WorldWideScience

Sample records for argon radio-frequency glow

  1. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    Science.gov (United States)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  2. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    International Nuclear Information System (INIS)

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images

  3. Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure

    Institute of Scientific and Technical Information of China (English)

    YU Qian; DENG Yong-Feng; LIU Yue; HAN Xian-Wei

    2008-01-01

    A one-dimensional fluid simulation on argon rf glow discharge with varying linearly gas pressure from 1 Torr to 100 Torr is performed. The model based on mass conservation equations for electron and ion under diffusion and mobility approximation, and the electron energy conservation equation is solved numerically by finite volume method. The numerical results show that a uniform plasma with high density can be obtained from rf glow discharge with varying gas pressure, and the density of plasma becomes higher as the gas pressure varies from 1 Torr to 100 Torr. It is also shown that in the range of the gas pressure from 1 Torr to 100 Torr with the slower rate of varying gas pressure, higher density of plasma can be obtained.

  4. Hybrid modeling of a capacitively coupled radio frequency glow discharge in argon: Combined Monte Carlo and fluid model

    NARCIS (Netherlands)

    Bogaerts, A.; Gijbels, R.; W. Goedheer,

    1999-01-01

    A hybrid model has been developed for a capacitively coupled rf glow discharge in argon, employed as a spectroscopic source in the field of analytical chemistry. The cell is a rather small cylinder with a very small rf-powered electrode (only 5 mm in diameter). The typical working conditions applied

  5. Endotoxin removal by radio frequency gas plasma (glow discharge)

    Science.gov (United States)

    Poon, Angela

    2011-12-01

    Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to sterile water extracts of each device. The main analytical technique for identification of chemical compositions, amounts, and changes during sequential reference Endotoxin additions and subsequent RFGD-treatment removals from infrared (IR)-transparent germanium (Ge) prisms was Multiple Attenuated Internal Reflection (MAIR) infrared spectroscopy sensitive to even monolayer amounts of retained bio-contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR-IR measurements

  6. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure

    Science.gov (United States)

    Liu, Xinkun; Xu, Jinzhou; Cui, Tongfei; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-07-01

    A one-dimensional self-consistent fluid model was developed for radio frequency glow discharge in helium at near atmospheric pressure, and was employed to study the gas breakdown characteristics in terms of breakdown voltage. The effective secondary electron emission coefficient and the effective electric field for ions were demonstrated to be important for determining the breakdown voltage of radio frequency glow discharge at near atmospheric pressure. The constant of A was estimated to be 64±4 cm-1Torr-1, which was proportional to the first Townsend coefficient and could be employed to evaluate the gas breakdown voltage. The reduction in the breakdown voltage of radio frequency glow discharge with excitation frequency was studied and attributed to the electron trapping effect in the discharge gap.

  7. Decomposition of polychlorinated biphenyls (PCB's) in a radio-frequency glow discharge plasma

    International Nuclear Information System (INIS)

    A study was made on the decomposition of PCB's in a radio-frequency glow discharge plasma. When PCB's were decomposed in a plasma of oxygen at a few Torr, they were completely decomposed to gaseous products: carbon monoxide, carbon dioxide, water, hydrogen chloride, chlorine, and chlorine dioxide. Hazardous compounds such as phosgene and vinyl chloride were not detected by a GC-MS analysis. (author)

  8. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    Science.gov (United States)

    Li, Guo; Li, He-Ping; Wang, Li-Yan; Wang, Sen; Zhao, Hong-Xin; Sun, Wen-Ting; Xing, Xin-Hui; Bao, Cheng-Yu

    2008-06-01

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc.

  9. Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium

    International Nuclear Information System (INIS)

    Due to low gas temperatures and high densities of active species, atmospheric-pressure glow discharges (APGDs) would have potential applications in the fields of plasma-based sterilization, gene mutation, etc. In this letter, the genetic effects of helium radio-frequency APGD plasmas with the plasmid DNA and oligonucleotide as the treated biomaterials are presented. The experimental results show that it is the chemically active species, instead of heat, ultraviolet radiation, intense electric field, and/or charged particles, that break the double chains of the plasmid DNA. The genetic effects depend on the plasma operating parameters, e.g., power input, helium flow rate, processing distance, time, etc

  10. Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges

    Science.gov (United States)

    Zhang, Jie; Guo, Ying; Huang, Xiaojiang; Zhang, Jing; Shi, Jianjun

    2016-10-01

    The discharge operation regime of pulse modulated atmospheric radio frequency (RF) glow discharge in helium is investigated on the duty cycle and frequency of modulation pulses. The characteristics of radio frequency discharge burst in terms of breakdown voltage, alpha(α)-gamma(γ) mode transition voltage and current are demonstrated by the discharge current voltage characteristics. The minimum breakdown voltage of RF discharge burst was obtained at the duty cycle of 20% and frequency of 400 kHz, respectively. The α-γ mode transition of RF discharge burst occurs at higher voltage and current by reducing the duty cycle and elevating the modulation frequency before the RF discharge burst evolving into the ignition phase, in which the RF discharge burst can operate stably in the γ mode. It proposes that the intensity and stability of RF discharge burst can be improved by manipulating the duty cycle and modulation frequency in pulse modulated atmospheric RF glow discharge. supported by National Natural Science Foundation of China (Nos. 11475043 and 11375042)

  11. Simulation of radio-frequency atmospheric pressure glow discharge in γ mode

    Institute of Scientific and Technical Information of China (English)

    Shang Wan-Li; Wang De-Zhen; Michael G. Kong

    2007-01-01

    The existence of two different discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to as α mode, the discharge current density is relatively low and the bulk plasma electrons acquire the energy due to the sheath expansion.In the second mode, termed γ mode, the discharge current density is relatively high, the secondary electrons emitted by cathode under ion bombardment in the cathode sheath region play an important role in sustaining the discharge. In this paper, a one-dimensional self-consistent fluid model for rf APGDs is used to simulate the discharge mechanisms in the γmode in helium discharge between two parallel metallic planar electrodes. The results show that as the applied voltage increases, the discharge current becomes greater and the plasma density correspondingly increases, consequentially the discharge transits from the c mode into the γ mode. The high collisionality of the APGD plasma results in significant drop of discharge potential across the sheath region, and the electron Joule heating and the electron collisional energy loss reach their maxima in the region. The validity of the simulation is checked with the available experimental and numerical data.

  12. Atmospheric Pressure Radio Frequency Dielectric Barrier Discharges in Nitrogen/Argon

    International Nuclear Information System (INIS)

    This work reports the experimental results on the characteristics of radio frequency dielectric barrier N2/Ar discharges. Depending on the nitrogen content in the feed gas and the input power, the discharge can operate in two different modes: a homogeneous glow discharge and a constricted discharge. With increasing input power, the number of discharge columns increases. The discharge columns have starlike structures and exhibit symmetric self-organized arrangement. Optical emission spectroscopy was performed to estimate the plasma temperature. Spatially resolved gas temperature measurements, determined from NO emission rotational spectroscopy were taken across the 4.4 mm gap filled by the discharge. Gas temperature in the middle of the gas gap is lower than that close to the electrodes

  13. Enhanced tissue integration of implantable electrodes for sensing, and stimulation, via radio frequency glow discharge

    Science.gov (United States)

    O'Connor, Laurie M.

    Biopotential electrodes are conductive materials that convert electronic currents to or from ionic currents for sensing, and stimulating specific tissue sites for medical applications. Implanted electrodes become "walled off" by the foreign body tissue reactions producing poorly attached scar capsules dominated by surrounding dense collagenous lamellae and source fibroblasts which are electrically resistive. The conductive interstitial fluid that is typical between an electrode and the resistive capsule allows spurious current paths. The insulating layer increases the distance between the electrode and the target sites and poor attachment often results in electrode migration within the host tissue. This investigation tested the hypothesis that surface-energy modulation of electrodes, via Radio Frequency Glow Discharge Treatment (RFGDT), can improve the performance of tissue-implantable electrodes by reducing the foreign body tissue reaction and enhancing interfacial bonding between the tissue and electrode material. Previously published findings were reproduced in a pilot study of explanted reference grade medical-grade methyl silicone (PDMS) and commercially pure titanium (cpTi) materials and their tissue capsules from 30-day subcutaneous exposures in Balb/C mice. The low-critical surface tension PDMS produced thick, dense, poorly attached scar capsules while the higher-surface-energy commercially pure titanium (cpTi) produced more cellular and strongly attached tissue layers difficult to delaminate from the biomaterial. For the main body of work, cpTi, capacitor-grade Tantalum (Ta), and synthetic heart valve-quality Pyrolytic Carbon (PyC) were evaluated, representative of potential high-surface-energy implant electrode materials. Their surface characteristics were determined as-manufactured and after Radio Frequency Glow Discharge Treatment (RFGDT) by Critical Surface Tension (CST) measurement, Scanning Electron Microscopy (SEM), Energy Dispersive X

  14. Nitrogen Removal from Molten Steel under Argon DC Glow Plasma

    Institute of Scientific and Technical Information of China (English)

    SUN Ming-shan; DING Wei-zhong; LU Xiong-gang

    2005-01-01

    Under argon DC glow plasma, the nitrogen removal from molten steel was studied. The experimental result showed that nitrogen mass percent could be reduced to 0.000 8%. The change of polarity had no impact on nitrogen removal when the nitrogen mass percent was low. The mechanism of denitrogenation of molten steel under argon DC glow plasma was discussed.

  15. Sampling modulation technique in radio-frequency helium glow discharge emission source by use of pulsed laser ablation.

    Science.gov (United States)

    Naeem, Tariq Mahmood; Matsuta, Hideyuki; Wagatsuma, Kazuaki

    2004-05-01

    An emission excitation source comprising a high-frequency diode-pumped Q-switched Nd:YAG laser and a radio-frequency powered glow discharge lamp is proposed. In this system sample atoms ablated by the laser irradiation are introduced into the lamp chamber and subsequently excited by the helium glow discharge plasma. The pulsed operation of the laser can produce a cyclic variation in the emission intensities of the sample atoms whereas the plasma gas species emit the radiation continuously. The salient feature of the proposed technique is the selective detection of the laser modulation signal from the rest of the continuous background emissions, which can be achieved with the phase sensitive detection of the lock-in amplifier. The arrangement may be used to estimate the emission intensity of the laser ablated atom, free from the interference of other species present in the plasma. The experiments were conducted with a 13.56 MHz radio-frequency (rf) generator operated at 80 W power to produce plasma and the laser at a wavelength of 1064 nm (pulse duration:34 ns, repetition rate:7 kHz and average pulse energy of about 0.36 mJ) was employed for sample ablation. The measurements resulted in almost complete removal of nitrogen molecular bands (N(2)(+) 391.44 nm). Considerable reduction (about 75%) in the emission intensity of a carbon atomic line (C I 193.03 nm) was also observed. PMID:15034707

  16. Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures

    OpenAIRE

    Grassellino, A.; Romanenko, A.; Melnychuk, O.; Trenikhina, Y.; Crawford, A; Rowe, A.; Wong, M; Sergatskov, D.; Khabiboulline, T.; Barkov, F.

    2013-01-01

    We report a surface treatment that systematically improves the quality factor of niobium radio frequency cavities beyond the expected limit for niobium. A combination of annealing in a partial pressure of nitrogen or argon gas and subsequent electropolishing of the niobium cavity surface leads to unprecedented low values of the microwave surface resistance, and an improvement in the efficiency of the accelerating structures up to a factor of 3, reducing the cryogenic load of superconducting c...

  17. Development of radio-frequency-powered helium glow discharge optical emission source associated with sampling by laser ablation

    International Nuclear Information System (INIS)

    A new excitation source for emission spectrometry consisting of an r.f-powered helium glow discharge plasma and a laser-diode pumped Q-switched Nd:YAG laser, was developed. The Nd:YAG laser works dominantly as a sampling source for introduction of sample atoms to the glow discharge plasma, because the laser induced plasma cannot be generated by the laser itself due to its high repetition rate. On the other hand, the helium glow discharge plasma mainly acts as excitation source, because little amounts od sample atoms can be introduced due to the low sputtering rate. This effect arises from the low sputtering yield as well as the low ionization efficiency of helium atom. Besides, the excited species of helium gases has the excitation ability for atomic species requiring large excitation energies as fluorine atom due to their high metastable levels. From these characteristics in this method, the sampling process and the excitation having high excitation energy levels. In this study, fluorine atomic lines requiring large excitation energies were measured. These lines were observed only when the laser was irradiated to the helium plasma. They could be observed neither in the argon plasma nor in the helium plasma without the laser irradiation. Further, the calibration curve for a fluorine atomic line gave a linear relationship in the LiF concentration range of 0.02-5.0 mass%, as shown in Fig 2.

  18. Effect of discharge parameters on emission yields in a radio-frequency glow-discharge atomic-emission source

    Science.gov (United States)

    Parker, Mark; Hartenstein, Matthew L.; Marcus, R. Kenneth

    1997-05-01

    A study is performed on a radio-frequency glow-discharge atomic-emission (rf-GD-AES) source to determine the factors effecting the emission yields for both metallic and nonconductive sample types. Specifically, these studies focus on determining how the operating parameters (power and pressure) influence emission yields. The results follow predicted patterns as determined by Langmuir probe diagnostic studies of a similar source. In particular, discharge gas pressure is the key operating parameter as slight changes in pressure may significantly affect the emission yield of the analyte species. RF power is less important and is shown to produce only relatively small changes in the emission yield over the ranges typically used in rf-GD analyses. These studies indicate that the quantitative analysis of layered materials, depth-profiling, may be adversely affected if the data collection scheme, i.e. the quantitative algorithm, requires changing the pressure during an analysis to keep the operating current and voltage constant. A direct relationship is shown to exist between the Ar (discharge gas) emission intensity and that of sputtered species for nonconductors. This observance is used to compensate for differences in emission intensities observed in the analysis of various thickness nonconductive samples. The sputtered element emission signals are corrected based on the emission intensity of an Ar (1) transition, implying that quantitative analysis of nonconductive samples is not severely limited by the availability of matrix matched standards.

  19. Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gessel, Bram van; Bruggeman, Peter [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Brandenburg, Ronny [Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany)

    2013-08-05

    A time modulated radio frequency (RF) plasma jet operated with an Ar mixture is investigated by measuring the electron density and electron temperature using Thomson scattering. The measurements have been performed spatially resolved for two different electrode configurations and as a function of the plasma dissipated power and air concentration admixed to the Ar. Time resolved measurements of electron densities and temperatures during the RF cycle and after plasma power switch-off are presented. Furthermore, the influence of the plasma on the air entrainment into the effluent is studied using Raman scattering.

  20. Observation of Ω mode electron heating in dusty argon radio frequency discharges

    Energy Technology Data Exchange (ETDEWEB)

    Killer, Carsten; Bandelow, Gunnar; Schneider, Ralf; Melzer, André [Institut für Physik, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany); Matyash, Konstantin [Universitätsrechenzentrum, Ernst-Moritz-Arndt-Universität Greifswald, 17489 Greifswald (Germany)

    2013-08-15

    The time-resolved emission of argon atoms in a dusty plasma has been measured with phase-resolved optical emission spectroscopy using an intensified charge-coupled device camera. For that purpose, three-dimensional dust clouds have been confined in a capacitively coupled rf argon discharge with the help of thermophoretic levitation. While electrons are exclusively heated by the expanding sheath (α mode) in the dust-free case, electron heating takes place in the entire plasma bulk when the discharge volume is filled with dust particles. Such a behavior is known as Ω mode, first observed in electronegative plasmas. Furthermore, particle-in-cell simulations have been carried out, which reproduce the trends of the experimental findings. These simulations support previous numerical models showing that the enhanced atomic emission in the plasma can be attributed to a bulk electric field, which is mainly caused by the reduced electrical conductivity due to electron depletion.

  1. Effect of neutral gas heating in argon radio frequency inductively coupled plasma

    International Nuclear Information System (INIS)

    Heating of neutral gas in inductively coupled plasma (ICP) is known to result in neutral gas depletion. In this work, this effect is considered in the simulation of the magnetic field distribution of a 13.56 MHz planar coil ICP. Measured electron temperatures and densities at argon pressures of 0.03, 0.07 and 0.2 mbar were used in the simulation whilst neutral gas temperatures were heuristically fitted. The simulated results showed reasonable agreement with the measured magnetic field profile. (author)

  2. A hybrid model of radio frequency biased inductively coupled plasma discharges: description of model and experimental validation in argon

    Science.gov (United States)

    Wen, De-Qi; Liu, Wei; Gao, Fei; Lieberman, M. A.; Wang, You-Nian

    2016-08-01

    A hybrid model, i.e. a global model coupled bidirectionally with a parallel Monte-Carlo collision (MCC) sheath model, is developed to investigate an inductively coupled discharge with a bias source. This hybrid model can self-consistently reveal the interaction between the bulk plasma and the radio frequency (rf) bias sheath. More specifically, the plasma parameters affecting characteristics of rf bias sheath (sheath length and self-bias) are calculated by a global model and the effect of the rf bias sheath on the bulk plasma is determined by the voltage drop of the rf bias sheath. Moreover, specific numbers of ions are tracked in the rf bias sheath and ultimately the ion energy distribution function (IEDF) incident on the bias electrode is obtained. To validate this model, both bulk plasma density and IEDF on the bias electrode in an argon discharge are compared with experimental measurements, and a good agreement is obtained. The advantage of this model is that it can quickly calculate the bulk plasma density and IEDF on the bias electrode, which are of practical interest in industrial plasma processing, and the model could be easily extended to serve for industrial gases.

  3. Two-dimensional profile measurement of plasma parameters in radio frequency-driven argon atmospheric pressure plasma jet

    International Nuclear Information System (INIS)

    The two-dimensional profiles of the electron density, electron temperature, neutral translational temperature, and molecular rotational temperature are investigated in an argon atmospheric pressure plasma jet, which is driven by the radio frequency of 13.56 MHz by means of the laser scattering methods of Thomson, Rayleigh, and Raman. All measured parameters have maximum values at the center of the discharge and decrease toward the plasma edge. The results for the electron temperature profile are contrary to the results for the microwave-driven plasma. From our experimental results, the profiles of the plasma parameters arise from the radial contraction of plasmas and the time averaged profile of the electric field, which is obtained by a microwave simulation performed under identical conditions to the plasma jet. In the case of the neutral temperature, a higher translational temperature than the rotational temperature is measured, and its discrepancy is tentatively explained in terms of the low ion-neutral charge exchange rate and the additional degrees of freedom of the molecules. The description of our experimental results and the underlying physics are addressed in detail

  4. Two-dimensional profile measurement of plasma parameters in radio frequency-driven argon atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Seo, B. H.; Kim, J. H., E-mail: jhkim86@kriss.re.kr [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Kim, D. W. [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-338 (Korea, Republic of); You, S. J., E-mail: sjyou@cnu.ac.kr [Department of Physics, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2015-09-15

    The two-dimensional profiles of the electron density, electron temperature, neutral translational temperature, and molecular rotational temperature are investigated in an argon atmospheric pressure plasma jet, which is driven by the radio frequency of 13.56 MHz by means of the laser scattering methods of Thomson, Rayleigh, and Raman. All measured parameters have maximum values at the center of the discharge and decrease toward the plasma edge. The results for the electron temperature profile are contrary to the results for the microwave-driven plasma. From our experimental results, the profiles of the plasma parameters arise from the radial contraction of plasmas and the time averaged profile of the electric field, which is obtained by a microwave simulation performed under identical conditions to the plasma jet. In the case of the neutral temperature, a higher translational temperature than the rotational temperature is measured, and its discrepancy is tentatively explained in terms of the low ion-neutral charge exchange rate and the additional degrees of freedom of the molecules. The description of our experimental results and the underlying physics are addressed in detail.

  5. Use of one-dimensional self consistent model for the investigation of an argon-oxygen radio-frequency discharge

    Energy Technology Data Exchange (ETDEWEB)

    Morscheidt, W.; Hassouni, K. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions, CNRS-UPN, 93 - Villetaneuse (France); Amouroux, J.; Arefi-Khonsari, F. [Universite Pierre et Marie Curie, Lab. de Genie des Procedes Plasmas, 75 - Paris (France)

    2001-07-01

    A one-dimensional self consistent numerical model of argon-oxygen glow discharges obtained in parallel plate capacitively coupled devices has been presented. This model includes a discharge module that solves for the coupled set of charged species continuity equations, the electron energy transport equation and Poisson's equation. It also includes a neutral species transport-chemistry module that solves the stationary continuity equations of these species. The chemistry and electron energy losses through inelastic collisions were described by a 14 species-62 reactions thermochemical model. Results obtained from simulations performed for a feed gas composition of 66% Oxygen-34% Argon and several discharge pressures were discussed. These results mainly showed that for pressures below 200 mTorr the electron-impact ionization, dissociation and excitation processes mainly took place in the center of the discharge, while at higher pressures these processes took place at the discharge edges. The discharges obtained in the low pressure regime are electronegative, O{sup -} being the major negative ion, while at higher pressures the plasma was electro-positive. The axial profiles of the major charged species show a substantial non uniformity with pronounced maxima in the center of the discharge at low pressure. At high pressures, these profiles are more uniform in the ambipolar plasma region and sharply decrease at the sheath. (authors)

  6. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    Science.gov (United States)

    Sun, Wen-Ting; Liang, Tian-Ran; Wang, Hua-Bo; Li, He-Ping; Bao, Cheng-Yu

    2007-05-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  7. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Sun Wenting; Liang Tianran; Wang Huabo; Li Heping; Bao Chengyu [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2007-05-15

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform {alpha} mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  8. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    International Nuclear Information System (INIS)

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work

  9. Thick c-BN films deposited by radio frequency magnetron sputtering in argon/nitrogen gas mixture with additional hydrogen gas

    Science.gov (United States)

    Zhao, Yan; Gao, Wei; Xu, Bo; Li, Ying-Ai; Li, Hong-Dong; Gu, Guang-Rui; Yin, Hong

    2016-10-01

    The excellent physical and chemical properties of cubic boron nitride (c-BN) film make it a promising candidate for various industry applications. However, the c-BN film thickness restricts its practical applications in many cases. Thus, it is indispensable to develop an economic, simple and environment-friend way to synthesize high-quality thick, stable c-BN films. High-cubic-content BN films are prepared on silicon (100) substrates by radio frequency (RF) magnetron sputtering from an h-BN target at low substrate temperature. Adhesions of the c-BN films are greatly improved by adding hydrogen to the argon/nitrogen gas mixture, allowing the deposition of a film up to 5-μm thick. The compositions and the microstructure morphologies of the c-BN films grown at different substrate temperatures are systematically investigated with respect to the ratio of H2 gas content to total working gas. In addition, a primary mechanism for the deposition of thick c-BN film is proposed. Project supported by the National Natural Science Foundation of China (Grant Nos. 51572105, 61504046, and 51272224), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China, the Development and Reform Commission of Jilin Province, China (Grant No. 2015Y050), and the Scientific Research Foundation for the Returned Overseas of Jilin Province, China.

  10. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Kozue; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2015-06-01

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d{sup 6}4p (3d{sup 5}4s4p) excited levels of iron ion broadly over an energy range of 7.6–9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels. - Highlights: • This paper describes the excitation mechanism of iron ion in Okamoto-cavity MIP in comparison with conventional ICP. • Boltzmann distribution is studied among iron ionic lines of

  11. Comparative study on contribution of charge-transfer collision to excitations of iron ion between argon radio-frequency inductively-coupled plasma and nitrogen microwave induced plasma

    International Nuclear Information System (INIS)

    This paper describes an ionization/excitation phenomenon of singly-ionized iron occurring in an Okamoto-cavity microwave induced plasma (MIP) as well as an argon radio-frequency inductively-coupled plasma (ICP), by comparing the Boltzmann distribution among iron ionic lines (Fe II) having a wide range of the excitation energy from 4.76 to 9.01 eV. It indicated in both the plasmas that plots of Fe II lines having lower excitation energies (4.76 to 5.88 eV) were fitted on each linear relationship, implying that their excitations were caused by a dominant thermal process such as collision with energetic electron. However, Fe II lines having higher excitation energies (more than 7.55 eV) had a different behavior from each other. In the ICP, Boltzmann plots of Fe II lines assigned to the higher excited levels also followed the normal Boltzmann relationship among the low-lying excited levels, even including a deviation from it in particular excited levels having an excitation energy of ca. 7.8 eV. This deviation can be attributed to a charge-transfer collision with argon ion, which results in the overpopulation of these excited levels, but the contribution is small. On the other hand, the distribution of the high-lying excited levels was non-thermal in the Okamoto-cavity MIP, which did not follow the normal Boltzmann relationship among the low-lying excited levels. A probable reason for the non-thermal characteristics in the MIP is that a charge-transfer collision with nitrogen molecule ion having many vibrational/rotational levels could work for populating the 3d64p (3d54s4p) excited levels of iron ion broadly over an energy range of 7.6–9.0 eV, while collisional excitation by energetic electron would occur insufficiently to excite these high-energy levels. - Highlights: • This paper describes the excitation mechanism of iron ion in Okamoto-cavity MIP in comparison with conventional ICP. • Boltzmann distribution is studied among iron ionic lines of various

  12. Generation of uniform atmospheric pressure argon glow plasma by dielectric barrier discharge

    Indian Academy of Sciences (India)

    Raju Bhai Tyata; Deepak Prasad Subedi; Rajendra Shrestha; Chiow San Wong

    2013-03-01

    In this paper, atmospheric pressure glow discharges (APGD) in argon generated in parallel plate dielectric barrier discharge system is investigated by means of electrical and optical measurements. Using a high voltage (0–20 kV) power supply operating at 10–30 kHz, homogeneous and steady APGD has been observed between the electrodes with gap spacing from 0.5 mm to 2 mm and with a dielectric barrier of thickness 2 mm while argon gas is fed at a controlled flow rate of 11/min. The electron temperature and electron density of the plasma are determined by means of optical emission spectroscopy. Our results show that the electron density of the discharge obtained is of the order of 1016 cm-3 while the electron temperature is estimated to be 0.65 eV. The important result is that electron density determined from the line intensity ratio method and stark broadening method are in very good agreement. The Lissajous figure is used to estimate the energy deposited to the glow discharge. It is found that the energy deposited to the discharge is in the range of 20 to 25 $\\$J with a discharge voltage of 1.85 kV. The energy deposited to the discharge is observed to be higher at smaller gas spacing. The glow discharge plasma is tested to be effective in reducing the hydrophobicity of polyethylene film significantly.

  13. Argon gas concentration effects on nanostructured molybdenum nitride layer growth using 100 Hz pulsed dc glow discharge

    Science.gov (United States)

    Ikhlaq, U.; Ahmad, R.; Saleem, S.; Shah, M. S.; Umm-i-Kalsoom; Khan, N.; Khalid, N.

    2012-08-01

    The effect of argon concentration (10%-40%) on the surface properties of molybdenum is studied in nitrogen-argon mixture using 100 Hz pulsed dc glow discharge. The analysis is carried out by using X-ray diffractometer (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and Vickers microhardness tester to investigate surface properties of the nitrided samples. XRD results exhibit the formation of molybdenum nitrides. Crystallite size analysis and SEM morphology confirm the growth of nanostructured molybdenum nitride layers. Moreover, significant increase in surface hardness (by a factor of about two times) is found when the sample is treated for 30% argon in nitrogen-argon mixed plasma.

  14. Morphological and surface compositional changes in poly(lactide-co-glycolide) tissue engineering scaffolds upon radio frequency glow discharge plasma treatment

    International Nuclear Information System (INIS)

    Chemical functionalisation of polymeric scaffolds with functional groups such as amine could provide optimal conditions for loading of signalling biomolecules over the entire volume of the porous scaffolds. Three-dimensional (both surface and bulk) functionlisation of large volume scaffolds is highly desirable, but preferably without any change to the basic morphological, structural and bulk chemical properties of the scaffolds. In this work, we have carried out and compared treatments of poly(lactide-co-glycolide) tissue engineering scaffolds by two methods, that is, a wet chemical method using ethylenediamine and a glow discharge plasma method using heptylamine as a precursor. The samples thus prepared were analysed by scanning electron microscopy and X-ray photoelectron spectroscopy. The plasma treatment generated amide and protonated amine (NH+) groups which were present in the bulk and on the surface of the scaffold. Amination also occurred for the wet chemical treatments but the structural and chemical integrity were adversely affected

  15. Plasma characteristics of argon glow discharge produced by AC power supply operating at low frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Kongpiboolkid, Watcharapon; Mongkolnavin, Rattachat [Department of Physics, Facuty of Science, Chulalongkorn University, Bangkok (Thailand); Plasma Technology and Nuclear Fusion Research Unit, Chulalongkorn University, Bangkok (Thailand)

    2015-04-24

    Non-thermal properties of Argon glow discharge operating with various operating pressures were measured and presented in this work. The Argon plasma is produced by a parallel conducting electrodes coupling with a high voltage AC power supply. The power supply can generate high AC voltage at various frequencies. The frequencies for the operation are in the range of a few kHz. The system is capable of generating electric field between the two metal electrodes discharge system. The characteristics of plasma produced were measured by optical emission spectroscopy (OES) technique where electron temperature (T{sub e}) and electron number density (n{sub e}) can be determined by line intensity ratio method. The value of electron number density was then determined from the Saha-Eggert equation. Our results show that the electron number density of the discharge obtained is of the order of 10{sup −17} − 10{sup −18} m{sup −3} where the electron temperature is between 1.00−2.00 eV for various operating frequencies used which are in good agreement with similar results published earlier.

  16. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    Energy Technology Data Exchange (ETDEWEB)

    Minotti, F.; Giuliani, L.; Xaubet, M.; Grondona, D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EHA, Buenos Aires, Argentina and Instituto de Física del Plasma (INFIP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires - UBA, C1428EHA, Buenos Aires (Argentina)

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium between electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.

  17. Characterization of a radio frequency hollow electrode discharge at low gas pressures

    Science.gov (United States)

    Ahadi, Amir Mohammad; Trottenberg, Thomas; Rehders, Stefan; Strunskus, Thomas; Kersten, Holger; Faupel, Franz

    2015-08-01

    A radio frequency (RF) hollow discharge configuration is presented, which makes use of a combination of RF plasma generation and the hollow cathode effect. The system was especially designed for the treatment of nanoparticles, plasma polymerization, and nanocomposite fabrication. The process gas streams through the plasma in the inner of the cylindrical electrode system. In the here presented measurements, pure argon and argon with oxygen admixtures are exemplarily used. The discharge is characterized by probe measurements in the effluent, electrical measurements of the discharge parameters, and visual observations of the plasma glow. It is found that the RF fluctuations of the plasma potential are weak. The plasma potential resembles the one of a DC hollow cathode discharge, the RF hollow electrode acts as a cathode due to the self-bias, and a high voltage sheath forms in its inner cylinder.

  18. Radio frequency ion source

    CERN Document Server

    Shen Guan Ren; Gao Fu; LiuNaiYi

    2001-01-01

    The study on Radio Frequency Ion Source is mainly introduced, which is used for CIAE 600kV ns Pulse Neutron Generator; and obtained result is also presented. The RF ion source consists of a diameter phi 25 mm, length 200 mm, coefficient of expansion =3.5 mA, beam current on target >=1.5 mA, beam spot =100 h.

  19. Estimation Using an Enhancement Factor on Non Local Thermodynamic Equilibrium Behavior of High-lying Energy Levels of Neutral Atom in Argon Radio-Frequency Inductively-Coupled Plasma.

    Science.gov (United States)

    Wagatsuma, Kazuaki; Satoh, Kozue

    2016-01-01

    This paper describes a plasma-diagnostic method using an enhancement factor on the Boltzmann distribution among emission lines of iron atom in an argon radio-frequency inductively-coupled plasma (ICP). It indicated that Boltzmann plots of the atomic lines having lower excitation energies (3.4 to 4.8 eV) were well fitted on a straight line while those having more than 5.5 eV deviated upwards from a linear relationship. This observation could be explained by the fact that ICP is not in a complete thermodynamic equilibrium between direct excitation to energy levels of iron atom, ionization of iron atom, and radiative decay processes to the ground state. Especially, the recombination of iron ion with captured electron should accompany cascade de-excitations between closely-spaced excited levels just below the ionization limit, the rates of which become slower as a whole; as a result, these high-lying levels might be more populated than the low-lying levels as if a different LTE condition coexists on the high energy side. This overpopulation could be quantitatively estimated using an enhancement factor (EF), which was a ratio of the observed intensity to the expected value extrapolated from the normal distribution on the low energy side. The EFs were generally small (less than 3); therefore, the cascade de-excitation process would slightly contribute to the population of these excited levels. It could be considered from variations of the EF that the overpopulation proceeded to a larger extent at lower radio-frequency forward powers, at higher flow rates of the carrier gas, or at higher observation heights. The reason for this is that the kinetic energy of energetic particles, such as electrons, becomes reduced under all of these plasma conditions, thus enabling the high-lying levels to be more populated by cascade de-excitation processes from iron ion rather than by collisional excitation processes with the energetic particles. A similar Boltzmann analysis using the EF

  20. The influence of resonance radiation transport on the contraction of a glow discharge in argon

    Science.gov (United States)

    Golubovskii, Yu B.; Maiorov, V. A.

    2015-04-01

    The role of resonance radiation transport in the contraction of a positive column in an argon glow discharge is studied numerically. The theory is based on the self-consistent solution of the ambipolar diffusion equation for electrons, the diffusion equation for metastable atoms and the Biberman-Holstein equation for resonance atoms. To calculate the ionization and excitation rates, the Boltzmann equation is solved in a local approximation taking into account elastic, inelastic and electron-electron collisions. A solution method for a boundary problem is developed which allows one to obtain a hysteresis of the parameters during a continuous transition from a diffuse mode to a contracted mode through an unstable branch. At small currents there is a diffuse discharge where the role of radiation transport is inessential because the radial distributions of electrons and excited atoms are close to the fundamental modes of the corresponding equations. Under these conditions, the traditional approximation of ‘effective lifetime’ is accurate enough. For a contracted discharge, this approximation is not applicable because the higher diffusion and radiation modes play a notable role and a more strict description of radiation transport is required. It is shown that, when radiation transport is taken into account, the width of a filament in a contracted discharge significantly exceeds that obtained in the traditional ‘effective lifetime’ approximation. The critical current, when the discharge abruptly turns into a contracted mode, is shifted towards higher current values. The results obtained in this paper can also relate to a discharge in other inert gases.

  1. ULTRAVIOLET INDUCED MOTION OF A FLUORESCENT DUST CLOUD IN AN ARGON DIRECT CURRENT GLOW DISCHARGE PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Hvasta, M.G.; and Zwicker, A.

    2008-01-01

    Dusty plasmas consist of electrons, ions, neutrals and nm-μm sized particles commonly referred to as dust. In man-made plasmas this dust may represent impurities in a tokamak or plasma etching processing. In astrophysical plasmas this dust forms structures such as planetary rings and comet tails. To study dusty plasma dynamics an experiment was designed in which a 3:1 silica (<5 μm diameter) and fl uorescent dust mixture was added to an argon DC glow discharge plasma and exposed to UV radiation. This fl uorescent lighting technique offers an advantage over laser scattering (which only allows two-dimensional slices of the cloud to be observed) and is simpler than scanning mirror techniques or particle image velocimetry. Under typical parameters (P=150 mTorr, V anode= 100 V, Vcathode= -400 V, Itotal < 2mA) when the cloud is exposed to the UV light (100W, λ = 365 nm) the mixture fl uoresces, moves ~2mm towards the light source and begins rotating in a clockwise manner (as seen from the cathode). By calibrating a UV lamp and adjusting the relative intensity of the UV with a variable transformer it was found that both translational and rotational velocities are a function of UV intensity. Additionally, it was determined that bulk cloud rotation is not seen when the dust tray is not grounded while bulk translation is. This ongoing experiment represents a novel way to control contamination in man-made plasmas and a path to a better understanding of UV-bathed plasma systems in space..

  2. Radio Frequency Anechoic Chamber Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the design, manufacture, and test of antenna systems. The facility is also used as an electromagnetic compatibility/radio frequency interference...

  3. Enhancement of intensities in glow discharge mass spectrometry by using mixtures of argon and helium as plasma gases.

    Science.gov (United States)

    Lange, Britta; Matschat, Ralf; Kipphardt, Heinrich

    2007-12-01

    Glow discharge mass spectrometry (GD-MS) is an excellent technique for fast multi-element analysis of pure metals. In addition to metallic impurities, non-metals also can be determined. However, the sensitivity for these elements can be limited due to their high first ionization potentials. Elements with a first ionization potential close to or higher than that of argon, which is commonly used as discharge gas in GD-MS analysis, are ionized with small efficiency only. To improve the sensitivity of GD-MS for such elements, the influence of different glow-discharge parameters on the peak intensity of carbon, chlorine, fluorine, nitrogen, phosphorus, oxygen, and sulfur in pure copper samples was investigated with an Element GD (Thermo Fisher Scientific) GD-MS. Discharge current, discharge gas flow, and discharge gas composition, the last of which turned out to have the greatest effect on the measured intensities, were varied. Argon-helium mixtures were used because of the very high potential of He to ionize other elements, especially in terms of the high energy level of its metastable states. The effect of different Ar-He compositions on the peak intensity of various impurities in pure copper was studied. With Ar-He mixtures, excellent signal enhancements were achieved in comparison with use of pure Ar as discharge gas. In this way, traceable linear calibration curves for phosphorus and sulfur down to the microg kg(-1) range could be established with high sensitivity and very good linearity using pressed powder samples for calibration. This was not possible when pure argon alone was used as discharge gas. PMID:17940753

  4. Blazars at Low Radio Frequencies

    Science.gov (United States)

    Trüstedt, J.; Kadler, M.; Brüggen, M.; Falcke, H.; Heald, G.; McKean, J.; Mueller, C.; Ros, E.; Schulz, R.; Wilms, J.

    We explore the low radio-frequency properties of the MOJAVE 1 blazar sample using the LOFAR Multi-Frequency Snapshot Sky Survey (MSSS). We find the characteristically flat blazar spectrum to extend down to the LOFAR bands, demonstrating that the emission at these low radio frequencies is still dominated by relativistically beamed emission. As most sources remain unresolved at the MSSS angular resolution, we are reimaging these data using LOFAR baselines beyond the standard MSSS uv-range resulting in an angular resolution of ~24 arcsec. We present first LOFAR images of MOJAVE sources from this project.

