuran-argon

    Energy Technology Data Exchange (ETDEWEB)

    Melandri, S.; Favero, P.G.; Caminati, W. [Dipartimento di Chimica ' G. Ciamician' dell' Universita, Via Selmi 2, I-40126 Bologna (Italy); Lopez, J.C.; Alonso, J.L. [Departamento de Quimica-Fisica, Facultad de Ciencias, Universidad de Valladolid, E-47005 Valladolid (Spain)

    1998-12-15

    The jet-cooled rotational spectrum of the tetrahydrofuran-argon molecular complex has been investigated by millimeter-wave absorption and Fourier transform microwave spectroscopies. The argon atom is located nearly over the oxygen atom, almost perpendicularly to the COC plane. Each rotational transition is split in two component lines due to the residual pseudorotational effects of the ring in the complex. The splitting between the two vibrational sublevels has been calculated to be 111.345(44) MHz. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved000.

  17. Measurement of Longitudinal Electron Diffusion in Liquid Argon

    CERN Document Server

    Li, Yichen; Thorn, Craig; Qian, Xin; Diwan, Milind; Joshi, Jyoti; Kettell, Steve; Morse, William; Rao, Triveni; Stewart, Jim; Tang, Wei; Viren, Brett

    2015-01-01

    We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. Our results, which are consistent with previous measurements in the region between 100 to 350 V/cm [1] , are systematically higher than the prediction of Atrazhev-Timoshkin[2], and represent the world's best measurement in the region between 350 to 2000 V/cm. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

  18. Filamentation of ultrashort laser pulses of different wavelengths in argon

    Indian Academy of Sciences (India)

    XIEXING QI; WENBIN LIN

    2017-02-01

    We investigate the filaments formed by the ultrashort laser pulses with different wavelengths of 400 nm, 586 nm and 800 nm propagating in argon. Numerical results show that, when the input power or the ratio of the input power to the critical power is given, the pulse with 400 nm wavelength has the largest on-axis intensity, as well as the narrowest filament and the most stable beam radius. These results indicate that the pulse with shorter wavelength is more suitable for the long-range propagation in argon.

  19. A developmental sensitive period for spike timing-dependent plasticity in the retinotectal projection

    Directory of Open Access Journals (Sweden)

    Jennifer Tsui

    2010-06-01

    Full Text Available The retinotectal projection in Xenopus laevis has been shown to exhibit correlation-based refinement of both anatomical and functional connectivity during development. Spike timing-dependent plasticity (STDP is an appealing experimental model for correlation-based synaptic plasticity because, in contrast to plasticity induction paradigms using tetanic stimulation or sustained postsynaptic depolarization, its induction protocol more closely resembles natural physiological activity. In Xenopus tadpoles, where anatomical remodeling has been reported throughout much of the life of the animal, in vivo retinotectal STDP has only been examined under a limited set of experimental conditions. Using perforated patch recordings of retina-evoked EPSCs in tectal neurons, we confirmed that repeatedly driving a retinotectal EPSP 5-10 ms prior to inducing an action potential in the postsynaptic cell, reliably produced timing-dependent long-term potentiation (t-LTP of the retinotectal synapse in young wild type tadpoles (stages 41-44. At these stages, retinotectal timing-dependent long-term depression (t-LTD also could be induced by evoking an EPSP to arrive 5-10 ms after an action potential in the tectal cell. However, retinotectal STDP using this standard protocol was limited to a developmental sensitive period, as we were unable to induce t-LTP or t-LTD after stage 44. Surprisingly, this STDP protocol also failed to induce reliable STDP in albino tadpoles at the early ages when it was effective in wild type pigmented animals. Nonetheless, low-frequency flashes to the eye produced a robust NMDA receptor-dependent retinotectal LTD in stage 47 albino tadpoles, demonstrating that the retinotectal synapse can nonetheless be modified in these animals using different plasticity paradigms.

  20. Control time reduction using virtual source projection for treating a leg sarcoma with nonlinear perfusion

    Science.gov (United States)

    Cheng, Kung-Shan; Yuan, Yu; Li, Zhen; Stauffer, Paul R.; Joines, William T.; Dewhirst, Mark W.; Das, Shiva K.

    2009-02-01

    Purpose: Blood perfusion is a well-known factor that complicates accurate control of heating during hyperthermia treatments of cancer. Since blood perfusion varies as a function of time, temperature and location, determination of appropriate power deposition pattern from multiple antenna array Hyperthermia systems and heterogeneous tissues is a difficult control problem. Therefore, we investigate the applicability of a real-time eigenvalue model reduction (virtual source - VS) reduced-order controller for hyperthermic treatments of tissue with nonlinearly varying perfusion. Methods: We impose a piecewise linear approximation to a set of heat pulses, each consisting of a 1-min heat-up, followed by a 2-min cool-down. The controller is designed for feedback from magnetic resonance temperature images (MRTI) obtained after each iteration of heat pulses to adjust the projected optimal setting of antenna phase and magnitude for selective tumor heating. Simulated temperature patterns with additive Gaussian noise with a standard deviation of 1.0°C and zero mean were used as a surrogate for MRTI. Robustness tests were conducted numerically for a patient's right leg placed at the middle of a water bolus surrounded by a 10-antenna applicator driven at 150 MHz. Robustness tests included added discrepancies in perfusion, electrical and thermal properties, and patient model simplifications. Results: The controller improved selective tumor heating after an average of 4-9 iterative adjustments of power and phase, and fulfilled satisfactory therapeutic outcomes with approximately 75% of tumor volumes heated to temperatures >43°C while maintaining about 93% of healthy tissue volume time to only 4 to 9% of the original value. Conclusions: Using a piecewise linear approximation to a set of heat pulses in a VS reduced-order controller, the proposed algorithm greatly improves the efficiency of hyperthermic treatment of leg sarcomas while accommodating practical nonlinear variation of

  1. Sub-Penning gas mixtures: new possibilities for ton- to kiloton-scale time projection chambers

    CERN Document Server

    Monreal, Benjamin; Luszczak, William

    2015-01-01

    In this work, we present the concept for large low-background experiments in which an unusual gas mixture gas serves as a seamless, high-QE, near-100\\%-coverage photodetector for scintillation or \\cerenkov photons. We fill a large time projection chamber with a VUV scintillating gas, plus an unusually small admixture dopant gas with a low ionization threshhold (and a high ionization yield), akin to a highly-underquenched Penning mixture. Scintillation photons travel far from a primary ionization site before converting into photoionization electrons. Using standard TPC methods, we can separately count both the primary ionization electrons (which occur along a dense track) and the scintillation-ionization electrons (which will occur over a large spherical region) without the use of PMTs. The scheme is compatible with very large detectors, in both two-phase and single-phase high pressure configurations. We discuss how the drift-axis position of an event can be reconstructed, and under what constraints we can exp...

  2. Exploiting the Photoelectric effect for X-ray Polarimetry using Time Projection Chamber

    Science.gov (United States)

    Jahoda, Keith; Black, Kevin; Deines-Jones, Philip; Hill, Joanne; Swank, Jean

    2008-01-01

    The promise of photoelectric X-ray polarimetry has now been realized in laboratory demonstrations and may soon be used for astrophysical observations. Photoelectric polarimetry in gas filled proportional counters achieves high sensitivity through a combination of broad band width and good modulation. The band can be tuned by careful choice of gas composition and pressure. The measurements rely on imaging the tracks of photoelectrons. The initial direction of each track carries information about the electric field of the X-ray photon, and an ensemble of such measurements thus measures the net polarization of the source. A novel readout geometry using time projection chambers (TPC) allows deep (i.e. high efficiency) detectors, albeit without the ability to image the sky. Polarimeters which exploit the TPC geometry can be optimized for use behind telescopes, to study faint persistent sources, or as wide field of view instruments, designed to study bright transient events such as gamma-ray bursts or solar flares. We present the conceptual design of both types of TPC polarimeter. Recent laboratory results demonstrate that these polarimeters can achieve substantial gains in the polarization sensitivity achievable in experiments of modest size.

  3. Calibration of ionization energy loss at relativistic rise with STAR Time Projection Chamber

    CERN Document Server

    Xu, Yichun; Bichsel, Hans; Dong, Xin; Fachini, Patricia; Fisyak, Yuri; Kocolosky, Adam; Mohanty, Bedanga; Netrakanti, Pawan; Ruan, Lijuan; Suarez, Maria Cristina; Tang, Zebo; van Buren, Gene; Xu, Zhangbu

    2008-01-01

    We derive a method to improve particle identification (PID) at high transverse momentum ($p_T$) using the relativistic rise of the ionization energy loss ($rdE/dx$) when charged particles traverse the Time Projection Chamber (TPC) at STAR. Electrons triggered and identified by the Barrel Electro-Magnetic Calorimeter (BEMC), pure protons and pions from $\\Lambda\\to p+\\pi^{-}$ ($\\bar{\\Lambda}\\to \\bar{p}+\\pi^{+}$), and $K^{0}_{S}\\to\\pi^{+}+\\pi^{-}$ decays are used to obtain the $dE/dx$ value and its width at given $\\beta\\gamma=p/m$. We found that the deviation of the $dE/dx$ from the Bichsel function can be up to $0.4\\sigma$ ($\\sim3%$) in p+p collisions at $\\sqrt{s_{NN}}=200$ GeV taken and subsequently calibrated in year 2005. The deviation is approximately a function of $\\beta\\gamma$ independent of particle species and can be described with a function of $f(x) = A+\\frac{B}{C+x^{2}}$. The deviations obtained with this method are used to re-calibrate the data sample from p+p collision for physics analysis of ident...

  4. Multiobjective Resource-Constrained Project Scheduling with a Time-Varying Number of Tasks

    Directory of Open Access Journals (Sweden)

    Manuel Blanco Abello

    2014-01-01

    Full Text Available In resource-constrained project scheduling (RCPS problems, ongoing tasks are restricted to utilizing a fixed number of resources. This paper investigates a dynamic version of the RCPS problem where the number of tasks varies in time. Our previous work investigated a technique called mapping of task IDs for centroid-based approach with random immigrants (McBAR that was used to solve the dynamic problem. However, the solution-searching ability of McBAR was investigated over only a few instances of the dynamic problem. As a consequence, only a small number of characteristics of McBAR, under the dynamics of the RCPS problem, were found. Further, only a few techniques were compared to McBAR with respect to its solution-searching ability for solving the dynamic problem. In this paper, (a the significance of the subalgorithms of McBAR is investigated by comparing McBAR to several other techniques; and (b the scope of investigation in the previous work is extended. In particular, McBAR is compared to a technique called, Estimation Distribution Algorithm (EDA. As with McBAR, EDA is applied to solve the dynamic problem, an application that is unique in the literature.

  5. SπRIT: A time-projection chamber for symmetry-energy studies

    Energy Technology Data Exchange (ETDEWEB)

    Shane, R. [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); McIntosh, A.B. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Isobe, T. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351‐0198 (Japan); Lynch, W.G., E-mail: lynch@nscl.msu.edu [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Baba, H. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351‐0198 (Japan); Barney, J.; Chajecki, Z. [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Chartier, M. [Department of Physics, University of Liverpool, Liverpool, Merseyside, L69 7ZE (United Kingdom); Estee, J. [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Famiano, M. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008-5252 (United States); Hong, B. [Department of Physics, Korea University, Seoul 136-701 (Korea, Republic of); Ieki, K. [Department of Physics, Rikkyo University, Toshima‐ku, Tokyo 171‐8501 (Japan); Jhang, G. [Department of Physics, Korea University, Seoul 136-701 (Korea, Republic of); Lemmon, R. [Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, Cheshire WA4 4AD (United Kingdom); Lu, F. [NSCL and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China); Murakami, T.; Nakatsuka, N. [Department of Physics, Kyoto University, Kita-shirakawa, Kyoto 606-8502 (Japan); Nishimura, M. [RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351‐0198 (Japan); Olsen, R. [Cyclotron Institute, Texas A& M University, College Station, TX 77843 (United States); Powell, W. [Department of Physics, University of Liverpool, Liverpool, Merseyside, L69 7ZE (United Kingdom); and others

    2015-06-01

    A time-projection chamber (TPC) called the SAMURAI Pion-Reconstruction and Ion-Tracker (SπRIT) has recently been constructed at Michigan State University as part of an international effort to constrain the symmetry-energy term in the nuclear Equation of State (EoS). The SπRIT TPC will be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Factory (RIBF) at RIKEN to measure yield ratios for pions and other light isospin multiplets produced in central collisions of neutron-rich heavy ions, such as {sup 132}Sn+{sup 124}Sn. The SπRIT TPC can function both as a TPC detector and as an active target. It has a vertical drift length of 50 cm, parallel to the magnetic field. Gas multiplication is achieved through the use of a multi-wire anode plane. Image charges, produced in the 12096 pads, are read out with the recently developed Generic Electronics for TPCs.

  6. Field cage development for a time-projection chamber to constrain the nuclear symmetry energy

    Science.gov (United States)

    Estee, J.; Barney, J.; Chajecki, Z.; Famiano, M.; Dunn, J.; Lu, F.; Lynch, W. G.; McIntosh, A. B.; Isobe, T.; Murakami, T.; Sakurai, H.; Shane, R.; Taketani, A.; Tangwancharoen, S.; Tsang, M. B.; Yennello, S.

    2012-10-01

    The SAMURAI time-projection chamber (sTPC) is being developed for use in the dipole magnet of the newly-commissioned SAMURAI spectrometer at the RIBF facility in Japan. The main scientific objective of the sTPC is to provide constraints on the nuclear symmetry energy at supra-saturation densities. The TPC allows for tracking and identification of light charged particles such as pions, protons, tritons and ^3He. The sTPC must have a Cartesian geometry to match the symmetry of the dipole magnet. The walls of the field cage (FC) detector volume consist of sections of rigid, two-layer circuit boards. Inside and outside copper strips form decreasing equipotentials via a resistor chain, and create a uniform electric field with a maximum of 400 V/cm. The FC volume is hermetically sealed from the enclosure volume to create an insulation volume which can be filled with dry N2 to inhibit corona discharge. I will be presenting the current status of the design and assembly of the sTPC field cage.

  7. Study of reconstruction methods for a time projection chamber with GEM gas amplification system

    Energy Technology Data Exchange (ETDEWEB)

    Diener, R.

    2006-12-15

    A new e{sup +}e{sup -} linear collider with an energy range up to 1TeV is planned in an international collaboration: the International Linear Collider (ILC). This collider will be able to do precision measurements of the Higgs particle and of physics beyond the Standard Model. In the Large Detector Concept (LDC) - which is one proposal for a detector at the ILC - a Time Projection Chamber (TPC) is foreseen as the main tracking device. To meet the requirements on the resolution and to be able to work in the environment at the ILC, the application of new gas amplification technologies in the TPC is necessary. One option is an amplification system based on Gas Electron Multipliers (GEMs). Due to the - in comparison with older technologies - small spatial width of the signals, this technology poses new requirements on the readout structures and the reconstruction methods. In this work, the performance and the systematics of different reconstruction methods have been studied, based on data measured with a TPC prototype in high magnetic fields of up to 4T and data from a Monte Carlo simulation. The latest results of the achievable point resolution are presented and their limitations have been investigated. (orig.)