  5. Radio frequency propagation made easy

    CERN Document Server

    Faruque, Saleh

    2015-01-01

    This book introduces Radio Frequency Propagation to a broad audience.  The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications.  The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.

  6. LEP Radio Frequency Copper Cavities

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  7. Radio frequency integrated circuit design

    CERN Document Server

    Rogers, John W M

    2010-01-01

    This newly revised and expanded edition of the 2003 Artech House classic, Radio Frequency Integrated Circuit Design, serves as an up-to-date, practical reference for complete RFIC know-how. The second edition includes numerous updates, including greater coverage of CMOS PA design, RFIC design with on-chip components, and more worked examples with simulation results. By emphasizing working designs, this book practically transports you into the authors' own RFIC lab so you can fully understand the function of each design detailed in this book. Among the RFIC designs examined are RF integrated LC

  8. Simulation of nanoparticle coagulation in radio-frequency C2H2/Ar microdischarges

    Science.gov (United States)

    Xiang-Mei, Liu; Qi-Nan, Li; Rui, Li

    2016-06-01

    The nanoparticle coagulation is investigated by using a couple of fluid models and aerosol dynamics model in argon with a 5% molecular acetylene admixture rf microdischarges, with the total input gas flow rate of 400 sccm. It co-exists with a homogeneous, secondary electron-dominated low temperature γ-mode glow discharges. The heat transfer equation and flow equation for neutral gas are taken into account. We mainly focused on investigations of the nanoparticle properties in atmospheric pressure microdischarges, and discussed the influences of pressure, electrode spacing, and applied voltage on the plasma density and nanoparticle density profiles. The results show that the characteristics of microdischarges are quite different from those of low pressure radio-frequency discharges. First, the nanoparticle density in the bulk plasma in microdischarges is much larger than that of low pressure discharges. Second, the nanoparticle density of 10 nm experiences an exponential increase as soon as the applied voltage increases, especially in the presheath. Finally, as the electrode spacing increases, the nanoparticle density decreased instead of increasing. Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant Nos. A2015011 and A2015010), the Postdoctoral Scientific Research Development Fund of Heilongjiang Province, China (Grant No. LBH-Q14159), the Program for Young Teachers Scientific Research in Qiqihar University (Grant No. 2014k-Z11), the National Natural Science Foundation of China (Grant No. 11404180), and the University Nursing Program for Yong Scholars with Creative Talents in Heilongjiang Province, China (Grant No. UNPYSCT-2015095).

  9. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki, E-mail: wagatuma@imr.tohoku.ac.jp

    2012-01-15

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d{sup 5}4s4p {sup 6}P excited levels. The 3d{sup 5}4s4p {sup 6}P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.10{sup 4}. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  10. Deviation from Boltzmann distribution in excited energy levels of singly-ionized iron in an argon glow discharge plasma for atomic emission spectrometry

    International Nuclear Information System (INIS)

    A Boltzmann plot for many iron ionic lines having excitation energies of 4.7–9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400–800 V at argon pressures of 400–930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7–5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d54s4p 6P excited levels. The 3d54s4p 6P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7–5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.104. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.

  11. In-situ characterisation of the dynamics of a growing dust particle cloud in a direct-current argon glow discharge

    Science.gov (United States)

    Barbosa, S.; Couëdel, L.; Arnas, C.; Kishor Kumar, K.; Pardanaud, C.; Onofri, F. R. A.

    2016-02-01

    The growth and the dynamics of a tungsten nanoparticle cloud were investigated in a direct-current low pressure argon glow discharge. Real-time analyses of the dust particle size and number concentration were performed in-situ by light extinction spectrometry, while spatial dynamics of the cloud was investigated with the laser light-sheet scattering method. Additional off-line electron microscopy and Raman spectroscopy measurements were also performed for comparison purpose. This experimental work reveals the existence of an agglomeration phase followed by the appearance of a new dust particle generation. While growing, the dust cloud is pushed towards the anode and the discharge edge. Afterwards, a new dust particle generation can grow in the space freed by the first generation of nanoparticles. The continuous growth, below the light extinction spectrometry scanning positions, explains the apparent dissimilarities observed between the in-line optical and the off-line electron microscopy analyses.

  12. Operating a radio-frequency plasma source on water vapor

    International Nuclear Information System (INIS)

    A magnetically enhanced radio-frequency (rf) plasma source operating on water vapor has an extensive list of potential applications. In this work, the use of a rf plasma source to dissociate water vapor for hydrogen production is investigated. This paper describes a rf plasma source operated on water vapor and characterizes its plasma properties using a Langmuir probe, a residual gas analyzer, and a spectrometer. The plasma source operated first on argon and then on water vapor at operating pressures just over 300 mtorr. Argon and water vapor plasma number densities differ significantly. In the electropositive argon plasma, quasineutrality requires ni≅ne, where ni is the positive ion density. But in the electronegative water plasma, quasineutrality requires ni+=ni-+ne. The positive ion density and electron density of the water vapor plasma are approximately one and two orders of magnitude lower, respectively, than those of argon plasma. These results suggest that attachment and dissociative attachment are present in electronegative water vapor plasma. The electron temperature for this water vapor plasma source is between 1.5 and 4 eV. Without an applied axial magnetic field, hydrogen production increases linearly with rf power. With an axial magnetic field, hydrogen production jumps to a maximum value at 500 W and then saturates with rf power. The presence of the applied axial magnetic field is therefore shown to enhance hydrogen production.

  13. Radio-frequency integrated-circuit engineering

    CERN Document Server

    Nguyen, Cam

    2015-01-01

    Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. Provide

  14. Radio frequency channel coding made easy

    CERN Document Server

    Faruque, Saleh

    2016-01-01

    This book introduces Radio Frequency Channel Coding to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.

  15. Radio frequency source coding made easy

    CERN Document Server

    Faruque, Saleh

    2015-01-01

    This book introduces Radio Frequency Source Coding to a broad audience. The author blends theory and practice to bring readers up-to-date in key concepts, underlying principles and practical applications of wireless communications. The presentation is designed to be easily accessible, minimizing mathematics and maximizing visuals.

  16. Radio Frequency communication for modular robots

    OpenAIRE

    Arimany Castells, Guillem

    2011-01-01

    Projecte realitzat mitjançant programa de mobilitat. University of Southern Denmark.Mærsk Mc-Kinney Møller Institute We explore the suitability of Wireless Radio Frequency (RF) inter-module communication for modular robots. Our hypothesis is that, instead of using Infrared (IR) and wired links, RF could be used for module localization and for local and global communication.

  17. Radio Frequency Identifiers: What are the Possibilities?

    CERN Document Server

    Elmorshidy, Ahmed

    2010-01-01

    This paper defines the components of radio frequency identifiers (RFID). It also explores the different areas and sectors where RFID can be beneficial. The paper discusses the uses and advantages of RFID in deference, consumer packaged goods (CPG), healthcare, logistics, manufacturing, and retail.

  18. Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films

    Directory of Open Access Journals (Sweden)

    Partha Saikia

    2016-04-01

    Full Text Available We report the effect of hydrogen addition on plasma parameters of argon-oxygen magnetron glow discharge plasma in the synthesis of H-doped TiO2 films. The parameters of the hydrogen-added Ar/O2 plasma influence the properties and the structural phases of the deposited TiO2 film. Therefore, the variation of plasma parameters such as electron temperature (Te, electron density (ne, ion density (ni, degree of ionization of Ar and degree of dissociation of H2 as a function of hydrogen content in the discharge is studied. Langmuir probe and Optical emission spectroscopy are used to characterize the plasma. On the basis of the different reactions in the gas phase of the magnetron discharge, the variation of plasma parameters and sputtering rate are explained. It is observed that the electron and heavy ion density decline with gradual addition of hydrogen in the discharge. Hydrogen addition significantly changes the degree of ionization of Ar which influences the structural phases of the TiO2 film.

  19. Ultra-Wideband Radio Frequency Identification Systems

    CERN Document Server

    Nekoogar, Faranak

    2012-01-01

    Ultra-Wideband Radio Frequency Identification Systems describes the essentials of radio frequency identification systems as well as their target markets. The authors provide a study of commercially available RFID systems and characterizes their performance in terms of read range and reliability in the presence of conductive and dielectric materials. The capabilities and limitations of some commercial RFID systems are reported followed by comprehensive discussions of the advantages and challenges of using ultra-wideband technology for tag/reader communications. The book presents practical aspects of UWB RFID system such as: pulse generation, remote powering, tag and reader antenna design, as well as special applications of  UWB RFIDs in a simple and easy-to-understand language.

  20. Graphene radio frequency receiver integrated circuit.

    Science.gov (United States)

    Han, Shu-Jen; Garcia, Alberto Valdes; Oida, Satoshi; Jenkins, Keith A; Haensch, Wilfried

    2014-01-01

    Graphene has attracted much interest as a future channel material in radio frequency electronics because of its superior electrical properties. Fabrication of a graphene integrated circuit without significantly degrading transistor performance has proven to be challenging, posing one of the major bottlenecks to compete with existing technologies. Here we present a fabrication method fully preserving graphene transistor quality, demonstrated with the implementation of a high-performance three-stage graphene integrated circuit. The circuit operates as a radio frequency receiver performing signal amplification, filtering and downconversion mixing. All circuit components are integrated into 0.6 mm(2) area and fabricated on 200 mm silicon wafers, showing the unprecedented graphene circuit complexity and silicon complementary metal-oxide-semiconductor process compatibility. The demonstrated circuit performance allow us to use graphene integrated circuit to perform practical wireless communication functions, receiving and restoring digital text transmitted on a 4.3-GHz carrier signal.

  1. Radio-Frequency Electronics, Circuits and Applications

    Science.gov (United States)

    Hagen, Jon B.

    This accessible and comprehensive book provides an introduction to the basic concepts and key circuits of radio frequency systems, covering fundamental principles which apply to all radio devices, from wireless data transceivers on semiconductor chips to high-power broadcast transmitters. Topics covered include filters, amplifiers, oscillators, modulators, low-noise amplifiers, phase-locked loops, and transformers. Applications of radio frequency systems are described in such areas as communications, radio and television broadcasting, radar, and radio astronomy. The book contains many exercises, and assumes only a knowledge of elementary electronics and circuit analysis. It will be an ideal textbook for advanced undergraduate and graduate courses in electrical engineering, as well as an invaluable reference for researchers and professional engineers in this area, or for those moving into the field of wireless communications.

  2. Radio Frequency Interference Mitigation at the WSRT

    OpenAIRE

    Fridman, P. A.; Baan, W. A.; Millenaar, R. P.

    2010-01-01

    The sensitivity of radio astronomical stations is often limited by man-made radio frequency interference (RFI) due to a variety of terrestrial activities. An RFI mitigation subsystem (RFIMS) based on real-time digital signalprocessing is proposed here for the Westerbork Synthesis Radio Telescope based on a powerful field programmable gate array processor. In this system the radio astronomy signals polluted by RFI are "cleaned" with the RFIMS before routine back-end correlation processing take...

  3. Radio Frequency Identification (RFID) und Dokumentenlogistik

    OpenAIRE

    Bioly, Sascha; Klumpp, Matthias

    2009-01-01

    This paper presents the development and technical concepts of radio frequency identification (RFID) as well as requirements of document logistics. Combining the two topics possibilities of implementing RFID technologies in document logistics (in finance) are discussed. This highlights the future potential of RFID systems in logistics in general as even in 'low-cost' and 'low-attention' areas as document logistics relevant business impacts and cost savings can be stipulated.

  4. Inkjet Printed Radio Frequency Passive Components

    KAUST Repository

    McKerricher, Garret

    2015-12-01

    Inkjet printing is a mature technique for colourful graphic arts. It excels at customized, large area, high resolution, and small volume production. With the developments in conductive, and dielectric inks, there is potential for large area inkjet electronics fabrication. Passive radio frequency devices can benefit greatly from a printing process, since the size of these devices is defined by the frequency of operation. The large size of radio frequency passives means that they either take up expensive space “on chip” or that they are fabricated on a separate lower cost substrate and somehow bonded to the chips. This has hindered cost-sensitive high volume applications such as radio frequency identification tags. Substantial work has been undertaken on inkjet-printed conductors for passive antennas on microwave substrates and even paper, yet there has been little work on the printing of the dielectric materials aimed at radio frequency passives. Both the conductor and dielectric need to be integrated to create a multilayer inkjet printing process that is capable of making quality passives such as capacitors and inductors. Three inkjet printed dielectrics are investigated in this thesis: a ceramic (alumina), a thermal-cured polymer (poly 4 vinyl phenol), and a UV-cured polymer (acrylic based). For the conductor, both a silver nanoparticle ink as well as a custom in-house formulated particle-free silver ink are explored. The focus is on passives, mainly capacitors and inductors. Compared to low frequency electronics, radio frequency components have additional sensitivity regarding skin depth of the conductor and surface roughness, as well as dielectric constant and loss tangent of the dielectric. These concerns are investigated with the aim of making the highest quality components possible and to understand the current limitations of inkjet-fabricated radio frequency devices. An inkjet-printed alumina dielectric that provides quality factors of 200 and high

  5. Radio Frequency Interference Mitigation at the WSRT

    CERN Document Server

    Fridman, P A; Millenaar, R P

    2010-01-01

    The sensitivity of radio astronomical stations is often limited by man-made radio frequency interference (RFI) due to a variety of terrestrial activities. An RFI mitigation subsystem (RFIMS) based on real-time digital signalprocessing is proposed here for the Westerbork Synthesis Radio Telescope based on a powerful field programmable gate array processor. In this system the radio astronomy signals polluted by RFI are "cleaned" with the RFIMS before routine back-end correlation processing takes place. The high temporal and frequency resolution of RFIMS allows the detection and excision of RFI better than do standard radio telescope back-end configurations.

  6. Radio frequency identification applications in hospital environments.

    Science.gov (United States)

    Wicks, Angela M; Visich, John K; Li, Suhong

    2006-01-01

    Radio frequency identification (RFID) technology has recently begun to receive increased interest from practitioners and academicians. This interest is driven by mandates from major retailers such as Wal-Mart, Target and Metro Group, and the United States Department of Defense, in order to increase the efficiency and visibility of material and information flows in the supply chain. However, supply chain managers do not have a monopoly on the deployment of RFID. In this article, the authors discuss the potential benefits, the areas of applications, the implementation challenges, and the corresponding strategies of RFID in hospital environments. PMID:16913301

  7. Radio frequency system architecture and design

    CERN Document Server

    Rogers, John W M; Marsland, Ian

    2013-01-01

    Communication devices such as smart phones, GPS systems, and Bluetooth, are now part of our daily lives more than ever before. As our communication equipment becomes more sophisticated, so do the radios and other hardware required to enable that technology. Common radio architectures are required to make this technology work seamlessly.This resource describes practical aspects of radio frequency communications systems design, bridging the gap between system-level design considerations and circuit-level design specifications. Industry experts not only provide detailed calculations and theory to

  8. Radio Frequency-Tomography of Solar Flares

    Science.gov (United States)

    Aschwanden, M. J.

    2002-05-01

    The Frequency-Agile Solar Radiotelescope (FASR) is designed to produce simultaneous images of solar phenomena at many frequencies. A data cube with a stack of multiple frequency images can be used for tomographic reconstruction of the 3D density and temperature distribution of flares, based on the free-free emission at cm and mm wavelengths. We simulate a set of multi-frequency images for the Bastille-Day flare of 2000-July-14, based on EUV observations from TRACE and soft X-ray observations from Yohkoh. The 3D model consists of some 200 postflare loops with observationally constrained densities and temperatures. The temporal evolution involves flare plasma heating, a phase of conductive cooling, followed by a phase of radiative cooling. The images simulated at different microwave frequencies reveal a sequence of optically-thick free-free emission layers, which can be "pealed off" like onion shells with increasing radio frequency. We envision a tomographic method that yields information on the density and temperature structure of flare systems and their evolution. Comparison with EUV and soft X-ray based 3D models will also allow to quantify wave scattering at radio frequencies and provide information on small-scale inhomogeneities and wave turbulence. Besides the thermal free-free emission, radio images contain also information on coherent emission processes, such as plasma emission from electron beams and loss-cone emission from gyroresonant trapped particles, conveying information on particle acceleration processes.

  9. Characterization of helium/argon working gas systems in a radiofrequency glow discharge atomic emission source. Part I: Optical emission, sputtering and electrical characteristics

    Science.gov (United States)

    Christopher, Steven J.; Hartenstein, Matthew L.; Marcus, R. Kenneth; Belkin, Mikhail; Caruso, Joseph A.

    1998-08-01

    Studies are performed to determine the influence of discharge gas composition (helium/argon working gas mixtures) on the analyte emission signal intensities, sputtering rates, and DC-bias characteristics of an analytical radiofrequency glow discharge atomic emission spectroscopy (RF-GD-AES) source. As the partial pressure of He is increased from 0 to 15 torr, increased emission intensity is observed for a range of bulk and trace elements in NIST 1250 SRM (low alloy steel), regardless of the base pressure of Ar in the source (5 and 9 torr). In contrast to increases in analyte emission intensity of up to 300%, counterindicative decreases in the sputtering rates on the order of about 30-50% are observed. The magnitude of these effects depends on both the partial pressure of helium introduced to the source and the total pressure of the He and Ar gases. Use of relative emission yield (REY) to normalize changes in emission intensity to sputtering rates indicates that excitation efficiencies increase under these conditions. Increases in average electron energy and temperature appear to control this response. Decreases in both analyte emission intensities and sputter rates occur with increasing He partial pressure when the total pressure in the cell remains fixed (11 torr in these studies). Emission yields for the fixed pressure, mixed gas plasmas decrease as the partial pressure of He (He/Ar ratio) in the RF-GD source increases. In this case, decreases in electron number densities appear to dictate the lower REYs. Measurement of DC-bias values at the sample surface provide understanding with respect to the observed changes in sputtering rates as well as suggest the origins of changes in plasma electron energetics. Use of a diamond stylus profilometer provides both the quantitative sputter rate information as well as qualitative insights into the use of mixed gas plasmas for enhanced depth profiling capabilities. The analyte emission characteristics of these mixed gas

  10. Diffuse α-mode atmospheric pressure radio-frequency discharge in neon

    International Nuclear Information System (INIS)

    In this work, a radio-frequency (RF) atmospheric pressure glow discharge burning in neon between planar metal electrodes is achieved for the first time. The RF discharge can operate in two stable modes: in a diffuse α-mode with uniformly covered electrode surfaces and in a constricted γ-mode. Similarities are revealed when the discharge is compared against the RF atmospheric pressure glow discharge in helium, namely both discharges show a discontinuity and a hysteresis in the current–voltage characteristic at the mode transition; the spatio-temporal profiles of the light emission in the α-mode from neon, helium and atomic oxygen are also similar. (fast track communication)

  11. Development of A Pulse Radio-Frequency Plasma Jet

    Science.gov (United States)

    Wang, Shou-Guo; Zhao, Ling-Li; Yang, Jing-Hua

    2013-09-01

    A small pulse plasma jet was driven by new developed radio-frequency (RF) power supply of 6.78 MHz. In contrast to the conventional RF 13.56 MHz atmospheric pressure plasma jet (APPJ), the power supply was highly simplified by eliminating the matching unit of the RF power supply and using a new circuit, moreover, a pulse controller was added to the circuit to produce the pulse discharge. The plasma jet was operated in a capacitively coupled manner and exhibited low power requirement of 5 W at atmospheric pressure using argon as a carrier gas. The pulse plasma plume temperature remained at less than 45 °C for an extended period of operation without using water to cool the electrodes. Optical emission spectrum measured at a wide range of 200-1000 nm indicated various excited species which were helpful in applying the plasma jet for surface sterilization to human skin or other sensitive materials. Institude of Plasma Physics, Chinese Academy of Science, Hefei, China.

  12. SMART TRAVELLING WITH RADIO FREQUENCY IDENTIFICATION

    Directory of Open Access Journals (Sweden)

    Zainab Rasheed Fahad Mirza

    2013-01-01

    Full Text Available Radio Frequency Identification (RFID technology is being widely used now-a-days and is becoming more popular with every passing day. There are varied applications of this technology in various fields such as industry, communication, travel and transportation. Roads, rail ways, air traffic and container vessel shipping all share underlying abstractions of transportation nets with hubs. This study is concerned with applications of RFID technology with Cloud computing, innovation in the field of travelling and its applications for different modes of transportation at Harbors, airports, train stations, road intersections providing security, coordination, to the users. Combined with other technologies, RFID technology is being used for modern airports baggage system, for railroad car identification, in container transportation systems, for fuel supply control of vehicles, in traffic management system and in travelling information system.

  13. Nb3Sn for Radio Frequency Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Godeke, A.

    2006-12-18

    In this article, the suitability of Nb3Sn to improve theperformance of superconducting Radio-Frequency (RF)cavities is discussed.The use of Nb3Sn in RF cavitiesis recognized as an enabling technology toretain a veryhigh cavity quality factor (Q0) at 4.2 K and tosignificantly improve the cavity accelerating efficiency per unitlength(Eacc). This potential arises through the fundamental properties ofNb3Sn. The properties that are extensively characterized in theliterature are, however, mainly related to improvements in currentcarrying capacity (Jc) in the vortex state. Much less is available forthe Meissner state, which is of key importance to cavities. Relevantdata, available for the Meissner state is summarized, and it is shown howthis already validates the use of Nb3Sn. In addition, missing knowledgeis highlighted and suggestions are given for further Meissner statespecific research.

  14. Radio frequency field assisted cold collisions

    Science.gov (United States)

    Ding, Yijue; D'Incao, Jose; Greene, Chris

    2016-05-01

    The radio frequency (RF) field is a promising but less developed tool to control cold collisions. From the few-body perspective, we study cold atom collisions in an external magnetic field and a single-color RF field. We employ the multi-channel quantum defect theory and the hyperspherical toolkit to solve the two-body and three-body Schrödinger equations. Our results show that RF fields can effectively control the two-body scattering length through Feshbach resonances. Such RF induced Feshbach resonances can be applied to quenching experiments or spinor condensates. Analogous to photo association, RF fields can also associate cold atoms into molecules with a reasonable rate. Moreover, we will discuss the feasibility of using RF fields to control three-body recombination, which may improve the experimental timescale by suppressing three-body losses. This work is supported by the US National Science Foundation.

  15. Optical generation of radio-frequency power

    International Nuclear Information System (INIS)

    An optical technique for high-power radio-frequency (RF) signal generation is described. The technique uses a unique photodetector based on a traveling-wave design driven by an appropriately modulated light source. The traveling-wave photodetector (TWPD) exhibits simultaneously a theoretical quantum efficiency approaching 100 % and a very large electrical bandwidth. Additionally, it is capable of dissipating the high-power levels required for the RF generation technique. The modulated light source is formed by either the beating together of two lasers or by the direct modulation of a light source. A system example is given which predicts RF power levels of 100's of mW's at millimeter wave frequencies with a theoretical ''wall-plug'' efficiency approaching 34%

  16. Characteristics of Collision, Capacitive Radio Frequency Sheath

    Institute of Scientific and Technical Information of China (English)

    Zhang Yu; DingWanYu; Wang Wenchun; Liu JinYuan; Wang Xiaogang; Liu Yue

    2005-01-01

    A simple collisional radio frequency (rf) sheath fluid model, which is not restricted by the ratio of rf frequency to ion plasma frequency (β=ωrf/ωpi), was established and solved numerically. In the ion balance equation, the effect of the collision on the ion and the ion velocity is assumed to be a direct ratio to ion velocity. The ion energy distributions (IEDs) calculated in the model in comparison with the experimental data [M. A. Sobolewski, J. K. Olthoff, and Y.C. Wang, J. Appl. Phys. 85, 3966 (1999)], proved the validity of the model. And the effect of the collision on the sheath characteristic was obtained and discussed. This paper demonstrates that the collision frequency is another crucial parameter as well as the ratio β to determine the rf sheath characteristics and the shape of IE Ds.

  17. Radio-frequency low-coherence interferometry.

    Science.gov (United States)

    Fernández-Pousa, Carlos R; Mora, José; Maestre, Haroldo; Corral, Pablo

    2014-06-15

    A method for retrieving low-coherence interferograms, based on the use of a microwave photonics filter, is proposed and demonstrated. The method is equivalent to the double-interferometer technique, with the scanning interferometer replaced by an analog fiber-optics link and the visibility recorded as the amplitude of its radio-frequency (RF) response. As a low-coherence interferometry system, it shows a decrease of resolution induced by the fiber's third-order dispersion (β3). As a displacement sensor, it provides highly linear and slope-scalable readouts of the interferometer's optical path difference in terms of RF, even in the presence of third-order dispersion. In a proof-of-concept experiment, we demonstrate 20-μm displacement readouts using C-band EDFA sources and standard single-mode fiber. PMID:24978555

  18. Radio frequency discharge with dust particles

    NARCIS (Netherlands)

    Chutov, Y. I.; W. J. Goedheer,; Kravchenko, O. Y.; Zuz, V. M.; Yan, M.; Martins, R.; Ferreira, I.; Fortunato, E.; Kroesen, G.

    2000-01-01

    A 1D PIC/MCC method has been developed for computer simulations of low-pressure RF discharges with dust particles using the method for dust-free discharges. A RF discharge in argon with dust particles distributed uniformly in the interelectrode gap is simulated at parameters providing a possibility

  19. A radio frequency interferometer (RIF) system

    International Nuclear Information System (INIS)

    The authors describe a radio frequency interferometer (RFI) system developed and tested by Lawrence Livermore National Laboratory over the last several years. The basic theory of operation, sample data, and analyzed results are presented and compared to results obtained by conventional TDR means (CORRTEX). A typical shock location measurement used for hydro-yield determination or for energy flow diagnostics comprises a coaxial sensing cable extending from the detonation region to a CORRTEX recording instrument. The single digitizer-based RFI system uses an identical sensing cable installation technique. Recording equipment consists of a CAMAC digitizer module, which produces a sinusoidal probing signal (the signal sent downhole) for each sensing channel (cable), while also coherently sampling the phase of the reflected signal. Each channel is recorded using a single digitizer, providing maximal temporal and spatial resolution, but independent of channel gain or quadruture errors inherent to dual digitizer systems. Interpolation software with suitable look-ahead logic permits determination of complete quadruture information using a single digitizer. This RFI system provides several times better spatial resolution and two orders of magnitude better temporal sampling density than does CORRTEX. It also is less susceptible to electromagnetic pulse distortion and provides a direct means for identifying (and rejecting) any data so contaminated

  20. Detection of radio frequency interference over ocean

    Science.gov (United States)

    Tian, Xiaoxu

    The geostationary satellite television (TV) signals that are reflected off the ocean surfaces could enter the AMSR-E antenna, resulting in RFI (Radio Frequency Interference) contamination in AMSR-E 10.65 and 18.7 GHz channels. If not detected, the presence of RFI signals can result in false retrievals of oceanic environmental parameters (e.g., sea surface temperature, sea surface wind speed, rain water path) from microwave imaging radiance measurements. This study first examined the geometric relationship between the RFI source, geostationary TV satellite, and AMSR-E observation. Then a normalized Principal Component Analysis (NPCA) method is proposed and applied for RFI detection over oceans in Advanced Microwave Scanning Radiometer (AMSR)-E observations. It is found that the RFI-contaminated observations on AMSR-E descending node at 10.65 and 18.7 GHz can be successively detected near coastal areas surrounding Europe and United States continents. The results yielded from the geometric examination at another angle verify those signals detected with NPCA. The proposed NPCA algorithm is applicable in an operational environment for fast data processing and data dissemination, and is different from earlier methods, which often require a priori information.

  1. Development of Radio Frequency Antenna Radiation Simulation Software

    International Nuclear Information System (INIS)

    Antennas are widely used national wide for radio frequency propagation especially for communication system. Radio frequency is electromagnetic spectrum from 10 kHz to 300 GHz and non-ionizing. These radiation exposures to human being have radiation hazard risk. This software was under development using LabVIEW for radio frequency exposure calculation. For the first phase of this development, software purposely to calculate possible maximum exposure for quick base station assessment, using prediction methods. This software also can be used for educational purpose. Some results of this software are comparing with commercial IXUS and free ware NEC software. (author)

  2. Wideband micromachined microphones with radio frequency detection

    Science.gov (United States)

    Hansen, Sean Thomas

    There are many commercial, scientific, and military applications for miniature wideband acoustic sensors, including monitoring the condition or wear of equipment, collecting scientific data, and identifying and localizing military targets. The application of semiconductor micromachining techniques to sensor fabrication has the potential to transform acoustic sensing with small, reproducible, and inexpensive silicon-based microphones. However, such sensors usually suffer from limited bandwidth and from non-uniformities in their frequency response due to squeeze-film damping effects and narrow air gaps. Furthermore, they may be too fragile to be left unattended in a humid or dusty outdoor environment. Silicon microphones that incorporate capacitive micromachined ultrasonic transducer membranes overcome some of the drawbacks of conventional microphones. These micromachined membranes are small and robust enough to be vacuum-sealed, and can withstand atmospheric pressure and submersion in water. In addition, the membrane mechanical response is flat from dc up to ultrasonic frequencies, resulting in a wideband sensor for accurate spectral analysis of acoustic signals. However, a sensitive detection scheme is necessary to detect the small changes in membrane displacement that result from using smaller, stiffer membranes than do conventional microphones. We propose a radio frequency detection technique, in which the capacitive membranes are incorporated into a transmission line. Variations in membrane capacitance due to impinging sound pressure are sensed through the phase variations of a carrier signal that propagates along the line. This dissertation examines the design, fabrication, modeling, and experimental measurements of wideband micromachined microphones using sealed ultrasonic membranes and RF detection. Measurements of fabricated microphones demonstrate less than 0.5 dB variation in their output responses between 0.1 Hz to 100 kHz under electrostatic actuation of

  3. Plasma processing of superconducting radio frequency cavities

    Science.gov (United States)

    Upadhyay, Janardan

    The development of plasma processing technology of superconducting radio frequency (SRF) cavities not only provides a chemical free and less expensive processing method, but also opens up the possibility for controlled modification of the inner surfaces of the cavity for better superconducting properties. The research was focused on the transition of plasma etching from two dimensional flat surfaces to inner surfaces of three dimensional (3D) structures. The results could be applicable to a variety of inner surfaces of 3D structures other than SRF cavities. Understanding the Ar/Cl2 plasma etching mechanism is crucial for achieving the desired modification of Nb SRF cavities. In the process of developing plasma etching technology, an apparatus was built and a method was developed to plasma etch a single cell Pill Box cavity. The plasma characterization was done with the help of optical emission spectroscopy. The Nb etch rate at various points of this cavity was measured before processing the SRF cavity. Cylindrical ring-type samples of Nb placed on the inner surface of the outer wall were used to measure the dependence of the process parameters on plasma etching. The measured etch rate dependence on the pressure, rf power, dc bias, temperature, Cl2 concentration and diameter of the inner electrode was determined. The etch rate mechanism was studied by varying the temperature of the outer wall, the dc bias on the inner electrode and gas conditions. In a coaxial plasma reactor, uniform plasma etching along the cylindrical structure is a challenging task due to depletion of the active radicals along the gas flow direction. The dependence of etch rate uniformity along the cylindrical axis was determined as a function of process parameters. The formation of dc self-biases due to surface area asymmetry in this type of plasma and its variation on the pressure, rf power and gas composition was measured. Enhancing the surface area of the inner electrode to reduce the

  4. Radio Frequency Micro Ion Thruster for Precision Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop radio frequency discharge, gridded micro-ion thruster that produces sub-mN thrust precisely adjustable over a wide dynamic thrust range....

  5. Radio Frequency Micro Ion Thruster for Precision Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to continue development of an engineering model radio frequency discharge, gridded micro ion thruster that produces sub-mN to mN thrust precisely...

  6. Radio Frequency Interference Suppression for Landmine Detection by Quadrupole Resonance

    OpenAIRE

    Liu Guoqing; Jiang Yi; Xiong Hong; Li Jian; Barrall Geoffrey A

    2006-01-01

    The quadrupole resonance (QR) technology can be used as a confirming sensor for buried plastic landmine detection by detecting the explosives within the mine. We focus herein on the detection of TNT mines via the QR sensor. Since the frequency of the QR signal is located within the AM radio frequency band, the QR signal can be corrupted by strong radio frequency interferences (RFIs). Hence to detect the very weak QR signal, RFI mitigation is essential. Reference antennas, which receive RFIs ...

  7. Polarimetric Observations at Low Radio Frequencies

    Science.gov (United States)

    Farnes, J. S.

    2012-06-01

    Magnetic fields play a fundamental role in the evolution of astrophysical systems. These fields can be studied through wide-field spectropolarimetry, which allows for faint polarised signals to be detected at relatively low radio frequencies. An interferometric polarisation mode has recently become available at the Giant Metrewave Radio Telescope (GMRT). A detailed analysis of the GMRT's instrumental response is presented. The findings are used to create a polarisation pipeline, which in combination with rotation measure (RM) Synthesis is used for the detection of extended linearly polarised emission at 610 MHz. A number of compact sources are detected and their Faraday depth and polarisation fraction are reported. New holography observations of the GMRT's primary beam are presented. Instantaneous off-axis polarisation is substantial and scales with the Stokes I beam. The developed beam models are used to reduce direction-dependent instrumental polarisation, and the Stokes I beam is shown to deviate from circular symmetry. A new technique for electric vector polarisation angle calibration is developed that removes the need for known sources on the sky, eliminates ionospheric effects, and avoids a flaw in current methods which could erroneously yield multiple Faraday components for sources that are well-parameterised by a single RM. A sample of nine galaxies from two Southern Compact Groups are then presented, with constraints being placed on the polarised fraction, RM, spectral index, star formation rate, companion sources, and hydrodynamical state. One galaxy has a displaced peak of radio emission that is extended beyond the disk in comparison to the near-IR disk - suggesting the radio disturbance may be a consequence of ram pressure stripping. Linear polarisation is detected from the core of NGC 7552 at 610 MHz, while another three galaxies ESO 0353-G036, NGC 7590, and NGC 7599 are found to be unpolarised. An analysis of additional extended sources allows for an

  8. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    Science.gov (United States)

    Zhang, Jie; Guo, Ying; Shi, Yuncheng; Zhang, Jing; Shi, J. J.

    2015-08-01

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  9. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    International Nuclear Information System (INIS)

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst

  10. Observation of the Emission Spectra of an Atmospheric Pressure Radio-frequency Plasma Jet

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    An atmospheric pressure plasma jet (APPJ) using radio-frequency (13.56 MHz)power has been developed to produce homogeneous glow discharge at low temperature. With optical emission spectroscopy, we observed the excited species (atomic helium, atomic oxygen and metastable oxygen) generated in this APPJ and their dependence on gas composition ratio and RF power. O and O2(b1∑g+) are found in the effluent outside the jet by measuring the emission spectra of effluent perpendicular to the jet. An interesting phenomenon is found that there is an abnormal increase of O emission intensity (777.4 nm) between 10 mm and 40 mm away from the nozzle. This observation result is very helpful in practical operation.

  11. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); College of Science, Donghua University, Shanghai 201620 (China); Guo, Ying; Shi, Yuncheng [College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China); Zhang, Jing; Shi, J. J., E-mail: JShi@dhu.edu.cn [State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); College of Science, Donghua University, Shanghai 201620 (China); Magnetic Confinement Fusion Research Center, Ministry of Education of the People' s Republic of China, Shanghai 201620 (China)

    2015-08-15

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant of pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.

  12. Protection of Hawaii’s observatories from light pollution and radio frequency interference

    Science.gov (United States)

    Wainscoat, Richard

    2015-08-01

    The island of Hawaii is home to Maunakea Observatory, the largest collection of optical and infrared telescopes in the world. Haleakala Observatory on Maui is also an excellent observing site, and is home to the Pan-STARRS telescopes, the Faulkes Telescope North, solar telescopes, and military telescopes.The dark night sky over Maunakea has been well protected by a strong lighting ordinance, and remains very dark. The National Park Service night sky team recently visited Maunakea, and found it to have a darker night sky than any of the US National Parks that they have visited.Haleakala is more threatened, because Maui has a weaker lighting ordinance, and it is a smaller island, meaning that people live and work closer to the telescopes. Haleakala is also closer to Honolulu, and the urban glow from Honolulu contributes to an artificially bright sky in the northwest direction. Although there is no astronomical research done on the island of Kauai, it has some of the best lighting in the world, because endangered birds on Kauai become confused and disoriented by unshielded lights.The county and state lighting regulations will be described in detail. Enforcement issues will also be discussed.The efforts that have been made to protect Maunakea observatory from radio frequency interference, and to reduce radio frequency interference on Haleakala will also be described.

  13. Magnetoreception in birds: the effect of radio-frequency fields.

    Science.gov (United States)

    Wiltschko, Roswitha; Thalau, Peter; Gehring, Dennis; Nießner, Christine; Ritz, Thorsten; Wiltschko, Wolfgang

    2015-02-01

    The avian magnetic compass, probably based on radical pair processes, works only in a narrow functional window around the local field strength, with cryptochrome 1a as most likely receptor molecule. Radio-frequency fields in the MHz range have been shown to disrupt the birds' orientation, yet the nature of this interference is still unclear. In an immuno-histological study, we tested whether the radio-frequency fields interfere with the photoreduction of cryptochrome, but this does not seem to be the case. In behavioural studies, birds were not able to adjust to radio-frequency fields like they are able to adjust to static fields outside the normal functional range: neither a 2-h pre-exposure in a 7.0 MHz field, 480 nT, nor a 7-h pre-exposure in a 1.315 MHz field, 15 nT, allowed the birds to regain their orientation ability. This inability to adjust to radio-frequency fields suggests that these fields interfere directly with the primary processes of magnetoreception and therefore disable the avian compass as long as they are present. They do not have lasting adverse after-effects, however, as birds immediately after exposure to a radio-frequency field were able to orient in the local geomagnetic field.

  14. Nonreciprocal Radio Frequency Transduction in a Parametric Mechanical Artificial Lattice

    Science.gov (United States)

    Huang, Pu; Zhang, Liang; Zhou, Jingwei; Tian, Tian; Yin, Peiran; Duan, Changkui; Du, Jiangfeng

    2016-07-01

    Generating nonreciprocal radio frequency transduction plays important roles in a wide range of research and applications, and an aspiration is to integrate this functionality into microcircuits without introducing a magnetic field, which, however, remains challenging. By designing a 1D artificial lattice structure with a neighbor interaction engineered parametrically, we predicted a nonreciprocity transduction with a large unidirectionality. We then experimentally demonstrated the phenomenon on a nanoelectromechanical chip fabricated by conventional complementary metal-silicon processing. A unidirectionality with isolation as high as 24 dB is achieved, and several different transduction schemes are realized by programing the control voltage topology. Apart from being used as a radio frequency isolator, the system provides a way to build a practical on-chip programmable device for broad research and applications in the radio frequency domain.

  15. K-Band Radio frequency Interference Survey of Southeastern Michigan

    DEFF Research Database (Denmark)

    Curry, Shannon; Ahlers, Michael Faursby; Elliot, Harvey;

    2010-01-01

    The Radio frequency Interference Survey of Earth (RISE) is a new type of instrument used to survey and characterize the presence of Radio Frequency Interference (RFI) that can affect microwave radiometers. It consists of a combined microwave radiometer and kurtosis spectrometer with broad frequency...... coverage and high temporal and spectral resolution. A K-Band airborne version has been built and flown across southeast Michigan. A kurtosis detector is included in RISE to reliably detect the presence of RFI, even at very low levels, and to aid in its characterization. A radiometer is included to measure...... the impact of the RFI on observed brightness temperature....

  16. Energy harvesting from radio frequency propagation using piezoelectric cantilevers

    KAUST Repository

    Al Ahmad, Mahmoud

    2012-02-01

    This work reports an induced strain in a piezoelectric cantilever due to radio frequency signal propagation. The piezoelectric actuator is coupled to radio frequency (RF) line through a gap of 0.25 mm. When a voltage signal of 10 Vpp propagates in the line it sets an alternating current in the actuator electrodes. This flowing current drives the piezoelectric cantilever to mechanical movement, especially when the frequency of the RF signal matches the mechanical resonant frequency of the cantilever. Output voltage signals versus frequency for both mechanical vibrational and RF signal excitations have been measured using different loads.© 2011 Elsevier Ltd. All rights reserved.

  17. Characterization of the plasma in a radio-frequency magnetron sputtering system

    International Nuclear Information System (INIS)

    In order to understand the fundamental mechanisms in a radio-frequency magnetron sputtering system, the main properties of the argon plasma used in the process have been measured. A complete three-dimensional map of the ion density, electron temperature, and plasma potential has been obtained using a Langmuir probe. The electron temperature as well as the ion density have been found to increase in the region of the so called race track at the cathode. Furthermore, from the plasma potential map, the time-averaged local electric field has been obtained, pointing out the race track as the region where the most intense ion bombardment takes place. Besides, only the ions produced near the race track are accelerated towards the cathode, whereas those produced in the remaining volume move towards the anode. Finally, the dependence of the plasma quantities on the incident radio-frequency power and deposition pressure has been studied. The plasma potential measured using the Langmuir probe has been found to agree with that determined using an energy resolved mass spectrometer in all studied conditions

  18. Radio-frequency and microwave energies, magnetic and electric fields

    Science.gov (United States)

    Michaelson, S. M.

    1975-01-01

    The biological effects of radio frequency, including microwave, radiation are considered. Effects on body temperature, the eye, reproductive systems, internal organs, blood cells, the cardiovascular system, and the central nervous system are included. Generalized effects of electric and magnetic fields are also discussed. Experimentation with animals and clinical studies on humans are cited, and possible mechanisms of the effects observed are suggested.

  19. Management of radio frequency radiation exposures in telecom Australia

    International Nuclear Information System (INIS)

    Telecom Australia is the largest non-military user of radio frequency radiation (RFR) in Australia and the management of risks to health from RFR exposure are discussed. The Australian RFR Exposure Standard forms that basis of risk assessment. Risk assessment and control procedures including the health surveillance of workers, other special occupational groups and members of the general public are outlined. (author)

  20. Monitoring of tumor radio frequency ablation using derivative spectroscopy

    NARCIS (Netherlands)

    Spliethoff, J.W.; Tanis, E.; Evers, Daniel James; Hendriks, B.H.; Prevoo, W.; Ruers, T.J.M.

    2014-01-01

    Despite the widespread use of radio frequency (RF) ablation, an effective way to assess thermal tissue damage during and after the procedure is still lacking. We present a method for monitoring RF ablation efficacy based on thermally induced methemoglobin as a marker for full tissue ablation. Diffus

  1. Functional processing of wideband radio frequency hopping signals

    OpenAIRE

    Bobkov, V. B.; V. V. Danilov; Mikityuk, V. I.; Smirnov, E.N.; Skulskii, A. A.; A. V. Yurchenko

    2007-01-01

    Experimental research results of correlation processing of radio frequency hopping signals (FHSS radio signals) with the help of planar domain-acoustic processor are presented. This processor has linear spectrum of reference frequencies which are used for respective consecutive frequency setting during signal generation.

  2. Radio frequency plasma treatments on titanium for enhancement of bioactivity.

    NARCIS (Netherlands)

    Lopez-Heredia, M.A.; Legeay, G.; Gaillard, C.; Layrolle, P.

    2008-01-01

    Titanium and its alloys, when treated in alkali solutions, are able to form calcium phosphate coatings on their surface after immersion in supersaturated solutions. In this study, the surfaces of titanium alloy discs were modified by an alkali treatment and a radio frequency (RF) plasma procedure (1

  3. Final report: In situ radio frequency heating demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Jarosch, T.R.; Beleski, R.J.; Faust, D.

    1994-01-05

    A field demonstration of in situ radio frequency heating was performed at the Savannah River Site (SRS) as part of the US Department of Energy-Office of Technology Development`s Integrated Demonstration. The objective of the demonstration was to investigate the effectiveness of in situ radio frequency (RF) heating as an enhancement to vacuum extraction of residual solvents (primarily trichloroethylene and perchloroethylene) held in vadose zone clay deposits. Conventional soil vacuum extraction techniques are mass transfer limited because of the low permeabilities of the clays. By selectively heating the clays to temperatures at or above 100{degrees}C, the release or transport of the solvent vapors will be enhanced as a result of several factors including an increase in the contaminant vapor pressure and diffusivity and an increase in the effective permeability of the formation with the release of water vapor.

  4. Vacuum arc localization in CLIC prototype radio frequency accelerating structures

    CERN Document Server

    AUTHOR|(CDS)2091976; Koivunen, Visa

    2016-04-04

    A future linear collider capable of reaching TeV collision energies should support accelerating gradients beyond 100 MV/m. At such high fields, the occurrence of vacuum arcs have to be mitigated through conditioning, during which an accelerating structure’s resilience against breakdowns is slowly increased through repeated radio frequency pulsing. Conditioning is very time and resource consuming, which is why developing more efficient procedures is desirable. At CERN, conditioning related research is conducted at the CLIC high-power X-band test stands. Breakdown localization is an important diagnostic tool of accelerating structure tests. Abnormal position distributions highlight issues in structure design, manufacturing or operation and may consequently help improve these processes. Additionally, positioning can provide insight into the physics of vacuum arcs. In this work, two established positioning methods based on the time-difference-ofarrival of radio frequency waves are extended. The first method i...

  5. Radio Frequency Interference Suppression for Landmine Detection by Quadrupole Resonance

    Directory of Open Access Journals (Sweden)

    Liu Guoqing

    2006-01-01

    Full Text Available The quadrupole resonance (QR technology can be used as a confirming sensor for buried plastic landmine detection by detecting the explosives within the mine. We focus herein on the detection of TNT mines via the QR sensor. Since the frequency of the QR signal is located within the AM radio frequency band, the QR signal can be corrupted by strong radio frequency interferences (RFIs. Hence to detect the very weak QR signal, RFI mitigation is essential. Reference antennas, which receive RFIs only, can be used together with the main antenna, which receives both the QR signal and the RFIs, for RFI mitigation. The RFIs are usually colored both spatially and temporally, and hence exploiting only the spatial diversity of the antenna array may not give the best performance. We exploit herein both the spatial and temporal correlations of the RFIs to improve the TNT detection performance.

  6. Addressed qubit manipulation in radio-frequency dressed lattices

    Science.gov (United States)

    Sinuco-León, G. A.; Garraway, B. M.

    2016-03-01

    Precise control over qubits encoded as internal states of ultracold atoms in arrays of potential wells is a key element for atomtronics applications in quantum information, quantum simulation and atomic microscopy. Here we theoretically study atoms trapped in an array of radio-frequency dressed potential wells and propose a scheme for engineering fast and high-fidelity single-qubit gates with low error due to cross-talk. In this proposal, atom trapping and qubit manipulation relies exclusively on long-wave radiation making it suitable for atom-chip technology. We demonstrate that selective qubit addressing with resonant microwaves can be programmed by controlling static and radio-frequency currents in microfabricated conductors. These results should enable studies of neutral-atom quantum computing architectures, powered by low-frequency electromagnetic fields with the benefit of simple schemes for controlling individual qubits in large ensembles.

  7. Plasma heating by radio frequency in the LISA linear machine

    International Nuclear Information System (INIS)

    The characteristics of an experimental apparatus to produce helium plasma by radio frequency and to study its behavior when confined by a magnetic field with mirrors is shown. The plasma was produced by a microwave source of 2.45 GHz and 800 Watts, operating in steady and pulsed state. The plasma parameters were studied as a function of an external magnetic field, for large and small resonance regions. The axial and radial magnetic fields were mapped for each region in order to verify the spatial distribution, particle orbits, and energy confinement time according to the energy balance equation. As a consequence of the influence of the radio frequency (RF) voltage in the plasma the Bohm theory of plasma prob was modified. The diagnostic was done with plane movable electrostatic probe, Hall probe, magnetic probe, diamagnetic coil and spectrography. (Author)

  8. Pulsed radio frequency energy (PRFE) use in human medical applications.

    Science.gov (United States)

    Guo, Lifei; Kubat, Nicole J; Isenberg, Richard A

    2011-03-01

    A number of electromagnetic field-based technologies are available for therapeutic medical applications. These therapies can be broken down into different categories based on technical parameters employed and type of clinical application. Pulsed radio frequency energy (PRFE) therapy is a non invasive, electromagnetic field-based therapeutic that is based on delivery of pulsed, shortwave radio frequency energy in the 13-27.12 MHz carrier frequency range, and designed for local application to a target tissue without the intended generation of deep heat. It has been studied for use in a number of clinical applications, including as a palliative treatment for both postoperative and non postoperative pain and edema, as well as in wound healing applications. This review provides an introduction to the therapy, a summary of clinical efficacy studies using the therapy in specific applications, and an overview of treatment-related safety. PMID:21554100

  9. INTEGRATING RADIO FREQUENCY IDENTIFICATION TECHNOLOGY IN ACADEMIC MANAGEMENT SYSTEM

    OpenAIRE

    Zainab Rasheed Mirza; M. Nawaz Brohi

    2014-01-01

    The purpose of this study is building a web and windows based intelligent system using web technologies, biometric and Radio Frequency Identification technologies (RFID) to strengthen an Academic Management System (AMS) in a campus for monitoring and improving academic performance of teachers and students. A campus mobile phone application will allow guardians to monitor student’s movement history at campus, e-payments and food choices at canteen, class attendance, exam attendance and a...

  10. Radio frequency treatments for insect disinfestation of dried legumes

    OpenAIRE

    J. A. Johnson; Wang, S.; Tang, J

    2010-01-01

    Dried legumes (chickpeas, green peas or lentils) are valuable export commodities in the US Pacific Northwest. A major problem in the marketing of these products is infestation by insect pests. Typically, chemical fumigants are used to disinfest product, but regulatory issues, insect resistance, environmental concerns and the increase of the organic market have forced the industry to explore non-chemical alternatives. One possible alternative is the use of radio frequency (RF) energy to rapidl...

  11. Effect of Radio Frequency Waves on Plasma Instabilities

    Science.gov (United States)

    Sen, S.

    2015-11-01

    The effect of Radio Frequency waves on low frequency plasma instabilities and turbulence is studied. It is shown that the ponderomotive force can stabilize or destabilize instabilities depending on the power deposition profile and no RF induced flow generation hypothesis is required. Its possible consequence on space and fusion plasma will be discussed. Collaborations with George Vahala from William & Mary, Julio Martinell from UNAM and Atsushi Fukuyama from Kyoto University are acknowledged.

  12. Ultra High-Speed Radio Frequency Switch Based on Photonics

    OpenAIRE

    Jia Ge; Fok, Mable P.

    2015-01-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed...

  13. Radio frequency heating for in-situ remediation of DNAPL

    Energy Technology Data Exchange (ETDEWEB)

    Kasevich, R.S. [KAI Technologies, Woburn, MA (United States)

    1996-08-01

    In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.

  14. Longitudinal capture in the radio-frequency-quadrupole structure

    Energy Technology Data Exchange (ETDEWEB)

    Inagaki, S.

    1980-03-01

    The radio-frequency-quadrupole (RFQ) linac structure not only can attain easily transverse focusing in the low-beta region, but also can obtain very high capture efficiency because of its low beta-lambda and low-particle rigidity. An optimization study of the zero space-charge longitudinal capture in an RFQ linac that yields configurations with large capture efficiency is described.

  15. Radio frequency system of the RIKEN ring cyclotron

    International Nuclear Information System (INIS)

    The radio-frequency system of the RIKEN ring cyclotron (K = 540) is required to work in a frequency range of 20 to 45 MHz and to generate the maximum acceleration voltage 250 kV. A new movable box type variable frequency resonator was designed for that purpose. The final amplifier is capable of supplying RF power of 300 kW. The whole system had been installed at RIKEN in September 1986 and has been working well. (author)

  16. Radio frequency interference from near-earth satellites

    Science.gov (United States)

    Levitt, B. K.; Lesh, J. R.

    1977-01-01

    A pessimistic statistical model was developed for predicting the extent of radio frequency interference (RF1). Based on the assumptions underlying the model, DSN S-band operations can expect one RF1 interruption every 4.1 days, with the average incident lasting 24 s. This implies that 52 or more such satellites, with uncorrelated orbital trajectories, will cause in excess of 5 min of RF1 per day at a DSN station.

  17. Radio frequency assisted heat pump drying of crushed brick

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, M.G.; Metaxas, A.C. [University of Cambridge (United Kingdom). Electricity Utilisation Group

    1999-04-01

    This paper describes an experimental heat pump batch particulate dryer which has been combined with radio frequency (rf) energy, the latter being operated in a continuous pulsed mode. The results show several improvements resulting from the combination drying process. A simplified mathematical model of the dryer, including the rf heating source, has been developed using mass and energy conservation, which show good agreement with experimental results. (author)

  18. Three-dimensional printable radio frequency identification antennas

    OpenAIRE

    Naushahi, Shayan

    2015-01-01

    In this master’s thesis, radio frequency identification (RFID) systems and three-dimensional (3D) printing technology is studied to determine the possibility of printing electrically small 3D antennas for RFID tags. Computer simulations are carried out to design 3D antennas that are printable with 3D printing processes. Three tag antennas with different geometries are proposed, and they are designed to match to the input impedance of an RFID chip at the Ultra High Frequency (UHF) frequencies....

  19. Security assurance in networked radio frequency identification system environment

    OpenAIRE

    Starc, Iztok

    2011-01-01

    Radio frequency identification is an information and communication technology for wireless identification and object labelling. A typical RFID system consists of a tag, a reader and a back-end system connected to a database. Nowadays these systems are present in the private sector industries as well as in the public sector. The RFID system deployment is increasing as high level of automation allows companies the opportunity to re-organize and adapt their business processes to reduce costs, in...

  20. Analysis, prediction and control of radio frequency interference with respect to DSN

    Science.gov (United States)

    Degroot, N. F.

    1982-06-01

    Susceptibility modeling, prediction of radio frequency interference from satellites, operational radio frequency interference control, and international regulations are considered. The existing satellite interference prediction program DSIP2 is emphasized. A summary status evaluation and recommendations for future work are given.

  1. Assessing Radio Frequency Compatibility Between Galileo and Compass (Review Paper

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2011-10-01

    Full Text Available The radio frequency compatibility between Galileo and Compass has become a matter of great concern for the system providers and user community. This paper mainly deals with the intersystem interference between Galileo and Compass systems and displays some important analysis results. First, a comprehensive methodology for the radio frequency compatibility assessment is described, considering the geometry-dependent and time-varying terms such as space constellation, signal modulation, emission power level, space loss, satellite antenna gain, and user receiver characteristic. Second, real simulations were carried out to assess the interference effects where Galileo and Compass signals were sharing the same band. Simulation results show that Compass introduces intersystem interference to Galileo, but the interference effects are lower than those of Compass interfered to Galileo signals. In addition, the radio frequency compatibility in Asia-Pacific region was analysed. It was found that the maximum interference suffered by Galileo from Compass was below 0.25dB under existing rules of coordination at International Telecommunication Union (ITU. In other words, Compass can provide a sound basis for compatibility with Galileo.Defence Science Journal, 2011, 61(6, pp.545-553, DOI:http://dx.doi.org/10.14429/dsj.61.285

  2. Influence of electrode material on measured ion kinetic-energy distributions in radio-frequency discharges

    International Nuclear Information System (INIS)

    The measurement of ion kinetic energies is important for understanding processes that occur in discharges, e.g., the influence of ions on the etching of semiconductor materials in plasma reactors. Direct measurements of ion kinetic energies striking surfaces exposed to the discharge requires sampling through an orifice in a surface. Difficulties with ion sampling through a small aperture, manifested by errors or distortions in measured ion kinetic-energy distributions (IEDs) have been encountered in previous investigations of both dc and radio-frequency (rf) discharges. The errors are usually most significant at relatively low ion energies. Previous measurements in our laboratory of IEDs for ions sampled through a 0.1-mm hole in a grounded, aluminum electrode for rf discharges in argon showed evidence of reduced detection efficiency (discrimination) for low energy ions (<10 eV), and apparent shifts in the measured ion energies for plasmas generated in other gases. It has been suggested that surface charging at or near the sampling orifice can cause both discrimination and energy shifts. The existence of an insulating, or partially insulating, layer of aluminum oxide on the surface of an electrode allows the possibility of surface-charge accumulation. In the present work, IEDs were measured at both aluminum and 304 stainless-steel grounded electrodes with 0.1 mm sampling orifices in rf plasmas generated in argon and oxygen

  3. The radio-frequency design of an iris-type coupler for the CPHS radio-frequency quadrupole

    Science.gov (United States)

    Xiong, Zheng-Feng; Zheng, Shu-Xin; Xing, Qing-Zi; Guan, Xia-Ling

    2012-01-01

    The Compact Pulsed Hadron Source (CPHS) project is a university-based proton accelerator platform (13 MeV, 16 kW, 50 mA peak current, 0.5 ms pulse width at 50 Hz) for multi-disciplinary neutron and proton applications. The CPHS linac consists of a 3 MeV radio-frequency quadrupole (RFQ) linac and a 13 MeV drift tube linac (DTL). Both the RFQ and DTL share a 325 MHz, 2.1 MW klystron source. A single iris-type radio-frequency (RF) coupler is used to feed 537 kW of RF power to the RFQ cavity. Three-dimensional electromagnetic models of the ridge-loaded tapered waveguide (RLWG) and the coupler-cavity system are presented, and the design process and results of the RLWG and iris plate are described in detail.

  4. The radio-frequency design of an iris-type coupler for the CPHS radio-frequency quadrupole

    Institute of Scientific and Technical Information of China (English)

    XIONG Zheng-Feng; ZHENG Shu-Xin; XING Qing-Zi; GUAN Xia-Ling

    2012-01-01

    The Compact Pulsed Hadron Source (CPHS) project is a university-based proton accelerator platform (13 MeV,16 kW,50 mA peak current,0.5 ms pulse width at 50 Hz) for multi-disciplinary neutron and proton applications.The CPHS linac consists of a 3 MeV radio frequency quadrupole (RFQ) linac and a 13 MeV drift tube linac (DTL).Both the RFQ and DTL share a 325 MHz,2.1 MW klystron source.A single iris-type radio-frequency (RF) coupler is used to feed 537 kW of RF power to the RFQ cavity.Threedimensional electromagnetic models of the ridge-loaded tapered waveguide (RLWG) and the coupler-cavity system are presented,and the design process and results of the RLWG and iris plate are described in detail.

  5. In situ measurement of gas composition changes in radio frequency plasmas using a quartz sensor

    International Nuclear Information System (INIS)

    A simple method using a quartz sensor (Q-sensor) was developed to observe gas composition changes in radio frequency (rf) plasmas. The output depends on the gases' absolute pressure, molecular weight, and viscosity. The pressure-normalized quartz sensor output depends only on the molecular weight and viscosity of the gas. Consequently, gas composition changes can be detected in the plasmas if a sensor can be used in the plasmas. Influences imparted by the plasmas on the sensor, such as those by reactive particles (e.g., radicals and ions), excited species, electrons, temperature, and electric potentials during measurements were investigated to test the applicability of this quartz sensor measurement to plasma. The Q-sensor measurement results for rf plasmas with argon, hydrogen, and their mixtures are reproducible, demonstrating that the Q-sensor measurement is applicable for plasmas. In this work, pressure- and temperature-normalized Q-sensor output (NQO) were used to obtain the gas composition information of plasma. Temperature-normalization of the Q-sensor output enabled quartz sensor measurements near plasma electrodes, where the quartz sensor temperature increases. The changes in NQO agreed with results obtained by gas analysis using a quadrupole mass spectrometer. Results confirmed that the change in NQO is mainly attributable to changes in the densities and kinds of gas molecules in the plasma gas phase, not by other extrinsic influences of plasma. For argon, hydrogen, and argon-hydrogen plasmas, these changes correspond to reduction in nitrogen, production of carbon monoxide, and dissociation of hydrogen molecules, respectively. These changes in NQO qualitatively and somewhat quantitatively agreed with results obtained using gas analysis, indicting that the measurement has a potential application to obtain the gas composition in plasmas without disturbing industrial plasma processes.

  6. Eddy current imaging with an atomic radio-frequency magnetometer

    CERN Document Server

    Wickenbrock, Arne; Blanchard, John W; Budker, Dmitry

    2016-01-01

    We use a radio-frequency $^{85}$Rb alkali-vapor cell magnetometer based on a paraffin-coated cell with long spin-coherence time and a small, low-inductance driving coil to create highly resolved conductivity maps of different objects. We resolve sub-mm features in conductive objects, we characterize the frequency response of our technique, and by operating at frequencies up to 250 kHz we are able to discriminate between differently conductive materials based on the induced response. The method is suited to cover a wide range of driving frequencies and can potentially be used for detecting non-metallic objects with low DC conductivity.

  7. Radio Frequency Identification (RFID) in healthcare: a literature review.

    Science.gov (United States)

    Kolokathi, Aikaterini; Rallis, Panagiotis

    2013-01-01

    Creating and maintaining a safe and high-quality health care environment is of great importance for global community. New technologies and their applications can help us achieve this goal. Radio-Frequency Identification (RIFD) technology is considered one of those technologies and even today there are some interesting deployments in the health industry. As a result, this work aims to present the basic idea behind RFID solutions, problems that can be addressed with the adoption of RFID and the benefits of relative applications.

  8. RFID explained a primer on radio frequency identification technologies

    CERN Document Server

    Want, Roy

    2006-01-01

    This lecture provides an introduction to Radio Frequency Identification (RFID), a technology enabling automatic identification of objects at a distance without requiring line-of-sight. Electronic tagging can be divided into technologies that have a power source (active tags), and those that are powered by the tag interrogation signal (passive tags); the focus here is on passive tags. An overview of the principles of the technology divides passive tags into devices that use either near field or far field coupling to communicate with a tag reader. The strengths and weaknesses of the approaches a

  9. INTEGRATING RADIO FREQUENCY IDENTIFICATION TECHNOLOGY IN ACADEMIC MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Zainab Rasheed Mirza

    2014-01-01

    Full Text Available The purpose of this study is building a web and windows based intelligent system using web technologies, biometric and Radio Frequency Identification technologies (RFID to strengthen an Academic Management System (AMS in a campus for monitoring and improving academic performance of teachers and students. A campus mobile phone application will allow guardians to monitor student’s movement history at campus, e-payments and food choices at canteen, class attendance, exam attendance and academic performance on daily basis. Mobile application for students will allow students to view their class schedules, teacher appointments, e-payment statement, warnings or announcements, locate their exam halls and search for classrooms.

  10. Applications of Radio Frequency Identification (RFID) in Mining Industries

    Science.gov (United States)

    Khairul Nizam Mahmad, Mohd; Z, Mohd Remy Rozainy M. A.; Baharun, Norlia

    2016-06-01

    RFID technology has recently become a dream of many companies or organizations because of its strategic potential in transforming mining operations. Now is the perfect time, for RFID technology arise as the next revolution in mining industries. This paper will review regarding the application of RFID in mining industries and access knowledge regarding RFID technology and overseen the opportunity of this technology to become an importance element in mining industries. The application of Radio-Frequency Identification (RFID) in mining industries includes to control of Personal Protective Equipment (PPE), control of personnel to access mining sites and RFID solutions for tracking explosives.

  11. Towards the Realization of Graphene Based Flexible Radio Frequency Receiver

    Directory of Open Access Journals (Sweden)

    Maruthi N. Yogeesh

    2015-11-01

    Full Text Available We report on our progress and development of high speed flexible graphene field effect transistors (GFETs with high electron and hole mobilities (~3000 cm2/V·s, and intrinsic transit frequency in the microwave GHz regime. We also describe the design and fabrication of flexible graphene based radio frequency system. This RF communication system consists of graphite patch antenna at 2.4 GHz, graphene based frequency translation block (frequency doubler and AM demodulator and graphene speaker. The communication blocks are utilized to demonstrate graphene based amplitude modulated (AM radio receiver operating at 2.4 GHz.

  12. A morphological algorithm for improving radio-frequency interference detection

    OpenAIRE

    Offringa, A. R.; van de Gronde, J. J.; Roerdink, J. B. T. M.

    2012-01-01

    A technique is described that is used to improve the detection of radio-frequency interference in astronomical radio observatories. It is applied on a two-dimensional interference mask after regular detection in the time-frequency domain with existing techniques. The scale-invariant rank (SIR) operator is defined, which is a one-dimensional mathematical morphology technique that can be used to find adjacent intervals in the time or frequency domain that are likely to be affected by RFI. The t...

  13. Fast Adaptive Beamforming with Smart Antenna for Radio Frequency Repeater

    Directory of Open Access Journals (Sweden)

    Wang Chaoqun

    2016-01-01

    Full Text Available We present a fast adaptive beamforming null algorithm with smart antenna for Radio Frequency Repeater (RFR. The smart antenna system is realized by a Direction Of Arrival (DOA Estimator, whose output is used by an adaptive beamforming algorithm to shape a suitable radiation pattern of the equivalent antenna; so that the co-channel interference due to retransmitting antenna can be reduced. The proposed adaptive beamforming algorithm, which has been proved by formulaic analysis and simulation, has a lower computation complexity yet better performance.

  14. Electromagnetic induction imaging with a radio-frequency atomic magnetometer

    CERN Document Server

    Deans, Cameron; Hussain, Sarah; Renzoni, Ferruccio

    2016-01-01

    We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.

  15. Potentials for Radio Frequency Identification in AEC/FM

    Institute of Scientific and Technical Information of China (English)

    Karsten Menzel; CONG Zixiang; Luke Allan

    2008-01-01

    Radio frequency identification (RFID) technology has proved to be very effective in industries as di-verse as aircraft manufacturing to health and care. The construction industry has been slow to take up on RFID and this paper will discuss the merits of the technology in its potential for application within the con-struction sector. The paper reports about the prototypical implementation of RFID-based information man-agement in FM-scenarios. The prototypes were tested at University College Cork (UCC). The general appli-cability of RFID for decentralised information management could be demonstrated.

  16. Development and preliminary results of radio frequency ion source

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yahong, E-mail: xieyh@ipp.ac.cn; Hu, Chundong; Jiang, Caichao; Chen, Yuqian; Gu, Yumin; Su, Renxue; Xie, Yuanlai; Liu, Zhimin [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-02-15

    A radio frequency (RF) ion source was designed and developed for neutral beam injector. A RF driver test bed was used with a RF generator with maximum power of 25 kW with 1 MHz frequency and a matching box. In order to study the characteristic of RF plasma generation, the capacitance in the matching box was adjusted with different cases. The results show that lower capacitance will better the stability of the plasma with higher RF power. In the future, new RF coils and matching box will be developed for plasma generators with higher RF power of 50 kW.

  17. Adaptive Radio Frequency Interference Mitigation for HF Surface Wave Radar

    Institute of Scientific and Technical Information of China (English)

    WAN Xian-rong; KE Heng-yu; CHENG Feng

    2005-01-01

    The paper analyses the characteristics of radio frequency interference (RFI) in HF surface wave radar (HFSWR) which adopts the linear frequency modulated interrupted continuous wave (FMICW). RFI will influence all the range cells including all the positive frequency and negative frequency, and the negative frequency range cells contain only the interference information. Based on the above characteristics, we introduce and analyze a new adaptive interference mitigation beamforming algorithm using the negative frequency range cells samples to estimate the interference covariance matrix. Experimental results confirm that this general and robust algorithm can achieve effective RFI suppression using the data recorded by the HFSWR, located near Zhoushan in Zhejiang China.

  18. Radio frequency system of the RIKEN ring cyclotron

    International Nuclear Information System (INIS)

    The radio-frequency system of the RIKEN ring cyclotron is required to work in a frequency range of 20 to 45 MHz and to generate the maximum acceleration voltage of 250 kV. A new movable box-type variable-frequency resonator which is a compact half wave length coaxial type was developed for the above purpose. Each of two resonators is powered by separate RF power amplifier capable of delivering the power of 300 kW. The whole system was installed in September 1986 and has been working successfully. (author)

  19. Radio Frequency Energy Harvesting for Long Lifetime Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Han, Bo; Nielsen, Rasmus Hjorth; Prasad, Ramjee

    2014-01-01

    , in most of the cases, the sensor nodes are either powered by non-replaceable batteries, or there will be a considerable replacement cost. Thus a self-rechargeable sensor node design is necessary: the sensor node should be able to harvest energy from the environment. Among the existing techniques......, harvesting energy from the radio frequency (RF) waves gives the lowest system design. Previous research on RF energy harvesting is based on the model that the radio energy is omnidirectional in the air. In this paper, a directional transmission/receiving model is proposed which can further overcome the path...

  20. Glow and pseudo-glow discharges in a surface discharge generator

    Institute of Scientific and Technical Information of China (English)

    Li Xue-Chen; Dong Li-Fang; Wang Long

    2005-01-01

    The glow discharge in flowing argon at one atmospheric pressure is realized in a surface discharge generator. The discharge current presents one peak per half-cycle of the applied voltage. The duration of the discharge pulse is more than 1μs when the frequency of the applied voltage is 60kHz. For the glow discharge in argon, the power consumption increases with the increase of voltage or the decrease of gas pressure.This relation is explained qualitatively based on the theory of the Townsend breakdown mechanism. In contrast, the discharge current in one atmospheric pressure air gives many spikes in each half-cycle, and correspondingly this kind of discharge is called pseudo-glow discharge. Every current spike oscillates with high-frequency damping. The pseudo-glow discharge in one atmospheric pressure air might result from the streamer breakdown mechanism.

  1. Post-correlation radio frequency interference classification methods

    CERN Document Server

    Offringa, A R; Biehl, M; Zaroubi, S; Bernardi, G; Pandey, V N

    2010-01-01

    We describe and compare several post-correlation radio frequency interference classification methods. As data sizes of observations grow with new and improved telescopes, the need for completely automated, robust methods for radio frequency interference mitigation is pressing. We investigated several classification methods and find that, for the data sets we used, the most accurate among them is the SumThreshold method. This is a new method formed from a combination of existing techniques, including a new way of thresholding. This iterative method estimates the astronomical signal by carrying out a surface fit in the time-frequency plane. With a theoretical accuracy of 95% recognition and an approximately 0.1% false probability rate in simple simulated cases, the method is in practice as good as the human eye in finding RFI. In addition it is fast, robust, does not need a data model before it can be executed and works in almost all configurations with its default parameters. The method has been compared using...

  2. Antarctic Radio Frequency Albedo and Implications for Cosmic Ray Reconstruction

    CERN Document Server

    Besson, D Z; Sullivan, M; Allison, P; Barwick, S W; Baughman, B M; Beatty, J J; Belov, K; Bevan, S; Binns, W R; Chen, C; Chen, P; Clem, J M; Connolly, A; De Marco, D; Dowkontt, P F; DuVernois, M; Goldstein, D; Gorham, P W; Grashorn, E W; Hill, B; Hoover, S; Huang, M; Israel, M H; Javaid, A; Kowalski, J; Learned, J; Liewer, K M; Matsuno, S; Mercurio, B C; Miki, C; Mottram, M; Nam, J; Naudet, C J; Nichol, R J; Palladino, K; Romero-Wolf, A; Ruckman, L; Saltzberg, D; Seckel, D; Shang, R Y; Stockham, M; Varner, G S; Vieregg, A G; Wang, Y

    2013-01-01

    From an elevation of ~38 km, the balloon-borne ANtarctic Impulsive Transient Antenna (ANITA) is designed to detect the up-coming radio frequency (RF) signal resulting from a sub-surface neutrino-nucleon collision. Although no neutrinos have been discovered thus far, ANITA is nevertheless the only experiment to self-trigger on radio frequency emissions from cosmic-ray induced atmospheric air showers. In the majority of those cases, down-coming RF signals are observed via their reflection from the Antarctic ice sheet and back up to the ANITA interferometer. Estimating the energy scale of the incident cosmic rays therefore requires an estimate of the fractional power reflected at the air-ice interface. Similarly, inferring the energy of neutrinos interacting in-ice from observations of the upwards-directed signal refracting out to ANITA also requires consideration of signal coherence across the interface. By comparing the direct Solar RF signal intensity measured with ANITA to the surface-reflected Solar signal ...

  3. Radio Frequency-Activated Nanoliposomes for Controlled Combination Drug Delivery.

    Science.gov (United States)

    Malekar, Swapnil A; Sarode, Ashish L; Bach, Alvin C; Bose, Arijit; Bothun, Geoffrey; Worthen, David R

    2015-12-01

    This work was conducted in order to design, characterize, and evaluate stable liposomes containing the hydrophobic drug raloxifene HCl (RAL) and hydrophilic doxycycline HCl (DOX), two potentially synergistic agents for treating osteoporosis and other bone lesions, in conjunction with a radio frequency-induced, hydrophobic magnetic nanoparticle-dependent triggering mechanism for drug release. Both drugs were successfully incorporated into liposomes by lipid film hydration, although combination drug loading compromised liposome stability. Liposome stability was improved by reducing the drug load and by including Pluronics® (PL) in the formulations. DOX did not appear to interact with the phospholipid membranes comprising the liposomes, and its release was maximized in the presence of radio frequency (RF) heating. In contrast, differential scanning calorimetry (DSC) and phosphorus-31 nuclear magnetic resonance ((31)P-NMR) analysis revealed that RAL developed strong interactions with the phospholipid membranes, most notably with lipid phosphate head groups, resulting in significant changes in membrane thermodynamics. Likewise, RAL release from liposomes was minimal, even in the presence of RF heating. These studies may offer useful insights into the design and optimization of multidrug containing liposomes. The effects of RAL on liposome characteristics and drug release performance underscore the importance of appropriate physical-chemical analysis in order to identify and characterize drug-lipid interactions that may profoundly affect liposome properties and performance early in the formulation development process. PMID:25899799

  4. Capacitively coupled radio-frequency discharges in nitrogen at low pressures

    KAUST Repository

    Alves, Luís Lemos

    2012-07-06

    This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56MHz frequency, 0.11 mbar pressures and 230W coupled powers. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an actinometer). Simulations use a hybrid code that couples a two-dimensional time-dependent fluid module, describing the dynamics of the charged particles (electrons and positive ions N 2 + and N 4 + ), and a zero-dimensional kinetic module, describing the production and destruction of nitrogen (atomic and molecular) neutral species. The coupling between these modules adopts the local mean energy approximation to define spacetime-dependent electron parameters for the fluid module and to work out spacetime-averaged rates for the kinetic module. The model gives general good predictions for the self-bias voltage and for the intensities of radiative transitions (both average and spatially resolved), underestimating the electron density by a factor of 34. © 2012 IOP Publishing Ltd.

  5. Ion Current Density Calculation of the Inductive Radio Frequency Ion Source

    Directory of Open Access Journals (Sweden)

    V.I. Voznyi

    2012-10-01

    Full Text Available A radio-frequency (RF inductive ion source at 27.12 MHz is investigated. With a global model of the argon discharge, plasma density, electron temperature and ion current density of the ion source is calculated in relation to absorbed RF power and gas pressure as a discharge chamber size changes. It is found that ion beam current density grows as the discharge chamber size decreases. Calculations show that in the RF source with a discharge chamber 30 mm in diameter and 35 mm long the ion current density is 40 mA/cm2 at 100 W of absorbed RF power and 7 mTorr of pressure, and agrees well with experimentally measured value of 43 mA/cm2. With decreasing discharge chamber diameter to 15 mm ion current density can reach 85 mA/cm2 at absorbed RF power of 100 W.

  6. Atomic Layer Deposition Al2O3 Thin Films in Magnetized Radio Frequency Plasma Source

    Science.gov (United States)

    Li, Xingcun; Chen, Qiang; Sang, Lijun; Yang, Lizhen; Liu, Zhongwei; Wang, Zhenduo

    Self-limiting deposition of aluminum oxide (Al2O3) thin films were accomplished by the plasma-enhanced chemical vapor deposition using trimethyl aluminum (TMA) and O2 as precursor and oxidant, respectively, where argon was kept flowing in whole deposition process as discharge and purge gas. In here we present a novel plasma source for the atomic layer deposition technology, magnetized radio frequency (RF) plasma. Difference from the commercial RF source, magnetic coils were amounted above the RF electrode, and the influence of the magnetic field strength on the deposition rate and morphology are investigated in detail. It concludes that a more than 3 Å/ purging cycle deposition rate and the good quality of ALD Al2O3 were achieved in this plasma source even without extra heating. The ultra-thin films were characterized by including Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectric spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The high deposition rates obtained at ambient temperatures were analyzed after in-situ the diagnostic of plasmas by Langmuir probe.