  8. Track distortion in the Large prototype of a Time Projection Chamber for the International Linear Collider

    Science.gov (United States)

    Sankar Bhattacharya, Deb; Bhattacharya, Purba; Mukhopadhyay, Supratik; Majumdar, Nayana; Bhattacharya, Sudeb; Sarkar, Sandip; Colas, Paul; Attie, David; Ganjour, Serguei; Bhattacharya, Aparajita

    2016-10-01

    A Micromegas (MM) based Time Projection Chamber (TPC) can meet the ILC requirements of continuous 3-D tracking, excellent spatial resolution and efficient pattern recognition. Seven MM modules which are commissioned on the end-plate of a Large Prototype TPC (LPTPC) at DESY, have been tested with a 5 GeV electron beam, under a 1 T magnetic field. Due to the grounded peripheral frame of the MM modules, at short drift, the electric field near the detector edge remain no longer parallel to the TPC axis. This causes signal loss along the boundaries of the MM modules as well as distortion in the reconstructed track. In presence of magnetic field, the distorted electric field introduces E×B effect. A detailed numerical study has been accomplished to understand the features of this distortion. Four Micromegas modules have been simulated resembling the experimental setup. The field lines, drift line of electrons considering diffusion in gas, nature of track distortion, residuals are numerically calculated in presence and in absence of magnetic field. The E×B effect has been simulated as well. Simulated results follow the experimental observations.

  9. Performances of a GEM-based Time Projection Chamber prototype for the AMADEUS experiment

    CERN Document Server

    Lener, M Poli; Corradi, G; Curceanu, C; D'Uffizi, A; Paglia, C; Vidal, A Romero; Sbardella, E; Scordo, A; Tagnani, D; Zmeskal, J

    2013-01-01

    A large number of high-energy and heavy-ion experiments successfully used Time Projection Chamber (TPC) as central tracker and particle identification detector. However, the performance requirements on TPC for new high-rate particle experiments greatly exceed the abilities of traditional TPC read out by multi-wire proportional chamber (MWPC). Gas Electron Multiplier (GEM) detector has great potential to improve TPC performances when used as amplification device. In this paper we present the R&D activity on a new GEM-based TPC detector built as a prototype for the inner part for AMADEUS, a new experimental proposal at the DAFNE collider at Laboratori Nazionali di Frascati (INFN), aiming to perform measurements of the low-energy negative kaons interactions in nuclei. In order to evaluate the GEM-TPC performances, a 10x10 cm2 prototype with a drift gap up to 15 cm has been realized. The detector was tested at the pM1 beam facility of the Paul Scherrer Institut (PSI) with low momentum pions and protons, witho...

  10. A Time Projection Chamber for High-Rate Experiments: Towards an Upgrade of the ALICE TPC

    CERN Document Server

    Ketzer, Bernhard

    2013-01-01

    A Time Projection Chamber (TPC) is a powerful detector for 3-dimensional tracking and particle identification for ultra-high multiplicity events. It is the central tracking device of many experiments, e.g. the ALICE experiment at CERN. The necessity of a switching electrostatic gate, which prevents ions produced in the amplification region o MWPCs from entering the drift volume, however, restricts its application to trigger rates of the order of 1 kHz. Charge amplification by Gas Electron Multiplier (GEM) foils instead of proportional wires offers an intrinsic suppression of the ion backflow, although not to the same level as a gating grid. Detailed Monte Carlo simulations have shown that the distortions due to residual space charge from back-drifting ions can be limited to a few cm, and thus can be corrected using standard calibration techniques. A prototype GEM-TPC has been built with the largest active volume to date for a detector of this type. It has been commissioned with cosmics and particle beams at t...

  11. S$\\pi$RIT: A time-projection chamber for symmetry-energy studies

    CERN Document Server

    Shane, R; Isobe, T; Lynch, W G; Baba, H; Barney, J; Chajecki, Z; Chartier, M; Estee, J; Famiano, M; Hong, B; Ieki, K; Jhang, G; Lemmon, R; Lu, F; Murakami, T; Nakatsuka, N; Nishimura, M; Olsen, R; Powell, W; Sakurai, H; Taketani, A; Tangwancharoen, S; Tsang, M B; Usukura, T; Wang, R; Yennello, S J; Yurkon, J

    2014-01-01

    A Time-Projection Chamber (TPC) called the SAMURAI Pion-Reconstruction and Ion-Tracker (S$\\pi$RIT) has recently been constructed at Michigan State University as part of an international effort to constrain the symmetry-energy term in the nuclear Equation of State (EoS). The S$\\pi$RIT TPC will be used in conjunction with the SAMURAI spectrometer at the Radioactive Isotope Beam Factory (RIBF) at RIKEN to measure yield ratios for pions and other light isospin multiplets produced in central collisions of neutron-rich heavy ions, such as $^{132}$Sn + $^{124}$Sn. The S$\\pi$RIT TPC can function both as a TPC detector and as an active target. It has a vertical drift length of 50 cm, parallel to the magnetic field. Gas multiplication is achieved through the use of a multi-wire anode. Image charges are produced in the 12096 pads, and are read out with the recently developed Generic Electronics for TPCs.

  12. Performance evaluation of real-time video content analysis systems in the CANDELA project

    Science.gov (United States)

    Desurmont, Xavier; Wijnhoven, Rob; Jaspers, Egbert; Caignart, Olivier; Barais, Mike; Favoreel, Wouter; Delaigle, Jean-Francois

    2005-02-01

    The CANDELA project aims at realizing a system for real-time image processing in traffic and surveillance applications. The system performs segmentation, labels the extracted blobs and tracks their movements in the scene. Performance evaluation of such a system is a major challenge since no standard methods exist and the criteria for evaluation are highly subjective. This paper proposes a performance evaluation approach for video content analysis (VCA) systems and identifies the involved research areas. For these areas we give an overview of the state-of-the-art in performance evaluation and introduce a classification into different semantic levels. The proposed evaluation approach compares the results of the VCA algorithm with a ground-truth (GT) counterpart, which contains the desired results. Both the VCA results and the ground truth comprise description files that are formatted in MPEG-7. The evaluation is required to provide an objective performance measure and a mean to choose between competitive methods. In addition, it enables algorithm developers to measure the progress of their work at the different levels in the design process. From these requirements and the state-of-the-art overview we conclude that standardization is highly desirable for which many research topics still need to be addressed.

  13. Development of a Hough transformation track finder for time projection chambers

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, Isa

    2013-12-15

    The International Linear Collider (ILC) is a planned particle physics experiment. One of the two detector concepts is the International Large Detector (ILD) concept for which a time projection chamber is foreseen as the main tracking device. In the ILD the particle flow concept is followed which leads to special requirements for the detector. Especially for the tracking system a very good momentum resolution is required. Several prototypes were build to prove that it is possible to build a TPC which fulfills the requirements for a TPC in the ILD. One is the Large Prototype with which different readout technologies currently under development are tested. In parallel reconstruction software is developed for the reconstruction of Large Prototype data. In this thesis the development of a track finding algorithm based on the Hough transformation is described. It can find curved tracks (with magnetic field) as well as straight tracks (without magnetic field). This package was mainly developed for Large Prototype testbeam data but was also tested on Monte Carlo simulation of tracks in the ILD TPC. Furthermore the analysis of testbeam data regarding the single point resolution is presented. The data were taken with the Large Prototype and a readout module with GEM (gas electron multiplier) amplification. For the reconstruction of these data the software package mentioned above was used. The single point resolution is directly related to the momentum resolution of the detector, thus a good single point resolution is needed to achieve a good momentum resolution.

  14. The Chandra ACIS Timing Survey Project: glimpsing a sample of faint X-ray pulsators

    CERN Document Server

    Israel, Gian Luca; Castillo, Guillermo Andres Rodriguez; Sidoli, Lara

    2016-01-01

    We report on the discovery of 41 new pulsating sources in the data of the Chandra Advanced CCD Imaging Spectrometer, which is sensitive to X-ray photons in the 0.3-10 keV band. The archival data of the first 15 years of Chandra observations were retrieved and analysed by means of fast Fourier transforms, employing a peak-detection algorithm able to screen candidate signals in an automatic fashion. We carried out the search for new X-ray pulsators in light curves with more than 50 photons, for a total of about 190,000 lightcurves out of about 430,000 extracted. With these numbers, the ChAndra Timing Survey at Brera And Roma astronomical observatories (CATS@BAR) - as we called the project - represents the largest ever systematic search for coherent signals in the classic X-ray band. More than 50 per cent of the signals were confirmed by further Chandra (for those sources with two or more pointings), XMM-Newton or ROSAT data. The period distribution of the new X-ray pulsators above about 2,000s resembles that of...

  15. AGS silicon gold collisions measured in the E-810 TPC (Time Projection Chamber)

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Corcoran, M.D.; Kruk, J.W.; Miettinen, H.E.; Mutchler, G.S.; Nessi, M.; Nessi-Tedaldi, F.; Roberts, J.B. (Rice Univ., Houston, TX (USA)); Chan, C.S.; Kramer, M.A. (City Coll., New York, NY (USA)); Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C. (Brookhaven National Lab., Upton, NY (USA)); Hallma

    1990-03-26

    The tracking detector of AGS Experiment 810 is a three-piece Time Projection Chamber (TPC) intended to measure all charged tracks in the forward hemisphere of the nucleon-nucleon center of mass system, i.e. forward of an angle of about 20 degrees in the lab. Each module of the TPC contains twelve rows of short anode wires which give 3-D space points on each track, but no dE/dx information useable for particle identification. The TPC was operated in a beam of silicon ions at the end of June 1989 and this talk reports the results of analysis of the data taken with a thin gold target in that run. We have gathered a similar amount of data from thin copper and silicon targets, the analysis of which is in a less advanced state. The results of our investigation of the neutral strange particle decays appear in a separate contribution by Al Saulys. This paper presents the current state of the analysis of the charged tracks from the silicon gold collisions. 1 ref., 15 figs.

  16. Thermal decomposition of Yttrium(III) isovalerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao;

    2016-01-01

    The thermal behaviour of yttrium(III) isovalerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, FTIR-spectroscopy, hot-stage optical microscopy and X-ray diffraction with a laboratory Cu-tube source as well as with a synchrotron radiation source...

  17. Thermal decomposition of yttrium(III) valerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao;

    2014-01-01

    The thermal decomposition of yttrium(III) valerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction, in-situ synchrotron diffraction and hot-stage microscopy as well as room temperature optical microscopy. Melting...

  18. Study of Liquid Argon Dopants for LHC Hadron Calorimetry

    CERN Multimedia

    2002-01-01

    Hadron calorimetry based on the Liquid Argon Ionisation Chamber technique is one of the choice techniques for LHC-experimentation. A systematic study of the effect of selected dopants on Liquid Argon (LAr) will be carried out with the aim to achieve an improvement on: \\item (i)~``Fast Liquid Argon'' search and study of dopants to increase the drift velocity. It has been already shown that CH&sub4. added at a fraction of one percent increases the drift velocity by a factor of two or more. \\item (ii)~``Compensated Liquid Argon'' search and study of dopants to increase the response to densely ionising particles, resulting in improved compensation, such as photosensitive dopants. \\end{enumerate}\\\\ \\\\ Monitoring of the parameters involved in understanding the response of a calorimeter is essential. In case of doped LAr, the charge yield, the non-saturated drift velocity and the electron lifetime in the liquid should be precisely and simultaneously monitored as they all vary with the level of dopant concentrati...

  19. Human-chromosome alterations induced by argon laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Simi, S.; Colella, C. (Consiglio Nazionale delle Ricerche, Pisa (Italy). Lab. di Mutagenesi e Differenziamento); Agati, G.; Fusi, F. (Florence Univ. (Italy). Ist. di Farmacologia); Corsi, M.F.; Pratesi, R. (Consiglio Nazionale delle Ricerche, Florence (Italy). Lab. di Elettronica Quantistica); Tocco, G.A. (Naples Univ. (Italy). Ist. di Istologia ed Embrilogia)

    1984-07-01

    The possible occurrence of genetic damage arising from exposure of human cells to visible laser light has been evaluated in PHA-stimulated human lymphocytes. Aneuploidy and chromosome aberrations have been observed after exposure to an argon laser. These findings appear of special interest in view of the possible role of these chromosome alterations in carcinogenesis.

  20. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    CERN Document Server

    Hebner, G A

    1999-01-01

    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s sub 5 and 1s sub 4 , in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s sub 5 level is metastable and the 1s sub 4 level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the disch...

  1. Pressure broadening of acetylene rotational Raman lines by argon

    OpenAIRE

    Ceruti, M; Frenkel, D.; Mctaque, J.P.

    1980-01-01

    The anisotropic interaction between acetylene and argon has been studied by observing the density dependence of the acetylene pure rotational Raman line broadening. The observed cross sections are approximately twice that predicted from the known polarizabilities and acetylene molecular quadrupole moment. An empirical atom-atom anisotropic potential adequately parametrizes the results.

  2. Pressure broadening of acetylene rotational Raman lines by argon

    NARCIS (Netherlands)

    Ceruti, M.; Frenkel, D.; McTaque, J.P.

    1980-01-01

    The anisotropic interaction between acetylene and argon has been studied by observing the density dependence of the acetylene pure rotational Raman line broadening. The observed cross sections are approximately twice that predicted from the known polarizabilities and acetylene molecular quadrupole m

  3. Out of equilibrium thermal field theories: Finite time after switching on the interaction and Wigner transforms of projected functions

    Science.gov (United States)

    Dadić, I.

    2001-01-01

    We study out of equilibrium thermal field theories with switching on the interaction occurring at finite time using the Wigner transforms of two-point functions. For two-point functions we define the concept of a projected function: it is zero if any of the times refers to the time before switching on the interaction; otherwise it depends only on the relative coordinates. This definition includes bare propagators, one-loop self-energies, etc. For the infinite-average-time limit of the Wigner transforms of projected functions we define the analyticity assumptions: (1) The function of energy is analytic above (below) the real axis. (2) The function goes to zero as the absolute value of energy approaches infinity in the upper (lower) semiplane. Without use of the gradient expansion, we obtain the convolution product of projected functions. We sum the Schwinger-Dyson series in closed form. In the calculation of the Keldysh component (both resummed and single self-energy insertion approximation) contributions appear which are not the Fourier transforms of projected functions, signaling the limitations of the method. In the Feynman diagrams there is no explicit energy conservation at vertices; there is an overall energy-smearing factor taking care of the uncertainty relations. The relation between the theories with the Keldysh time path and with the finite time path enables one to rederive the results, such as the cancellation of pinching, collinear, and infrared singularities, hard thermal loop resummation, etc.

  4. Attachment cooling of electrons in oxygen-argon and SF6-argon mixtures

    Science.gov (United States)

    Babaeva, Natalia; Kim, Sung Jin; Park, Gan Young; Lee, Jae Koo

    2004-09-01

    In e-beam sustained plasma different electron temperature can be obtained. Thus, in plasma of capacitive RF discharges in inert gases typical electron temperature is of the order of 2-3 eV. At certain conditions, in plasma of electronegative gases electron temperature can approach ion/neutral temperature. We consider e-beam sustained plasma of electronegative gases and their mixtures with argon where the main mechanism of plasma neutralization is connected with electron-molecule attachment. In such plasma, due to retardation of fast electrons of e-beam secondary electrons are created which loose their energy due to attachment. It is shown, that at certain conditions (in dependence of the e-beam intensity and spectrum of secondary electrons) electron temperature can obtain the values comparable or even less than temperature of neutral component. The effect can be explained by the increase of attachment rate coefficient with the increase of electron temperature (mean electron energy). Such a dependence leads to attachment of the fastest plasma electrons and selective loss of electrons whose energy exceeds the mean electron energy and, as a result, to effective electron cooling. The theoretical and numerical analysis of the problem has been conducted. The numerical results obtained using ELENDIF code are compared with Particle-in-cell/Monte Carlo simulations under similar conditions.

  5. 21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for...

  6. White light generation over three octaves by femtosecond filament at 3.9 µm in argon.

    Science.gov (United States)

    Kartashov, Daniil; Ališauskas, Skirmantas; Pugžlys, Audrius; Voronin, Alexander; Zheltikov, Aleksei; Petrarca, Massimo; Béjot, Pierre; Kasparian, Jérôme; Wolf, Jean-Pierre; Baltuška, Andrius

    2012-08-15

    We report the first (to our knowledge) experimental results and numerical simulations on mid-IR femtosecond pulse filamentation in argon using 0.1 TW peak-power, 80 fs, 3.9 μm pulses. A broadband supercontinuum spanning the spectral range from 350 nm to 5 μm is generated, whereby about 4% of the mid-IR pulse energy is converted into the 350-1700 nm spectral region. These mid-IR-visible coherent continua offer a new, unique tool for time-resolved spectroscopy based on a mid-IR filamentation laser source.

  7. Development of ATLAS Liquid Argon Calorimeter Read-out Electronics for the HL-LHC

    CERN Document Server

    Newcomer, Mitchel; The ATLAS collaboration

    2015-01-01

    The high-luminosity phase of the Large Hadron Collider will provide a 5-7 times greater instantaneous and total luminosities than assumed in the original design of the ATLAS Liquid Argon Calorimeters and their read-out system. An improved trigger system with higher acceptance rate and longer latency and a better radiation tolerance require an upgrade of the read-out electronics. Concepts for the future read-out of the 183.000 calorimeter channels at 40-80 MHz and 16 bit dynamic range, and the development of radiation tolerant, low noise, low power and high-bandwidth electronic components will be presented.

  8. Computer Simulation of the Cool Down of the ATLAS Liquid Argon Barrel Calorimeter

    CERN Document Server

    Korperud, N; Fabre, C; Owren, G; Passardi, Giorgio

    2002-01-01

    The ATLAS electromagnetic barrel calorimeter consists of a liquid argon detector with a total mass of 120 tonnes. This highly complicated structure, fabricated from copper, lead, stainless steel and glass-fiber reinforced epoxy will be placed in an aluminum cryostat. The cool down process of the detector will be limited by the maximum temperature differences accepted by the composite structure so as to avoid critical mechanical stresses. A computer program simulating the cool down of the detector by calculating the local heat transfer throughout a simplified model has been developed. The program evaluates the cool down time as a function of different contact gasses filling the spaces within the detector.

  9. Differential cross sections for the electron-impact near-threshold electronic excitation of argon

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, S; Lower, J; Buckman, S; McEachran, R P [Centre for Antimatter-Matter Studies, Australian National University, Canberra ACT 0200 (Australia); Garcia, G, E-mail: Suhendu.mondal@anu.edu.a [Instituto de Fisica Fundamental, CSIC, Serrano 113-bis, 28006, Madrid (Germany)

    2009-11-01

    Absolute accurate differential cross section data are presented for the excitation of the 3p{sup 5}4s state in argon by electron impact. The study focuses on the near-threshold region, where previous studies have revealed persistent disparities between measurement and theory. The time-of-flight (TOF) technique is employed, allowing scattered electrons to be measured over a broad range of energies with constant transmission, thereby eliminating a potential source of error in relating relative intensities of elastic and inelastic transitions inherent to other techniques. The experimental results are compared to new relativistic distorted-wave (RDW) calculations as well as to previous experimental and theoretical studies.

  10. Assessment of argon ion laser dispersive Raman spectroscopy for hot cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, B.A.

    1995-02-24

    Characterization of high-level waste tank materials at Hanford is conducted to support safety assessments and waste treatment activities. Raman spectroscopy is expected to give chemical species information which may assist in defining layering in tank waste. This report describes the dispersive Raman system used in this year`s investigation and the methology used to collect and evaluate data taken on tank waste samples. The current argon-ion Raman system was found not to be suitable for screening of tank cores, owing to silica interference, fluorescence interferences, and the extensive time required to collect and treat the data. Recommendations are given for further development.

  11. Development of ATLAS Liquid Argon Calorimeter Front-end Electronics for the HL-LHC

    CERN Document Server

    Liu, Tiankuan; The ATLAS collaboration

    2016-01-01

    The high-luminosity phase of the Large Hadron Collider will provide 5-7 times greater luminosities than assumed in the original detector design. An improved trigger system requires an upgrade of the readout electronics of the ATLAS Liquid Argon Calorimeter. Concepts for the future readout of the 182,500 calorimeter channels at 40-80 MHz and 16-bit dynamic range and the developments of radiation-tolerant, low-noise, low-power, and high-bandwidth front-end electronic components, including preamplifiers and shapers, 14-bit ADCs, and 10-Gb/s laser diode array drivers, are presented.

  12. Development of ATLAS Liquid Argon Calorimeter front-end electronics for the HL-LHC

    Science.gov (United States)

    Liu, T.

    2017-01-01

    The high-luminosity phase of the Large Hadron Collider will provide 5–7 times greater luminosities than assumed in the original detector design. An improved trigger system requires an upgrade of the readout electronics of the ATLAS Liquid Argon Calorimeter. Concepts for the future readout of the 182,500 calorimeter cells at 40–80 MHz and 16-bit dynamic range and the developments of radiation-tolerant, low-noise, low-power, and high-bandwidth front-end electronic components, including preamplifiers and shapers, 14-bit ADCs, and 10-Gb/s laser diode array drivers, are presented in this paper.

  13. Influence irradiation argon ion SnO2 on optical and electrical characteristics

    Science.gov (United States)

    Asainov, O.; Umnov, S.; Temenkov, V.

    2017-01-01

    Tin oxide in the form of films has been deposited by reactive magnetron sputtering on glass substrates a room temperature. Process was carried out in such mode when the deposited films were conductive. The deposited films were irradiated with argon ions. Have been studied happening at that the changes optical and electric properties of films. Have been investigated optical properties of films in the range of 300-1100 nanometers by means of photometry. For research structure of films was used the x-ray diffractometry. Diffractometric researches have shown that the films deposited on a substrate have crystal structure from shares of a quasicrystal phase and after influence of argon ions she completely became quasicrystal. It is established that change transmission of a film correlates with change her electric resistance. Average value transmission in the range of 380-1100 nanometers as well as the electric resistance of a film with growth of irradiation time increases to the values exceeding initial. At the same time at irradiation time ∼ 13,2 sec. are observed their slight decrease. To this value of irradiation time there corresponds the minimum value of electric resistance and transmission films. Change of transmission coefficient correlates with change of surface resistance.

  14. Study of Automated and Real-time Indicators for the Management of Global Software Development Projects

    Directory of Open Access Journals (Sweden)

    Maarit Tihinen

    Full Text Available Global Software Development (GSD has become the norm in product development. In GSD projects, controlling and management activities are increasingly important as the products are developed in dynamic environments where requirements, priorities, participa ...

  15. National policy and mechanisms of development of local infrastructures for leisure-time physical activity - the Impala project

    Directory of Open Access Journals (Sweden)

    Michal Kudláček

    2012-03-01

    Full Text Available BACKGROUND: Inter-sectoral collaboration and social equity for all inhabitants of European Union in the sphere of approaching infrastructure for leisure-time physical activity (PA were the main reasons for implementation and financing of international project IMPALA. The project was divided into three stages. AIM: The aim of presented part of IMPALA project is to assess national policy (legislation and regulation of the development of local infrastructures for leisure-time PA. METHODS: According to the requirements established by project coordinator we carried out structured qualitative interviews with experts and policy makers on different decision-making levels. Further, the invited representatives of end users participated in focus group meeting. Also various available sources and documents were used for detailed analysis. RESULTS: Qualitative interviews provided information, which includes the issue of sports facilities in terms of national level and which documents deal with them. At the regional level whole sphere of infrastructures for leisure-time PA is organized by local and regional governments (municipalities. Participants in the focus group meeting shared with others their own positive and negative experiences with the management of infrastructures and finally made some concrete recommendations. The issue of mechanisms for infrastructure development devotes firstly to the relevant conceptual documents at national and regional level, and then describes specific examples of Olomouc and the Olomouc region in terms of planning, financing, construction and management of infrastructures for leisure-time PA. CONCLUSION: In this part of the project we found out that in the Czech Republic there is no specific national political strategy for the development of infrastructures for leisure-time PA. Development is done primarily at the local level. The biggest problem faced by end-operators is the lack of financial resources and outstanding

  16. THE RELATIONSHIP BETWEEN THE SPARSE SYMMETRIC BROYDEN METHOD AND THE M-TIME SECANT-LIKE MULTI-PROJECTION METHOD

    Institute of Scientific and Technical Information of China (English)

    Lin Zhenghua

    2005-01-01

    In this paper, we discuss the relationship between the sparse symmetric Broyden (SPSB) method [1, 2] and m-time secant-like multi-projection (SMP) method [3] and prove that when m goes to infinity, the SMP method is corresponding to the SPSB method.

  17. A new generation gamma-ray camera for planetary science applications : High pressure xenon time projection chamber

    NARCIS (Netherlands)

    Kobayashi, S; Hasebe, N; Hosojima, T; Igarashi, T; Kobayashi, MN; Mimura, M; Miyachi, T; Miyajima, M; Pushkin, KN; Sakaba, H; Tezuka, C; Doke, T; Shibamura, E; Ehrenfreund, P; Foing, B; Cellino, A

    2006-01-01

    A new gamma-ray imaging camera based on High-pressure Xe Time-Projection-Chamber (HPXe-TPC) allows us to simultaneously determine arrival direction and its energy of individual incident gamma rays. HPXe-TPC is a promising y-ray detector for planetary science which provides means of global mapping of

  18. Pulsed microwave-driven argon plasma jet with distinctive plume patterns resonantly excited by surface plasmon polaritons

    Science.gov (United States)

    Chen, Zhao-Quan; Yin, Zhi-Xiang; Xia, Guang-Qing; Hong, Ling-Li; Hu, Ye-Lin; Liu, Ming-Hai; Hu, Xi-Wei; A. Kudryavtsev, A.

    2015-02-01

    Atmospheric lower-power pulsed microwave argon cold plasma jets are obtained by using coaxial transmission line resonators in ambient air. The plasma jet plumes are generated at the end of a metal wire placed in the middle of the dielectric tubes. The electromagnetic model analyses and simulation results suggest that the discharges are excited resonantly by the enhanced electric field of surface plasmon polaritons. Moreover, for conquering the defect of atmospheric argon filamentation discharges excited by 2.45-GHz of continued microwave, the distinctive patterns of the plasma jet plumes can be maintained by applying different gas flow rates of argon gas, frequencies of pulsed modulator, duty cycles of pulsed microwave, peak values of input microwave power, and even by using different materials of dielectric tubes. In addition, the emission spectrum, the plume temperature, and other plasma parameters are measured, which shows that the proposed pulsed microwave plasma jets can be adjusted for plasma biomedical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 11105002 and 61170172), the Natural Science Foundation of Anhui Province, China (Grant Nos. 1408085QA16 and 1408085ME101), the China Postdoctoral Science Foundation (Grant No. 2014M551788), and the Open-end Fund of State Key Laboratory of Advanced Electromagnetic Engineering and Technology (HUST), China (Grant No. GZ1301).

  19. Evidence of delayed light emission of TetraPhenyl Butadiene excited by liquid Argon scintillation light

    CERN Document Server

    Segreto, Ettore

    2014-01-01

    TetraPhenyl Butadiene is the wavelength shifter most widely used in combination with liquid Argon. The latter emits scintillation photons with a wavelength of 127 nm that need to be downshifted to be detected by photomultipliers with glass or quartz windows. TetraPhenyl Butadiene has been demonstrated to have an extremely high conversion efficiency, possibly higher than 100% for 127 nm photons, while there is no precise information about the time dependence of its emission. It is usually assumed to be exponentially decaying with a characteristic time of the order of one ns, as an extrapolation from measurements with exciting radiation in the near UV. This work shows that TetraPhenyl Butadiene, when excited by 127 nm photons, reemits photons not only with a very short decay time, but also with slower ones due to triplet states de-excitations. This fact can strongly contribute to clarify the anomalies of liquid Argon scintillation light reported in literature since seventies, namely the inconsistency in the mea...

  20. MONDO Project: real time ocean monitoring through Lagrangian drifters during offshore drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Mafra, Tatiana [Eni Oil do Brasil, Rio de Janeiro, RJ (Brazil); Fragoso, Mauricio da Rocha; Santos, Francisco Alves dos; Cruz, Leonardo M. Marques A.; Pellegrini, Julio A.C.; Cerrone, Bruna Nogueira [Prooceano, Rio de Janeiro, RJ (Brazil); Assireu, Arcilan Trevenzoli [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2008-07-01

    Monitoring the ocean conditions during offshore operations is essential for both operational and environmental aspects. Environmentally, not only to know better the environment where the activity is taking place, but also to be able to provide fast and accurate response in case of accidents. MONDO Project (Monitoring by Ocean Drifters) is a pioneer initiative from ENI Oil do Brasil and PROOCEANO that aimed to monitor currents as a part of a metoceanographic data monitoring project of drilling operations in Brazilian Waters, in Santos Basin throughout September to November 2007, 40 satellite tracked ocean drifters were deployed will be transmitting data up to November 2008. The results of this project can be used to study a wide range of subjects about ocean dynamics. Following the principles of social and environmental responsibility, MONDO Project aims to benefit the local ecosystem in increasing the scientific knowledge of the area to calibrate hydrodynamic models that will lead to more accurate modeling results and, as a consequence, to a better management of contingency plans. Based on these principles, the project will also provide unrestricted access to oceanographic data even after the end of operations. (author)

  1. A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    Science.gov (United States)

    Lee, S. Daniel

    1990-01-01

    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control.