  7. Creating nanoporosity in silver nanocolumns by direct exposure to radio-frequency air plasma

    Science.gov (United States)

    El Mel, Abdel-Aziz; Stephant, Nicolas; Hamon, Jonathan; Thiry, Damien; Chauvin, Adrien; Chettab, Meriem; Gautron, Eric; Konstantinidis, Stephanos; Granier, Agnès; Tessier, Pierre-Yves

    2015-12-01

    Nanoporous materials are of great importance for a broad range of applications including catalysis, optical sensors and water filtration. Although several approaches already exist for the creation of nanoporous materials, the race for the development of versatile methods, more suitable for the nanoelectronics industry, is still ongoing. In this communication we report for the first time on the possibility of generating nanoporosity in silver nanocolumns using a dry approach based on the oxidation of silver by direct exposure to a commercially available radio-frequency air plasma. The silver nanocolumns are created by glancing angle deposition using magnetron sputtering of a silver target in pure argon plasma. We show that upon exposure to the rf air plasma, the nanocolumns transform from solid silver into nanoporous silver oxide. We further show that by tuning the plasma pressure and the exposure duration, the oxidation process can be finely adjusted allowing for precisely controlling the morphology and the nanoporosity of the silver oxide nanocolumns. The generation of porosity within the silver nanocolumns is explained according to a cracking-induced oxidation mechanism based on two repeated events occurring alternately during the oxidation process: (i) oxidation of silver upon exposure to the air plasma and (ii) generation of nanocracks and blisters within the oxide layer due to the high internal stress generated within the material during oxidation.

  8. A linear radio frequency plasma reactor for potential and current mapping in a magnetized plasma

    International Nuclear Information System (INIS)

    Langmuir probe measurements in front of high power ion cyclotron resonant frequency antennas are not possible or simply too noisy to be analyzed properly. A linear experiment is a radio frequency (RF) magnetized plasma discharge reactor designed to probe the rectified potential in front of such antennas but at low power level (1 kW) to next improve antenna design and mitigate sheath effects. The maximum magnetic field is 0.1 T, and the RF amplifier can work between 10 kHz and 250 MHz allowing ion cyclotron resonances for argon or helium. The first measurements with no magnetic field are presented here, especially 2D potential maps extracted from the RF compensated probe measurements yield ni ≈ 1015 m−3 and Te ≈ 2 eV for RF power lower than 100 W. Series resonances in the chamber are highlighted and allow to deduce the plasma parameters from a simple equivalent impedance model of the plasma in helium gas. Next studies will be focused on magnetized plasmas and especially magnetized RF sheaths

  9. Langmuir probe and electron energy distribution function measurements of radio frequency ion source

    International Nuclear Information System (INIS)

    In this work a single langmuir probe is used to investigate the low pressure radio-frequency (RF) discharge in argon. The current-voltage characteristic of the probe is used to provide the fundamental plasma parameters, including the electron temperature (Te), electron density (ne), floating potential (vf) and plasma potential (vp).The data are collected at plasma source pressure varying from 1 to 80 mtorr and the discharge powers in the range of 25-250 w. The measurements give an electron density and temperature of ne=1.8 x 1010 to 9.2 x 1011 cm-3 and Te=1.75 to 4.5 eV, respectively. The electron energy distribution function (EEDF) and some elementary processes involved in the RF gas discharge is deduced. The influence of the RF power and plasma cell pressure on ne,Te and vp of the plasma has been examined. The evaluation of the EEDF and its behavior with the pressure in the plasma source is also revealed.

  10. Capacitively coupled radio-frequency discharges in nitrogen at low pressures

    International Nuclear Information System (INIS)

    This paper uses experiments and modelling to study capacitively coupled radio-frequency (rf) discharges in pure nitrogen, at 13.56 MHz frequency, 0.1–1 mbar pressures and 2–30 W coupled powers. Experiments performed on two similar (not twin) setups, existing in the LATMOS and the GREMI laboratories, include electrical and optical emission spectroscopy (OES) measurements. Electrical measurements give the rf-applied and the direct-current-self-bias voltages, the effective power coupled to the plasma and the average electron density. OES diagnostics measure the intensities of radiative transitions with the nitrogen second-positive and first-negative systems, and with the 811.5 nm atomic line of argon (present as an actinometer). Simulations use a hybrid code that couples a two-dimensional time-dependent fluid module, describing the dynamics of the charged particles (electrons and positive ions N2+ and N4+), and a zero-dimensional kinetic module, describing the production and destruction of nitrogen (atomic and molecular) neutral species. The coupling between these modules adopts the local mean energy approximation to define space–time-dependent electron parameters for the fluid module and to work out space–time-averaged rates for the kinetic module. The model gives general good predictions for the self-bias voltage and for the intensities of radiative transitions (both average and spatially resolved), underestimating the electron density by a factor of 3–4. (paper)

  11. The electrical asymmetry effect in geometrically asymmetric capacitive radio frequency plasmas

    International Nuclear Information System (INIS)

    The electrical asymmetry effect (EAE) allows an almost ideal separate control of the mean ion energy, i>, and flux, Γi, at the electrodes in capacitive radio frequency discharges with identical electrode areas driven at two consecutive harmonics with adjustable phase shift, θ. In such geometrically symmetric discharges, a DC self bias is generated as a function of θ. Consequently, i> can be controlled separately from Γi by adjusting the phase shift. Here, we systematically study the EAE in low pressure dual-frequency discharges with different electrode areas operated in argon at 13.56 MHz and 27.12 MHz by experiments, kinetic simulations, and analytical modeling. We find that the functional dependence of the DC self bias on θ is similar, but its absolute value is strongly affected by the electrode area ratio. Consequently, the ion energy distributions change and i> can be controlled by adjusting θ, but its control range is different at both electrodes and determined by the area ratio. Under distinct conditions, the geometric asymmetry can be compensated electrically. In contrast to geometrically symmetric discharges, we find the ratio of the maximum sheath voltages to remain constant as a function of θ at low pressures and Γi to depend on θ at the smaller electrode. These observations are understood by the model. Finally, we study the self-excitation of non-linear plasma series resonance oscillations and its effect on the electron heating.

  12. Physical properties of conventional explosives deduced from radio frequency emissions

    Energy Technology Data Exchange (ETDEWEB)

    Harlin, Jeremiah D [Los Alamos National Laboratory; Nemzek, Robert [Los Alamos National Laboratory

    2008-01-01

    Los Alamos National Laboratory collected broadband radio frequency (RF) electric field change measurements from multiple detonations of high explosives (HE). Three types of HE were used: small cylinders of flake TNT, solid TNT, and PBX-9501. Low frequency signals (<80 MHz) were shot-to-shot repeatable and occurred within the first 100 {mu} s at measured amplitudes of about 2 V m{sup -1} at 35 m distance. High frequency signals (>290 MHz) occurred later, were an order of magnitude lower in signal strength, and were not repeatable. There is a positive correlation between the maximum electric field change and the shock velocity of the HE. The amount of free charge produced in the explosion estimated from the first RF pulse is between 10 and 150 {mu} C. This implies a weakly ionized plasma with temperatures between 2600 and 2900 K.

  13. Radio frequency plasma nitriding of aluminium at higher power levels

    International Nuclear Information System (INIS)

    Nitriding of aluminium 2011 using a radio frequency plasma at higher power levels (500 and 700 W) and lower substrate temperature (500 deg. C) resulted in higher AlN/Al2O3 ratios than obtained at 100 W and 575 deg. C. AlN/Al2O3 ratios derived from X-ray photoelectron spectroscopic analysis (and corroborated by heavy ion elastic recoil time of flight spectrometry) for treatments preformed at 100 (575 deg. C), 500 (500 deg. C) and 700 W (500 deg. C) were 1.0, 1.5 and 3.3, respectively. Scanning electron microscopy revealed that plasma nitrided surfaces obtained at higher power levels exhibited much finer nodular morphology than obtained at 100 W

  14. Multiplexed infrared photodetection using resonant radio-frequency circuits

    Energy Technology Data Exchange (ETDEWEB)

    Liu, R.; Lu, R.; Gong, S.; Wasserman, D. [Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801 (United States); Roberts, C. [Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts 01854 (United States); Allen, J. W.; Allen, M. S. [Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, Florida 32542 (United States); Wenner, B. R. [Air Force Research Laboratory, Sensors Directorate, Wright Patterson Air Force Base, Ohio 45433 (United States)

    2016-02-08

    We demonstrate a room-temperature semiconductor-based photodetector where readout is achieved using a resonant radio-frequency (RF) circuit consisting of a microstrip split-ring resonator coupled to a microstrip busline, fabricated on a semiconductor substrate. The RF resonant circuits are characterized at RF frequencies as function of resonator geometry, as well as for their response to incident IR radiation. The detectors are modeled analytically and using commercial simulation software, with good agreement to our experimental results. Though the detector sensitivity is weak, the detector architecture offers the potential for multiplexing arrays of detectors on a single read-out line, in addition to high speed response for either direct coupling of optical signals to RF circuitry, or alternatively, carrier dynamics characterization of semiconductor, or other, material systems.

  15. Radio Frequency Interference mitigation using deep convolutional neural networks

    CERN Document Server

    Akeret, Joel; Lucchi, Aurelien; Refregier, Alexandre

    2016-01-01

    We propose a novel approach for mitigating radio frequency interference (RFI) signals in radio data using the latest advances in deep learning. We employ a special type of Convolutional Neural Network, the U-Net, that enables the classification of clean signal and RFI signatures in 2D time-ordered data acquired from a radio telescope. We train and assess the performance of this network using the HIDE & SEEK radio data simulation and processing packages, as well as data collected at the Bleien Observatory. We find that our U-Net implementation can outperform classical RFI mitigation algorithms such as SEEK's SumThreshold implementation. We publish our U-Net software package on GitHub under GPLv3 license.

  16. Effective Control of Cold Collisions with Radio Frequency Fields

    CERN Document Server

    Ding, Yijue; Greene, Chris H

    2016-01-01

    We study $^{87}$Rb cold collisions in a static magnetic field and a single-color radio frequency (RF) field by employing the multi-channel quantum defect theory in combination with the Floquet method to solve the two-body time-dependent Schr\\"odinger equation. Our results show that RF fields can modify the two-body scattering length by a large scale through Feshbach resonances both in low and high static magnetic field regimes. Such RF induced Feshbach resonances can be applied to quenching experiments or controlling interactions in spinor condensates. Here, we also show that analogous to photo-association, RF fields can also associate cold atoms into molecules at a useful rate.

  17. CERN Open Days 2013, Point 4: LHC Radio Frequency

    CERN Multimedia

    CERN Photolab

    2013-01-01

    Stand description: At Point 4 visitors will descend into the LHC tunnel to see the "engine" of the collider: the accelerating cavities where the circulating particles get a small kick of energy as they pass by 11,000 times each second. During your visit underground, you will see the superconducting magnets as well as instruments for observing the beams. You will also walk through the huge cavern containing the Radio Frequency power plants which provide the particle beams with energy. On surface no restricted access  Above ground, you will see the cryogenics installations which keep the accelerator at a just few degrees above absolute zero. Lots of fascinating information and exhibits about CERN's accelerators and experiments will be on display, with CERN engineers and physicists on hand all day to answer your questions.

  18. A morphological algorithm for improving radio-frequency interference detection

    CERN Document Server

    Offringa, A R; Roerdink, J B T M

    2012-01-01

    A technique is described that is used to improve the detection of radio-frequency interference in astronomical radio observatories. It is applied on a two-dimensional interference mask after regular detection in the time-frequency domain with existing techniques. The scale-invariant rank (SIR) operator is defined, which is a one-dimensional mathematical morphology technique that can be used to find adjacent intervals in the time or frequency domain that are likely to be affected by RFI. The technique might also be applicable in other areas in which morphological scale-invariant behaviour is desired, such as source detection. A new algorithm is described, that is shown to perform quite well, has linear time complexity and is fast enough to be applied in modern high resolution observatories. It is used in the default pipeline of the LOFAR observatory.

  19. Radio frequency interference effect on PN code sequence lock detector

    Science.gov (United States)

    Kwon, Hyuck M.; Tu, Kwei; Loh, Y. C.

    1991-01-01

    The authors find the probabilities of detection and false alarm of the pseudonoise (PN) sequence code lock detector when strong radio frequency interference (RFI) hits the communications link. Both a linear model and a soft-limiter nonlinear model for a transponder receiver are considered. In addition, both continuous wave (CW) RFI and pulse RFI are analyzed, and a discussion is included of how strong CW RFI can knock out the PN code lock detector in a linear or a soft-limiter transponder. As an example, the Space Station Freedom forward S-band PN system is evaluated. It is shown that a soft-limiter transponder can protect the PN code lock detector against a typical pulse RFI, but it can degrade the PN code lock detector performance more than a linear transponder if CW RFI hits the link.

  20. A morphological algorithm for improving radio-frequency interference detection

    Science.gov (United States)

    Offringa, A. R.; van de Gronde, J. J.; Roerdink, J. B. T. M.

    2012-03-01

    A technique is described that is used to improve the detection of radio-frequency interference in astronomical radio observatories. It is applied on a two-dimensional interference mask after regular detection in the time-frequency domain with existing techniques. The scale-invariant rank (SIR) operator is defined, which is a one-dimensional mathematical morphology technique that can be used to find adjacent intervals in the time or frequency domain that are likely to be affected by RFI. The technique might also be applicable in other areas in which morphological scale-invariant behaviour is desired, such as source detection. A new algorithm is described, that is shown to perform quite well, has linear time complexity and is fast enough to be applied in modern high resolution observatories. It is used in the default pipeline of the LOFAR observatory.

  1. Propagation of radio frequency waves through density filaments

    Energy Technology Data Exchange (ETDEWEB)

    Ram, Abhay K., E-mail: abhay@psfc.mit.edu [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139. USA (United States); Hizanidis, Kyriakos [National Technical University of Athens, Association EURATOM (Greece)

    2015-12-10

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave.

  2. Propagation of radio frequency waves through density filaments

    International Nuclear Information System (INIS)

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave

  3. Development of radio frequency induction plasma generators for neutral beams

    International Nuclear Information System (INIS)

    The techniques, operational aspects, and experimental results of a radio frequency induction plasma generator, with an internal rf power coupler, intended for intense neutral beam applications are described. One of the development sources suitable for 10 x 10-cm2 extraction optics was operated to a deuterium ion current density of 250 mA/cm2, uniform to 5%, over a circular extraction area 15 cm in diameter with a coupled rf power of 20 kW. Temporal fluctuation levels in the extracted ion current were measured to be typically 1% of the dc level. A second developmental source suitable for 10 x 40-cm2 grid sets was operated to 200 mA/cm2, uniform to +- 8% over a 10 x 40 cm2 area, with 40-kW coupled rf power

  4. Radio-frequency ion deflector for mass separation.

    Science.gov (United States)

    Schlösser, Magnus; Rudnev, Vitaly; González Ureña, Ángel

    2015-10-01

    Electrostatic cylindrical deflectors act as energy analyzer for ion beams. In this article, we present that by imposing of a radio-frequency modulation on the deflecting electric field, the ion transmission becomes mass dependent. By the choice of the appropriate frequency, amplitude, and phase, the deflector can be used as mass filter. The basic concept of the new instrument as well as simple mathematic relations are described. These calculations and further numerical simulations show that a mass sensitivity is achievable. Furthermore, we demonstrate the proof-of-principle in experimental measurements, compare the results to those of from a 1 m linear time-of-flight spectrometer, and comment on the mass resolution of the method. Finally, some potential applications are indicated. PMID:26520948

  5. Radio-frequency ion deflector for mass separation

    Energy Technology Data Exchange (ETDEWEB)

    Schlösser, Magnus, E-mail: magnus.schloesser@googlemail.com; Rudnev, Vitaly; Ureña, Ángel González, E-mail: laseres@pluri.ucm.es [Unidad de Láseres y Haces Moleculares, Instituto Plurisdisciplinar, Universidad Complutense de Madrid, Madrid 28040 (Spain)

    2015-10-15

    Electrostatic cylindrical deflectors act as energy analyzer for ion beams. In this article, we present that by imposing of a radio-frequency modulation on the deflecting electric field, the ion transmission becomes mass dependent. By the choice of the appropriate frequency, amplitude, and phase, the deflector can be used as mass filter. The basic concept of the new instrument as well as simple mathematic relations are described. These calculations and further numerical simulations show that a mass sensitivity is achievable. Furthermore, we demonstrate the proof-of-principle in experimental measurements, compare the results to those of from a 1 m linear time-of-flight spectrometer, and comment on the mass resolution of the method. Finally, some potential applications are indicated.

  6. Novel radio-frequency ion trap with spherical geometry

    CERN Document Server

    Noshad, Houshyar

    2014-01-01

    Confinement of single ions in a novel radio-frequency (RF) quadrupole ion trap with spherical shape is investigated. An optimization of this spherical ion trap (SIT) is carried out in order to suppress its nonlinearity substantially by eliminating the electric octupole moment. Hence, a trapping potential and consequently an electric field very similar to the ideal quadrupole ion trap (QIT) are obtained. Afterwards, three stability regions for the optimized SIT are numerically computed. The regions coincide well with those reported in the literature for the ideal QIT. The reason is attributed to the zero electric octupole moment of our proposed trap. The SIT simple geometry and relative ease of fabrication along with its increased trapping volume compared to the conventional hyperbolic quadrupole ion trap, make it an appropriate choice for miniaturization.

  7. Radio-frequency-modulated Rydberg states in a vapor cell

    CERN Document Server

    Miller, Stephanie A; Raithel, Georg

    2016-01-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60$S_{1/2}$ and 58$D_{5/2}$ Rydberg states with 50~MHz and 100~MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of $S$ and $D$ states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  8. Biomedical Monitoring By A Novel Noncontact Radio Frequency Technology Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J. (Compiler)

    2014-01-01

    The area of Space Health and Medicine is one of the NASA's Space Technology Grand Challenges. Space is an extreme environment which is not conducive to human life. The extraterrestrial environment can result in the deconditioning of various human physiological systems and thus require easy to use physiological monitoring technologies in order to better monitor space crews for appropriate health management and successful space missions and space operations. Furthermore, the Space Technology Roadmap's Technology Area Breakdown Structure calls for improvements in research to support human health and performance (Technology Area 06). To address these needs, this project investigated a potential noncontact and noninvasive radio frequency-based technique of monitoring central hemodynamic function in human research subjects in response to orthostatic stress.

  9. Propagation of radio frequency waves through density filaments

    Science.gov (United States)

    Ram, Abhay K.; Hizanidis, Kyriakos

    2015-12-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave.

  10. Spread spectrum compressed sensing MRI using chirp radio frequency pulses

    CERN Document Server

    Qu, Xiaobo; Zhuang, Xiaoxing; Yan, Zhiyu; Guo, Di; Chen, Zhong

    2013-01-01

    Compressed sensing has shown great potential in reducing data acquisition time in magnetic resonance imaging (MRI). Recently, a spread spectrum compressed sensing MRI method modulates an image with a quadratic phase. It performs better than the conventional compressed sensing MRI with variable density sampling, since the coherence between the sensing and sparsity bases are reduced. However, spread spectrum in that method is implemented via a shim coil which limits its modulation intensity and is not convenient to operate. In this letter, we propose to apply chirp (linear frequency-swept) radio frequency pulses to easily control the spread spectrum. To accelerate the image reconstruction, an alternating direction algorithm is modified by exploiting the complex orthogonality of the quadratic phase encoding. Reconstruction on the acquired data demonstrates that more image features are preserved using the proposed approach than those of conventional CS-MRI.

  11. Electron beam diagnostics for a superconducting radio frequency photoelectron injector.

    Science.gov (United States)

    Kamps, Thorsten; Arnold, Andre; Boehlick, Daniel; Dirsat, Marc; Klemz, Guido; Lipka, Dirk; Quast, Torsten; Rudolph, Jeniffa; Schenk, Mario; Staufenbiel, Friedrich; Teichert, Jochen; Will, Ingo

    2008-09-01

    A superconducting radio frequency (SRF) photoelectron injector is currently under construction by a collaboration of BESSY, DESY, FZD, and MBI. The project aims at the design and setup of a continuous-wave SRF injector including a diagnostics beamline for the ELBE free electron laser (FEL) and to address R&D issues on low emittance injectors for future light sources such as the BESSY FEL. Of critical importance for the injector performance is the control of the electron beam parameters. For this reason a compact diagnostics beamline is under development, serving a multitude of operation settings. In this paper the layout and the rationale of the diagnostics beamline are described. Furthermore detailed information on specific components is given, together with results from laboratory tests and data taking. PMID:19044401

  12. Radio frequency auxiliary heating systems design in ITER

    International Nuclear Information System (INIS)

    A combination of radio frequency (RF) auxiliary heating systems will provide at least one half of the required 100 MW of auxiliary power in ITER. Five of the 20 equatorial ports are assigned to RF heating systems. Recent work has focused on developing an integrated equatorial port-plug design concept for all of the RF auxiliary heating systems as well as other equatorial port systems such as diagnostics. Common features of the design approach include the use of identical interfaces to services such as cooling water, vacuum, mechanical connection to the vessel, and maintenance. Based on the integrated port concept, a high level of design integration has been achieved for the RF heating systems. Implementation of the integrated design concept has been accomplished without significantly affecting the individual system performance and with limited impact on the torus layout. (author)

  13. Development of a radio frequency excited local impedance probe

    International Nuclear Information System (INIS)

    Local void fraction measurements were made with a Karlsruhe type impedance probe. The probe was operated at radiofrequency to minimize sensitivity to liquid phase resistivity. Two types of signal thresholding were used: level and derivative. A dual beam X-ray system was used as a calibration standard for the radio frequency excited impedance probe. Calibration was performed in vertical air/water flows. Derivative thresholding was found to be preferable to level thresholding, however, in both schemes hydrodynamic and surface tension effects were observed below a liquid superficial velocity of 0.5 m/s. Table salt (NaCl) was added to the water to verify the probe's response to changing water resistivity. Derivative thresholding appeared to work quite well but level thresholding was found to be inadequate due to the change in capacitance. (orig.)

  14. Multifunctional radio-frequency generator for cold atom experiments

    Science.gov (United States)

    Wei, Chun-hua; Yan, Shu-hua

    2016-05-01

    We present a low cost radio-frequency (RF) generator suitable for experiments with cold atoms. The RF source achieves a sub-hertz frequency with tunable resolution from 0 MHz to 400 MHz and a maximum output power of 33 dBm. Based on a direct digital synthesizer (DDS) chip, we implement a ramping capability for frequency, amplitude and phase. The system can also operate as an arbitrary waveform generator. By measuring the stability in a duration of 600 s, we find the presented device performs comparably as Agilent33522A in terms of short-term stability. Due to its excellent performance, the RF generator has been already applied to cold atom trapping experiments.

  15. A novel radio frequency assisted heat pump dryer

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, M.G.; Metaxas, A.C.

    1999-09-01

    This paper compares an experimental heat pump batch dryer with the implementation of volumetric Radio Frequency (RF) heating, in the combination drying of crushed brick particulate. Results are presented showing overall improvements in drying. A simplified mathematical drying model including the RF energy source has been developed using mass and energy conservation, confirming the experimental results. Drying is a widespread, energy intensive industrial unit operation. The economics of a drying process operation largely depend upon the dryers performance and ultimately the cost of energy consumption. To enhance the performance of a drying system, the damp air stream that exits the drying chamber can be recycled to reclaim the enthalpy of evaporation that it carries, by using a heat pump (Hodgett, 1976). However, because the medium that dries is still warm air, this system also suffers from heat transfer limitations, particularly towards the falling drying rate period. Such limitations in drying performance can be overcome with the use of Radio Frequency (RF) energy which generates heat volumetrically within the wet material by the combined mechanisms of dipole rotation and conduction effects which speeds up the drying process (Metaxas et al, 1983). Despite the clear advantages that heat pumps and high frequency heating offer for drying, the combination of these two techniques until recently has not been studied (Kolly et al, 1990; Marshall et al, 1995).A series of experiments carried out comprising a motor driven heat pump which was retro-fitted with the ability of imparting RF energy into a material at various stages of the drying cycle are described and compared with a mathematical model.

  16. Development of a radio frequency atmospheric pressure plasma jet for diamond-like carbon coatings on stainless steel substrates

    Science.gov (United States)

    Sohbatzadeh, F.; Samadi, O.; Siadati, S. N.; Etaati, G. R.; Asadi, E.; Safari, R.

    2016-10-01

    In this paper, an atmospheric pressure plasma jet with capacitively coupled radio frequency discharge was developed for diamond-like carbon (DLC) coatings on stainless steel substrates. The plasma jet was generated by argon-methane mixture and its physical parameters were investigated. Relation between the plasma jet length and width of the powered electrode was discussed. Optical and electrical characteristics were studied by optical emission spectroscopy, voltage and current probes, respectively. The evolutions of various species like ArI, C2 and CH along the jet axis were investigated. Electron temperature and density were estimated by Boltzmann plot method and Saha-Boltzmann equation, respectively. Finally, a diamond-like carbon coating was deposited on stainless steel-304 substrates by the atmospheric pressure radio frequency plasma jet in ambient air. Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy and Vickers hardness test were used to study the deposited films. The length of the jet was increased by increasing the width of the powered electrode. The estimated electron temperature and density were 1.43 eV and 1.39 × 1015 cm-3, respectively. Averaged Vicker's hardness of the coated sample was three times greater than that of the substrate. The SEM images of the deposited thin films revealed a 4.5 μm DLC coated for 20 min.

  17. Plasma Beam Interaction with Negative glow discharge

    International Nuclear Information System (INIS)

    A miniature coaxial gun has been used to study the effect of the energy spectrum of the ejected plasma on the interaction with negative glow region in a normal glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 K A as a single pulse with pulse duration of 60 MUs. Investigations are carried out with argon gas at pressure 0.4 Torr. The sheath thickness of the ejected plasma from the coaxial discharge was 6 cm with different densities and energies. The spectrum of electron energy varies between 6 eV and 1 eV, while the electron density varies between 5 x 1012 cm -3 and 4x1013 cm -3. The peak velocity of the ejected plasma was 0. 8 x 105 cm sec-1 in the neutral argon atoms. Argon negative glow region used as base plasma has an electron temperature of 2.2 eV and electron density of 6.2 x107 cm-3. It had been found that the velocity of the ejected plasma decreased when it moves in the negative glow region and its mean electron temperature decreased. The results are compared with the theory of beam interaction with cold plasma

  18. Wireless Chalcogenide Nanoionic-Based Radio-Frequency Switch

    Science.gov (United States)

    Nessel, James; Miranda, Felix

    2013-01-01

    A new nonvolatile nanoionic switch is powered and controlled through wireless radio-frequency (RF) transmission. A thin layer of chalcogenide glass doped with a metal ion, such as silver, comprises the operational portion of the switch. For the switch to function, an oxidizable electrode is made positive (anode) with respect to an opposing electrode (cathode) when sufficient bias, typically on the order of a few tenths of a volt or more, is applied. This action causes the metal ions to flow toward the cathode through a coordinated hopping mechanism. At the cathode, a reduction reaction occurs to form a metal deposit. This metal deposit creates a conductive path that bridges the gap between electrodes to turn the switch on. Once this conductive path is formed, no further power is required to maintain it. To reverse this process, the metal deposit is made positive with respect to the original oxidizable electrode, causing the dissolution of the metal bridge thereby turning the switch off. Once the metal deposit has been completely dissolved, the process self-terminates. This switching process features the following attributes. It requires very little to change states (i.e., on and off). Furthermore, no power is required to maintain the states; hence, the state of the switch is nonvolatile. Because of these attributes the integration of a rectenna to provide the necessary power and control is unique to this embodiment. A rectenna, or rectifying antenna, generates DC power from an incident RF signal. The low voltages and power required for the nanoionic switch control are easily generated from this system and provide the switch with a novel capability to be operated and powered from an external wireless device. In one realization, an RF signal of a specific frequency can be used to set the switch into an off state, while another frequency can be used to set the switch to an on state. The wireless, miniaturized, and nomoving- part features of this switch make it

  19. Plastic circuits and tags for 13.56 MHz radio-frequency communication

    NARCIS (Netherlands)

    Myny, K.; Steudel, S.; Vicca, P.; Beenhakkers, M.J.; Aerle, N.A.J.M. van; Gelinck, G.H.; Genoe, J.; Dehaene, W.; Heremans, P.

    2009-01-01

    We discuss the design and implementation of 64-bit and 128-bit plastic transponder chips for radio-frequency identification tags. The 64-bit chips, comprising 414 organic thin-film transistors, are integrated into fully functional plastic radio-frequency identification tags with 13.56 MHz communicat

  20. Transition characteristics from radio-frequency discharge to arc in hollow cathode configuration

    Institute of Scientific and Technical Information of China (English)

    许建平; 巩春志; 吴明忠; 田修波

    2014-01-01

    The technique ofglow discharges in radio frequency configuration was applied to ignite hollow cathode vacuum arc discharge.The effect of discharge parameters on the building up of hollow cathode arc discharge was investigated.The emission spectrum during the vacuum arc ignition process was measured to disclose the discharge dynamics.There exists a threshold radio frequency power (300 W),beyond which hollow cathode is in γmode discharge status while radio frequency discharge changes into the arc discharge.With the increase of the radio frequency power,the plasma temperature and electronic density increase,and the discharge mode transits more rapidly.The ignition time ofhollow cathode vacuum arc discharge is less than 4 s with a radio frequency power of700 W.

  1. Radio frequency leakage current from unipolar laparoscopic electrocoagulators.

    Science.gov (United States)

    DiNovo, J A

    1983-09-01

    Radio frequency (RF) leakage current has been suspected of causing accidental tissue burns associated with laparoscopic electrocoagulation used for tubal sterilization. A study was done to determine the levels of capacitively coupled RF leakage current from six unipolar laparoscopes manufactured by five companies. Leakage current values ranging from less than 100 mA to over 550 mA were measured at electrosurgical unit power settings of up to 150 w into 1,000 ohms. These levels represent 24-62% of the total electrosurgical current generated by the electrosurgical units. Using a criterion for tissue injury of 100 mA/sq cm applied for ten seconds, leakage current levels exceeding 400 mA are capable of producing burns either at the abdominal wall or to internal organs that accidentally come into contact with the body of the laparoscope. One of the six devices tested had leakage current levels higher than 400 mA at power settings lower than 100 w. Capacitance measurements between the unipolar laparoscope body and the forceps ranged from 53 to 140 picofarads.

  2. Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kephart, Robert [Fermilab; Chattopadhyay, Swaapan [Northern Illinois U.; Milton, Stephen [Colorado State U.

    2015-04-10

    We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing and new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.

  3. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    Science.gov (United States)

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  4. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    Science.gov (United States)

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results.

  5. GPU enabled kinetic effects in radio-frequency heating simulation

    Science.gov (United States)

    Green, David; RF-SciDAC Collaboration

    2015-11-01

    In previous work we have demonstrated the iterative addition of parallel kinetic effects to finite-difference frequency-domain simulation of radio-frequency (RF) wave propagation in fusion relevant plasmas. Such iterative addition in configuration space bypasses several of the difficulties with traditional spectral methods for kinetic RF simulation when applied to problems that exhibit non-periodic geometries. Furthermore, the direct numerical integration of particle trajectories in real magnetic field geometries removes violations of the stationary phase approximation inherent in the spectral approach. Here we extend this method to include perpendicular kinetics by relying on the massively parallel capability of GPUs to enable resolution of 3 velocity-space dimensions. We present results for a mode converted ion Bernstein wave scenario in 1-space plus 3-velocity dimensions case relevant to fusion plasmas. This research used resources of the OLCF at ORNL, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  6. Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Lane, Peter Gwin [IIT, Chicago

    2016-07-01

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  7. Radio-frequency energy harvesting for wearable sensors.

    Science.gov (United States)

    Borges, Luís M; Chávez-Santiago, Raul; Barroca, Norberto; Velez, Fernando José; Balasingham, Ilangko

    2015-02-01

    The use of wearable biomedical sensors for the continuous monitoring of physiological signals will facilitate the involvement of the patients in the prevention and management of chronic diseases. The fabrication of small biomedical sensors transmitting physiological data wirelessly is possible as a result of the tremendous advances in ultra-low power electronics and radio communications. However, the widespread adoption of these devices depends very much on their ability to operate for long periods of time without the need to frequently change, recharge or even use batteries. In this context, energy harvesting (EH) is the disruptive technology that can pave the road towards the massive utilisation of wireless wearable sensors for patient self-monitoring and daily healthcare. Radio-frequency (RF) transmissions from commercial telecommunication networks represent reliable ambient energy that can be harvested as they are ubiquitous in urban and suburban areas. The state-of-the-art in RF EH for wearable biomedical sensors specifically targeting the global system of mobile 900/1800 cellular and 700 MHz digital terrestrial television networks as ambient RF energy sources are showcased. Furthermore, guidelines for the choice of the number of stages for the RF energy harvester are presented, depending on the requirements from the embedded system to power supply, which is useful for other researchers that work in the same area. The present authors' recent advances towards the development of an efficient RF energy harvester and storing system are presented and thoroughly discussed too. PMID:26609400

  8. Radio frequency interference in solar monitoring using CALLISTO

    Science.gov (United States)

    Abidin, Zamri Zainal; Anim, Norsuzian Mohd; Hamidi, Zety Sharizat; Monstein, Christian; Ibrahim, Zainol Abidin; Umar, Roslan; Shariff, Nur Nafhatun Md; Ramli, Nabilah; Aziz, Noor Aqma Iryani; Sukma, Indriani

    2015-08-01

    Compact Astronomical Low-frequency, Low-cost Instrument for Spectroscopy in Transportable Observatories (CALLISTO) is a global network of spectrometer system with the purpose to observe the Sun's activities. There are 37 stations (using 68 instruments) forming this network from more than 96 countries. We investigate the radio frequency interference (RFI) affecting CALLISTO at these stations. We found that the RFI severely affecting CALLISTO within radio astronomical windows below 870 MHz are in the ranges of 80-110 MHz and 460-500 MHz. We also found that all stations are relatively free from RFI at 270-290 MHz. We investigate the general effect of RFI on detection of solar bursts. We considered type III solar bursts on 10th May, 28th June, 6th July and 8th July, type II on 24th April and type IV on 9th March (all in 2012) in order to measure the percentage of RFI level during solar burst in general. The SNR of the strong solar bursts in for these detections have maxima reaching up to 46.20 (for 6th July).

  9. On creating transport barrier by radio-frequency waves

    International Nuclear Information System (INIS)

    The use of radio frequency (RF) waves in the range of Alfven frequencies is shown to stabilize the drift-ballooning modes in the tokamak if the radial profile of the RF field energy is properly chosen. Stabilization is achieved by the ponder motive force arising due to the radial gradient in the RF field energy. The estimate of the RF power required for this stabilization is found to be rather modest and hence should be easily obtained in the actual experiments. This result therefore shows that the use of the RF waves can create a transport barrier to reduce the loss of particle and energy from the plasma. The new improved mode produced by the RF is expected to have all the advantageous features of the enhanced reverse shear (ERS) modes and at the same time will, unlike the ERS plasma, be sustainable for unlimited period of time and hence should be an attractive choice for the reactor-grade self-sustaining plasma. (author)

  10. Modal response of 4-rod type radio frequency quadrupole linac

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Avik; Mahapatra, Abhijit [Central Mechanical Engineering Research Institute (CMERI), M.G. Avenue, Durgapur 713209 (India); Mondal, Manas; Chakrabarti, Alok [Variable Energy Cyclotron Centre (VECC), Sector-1/AF, Bidhannagar, Kolkata 700064 (India)

    2009-10-15

    This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.

  11. Mechanical properties of niobium radio-frequency cavities

    International Nuclear Information System (INIS)

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 620 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structures have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young’s modulus value of 88.5 GPa and a Poisson’s ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities made from ingot material with large crystals are comparable to those of cavities made of fine-grain niobium

  12. Radio Frequency Microelectromechanical Systems in Defence and Aerospace

    Directory of Open Access Journals (Sweden)

    D.V.K. Sastry

    2009-11-01

    Full Text Available For all onboard systems applications, it is important to have very low-loss characteristics and low power consumption coupled with size reduction. The controls and instrumentation in defence and aerospace continually calls for newer technologies and developments. One such technology showing remarkable potential over the years is radio frequency microelectromechanical systems (RF MEMS which have already made their presence felt prominently by offering replacement in radar and communication systems with high quality factors and precise tunability. The RF MEMS components have emerged as potential candidates for defence and aerospace applications. The core theme of this paper is to drive home the fact that the limitations faced by the current RF devices can be overcome by the flexibility and better device performance characteristics of RF MEMS components, which ultimately propagate the device level benefits to the final system to attain the unprecedented levels of performance.Defence Science Journal, 2009, 59(6, pp.568-567, DOI:http://dx.doi.org/10.14429/dsj.59.1561

  13. Report on GMI Special Study #15: Radio Frequency Interference

    Science.gov (United States)

    Draper, David W.

    2015-01-01

    This report contains the results of GMI special study #15. An analysis is conducted to identify sources of radio frequency interference (RFI) to the Global Precipitation Measurement (GPM) Microwave Imager (GMI). The RFI impacts the 10 GHz and 18 GHz channels at both polarities. The sources of RFI are identified for the following conditions: over the water (including major inland water bodies) in the earth view, and over land in the earth view, and in the cold sky view. A best effort is made to identify RFI sources in coastal regions, with noted degradation of flagging performance due to the highly variable earth scene over coastal regions. A database is developed of such sources, including latitude, longitude, country and city of earth emitters, and position in geosynchronous orbit for space emitters. A description of the recommended approach for identifying the sources and locations of RFI in the GMI channels is given in this paper. An algorithm to flag RFI contaminated pixels which can be incorporated into the GMI Level 1Base/1B algorithms is defined, which includes Matlab code to perform the necessary flagging of RFI. A Matlab version of the code is delivered with this distribution.

  14. Rapid prototyping for radio-frequency geolocation applications

    Energy Technology Data Exchange (ETDEWEB)

    Briles, S. C. (Scott C.); Arrowood, J. L. (Joseph L.); Braun, T. R. (Thomas R.); Turcotte, D. (Dakx); Fiset, E. (Etienne)

    2004-01-01

    Previous space-to-ground, single-platform geolocation experiments exploiting time-difference-of arrival (TDOA) via interferometry were successful at separating and quantitatively characterizing interfering radio frequency (RF) signals from expected RF transmissions. Much of the success of these experiments rested on the use of embedded processors to perform the required signal processing. The experiments handled data in a 'snapshot' fashion: digitized data was collected, the data was processed via a digital signal processing (DSP) microprocessor to yield differential phase measurements, and these measurements were transmitted to the Earth for geolocation processing. With the utilization of FPGAs (field programmable gate arrays) for the intensive number-crunching algorithms, the processing of streaming real-time data is feasible for bandwidths on the order of 20 MHz. By partitioning the signal processing algorithm so there is a significant reduction in the data rate as data flows through the FPGA, a DSP microprocessor can now be employed to perform further decision-oriented processing on the FPGA output. This hybrid architecture, employing both FPGAs and DSPs, typically requires an expensive and lengthy development cycle. However, the use of graphical development environments with auto-code generation and hardware-in-the-loop testing can result in rapid prototyping for geolocation experiments, which enables adaptation to emerging signals of interest in a cost and time effective manner.