  2. Effects of scatter modeling on time-activity curves estimated directly from dynamic SPECT projections

    Energy Technology Data Exchange (ETDEWEB)

    Reutter, Bryan W.; Gullberg, Grant T.; Huesman, Ronald H.

    2003-10-29

    Quantitative analysis of uptake and washout of cardiac single photon emission computed tomography (SPECT) radiopharmaceuticals has the potential to provide better contrast between healthy and diseased tissue, compared to conventional reconstruction of static images. Previously, we used B-splines to model time-activity curves (TACs) for segmented volumes of interest and developed fast least-squares algorithms to estimate spline TAC coefficients and their statistical uncertainties directly from dynamic SPECT projection data. This previous work incorporated physical effects of attenuation and depth-dependent collimator response. In the present work, we incorporate scatter and use a computer simulation to study how scatter modeling affects directly estimated TACs and subsequent estimates of compartmental model parameters. An idealized single-slice emission phantom was used to simulate a 15 min dynamic {sup 99m}Tc-teboroxime cardiac patient study in which 500,000 events containing scatter were detected from the slice. When scatter was modeled, unweighted least-squares estimates of TACs had root mean square (RMS) error that was less than 0.6% for normal left ventricular myocardium, blood pool, liver, and background tissue volumes and averaged 3% for two small myocardial defects. When scatter was not modeled, RMS error increased to average values of 16% for the four larger volumes and 35% for the small defects. Noise-to-signal ratios (NSRs) for TACs ranged between 1-18% for the larger volumes and averaged 110% for the small defects when scatter was modeled. When scatter was not modeled, NSR improved by average factors of 1.04 for the larger volumes and 1.25 for the small defects, as a result of the better-posed (though more biased) inverse problem. Weighted least-squares estimates of TACs had slightly better NSR and worse RMS error, compared to unweighted least-squares estimates. Compartmental model uptake and washout parameter estimates obtained from the TACs were less

  3. Superhydrophilic poly(L-lactic acid) electrospun membranes for biomedical applications obtained by argon and oxygen plasma treatment

    Science.gov (United States)

    Correia, D. M.; Ribeiro, C.; Botelho, G.; Borges, J.; Lopes, C.; Vaz, F.; Carabineiro, S. A. C.; Machado, A. V.; Lanceros-Méndez, S.

    2016-05-01

    Poly(L-lactic acid), PLLA, electrospun membranes and films were plasma treated at different times and power with argon (Ar) and oxygen (O2), independently, in order to modify the hydrophobic nature of the PLLA membranes. Both Ar and O2 plasma treatments promote an increase in fiber average size of the electrospun membranes from 830 ± 282 nm to 866 ± 361 and 1179 ± 397 nm, respectively, for the maximum exposure time (970 s) and power (100 W). No influence of plasma treatment was detected in the physical-chemical characteristics of PLLA, such as chemical structure, polymer phase or degree of crystallinity. On the other hand, an increase in the roughness of the films was obtained both with argon and oxygen plasma treatments. Surface wettability studies revealed a decrease in the contact angle with increasing plasma treatment time for a given power and with increasing power for a given time in membranes and films and superhydrophilic electrospun fiber membranes were obtained. Results showed that the argon and oxygen plasma treatments can be used to tailor hydrophilicity of PLLA membranes for biomedical applications. MTT assay results indicated that plasma treatments under Ar and O2 do not influence the metabolic activity of MC3T3-E1 pre-osteoblast cells.

  4. Argon FTIR spectra between 800 and 2000 cm-1: h- and i-levels and transition probabilities

    Science.gov (United States)

    Kubelík, P.; Zanozina, E. M.; Pastorek, A.; Ferus, M.; Juha, L.; Chernov, V. E.; Naskidashvili, A. V.; Civiš, S.

    2016-10-01

    The new emission spectrum of atomic argon is measured using the time-resolved Fourier transform technique. Seventy-seven new Ar I lines in the 800 - 2000cm-1 range with a resolution of 0.02cm-1 are observed. The energies of 12 previously unknown 7 i and 6 h energy levels are extracted from the measured spectra. The probabilities of the transitions between the observed levels are calculated.

  5. Effect of Fast Curing Lights, Argon Laser, and Plasma Arc on Bond Strengths of Orthodontic Brackets: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    M. Hashem-Hoseini

    2008-12-01

    Full Text Available Objective: Nowadays light-cured composites are used widely by orthodontists to bond brackets. As these composites require 20-40 seconds time per tooth to be light cured, more chair-time in needed compared to self-cured composites. In recent years, the argon laser and plasma arc lights have been introduced in dentistry to reduce this curing time. The purpose of this study was to compare bond strength of brackets bonded with the argon la-ser and plasma arc light with those bonded with the conventional halogen light.Materials and Methods: Fifty-one intact human premolars were randomly divided into three groups of 17 teeth each. Stainless steel twin premolar brackets (018- in Dyna lock, 3M Unitek were bonded to the teeth using one of these curing devices in each group: the halogen unit (Coltolux 75, Switzerland, the argon laser unit (Bo-5, Iran , and the plasma arc unit (Remecure 15, Belgium. The orthodontic adhesive was the same in the three groups (Transbond XT, 3M Unitek. After thermal cycling, the diametral tensilebond strength of specimens was measured using a debonding plier in a Zwick Universal Testing machine (Z/100, Germany.Results: The mean bond strengths was 17.344 MPa (SD=4.567 for halogen 19.172 MPa(SD=6.328 for laser and 19.322 MPa (SD=4.036 for plasma arc groups. No statistically significant difference existed in the mean bond strengths among three groups.Conclusion: Argon laser lights, significantly reducing the curing time of orthodonticbrackets without affecting bond strength, have the potential to be considered as advanta-geous alternatives to conventional halogen light.

  6. Trimming of a Migrated Biliary Nitinol Stent Using Argon Plasma

    Directory of Open Access Journals (Sweden)

    Hiroyuki Matsubayashi

    2009-07-01

    Full Text Available Metallic stent migration is a well-known complication which cannot always be managed by removal or repositioning, especially in case of uncovered stent. We report a patient who developed obstructive jaundice due to migration of an expandable metallic stent (EMS inserted in the lower bile duct. Trimming of the EMS using argon plasma was performed, with the power setting of 60 W and 2.0 l/min of argon flow. The distal part of the EMS was removed and mechanical cleaning using balloon catheter was performed for remnant EMS. Without additional stent insertion, jaundice was relieved in a few days. No complication was recognized during the procedure and no recurrence of jaundice in the rest of his life.

  7. Measurement of longitudinal electron diffusion in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yichen, E-mail: yichen@bnl.gov [Physics Department, Brookhaven National Laboratory, 20 Pennsylvania St., Building 510E, Upton, NY 11973 (United States); Tsang, Thomas [Instrumentation Division, Brookhaven National Laboratory, 20 N. Technology St., Building 535B, Upton, NY 11973 (United States); Thorn, Craig; Qian, Xin; Diwan, Milind; Joshi, Jyoti; Kettell, Steve; Morse, William [Physics Department, Brookhaven National Laboratory, 20 Pennsylvania St., Building 510E, Upton, NY 11973 (United States); Rao, Triveni [Instrumentation Division, Brookhaven National Laboratory, 20 N. Technology St., Building 535B, Upton, NY 11973 (United States); Stewart, James; Tang, Wei; Viren, Brett [Physics Department, Brookhaven National Laboratory, 20 Pennsylvania St., Building 510E, Upton, NY 11973 (United States)

    2016-04-21

    We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. In the region between 100 and 350 V/cm, our results show a discrepancy with the previous measurement [1]. In the region between 350 and 2000 V/cm, our results represent the world's best measurement. Over the entire measured electric field range, our results are systematically higher than the calculation of Atrazhev‐Timoshkin [2]. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

  8. Breakdown voltage of metal-oxide resistors in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Bagby, L. F. [Fermilab; Gollapinni, S. [Kansas State U.; James, C. C. [Fermilab; Jones, B. J.P. [MIT; Jostlein, H. [Fermilab; Lockwitz, S. [Fermilab; Naples, D. [Pittsburgh U.; Raaf, J. L. [Fermilab; Rameika, R. [Fermilab; Schukraft, A. [Fermilab; Strauss, T. [Bern U., LHEP; Weber, M. S. [Bern U., LHEP; Wolbers, S. A. [Fermilab

    2014-11-07

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131 kV pulses, the limit of the test setup.

  9. Treatment of facial vascular lesions with an argon laser

    Science.gov (United States)

    Szymanczyk, Jacek; Golebiowska, Aleksandra; Michalska, I.

    1996-03-01

    Two-hundred-ninety-six patients with various vascular lesions of the face have been treated with argon laser LAK-1 in the Department of Dermatology Warsaw Medical Academy since April 1992. The diagnosis of the treated lesions was port-wine stains, multiple telangiectasiae and small, most often induced by trauma hemangioma cavernosum of the lip. Best results were achieved in the patients with small hemangiomas cavernosum of the lip and multiple telangiectasiae on the face. Cure rate in this group was 100%. In 112 port-wine stain cases fading of 50 - 75% comparing with the adjacent skin was achieved. With stress, the argon laser therapy is a method of choice for the treatment of hemangioma cavernosum, port-wine stains and multiple teleagiectasiae of the face.

  10. Detection of Cherenkov light emission in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Antonello, M.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Bekman, B.; Benetti, P.; Bernardini, E.; Bischofberger, M.; Borio di Tigliole, A.; Brunetti, R.; Bueno, A.; Calligarich, E.; Campanelli, M.; Carpanese, C.; Cavalli, D.; Cavanna, F. E-mail: flavio.cavanna@aquila.infn.it; Cennini, P.; Centro, S.; Cesana, A.; Chen, C.; Chen, D.; Chen, D.B.; Chen, Y.; Cieslik, C.; Cline, D.; Dai, Z.; De Vecchi, C.; Dabrowska, A.; Dolfini, R.; Felcini, M.; Ferrari, A.; Ferri, F.; Ge, Y.; Gibin, D.; Gigli Berzolari, A.; Gil-Botella, I.; Graczyk, K.; Grandi, L.; Guglielmi, A.; He, K.; Holeczek, J.; Huang, X.; Juszczak, C.; Kielczewska, D.; Kisiel, J.; Kozlowski, T.; Laffranchi, M.; Lagoda, J.; Li, Z.; Lu, F.; Ma, J.; Markiewicz, M.; Matthey, C.; Mauri, F.; Mazza, D.; Meng, G.; Messina, M.; Montanari, C.; Muraro, S.; Navas-Concha, S.; Nurzia, G.; Otwinowski, S.; Ouyang, Q.; Palamara, O.; Pascoli, D.; Periale, L.; Piano Mortari, G.B.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Polchlopek, W.; Rancati, T.; Rappoldi, A.; Raselli, G.L.; Rico, J.; Rondio, E.; Rossella, M.; Rubbia, A.; Rubbia, C.; Sala, P.; Scannicchio, D.; Segreto, E.; Seo, Y.; Sergiampietri, F.; Sobczyk, J.; Stepaniak, J.; Szarska, M.; Szeptycka, M.; Terrani, M.; Ventura, S.; Vignoli, C.; Wang, H.; Woo, J.; Xu, G.; Xu, Z.; Zalewska, A.; Zalipska, J.; Zhang, C.; Zhang, Q.; Zhen, S.; Zipper, W

    2004-01-11

    Detection of Cherenkov light emission in liquid argon has been obtained with an ICARUS prototype, during a dedicated test run at the Gran Sasso Laboratory external facility. Ionizing tracks from cosmic ray muons crossing the detector active volume have been collected in coincidence with visible light signals from a photo-multiplier (PMT) immersed in liquid argon. A 3D reconstruction of the tracks has been performed exploiting the ICARUS imaging capability. The angular distributions of the tracks triggered by the PMT signals show an evident directionality. By means of a detailed Monte Carlo simulation we show that the geometrical characteristics of the events are compatible with the hypothesis of Cherenkov light emission as the main source of the PMT signals.

  11. Project of Near-Real-Time Generation of ShakeMaps and a New Hazard Map in Austria

    Science.gov (United States)

    Jia, Yan; Weginger, Stefan; Horn, Nikolaus; Hausmann, Helmut; Lenhardt, Wolfgang

    2016-04-01

    Target-orientated prevention and effective crisis management can reduce or avoid damage and save lives in case of a strong earthquake. To achieve this goal, a project for automatic generated ShakeMaps (maps of ground motion and shaking intensity) and updating the Austrian hazard map was started at ZAMG (Zentralanstalt für Meteorologie und Geodynamik) in 2015. The first goal of the project is set for a near-real-time generation of ShakeMaps following strong earthquakes in Austria to provide rapid, accurate and official information to support the governmental crisis management. Using newly developed methods and software by SHARE (Seismic Hazard Harmonization in Europe) and GEM (Global Earthquake Model), which allows a transnational analysis at European level, a new generation of Austrian hazard maps will be ultimately calculated. More information and a status of our project will be given by this presentation.

  12. Time, Space and Structure in an E-Learning and E-Mentoring Project

    Science.gov (United States)

    Loureiro-Koechlin, Cecilia; Allan, Barbara

    2010-01-01

    This study focuses on a project, "EMPATHY Net-Works," which developed a learning community as a means of encouraging women to progress into employment and management positions in the logistics and supply chain industries (LaSCI). Learning activities were organised in the form of a taught module containing face-to-face and online elements and…

  13. Time Past: Impacts of ICT on the Pedagogic Discourse in the Interactive Project

    Science.gov (United States)

    Ingram, Neil R.

    2016-01-01

    The "pedagogic discourse" can describe the power relations and fields of influence within schools. This article extends the approach to include ICT-mediated learning in schools by considering evidence from the InterActive project, undertaken by the University of Bristol, England, in 2000-04. The article also considers how the pedagogic…

  14. Two ESP Projects under the Test of Time: The Case of Brazil and Tunisia

    Science.gov (United States)

    Labassi, Tahar

    2010-01-01

    The paper is a response to Holmes and Celani's (2006) invitation to learn from the Brazilian ESP experience. It discusses the conditions which sustained this experience, and compares the Brazilian situation to the Tunisian one. The paper also discusses the challenges that ESP projects in EFL environments face, the opportunities that ESP…

  15. The PHARUS Project; Real Time Digital Processing of Airborne Polarimetric Radar Signals

    NARCIS (Netherlands)

    Pouwels, H.; Hoogeboom, P.; Koomen, P.J.; Snoeij, P.

    1992-01-01

    The Dutch PHARUS project aims for the developrlenÈ of a polarimetric C-band aircraft SAR, to be finalized in 1994. The PHARUS systen consists of three subsystens: the radar, the subsystem for the onboard data processing and recording and the ground-based subsystem for SAR processing. PHARUS is a ver

  16. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Xiao, Tang;

    2013-01-01

    The thermal decomposition of La(C3H7CO2)3·xH2O (x≈0.82) was studied in argon during heating at 5K/min. After the loss of bound H2O, the anhydrous butyrate presents at 135°C a phase transition to a mesophase, which turns to an isotropic liquid at 180°C. The decomposition of the anhydrous butyrate ...

  17. Monte Carlo Simulation of Argon in Nano-Space

    Institute of Scientific and Technical Information of China (English)

    CHEN Min; YANG Chun; GUO Zeng-Yuan

    2000-01-01

    Monte Carlo simulations are performed to investigate the thermodynamic properties of argon confined in nano-scale cubes constructed of graphite walls. A remarkable depression of the system pressures is observed. The simulations reveal that the length-scale of the cube, the magnitude of the interaction between the fluid and the graphite wall and the density of the fluid exhibit reasonable effects on the thermodynamic property shifts of the luid.

  18. Measurement of scintillation efficiency for nuclear recoils in liquid argon

    CERN Document Server

    Gastler, D; Hime, A; Stonehill, L C; Seibert, S; Klein, J; Lippincott, W H; McKinsey, D N; Nikkel, J A

    2010-01-01

    The scintillation light yield of liquid argon from nuclear recoils relative to electronic recoils has been measured as a function of recoil energy from 10 keVr up to 250 keVr. The scintillation efficiency, defined as the ratio of the nuclear recoil scintillation response to the electronic recoil response, is 0.25 \\pm 0.02 + 0.01(correlated) above 20 keVr.

  19. Argon laser photocoagulation of cyclodialysis clefts after cataract surgery

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, B. [Univ. of Lund, Dept. of Ophthalmology, Lund (Sweden)

    1995-06-01

    Three patients with cyclodialysis clefts, hypotony and hypotonic retinopathy subsequent to cataract surgery were treated with argon laser photocoagulation. The hypotony was reversed in each patient and their visual acuity was normalized. Laser photocoagulation is a noninvasive treatment that can be repeated easily and safely. The complications of the treatment are minor. A hypertensive episode commonly occurs in the early postoperative period. (au) 8 refs.

  20. Persistent photoconductivity in ZnO nanowires: Influence of oxygen and argon ambient

    Science.gov (United States)

    Madel, M.; Huber, F.; Mueller, R.; Amann, B.; Dickel, M.; Xie, Y.; Thonke, K.

    2017-03-01

    ZnO nanowires typically show persistent photoconductivity (PPC), which depends in their temporal behaviour on the ambient. We investigate ZnO nanowires in oxygen and argon ambient and analyze the PPC both on the short and on the long time scale to sort out the underlying mechanisms. Wavelength dependent excitation shows the energy barrier for the PPC to be around 150 meV below the band gap of ZnO, independent of the ambient atmosphere. In photocurrent measurements at constant wavelength, a log-logistic dependence of the conductivity on the partial oxygen pressure is observed. The experimental results are compared to a model of Bonasewicz et al. [J. Electrochem. Soc. 133, 2270 (1986)] and can be explained by oxygen adsorption processes occurring on the surface of the ZnO nanowires. From temperature dependent measurements of the decay times in oxygen and argon ambient, the related activation energies for the fast and slow decay processes are determined. Comparing our results to theoretical calculations of energy levels of intrinsic defects [Janotti and Van de Walle, Phys. Status Solidi B 248, 799 (2011)], we find oxygen vacancies to be related to the fast decay processes, whereas adsorption and desorption processes of oxygen on the ZnO nanowire surface account for the slow part.

  1. Upgrade of the ATLAS Liquid Argon Calorimeters for the High-Luminosity LHC

    CERN Document Server

    McCarthy, Tom; The ATLAS collaboration

    2016-01-01

    The increased particle flux at the high luminosity phase of the Large Hadron Collider (HL-LHC), with instantaneous luminosities of up to 7.5 times the original design value, will have an impact on many sub-systems of the ATLAS detector. This contribution highlights the particular impacts on the ATLAS liquid argon calorimeter system, together with an overview of the various upgrade plans leading up to the HL-LHC. The higher luminosities are of particular importance for the forward calorimeters (FCal), where the expected increase in the ionization load poses a number of problems that can degrade the FCal performance such as beam heating and space-charge effects in the liquid argon gaps and high-voltage drop due to increased current drawn over the current-limiting resistors. A proposed FCal replacement as a way to counter some of these problems is weighed against the risks associated with the replacement. To further mitigate the effects of increased pile-up, the installation of a high-granularity timing detector...

  2. Upgrade of the ATLAS Liquid Argon Calorimeters for the High-Luminosity LHC arXiv

    CERN Document Server

    McCarthy, Thomas G.

    The increased particle flux at the high luminosity phase of the Large Hadron Collider (HL-LHC), with instantaneous luminosities of up to 7.5 times the original design value, will have an impact on many sub-systems of the ATLAS detector. This contribution highlights the particular impacts on the ATLAS liquid argon calorimeter system, together with an overview of the various upgrade plans leading up to the HL-LHC. The higher luminosities are of particular importance for the forward calorimeters (FCal), where the expected increase in the ionization load poses a number of problems that can degrade the FCal performance such as beam heating and space-charge effects in the liquid argon gaps and high-voltage drop due to increased current drawn over the current-limiting resistors. A proposed FCal replacement as a way to counter some of these problems is weighed against the risks associated with the replacement. To further mitigate the effects of increased pile-up, the installation of a high-granularity timing detector...

  3. Optimizing 4D cone beam computed tomography acquisition by varying the gantry velocity and projection time interval

    Science.gov (United States)

    O'Brien, Ricky T.; Cooper, Benjamin J.; Keall, Paul J.

    2013-03-01

    Four dimensional cone beam computed tomography (4DCBCT) is an emerging clinical image guidance strategy for tumour sites affected by respiratory motion. In current generation 4DCBCT techniques, both the gantry rotation speed and imaging frequency are constant and independent of the patient’s breathing which can lead to projection clustering. We present a mixed integer quadratic programming (MIQP) model for respiratory motion guided-4DCBCT (RMG-4DCBCT) which regulates the gantry velocity and projection time interval, in response to the patient’s respiratory signal, so that a full set of evenly spaced projections can be taken in a number of phase, or displacement, bins during the respiratory cycle. In each respiratory bin, an image can be reconstructed from the projections to give a 4D view of the patient’s anatomy so that the motion of the lungs, and tumour, can be observed during the breathing cycle. A solution to the full MIQP model in a practical amount of time, 10 s, is not possible with the leading commercial MIQP solvers, so a heuristic method is presented. Using parameter settings typically used on current generation 4DCBCT systems (4 min image acquisition, 1200 projections, 10 respiratory bins) and a sinusoidal breathing trace with a 4 s period, we show that the root mean square (RMS) of the angular separation between projections with displacement binning is 2.7° using existing constant gantry speed systems and 0.6° using RMG-4DCBCT. For phase based binning the RMS is 2.7° using constant gantry speed systems and 2.5° using RMG-4DCBCT. The optimization algorithm presented is a critical step on the path to developing a system for RMG-4DCBCT.

  4. Cryogenic Tests of the Atlas Liquid Argon Calorimeter

    CERN Document Server

    Fabre, C; Chalifour, M; Gonidec, A; Passardi, Giorgio

    2006-01-01

    The ATLAS liquid argon calorimeter consists of the barrel and two end-cap detectors housed in three independent cryostats filled with a total volume of 78 m3 of liquid argon. During cool-down the temperature differences in the composite structure of the detectors must be kept within strict limits to avoid excessive mechanical stresses and relative displacements. During normal operation the formation of gas bubbles, which are detrimental to the functioning of the detector, must be prevented and temperature gradients of less than 0.7 K across the argon bath are mandatory due to the temperature dependence of the energy measurements. Between April 2004 and May 2005 the barrel (120 t) and one end-cap (219 t) underwent qualification tests at the operating temperature of 87.3 K using a dedicated test facility at ground level. These tests provided a validation of the cooling methods to be adopted in the final underground configuration. In total 6.9 GJ and 15.7 GJ were extracted from the calorimeters and a temperature...

  5. Isotopic fractionation of argon during stepwise release from shungite

    Science.gov (United States)

    Rison, W.

    1980-05-01

    It is noted that in previous attempts to determine the Ar-40/Ar-36 ratio in the ancient atmosphere, the only direct measurement yielding a value below the atmospheric value of today is for argon released at low temperatures from a pre-Cambrian shungite. In the present work, a low value for Ar-40/Ar-36 in gas released from a type I shungite at low temperatures is confirmed. Attention is given to a study of the accompanying Ar-38/Ar-36 ratios and the enhanced ratio of Ar-40/Ar-36 for the fractions released at high temperatures which shows that the effect observed is a result of the stepwise heating and the argon diffusion mobilized thereby. It is suggested that the low Ar-40/Ar-36 obtained in the past is from the same source rather than reflecting the isotropic composition of the pre-Cambrian atmosphere, and that the type I shungite may exhibit simple volume diffusion over macroscopic dimensions as glasses do. It is concluded that if this is so, the diffusion parameters obtained from the data would imply rapid exchange with the atmosphere for any argon initially trapped in the veins of the material.

  6. Space-charge effects in liquid argon ionization chambers

    Science.gov (United States)

    Rutherfoord, J. P.; Walker, R. B.

    2015-03-01

    We have uniformly irradiated liquid argon ionization chambers with betas from high-activity 90Sr sources. The radiation environment is similar to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider (LHC). We measured the resulting ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. In particular they indicate a stability at the 0.1% level for these calorimeters over years of operation at the full LHC luminosity when operated in the normal mode at an electric field E = 1.0 kV / mm. We can operate these chambers in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. This transition point is parameterized by a positive argon ion mobility of μ+ = 0.08 ± 0.02mm2 / V s at a temperature of 88.0±0.5 K and at a pressure of 1.02±0.02 bar. In the space-charge limited regime the ionization currents are degraded and show signs of instability. At the highest electric fields in our study (6.7 kV/mm) the ionization current is still slowly rising with increasing electric field.

  7. Free electron lifetime achievements in liquid Argon imaging TPC

    Energy Technology Data Exchange (ETDEWEB)

    Baibussinov, B; Ceolin, M Baldo; Centro, S; Cieslik, K; Farnese, C; Fava, A; Gibin, D; Guglielmi, A; Meng, G; Pietropaolo, F; Varanini, F; Ventura, S [INFN, Sezione di Padova via Marzolo 8, I-35131 Padova (Italy); Calligarich, E [INFN, Sezione di Pavia via Bassi 6, I-27100 Pavia (Italy); Rubbia, C, E-mail: Carlo.Rubbia@cern.c [Laboratori Nazionali del Gran Sasso dell' INFN I-67010 Assergi (Italy)

    2010-03-15

    A key feature for the success of the liquid Argon imaging TPC (LAr-TPC) technology is the industrial purification against electro-negative impurities, especially Oxygen and Nitrogen remnants, which have to be continuously kept at an exceptionally low level by filtering and recirculating liquid Argon. Improved purification techniques have been applied to a 120 liters LAr-TPC test facility in the INFN-LNL laboratory. Through-going muon tracks have been used to determine the free electron lifetime in liquid Argon against electro-negative impurities. The short path length here observed (30 cm) is compensated by the high accuracy in the observation of the specific ionization of cosmic ray muons at sea level as a function of the drift distance. A free electron lifetime of tau {approx} (21.4{sup +7.3}{sub -4.3}) ms, namely > 15.8 ms at 90% C.L. has been observed over several weeks under stable conditions, corresponding to a residual Oxygen equivalent of {approx} 15 ppt (part per trillion). At 500 V/cm, the free electron speed is 1.5 mm/mus. In a LAr-TPC a free electron lifetime in excess of 15 ms corresponds for instance to an attenuation of less than 20% after a drift path of 5 m, opening the way to the operation of the LAr-TPC with exceptionally long drift distances.

  8. Tin LPP plasma control in the argon cusp source

    Science.gov (United States)

    McGeoch, Malcolm W.

    2016-03-01

    The argon cusp plasma has been introduced [1,2] for 500W class tin LPP exhaust control in view of its high power handling, predicted low tin back-scatter from a beam dump, and avoidance of hydrogen usage. The physics of tin ion control by a plasma is first discussed. Experimentally, cusp stability and exhaust disc geometry have previously been proved at full scale [2], the equivalent of 300W-500W usable EUV. Here we verify operation of the plasma barrier that maintains a high argon density next to the collector, for its protection, and a low density in the long path toward the intermediate focus, for efficiency. A pressure differential of 2Pa has been demonstrated in initial work. Other aspects of tin LPP plasma control by the cusp have now been demonstrated using tin ions from a low Hz 130mJ CO2 laser pulse onto a solid tin surface at the cusp center. Plasma is rejected at the design to match a specified exhaust power is discussed. In view of this work, argon cusp exhaust control appears to be very promising for 500W class tin LPP sources.

  9. K-Ar age of young volcanic rocks and excess argon--Binary mixing model and quantitative study of excess argon effect

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A binary mixing model for excess argon is suggested in the note. According to this model and the data of excess argon component obtained in our experiment , a quantitative study of the effect of excess argon on real K-Ar age of young volcanic rocks is done. The result indicates that the effect of 5% excess argon component in samples on K-Ar age of the samples more than 2 Ma is less than 7.36% and can lead K-Ar age of 0.5 Ma samples to increase by 32.4%, while 1% excess argon component leads K-Ar age of 0.5 Ma samples to increase by 6.26%. Therefore, when pre-processed excess argon component is ≤1%, K-Ar age of the samples more than 0.5 Ma should be credible. On this basis we suggest a principal opinion for evaluation of previous K-Ar dating results and propose that the matrix is used to determine K-Ar age of young volcanic rocks. For the samples less than 0.2 Ma, in the case of high excess argon content, even if only 1% excess argon component exists in their matrix, it can also greatly affect their K-A age. Thus it must be careful to treat the dating result.

  10. The TimeStudio Project: An open source scientific workflow system for the behavioral and brain sciences.

    Science.gov (United States)

    Nyström, Pär; Falck-Ytter, Terje; Gredebäck, Gustaf

    2016-06-01

    This article describes a new open source scientific workflow system, the TimeStudio Project, dedicated to the behavioral and brain sciences. The program is written in MATLAB and features a graphical user interface for the dynamic pipelining of computer algorithms developed as TimeStudio plugins. TimeStudio includes both a set of general plugins (for reading data files, modifying data structures, visualizing data structures, etc.) and a set of plugins specifically developed for the analysis of event-related eyetracking data as a proof of concept. It is possible to create custom plugins to integrate new or existing MATLAB code anywhere in a workflow, making TimeStudio a flexible workbench for organizing and performing a wide range of analyses. The system also features an integrated sharing and archiving tool for TimeStudio workflows, which can be used to share workflows both during the data analysis phase and after scientific publication. TimeStudio thus facilitates the reproduction and replication of scientific studies, increases the transparency of analyses, and reduces individual researchers' analysis workload. The project website ( http://timestudioproject.com ) contains the latest releases of TimeStudio, together with documentation and user forums.