  15. Photonics-based tunable and broadband radio frequency converter

    Science.gov (United States)

    Borges, Ramon Maia; Mazzer, Daniel; Rufino Marins, Tiago Reis; Sodré, Arismar Cerqueira

    2016-03-01

    This paper is regarding the concept and development of a photonics-based tunable and broadband radio frequency converter (PBRC). It employs an external modulation technique to generate and reconfigure its output frequency, a digital circuit to manage the modulators' bias voltages, and an optical interface for connecting it to optical-wireless networks based on radio-over-fiber technology. The proposed optoelectronic device performs photonics-based upconversion and downconversion as a function of the local oscillator frequency and modulators' bias points. Experimental results demonstrate a radiofrequency (RF) carrier conversion with spectral purity over the frequency range from 750 MHz to 6.0 GHz, as well as the integration of the photonics-based converter with an optical backhaul based on a 1.5-km single-mode fiber from a geographically distributed optical network. Low phase noise and distortion absence illustrate its applicability for convergent and reconfigurable optical wireless communications. A potential application relies on the use of PBRC in convergent optical wireless networks to dynamically provide RF carriers as a function of the telecom operator demand and radio propagation environment.

  16. Radio frequency leakage current from unipolar laparoscopic electrocoagulators.

    Science.gov (United States)

    DiNovo, J A

    1983-09-01

    Radio frequency (RF) leakage current has been suspected of causing accidental tissue burns associated with laparoscopic electrocoagulation used for tubal sterilization. A study was done to determine the levels of capacitively coupled RF leakage current from six unipolar laparoscopes manufactured by five companies. Leakage current values ranging from less than 100 mA to over 550 mA were measured at electrosurgical unit power settings of up to 150 w into 1,000 ohms. These levels represent 24-62% of the total electrosurgical current generated by the electrosurgical units. Using a criterion for tissue injury of 100 mA/sq cm applied for ten seconds, leakage current levels exceeding 400 mA are capable of producing burns either at the abdominal wall or to internal organs that accidentally come into contact with the body of the laparoscope. One of the six devices tested had leakage current levels higher than 400 mA at power settings lower than 100 w. Capacitance measurements between the unipolar laparoscope body and the forceps ranged from 53 to 140 picofarads. PMID:6226780

  17. Three-dimensional effects for radio frequency antenna modeling

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C.

    1993-12-31

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused by feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.

  18. Three-dimensional effects for radio frequency antenna modeling

    Science.gov (United States)

    Carter, M. D.; Batchelor, D. B.; Stallings, D. C.

    1994-10-01

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused by feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.

  19. Three-dimensional effects for radio frequency antenna modeling

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37821-8071 (United States))

    1994-10-15

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. The 2-D calculations predict that the return currents in the sidewalls of the antenna structure depend strongly on the plasma parameters, but this prediction is suspect because of experimental evidence. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform three-dimensional (3-D) modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused by feeders to the main current strap and conducting sidewalls are considered. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna structure rather than the plasma, as in the 2-D model. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading predicted from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model, even with end-effect corrections for the 2-D model.

  20. Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Leena G.; Mahapatra, Anirban S. [Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India); Gomathi, N., E-mail: gomathi@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India); Joseph, K. [Department of Chemistry, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India); Neogi, S. [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721301 (India); Nair, C.P. Reghunadan [Polymers and Special Chemicals Group, Vikram Sarabhai Space Centre, Trivandrum, Kerala 695022 (India)

    2015-06-15

    Highlights: • Plasma functionalization of MWCNT to obtain oxygen and nitrogen containing groups. • Functionalization and removal of amorphous carbon from MWCNT without affecting structural integrity. • Enhanced dispersion in water. • Plasma-CNT interaction mechanism. - Abstract: Surface modification of multiwall carbon nanotubes (MWCNT) was carried out by radio frequency (RF) plasma discharges of oxygen and nitrogen gases to improve their dispersibility. Various oxygen and nitrogen containing functional groups were incorporated as a result of plasma treatment and were confirmed through Fourier transform infrared spectroscopy (FTIR). The effect of plasma treatment on structural properties and morphology changes of MWCNTs was analyzed by Raman, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The morphological studies indicate that untreated MWCNT exists as closely packed with highly entangled bundle. During the plasma treatment, MWCNT tubes get disentangled. XRD, Raman and TEM confirmed the absence of any surface damage during plasma treatment. Functionalized carbon nanotubes exhibit high zeta potential values indicating their good dispersibility in water. The method offers a direct and dry means for functionalization of MWCNT without affecting the structure of MWCNT.

  1. Ultra High-Speed Radio Frequency Switch Based on Photonics

    Science.gov (United States)

    Ge, Jia; Fok, Mable P.

    2015-11-01

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  2. Fundamental monomeric biomaterial diagnostics by radio frequency signal analysis.

    Science.gov (United States)

    Ji, Jae-Hoon; Shin, Kyeong-Sik; Kang, Shinill; Lee, Soo Hyun; Kang, Ji Yoon; Kim, Sinyoung; Jun, Seong Chan

    2016-08-15

    We present a new diagnostic technique of fundamental monomeric biomaterials that do not rely on any enzyme or chemical reaction. Instead, it only uses radio frequency (RF) signal analysis. The detection and classification of basic biomaterials, such as glucose and albumin, were demonstrated. The device was designed to generate a strong resonance response with glucose solution and fabricated by simple photolithography with PDMS (Polydimethylsiloxane) well. It even was used to detect the level of glucose in mixtures of glucose and albumin and in human serum, and it operated properly and identified the glucose concentration precisely. It has a detection limit about 100μM (1.8mg/dl), and a sensitivity about 58MHz per 1mM of glucose and exhibited a good linearity in human blood glucose level. In addition, the intrinsic electrical properties of biomaterials can be investigated by a de-embedding technique and an equivalent circuit analysis. The capacitance of glucose containing samples exhibited bell-shaped Gaussian dispersion spectra around 2.4GHz. The Albumin solution did not represent a clear dispersion spectra compared to glucose, and the magnitude of resistance and inductance of albumin was higher than that of other samples. Other parameters also represented distinguishable patterns to classify those biomaterials. It leads us to expect future usage of our technique as a pattern-recognizing biosensor. PMID:27111728

  3. Plasma rotation study in Tore Supra radio frequency heated plasmas

    International Nuclear Information System (INIS)

    Toroidal flows are found to improve the performance of the magnetic confinement devices with increase of the plasma stability and confinement. In ITER or future reactors, the torque from NBI should be less important than in present-day tokamaks. Consequently, it is of interest to study other intrinsic mechanisms that can give rise to plasma rotation in order to predict the rotation profile in experiments. Intriguing observations of plasmas rotation have been made in radio frequency (RF) heated plasmas with little or no external momentum injection. Toroidal rotation in both the direction of the plasma current (co-current) and in the opposite direction (counter-current) has been observed depending on the heating schemes and plasma performance. In Tore Supra, most observations in L-mode plasmas have been in the counter-current direction. However, in this thesis, we show that in lower hybrid current drive (LHCD), the core toroidal rotation increment is in co- or counter-current direction depending on the plasma current amplitude. At low plasma current the rotation change is in the co-current direction while at high plasma current, the change is in the counter-current direction. In both low and high plasma current cases, rotation increments are found to increase linearly with the injected LH power. Several mechanisms in competition which can induce co- or counter-current rotation in Tore Supra LHCD plasmas are investigated and typical order of magnitude are discussed in this thesis. (author)

  4. Fast biodiesel production from beef tallow with radio frequency heating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shaoyang; Wang, Yifen [Biosystems Engineering Department, Auburn University, 200 Tom E. Corley Building, Auburn, AL 36849-5417 (United States); Oh, Jun-Hyun [Department of Plant Science and Technology, Sangmyung University (Korea, Republic of); Herring, Josh L. [Department of Food and Animal Sciences, Alabama A and M University, Normal, AL 35762 (United States)

    2011-03-15

    Efficient biodiesel production from beef tallow was achieved with radio frequency (RF) heating. A conversion rate of 96.3 {+-} 0.5% was obtained with a NaOH concentration of 0.6% (based on tallow), an RF heating for 5 min, and a methanol/tallow molar ratio of 9:1. Response surface methodology was employed to evaluate the influence of NaOH dose, RF heating time, and methanol/tallow ratio. The alkaline concentration showed the largest positive impact on the conversion rate. Similar fast conversion from canola oil to biodiesel was achieved in our previous work, indicating that RF heating, as an accelerating technique for biodiesel production, had a large applying area. Viscosities of biodiesel products from beef tallow and canola oil were measured as 5.23 {+-} 0.01 and 4.86 {+-} 0.01 mm{sup 2} s{sup -1}, respectively, both meeting the specification in ASTM D6751 (1.9-6.0 mm{sup 2} s{sup -1}). (author)

  5. Fundamental investigations of capacitive radio frequency plasmas: simulations and experiments

    International Nuclear Information System (INIS)

    Capacitive radio frequency (RF) discharge plasmas have been serving hi-tech industry (e.g. chip and solar cell manufacturing, realization of biocompatible surfaces) for several years. Nonetheless, their complex modes of operation are not fully understood and represent topics of high interest. The understanding of these phenomena is aided by modern diagnostic techniques and computer simulations. From the industrial point of view the control of ion properties is of particular interest; possibilities of independent control of the ion flux and the ion energy have been utilized via excitation of the discharges with multiple frequencies. ‘Classical’ dual-frequency (DF) discharges (where two significantly different driving frequencies are used), as well as discharges driven by a base frequency and its higher harmonic(s) have been analyzed thoroughly. It has been recognized that the second solution results in an electrically induced asymmetry (electrical asymmetry effect), which provides the basis for the control of the mean ion energy. This paper reviews recent advances on studies of the different electron heating mechanisms, on the possibilities of the separate control of ion energy and ion flux in DF discharges, on the effects of secondary electrons, as well as on the non-linear behavior (self-generated resonant current oscillations) of capacitive RF plasmas. The work is based on a synergistic approach of theoretical modeling, experiments and kinetic simulations based on the particle-in-cell approach. (paper)

  6. Radio frequency integrated circuit design for cognitive radio systems

    CERN Document Server

    Fahim, Amr

    2015-01-01

    This book fills a disconnect in the literature between Cognitive Radio systems and a detailed account of the circuit implementation and architectures required to implement such systems.  Throughout the book, requirements and constraints imposed by cognitive radio systems are emphasized when discussing the circuit implementation details.  In addition, this book details several novel concepts that advance state-of-the-art cognitive radio systems.  This is a valuable reference for anybody with background in analog and radio frequency (RF) integrated circuit design, needing to learn more about integrated circuits requirements and implementation for cognitive radio systems. ·         Describes in detail cognitive radio systems, as well as the circuit implementation and architectures required to implement them; ·         Serves as an excellent reference to state-of-the-art wideband transceiver design; ·         Emphasizes practical requirements and constraints imposed by cognitive radi...

  7. Split-aloha algorithm for radio frequency identification system

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Anti-Collision algorithm is one of the most important components of radio frequency identification (RFID) technology, which possesses a key position in the performance of the whole system. ALOHA algorithm is one of the most popular methods to solve the collision problem because of its efficiency and practicability. The grouping method has been developed for enhancing the performance of conventional ALOHA when there are thousands of tags. However, the existing grouping method has limitations in applications due to its rigorous requirements for the estimation of the number of backlog tags or the admirable characteristics of the tags' ID number. Working on the improvement of the grouping methods, we proposed an algorithm named split-ALOHA with a novel grouping method that split tags as a binary tree. The novel grouping method makes it more practicable than the existing grouping methods due to the simplified requirements for tags. Simulations of the proposed algorithm show the superior performance of a linearly increasing of the number of consumed time slots while the number of tags increases. The algorithm performance analysis between split-ALOHA and ALOHA algorithms with other grouping methods has been implemented in a proper way.

  8. Compressive sensing of sparse radio frequency signals using optical mixing.

    Science.gov (United States)

    Valley, George C; Sefler, George A; Shaw, T Justin

    2012-11-15

    We demonstrate an optical mixing system for measuring properties of sparse radio frequency (RF) signals using compressive sensing (CS). Two types of sparse RF signals are investigated: (1) a signal that consists of a few 0.4 ns pulses in a 26.8 ns window and (2) a signal that consists of a few sinusoids at different frequencies. The RF is modulated onto the intensity of a repetitively pulsed, wavelength-chirped optical field, and time-wavelength-space mapping is used to map the optical field onto a 118-pixel, one-dimensional spatial light modulator (SLM). The SLM pixels are programmed with a pseudo-random bit sequence (PRBS) to form one row of the CS measurement matrix, and the optical throughput is integrated with a photodiode to obtain one value of the CS measurement vector. Then the PRBS is changed to form the second row of the mixing matrix and a second value of the measurement vector is obtained. This process is performed 118 times so that we can vary the dimensions of the CS measurement matrix from 1×118 to 118×118 (square). We use the penalized ℓ(1) norm method with stopping parameter λ (also called basis pursuit denoising) to recover pulsed or sinusoidal RF signals as a function of the small dimension of the measurement matrix and stopping parameter. For a square matrix, we also find that penalized ℓ(1) norm recovery performs better than conventional recovery using matrix inversion. PMID:23164876

  9. High Radio Frequency Properties and Variability of Brightest Cluster Galaxies

    CERN Document Server

    Hogan, M T; Geach, J E; Grainge, K J B; Hlavacek-Larrondo, J; Hovatta, T; Karim, A; McNamara, B R; Rumsey, C; Russell, H R; Salomé, P; Aller, H D; Aller, M F; Benford, D J; Fabian, A C; Readhead, A C S; Sadler, E M; Saunders, R D E

    2015-01-01

    We consider the high radio frequency (15 GHz - 353 GHz) properties and variability of 35 Brightest Cluster Galaxies (BCGs). These are the most core-dominated sources drawn from a parent sample of more than 700 X-ray selected clusters, thus allowing us to relate our results to the general population. We find that >6.0% of our parent sample (>15.1% if only cool-core clusters are considered) contain a radio-source at 150 GHz of at least 3mJy (~1x10^23 W/Hz at our median redshift of z~0.13). Furthermore, >3.4% of the BCGs in our parent sample contain a peaked component (Gigahertz Peaked Spectrum, GPS) in their spectra that peaks above 2 GHz, increasing to >8.5% if only cool-core clusters are considered. We see little evidence for strong variability at 15 GHz on short (week-month) time-scales although we see variations greater than 20% at 150 GHz over 6-month times-frames for 4 of the 23 sources with multi-epoch observations. Much more prevalent is long-term (year-decade time-scale) variability, with average annua...

  10. Mechanical properties of niobium radio-frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G., E-mail: gciovati@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Dhakal, P.; Matalevich, J.; Myneni, G. [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States); Schmidt, A.; Iversen, J.; Matheisen, A.; Singer, W. [Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607 Hamburg (Germany)

    2015-08-26

    Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 620 kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structures have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young’s modulus value of 88.5 GPa and a Poisson’s ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities made from ingot material with large crystals are comparable to those of cavities made of fine-grain niobium.

  11. Effect of O2 gas partial pressure on mechanical properties of Al2O3 films deposited by inductively coupled plasma-assisted radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    The effect of O2 partial pressure on the mechanical properties of Al2O3 films is studied. Using films prepared by inductively coupled plasma-assisted radio frequency magnetron sputtering, the deposition rate of Al2O3 decreases rapidly when oxygen is added to the argon sputtering gas. The internal stresses in the films are compressive, with magnitude decreasing steeply from 1.6 GPa for films sputtered in pure argon gas to 0.5 GPa for films sputtered in argon gas at an O2 partial pressure of 0.89 × 10−2 Pa. Stress increases gradually with increasing O2 partial pressure. Using a nanoindentation tester with a Berkovich indenter, film hardness was measured to be about 14 GPa for films sputtered in pure argon gas. Hardness decreases rapidly on the addition of O2 gas, but increases when the O2 partial pressure is increased. Adhesion, measured using a Vickers microhardness tester, increases with increasing O2 partial pressure. Electron probe microanalyzer measurements reveal that the argon content of films decreases with increasing O2 partial pressure, whereas the O to Al composition ratio increases from 1.15 for films sputtered in pure argon gas to 1.5 for films sputtered in argon gas at O2 partial pressures over 2.4 × 10−2 Pa. X-ray diffraction measurements reveal that films sputtered in pure argon gas have an amorphous crystal structure, whereas γ-Al2O3 is produced for films sputtered in argon gas with added O2 gas. Atomic force microscopy observations reveal that the surface topography of sputtered Al2O3 films changes from spherical to needlelike as O2 partial pressure is increased. Fracture cross sections of the films observed by scanning electron microscopy reveal that the film morphology exhibits no discernible features at all O2 partial pressures.

  12. Transition from Townsend to radio-frequency homogeneous dielectric barrier discharge in a roll-to-roll configuration

    Science.gov (United States)

    Bazinette, R.; Paillol, J.; Massines, F.

    2016-06-01

    The aim of this paper is to better understand the transition from Townsend to radio-frequency homogeneous dielectric barrier discharge (DBD) at atmospheric pressure. The study is done in an Ar/NH3 Penning mixture for an electrode configuration adapted to roll-to-roll plasma surface treatment. The study was led in a frequency range running from 50 kHz up to 8.3 MHz leading to different DBD modes with a 1 mm gas gap: Glow (GDBD), Townsend (TDBD), and Radio-frequency (RF-DBD). In the frequency range between TDBD and RF-DBD, from 250 kHz to 2.3 MHz, additional discharges are observed outside the inter-electrode gas gap. Because each high voltage electrode are inside a dielectric barrel, these additional discharges occur on the side of the barrel where the gap is larger. They disappear when the RF-DBD mode is attained in the 1 mm inter-electrode gas gap, i.e., for frequencies equal or higher than 3 MHz. Fast imaging and optical emission spectroscopy show that the additional discharges are radio-frequency DBDs while the inter-electrode discharge is a TDBD. The RF-DBD discharge mode is attained when electrons drift becomes low enough compared to the voltage oscillation frequency to limit electron loss at the anode. To check that the additional discharges are due to a larger gas gap and a lower voltage amplitude, the TDBD/RF-DBD transition is investigated as a function of the gas gap and the applied voltage frequency and amplitude. Results show that the increase in the frequency at constant gas gap or in the gas gap at constant frequency allows to obtain RF-DBD instead of TDBD. At low frequency and large gap, the increase in the applied voltage allows RF-DBD/TDBD transition. As a consequence, an electrode configuration allowing different gap values is a solution to successively have different discharge modes with the same applied voltage.

  13. Excitation dynamics in electrically asymmetric capacitively coupled radio frequency discharges: experiment, simulation, and model

    International Nuclear Information System (INIS)

    The symmetry of capacitively coupled radio frequency (CCRF) discharges can be controlled electrically by applying a fundamental frequency and its second harmonic with fixed but adjustable phase shift θ between the driving voltages to one electrode. In such a discharge a variable dc self-bias η is generated as an almost linear function of θ for 00 ≤ θ ≤ 900 via the Electrical Asymmetry Effect. The control parameter for η and the discharge symmetry is θ. Here electron dynamics in electrically asymmetric geometrically symmetric dual frequency discharges operated in argon at 13.56 and 27.12 MHz is investigated experimentally by a particle-in-cell simulation and by an analytical model. The electron dynamics is probed by the electron impact excitation rate of energetic electrons from the ground state into highly excited levels. At high pressures (collisional sheaths) the excitation dynamics is found to work differently compared with conventional CCRF discharges. Unlike in classical discharges the maxima of the time modulated excitation at the powered and grounded electrode within one low frequency period will be similar (symmetric excitation), if η is strong at θ ∼ 00, 900, and significantly different (asymmetric excitation), if η ∼ 0 V at θ ∼ 450. At low pressures (collisionless sheaths) the excitation dynamics works similar to classical discharges, i.e. the excitation will be asymmetric, if η is strong, and symmetric, if η ∼ 0 V. This dynamics is understood in the frame of an analytical model, which provides a more detailed insight into electron heating in CCRF discharges and could be applied to other types of capacitive RF discharges as well.

  14. Collisionless expansion of pulsed radio frequency plasmas. I. Front formation

    Science.gov (United States)

    Schröder, T.; Grulke, O.; Klinger, T.; Boswell, R. W.; Charles, C.

    2016-01-01

    The dynamics during plasma expansion are studied with the use of a versatile particle-in-cell simulation with a variable neutral gas density profile. The simulation is tailored to a radio frequency plasma expansion experiment [Schröder et al., J. Phys. D: Appl. Phys. 47(5), 055207 (2014)]. The experiment has shown the existence of a propagating ion front. The ion front features a strong electric field and features a sharp plasma potential drop similar to a double layer. However, the presented results of a first principle simulation show that, in general, the ion front does not have to be entangled with an electric field. The propagating electric field reflects the downstream ions, which stream with velocities up to twice as high as that of the ion front propagation. The observed ion density peak forms due to the accumulation of the reflected ions. The simulation shows that the ion front formation strongly depends on the initial ion density profile and is subject to a wave-breaking phenomenon. Virtual diagnostics in the code allow for a direct comparison with experimental results. Using this technique, the plateau forming in the wake of the plasma front could be indirectly verified in the expansion experiment. Although the simulation considers profiles only in one spatial dimensional, its results are qualitatively in a very good agreement with the laboratory experiment. It can successfully reproduce findings obtained by independent numerical models and simulations. This indicates that the effects of magnetic field structures and tangential inhomogeneities are not essential for the general expansion dynamic. The presented simulation will be used for a detailed parameter study dealt with in Paper II [Schröder et al., Phys. Plasma 23, 013512 (2016)] of this series.

  15. Three-dimensional effects for radio frequency antenna modeling

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.D.; Batchelor, D.B.; Stallings, D.C.

    1993-09-01

    Electromagnetic field calculations for radio frequency (rf) antennas in two dimensions (2-D) neglect finite antenna length effects as well as the feeders leading to the main current strap. Comparisons with experiments indicate that these 2-D calculations can overestimate the loading of the antenna and fail to give the correct reactive behavior. To study the validity of the 2-D approximation, the Multiple Antenna Implementation System (MAntIS) has been used to perform 3-D modeling of the power spectrum, plasma loading, and inductance for a relevant loop antenna design. Effects on antenna performance caused by feeders to the main current strap, conducting sidewalls, and finite phase velocity are considered. The plasma impedance matrix for the loading calculation is generated by use of the ORION-1D code. The 3-D model is benchmarked with the 2-D model in the 2-D limit. For finite-length antennas, inductance calculations are found to be in much more reasonable agreement with experiments for 3-D modeling than for the 2-D estimates. The modeling shows that the feeders affect the launched power spectrum in an indirect way by forcing the driven rf current to return in the antenna sidewalls rather than in the plasma as in the 2-D model. Thus, the feeders have much more influence than the plasma on the currents that return in the sidewall. It has also been found that poloidal dependencies in the plasma impedance matrix can reduce the loading from that predicted in the 2-D model. For some plasma parameters, the combined 3-D effects can lead to a reduction in the predicted loading by as much as a factor of 2 from that given by the 2-D model.

  16. Status of radio frequency quadrupole accelerator at IUAC, New Delhi

    International Nuclear Information System (INIS)

    As part of the accelerator augmentation program at IUAC, a High Current Injector (HCI) is being developed to inject highly charged ions into the superconducting LINAC. The HCI consists of a superconducting (High TC) ECR source, producing the high currents of highly charged ions. The ion beams produced will be injected into a Radio Frequency Quadrupole Accelerator (RFQ) and be accelerated to 180 keV/u. RF power of about 100 kW at 48.5 MHz will be fed to the RFQ during its actual working. The ions will be further accelerated by a Drift Tube Linac (DTL), before being further velocity matched with a low beta cavity into the superconducting LINAC. RFQ at IUAC is a four rod cavity structure having individual demountable copper vanes held on vane posts with a total vane length of 2.536 m and a minimum aperture of 12mm. The vane posts hold twenty nos. of vanes. Water will flow into vanes through the vane posts. The copper plated stainless steel vacuum housing has been divided into two chambers for the ease of fabrication and copper plating. The RFQ stand has provision for alignment in all the three axes. After successfully validating all the electrical and mechanical design parameters on a prototype RFQ, the fabrication of final RFQ has been completed. Initial assembly to check the mechanical accuracies was carried out. Low power RF tests were conducted to validate the design parameters. The resonance frequency of the RFQ was measured as 44.12 MHz and Q value was measured ∼ 5500. The final assembly is in progress. This paper details the present status and future plan of RFQ. (author)

  17. Scattering of radio frequency waves by blobs in tokamak plasmas

    International Nuclear Information System (INIS)

    The density fluctuations and blobs present in the edge region of magnetic fusion devices can scatter radio frequency (RF) waves through refraction, reflection, diffraction, and coupling to other plasma waves. This, in turn, affects the spectrum of the RF waves and the electromagnetic power that reaches the core of the plasma. The usual geometric optics analysis of RF scattering by density blobs accounts for only refractive effects. It is valid when the amplitude of the fluctuations is small, of the order of 10%, compared to the background density. In experiments, density fluctuations with much larger amplitudes are routinely observed, so that a more general treatment of the scattering process is needed. In this paper, a full-wave model for the scattering of RF waves by a blob is developed. The full-wave approach extends the range of validity well beyond that of geometric optics; however, it is theoretically and computationally much more challenging. The theoretical procedure, although similar to that followed for the Mie solution of Maxwell's equations, is generalized to plasmas in a magnetic field. Besides diffraction and reflection, the model includes coupling to a different plasma wave than the one imposed by the external antenna structure. In the model, it is assumed that the RF waves interact with a spherical blob. The plasma inside and around the blob is cold, homogeneous, and imbedded in a uniform magnetic field. After formulating the complete analytical theory, the effect of the blob on short wavelength electron cyclotron waves and longer wavelength lower hybrid waves is studied numerically

  18. Scattering of radio frequency waves by blobs in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ram, Abhay K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hizanidis, Kyriakos; Kominis, Yannis [School of Electrical and Computer Engineering, National Technical University of Athens, Association EURATOM-Hellenic Republic, Athens, GR-15773 (Greece)

    2013-05-15

    The density fluctuations and blobs present in the edge region of magnetic fusion devices can scatter radio frequency (RF) waves through refraction, reflection, diffraction, and coupling to other plasma waves. This, in turn, affects the spectrum of the RF waves and the electromagnetic power that reaches the core of the plasma. The usual geometric optics analysis of RF scattering by density blobs accounts for only refractive effects. It is valid when the amplitude of the fluctuations is small, of the order of 10%, compared to the background density. In experiments, density fluctuations with much larger amplitudes are routinely observed, so that a more general treatment of the scattering process is needed. In this paper, a full-wave model for the scattering of RF waves by a blob is developed. The full-wave approach extends the range of validity well beyond that of geometric optics; however, it is theoretically and computationally much more challenging. The theoretical procedure, although similar to that followed for the Mie solution of Maxwell's equations, is generalized to plasmas in a magnetic field. Besides diffraction and reflection, the model includes coupling to a different plasma wave than the one imposed by the external antenna structure. In the model, it is assumed that the RF waves interact with a spherical blob. The plasma inside and around the blob is cold, homogeneous, and imbedded in a uniform magnetic field. After formulating the complete analytical theory, the effect of the blob on short wavelength electron cyclotron waves and longer wavelength lower hybrid waves is studied numerically.

  19. Application of microwave/radio frequency and radio frequency/magnetron sputtering techniques in polyurethane surface modification

    Directory of Open Access Journals (Sweden)

    W. Kaczorowski

    2009-12-01

    Full Text Available Purpose: The aim of the study is the analysis of the possibilities of application of MW/RF PACVD and RF PACVD/MS systems in polyurethane surface modification.Design/methodology/approach: As the substrates samples made out of the biocompatibile polyurethane were used. Modifications were performed in MW/RF PACVD and RF PACVD/MS reactors using different gases and process parameters. Topography, thickness and contact angle were measured using Atomic Force Microscopy, Profilometry and Contact Angle Measuring Instrument.Findings: Optimal plasma parameters ensuring deposition of carbon layers without surface degradation were worked out. Deposited layers were less than 500 nm thick and presented the wetting angle value more than 90º. During the examinations the influence of the gas atmosphere and process parameters used for the preliminary substrates modification were investigated. Obtained results prove the possibility of application of MW/RF PACVD and RF PACVD/MS techniques in deposition of carbon-based coatings on polyurethane substrates used for artificial heart chambers manufacturing.Research limitations/implications: Modification of polymer surface has to be conducted at low temperatures, up to 100ºC. Unfortunately not all CVD and PVD methods used in this field guarantee the adequate adhesion of manufactured layers deposited in such low temperatures. So far the most promising results were obtained with use of PLD (pulsed laser deposition techniques. However application of MW (microwave low temperature plasma source and combination of magnetron sputtering technique with RF (radio frequency plasma source seems to be equally interesting techniques.Originality/value: Optimization of carbon layers deposition techniques on polyurethane substrates can be helpful in improvement of modern artificial heart chambers construction. All investigation results obtained in his field attend to work out the new generation of cardiosurgical implants within the

  20. Effects of Graphene Oxide Treated by Radio Frequency Plasma%射频等离子体处理对氧化石墨烯的影响

    Institute of Scientific and Technical Information of China (English)

    刘佳; 杨林燊; 莫华兴; 马禹更

    2016-01-01

    分别使用氢气和氩气射频等离子体放电处理氧化石墨烯溶液,快速的对氧化石墨烯进行还原,同时得到了三维多孔的表面形貌。结果显示,还原性气体(氢气)对氧化石墨烯的还原程度高于惰性气体(氩气)对其的还原;通过改变射频等离子体的放电功率,表明放电功率越大,氧化石墨烯的还原程度越高。用射频等离子体还原氧化石墨烯,方法更有效且环境友好,处理后得到的三维多孔形貌的还原氧化石墨烯有望进一步应用于超级电容器、锂电池、传感器等领域。%Treated by the radio frequency plasma of hydrogen and argon, graphene oxide which was rapidly reduced formed three-dimensional porous network simultaneously. Results showed that reducing gas had more reducibility on graphene oxide than inert gas after hydrogen and ar-gon plasma were used on graphene oxide respectively. The degree of reduction on graphene ox-ide was gradually enhanced with the increasing discharge power of radio frequency plasma. The method of reduction on graphene oxide by radio frequency plasma was efficient and eco-friend-ly. The resulting three-dimensional reduced graphene oxide was expected to be further applied to the fields of supercapacitor, lithium battery and sensors.

  1. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mastoridis, Themistoklis [Stanford Univ., CA (United States)

    2010-08-01

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  2. Radio Frequency Station - Beam Dynamics Interaction in Circular Accelerators

    International Nuclear Information System (INIS)

    The longitudinal beam dynamics in circular accelerators is mainly defined by the interaction of the beam current with the accelerating Radio Frequency (RF) stations. For stable operation, Low Level RF (LLRF) feedback systems are employed to reduce coherent instabilities and regulate the accelerating voltage. The LLRF system design has implications for the dynamics and stability of the closed-loop RF systems as well as for the particle beam, and is very sensitive to the operating range of accelerator currents and energies. Stability of the RF loop and the beam are necessary conditions for reliable machine operation. This dissertation describes theoretical formalisms and models that determine the longitudinal beam dynamics based on the LLRF implementation, time domain simulations that capture the dynamic behavior of the RF station-beam interaction, and measurements from the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC) that validate the models and simulations. These models and simulations are structured to capture the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They also provide the opportunity to study diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Coupled-bunch instabilities and RF station power were the performance limiting effects for PEP-II. The sensitivity of the instabilities to individual LLRF parameters, the effectiveness of alternative operational algorithms, and the possible tradeoffs between RF loop and beam stability were studied. New algorithms were implemented, with significant performance improvement leading to a world record current during the last PEP-II run of 3212 mA for the Low Energy Ring. Longitudinal beam emittance growth due to RF noise is a major concern for LHC

  3. Testing the Susceptibility of GNSS Receivers to Radio Frequency Interference

    Science.gov (United States)

    Berglund, H. T.; Blume, F.; Gallaher, W. W.

    2015-12-01

    Global Navigational Satellite Systems (GNSS) receivers are employed by the scientific community for measuring a variety of geodetic, geophysical and atmospheric phenomena. Data acquisition frequently occurs in a variety of challenging environments, which include locations with high Radio Frequency (RF) noise characteristics. Tracking the relatively low powered GNSS carrier signals broadcast from space becomes even more challenging in the presence of adjacent band RF noise. The demand for terrestrial RF spectrum use for a variety of non-GNSS applications is ever increasing, which poses potential challenges for GNSS site operators who would like to acquire the highest quality data possible. In recent years, UNAVCO has observed an increase in the number of GNSS sites which are negatively impacted by RF interference. In previous work, we have shown that telemetry systems utilizing the Iridium satellite constellation can degrade GNSS data quality, as the adjacent-band (1610-1616 Mhz) signals transmitted by Iridium data transmitters are close in proximity to the L1 frequency of GNSS. The impact of RF interference from Iridium data transmitters on GNSS receivers can cause reduced Signal-to-Noise (SNR), increased cycle slips, and in worst case scenarios, prevent the receiver from tracking. To better characterize GNSS receiver susceptibility to RF interference, UNAVCO has performed a variety of tests with Continuous Wave (CW) noise sources in RF bands adjacent to the GNSS spectrum. We simulate a subset of discrete noise frequencies commonly observed in the field using a frequency generator, which supplies a signal with varying power output from a transmitter located within 1 m of the GNSS antenna. Signal power is incremented in small steps until receiver tracking fails. All receivers are simultaneously evaluated using an 8-way splitter. In addition, we investigate receiver tracking performance with a simulated increase in the RF noise floor. To analyze the results we use

  4. Mapping the Orion Molecular Cloud Complex in Radio Frequencies

    Science.gov (United States)

    Castelaz, Michael W.; Lemly, C.

    2013-01-01

    The purpose of this research project was to create a large-scale intensity map of the Orion Molecular Cloud Complex at a radio frequency of 1420 MHz. A mapping frequency of 1420 MHz was chosen because neutral hydrogen, which is the primary component of the Orion Molecular Complex, naturally emits radio waves at this frequency. The radio spectral data for this project were gathered using a 4.6-m radio telescope whose spectrometer was tuned to 1420 MHz and whose beam width was 2.7 degrees. The map created for this project consisted of an eight-by-eight grid centered on M42 spanning 21.6 degrees per side. The grid consisted of 64 individual squares spanning 2.7 degrees per side (corresponding to the beam width of the telescope). Radio spectra were recorded for each of these individual squares at an IF gain of 18. Each spectrum consisted of intensity on an arbitrary scale from 0 to 10 plotted as a function frequencies ranging from -400 kHz to +100 kHz around the origin of 1420 MHz. The data from all 64 radio spectra were imported into Wolfram Alpha, which was used to fit Gaussian functions to the data. The peak intensity and the frequency at which this peak intensity occurs could then be extracted from the Gaussian functions. Other helpful quantities that could be calculated from the Gaussian functions include flux (integral of Gaussian function over frequency range), average value of intensity (flux integral divided by frequency range), and half maximum of intensity. Because all of the radio spectra were redshifted, the velocities of the hydrogen gas clouds of the Orion Molecular Cloud Complex could be calculated using the Doppler equation. The data extracted from the Gaussian functions were then imported into Mathcad to create 2D grayscale maps with right ascension (RA) on the x-axis, declination on the y-axis, and intensity (or flux, etc.) represented on a scale from black to white (with white representing the highest intensities). These 2D maps were then imported

  5. Solar Corona and plasma effects on Radio Frequency waves

    Science.gov (United States)

    Nkono, C.; Rosenblatt, P.; Dehant, V. M.

    2009-12-01

    Solar corona (plasma) effects on radio signal waves for three different frequency bands S (2.3 GHz), X (8.4 GHz), and Ka (32 GHz), currently used to track probes in the solar system, have been computed using different models of the total electron content (TEC) along the propagation path between the Earth and Mars. The Earth-Mars-Sun configuration has been obtained from the planetary ephemerides DE421 (using SPICE kernels) for the period from September 2004 to September 2006. This configuration is expressed as a function of the Sun-Earth-Probe (SEP) angles (the probe being in close orbit to Mars). We used the TEC values provided by the different models proposed in the literature in order to estimate the TEC along the propagation path (STEC, for Slant TEC). From these model-dependent STEC estimates, the time delay on the wave propagation as well as the associated frequency shift with a 10 seconds sampling time have been obtained for each of the three frequency bands. For the X-band mostly used in radio science, we have obtained estimates differing by up to several orders of magnitude due to the different STEC values derived from different models of TEC. For example, if the propagation path passes near the Sun such that SEP angle is 1.55° the STEC is ranging from 4.6x1020 electron/m2 to 6.07x1016 electron/m2, which corresponds to a time delay range between 0.87 μs and 1.15x10-4 μs, respectively. For SEP angles between 2° and 8°, the range of the different time delay values reduces to 2.8x10-1 μs and becomes as small as 1.6x10-2 μs for SEP angles larger than 8° (1x10-2 μs is about the order of magnitude of the radioscience instrument precision). These results show that the correction of the solar corona effect on radio frequency waves can be reliably done on usual X-band tracking data of spacecraft for SEP angles >12°, but should be use with caution for lower SEP angles, especially lower than 2°.

  6. Analytical model for the radio-frequency sheath

    Science.gov (United States)

    Czarnetzki, Uwe

    2013-12-01

    A simple analytical model for the planar radio-frequency (rf) sheath in capacitive discharges is developed that is based on the assumptions of a step profile for the electron front, charge exchange collisions with constant cross sections, negligible ionization within the sheath, and negligible ion dynamics. The continuity, momentum conservation, and Poisson equations are combined in a single integro-differential equation for the square of the ion drift velocity, the so called sheath equation. Starting from the kinetic Boltzmann equation, special attention is paid to the derivation and the validity of the approximate fluid equation for momentum balance. The integrals in the sheath equation appear in the screening function which considers the relative contribution of the temporal mean of the electron density to the space charge in the sheath. It is shown that the screening function is quite insensitive to variations of the effective sheath parameters. The two parameters defining the solution are the ratios of the maximum sheath extension to the ion mean free path and the Debye length, respectively. A simple general analytic expression for the screening function is introduced. By means of this expression approximate analytical solutions are obtained for the collisionless as well as the highly collisional case that compare well with the exact numerical solution. A simple transition formula allows application to all degrees of collisionality. In addition, the solutions are used to calculate all static and dynamic quantities of the sheath, e.g., the ion density, fields, and currents. Further, the rf Child-Langmuir laws for the collisionless as well as the collisional case are derived. An essential part of the model is the a priori knowledge of the wave form of the sheath voltage. This wave form is derived on the basis of a cubic charge-voltage relation for individual sheaths, considering both sheaths and the self-consistent self-bias in a discharge with arbitrary

  7. An L-Band Radio Frequency Interference (RFI) Detection and Mitigation Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radio Frequency Interference (RFI) can render microwave radiometer measurements useless. We have proposed a method and an architecture that can be used to identify...

  8. Radio-frequency wave trajectories for current drive in tokamak reactors

    International Nuclear Information System (INIS)

    Detailed ray tracing calculations were carried out for three modes of waveguide-launched radio-frequency waves for tokamak reactor parameters to evaluate their applicability for steady state current drive. The merits and demerits of each mode are discussed

  9. A C-Band Radio Frequency Interference (RFI) Detection and Mitigation Testbed Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radio Frequency Interference (RFI) can render microwave radiometer measurements useless. We propose a method and an architecture that can be used to identify...

  10. Radio-frequency wave trajectories for current drive in tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K.L.; Ono, M.

    1982-12-01

    Detailed ray tracing calculations were carried out for three modes of waveguide-launched radio-frequency waves for tokamak reactor parameters to evaluate their applicability for steady state current drive. The merits and demerits of each mode are discussed.

  11. Radio-frequency transparent demodulation for broadband hybrid wireless-optical links

    DEFF Research Database (Denmark)

    Zibar, Darko; Sambaraju, Rakesh; Alemany, Ruben;

    2010-01-01

    A novel demodulation technique which is transparent to radio-frequency (RF) carrier frequency is presented and experimentally demonstrated for multigigabit wireless signals. The presented demodulation technique employs optical single-sideband filtering, coherent detection, and baseband digital...

  12. Radio-Frequency Field-Induced Quantum Interference Effects in Cold Atoms

    Institute of Scientific and Technical Information of China (English)

    龙全; 周蜀渝; 周善钰; 王育竹

    2001-01-01

    We propose constructing a quantum interference configuration for cold atoms in a magneto-optical trap by applying a radio frequency field, which coherently couples adjacent Zeeman sublevels, in combination with a repumping laser field. One effect of this interference is that a dip exists in the absorption of the repumping light when the radio frequency is scanned. Our prediction has been indirectly detected through the fluorescence of cold atoms in a preliminary experiment.

  13. Surface Planar Ion Chip for Linear Radio-Frequency Paul Traps

    Institute of Scientific and Technical Information of China (English)

    WAN Jin-Yin; QU Qiu-Zhi; ZHOU Zi-Chao; LI Xiao-Lin; WANG Yu-Zhu; LIU Liang

    2007-01-01

    We propose a surface planar ion chip which forms a linear radio frequency Paul ion trap. The electrodes reside in the two planes of a chip, and the trap axis is located above the chip surface. Its electric field and potential distribution are similar to the standard linear radio frequency Paul ion trap. This ion trap geometry may be greatly meaningful for quantum information processing.

  14. Radio frequency identification-enabled capabilities in a healthcare context: An exploratory study.

    Science.gov (United States)

    Hornyak, Rob; Lewis, Mark; Sankaranarayan, Balaji

    2016-09-01

    Increasingly, the adoption and use of radio frequency identification systems in hospital settings is gaining prominence. However, despite the transformative impact that radio frequency identification has in healthcare settings, few studies have examined how and why this change may occur. The purpose of this study is to systematically understand how radio frequency identification can transform work practices in an operational process that directly impacts cost and operational efficiency and indirectly contributes to impacting patient safety and quality of care. We leverage an interdisciplinary framework to explore the contextual characteristics that shape the assimilation of radio frequency identification in healthcare settings. By linking the use of radio frequency identification with specific contextual dimensions in healthcare settings, we provide a data-driven account of how and why radio frequency identification can be useful in inventory management in this setting. In doing so, we also contribute to recent work by information systems scholars who argue for a reconfiguration of conventional assumptions regarding the role of technology in contemporary organizations. PMID:25786775

  15. Non-invasive temperature monitoring using small coils during radio-frequency heating

    International Nuclear Information System (INIS)

    In hyperthermia treatment of malignant tumors, thermal tissue injury increases drastically with every degree of increase in the tissue temperature above 42.5 .deg. C Accurate temperature monitoring during hyperthermia is important. Therefore, we developed a non-invasive method to monitor the tissue temperature during radio-frequency hyperthermia by detecting the magnetic field induced by the radio-frequency currents that flow through the heated tissue. This technique uses small multi-channel coil antennas to detect radio-frequency currents and generates two-dimensional distribution in the tissue. A rectifying circuit was connected to each coil antenna, and the current was converted with a fixed resistance into voltage. Since the voltage output from each antenna was attenuated at 1/2pr (r: distance from the radio-frequency current), single-peaked projection data were prepared, and after treatment of various signals, radio-frequency currents that flowed through the heated object were determined as a two-dimensional current distribution profile by back-projection. A high correlation was observed between the distribution of radio-frequency currents detected with the coil antennas and the temperature distribution detected by thermography. Our method of the temperature distribution suggests the possibility of non-invasive evaluation of the temperature distribution in the target of hyperthermia and clinical usefulness of this method for temperature monitoring during hyperthermia

  16. Absolute and relative emission spectroscopy study of 3 cm wide planar radio frequency atmospheric pressure bio-plasma source

    Science.gov (United States)

    Deng, Xiaolong; Nikiforov, Anton Yu; Ionita, Eusebiu-Rosini; Dinescu, Gheorghe; Leys, Christophe

    2015-08-01

    The dynamics of low power atmospheric pressure radio frequency discharge generated in Ar gas in long gap of 3 cm is investigated. This plasma source is characterized and analyzed for possible large scale biomedical applications where low gas temperature and potential-less effluent are required. The discharge forms a homogenous glow-like afterglow in ambient air at input power of 30 W with low gas temperature of 330 K, which is desirable in biomedical applications. With absolute calibrated spectroscopy of the discharge, electron density of 0.4 × 1018 m-3 and electron temperature of 1.5 eV are obtained from continuum Bremsstrahlung radiation of the source. Time and spatial resolved emission spectroscopy is used to analyze discharge generation mechanism and active species formation. It is found that discharge dynamics strongly correlates with the discharge current waveform. Strong Ar(2p) excited states emission is observed nearby the electrodes surface on a distance up to 200 μm in the plasma sheath region at 10 ns after the current peak, whereas OH(A) emission is uniform along of the interelectrode gap.

  17. Radio Frequency Field Calculations for Plasma Heating Simulations in VASIMR

    Science.gov (United States)

    Ilin, A. V.; Díaz, F. R. Chang; Squire, J. P.; Carter, M. D.

    2002-01-01

    (VASIMR)1 is plasma heating by ion-cyclotron RF heating (ICRF). Mathematical simulation helps to design an ICRF antenna, i.e. make maximal absorption of RF power into the plasma in the resonance area. Another goal of a particle simulation is design of a magnetic nozzle and optimize the performance of VASIMR2. field in the plasma, 2) ion density and velocity, 3) ion-cyclotron radio-frequency electromagnetic field. The assumptions of quasineutral and collisionless plasma are based on the range of operating VASIMR parameters. Carlo simulations for systems of million of particles in a reasonable time and without the need for a powerful supercomputer. The particle to grid weighting method is used for calculating the ion density, which is used for recalculation of the electric potential and RF field. dimensional problem to a weighted sum over two-dimensional solutions. Absorption is introduced in the cold plasma model by adding an imaginary collision frequency to the RF driven frequency, which is equivalent to adding an imaginary particle mass in the dielectric tensor elements. static and RF fields using the VASIMR code2. The VASIMR and EMIR codes are then iterated to estimate the ICRF effects on the plasma density. The iteration is performed by calculating the RF fields with the EMIR code, and using these fields to follow nonlinear ion trajectories with the VASIMR code on the gyro-frequency time scale. The ion trajectories are used to generate RF power absorption values and a density input for the next EMIR calculation. The codes are iterated until the density profile becomes reasonably stable, then the collisional absorption parameter in the EMIR code is adjusted and the iteration is continued until the power deposited by the RF system matches the power absorbed by the ion trajectories in a global sense. electric field. The solved algebraic system of equations is represented by ill-conditioned 18-diagonal matrix with complex elements. Since early development of the

  18. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M.

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  19. Energy Saving Glass Lamination via Selective Radio Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Shawn M; Baranova, Inessa; Poley, Joseph; Reis, Henrique

    2012-02-27

    This project focused on advancing radio-frequency (RF) lamination technology closer to commercial implementation, in order to reduce the energy intensity of glass lamination by up to 90%. Lamination comprises a wide range of products including autoglass, architectural safety and innovative design glass, transparent armor (e.g. bullet proof glass), smart glass, mirrors, and encapsulation of photovoltaics. Lamination is also the fastest growing segment of glass manufacturing, with photovoltaics, architectural needs, and an anticipated transition to laminated side windows in vehicles. The state-of-the-art for glass lamination is to use autoclaves, which apply heat and uniform gas pressure to bond the laminates over the course of 1 to 18 hours. Laminates consist of layers of glass or other materials bonded with vinyl or urethane interlayers. In autoclaving, significant heat energy is lost heating the chamber, pressurized air, glass racks, and the glass. In RF lamination, the heat is generated directly in the vinyl interlayer, causing it to heat and melt quickly, in just 1 to 10 minutes, without significantly heating the glass or the equipment. The main purpose of this project was to provide evidence that low energy, rapid RF lamination quality met the same standards as conventionally autoclaved windows. The development of concepts for laminating curved glass with RF lamination was a major goal. Other primary goals included developing a stronger understanding of the lamination product markets described above, and to refine the potential benefits of commercial implementation. The scope of the project was to complete implementation concept studies in preparation for continuation into advanced development, pilot studies, and commercial implementation. The project consisted of 6 main tasks. The first dealt with lamination with poly-vinyl butyral (PVB) interlayers, which prior work had shown difficulties in achieving good quality laminates, working with Pilkington North

  20. A two-dimensional model of chemical vapor infiltration with radio-frequency heating and spatio-temporal evolution of a pulsed chlorine plasma

    Science.gov (United States)

    Midha, Vikas

    The first part of this work focused on modeling radio- frequency assisted chemical vapor infiltration (CVI) for the fabrication of fiber-reinforced composite materials. CVI involves diffusion and chemical reaction of precursor gases in a fibrous preform to deposit solid material within the pores. A two-dimensional finite-element model was developed which included the solution of Maxwell's equations for electromagnetic fields, transport equations for multicomponent gas diffusion and chemical kinetics for the deposition of solid material. Simulation results showed that densification of long cylindrical preforms initially occurred radially around the central zone and then axially towards the ends of the preform. This densification pattern resulted in significant entrapment of porosity at the center of the preform and required a relatively long time for completion. Comparison of results with reported experimental data showed agreement of important trends which could not be predicted by existing one-dimensional models. Based on the geometry of the preform, novel schemes for improved radio-frequency assisted CVI were proposed which resulted in complete densification and reduced overall processing time significantly compared to conventional isothermal processes. The second part of this work focused on modeling of high- density, low-pressure chlorine discharges used for the fabrication of sub-micron devices in the semiconductor industry. Recent experiments showed that pulsing of input power can lead to significant improvement in the etching characteristics of electronegative gas discharges. A one- dimensional model was developed which captured the transition of an electron-ion plasma in the active glow to a negative-ion dominated or ion-ion plasma in the afterglow phase of a pulse. The spatial evolution of the negative-ion density showed formation of self-sharpening fronts during the active glow and subsequent back- propagation of the fronts during the afterglow. In the

  1. A Measurement Method of Time Jitter of a Laser Pulse with Respect to the Radio-Frequency Wave Phase in a Photocathode Radio-Frequency Gun

    Institute of Scientific and Technical Information of China (English)

    刘圣广; 李永贵; 王鸣凯

    2002-01-01

    In a photo-cathode radio-frequency (rf) gun, the micro-bunched charge output from the gun is dependent linearly on the laser injection phase, due to the Scottay effect in the process of photoemission and the procedure of the electron longitudinal acceleration. Based on this principle, a new method is proposed, which should be utilized to measure the time jitter between the driving laser pulse and the rf phase with a very high resolution of a few tens of femtoseconds.

  2. Radio-frequency reflectometry on an undoped AlGaAs/GaAs single electron transistor

    DEFF Research Database (Denmark)

    MacLeod, S. J.; See, A. M.; Keane, Z. K.;

    2014-01-01

    Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However, these d......Radio frequency reflectometry is demonstrated in a sub-micron undoped AlGaAs/GaAs device. Undoped single electron transistors (SETs) are attractive candidates to study single electron phenomena, due to their charge stability and robust electronic properties after thermal cycling. However......, these devices require a large top-gate, which is unsuitable for the fast and sensitive radio frequency reflectometry technique. Here, we demonstrate that rf reflectometry is possible in an undoped SET....

  3. Understanding Pound-Drever-Hall locking using voltage controlled radio-frequency oscillators: An undergraduate experiment

    CERN Document Server

    Liekhus-Schmaltz, C E

    2011-01-01

    A senior undergraduate experiment has been developed for learning about frequency stabilization techniques using radio-frequency electronics. The primary objective is to frequency stabilize a voltage controlled oscillator to a cavity resonance at 800 MHz using the Pound-Drever-Hall scheme. This technique is commonly applied to stabilize lasers at optical frequencies, but by using radio-frequency equipment exclusively it is possible to systematically study various aspects of the technique more thoroughly, inexpensively, and free from eye hazards. Students also learn about modular radio-frequency electronics and basic feedback control loops. By varying the temperature of the resonator, the students may determine the thermal expansion coefficients of copper, aluminum, and super invar.

  4. An in situ measurement of the radio-frequency attenuation in ice at Summit Station, Greenland

    CERN Document Server

    Avva, J; Miki, C; Saltzberg, D; Vieregg, A G

    2014-01-01

    We report an in situ measurement of the electric field attenuation length at radio frequencies for the bulk ice at Summit Station, Greenland, made by broadcasting radio-frequency signals vertically through the ice and measuring the relative power in the return ground bounce signal. We find the depth-averaged field attenuation length to be 947 +92/-85 meters at 75 MHz. While this measurement has clear radioglaciological applications, the radio clarity of the ice also has implications for the detection of ultra-high energy (UHE) astrophysical particles via their radio emission in dielectric media such as ice. The measured attenuation length at Summit Station is comparable to previously measured radio-frequency attenuation lengths at candidate particle detector sites around the world, and strengthens the case for Summit Station as the most promising northern site for UHE neutrino detection.

  5. Elimination of transmissible spongiform encephalopathy infectivity and decontamination of surgical instruments by using radio-frequency gas-plasma treatment.

    Science.gov (United States)

    Baxter, H C; Campbell, G A; Whittaker, A G; Jones, A C; Aitken, A; Simpson, A H; Casey, M; Bountiff, L; Gibbard, L; Baxter, R L

    2005-08-01

    It has now been established that transmissible spongiform encephalopathy (TSE) infectivity, which is highly resistant to conventional methods of deactivation, can be transmitted iatrogenically by contaminated stainless steel. It is important that new methods are evaluated for effective removal of protein residues from surgical instruments. Here, radio-frequency (RF) gas-plasma treatment was investigated as a method of removing both the protein debris and TSE infectivity. Stainless-steel spheres contaminated with the 263K strain of scrapie and a variety of used surgical instruments, which had been cleaned by a hospital sterile-services department, were examined both before and after treatment by RF gas plasma, using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. Transmission of scrapie from the contaminated spheres was examined in hamsters by the peripheral route of infection. RF gas-plasma treatment effectively removed residual organic residues on reprocessed surgical instruments and gross contamination both from orthopaedic blades and from the experimentally contaminated spheres. In vivo testing showed that RF gas-plasma treatment of scrapie-infected spheres eliminated transmission of infectivity. The infectivity of the TSE agent adsorbed on metal spheres could be removed effectively by gas-plasma cleaning with argon/oxygen mixtures. This treatment can effectively remove 'stubborn' residual contamination on surgical instruments.

  6. Effect of Krypton Addition on Electron Cyclotron Resonance-Radio Frequency Hybrid Oxygen Plasma for Patterning Diamond Surfaces

    International Nuclear Information System (INIS)

    Electron cyclotron resonance radio frequency (ECR-rf) hybrid krypton-diluted oxygen plasmas were used to pattern the surfaces of diamond films with the assistance of a physical mask, while optical emission spectroscopy was employed to characterize the plasma. It was found that with krypton dilution the etching rate decreased, and also the aspect ratios of nanotips formed in micro-holes were significantly modified. The oxygen atomic densities were estimated by oxygen atom optical emission and argon actinometry. Under a microwave power of 300 W and rf bias of -300 V, the absolute density of ground-state oxygen atoms decreased from 1.3x1012 cm-3 to 1.4x1011 cm-3 as the krypton dilution ratio increased to 80%, accompanied by the decrease in the plasma excitation temperature. It is concluded that oxygen atoms play a dominant role in diamond etching. The relative variations in the horizontal and vertical etching rates induced by the addition of krypton are attributed to the observations of thicker nanotips at a high krypton dilution ratio.

  7. Elimination of transmissible spongiform encephalopathy infectivity and decontamination of surgical instruments by using radio-frequency gas-plasma treatment.

    Science.gov (United States)

    Baxter, H C; Campbell, G A; Whittaker, A G; Jones, A C; Aitken, A; Simpson, A H; Casey, M; Bountiff, L; Gibbard, L; Baxter, R L

    2005-08-01

    It has now been established that transmissible spongiform encephalopathy (TSE) infectivity, which is highly resistant to conventional methods of deactivation, can be transmitted iatrogenically by contaminated stainless steel. It is important that new methods are evaluated for effective removal of protein residues from surgical instruments. Here, radio-frequency (RF) gas-plasma treatment was investigated as a method of removing both the protein debris and TSE infectivity. Stainless-steel spheres contaminated with the 263K strain of scrapie and a variety of used surgical instruments, which had been cleaned by a hospital sterile-services department, were examined both before and after treatment by RF gas plasma, using scanning electron microscopy and energy-dispersive X-ray spectroscopic analysis. Transmission of scrapie from the contaminated spheres was examined in hamsters by the peripheral route of infection. RF gas-plasma treatment effectively removed residual organic residues on reprocessed surgical instruments and gross contamination both from orthopaedic blades and from the experimentally contaminated spheres. In vivo testing showed that RF gas-plasma treatment of scrapie-infected spheres eliminated transmission of infectivity. The infectivity of the TSE agent adsorbed on metal spheres could be removed effectively by gas-plasma cleaning with argon/oxygen mixtures. This treatment can effectively remove 'stubborn' residual contamination on surgical instruments. PMID:16033987

  8. Microstructural characterization of radio frequency magnetron sputter-deposited Ga2O3:Mn phosphor thin films

    International Nuclear Information System (INIS)

    Ga2O3:Mn phosphor thin films have been prepared by radio frequency (rf) magnetron sputtering of a 2 mol % Mn-doped Ga2O3 target in an oxygen-argon mixture atmosphere. The deposition rate of the films decreased from 14 to 12 Aa/min when the working gas pressure decreased from 30 to 2 mTorr, while the O/Ga ratio of ∼1.5 did not systematically depend on the pressure. Films deposited at higher working gas pressure had a porous columnar structure containing a large void, typical of zone 1 growth, while films produced at lower pressure had relatively smooth surfaces with a dense structure, typical of zone T growth. The results obtained are consistent with energetic particle bombardment of the depositing films promoting surface adatom mobility at lower working gas pressure. Films deposited at working gas pressures≥15 mTorr showed a random orientation after a postdeposition anneal at 1000 deg. C. Below 15 mTorr, annealed films were strongly textured with the (111) and (020) planes parallel to the surface

  9. A wide-band tunable phase shifter for radio-frequency reflectometry

    CERN Document Server

    Yin, G; Laird, E A

    2014-01-01

    Radio-frequency reflectometry of nanodevices requires careful separation of signal quadratures to distinguish dissipative and dispersive contributions to the device impedance. A tunable phase shifter for this purpose is described and characterized. The phase shifter, consisting of a varactor-loaded transmission line, has the necessary tuning range combined with acceptable insertion loss across a frequency band 100 MHz - 1 GHz spanning most radio-frequency experiments. Its operation is demonstrated by demodulating separately the signals due to resistance and capacitance changes in a model device.

  10. The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies

    OpenAIRE

    Tingay, S. J.; Goeke, R.; Bowman, J.D.; Emrich, D.; Ord, S. M.; Mitchell, D. A.; Morales, M F; Booler, T.; Crosse, B.; Pallot, D.; Wicenec, A.; Arcus, W.; Barnes, D; Bernardi, G.; Briggs, F.

    2012-01-01

    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80–300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3...

  11. An ultra sensitive radio frequency single electron transistor working up to 4.2 K

    OpenAIRE

    Brenning, Henrik; Kafanov, Sergey; Duty, Tim; Kubatkin, Sergey; Delsing, Per

    2006-01-01

    We present the fabrication and measurement of a radio frequency single electron transistor (rf-SET), that displays a very high charge sensitivity of 1.9 microlectrons/sqrt(Hz) at 4.2 K. At 40 mK, the charge sensitivity is 0.9 and 1.0 microlectrons/sqrt(Hz) in the superconducting and normal state respectively. The sensitivity was measured as a function of radio frequency amplitude at three different temperatures: 40 mK, 1.8 K and 4.2 K.

  12. Using Multiple Input Multiple Output as Hybrid Free Space Optics/Radio Frequency Links

    Directory of Open Access Journals (Sweden)

    M. Tatarko

    2013-06-01

    Full Text Available This paper describes overview and definitions about Multiple Input Multiple Output (MIMO formats which can be used in hybrid Free Space Optics/Radio Frequency (FSO/RF links. Free space optical links allow obtain high speed data transmission without optical fibers. This type of communication is dependent on weather properties and line of sight is needed. This fact has negative influence on infrared beams which are being use for transmission. Radio frequency links have different restrictions in compare with FSO links. Both links can complement each other. Availability can increase with using hybrid FSO/RF links as MIMO systems.

  13. Design of water-cooling system for 750 keV radio frequency quadrupole injector

    International Nuclear Information System (INIS)

    The cooling design of a 201.25 MHz, 750 keV radio frequency quadrupole injector is described in this paper. The essential parameters for the design of the cooling pipes are obtained from the RF structure design. The hydrodynamics and thermal characteristics are theoretically analyzed. Computer simulation is performed using the steady state thermal analysis module of the radio-frequency software. Numerical computation shows that the increase of temperature is controlled within 1 K, the accelerator can work steadily with this cooling system. The cooling design satisfies the physical requirement very well. (authors)

  14. Complex Signal Kurtosis and Independent Component Analysis for Wideband Radio Frequency Interference Detection

    Science.gov (United States)

    Schoenwald, Adam; Mohammed, Priscilla; Bradley, Damon; Piepmeier, Jeffrey; Wong, Englin; Gholian, Armen

    2016-01-01

    Radio-frequency interference (RFI) has negatively implicated scientific measurements across a wide variation passive remote sensing satellites. This has been observed in the L-band radiometers SMOS, Aquarius and more recently, SMAP [1, 2]. RFI has also been observed at higher frequencies such as K band [3]. Improvements in technology have allowed wider bandwidth digital back ends for passive microwave radiometry. A complex signal kurtosis radio frequency interference detector was developed to help identify corrupted measurements [4]. This work explores the use of ICA (Independent Component Analysis) as a blind source separation technique to pre-process radiometric signals for use with the previously developed real and complex signal kurtosis detectors.

  15. Analysis of a discrete spectrum analyzer for the detection of radio frequency interference

    Science.gov (United States)

    Levitt, B. K.

    1977-01-01

    As the radio frequency spectrum becomes increasingly overcrowded, interference with mission-critical DSN operations is rising at an alarming rate. To alleviate this problem the DSN is developing a wideband surveillance system for on-site detection and identification of potential sources of radio frequency interference (RFI), which will complement the existing frequency coordination activities. The RFI monitoring system is based on a wideband, multi-look discrete spectrum analyzer operating on fast Fourier transform principles. An extensive general statistical analysis is presented of such spectrum analyzers and derives threshold detection performance formulas for signals of interest. These results are then applied to the design of the RFI spectrum analyzer under development.

  16. Localized Etching of a Polyimide Film by an Atmospheric-Pressure Radio Frequency Microplasma Excited by a 100-µm-φ Metal Pipe Electrode

    Science.gov (United States)

    Yoshiki, Hiroyuki

    2010-08-01

    Atmospheric-pressure He and Ar microplasmas (µ-plasmas) have been generated by a 14 MHz radio-frequency (RF) discharge using a metal narrow pipe electrode with an outer diameter of 100 µm. The metal pipe acts as both a powered electrode and a gas nozzle. The discharge mode changed from a corona discharge to a glow discharge and finally to a thermal spot arc discharge with decreasing discharge gap between the pipe electrode and the grounded plate as well as with increasing RF power. The Ar glow µ-plasma was applied to the localized etching of a polyimide film with a thickness of 0.025 mm in air ambient. The etched spot showed an isotropic profile having a gradual slope with a full width at half maximum of approximately 170 µm. The etching rate was approximately 3 µm/s at an RF power of 1.5 W. The optical emission spectrum exhibited second-positive N2 molecular bands and atomic oxygen lines (777 and 845 nm) as well as many Ar atomic lines. It appears that the energetic N2 molecules and UV photons radiated from the excitation states of N2 broke C-C and C-H bonds and then O radicals reacted with the hydrocarbon fragments to produce CO2 and H2O. Consequently, isotropic chemical etching was achieved.

  17. Radio frequency sputter deposition of high-quality conductive and transparent ZnO:Al films on polymer substrates for thin film solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain)], E-mail: susanamaria.fernandez@ciemat.es; Martinez-Steele, A.; Gandia, J.J. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica (GRIFO), Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala. Campus Universitario, 28871 Alcala de Henares, Madrid (Spain)

    2009-03-31

    Thick aluminum-doped zinc oxide films were deposited at substrate temperatures from 100 {sup o}C to room temperature on polyethylene terephthalate by radio frequency magnetron sputtering, varying the deposition parameters such as radio frequency power and working pressure. Structural, optical and electrical properties were analyzed using an x-ray diffractometer, a spectrophotometer and a four-point probe, respectively. Films were polycrystalline showing a strong preferred c-axis orientation (002). The best optical and electrical results were achieved using a substrate temperature of 100 {sup o}C. Furthermore, high transmittances close to 80% in the visible wavelength range were obtained for those films deposited at the lowest Argon pressure used of 0.2 Pa. In addition, resistivities as low as 1.1 x 10{sup -3} {omega} cm were reached deposited at a RF power of 75 W. Finally, a comparison of the properties of the films deposited on polymer and glass substrates was performed, obtaining values of the figure of merit for the films on polymer comparable to those obtained on glass substrates, 17,700 {omega}{sup -1} cm{sup -1} vs 14,900 {omega}{sup -1} cm{sup -1}, respectively.

  18. Combined effect of oxygen deficient point defects and Ni doping in radio frequency magnetron sputtering deposited ZnO thin films

    International Nuclear Information System (INIS)

    Ni doped ZnO thin films with oxygen deficiency have been synthesized on glass substrates by radio frequency magnetron sputtering technique using argon plasma. The combined effect of point defects generated due to oxygen vacancies and Ni doping on the optical and electrical properties of ZnO thin films has been studied in this work. Ni doping concentrations were varied and the structural, optical and electrical properties of the films were studied as a function of doping concentrations. The films were characterized with X-ray diffractometer, UV–Vis–NIR spectrophotometer, X-ray photoelectron spectroscopy, atomic force microscopy and electrical conductivity measurements. Oxygen deficient point defects (Schottky defects) made the ZnO thin film highly conducting while incorporation of Ni dopant made it more functional regarding their electrical and optical properties. The films were found to have tunable electrical conductivity with Ni doping concentrations. - Highlights: • ZnO thin films prepared by radio frequency magnetron sputtering technique • Synthesis process was stimulated to introduce Schottky-type point defects. • Point defects and external doping of Ni made ZnO thin films more functional. • Point defect induced high electrical conductivity in ZnO thin film. • Significant shift in optical bandgap observed in ZnO with Ni doping concentrations

  19. Optimization of ZnSe-SiO2 nanostructures deposited by radio-frequency magnetron sputtering: Correlations between plasma species and thin film composition, structural and microstructural properties

    International Nuclear Information System (INIS)

    ZnSe nanoparticle doped SiO2 films have been grown on various substrates at different deposition temperatures, radio-frequency power, Argon pressures and substrate to target distances, by means of reactive magnetron sputtering. A detailed study of the correlations between plasma species and thin film composition, structure and morphology is investigated using X-ray reflectivity and diffraction, Raman and optical emission spectroscopies and Rutherford backscattering technique. It is evidenced that the most sensitive species in the plasma is the Selenium and that the optimal deposition parameters correspond to random stress-free films with a high content of quasi-stoechiometric ZnSe cubic nanocrystallites. A few amount of ZnSe in the hexagonal structure is also evidenced in these films. Using proper deposition parameters, the SiO2/ZnSe proportion in the films and the mean ZnSe particles size around 3 nm are easily monitored

  20. Electromagnetic interference from radio frequency identification inducing potentially hazardous incidents in critical care medical equipment

    NARCIS (Netherlands)

    Togt, R. van der; Lieshout, E.J. van; Hensbroek, R.; Beinat, E.; Binnekade, J.M.; Bakker, P.J.M.

    2008-01-01

    Context: Health care applications of autoidentification technologies, such as radio frequency identification (RFID), have been proposed to improve patient safety and also the tracking and tracing of medical equipment. However, electromagnetic interference (EMI) by RFID on medical devices has never b

  1. Radio frequency for particle accelerators: evolution and anatomy of a technology

    CERN Document Server

    Vretenar, M

    2011-01-01

    This introductory lecture outlines the impressive progress of radio frequency technology, from the first table-top equipment to the present gigantic installations. The outcome of 83 years of evolution is subsequently submitted to an anatomical analysis, which allows identifying the main components of a modern RF system and their interrelations.

  2. Industrial-scale radio frequency treatments for insect control in lentils

    Science.gov (United States)

    Radio frequency (RF) treatments are considered to be a potential postharvest technology for disinfesting legumes of internal seed pests such as the cowpea weevil. After treatment protocols are shown to control postharvest insects without significant quality degradation, it is important to scale-up l...

  3. Wide-bandwidth charge sensitivity with a radio-frequency field-effect transistor

    NARCIS (Netherlands)

    Nishiguchi, K.; Yamaguchi, H.; Fujiwara, A.; Van der Zant, H.S.J.; Steele, G.A.

    2013-01-01

    We demonstrate high-speed charge detection at room temperature with single-electron resolution by using a radio-frequency field-effect transistor (RF-FET). The RF-FET combines a nanometer-scale silicon FET with an impedance-matching circuit composed of an inductor and capacitor. Driving the RF-FET w

  4. Radio-frequency-driven dipole-dipole interactions in spatially separated volumes

    NARCIS (Netherlands)

    A. Tauschinsky; C.S.E. van Ditzhuijzen; L.D. Noordam; H.B. van Linden van den Heuvell

    2008-01-01

    Radio-frequency (rf) fields in the MHz range are used to induce resonant energy transfer between cold Rydberg atoms in spatially separated volumes. After laser preparation of the Rydberg atoms, dipole-dipole coupling excites the 49s atoms in one cylinder to the 49p state while the 41d atoms in the s

  5. The Diffusion and Impact of Radio Frequency Identification in Supply Chains: A Multi-Method Approach

    Science.gov (United States)

    Wu, Xiaoran

    2012-01-01

    As a promising and emerging technology for supply chain management, Radio Frequency Identification (RFID) is a new alternative to existing tracking technologies and also allows a range of internal control and supply chain coordination. RFID has generated a significant amount of interest and activities from both practitioners and researchers in…

  6. Investigation of Dual Radio-Frequency Driven Sheaths and Ion Energy Distributions Bombarding an Insulating Substrate

    Institute of Scientific and Technical Information of China (English)

    WANG Li-Hong; DAI Zhong-Ling; WANG Yu-Nian

    2006-01-01

    @@ Dual radio-frequency (rf) sources at widely different frequencies are often simultaneously used to separately optimize the plasma parameters and ion energy distributions (IEDs) incident onto a substrate. Characteristics of collisionless dual rf biased-sheaths and IEDs impinging on an insulating substrate are studied with a self consistent one-dimensional fluid model.

  7. Theoretical determination of plasma density in radio frequency discharges between dielectric-covered parallel plate electrodes

    International Nuclear Information System (INIS)

    Fundamental solutions for electromagnetic (EM) radio frequency (EM) discharges between parallel-plate electrodes were obtained theoretically using an electrostatic approximation, in particular, the produced plasma density and the minimum RF voltage for maintaining a plasma. The result shows that the RF discharges arise from a geometrical resonance of electron plasma wave. (Author)

  8. Inactivation of Lactobacillus plantarum in apple cider using radio frequency electric fields

    Science.gov (United States)

    Radio frequency electric fields (RFEF) processing is effective at inactivating Gram negative bacteria in fruit juices at moderately low temperatures, but has yet to be shown to be effective at reducing Gram positive bacteria. Lactobacillus plantarum ATCC 49445, a Gram positive bacterium, was inocula...

  9. Radio Frequency Electric Fields Inactivation of Lactobacillus plantarum in Apple Cider

    Science.gov (United States)

    Radio frequency electric fields (RFEF) nonthermal processing has recently been shown to be effective at reducing Escherichia coli in fruit juices. While considerable effort and progress have been made in studying the effect of RFEF processing on this gram negative bacteria, there is a total lack of...

  10. Radio frequency "sutureless" fistulotomy- a new way of treating fistula in anus

    Institute of Scientific and Technical Information of China (English)

    Pravin J.Gupta

    2003-01-01

    AIM: To explore the effect of the classical lay open technique or fistulotomy with the radio frequency surgical device in the treatment of fistula in anus.METHODS: In our study, the conventional 'lay open'technique, or 'fistulotomy' was performed by employing the radio frequency surgical device as an alternative to the traditional knife and scissors. In a span of 18 months starting from July 1999 to December 2000, 210 cases with fistula in anus of varied types were operated in our nursing home exclusively applying the radio frequency device.RESULTS: The results of the study were not only encouraging but also were satisfactory. A follow up of the operated patients with radio frequency surgery over a period of 15 months, i.e. from December 2000 to March 2002 was summarized as below: (a) average time taken by the patient to resume routine - 7 days; (b) none of the patient had any interference with the continence; (c) the wounds were found healed within an average time of 47 days; (d) delayed wound healing was noticed only in 7 patients; (e) recurrence/failure rate was reduced to as low as 1.5 percent.CONCLUSION: This technique has been found superior to the conventional fistulotomy in the sense that the time taken for the whole procedure is reduced to almost half, chances of bleeding are reduced to a minimum and the use of suture material is dispensed with. The procedure can safely be called a "Sutureless fistulotomy".

  11. Optimization of Ta2O5 optical thin film deposited by radio frequency magnetron sputtering.

    Science.gov (United States)

    Shakoury, R; Willey, Ronald R

    2016-07-10

    Radio frequency magnetron sputtering has been used here to find the parameters at which to deposit Ta2O5 optical thin films with negligible absorption in the visible spectrum. The design of experiment methodology was employed to minimize the number of experiments needed to find the optimal results. Two independent approaches were used to determine the index of refraction n and k values.

  12. Perancangan Sistem Pembayaran Biaya Parkir Secara Otomatis Menggunakan RFID (Radio Frequency Indentification)

    OpenAIRE

    Siahaan, Charles P M

    2014-01-01

    Proses pembayaran biaya parkir yang dilakukan dengan cara manual masih memiliki kelemahan. Permasalahan seperti kurang efisien dan kurang efektif merupakan contoh dari beberapa kelemahan yang ditimbulkan dari sistem parkir manual. Sistem perparkiran yang terstruktur dengan baik dan mampu menawarkan berbagai macam solusi dari permasalahan perparkiran yang ada merupakan sistem perparkiran yang sangat dibutuhkan saat ini. RFID (Radio Frequency Identification) bisa menjadi jawaban untuk memban...

  13. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry

    International Nuclear Information System (INIS)

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10-7 or better, resulting in a resolution of ±25 μm for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented

  14. Radio frequency controlled synthetic wavelength sweep for absolute distance measurement by optical interferometry.

    Science.gov (United States)

    Le Floch, Sébastien; Salvadé, Yves; Mitouassiwou, Rostand; Favre, Patrick

    2008-06-01

    We present a new technique applied to the variable optical synthetic wavelength generation in optical interferometry. It consists of a chain of optical injection locking among three lasers: first a distributed-feedback laser is used as a master to injection lock an intensity-modulated laser that is directly modulated around 15 GHz by a radio frequency generator on a sideband. A second distributed-feedback laser is injection locked on another sideband of the intensity-modulated laser. The variable synthetic wavelength for absolute distance measurement is simply generated by sweeping the radio frequency over a range of several hundred megahertz, which corresponds to the locking range of the two slave lasers. In this condition, the uncertainty of the variable synthetic wavelength is equivalent to the radio frequency uncertainty. This latter has a relative accuracy of 10(-7) or better, resulting in a resolution of +/-25 microm for distances exceeding tens of meters. The radio frequency generator produces a linear frequency sweep of 1 ms duration (i.e., exactly equal to one absolute distance measurement acquisition time), with frequency steps of about 1 MHz. Finally, results of absolute distance measurements for ranges up to 10 m are presented. PMID:18516123

  15. Radio frequency interference effects of continuous wave signals on telemetry data, part 2. [Deep Space Network

    Science.gov (United States)

    Low, P. W.

    1979-01-01

    The results of radio frequency interference tests and the derived telemetry bit SNR degradation model, which includes the telemetry data rate and the telemetry data power as independent variables for characterizing the continuous wave interference effects on telemetry data, are presented. The telemetry bit SNR degradation model was implemented in the second version of the Deep Space Interference Prediction software.