  11. Multi-objective optimization of discrete time-cost tradeoff problem in project networks using non-dominated sorting genetic algorithm

    Science.gov (United States)

    Shahriari, Mohammadreza

    2016-03-01

    The time-cost tradeoff problem is one of the most important and applicable problems in project scheduling area. There are many factors that force the mangers to crash the time. This factor could be early utilization, early commissioning and operation, improving the project cash flow, avoiding unfavorable weather conditions, compensating the delays, and so on. Since there is a need to allocate extra resources to short the finishing time of project and the project managers are intended to spend the lowest possible amount of money and achieve the maximum crashing time, as a result, both direct and indirect costs will be influenced in the project, and here, we are facing into the time value of money. It means that when we crash the starting activities in a project, the extra investment will be tied in until the end date of the project; however, when we crash the final activities, the extra investment will be tied in for a much shorter period. This study is presenting a two-objective mathematical model for balancing compressing the project time with activities delay to prepare a suitable tool for decision makers caught in available facilities and due to the time of projects. Also drawing the scheduling problem to real world conditions by considering nonlinear objective function and the time value of money are considered. The presented problem was solved using NSGA-II, and the effect of time compressing reports on the non-dominant set.

  12. Increasing-order Projective Synchronization of Chaotic Systems with Time Delay

    Institute of Scientific and Technical Information of China (English)

    MIAO Qing-Ying; FANG Jian-An; TANG Yang; DONG Ai-Hua

    2009-01-01

    This work is concerned with lag projective synchronization of chaotic systems with increasing order. The systems under consideration have unknown parameters and different structures. Combining the adaptive control method and feedback control technique, we design a suitable controller and parameter update law to achieve lag synchronization of chaotic systems with increasing order. The result is rigorously proved by the Lyapunov stability theorem. Moreover, corresponding simulation results are given to verify the effectiveness of the proposed methods.

  13. The ATLAS Liquid Argon calorimeter: An overview

    Science.gov (United States)

    Wilkens, Henric; ATLAS LArg Collaboration

    2009-04-01

    The various cryostats with the ATLAS LArg calorimeter are installed in the ATLAS cavern since several years. Following this, an effort to install and commission the front end read-out electronics (infrastructure, crates, boards) has been ongoing and is converging, in time for LHC start. After the mechanical installation of the LArg calorimeter 99.9 % of the read-out channels were working, hence great care was taken to assure the same high level of quality after the installation of the read-out electronics. Following cautious procedures and with continuous testing-campaigns of the electronics at each step of the installation advancement, the result is a fully commissioned calorimeter with its readout and a small number of non-functional channels.

  14. Computational modeling of optical projection tomographic microscopy using the finite difference time domain method.

    Science.gov (United States)

    Coe, Ryan L; Seibel, Eric J

    2012-12-01

    We present a method for modeling image formation in optical projection tomographic microscopy (OPTM) using high numerical aperture (NA) condensers and objectives. Similar to techniques used in computed tomography, OPTM produces three-dimensional, reconstructed images of single cells from two-dimensional projections. The model is capable of simulating axial scanning of a microscope objective to produce projections, which are reconstructed using filtered backprojection. Simulation of optical scattering in transmission optical microscopy is designed to analyze all aspects of OPTM image formation, such as degree of specimen staining, refractive-index matching, and objective scanning. In this preliminary work, a set of simulations is performed to examine the effect of changing the condenser NA, objective scan range, and complex refractive index on the final reconstruction of a microshell with an outer radius of 1.5 μm and an inner radius of 0.9 μm. The model lays the groundwork for optimizing OPTM imaging parameters and triaging efforts to further improve the overall system design. As the model is expanded in the future, it will be used to simulate a more realistic cell, which could lead to even greater impact.

  15. Performance of the ATLAS Liquid Argon Calorimeter After Three Years of LHC Operation and Plans for a Future Upgrade

    CERN Document Server

    Ilic, N; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment is a multi-purpose detector built for analyzing LHC collision data. In July 2012, ATLAS announced the discovery of the Higgs boson, the last undiscovered particle in the Standard Model of particle physics. The ATLAS Liquid Argon (LAr) Calorimeter played a crucial role in the discovery by providing accurate measurements of Higgs final states such as photons, electrons and jets. The LAr detector is a sampling calorimeter consisting of four subsystems: an electromagnetic barrel (EMB), electromagnetic end-caps (EMEC), hadronic end-caps (HEC), and forward calorimeters (FCAL). The liquid argon purity, temperature and time stability remained well above the required levels throughout the data-taking period. Overall the calorimeter performed very well, with over 99% of data it collected in 2012 proton-proton collisions being suitable for physics analysis. In order to maintain good LAr detector performance, several upgrades are currently being implemented and planned.

  16. Performance of the lead/liquid argon shower counter system of the mark II detector at SPEAR

    CERN Document Server

    Abrams, G S; Breidenbach, M; Briggs, D D; Carithers, W C; Dieterle, W E; Dorfan, J M; Eaton, M W; Hanson, G; Hitlin, D G; Jenni, Peter; Lankford, A J; Lüth, V; Pang, C Y; Vella, E N

    1980-01-01

    The shower counter system of the SLAC-LBL Mark II detector is a large lead-liquid argon system of the type pioneered by Willis and Radeka (1974); however, it differs in most details and is much larger than other such detectors currently in operation. It contains, for example, 8000 liters of liquid argon and 3000 channels of low noise electronics, which is about eight times the size of the system of Willis et al. in the CERN ISR. The authors report, with little reference to design, on the operation and performance of the Mark II system during approximately a year and a half of operation at the Stanford Linear Accelerator Center's e/sup +/-e/sup -/ facility, SPEAR. The design and construction of the system have previously been described, Abrams et al. (1978) and a detailed discussion of all aspects-design, construction, operation, and performance-is in preparation. (8 refs).

  17. ProjectiveSynchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control

    Institute of Scientific and Technical Information of China (English)

    郭晓永; 李俊民

    2011-01-01

    We introduce a hybrid feedback control scheme to design a controller for the projective synchronization of complex dynamical networks with unknown periodically time-varying parameters.A differential-difference mixed parametric learning law and an adaptive learning control law are constructed to ensure the asymptotic convergence of the error in the sense of square error norm.Moreover,numerical simulation results are used to verify the effectiveness of the proposed method.%We introduce a hybrid feedback control scheme to design a controller for the projective synchronization of complex dynamical networks with unknown periodically time-varying parameters. A differential-difference mixed parametric learning law and an adaptive learning control law are constructed to ensure the asymptotic convergence of the error in the sense of square error norm. Moreover, numerical simulation results are used to verify the effectiveness of the proposed method.

  18. EOS: A project to investigate the design and construction of real-time distributed Embedded Operating Systems

    Science.gov (United States)

    Campbell, R. H.; Essick, Ray B.; Johnston, Gary; Kenny, Kevin; Russo, Vince

    1987-01-01

    Project EOS is studying the problems of building adaptable real-time embedded operating systems for the scientific missions of NASA. Choices (A Class Hierarchical Open Interface for Custom Embedded Systems) is an operating system designed and built by Project EOS to address the following specific issues: the software architecture for adaptable embedded parallel operating systems, the achievement of high-performance and real-time operation, the simplification of interprocess communications, the isolation of operating system mechanisms from one another, and the separation of mechanisms from policy decisions. Choices is written in C++ and runs on a ten processor Encore Multimax. The system is intended for use in constructing specialized computer applications and research on advanced operating system features including fault tolerance and parallelism.

  19. Timing Activities at INRIM in the Frame of the Galileo Project

    Science.gov (United States)

    2008-12-01

    RESEARCH On 1 January 2006, the Istituto Elettrotecnico Nazionale “Galileo Ferraris” (IEN) and the Istituto di Metrologia Gustavo Colonnetti...Hahn, 2008, “GNSS Interoperability: Offset between reference Time Scales and Timing Biases,” Metrologia , 45, 87-102. [13] R. Zanello, M...transfer to TAI using geodetic receivers,” Metrologia , 40, 184-188. 40th Annual Precise Time and Time Interval (PTTI) Meeting 656 [17] L. Galleani

  20. The compact, time-variable radio source projected inside W3(OH): Evidence for a Photoevaporated Disk?

    CERN Document Server

    Dzib, Sergio A; Rodriguez, Luis F; Kurtz, Stan E; Loinard, Laurent; Zapata, Luis A; Lizano, Susana

    2013-01-01

    We present new Karl G. Jansky Very Large Array observations of the compact (~ 0.05"), time-variable radio source projected near the center of the ultracompact HII region W3(OH). The analysis of our new data as well as of VLA archival observations confirms the variability of the source on timescales of years and for a given epoch indicates a spectral index of \\alpha = 1.3 +- 0.3 (S_\

  1. ATLAS Liquid Argon Endcap Calorimeter R and D for sLHC

    CERN Document Server

    Schacht, P; The ATLAS collaboration

    2009-01-01

    The performance of the ATLAS liquid argon endcap has been studied for luminosities as expected for the operation at sLHC. The increase of integrated luminosity by a factor of ten has serious consequences for the signal reconstruction, radiation hardness requirements and operation of the forward liquid argon calorimeters. The response has been studied with small modules of the type as built for ATLAS in a very high intensity beam at IHEP/Protvino. The highest intensity obtained was well above the level of energy impact expected for ATLAS at sLHC. The signal processing of the ATLAS Hadronic Endcap Calorimeters employs the concept of 'active pads' which keeps the detector capacities at the input of the amplifiers small and thereby achieves a fast rise time of the signal. This concept is realized using highly integrated amplifier and summing chips in GaAs technology. With an increase of luminosity by a factor of ten the safety factor for the radiation hardness is essentially eliminated. Therefore new more radiati...

  2. ATLAS Liquid Argon Endcap Calorimeter R and D for sLHC

    CERN Document Server

    Schacht, P; The ATLAS collaboration

    2009-01-01

    The performance of the ATLAS liquid argon endcap has been studied for luminosities as expected for the operation at sLHC. The increase of integrated luminosity by a factor of ten has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the forward liquid argon calorimeters. The response has been studied with small modules of the type as built for ATLAS in a very high intensity beam at IHEP/Protvino. The highest intensity obtained was well above the level of energy impact expected for ATLAS at sLHC. The signal processing of the ATLAS Hadronic Endcap Calorimeter employs the concept of 'active pads' which keeps the detector capacities at the input of the amplifiers small and thereby achieves a fast rise time of the signal. This concept is realized using highly integrated amplifier and summing chips in GaAs technology. With an increase of luminosity by a factor of ten the safety factor for the radiation hardness is essentially eliminated. Therefore new more radiati...

  3. Upgrade of the Trigger Readout System of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Marino, CP; The ATLAS collaboration

    2014-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} \\rm{cm}^{-2} \\rm{s}^{-1}$. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region $|\\eta|$ < 3.2, and for hadronic calorimetry in the region from $|\\eta|=$1.5 to $|\\eta|=$4.9. The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sums analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. In 2018, an instantaneous luminosity of 2-3 $\\times 10^{34} \\rm{cm}^{-2} \\rm{s}^{-1}$ is expected, far beyond the nominal one for which the detector was designed. In order to cope with this increased trigger rate,...

  4. Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding

    Science.gov (United States)

    Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.

  5. Ensuring Long Time Access to DELPHI Data:The IDEA Project

    Institute of Scientific and Technical Information of China (English)

    TizianoCampores; DanielWicke; 等

    2001-01-01

    The long term accessibility of its data is an important concern of the DELPHI collaboration.It is our assumption that the storage of the data itself will be a minor issue due to the progress in storage technologies.Therefore DELPHI focuses on a reorganisation of the data,which should provide a flexible and coherent framework for physics analysis in the future.This paper describes the current status of the IDEA(Improved DElphi Analysis) project which will ensure usability of DELPHI data for future generations of physicists.

  6. Projected life expectancy of people with HIV according to timing of diagnosis

    DEFF Research Database (Denmark)

    Nakagawa, Fumiyo; Lodwick, Rebecca K; Smith, Colette J;

    2012-01-01

    and healthcare, and to assess the effect of late diagnosis on life expectancy. Methods: A stochastic computer simulation model of HIV infection and the effect of ART was used to estimate life expectancy and determine the distribution of potential lifetime outcomes of an MSM, aged 30 years, who becomes HIV...... positive in 2010. The effect of altering the diagnosis rate was investigated. Results: Assuming a high rate of HIV diagnosis (median CD4 cell count at diagnosis, 432¿cells/µl), projected median age at death (life expectancy) was 75.0 years. This implies 7.0 years of life were lost on average due to HIV...... in HIV diagnosis...

  7. Arctic sea ice decline: Projected changes in timing and extent of sea ice in the Bering and Chukchi Seas

    Science.gov (United States)

    Douglas, D.C.

    2010-01-01

    The Arctic region is warming faster than most regions of the world due in part to increasing greenhouse gases and positive feedbacks associated with the loss of snow and ice cover. One consequence has been a rapid decline in Arctic sea ice over the past 3 decades?a decline that is projected to continue by state-of-the-art models. Many stakeholders are therefore interested in how global warming may change the timing and extent of sea ice Arctic-wide, and for specific regions. To inform the public and decision makers of anticipated environmental changes, scientists are striving to better understand how sea ice influences ecosystem structure, local weather, and global climate. Here, projected changes in the Bering and Chukchi Seas are examined because sea ice influences the presence of, or accessibility to, a variety of local resources of commercial and cultural value. In this study, 21st century sea ice conditions in the Bering and Chukchi Seas are based on projections by 18 general circulation models (GCMs) prepared for the fourth reporting period by the Intergovernmental Panel on Climate Change (IPCC) in 2007. Sea ice projections are analyzed for each of two IPCC greenhouse gas forcing scenarios: the A1B `business as usual? scenario and the A2 scenario that is somewhat more aggressive in its CO2 emissions during the second half of the century. A large spread of uncertainty among projections by all 18 models was constrained by creating model subsets that excluded GCMs that poorly simulated the 1979-2008 satellite record of ice extent and seasonality. At the end of the 21st century (2090-2099), median sea ice projections among all combinations of model ensemble and forcing scenario were qualitatively similar. June is projected to experience the least amount of sea ice loss among all months. For the Chukchi Sea, projections show extensive ice melt during July and ice-free conditions during August, September, and October by the end of the century, with high agreement

  8. Developing Near Real-time Data-assimilative Models and Tools for the Space Environment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The IDA4D and AMIE data assimilation methods are currently of limited use for real-time space weather applications because either they don't run in real-time (IDA4D)...