  16. Radio frequency and microwave heating applicators and their use in industry

    Energy Technology Data Exchange (ETDEWEB)

    Metaxas, A.C. [Cambridge Univ. (United Kingdom)

    1995-12-01

    Radio frequency and microwave heating systems span the frequency range 10

  17. CoSMOS: Performance of Kurtosis Algorithm for Radio Frequency Interference Detection and Mitigation

    DEFF Research Database (Denmark)

    Misra, Sidharth; Kristensen, Steen Savstrup; Skou, Niels;

    2007-01-01

    The performance of a previously developed algorithm for Radio Frequency Interference (RFI) detection and mitigation is experimentally evaluated. Results obtained from CoSMOS, an airborne campaign using a fully polarimetric L-band radiometer are analyzed for this purpose. Data is collected using two...

  18. Determining radio frequency heating uniformity of mixed beans during disinfestation treatments

    Science.gov (United States)

    Since chickpeas and lentils are difficulty to artificially infest with live insects for radio frequency (RF) treatment validation, black-eyed peas and mung beans were selected to infest with insects before mixing with chickpeas and lentils. Temperature difference between black-eyed pea and chickpea ...

  19. Application of Radio Frequency Identification (RFID) in Dairy Information Management

    Institute of Scientific and Technical Information of China (English)

    Wu Hong-da

    2012-01-01

    As a kind of brand-new technology, radio frequency identification management, data control and acquisition. This paper introduced food safety system construction, analyzed the advantages and problems in dairy modem suggestions for solution according to the practical situation. (RFID) plays an important role in dairy information tracing and culture function extension of managing breeding technology, and finally put forward some

  20. A measurement method of time jitter of a laser pulse with respect to the radio-frequency wave phase in a photocathode radio-frequency gun

    International Nuclear Information System (INIS)

    In a photo-cathode radio-frequency (rf) gun, the micro-bunched charge output from the gun is dependent linearly on the laser injection phase, due to the Scottay effect in the process of photoemission and the procedure of the electron longitudinal acceleration. Based on this principle, a new method is proposed, which should be utilized to measure the time jitter between the driving laser pulse and the rf phase with a very high resolution of a few tens of femto-seconds

  1. Characteristics of anomalous skin effect and evolution of power absorption regions in a cylindrical radio frequency inductively coupled plasma

    International Nuclear Information System (INIS)

    In a low-pressure radio-frequency (13.56 MHz), inductively coupled argon plasma generated by a normal cylindrical rf coil, electric field, current density, and absorbed power density is calculated from magnetic field measured with a phase-resolved magnetic probe. The anomalous skin effect (ASE) for the cylindrical rf coil is compared to those previously reported for the planar and re-entrant cylindrical rf coils. Physical reasons for our observed characteristics of ASE are presented. With the increasing discharge power, the size and the number of negative and positive power absorption regions evolve into several distinct patterns. For the low discharge power (at 156.9 W), there is one area of positive and one area of negative power absorption in the radial direction. For the medium discharge power (279 W–683.5 W), there are two areas of negative and two areas of positive power absorption. For the even higher discharge power (above 803.5 W), the number of areas is the same as that of the medium discharge power, but the size of the inner positive and negative power absorption areas is approximately doubled and halved, respectively, while the outer positive and negative power absorption areas slightly shrinks. The evolution of positive and negative power absorption regions is explained as a result of electron thermal diffusion and the energy conversion between rf current and electric field. The spatial decays of electric field and current density are also elucidated by linking them with the positive and negative power absorption pattern

  2. Characteristics of anomalous skin effect and evolution of power absorption regions in a cylindrical radio frequency inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Z. F., E-mail: zfding@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Sun, B. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Xi' an Aerospace Propulsion Institute, China Aerospace Science and Technology Corporation, Xi' an 710100 (China); Huo, W. G. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029 (China)

    2015-06-15

    In a low-pressure radio-frequency (13.56 MHz), inductively coupled argon plasma generated by a normal cylindrical rf coil, electric field, current density, and absorbed power density is calculated from magnetic field measured with a phase-resolved magnetic probe. The anomalous skin effect (ASE) for the cylindrical rf coil is compared to those previously reported for the planar and re-entrant cylindrical rf coils. Physical reasons for our observed characteristics of ASE are presented. With the increasing discharge power, the size and the number of negative and positive power absorption regions evolve into several distinct patterns. For the low discharge power (at 156.9 W), there is one area of positive and one area of negative power absorption in the radial direction. For the medium discharge power (279 W–683.5 W), there are two areas of negative and two areas of positive power absorption. For the even higher discharge power (above 803.5 W), the number of areas is the same as that of the medium discharge power, but the size of the inner positive and negative power absorption areas is approximately doubled and halved, respectively, while the outer positive and negative power absorption areas slightly shrinks. The evolution of positive and negative power absorption regions is explained as a result of electron thermal diffusion and the energy conversion between rf current and electric field. The spatial decays of electric field and current density are also elucidated by linking them with the positive and negative power absorption pattern.

  3. Characterization and properties of ZnO1-xSx alloy films fabricated by radio-frequency magnetron sputtering

    International Nuclear Information System (INIS)

    A series of ZnO1-xSx alloy films (0 ≤ x ≤ 1) were grown on quartz substrates by radio-frequency (rf) magnetron sputtering of ZnS ceramic target, using oxygen and argon as working gas. X-ray diffraction measurement shows that the ZnO1-xSx films have wurtzite structure with (0 0 2) preferential orientation in O-rich side (0 ≤ x ≤ 0.23) and zinc blende structure with (1 1 1) preferential orientation in S-rich side (0.77 ≤ x ≤ 1). However, when the S content is in the range of 0.23 1-xSx film consists of two phases of wurtzite and zinc blende or amorphous ZnO1-xSx phase. The band gap energy of the films shows non-linear dependence on the S content, with an optical bowing parameter of about 2.9 eV. The photoluminescence (PL) measurement reveals that the PL spectrum of the wurtzite ZnO1-xSx is dominated by visible band and its PL intensity and intensity ratio of UV to visible band decrease greatly compared with undoped ZnO. All as-grown ZnO1-xSx films behave insulating, but show n-type conductivity for w-ZnO1-xSx and maintain insulating properties for β-ZnO1-xSx after annealed. Mechanisms of effects of S on optical and electrical properties of the ZnO1-xSx alloy are discussed in the present work.

  4. The Murchison Widefield Array: the Square Kilometre Array Precursor at low radio frequencies

    CERN Document Server

    Tingay, S J; Bowman, J D; Emrich, D; Ord, S M; Mitchell, D A; Morales, M F; Booler, T; Crosse, B; Pallot, D; Wicenec, A; Arcus, W; Barnes, D; Bernardi, G; Briggs, F; Burns, S; Bunton, J D; Cappallo, R J; Colegate, T; Corey, B E; Deshpande, A; deSouza, L; Gaensler, B M; Greenhill, L J; Hall, J; Hazelton, B J; Herne, D; Hewitt, J N; Johnston-Hollitt, M; Kaplan, D L; Kasper, J C; Kincaid, B B; Koenig, R; Kratzenberg, E; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Morgan, E; Oberoi, D; Pathikulangara, J; Prabu, T; Remillard, R A; Rogers, A E E; Roshi, A; Salah, J E; Sault, R J; Udaya-Shankar, N; Schlagenhaufer, F; Srivani, K S; Stevens, J; Subrahmanyan, R; Tremblay, S; Wayth, R B; Waterson, M; Webster, R L; Whitney, A R; Williams, A; Williams, C L; Wyithe, J S B

    2012-01-01

    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80-300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3 km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.

  5. SVD-based Method for Radio Frequency Interference Suppression Applied to SAR

    Directory of Open Access Journals (Sweden)

    Yu Chunrui

    2012-03-01

    Full Text Available Synthetic aperture radar (SAR is a special type of active microwave sensor, which has got a wide range of applications in remote sensing. However, the performance of SAR systems may be affected by radio frequency interference (RFI in several geographic regions. A novel singular value decomposition method is proposed for radio frequency interference suppression applied to SAR. This method decomposes the singular vectors of the received signal with RFI into interference subspace and signal subspace. The orthogonality of the two subspaces is used to suppress the RFI. The point-target simulation is used to show the working principle of the proposed algorithm. The experimental results based on SAR real data are also shown to verify the proposed algorithm.Defence Science Journal, 2012, 62(2, pp.132-136, DOI:http://dx.doi.org/10.14429/dsj.62.1144

  6. Etching mechanism of niobium in coaxial Ar/Cl2 radio frequency plasma

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Janardan [Old Dominion Univ., Norfolk, VA (United States); Im, Do [Old Dominion Univ., Norfolk, VA (United States); Popovic, Svetozar [Old Dominion Univ., Norfolk, VA (United States); Valente-Feliciano, Anne -Marie [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Phillips, H. Larry [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Vuskovic, Leposova [Old Dominion Univ., Norfolk, VA (United States)

    2015-03-18

    The understanding of the Ar/Cl2 plasma etching mechanism is crucial for the desired modification of inner surface of the three dimensional niobium (Nb) superconductive radio frequency cavities. Uniform mass removal in cylindrical shaped structures is a challenging task because the etch rate varies along the direction of gas flow. The study is performed in the asymmetric coaxial radio-frequency (rf) discharge with two identical Nb rings acting as a part of the outer electrode. The dependence of etch rate uniformity on pressure, rf power, dc bias, Cl2 concentration, diameter of the inner electrode, temperature of the outer cylinder, and position of the samples in the structure is determined. Furthermore, to understand the plasma etching mechanisms, we have studied several factors that have important influence on the etch rate and uniformity, which include the plasma sheath potential, Nb surface temperature, and the gas flow rate.

  7. Optical frequency comb technology for ultra-broadband radio-frequency photonics

    CERN Document Server

    Torres-Company, Victor

    2014-01-01

    The outstanding phase-noise performance of optical frequency combs has led to a revolution in optical synthesis and metrology, covering a myriad of applications, from molecular spectroscopy to laser ranging and optical communications. However, the ideal characteristics of an optical frequency comb are application dependent. In this review, the different techniques for the generation and processing of high-repetition-rate (>10 GHz) optical frequency combs with technologies compatible with optical communication equipment are covered. Particular emphasis is put on the benefits and prospects of this technology in the general field of radio-frequency photonics, including applications in high-performance microwave photonic filtering, ultra-broadband coherent communications, and radio-frequency arbitrary waveform generation.

  8. Effect of radio frequency fields on the radical pair magnetoreception model

    Science.gov (United States)

    Xu, Bao-Ming; Zou, Jian; Li, Hai; Li, Jun-Gang; Shao, Bin

    2014-10-01

    Although the radical pair (RP) model is widely accepted for birds' orientation, the physical mechanism of it is still not fully understood. In this paper we consider the RP model in the total angular-momentum representation and clearly show a detailed mechanism for orientation. When only the vertical hyperfine (HF) coupling component is considered, analytical expressions of singlet yield angular profiles are obtained with and without considering the radio frequency field, and when the horizontal HF coupling components are considered, a numerical calculation of the singlet yield is given. Based on these analytical and numerical results we present a detailed account of the following issues: how the HF coupling induces the singlet-triplet conversion; why the vertical radio frequency field can disorient the birds, while the parallel one cannot; and why the birds are able to "train" to different field strengths. Finally, we consider a multinuclei RP model.

  9. INFLUENCE OF CONSTRUCTIVE AND TECHNOLOGICAL DEFECTS ON COAXIAL RADIO-FREQUENCY CABLE IMPEDANCE

    Directory of Open Access Journals (Sweden)

    G.V. Bezprozvannych

    2013-04-01

    Full Text Available Coaxial user's radio-frequency cables belong to a category of cable television network elements parameters of which essentially specify the system capabilities as a whole. The cable working frequency spectrum spreading to 1000 MHz along with digital television and soundtrack signals transmission and high-definition television introduction causes more rigid requirements for wave impedance and, consequently, for the cable design. The established norms on user's cable impedance deviations fail to answer the state-of-the-art requirements for granting a complex of interactive services. On the basis of calculations performed, values of internal and external conductor diameters deviations as well as dielectric permeability of the insulation material are validated. For up-to-date user's radio-frequency cables, the impedance deviation from the normalized average value of 75 Ohm should not exceed ± 2 Ohm.

  10. UTag: Long-range Ultra-wideband Passive Radio Frequency Tags

    Energy Technology Data Exchange (ETDEWEB)

    Dowla, F

    2007-03-14

    Long-range, ultra-wideband (UWB), passive radio frequency (RF) tags are key components in Radio Frequency IDentification (RFID) system that will revolutionize inventory control and tracking applications. Unlike conventional, battery-operated (active) RFID tags, LLNL's small UWB tags, called 'UTag', operate at long range (up to 20 meters) in harsh, cluttered environments. Because they are battery-less (that is, passive), they have practically infinite lifetimes without human intervention, and they are lower in cost to manufacture and maintain than active RFID tags. These robust, energy-efficient passive tags are remotely powered by UWB radio signals, which are much more difficult to detect, intercept, and jam than conventional narrowband frequencies. The features of long range, battery-less, and low cost give UTag significant advantage over other existing RFID tags.

  11. Different modes of a capacitively coupled radio-frequency discharge in methane.

    Science.gov (United States)

    Schweigert, I V

    2004-04-16

    The transition between different regimes of a capacitevely coupled radio-frequency gas discharge in methane is studied with a combined particle-in-cell Monte Carlo collision algorithm over a wide range of gas pressure P and discharge current j. The results of this study are compared with known experimental and numerical results and summarized on a P-j phase diagram, which constitutes the areas of existence of different discharge regimes. PMID:15169290

  12. Operational characteristics of a 100-mA, 2-MeV radio-frequency quadrupole

    International Nuclear Information System (INIS)

    A 100-mA, 2.07-MeV Radio-Frequency Quadrupole (RFQ III) has been commissioned and operated routinely on the Accelerator Test Stand (ATS) [1] at Los Alamos National Laboratory. To characterize the RFQ output beam dynamics, measurements were made of the beam transmission and of the transverse and longitudinal phase-space distributions. Data were taken for different RFQ III operating conditions and compared to simulations

  13. Challenges and opportunities of silent commerce - applying Radio Frequency Identification technology

    Directory of Open Access Journals (Sweden)

    Teuta Cata

    2006-04-01

    Full Text Available This research paper investigates applications of Radio Frequency Technology (RFID as an application of ubiquitous commerce. RFID has a wide application in the supply chain but still is very limited for customer support. This study introduces the concept of the Silent CRM (s-CRM which is an application of RFID to proactively support customer needs. Challenges of RFID application within companies, outside of companies and about the technology itself are discussed as well.

  14. Correction and Characterization of Radio Frequency Interference Signatures in L-band Synthetic Aperture Radar Data

    OpenAIRE

    Meyer, Franz; Nicoll, Jeremy; Doulgeris, Anthony Paul

    2013-01-01

    Radio frequency interference (RFI) is a known issue in low-frequency radar remote sensing. In synthetic aperture radar (SAR) image processing, RFI can cause severe degradation of image quality, distortion of polarimetric signatures, and an increase of the SAR phase noise level. To address this issue, a processing system was developed that is capable of reliably detecting, characterizing, and mitigating RFI signatures in SAR observations. In addition to being the basis for image correction, th...

  15. Radio Frequency Interference Detection and Mitigation Algorithms Based on Spectrogram Analysis

    Directory of Open Access Journals (Sweden)

    Jose Miguel Tarongi

    2011-10-01

    Full Text Available Radio Frequency Interference (RFI detection and mitigation algorithms based on a signal’s spectrogram (frequency and time domain representation are presented. The radiometric signal’s spectrogram is treated as an image, and therefore image processing techniques are applied to detect and mitigate RFI by two-dimensional filtering. A series of Monte-Carlo simulations have been performed to evaluate the performance of a simple thresholding algorithm and a modified two-dimensional Wiener filter.

  16. A new approach to mitigation of radio frequency interference in interferometric data

    OpenAIRE

    Athreya, Ramana

    2009-01-01

    Radio frequency interference (RFI) is the principal factor limiting the sensitivities of radio telescopes, particularly at frequencies below 1 GHz. I present a conceptually new approach to mitigation of RFI in interferometric data. This has been used to develop a software tool (RfiX) to remove RFI from observations using the Giant Metrewave Radio Telescope, India. However, the concept can be used to excise RFI in any interferometer. Briefly, the fringe-stopped correlator output of an interfer...

  17. Study of radio frequency interference effects on radiometry bands in urban environments

    OpenAIRE

    Forte Veliz, Giuseppe Francesco; Camps Carmona, Adriano José; Tarongí Bauzá, José Miguel; Vall-Llossera Ferran, Mercedes Magdalena

    2012-01-01

    Microwave radiometers are very accurate passive sensors that have been successfully used in Earth remote sensing during the last decades. Microwave radiometers measure thermal noise, therefore any other signal (radio-frequency interference or RFI) present in the band modifies the value of the measured power, and the corresponding estimated antenna temperature, from which the geophysical parameters will be retrieved. An on-going RFI survey shows how corrupted is the spectrum “protected” L-band...

  18. An introduction to factor analysis for radio frequency interference detection on satellite observations

    OpenAIRE

    Islam, Tanvir; Srivastava, Prashant K; Dai, Qiang; Gupta, Manika; Zhuo, Lu

    2015-01-01

    A novel radio frequency interference (RFI) detection method is introduced for satellite-borne passive microwave radiometer observations. This method is based on factor analysis, in which variability among observed and correlated variables is described in terms of factors. In the present study, this method is applied to the Tropical Rainfall Measuring Mission (TRMM)/TRMM Microwave Imager (TMI) and Aqua/Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) satellite measureme...

  19. CoSMOS: Performance of Kurtosis Algorithm for Radio Frequency Interference Detection and Mitigation

    OpenAIRE

    Misra, Sidharth; Kristensen, Steen Savstrup; Skou, Niels; Søbjærg, Sten Schmidl

    2007-01-01

    The performance of a previously developed algorithm for Radio Frequency Interference (RFI) detection and mitigation is experimentally evaluated. Results obtained from CoSMOS, an airborne campaign using a fully polarimetric L-band radiometer are analyzed for this purpose. Data is collected using two separate integration times, as a result of which sensitivity of the detection algorithm is measured. The impact of RFI on remotely sensed data over land and sea is also presented.

  20. Radio Frequency Interference Mitigation for Detection of Extended Sources with an Interferometer

    OpenAIRE

    Bower, Geoffrey C.

    2004-01-01

    Radio frequency interference (RFI) is a significant problem for current and future radio telescopes. We describe here a method for post-correlation cancellation of RFI for the special case of an extended source observed with an interferometer that spatially resolves the astronomical signal. In this circumstance, the astronomical signal is detected through the auto-correlations of each antenna but is not present in the cross-correlations between antennas. We assume that the RFI is detected in ...

  1. Radio Frequency Interference Detection and Mitigation Algorithms Based on Spectrogram Analysis

    OpenAIRE

    Jose Miguel Tarongi; Adriano Camps

    2011-01-01

    Radio Frequency Interference (RFI) detection and mitigation algorithms based on a signal’s spectrogram (frequency and time domain representation) are presented. The radiometric signal’s spectrogram is treated as an image, and therefore image processing techniques are applied to detect and mitigate RFI by two-dimensional filtering. A series of Monte-Carlo simulations have been performed to evaluate the performance of a simple thresholding algorithm and a modified two-dimensional Wiener filter....

  2. Contributions to radio frequency interference detection and mitigation in Earth observation

    OpenAIRE

    Forte Véliz, Giuseppe Francesco

    2014-01-01

    Radio Frequency Interference (RFI) is the most common problem for electronic measuring systems. The presence of those electromagnetic waves can harm the measurements taken from very sensitive instruments, like microwave radiometry or navigation systems. The accuracy and precision are compromised. A first step to mitigate those unwanted effects is to study the RFI properties. Different algorithms have been proposed to detect the interferences, but there is no method that works in all cases. ...

  3. Radio-Frequency Interference Detection and Mitigation Algorithms for Synthetic Aperture Radiometers

    OpenAIRE

    Antonio Gutierrez; Jose Barbosa; Rita Castro; Jose Miguel Tarongi; Mercedes Vall Llossera; Adriano Camps; Jerome Gourrion

    2011-01-01

    The European Space Agency (ESA) successfully launched the Soil Moisture and Ocean Salinity (SMOS) mission in November 2, 2009. SMOS uses a new type of instrument, a synthetic aperture radiometer named MIRAS that provides full-polarimetric multi-angular L-band brightness temperatures, from which regular and global maps of Sea Surface Salinity (SSS) and Soil Moisture (SM) are generated. Although SMOS operates in a restricted band (1400–1427 MHz), radio-frequency interference (RFI) appears in SM...

  4. Analysis of Radio Frequency Blackout for a Blunt-Body Capsule in Atmospheric Reentry Missions

    OpenAIRE

    Yusuke Takahashi; Reo Nakasato; Nobuyuki Oshima

    2016-01-01

    A numerical analysis of electromagnetic waves around the atmospheric reentry demonstrator (ARD) of the European Space Agency (ESA) in an atmospheric reentry mission was conducted. During the ARD mission, which involves a 70% scaled-down configuration capsule of the Apollo command module, radio frequency blackout and strong plasma attenuation of radio waves in communications with data relay satellites and air planes were observed. The electromagnetic interference was caused by highly dense pla...

  5. An Intelligent Traffic Flow Control System Based on Radio Frequency Identification and Wireless Sensor Networks

    OpenAIRE

    Kuei-Hsiang Chao; Pi-Yun Chen

    2014-01-01

    This study primarily focuses on the use of radio frequency identification (RFID) as a form of traffic flow detection, which transmits collected information related to traffic flow directly to a control system through an RS232 interface. At the same time, the sensor analyzes and judges the information using an extension algorithm designed to achieve the objective of controlling the flow of traffic. In addition, the traffic flow situation is also transmitted to a remote monitoring control syste...

  6. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    International Nuclear Information System (INIS)

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications

  7. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Pashupati, E-mail: dhakal@jlab.org; Ciovati, Gianluigi, E-mail: gciovati@jlab.org; Myneni, Ganapati R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2015-12-04

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications.

  8. Radio Frequency Models of Novae in eruption. I. The Free-Free Process in Bipolar Morphologies

    OpenAIRE

    Ribeiro, V. A. R. M.; Chomiuk, L.; Munari, U.; Steffen, W.; Koning, N.; O'Brien, T. J.; Simon, T.; Woudt, P. A.; Bode, M. F.

    2014-01-01

    Observations of novae at radio frequencies provide us with a measure of the total ejected mass, density profile and kinetic energy of a nova eruption. The radio emission is typically well characterized by the free-free emission process. Most models to date have assumed spherical symmetry for the eruption, although it has been known for as long as there have been radio observations of these systems, that spherical eruptions are to simplistic a geometry. In this paper, we build bipolar models o...

  9. Two quantum oscillators coupled with a planar radio frequency ion trap

    Institute of Scientific and Technical Information of China (English)

    Chen Liang; Gao Ke-Lin

    2010-01-01

    In this scheme, two quantum oscillators in a planar radio frequency ion trap are coupled by the trap electrodes. The ions motional states encode the quantum bits (qubits), and a swap gate could be achieved. Under different conditions of the experiments, the intensity of the coupling betweentwo quantum oscillators and the dissipation of the system are calculated. We compute fidelities for a quantum swap gate and discuss experimental issues.

  10. Radio Frequency Numerical Simulation Techniques Based on Multirate Runge-Kutta Schemes

    OpenAIRE

    Oliveira, Jorge F.; Pedro, José C.

    2012-01-01

    Electronic circuit simulation, especially for radio frequency (RF) and microwave telecommunications, is being challenged by increasingly complex applications presenting signals of very different nature and evolving on widely separated time scales. In this paper, we will briefly review some recently developed ways to address these challenges, by describing some advanced numerical simulation techniques based on multirate Runge-Kutta schemes, which operate in the one-dimensional time and also wi...

  11. Radio frequency heating of foods: principles, applications and related properties--a review.

    Science.gov (United States)

    Piyasena, Punidadas; Dussault, Chantal; Koutchma, Tatiana; Ramaswamy, H S; Awuah, G B

    2003-01-01

    Radio frequency (RF) heating is a promising technology for food applications because of the associated rapid and uniform heat distribution, large penetration depth and lower energy consumption. Radio frequency heating has been successfully applied for drying, baking and thawing of frozen meat and in meat processing. However, its use in continuous pasteurization and sterilization of foods is rather limited. During RF heating, heat is generated within the product due to molecular friction resulting from oscillating molecules and ions caused by the applied alternating electric field. RF heating is influenced principally by the dielectric properties of the product when other conditions are kept constant. This review deals with the current status of RF heating applications in food processing, as well as product and system specific factors that influence the RF heating. It is evident that frequency level, temperature and properties of food, such as viscosity, water content and chemical composition affect the dielectric properties and thus the RF heating of foods. Therefore, these parameters should be taken into account when designing a radio frequency heating system for foods.

  12. Radio frequency heating of foods: principles, applications and related properties--a review.

    Science.gov (United States)

    Piyasena, Punidadas; Dussault, Chantal; Koutchma, Tatiana; Ramaswamy, H S; Awuah, G B

    2003-01-01

    Radio frequency (RF) heating is a promising technology for food applications because of the associated rapid and uniform heat distribution, large penetration depth and lower energy consumption. Radio frequency heating has been successfully applied for drying, baking and thawing of frozen meat and in meat processing. However, its use in continuous pasteurization and sterilization of foods is rather limited. During RF heating, heat is generated within the product due to molecular friction resulting from oscillating molecules and ions caused by the applied alternating electric field. RF heating is influenced principally by the dielectric properties of the product when other conditions are kept constant. This review deals with the current status of RF heating applications in food processing, as well as product and system specific factors that influence the RF heating. It is evident that frequency level, temperature and properties of food, such as viscosity, water content and chemical composition affect the dielectric properties and thus the RF heating of foods. Therefore, these parameters should be taken into account when designing a radio frequency heating system for foods. PMID:14669879

  13. Trapping ions from a fast beam in a radio-frequency ion trap: Exploring the energy exchange with the longitudinal radio-frequency field

    DEFF Research Database (Denmark)

    Svendsen, Annette; Lammich, Lutz; Vad Andersen, John Erik;

    2013-01-01

    The possibility of injecting ions from an initially fast moving beam into a multipole radio-frequency (RF) ion trap without the use of buffer gas is described. The chosen trap geometry gives rise to an oscillating electric field along the direction of the incoming ions, and through an analytical...... kinetic energy even if their kinetic energy initially exceeds the depth of the trapping potential well. An experimental apparatus for trapping ions from a fast beam is described, and experimental investigations demonstrating the described trapping dynamics are presented....... model as well as numerical simulations it is demonstrated that the energy exchange between the injected ions and this oscillating field governs the trapping dynamics. Most notably, if ions arrive at the trap during specific phases of the RF field, they can be effectively decelerated and stored with low...

  14. An Analysis of Near Field and Application of a New Comb-shaped Antenna for Radio Frequency Identification

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new comb-shaped antenna for radio frequency identification is proposed. The kind of antenna can replace some antenna array. So it is very convenient for omnidirectional identification. The test result proves this antenna is viable.

  15. Surface modification of polyester film by glow discharge tunnel at atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    XU Xiang-yu; WANG Shou-guo; YE Tian-chun; JING Guang-yin; YU Da-peng

    2004-01-01

    A large-area improved dielectric barrier glow discharge tunnel has been developed for modifying the surface of polyester film at atmospheric pressure with argon and oxygen gas mixtures. The electrical properties of the glow discharge tunnel were studied by simultaneous measurement of the voltage and current. In addition, the effect of the glow discharge tunnel treatment on the surface of polyester film were studied. The resultant modifications of the surface properties of the treated samples were investigated through scanning probe microscopy and contact angle measurement.

  16. Absolute and relative emission spectroscopy study of 3 cm wide planar radio frequency atmospheric pressure bio-plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Xiaolong; Nikiforov, Anton Yu, E-mail: anton.nikiforov@ugent.be; Leys, Christophe [Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Gent (Belgium); Ionita, Eusebiu-Rosini; Dinescu, Gheorghe [National Institute of Laser, Plasma and Radiation, Magurele-Bucharest, MG-36, Ilfov RO 077125 (Romania)

    2015-08-03

    The dynamics of low power atmospheric pressure radio frequency discharge generated in Ar gas in long gap of 3 cm is investigated. This plasma source is characterized and analyzed for possible large scale biomedical applications where low gas temperature and potential-less effluent are required. The discharge forms a homogenous glow-like afterglow in ambient air at input power of 30 W with low gas temperature of 330 K, which is desirable in biomedical applications. With absolute calibrated spectroscopy of the discharge, electron density of 0.4 × 10{sup 18} m{sup −3} and electron temperature of 1.5 eV are obtained from continuum Bremsstrahlung radiation of the source. Time and spatial resolved emission spectroscopy is used to analyze discharge generation mechanism and active species formation. It is found that discharge dynamics strongly correlates with the discharge current waveform. Strong Ar(2p) excited states emission is observed nearby the electrodes surface on a distance up to 200 μm in the plasma sheath region at 10 ns after the current peak, whereas OH(A) emission is uniform along of the interelectrode gap.

  17. Absolute and relative emission spectroscopy study of 3 cm wide planar radio frequency atmospheric pressure bio-plasma source

    International Nuclear Information System (INIS)

    The dynamics of low power atmospheric pressure radio frequency discharge generated in Ar gas in long gap of 3 cm is investigated. This plasma source is characterized and analyzed for possible large scale biomedical applications where low gas temperature and potential-less effluent are required. The discharge forms a homogenous glow-like afterglow in ambient air at input power of 30 W with low gas temperature of 330 K, which is desirable in biomedical applications. With absolute calibrated spectroscopy of the discharge, electron density of 0.4 × 1018 m−3 and electron temperature of 1.5 eV are obtained from continuum Bremsstrahlung radiation of the source. Time and spatial resolved emission spectroscopy is used to analyze discharge generation mechanism and active species formation. It is found that discharge dynamics strongly correlates with the discharge current waveform. Strong Ar(2p) excited states emission is observed nearby the electrodes surface on a distance up to 200 μm in the plasma sheath region at 10 ns after the current peak, whereas OH(A) emission is uniform along of the interelectrode gap

  18. Radio frequency ice dielectric permittivity measurements using CReSIS data

    Science.gov (United States)

    Stockham, M.; Macy, J.; Besson, D.

    2016-03-01

    We report on studies of the ice dielectric permittivity using 150-195 MHz radar depth sounding data accumulated by the Center for Remote Sensing of Ice Sheets group, based at the University of Kansas. In the context of astroparticle physics experiments aimed at understanding radio emissions from cosmic rays interacting in the Earth's polar regions, our goals for this study were twofold: (1) identify radio frequency wave speed polarization asymmetries in Antarctica and (for the first time) in Greenland and (2) directly extract the depth dependence of the radio frequency field attenuation length as well as map out the attenuation over a large area. We first examine asymmetries in the real part of the permittivity (index-of-refraction n=√ɛ') using Center for Remote Sensing of Ice Sheets bedrock radar reflection data taken from a single location, but with different signal polarizations. These data indicate birefringence for flow parallel-, versus perpendicular-to the local ice-flow direction, with the former corresponding to smaller index-of-refraction (i.e., faster wave speed). Second, we have investigated the imaginary part of the permittivity (ɛ'') and extracted the depth dependence of the field attenuation length (Lα˜√ɛ''), as well as estimated the depth-averaged radio frequency attenuation length from data taken near the Greenland Ice Core Project site near Summit, Greenland. We obtain =500-60+90 m based on calculated values in the 1000-2000 m ice depth interval to which we have sensitivity and extrapolated to the full depth, where the errors shown reflect our uncertainty in our extrapolation. We also observe the expected decrease in attenuation length with increasing depth/temperature. A depth-averaged attenuation length is also extracted directly from the relative strengths of the observed bedrock versus surface returns over large regions of both Greenland and Antarctica.

  19. Gamma-Ray Bursts Subset and Supernova Remnants Low Radio-Frequency Turnover

    Institute of Scientific and Technical Information of China (English)

    LIU Xiang

    2000-01-01

    Durations of gamma-ray bursts (GRB's) are featured by >2s subset and <2s one, with initial corresponding energy ratio being 20:1. It is found that supernova remants(SNR 's) turnover frequencies peak at 100 and 500 MHz. After assuming that GRB's originate from hypernova and making an analysis on the evolution of GRB's, we find that the initial energy of two GRB subsets leads to a different radio-frequency turnover of their remnant spectra, which accords positively with the turnover-frequency ratio of SNR's.

  20. The design of a radio frequency quadrupole LINAC for the RIB project at VECC Kolkata

    Indian Academy of Sciences (India)

    V Banerjee; Alok Chakrabarti; Arup Bandyopadhyay; T K Bhaumik; M Mondal; T K Chakraborty; H Pande; O Kamigaito; A Goto; Y Yano

    2002-12-01

    A radio frequency quadrupole LINAC has been designed for the VECC-RIB project for an input beam energy of 1.0 keV/u and / ≥ 1/16. The output energy will be about 90 keV/u for a 3.4 m long, 35 MHz structure. A half-scale cold model of the RFQ has been fabricated and tested for rf structure design study. The beam dynamics and rf-structure design along with the results of the cold model tests will be presented.

  1. Indication of radio frequency interference (RFI) sources for solar burst monitoring in Malaysia

    Science.gov (United States)

    Hamidi, Z. S.; Abidin, Z. Z.; Ibrahim, Z. A.; Shariff, N. N. M.

    2012-06-01

    Apart of monitoring the Sun project, the Radio Frequency Interference (RFI) surveying in the region of (1-1200) MHz has been conducted. The main objective of this surveying is to test and qualify the potential of monitoring a continuous radio emission of Solar in Malaysia. This work is also an initiative of International Space Weather Initiative (ISWI) project where Malaysia is one of the country that participate a e-Callisto Spectrometer network in order to study the behavior of Solar radio burst in frequency of (45-800) MHz region which will be install in this October. Detail results will indicate the potential of monitoring a solar in Malaysia.

  2. Occupational exposure to radio frequency/microwave radiation and the risk of brain tumors

    DEFF Research Database (Denmark)

    Berg, Gabriele; Spallek, Jacob; Schüz, Joachim;

    2006-01-01

    It is still under debate whether occupational exposure to radio frequency/microwave electromagnetic fields (RF/MW-EMF) contributes to the development of brain tumors. This analysis examined the role of occupational RF/MW-EMF exposure in the risk of glioma and meningioma. A population-based, case....... "High" exposure was defined as an occupational exposure that may exceed the RF/MW-EMF exposure limits for the general public recommended by the International Commission on Non-Ionizing Radiation Protection. Multiple conditional logistic regressions were performed separately for glioma and meningioma...

  3. Development and operation of the twin radio frequency single electron transistor for solid state qubit readout

    OpenAIRE

    Buehler, T. M.; Reilly, D. J.; Starrett, R. P.; Court, N. A.; Hamilton, A. R.; Dzurak, A.S.; Clark, R.G.

    2003-01-01

    Ultra-sensitive detectors and readout devices based on the radio frequency single electron transistor (rf-SET) combine near quantum-limited sensitivity with fast operation. Here we describe a twin rf-SET detector that uses two superconducting rf-SETs to perform fast, real-time cross-correlated measurements in order to distinguish sub-electron signals from charge noise on microsecond time-scales. The twin rf-SET makes use of two tuned resonance circuits to simultaneously and independently addr...

  4. Superconducting radio-frequency resonator in magnetic fields up to 6 T

    Science.gov (United States)

    Ebrahimi, M. S.; Stallkamp, N.; Quint, W.; Wiesel, M.; Vogel, M.; Martin, A.; Birkl, G.

    2016-07-01

    We have measured the characteristics of a superconducting radio-frequency resonator in an external magnetic field. The magnetic field strength has been varied with 10 mT resolution between zero and 6 T. The resonance frequency and the quality factor of the resonator have been found to change significantly as a function of the magnetic field strength. Both parameters show a hysteresis effect which is more pronounced for the resonance frequency. Quantitative knowledge of such behaviour is particularly important when experiments require specific values of resonance frequency and quality factor or when the magnetic field is changed while the resonator is in the superconducting state.

  5. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, W.; Fantz, U.; Heinemann, B.; Franzen, P.

    2015-02-15

    Radio frequency ion sources used in neutral beam injection systems (NBI) of fusion machines are currently supplied by self-excited RF generators. These generators have both a low power efficiency and a limited frequency stability, therefore transistorized amplifiers are being considered for the power supply of the next generation of RF sources. A 75 kW generator, originally designed for broadcasting, has been tested with a negative ion source. High operational reliability and a very good matching to the plasma load has been demonstrated. These results make this generator type a very promising candidate for future NBI systems.

  6. Wide-bandwidth charge sensitivity with a radio-frequency field-effect transistor

    OpenAIRE

    Nishiguchi, K.; Yamaguchi, H; Fujiwara, A.; van der Zant, H S J; Steele, G. A.

    2013-01-01

    We demonstrate high-speed charge detection at room temperature with single-electron resolution by using a radio-frequency field-effect transistor (RF-FET). The RF-FET combines a nanometer-scale silicon FET with an impedance-matching circuit composed of an inductor and capacitor. Driving the RF-FET with a carrier signal at its resonance frequency, small signals at the transistor's gate modulate the impedance of the resonant circuit, which is monitored at high speed using the reflected sig...

  7. Radio Frequency Surface Impedance Characterization System for Superconducting Samples at 7.5 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Binping Xiao, Charles Reece, Michael Kelley, Larry Phillips, Rongli Geng, Haipeng Wang, Frank Marhauser

    2011-05-01

    A radio frequency (RF) surface impedance characterization (SIC) system that uses a sapphire-loaded Nb cavity operating at 7.5 GHz has been fabricated to measure the RF surface impedance of flat superconducting samples. Currently, the SIC system can make direct calorimetric surface impedance measurements in the central 0.8 cm2 area of 5 cm diameter disk samples in a temperature range from 2 to 20 K, exposed to a magnetic flux density of up to 14 mT. As an application, we present the measurement results for a bulk Nb sample.