  9. The Economics of Adolescents' Time Allocation: Evidence from the Young Agent Project in Brazil

    Science.gov (United States)

    Martinez-Restrepo, Susana

    2012-01-01

    What are the socioeconomic implications of the time allocation decisions made by low-income adolescents? The way adolescents allocate their time between schooling, labor and leisure has important implications for their education attainment, college aspirations, job opportunities and future earnings. This study focuses on adolescents and young…

  10. Investigating the Mutagenicity of a Cold Argon-Plasma Jet in an HET-MN Model

    Science.gov (United States)

    Bender, Claudia; Benkhai, Hicham; Sckell, Axel; Below, Harald; Stope, Matthias B.; Kramer, Axel

    2016-01-01

    Objective So-called cold physical plasmas for biomedical applications generate reactive oxygen and nitrogen species and the latter can trigger DNA damage at high concentrations. Therefore, the mutagenic risks of a certified atmospheric pressure argon plasma jet (kINPen MED) and its predecessor model (kINPen 09) were assessed. Methods Inner egg membranes of fertilized chicken eggs received a single treatment with either the kINPen 09 (1.5, 2.0, or 2.5 min) or the kINPen MED (3, 4, 5, or 10 min). After three days of incubation, blood smears (panoptic May-Grünwald-Giemsa stain) were performed, and 1000 erythrocytes per egg were evaluated for the presence of polychromatic and normochromic nuclear staining as well as nuclear aberrations and binucleated cells (hen’s egg test for micronuclei induction, HET-MN). At the same time, the embryo mortality was documented. For each experiment, positive controls (cyclophosphamide and methotrexate) and negative controls (NaCl-solution, argon gas) were included. Additionally, the antioxidant potential of the blood plasma was assessed by ascorbic acid oxidation assay after treatment. Results For both plasma sources, there was no evidence of genotoxicity, although at the longest plasma exposure time of 10 min the mortality of the embryos exceeded 40%. The antioxidant potential in the egg’s blood plasma was not significantly reduced immediately (p = 0.32) or 1 h (p = 0.19) post exposure to cold plasma. Conclusion The longest plasma treatment time with the kINPen MED was 5–10 fold above the recommended limit for treatment of chronic wounds in clinics. We did not find mutagenic effects for any plasma treatment time using the either kINPen 09 or kINPen MED. The data provided with the current study seem to confirm the lack of a genotoxic potential suggesting that a veterinary or clinical application of these argon plasma jets does not pose mutagenic risks. PMID:27584003

  11. A new EU-funded project for enhanced real-time imaging for radiotherapy

    CERN Document Server

    KTT Life Sciences Unit

    2011-01-01

    ENTERVISION (European training network for digital imaging for radiotherapy) is a new Marie Curie Initial Training Network coordinated by CERN, which brings together multidisciplinary researchers to carry out R&D in physics techniques for application in the clinical environment.   ENTERVISION was established in response to a critical need to reinforce research in online 3D digital imaging and to train professionals in order to deliver some of the key elements for early detection and more precise treatment of tumours. The main goal of the project is to train researchers who will help contribute to technical developments in an exciting multidisciplinary field, where expertise from physics, medicine, electronics, informatics, radiobiology and engineering merges and catalyses the advancement of cancer treatment. With this aim in mind, ENTERVISION brings together ten academic institutes and research centres, as well as the two leading European companies in particle therapy, IBA and Siemens. &ldq...

  12. Effect of oxygen impurities on atmospheric-pressure surface streamer discharge in argon for large gap arc breakdown

    Science.gov (United States)

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L.

    2016-10-01

    We report the results of a computational study that investigates the effect of impurities (molecular oxygen) on the development of argon surface streamers at atmospheric-pressure conditions. A continuous surface streamer has been proposed as a low-voltage mechanism to generate a conductive bridge for arc breakdown of a large interelectrode gap at high pressures. The streamer discharge model is based on the self-consistent, multispecies, continuum description of the plasma. Below a threshold voltage, no streamer discharge is observed and charge is localized only in the vicinity of the anode in the form of a localized corona. Above this voltage threshold in pure argon, a continuous conductive streamer successfully bridges the gap between two electrodes indicating high probability of transition to the arc. For small oxygen impurities (less than 5%), the threshold voltage is found to decrease by a few hundred volts compared to the threshold voltage in pure argon while the streamer induction time increases. No noticeable changes in the streamer conductivity is obtained for low impurities of oxygen in the above range. An increase of the oxygen density above the 5% impurity level causes a significant decrease in the continuous streamer conductivity and leads to a decrease in the probability of transition to arc.

  13. Atomistic modelling of evaporation and explosive boiling of thin film liquid argon over internally recessed nanostructured surface

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics (MD) simulations have been carried out to investigate evaporation and explosive boiling phenomena of thin film liquid argon on nanostructured solid surface with emphasis on the effect of solid-liquid interfacial wettability. The nanostructured surface considered herein consists of trapezoidal internal recesses of the solid platinum wall. The wetting conditions of the solid surface were assumed such that it covers both the hydrophilic and hydrophobic conditions and hence effect of interfacial wettability on resulting evaporation and boiling phenomena was the main focus of this study. The initial configuration of the simulation domain comprised of a three phase system (solid platinum, liquid argon and vapor argon) on which equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. After equilibrium of the three-phase system was established, the wall was set to different temperatures (130 K and 250 K for the case of evaporation and explosive boiling respectively) to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for hydrophilic and hydrophobic surfaces in cases of both nanostructured surface and flat surface. The results obtained show that both the wetting condition of the surface and the presence of internal recesses have significant effect on normal evaporation and explosive boiling of the thin liquid film. The heat transfer from solid to liquid in cases of surface with recesses are higher compared to flat surface without recesses. Also the surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in

  14. Rationale and study design for a randomised controlled trial to reduce sedentary time in adults at risk of type 2 diabetes mellitus: project stand (Sedentary Time ANd diabetes

    Directory of Open Access Journals (Sweden)

    Wilmot Emma G

    2011-12-01

    Full Text Available Abstract Background The rising prevalence of Type 2 Diabetes Mellitus (T2DM is a major public health problem. There is an urgent need for effective lifestyle interventions to prevent the development of T2DM. Sedentary behaviour (sitting time has recently been identified as a risk factor for diabetes, often independent of the time spent in moderate-to-vigorous physical activity. Project STAND (Sedentary Time ANd Diabetes is a study which aims to reduce sedentary behaviour in younger adults at high risk of T2DM. Methods/Design A reduction in sedentary time is targeted using theory driven group structured education. The STAND programme is subject to piloting and process evaluation in line with the MRC framework for complex interventions. Participants are encouraged to self-monitor and self-regulate their behaviour. The intervention is being assessed in a randomised controlled trial with 12 month follow up. Inclusion criteria are a aged 18-40 years with a BMI in the obese range; b 18-40 years with a BMI in the overweight range plus an additional risk factor for T2DM. Participants are randomised to the intervention (n = 89 or control (n = 89 arm. The primary outcome is a reduction in sedentary behaviour at 12 months as measured by an accelerometer (count Conclusions This is the first UK trial to address sedentary behaviour change in a population of younger adults at risk of T2DM. The results will provide a platform for the development of a range of future multidisciplinary interventions in this rapidly expanding high-risk population. Trial registration Current controlled trials ISRCTN08434554, MRC project 91409.

  15. Effects of argon flow on impurities transport in a directional solidification furnace for silicon solar cells

    Science.gov (United States)

    Li, Zaoyang; Liu, Lijun; Ma, Wencheng; Kakimoto, Koichi

    2011-03-01

    A global simulation including coupled oxygen and carbon transport was carried out to study the argon flow effects on the impurities transport in a directional solidification furnace for silicon solar cells. The simulation is based on a fully coupled calculation of the thermal and flow fields in a furnace including argon gas flow and melt convection. Five chemical reactions are considered in the impurity transport model. The effects of both the argon flow rate and the furnace pressure were examined. It was found that the argon flow has an important effect on the silicon melt convection, which will further influence the evaporation characteristic of SiO at the melt free surface. The amount of SiO carried away by the argon flow increases with increase in the argon flow rate while the CO gas can be prevented from being transported to the melt free surface. There exists a peak value for the concentration of impurities in the furnace chamber regarding argon flow rate due to the correlation among SiO evaporated, reacted and taken away. The pressure also influences the impurity transport in the furnace by modifying the pattern of argon flow. The numerical results demonstrate a method to control the oxygen and carbon transport in a directional solidification furnace by adjusting the argon flow rate and the furnace pressure.

  16. Systems and Services for Real-Time Web Access to NPP Data Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Science & Technology, Inc. (GST) proposes to investigate information processing and delivery technologies to provide near-real-time Web-based access to...

  17. Real-Time Noise Prediction of V/STOL Aircraft in Maneuvering Flight Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a plan for enhancing and integrating new breakthrough technologies to provide accurate real-time noise prediction of V/STOL aircraft in...

  18. Integrated High-Speed Digital Optical True-Time-Delay Modules for Synthetic Aperture Radars Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Crystal Research, Inc. proposes an integrated high-speed digital optical true-time-delay module for advanced synthetic aperture radars. The unique feature of this...

  19. Real-Time, Maneuvering Flight Noise Prediction for Rotorcraft Flight Simulations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a plan for developing new technology to provide accurate real-time noise prediction for rotorcraft in steady and maneuvering flight. Main...

  20. Celestial X-ray Source Modeling and Catalogues for Spacecraft Navigation and Timing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Microcosm X-ray pulsar-based navigation and timing (XNAV) team will provide the software and modeling infrastructure for NASA to support XNAV operations,...

  1. Nonintrusive Optical Thermometers for Real-Time Control of Fabrication Processes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In the proposed SBIR Phase I program LGR will develop and deploy a novel instrument ("Optical Thermometer") that provides real-time, in situ, non-contact...

  2. Real-Time Structural Overload Control via Control Allocation Optimization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This control methodology utilizes real-time vehicle structural load and shape measurements to actively respond to and protect against vehicle damage due to...

  3. Miniature Time of Flight Mass Spectrometer for Space and Extraterrestrial Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The PI has developed a miniature time-of-flight mass spectrometer (TOF-MS), which can be op-timized for space and extraterrestrial applications, by using a...

  4. Nonintrusive Optical Thermometers for Real-Time Control of Fabrication Processes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed SBIR Phase I program is to develop an instrument that provides real-time, in situ measurements of substrate temperature in optical...

  5. Time-Domain Terahertz Reflection Holograhic Tomography Nondestructive Evaluation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate key elements of feasibility for a single-sided time-domain terahertz reflection holographic tomographic imaging (TD-THz RHT) nondestructive...

  6. Nonlinear Aerodynamics-Structure Time Simulation for HALE Aircraft Design/Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Time simulation of a nonlinear aerodynamics model (NA) developed at Virginia Tech coupled with a nonlinear structure model (NS) is proposed as a design/analysis...

  7. Time Reversal Acoustic Structural Health Monitoring Using Array of Embedded Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Time Reversal Acoustic (TRA) structural health monitoring with an embedded sensor array represents a new approach to in-situ nondestructive evaluation of air-space...

  8. Real-Time Fault Contingency Management for Integrated Vehicle Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Impact Technologies, with support from the Georgia Institute of Technology and Honeywell, propose to develop and demonstrate a suite of real-time Fault Contingency...

  9. X-ray Detection and Processing Models for Spacecraft Navigation and Timing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase II, XNAV performance will be enhanced through the development of single photon processing algorithms, which utilize all available photon time data to...

  10. Automated, Real-Time Targeting and Guidance Software for Lunar Descent and Precision Landing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — he objective of this proposal is to research, design and develop an automated real-time targeting and guidance (ARTGUID) software for precision lunar landing and...

  11. System and Component Software Specification, Run-time Verification and Automatic Test Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The following background technology is described in Part 5: Run-time Verification (RV), White Box Automatic Test Generation (WBATG). Part 5 also describes how WBATG...

  12. Aircraft Engine Life-Consumption Monitoring for Real-Time Reliability Determination Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A real-time life-use consumption monitor is proposed for aircraft engine systems. The life monitor will process power data available on the aircraft to calculate the...

  13. A Real-Time Fault Management Software System for Distributed Environments Project

    Data.gov (United States)

    National Aeronautics and Space Administration — DyMA-FM (Dynamic Multivariate Assessment for Fault Management) is a software architecture for real-time fault management. Designed to run in a distributed...

  14. Kinetic modeling of the Townsend breakdown in argon

    Science.gov (United States)

    Macheret, S. O.; Shneider, M. N.

    2013-10-01

    Kinetic modeling of the Townsend breakdown in argon was performed in the "forward-back" approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  15. Optical fiber read-out for liquid argon scintillation light

    CERN Document Server

    Csáthy, J Janicskó; Kratz, J; Schönert, S; Wiesinger, Ch

    2016-01-01

    In this paper we describe the performance of a light detector for Ar scintillation light made of wavelength-shifting (WLS) fibers connected to Silicon-Photomultipliers (SiPM). The setup was conceived to be used as anti-Compton veto for high purity germanium (HPGe) detectors operated directly in liquid Argon (LAr). Background suppression efficiencies for different radioactive sources were measured in a test cryostat with about 800 kg LAr. This work was part of the R\\&D effort for the GERDA experiment.

  16. Dimerization of argon and the properties of its small clusters

    Science.gov (United States)

    Titov, S. V.; Serov, S. A.; Ostrovskii, G. M.

    2016-12-01

    Statistical thermodynamic means are used to study the bound state of a small cluster AN (2 ≤ N ≤ 5) of Lennard-Jones particles in a spherical cavity. The statistical sum is calculated by the Monte Carlo method. For the dimer, integration is reduced to quadratures. The integration region contains only phase space points corresponding to the bound cluster state. Dimerization constant 2A = A2 is calculated via the probability of finding a molecule in the bound state using the example of argon.

  17. The abundances of neon, sulfur, and argon in planetary nebulae

    Science.gov (United States)

    Beck, S. C.; Lacy, J. H.; Townes, C. H.; Aller, L. H.; Geballe, T. R.; Baas, F.

    1981-01-01

    New infrared observations of Ne II, Ar III, and S IV are used in optical observations of other ionization states of the considered elements to evaluate the abundances of neon, argon, and sulfur in 18 planetary nebulae. Attention is also given to one or more of the infrared lines in 18 other nebulae. It is pointed out that S IV was detected in approximately 90% of the observed objects, while Ar III was found in about 80%, and Ne II in roughly one-third. It is noted that optical observations typically include only a limited region of the nebula, while the infrared measurements frequently involve integration over the entire nebular image.

  18. Electrical and spectroscopic characterization of a surgical argon plasma discharge

    Science.gov (United States)

    Keller, Sandra; Bibinov, Nikita; Neugebauer, Alexander; Awakowicz, Peter

    2013-01-01

    For electrosurgical procedures, the argon plasma coagulation (APC) discharge is a well-established atmospheric-pressure plasma tool for thermal haemostasis and devitalization of biological tissue. To characterize this plasma source, voltage-current measurements, microphotography, optical emission spectroscopy and numerical simulation are applied. Two discharge modes are established during the operation of the APC plasma source. A short transient spark discharge is ignited within the positive half period of the applied high voltage after a streamer channel connects the APC probe and the counter-electrode. During the second phase, which continues under negative high voltage, a glow discharge is stabilized in the plasma channel.

  19. Time-dependent density-functional theory in massively parallel computer architectures: the octopus project

    Science.gov (United States)

    Andrade, Xavier; Alberdi-Rodriguez, Joseba; Strubbe, David A.; Oliveira, Micael J. T.; Nogueira, Fernando; Castro, Alberto; Muguerza, Javier; Arruabarrena, Agustin; Louie, Steven G.; Aspuru-Guzik, Alán; Rubio, Angel; Marques, Miguel A. L.

    2012-06-01

    Octopus is a general-purpose density-functional theory (DFT) code, with a particular emphasis on the time-dependent version of DFT (TDDFT). In this paper we present the ongoing efforts to achieve the parallelization of octopus. We focus on the real-time variant of TDDFT, where the time-dependent Kohn-Sham equations are directly propagated in time. This approach has great potential for execution in massively parallel systems such as modern supercomputers with thousands of processors and graphics processing units (GPUs). For harvesting the potential of conventional supercomputers, the main strategy is a multi-level parallelization scheme that combines the inherent scalability of real-time TDDFT with a real-space grid domain-partitioning approach. A scalable Poisson solver is critical for the efficiency of this scheme. For GPUs, we show how using blocks of Kohn-Sham states provides the required level of data parallelism and that this strategy is also applicable for code optimization on standard processors. Our results show that real-time TDDFT, as implemented in octopus, can be the method of choice for studying the excited states of large molecular systems in modern parallel architectures.

  20. Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal

    Institute of Scientific and Technical Information of China (English)

    Giuseppe Grassi

    2012-01-01

    In this paper we present a new projective synchronization scheme,where two chaotic (hyperchaotic) discretetime systems synchronize for any arbitrary scaling matrix.Specifically,each drive system state synchronizes with a linear combination of response system states.The proposed observer-based approach presents some useful features:i)it enables exact synchronization to be achieved in finite time (i.e.,dead-beat synchronization); ii) it exploits a scalar synchronizing signal; iii) it can be applied to a wide class of discrete-time chaotic (hyperchaotic) systems; iv) it includes,as a particular case,most of the synchronization types defined so far.An example is reported,which shows in detail that exact synchronization is effectively achieved in finite time,using a scalar synchronizing signal only,for any arbitrary scaling matrix.

  1. Protein Analysis Using Real-Time PCR Instrumentation: Incorporation in an Integrated, Inquiry-Based Project

    Science.gov (United States)

    Southard, Jonathan N.

    2014-01-01

    Instrumentation for real-time PCR is used primarily for amplification and quantitation of nucleic acids. The capability to measure fluorescence while controlling temperature in multiple samples can also be applied to the analysis of proteins. Conformational stability and changes in stability due to ligand binding are easily assessed. Protein…

  2. Memory Space / Time Lived in Representation to Mental Maps: The Case of School Project "our neighborhood, our place"

    Directory of Open Access Journals (Sweden)

    Lucinei Pereira da Silva

    2012-12-01

    Full Text Available The representations and memory of living space are essential to developing mental maps and cartographic documents. In this regard this investigation as a primary objective to understand how mind maps can contribute pedagogically classes in Geography and History as well, breaking the dichotomy space / time. From the point of view of theoretical and methodological the research relied on the analysis of the school project “Our Neighborhood, Our Place” developed at the Municipal School “Vereador Hamilton Teodoro” in Governador Valadares (MG, along with a group of 7th grades from elementary school and the articulation of authors who discuss the concepts of representation, memory, space and place.

  3. Neutron time-of-flight spectrometer based on HIRFL for studies of spallation reactions related to ADS project

    Institute of Scientific and Technical Information of China (English)

    张苏雅拉吐; 罗飞; 陈志强; 韩瑞; 刘星泉; 林炜平; 刘建立; 石福栋; 任培培; 田国玉

    2015-01-01

    A Neutron Time-of-Flight (NTOF) spectrometer, based at the Heavy Ion Research Facility in Lanzhou (HIRFL) was developed for studies of neutron production of proton induced spallation reactions related to the ADS project. After the presentation of comparisons between calculated spallation neutron production double-differential cross sections and the available experimental data, a detailed description of the NTOF spectrometer is given. Test beam results show that the spectrometer works well and data analysis procedures are established. The comparisons of the test beam neutron spectra with those of GEANT4 simulations are presented.

  4. Data acquisition electronics and reconstruction software for real time 3D track reconstruction within the MIMAC project

    CERN Document Server

    Bourrion, O; Grignon, C; Bouly, J L; Richer, J P; Guillaudin, O; Mayet, F; Billard, J; Santos, D

    2011-01-01

    Directional detection of non-baryonic Dark Matter requires 3D reconstruction of low energy nuclear recoils tracks. A gaseous micro-TPC matrix, filled with either 3He, CF4 or C4H10 has been developed within the MIMAC project. A dedicated acquisition electronics and a real time track reconstruction software have been developed to monitor a 512 channel prototype. This autotriggered electronic uses embedded processing to reduce the data transfer to its useful part only, i.e. decoded coordinates of hit tracks and corresponding energy measurements. An acquisition software with on-line monitoring and 3D track reconstruction is also presented.

  5. A novel self-supporting GEM-based amplification structure for a time projection chamber at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties; Diener, Ralf; Rosemann, Christoph; Steder, Lea

    2012-11-15

    In this paper, a new self-supporting way to mount Gas Electron Multipliers is presented. It has been developed to provide a method to cover large readout areas while ensuring the flatness of the foils and keeping the amount of dead material minimal. The structure has been tested in a Time Projection Chamber prototype, using cosmic muon tracks. The impact of the mounting structure on the track reconstruction and the single point resolution is quantified and its impact on the tracking efficiency and dE/dx measurements is estimated.

  6. Monte Carlo simulation of electron back diffusion in argon

    Science.gov (United States)

    Radmilović, M.; Stojanović, V.; Petrović, Z. Lj.

    1999-10-01

    Monte Carlo simulation was applied to study the back-diffusion of electrons in argon at low and moderate values of E/N from 10Td to 10 kTd. Simulations were performed for gaps of 1 cm and for pressures corresponding to the breakdown voltages taken from experimental Paschen curves. Effects of inelastic collisions, ionization, reflection of electrons and anisotropic scattering as well as anisotropic initial and reflected angular distributions of electrons were included. A complete and detailed set of electron scattering cross sections that describes well electron transport in argon was used. We found a very good agreement of the results of simulations with the experimental data for well defined initial conditions, and with several models available in the literature.(A.V. Phelps and Z.LJ. Petrović), Plasma Sources Sci. Tehnol. 8, R21 (1999). While effect of reflection may be large, for realistic values of reflection coefficient and for realistic secondary electron productions the effect may be neglected for the accuracy required in gas discharge modeling.

  7. Converging of Argon Cluster Ion Beams with a Glass Capillary

    Science.gov (United States)

    Shoji, Kazuhiro; Iuchi, Kensuke; Izumi, Motoki; Moritani, Kousuke; Inui, Norio; Mochiji, Kozo

    We have investigated the converging behavior of argon gas cluster ion beam passed through a glass capillary. The gas cluster ions are attractive as a projectile for SIMS from the view point of minimization of the damages. The cluster ion beam of 5 keV consisting of 500˜3000 argon atoms was injected in the capillary. The inner diameters of the capillary at the inlet and outlet were 0.8 mm and 9.6˜140 μm, respectively. Ion current from the outlet of the all the capillaries were detected. We obtained the converging factor of 2˜7, which depended on the incident ion current. The kinetic energy of the incident ions was found to be reduced by 20˜30% by passing through the capillary. Contrary, the velocity of the ions was not changed. These facts suggest that the cluster becomes 20˜30% smaller in mass by passing through the capillary. As far as we know, this is the first report on the study of the converging of cluster ions by using a glass capillary.

  8. The Milky Way Project: Mapping star formation in our home Galaxy, one click at a time

    Science.gov (United States)

    Jayasinghe, Tharindu K.; Povich, Matthew S.; Dixon, Don; Velasco, Jose; Milky Way Project Team

    2017-01-01

    In the recent years, citizen science has helped astronomers comb through large data sets to identify patterns and objects that are not easily found through automated processes. The Milky Way Project (MWP), a popular citizen science initiative, presents internet users with images from the GLIMPSE, MIPSGAL, SMOG and CYGNUS-X surveys of the Galactic plane using the Spitzer Space Telescope. These citizen scientists are directed to make "classification" drawings on the images to identify targeted classes of astronomical objects. We present an updated data reduction pipeline for the MWP. Written from the ground up in Python, this data reduction pipeline allows for the aggregation of classifications made by MWP users into catalogs of infrared (IR) bubbles, IR bow shocks and “yellowballs” (which may be the early precursors of IR bubbles). Coupled with the more accurate bubble classification tool used in the latest iterations of the MWP, this pipeline enables for better accuracy in the shapes and sizes of the bubbles when compared with those listed in the first MWP data release (DR1). We obtain an initial catalog of over 4000 bubbles using 2 million user classifications made between 2012 and 2015. Combined with the classifications from the latest MWP iteration (2016-2017), we will use a database of over 4 million classifications to produce a MWP DR2 bubble catalog. We will also create the first catalog of candidate IR bow shocks identified through citizen science and an updated “yellowball” catalog. This work is supported by the National Science Foundation under grants CAREER-1454334 and AST-1411851.

  9. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms.

    Science.gov (United States)

    Hosten, Onur; Engelsen, Nils J; Krishnakumar, Rajiv; Kasevich, Mark A

    2016-01-28

    Quantum metrology uses quantum entanglement--correlations in the properties of microscopic systems--to improve the statistical precision of physical measurements. When measuring a signal, such as the phase shift of a light beam or an atomic state, a prominent limitation to achievable precision arises from the noise associated with the counting of uncorrelated probe particles. This noise, commonly referred to as shot noise or projection noise, gives rise to the standard quantum limit (SQL) to phase resolution. However, it can be mitigated down to the fundamental Heisenberg limit by entangling the probe particles. Despite considerable experimental progress in a variety of physical systems, a question that persists is whether these methods can achieve performance levels that compare favourably with optimized conventional (non-entangled) systems. Here we demonstrate an approach that achieves unprecedented levels of metrological improvement using half a million (87)Rb atoms in their 'clock' states. The ensemble is 20.1 ± 0.3 decibels (100-fold) spin-squeezed via an optical-cavity-based measurement. We directly resolve small microwave-induced rotations 18.5 ± 0.3 decibels (70-fold) beyond the SQL. The single-shot phase resolution of 147 microradians achieved by the apparatus is better than that achieved by the best engineered cold atom sensors despite lower atom numbers. We infer entanglement of more than 680 ± 35 particles in the atomic ensemble. Applications include atomic clocks, inertial sensors, and fundamental physics experiments such as tests of general relativity or searches for electron electric dipole moment. To this end, we demonstrate an atomic clock measurement with a quantum enhancement of 10.5 ± 0.3 decibels (11-fold), limited by the phase noise of our microwave source.

  10. Combining endoscopic ultrasound with Time-Of-Flight PET: The EndoTOFPET-US Project

    CERN Document Server

    Frisch, Benjamin

    2013-01-01

    The EndoTOFPET-US collaboration develops a multimodal imaging technique for endoscopic exams of the pancreas or the prostate. It combines the benefits of high resolution metabolic imaging with Time-Of-Flight Positron Emission Tomography (TOF PET) and anatomical imaging with ultrasound (US). EndoTOFPET-US consists of a PET head extension for a commercial US endoscope and a PET plate outside the body in coincidence with the head. The high level of miniaturization and integration creates challenges in fields such as scintillating crystals, ultra-fast photo-detection, highly integrated electronics, system integration and image reconstruction. Amongst the developments, fast scintillators as well as fast and compact digital SiPMs with single SPAD readout are used to obtain the best coincidence time resolution (CTR). Highly integrated ASICs and DAQ electronics contribute to the timing performances of EndoTOFPET. In view of the targeted resolution of around 1 mm in the reconstructed image, we present a prototype dete...

  11. Satellite quenching time-scales in clusters from projected phase space measurements matched to simulated orbits

    Science.gov (United States)

    Oman, Kyle A.; Hudson, Michael J.

    2016-12-01

    We measure the star formation quenching efficiency and time-scale in cluster environments. Our method uses N-body simulations to estimate the probability distribution of possible orbits for a sample of observed Sloan Digital Sky Survey galaxies in and around clusters based on their position and velocity offsets from their host cluster. We study the relationship between their star formation rates and their likely orbital histories via a simple model in which star formation is quenched once a delay time after infall has elapsed. Our orbit library method is designed to isolate the environmental effect on the star formation rate due to a galaxy's present-day host cluster from `pre-processing' in previous group hosts. We find that quenching of satellite galaxies of all stellar masses in our sample (109-10^{11.5}M_{⊙}) by massive (> 10^{13} M_{⊙}) clusters is essentially 100 per cent efficient. Our fits show that all galaxies quench on their first infall, approximately at or within a Gyr of their first pericentric passage. There is little variation in the onset of quenching from galaxy-to-galaxy: the spread in this time is at most ˜2 Gyr at fixed M*. Higher mass satellites quench earlier, with very little dependence on host cluster mass in the range probed by our sample.

  12. The effect of chirped intense femtosecond laser pulses on the Argon cluster

    CERN Document Server

    Ghaforyan, H; Irani, E

    2016-01-01

    The interaction of intense femtosecond laser pulses with atomic Argon clusters has been investigated by using nano-plasma model. Based on the dynamic simulations, ionization process, heating and expansion of a cluster after irradiation by femtosecond laser pulses at intensities up to 2*1017 Wcm-2 are studied. The analytical calculation provides ionization ratefor different mechanisms and time evolution of the density of electrons for different pulse shapes. In this approach the strong dependence of laser intensity, pulse duration and laser shape on the electron energy, the electron density and the cluster size are presented using the intense chirped laser pulses. Based on the presented theoretical modifications, the effect of chirped laser pulse on the complex dynamical process of the interaction is studied. It is found that the energy of electrons and the radius of cluster for the negatively chirped pulsesare improved up to 20% in comparison to the unchirped and positively chirped pulses.