  8. NASA Standard Initiator Susceptibility to UHF and S-Band Radio Frequency Power and Lightning Strikes

    Science.gov (United States)

    Burnham, Karen; Scully, Robert; Norgard, John

    2013-01-01

    The NASA Standard Initiator (NSI) is an important piece of pyrotechnic equipment used in many space applications. This presentation will outline the results of a series of tests done at UHF and S-Band frequencies to determine NSI susceptibility to Radio Frequency (RF) power. The results show significant susceptibility to pulsed RF power in the S-Band region. Additional testing with lightning pulses injected into the firing line harness, modelling the indirect effects of a lightning strike to a spacecraft, showed no vulnerability

  9. Lattice Wave of Magnetized Spherical Dust in Radio-Frequency Sheath with Negative Ions

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Lattice wave of magnetized spherical dust in radio-frequency sheath with negative ions is investigated. The dispersion relation of two-dimensional hexagonal lattice horizontal wave and the influence of negative ions and magnetic field intensity on the wave are also investigated. The results show that for two-dimensional hexagonal horizontal lattice wave, negative ions reduce the wave frequency at the range of long-wavelength, whereas raising the wave frequency at the range of short-wavelength and magnetic held contributes to dropping the wave frequency a little.

  10. Improvement on control system of the JT-60 radio frequency heating system

    Energy Technology Data Exchange (ETDEWEB)

    Shinozaki, Shin-ichi; Moriyama, Shinichi; Hiranai, Shinichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Sato, Fumiaki [Nippon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan)

    2003-03-01

    On the JT-60 radio frequency (RF) heating system, the decrease in the activity ratio was a problem because of the deterioration of the control system. To improve the reliability, we replaced CAMAC system for a power injection control system, which was a main cause of the trouble, with the microprocessor system. And, a function of computer supported programming function of RF power injection form was introduced, which contributed to reduce a load of operators. Furthermore, personal computers with network communication were introduced to improve a maintenance ability of the control system. As a result, the activity ratio of the RF heating system was improved significantly. (author)

  11. Verification of nonlinear particle simulation of radio frequency waves in tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kuley, A., E-mail: akuley@uci.edu; Lin, Z. [Department of Physics and Astronomy, University of California Irvine, California 92697 (United States); Bao, J. [Department of Physics and Astronomy, University of California Irvine, California 92697 (United States); Fusion Simulation Center, Peking University, Beijing 100871 (China); Wei, X. S.; Xiao, Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Zhang, W. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, G. Y. [Department of Physics, Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2015-10-15

    Nonlinear simulation model for radio frequency waves in fusion plasmas has been developed and verified using fully kinetic ion and drift kinetic electron. Ion cyclotron motion in the toroidal geometry is implemented using Boris push in the Boozer coordinates. Linear dispersion relation and nonlinear particle trapping are verified for the lower hybrid wave and ion Bernstein wave (IBW). Parametric decay instability is observed where a large amplitude pump wave decays into an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating, with a heating rate proportional to the pump wave intensity.

  12. Radio frequency interference noise reduction using a field programmable gate array for SQUID applications

    International Nuclear Information System (INIS)

    It is important to remove large environmental noise in superconducting quantum interference device (SQUID) measurement without magnetic shielding. Active noise control (ANC) is one of the effective methods to reduce environmental noise. Recently, SQUIDs have been used in various applications at high frequencies, such as nuclear quadrupole resonance (NQR). The NQR frequency from explosives is in the range 0.5-5 MHz. In this case, an NQR sensor is exposed to AM radio frequency interference (RFI). The feasibility of the ANC system for RFI that used digital signal processing was studied. Our investigation showed that this digital ANC system can be applied to SQUID measurements for RFI suppression

  13. Radio Frequency Interference Mitigation for the Planned SMAP Radar and Radiometer

    Science.gov (United States)

    Spencer, Michael; Chan, Samuel; Belz, Eric; Piepmeier, Jeffrey; Mohammed, Priscilla; Kim, Edward; Johnson, Joel T.

    2011-01-01

    NASA's planned SMAP mission will utilize a radar operating in a band centered on 1.26 GHz and a co-observing radiometer operating at 1.41 GHz to measure surface soil moisture. Both the radar and radiometer sub-systems are susceptible to radio frequency interference (RFI). Any significant impact of such interference requires mitigation in order to avoid degradation in the SMAP science products. Studies of RFT detection and mitigation methods for both the radar and radiometer are continuing in order to assess the risk to mission products and to refine the performance achieved.

  14. High resolution kilometric range optical telemetry in air by radio frequency phase measurement

    Science.gov (United States)

    Guillory, Joffray; Šmíd, Radek; García-Márquez, Jorge; Truong, Daniel; Alexandre, Christophe; Wallerand, Jean-Pierre

    2016-07-01

    We have developed an optical Absolute Distance Meter (ADM) based on the measurement of the phase accumulated by a Radio Frequency wave during its propagation in the air by a laser beam. In this article, the ADM principle will be described and the main results will be presented. In particular, we will emphasize how the choice of an appropriate photodetector can significantly improve the telemeter performances by minimizing the amplitude to phase conversion. Our prototype, tested in the field, has proven its efficiency with a resolution better than 15 μm for a measurement time of 10 ms and distances up to 1.2 km.

  15. Verification of nonlinear particle simulation of radio frequency waves in tokamak

    International Nuclear Information System (INIS)

    Nonlinear simulation model for radio frequency waves in fusion plasmas has been developed and verified using fully kinetic ion and drift kinetic electron. Ion cyclotron motion in the toroidal geometry is implemented using Boris push in the Boozer coordinates. Linear dispersion relation and nonlinear particle trapping are verified for the lower hybrid wave and ion Bernstein wave (IBW). Parametric decay instability is observed where a large amplitude pump wave decays into an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating, with a heating rate proportional to the pump wave intensity

  16. Beam characterization of a new continuous wave radio frequency quadrupole accelerator

    International Nuclear Information System (INIS)

    A new Continuous Wave (CW) Radio Frequency Quadrupole (RFQ) for the ATLAS (Argonne Tandem Linac Accelerator System) Intensity Upgrade was developed, built and tested at Argonne National Laboratory. We present here a characterization of the RFQ output beam in the longitudinal phase space, as well as a measurement of the transverse beam halo. Measurement results are compared to simulations performed using the beam dynamics code TRACK. -- Highlights: • Beam commissioning of a new CW RFQ has been performed at Argonne National Laboratory. • Energy spread and bunch shape measurements were conducted. • The formation of a beam halo in the transverse phase space was studied

  17. A new Main Injector radio frequency system for 2.3 MW Project X operations

    CERN Document Server

    Dey, J

    2012-01-01

    For Project X Fermilab Main Injector will be required to provide up to 2.3 MW to a neutrino production target at energies between 60 and 120 GeV. To accomplish the above power levels 3 times the current beam intensity will need to be accelerated. In addition the injection energy of Main Injector will need to be as low as 6 GeV. The current 30 year old Main Injector radio frequency system will not be able to provide the required power and a new system will be required. The specifications of the new system will be described.

  18. Radio frequency induction plasma generator 80-kV test stand operation

    International Nuclear Information System (INIS)

    Beam extraction tests at energies up to 80 kV were performed using a radio frequency induction (RFI) plasma generator hydrogen ion source. A 7 x 10-cm2, long pulse accelerator was operated with a 10 x 10-cm2 axial magnetic cusp bucket and a magnetic-filter bucket. Atomic fractions (up to 85% H+), plasma production efficiencies (roughly-equal0.6 A of beam per kW rf power), and beam divergence were at least as good as with arc plasmas in similar chambers. Potential advantages of the RFI plasma sources for large-scale applications are ease of operation, reliability, and extended service life

  19. Superconducting radio frequency technology: Expanding the horizons of physics and technology

    International Nuclear Information System (INIS)

    This paper describes a major new technology supporting the further evolution of accelerators: superconducting radio frequency (SRF) technology, which is today on the verge of large-scale application in accelerators. Originally foreseen in the early 1960s as a promising technology, SRF only recently has overcome several technological and practical hurdles. SRF accelerating structures promise low rf losses and high gradients under cw operation. High-quality, intense cw beams can be accelerated without risk of melting the structure and without requiring enormous amounts of input rf power

  20. Design of Meander-Line Antennas for Radio Frequency Identification Based on Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    X. L. Travassos

    2012-01-01

    Full Text Available This paper presents optimization problem formulations to design meander-line antennas for passive UHF radio frequency identification tags based on given specifications of input impedance, frequency range, and geometric constraints. In this application, there is a need for directive transponders to select properly the target tag, which in turn must be ideally isotropic. The design of an effective meander-line antenna for RFID purposes requires balancing geometrical characteristics with the microchip impedance. Therefore, there is an issue of optimization in determining the antenna parameters for best performance. The antenna is analyzed by a method of moments. Some results using a deterministic optimization algorithm are shown.

  1. A radio frequency ring electrode cooler for low-energy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Heinz, S. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany)]. E-mail: sophie.heinz@physik.uni-muenchen.de; Aeystoe, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (Y5), FIN-40351 Jyvaeskylae (Finland); Habs, D. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany); Hegewisch, S. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany); Huikari, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (Y5), FIN-40351 Jyvaeskylae (Finland); Nieminen, A. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (Y5), FIN-40351 Jyvaeskylae (Finland); Rinta-Antila, S. [Department of Physics, University of Jyvaeskylae, P.O. Box 35 (Y5), FIN-40351 Jyvaeskylae (Finland); Schumann, M. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany); Szerypo, J. [Sekt. Phys., Ludwig-Maximilians-Universitaet, Am Coulombwall 1, Muenchen, D-85748 Garching (Germany)

    2004-11-11

    We are investigating a new concept for ion confinement while buffer-gas-cooling low-energy ion beams. Instead of applying the well-established technique of Radio Frequency Quadrupoles (RFQs) where the ions are transversely confined by a quadratic-pseudo potential we are using a stack of thin ring electrodes supplied by an RF field (RF funnel) which creates a box-shaped potential well. In Monte Carlo simulations we have investigated the transmission behavior and cooling performance of the RF funnel. First experimental investigations with ion currents up to 20 nA revealed a promising transmission characteristic which qualifies the RF funnel as high-current cooler.

  2. Gold Nanoparticle-Based Sensors Activated by External Radio Frequency Fields

    DEFF Research Database (Denmark)

    Della Vedova, Paolo; Ilieva, Mirolyuba; Zhurbenko, Vitaliy;

    2015-01-01

    A novel molecular beacon (a nanomachine) is constructed that can be actuated by a radio frequency (RF) field. The nanomachine consists of the following elements arranged in molecular beacon configuration: a gold nanoparticle that acts both as quencher for fluorescence and a localized heat source......; one reporter fluorochrome, and; a piece of DNA as a hinge and recognition sequence. When the nanomachines are irradiated with a 3 GHz RF field the fluorescence signal increases due to melting of the stem of the molecular beacon. A control experiment, performed using molecular beacons synthesized...

  3. Experimental observation and computational analysis of striations in electronegative capacitively coupled radio-frequency plasmas

    CERN Document Server

    Liu, Yong-Xin; Korolov, Ihor; Donko, Zoltan; Wang, You-Nian; Schulze, Julian

    2016-01-01

    Self-organized spatial structures in the light emission from the ion-ion capacitive RF plasma of a strongly electronegative gas (CF4) are observed experimentally for the first time. Their formation is analyzed and understood based on particle-based kinetic simulations. These "striations" are found to be generated by the resonance between the driving radio-frequency and the eigenfrequency of the ion-ion plasma (derived from an analytical model) that establishes a modulation of the electric field, the ion densities, as well as the energy gain and loss processes of electrons in the plasma. The growth of the instability is followed by the numerical simulations.

  4. Hydrogen production by radio frequency plasma stimulation in methane hydrate at atmospheric pressure

    OpenAIRE

    Putra, Andi Erwin Eka

    2013-01-01

    Methane hydrate, formed by injecting methane into 100 g of shaved ice at a pressure of 7 MPa and reactor temperature of 0 ??C, was decomposed by applying 27.12 MHz radio frequency plasma in order to produce hydrogen. The process involved the stimulation of plasma in the methane hydrate with a variable input power at atmospheric pressure. It was observed that production of CH4 is optimal at a slow rate of CH4 release from the methane hydrate, as analyzed by in light of the steam...

  5. A Bar Code and Radio-Frequency Identification System for Transfusion Safety

    Institute of Scientific and Technical Information of China (English)

    Sandler SG; DiBandi L; Langeberg A; Gibble J; Wilson C; Feldman CF

    2006-01-01

    This presentation will describe a pilot study of radio-frequency (RF) identification tags ("chips") that was conducted in parallel with standard procedures for the collection and testing of Red Blood Cells (Greater Chesapeake and Potomac Region, American Red Cross Biomedical Services, Baltimore, MD) and transfusion (Georgetown University Hospital, Washington, DC). The purpose of the study was to evaluate whether multi-write RF chips could be attached to blood bags, programmed, and used to facilitate the collection of information from (1) a blood bag manufacturer to (2) a blood collection center and, subsequently, to (3) a hospital transfusion service.

  6. Detection of radio-frequency interference in microwave radiometers using spectral kurtosis

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Svoboda, Jan; Balling, Jan E.;

    2012-01-01

    This paper describes the spectral kurtosis detector as an additional indicator for radio frequency interference, RFI in passive remote sensing systems. The estimator is based on continuous Fast Fourier Transformation of samples, followed by evaluation of each frequency bin in subsequent data blocks...... is reached for continuous wave RFI or for RFI with high duty-cycle compared to the radiometer integration time. Typically the spectral kurtosis is superior for duty-cycles above 15%, while standard kurtosis is more efficient for lower duty-cycles, down to a few percent. In combination, the two estimators...

  7. Incorporation of radio frequency identification tag in dentures to facilitate recognition and forensic human identification.

    OpenAIRE

    Nuzzolese, E; Marcario, V; Di Vella, G

    2010-01-01

    Forensic identification using odontology is based on the comparison of ante-mortem and post mortem dental records. The insertion of a radio frequency identification (RFId) tag into dentures could be used as an aid to identify decomposed bodies, by storing personal identification data in a small transponder that can be radio-transmitted to a reader connected to a computer. A small passive, 12 x 2,1 mm, read-only RFId-tag was incorporated into the manufacture of three trial complete upper dentu...

  8. Tuning the work function of graphene by nitrogen plasma treatment with different radio-frequency powers

    International Nuclear Information System (INIS)

    Graphene prepared by the chemical vapor deposition method was treated with nitrogen plasma under different radio-frequency (rf) power conditions in order to experimentally study the change in the work function. Control of the rf power could change the work function of graphene from 4.91 eV to 4.37 eV. It is shown that the increased rf power may lead to the increased number of graphitic nitrogen, increasing the electron concentration, and shifting the Fermi level to higher energy. The ability to controllably tune the work function of graphene is essential for optimizing the efficiency of optoelectronic and electronic devices.

  9. Radio frequency effect on the sheath capacitance in a low density plasma

    International Nuclear Information System (INIS)

    In this work we describe the use of the nonlinear properties of the sheath capacitance in a low density plasma to produce parametric amplification of RF signals in a high frequency band (H.F.). The experiment has been carried out in the Linear Mirror Device LISA of the Universidade Federal Fluminense, where a helium plasma was produced using a radio-frequency source built at UFF, with variable (10 watts to 100 watts) and frequency of 28 MHz. The experimental results shows good agreement between the theoretical model of sheat capacitance. This allows one to predict, within a limited range, the sheath capacitance variation as a function of certain plasma parameters. (author)

  10. A method for mechanical generation of radio frequency fields in nuclear magnetic resonance force microscopy

    CERN Document Server

    Wagenaar, J J T; Donkersloot, R J; Marsman, F; de Wit, M; Bossoni, L; Oosterkamp, T H

    2016-01-01

    We present an innovative method for magnetic resonance force microscopy (MRFM) with ultra-low dissipation, by using the higher modes of the mechanical detector as radio frequency (rf) source. This method allows MRFM on samples without the need to be close to an rf source. Furthermore, since rf sources require currents that give dissipation, our method enables nuclear magnetic resonance experiments at ultra-low temperatures. Removing the need for an on-chip rf source is an important step towards a MRFM which can be widely used in condensed matter physics.

  11. A radio frequency device for measurement of minute dielectric property changes in microfluidic channels

    Science.gov (United States)

    Song, Chunrong; Wang, Pingshan

    2009-01-01

    We demonstrate a sensitive radio frequency (rf) device to detect small dielectric property changes in microfluidic channel. The device consists of an on-chip Wilkinson power divider and a rat-race hybrid, which are built with planar microstrip lines and thin film chip resistors. Interference is used to cancel parasitic background signals. As a result, the measurement sensitivity is improved by more than 20 dB compared with conventional transmission lines. Compared with an ultrasensitive slot antenna/cuvette assembly [K. M. Taylor and D. W. van der Weide, IEEE Trans. Microwave Theory Tech. 53, 1576 (2005)], the proposed rf device is two times more sensitive.

  12. Analysis of Higher Order Modes in Large Superconducting Radio Frequency Accelerating Structures

    CERN Document Server

    Galek, Tomasz; Brackebusch, Korinna; Van Rienen, Ursula

    2015-01-01

    Superconducting radio frequency cavities used for accelerating charged particle beams are commonly used in accelerator facilities around the world. The design and optimization of modern superconducting RF cavities requires intensive numerical simulations. Vast number of operational parameters must be calculated to ensure appropriate functioning of the accelerating structures. In this study, we primarily focus on estimation and behavior of higher order modes in superconducting RF cavities connected in chains. To calculate large RF models the state-space concatenation scheme, an efficient hybrid method, is employed.

  13. Fiber-based radio frequency dissemination for branching networks with passive phase-noise cancelation

    Institute of Scientific and Technical Information of China (English)

    Yu Bai; Bo Wang; Chao Gao; Jing Miao; Xi Zhu; Lijun Wang

    2015-01-01

    We demonstrate a new fiber-based radio frequency (RF) dissemination scheme suitable for a star-shaped branching network.Without any phase controls on the RF signals or the use of active feedback-locking components,the highly stable reference frequency signal can be delivered to several remote sites simultaneously and independently.The relative frequency stabilities of 6 × 10-15/s and 7 × 10 17/104 s are obtained for a 10 km dissemination.This low cost and scalable method can be applied to a large-scale frequency synchronization network.

  14. Separation Process of Polydisperse Particles in the Plasma of Radio-frequency Discharge

    Directory of Open Access Journals (Sweden)

    D.G. Batryshev

    2014-07-01

    Full Text Available Method of separation of polydisperse particles in the plasma of radio-frequency (RF discharge is considered. Investigation of plasma equipotential field gave conditions for separation. The purpose of this work was an obtaining of monodisperse particles in the plasma of RF discharge. Samples of monodisperse microparticles of silica and alumina were obtained. The size and chemical composition of samples were studied on a scanning electron microscope Quanta 3D 200i (SEM, USA FEI company. Average size of separated silica nanoparticles is 600 nm, silica and alumina microparticles is 5 mkm.

  15. Collision-induced radio-frequency transitions in CH 3I

    Science.gov (United States)

    Tamassia, F.; Danieli, R.; Scappini, F.

    1999-02-01

    The highly sensitive method of radio-frequency-infrared double resonance inside a CO 2 laser is applied to study collision-induced transitions in CH 3I in a four-level double resonance scheme. Pure nuclear quadrupole resonances are observed as the result of collision population transfer between different rotational levels. The intensity ratios of the collision-induced dips to the corresponding three-level double resonance signals are measured for a number of transitions in the ground and excited vibrational states. Collision selection rules in the pure gas and in mixtures with polar and non-polar gases are discussed.

  16. Observation of the glow-to-arc transitions

    Science.gov (United States)

    Watanabe, Shigeru; Saito, Shigeki; Takahashi, Kunio; Onzawa, Tadao

    2002-10-01

    Researches of the glow-to-arc transitions have been required for a new development of the welding technology in low current. It is important to clarify the characteristics of plasma in the transitions because there have been few reports investigated the transitions in detail. The glow-to-arc transitions were observed in argon at atmospheric pressure. The Th-W electrodes of 1 mm in a diameter are used. Both of the electrodes are needle-shaped and set in a quartz tube coaxially. Plasma is generated between the electrodes with the gap spacing of 1 mm. A DC power supply has been applying constant voltage of 600 V during the discharge. A high-speed camera is used to record the images of plasma in the transitions with the measurement of voltage and current between the electrodes. As a result, two things were confirmed for the behavior of the glow-to-arc transition. First, plasma extended over the cathode surface in the transition from the glow to the arc. Second, temperature in the tip of the cathode would increase gradually during the glow and decrease during the arc.

  17. Radio Frequency Transistors and Circuits Based on CVD MoS2.

    Science.gov (United States)

    Sanne, Atresh; Ghosh, Rudresh; Rai, Amritesh; Yogeesh, Maruthi Nagavalli; Shin, Seung Heon; Sharma, Ankit; Jarvis, Karalee; Mathew, Leo; Rao, Rajesh; Akinwande, Deji; Banerjee, Sanjay

    2015-08-12

    We report on the gigahertz radio frequency (RF) performance of chemical vapor deposited (CVD) monolayer MoS2 field-effect transistors (FETs). Initial DC characterizations of fabricated MoS2 FETs yielded current densities exceeding 200 μA/μm and maximum transconductance of 38 μS/μm. A contact resistance corrected low-field mobility of 55 cm(2)/(V s) was achieved. Radio frequency FETs were fabricated in the ground-signal-ground (GSG) layout, and standard de-embedding techniques were applied. Operating at the peak transconductance, we obtain short-circuit current-gain intrinsic cutoff frequency, fT, of 6.7 GHz and maximum intrinsic oscillation frequency, fmax, of 5.3 GHz for a device with a gate length of 250 nm. The MoS2 device afforded an extrinsic voltage gain Av of 6 dB at 100 MHz with voltage amplification until 3 GHz. With the as-measured frequency performance of CVD MoS2, we provide the first demonstration of a common-source (CS) amplifier with voltage gain of 14 dB and an active frequency mixer with conversion gain of -15 dB. Our results of gigahertz frequency performance as well as analog circuit operation show that large area CVD MoS2 may be suitable for industrial-scale electronic applications. PMID:26134588

  18. Radio frequency reflectometry and charge sensing of a precision placed donor in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hile, Samuel J., E-mail: samhile@gmail.com; House, Matthew G.; Peretz, Eldad; Verduijn, Jan; Widmann, Daniel; Kobayashi, Takashi; Rogge, Sven; Simmons, Michelle Y., E-mail: michelle.simmons@unsw.edu.au [Centre for Quantum Computation and Communication Technology - CQC" 2T, School of Physics, University of New South Wales, Sydney 2052 (Australia)

    2015-08-31

    We compare charge transitions on a deterministic single P donor in silicon using radio frequency reflectometry measurements with a tunnel coupled reservoir and DC charge sensing using a capacitively coupled single electron transistor (SET). By measuring the conductance through the SET and comparing this with the phase shift of the reflected radio frequency (RF) excitation from the reservoir, we can discriminate between charge transfer within the SET channel and tunneling between the donor and reservoir. The RF measurement allows observation of donor electron transitions at every charge degeneracy point in contrast to the SET conductance signal where charge transitions are only observed at triple points. The tunnel coupled reservoir has the advantage of a large effective lever arm (∼35%), allowing us to independently extract a neutral donor charging energy ∼62 ± 17 meV. These results demonstrate that we can replace three terminal transistors by a single terminal dispersive reservoir, promising for high bandwidth scalable donor control and readout.

  19. Performance Analysis and Modelling of a Radio Frequency Energy Harvesting System

    Directory of Open Access Journals (Sweden)

    CIRSTEA, C.

    2013-02-01

    Full Text Available The development of autonomous battery powered systems which can be deployed in inaccessible locations for sensing applications has determined the development of various energy harvesting systems. Such an energy harvester is the one developed by Powercast which can convert the energy of radio frequency signals into useful power. A model of the harvested power can prove to be a useful tool for simulation purposes as it can provide, to some extent, prior knowledge of available energy resources when optimally deploying sensor networks. To obtain an accurate model of the harvested energy we have developed an experimental setup which has been used to determine the harvested power in two different environments, a hallway and a parking lot. We have developed the experimental setup to determine the amount of power available at the output of the radio frequency harvester which consists of a current measurement system and a data acquisition system. We have also modeled through simulations the harvested power based on the characteristics of the transmitter and receiver antennas and those of the environment. We have compared the results obtained through in field measurement with the ones obtained through simulation and we have shown that within certain margins of error of maximum 2 dBm one can successfully predict the amount of energy the system can harvest. However the RF-DC and Boost converter efficiency are also key factors in the quantity of harvested energy.

  20. Resonant-frequency discharge in a multi-cell radio frequency cavity

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, S; Upadhyay, J; Mammosser, J; Nikolic, M; Vuskovic, L

    2014-11-07

    We are reporting experimental results on microwave discharge operating at resonant frequency in a multi-cell radio frequency (RF) accelerator cavity. Although the discharge operated at room temperature, the setup was constructed so that it could be used for plasma generation and processing in fully assembled active superconducting radio-frequency (SRF) cryomodule (in situ operation). This discharge offers an efficient mechanism for removal of a variety of contaminants, organic or oxide layers, and residual particulates from the interior surface of RF cavities through the interaction of plasma-generated radicals with the cavity walls. We describe resonant RF breakdown conditions and address the problems related to generation and sustaining the multi-cell cavity plasma, which are breakdown and resonant detuning. We have determined breakdown conditions in the cavity, which was acting as a plasma vessel with distorted cylindrical geometry. We discuss the spectroscopic data taken during plasma removal of contaminants and use them to evaluate plasma parameters, characterize the process, and estimate the volatile contaminant product removal.

  1. Early experience of radio frequency coblation in the management of intranasal and sinus tumors.

    Science.gov (United States)

    Syed, Mohammed Iqbal; Mennie, Joanna; Williams, Alun T

    2012-02-01

    The purpose of this study was to evaluate the safety and efficacy of the use of radiofrequency coblation for endoscopic resection of intranasal and sinus tumors. A review was conducted of 15 adult patients with intranasal and or sinus tumors endoscopically treated with radio frequency coblation between November 2008 and November 2010 at St. John's Hospital at Livingston, a tertiary referral center that covers otolaryngology services for the southeast of Scotland. Fifteen patients with intranasal and sinus tumors were treated with transnasal endoscopic resection using radiofrequency coblation. The tumors included inverted papilloma (seven), paraganglioma (one), glomangiopericytoma (one), capillary hemangioma (one), hemangiopericytoma (one), juvenile angiofibroma (one), juvenile ossifying fibroma (one), oncocytic adenoma (one), and transitional cell carcinoma (one). We found that radiofrequency coblation is a useful and safe tool associated with minimal blood loss (<200 mL to 600 mL) in the resection of these tumors, and the average operating time was 1.67 hours. Radio frequency is a rapidly evolving technique and in the future will have an increasing role to play in the endoscopic resection of intranasal and sinus tumors.

  2. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    CERN Document Server

    Giroletti, M; D'Abrusco, R; Lico, R; Burlon, D; Hurley-Walker, N; Johnston-Hollitt, M; Morgan, J; Pavlidou, V; Bell, M; Bernardi, G; Bhat, R; Bowman, J D; Briggs, F; Cappallo, R J; Corey, B E; Deshpande, A A; Ewall-Rice, A; Emrich, D; Gaensler, B M; Goeke, R; Greenhill, L J; Hazelton, B J; Hindson, L; Kaplan, D L; Kasper, J C; Kratzenberg, E; Feng, L; Jacobs, D; Kurdryavtseva, N; Lenc, E; Lonsdale, C J; Lynch, M J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Oberoi, D; Offringa, A R; Ord, S M; Pindor, B; Prabu, T; Procopio, P; Riding, J; Rogers, A E E; Roshi, A; Shankar, N Udaya; Srivani, K S; Subrahmanyan, R; Tingay, S J; Waterson, M; Wayth, R B; Webster, R L; Whitney, A R; Williams, A; Williams, C L

    2016-01-01

    Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. We characterize the spectral properties of the blazar population at low radio frequency compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. We cross-correlated the 6,100 deg^2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by \\fermilat. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray bl...

  3. Ge Nanoislands Grown by Radio Frequency Magnetron Sputtering: Comprehensive Investigation of Surface Morphology and Optical Properties

    Directory of Open Access Journals (Sweden)

    Alireza Samavati

    2015-01-01

    Full Text Available The comprehensive investigation of the effect of growth parameters on structural and optical properties of Si-based single layer Ge nanoislands grown via Stranski-Krastanov mechanism employing radio frequency magnetron sputtering due to its high deposition rate, easy procedure, economical cost, and safety is carried out. The estimated width and height of Ge nanoislands produced by this technique are in the range of ∼8 to ∼30 and ∼2 to 8 nm, respectively. Varieties parameters are manipulated to optimize the surface morphology and structural and optical behavior of Ge nanoislands. The resulted nanoislands are analyzed using various analytical techniques including atomic force microscope, X-ray diffraction, energy dispersive X-ray spectroscopy, room temperature photoluminescence, and Raman spectroscopy. The optimum parameters for growing high quality samples having high number density and homogenous and small size distribution are found to be 400°C for substrate temperature, 300 sec for deposition time, 10 sccm for Ar flow, and 100 W for radio frequency power. The excellent features of the results suggest that our systematic investigation on the organized growth factors and their effects on surface parameters and photoluminescence emission energy may constitute a basis for the tunable growth of Ge nanoislands (100 nanoislands suitable in nanophotonics.

  4. COMPARISON OF RADIO-FREQUENCY INTERFERENCE MITIGATION STRATEGIES FOR DISPERSED PULSE DETECTION

    International Nuclear Information System (INIS)

    Impulsive radio-frequency signals from astronomical sources are dispersed by the frequency-dependent index of refraction of the interstellar media and so appear as chirped signals when they reach Earth. Searches for dispersed impulses have been limited by false detections due to radio-frequency interference (RFI) and, in some cases, artifacts of the instrumentation. Many authors have discussed techniques to excise or mitigate RFI in searches for fast transients, but comparisons between different approaches are lacking. This work develops RFI mitigation techniques for use in searches for dispersed pulses, employing data recorded in a 'Fly's Eye' mode of the Allen Telescope Array as a test case. We gauge the performance of several RFI mitigation techniques by adding dispersed signals to data containing RFI and comparing false alarm rates at the observed signal-to-noise ratios of the added signals. We find that Huber filtering is most effective at removing broadband interferers, while frequency centering is most effective at removing narrow frequency interferers. Neither of these methods is effective over a broad range of interferers. A method that combines Huber filtering and adaptive interference cancelation provides the lowest number of false positives over the interferers considered here. The methods developed here have application to other searches for dispersed pulses in incoherent spectra, especially those involving multiple beam systems.

  5. Comparison of Radio-frequency Interference Mitigation Strategies for Dispersed Pulse Detection

    Science.gov (United States)

    Hogden, John; Vander Wiel, Scott; Bower, Geoffrey C.; Michalak, Sarah; Siemion, Andrew; Werthimer, Daniel

    2012-03-01

    Impulsive radio-frequency signals from astronomical sources are dispersed by the frequency-dependent index of refraction of the interstellar media and so appear as chirped signals when they reach Earth. Searches for dispersed impulses have been limited by false detections due to radio-frequency interference (RFI) and, in some cases, artifacts of the instrumentation. Many authors have discussed techniques to excise or mitigate RFI in searches for fast transients, but comparisons between different approaches are lacking. This work develops RFI mitigation techniques for use in searches for dispersed pulses, employing data recorded in a "Fly's Eye" mode of the Allen Telescope Array as a test case. We gauge the performance of several RFI mitigation techniques by adding dispersed signals to data containing RFI and comparing false alarm rates at the observed signal-to-noise ratios of the added signals. We find that Huber filtering is most effective at removing broadband interferers, while frequency centering is most effective at removing narrow frequency interferers. Neither of these methods is effective over a broad range of interferers. A method that combines Huber filtering and adaptive interference cancelation provides the lowest number of false positives over the interferers considered here. The methods developed here have application to other searches for dispersed pulses in incoherent spectra, especially those involving multiple beam systems.

  6. Supplying the Power Requirements to a Sensor Network Using Radio Frequency Power Transfer

    Directory of Open Access Journals (Sweden)

    Steven Percy

    2012-06-01

    Full Text Available Wireless power transmission is a method of supplying power to small electronic devices when there is no wired connection. One way to increase the range of these systems is to use a directional transmitting antenna, the problem with this approach is that power can only be transmitted through a narrow beam and directly forward, requiring the transmitter to always be aligned with the sensor node position. The work outlined in this article describes the design and testing of an autonomous radio frequency power transfer system that is capable of rotating the base transmitter to track the position of sensor nodes and transferring power to that sensor node. The system’s base station monitors the node’s energy levels and forms a charge queue to plan charging order and maintain energy levels of the nodes. Results show a radio frequency harvesting circuit with a measured S11 value of −31.5 dB and a conversion efficiency of 39.1%. Simulation and experimentation verified the level of power transfer and efficiency. The results of this work show a small network of three nodes with different storage types powered by a central base node.

  7. Radio-frequency heating of sloshing ions in a straight field line mirror

    International Nuclear Information System (INIS)

    Sloshing ions, the energetic ions with a velocity distribution concentrated to a certain pitch-angle, play an important role in plasma confinement in mirrors. They are normally produced in mirror traps with neutral beam injection. They also could be generated by ion-cyclotron heating. In the present report two radio-frequency heating scenarios to sustain a sloshing ion population in a newly proposed mirror device, the straight field line mirror, are examined. The first one consists in the ion cyclotron heating in two-ion species plasma using longitudinal wave conversion and fundamental harmonic heating of deuterium ions in tritium plasma. This scheme provides efficient ion heating for high deuterium minority' concentration without substantial power deposition to the electrons. The second scenario is based on second harmonic heating of deuterium ions. The study uses numerical 3D calculations for the time-harmonic boundary problem for Maxwell's equations. For the radio-frequency heating in both schemes, a simple strap antenna is used. Calculations show that it has low antenna Q and operates in the regime of global resonance overlapping. For fundamental harmonic heating scenario only a small portion of the wave energy transits through the cyclotron layer and penetrates to the central part of the trap. The power deposition is peaked at the plasma core. The calculations show that this scenario is prospective for practical implementation in large mirror devices. First results of numerical calculations for second harmonic heating are reported. (author)

  8. Analysis of Radio Frequency Blackout for a Blunt-Body Capsule in Atmospheric Reentry Missions

    Directory of Open Access Journals (Sweden)

    Yusuke Takahashi

    2016-01-01

    Full Text Available A numerical analysis of electromagnetic waves around the atmospheric reentry demonstrator (ARD of the European Space Agency (ESA in an atmospheric reentry mission was conducted. During the ARD mission, which involves a 70% scaled-down configuration capsule of the Apollo command module, radio frequency blackout and strong plasma attenuation of radio waves in communications with data relay satellites and air planes were observed. The electromagnetic interference was caused by highly dense plasma derived from a strong shock wave generated in front of the capsule because of orbital speed during reentry. In this study, the physical properties of the plasma flow in the shock layer and wake region of the ESA ARD were obtained using a computational fluid dynamics technique. Then, electromagnetic waves were expressed using a frequency-dependent finite-difference time-domain method using the plasma properties. The analysis model was validated based on experimental flight data. A comparison of the measured and predicted results showed good agreement. The distribution of charged particles around the ESA ARD and the complicated behavior of electromagnetic waves, with attenuation and reflection, are clarified in detail. It is suggested that the analysis model could be an effective tool for investigating radio frequency blackout and plasma attenuation in radio wave communication.

  9. Airborne Remote Observations of L-Band Radio Frequency Interference and Implications for Satellite Missions

    Science.gov (United States)

    Laymon, Charles; Srinivasan, Karthik; Limaye, Ashutosh

    2011-01-01

    Passive remote sensing of the Earth s surface and atmosphere from space has significant importance in operational and research environmental studies, in particular for the scientific understanding, monitoring and prediction of climate change and its impacts. Passive remote sensing requires the measurement of naturally occurring radiations, usually of very low power levels, which contain essential information on the physical process under investigation. As such, these sensed radio frequency bands are a unique natural resource enabling space borne passive sensing of the atmosphere and the Earth s surface that deserves adequate allocation to the Earth Exploration Satellite Service and absolute protection from interference. Unfortunately, radio frequency interference (RFI) is an increasing problem for Earth remote sensing, particularly for passive observations of natural emissions. Because these natural signals tend to be very weak, even low levels of interference received by a passive sensor may degrade the fidelity of scientific data. The characteristics of RFI (low-level interference and radar-pulse noise) are not well known because there has been no systematic surveillance, spectrum inventory or mapping of RFI. While conducting a flight experiment over central Tennessee in May 2010, RFI, a concern for any instrument operating in the passive L band frequency, was observed across 16 subbands between 1402-1427 MHz. Such a survey provides rare characterization data from which to further develop mitigation technologies as well as to identify bandwidths to avoid in future sensor formulation.

  10. Microstructure characterization of PAN preoxidation fibers prepared with radio frequency plasma

    Institute of Scientific and Technical Information of China (English)

    FU Weibiao; XU Haiping; GONG Jingsong; SUN Yanping; HOU Lingyun; CHEN Xinmou

    2006-01-01

    The microstructures of preoxidation fibers prepared with radio frequency plasma were characterized in terms of micron, nano and atomic scales through scanning electron microscopy (SEM), high resolving transmission electron microscopy (HRTEM), scanning tunneling microscopy (STM), X-ray diffraction (XRD), etc. The polyacrylonitrile (PAN) precursors were first soaked in the oxygen-enriched solvent and polarized in radio frequency electric field, and then were oxidized in the atmosphere of oxygen plasma. The morphology of SEM at micron scales shows that the wrinkles on the surface of preoxidation fibers prepared with plasma are shallower, and the surfaces are more tidy and smoother than the unsoaked samples prepared with usual electric furnace, and the uneven radial structure is improved. The results of XRD calculation show that the graphitization degree and microcrystalline size get larger and the interlayer spacing gets smaller. Also, the lattice stripe and edge of bedding plane (002) can be observed from HRTEM at nano scales. From STM images at nano and atom scales, the microfibrils were found to be composed of ultrafibrils that closely twined and arranged, forming the left spiral structures spreading to fiber axis, and the carbon atoms on the surface of microcrystalline were found to have the trend of directional arrangement. All the above characterization results indicate that the plasma method effectively makes the internal and external oxidation of PAN precursors at the same level, so that the radial structure difference of preoxidation fibers is reduced.

  11. Influence of radio frequency power on structure and ionic conductivity of LiPON thin films

    Indian Academy of Sciences (India)

    Zongqian Hu; Dezhan Li; Kai Xie

    2008-08-01

    Lithium phosphorus oxynitride (LiPON) thin films as solid electrolytes were prepared by radio frequency magnetron sputtering of a Li3PO4 target in ambient nitrogen atmosphere. The influence of radio frequency (rf) power on the structure and the ionic conductivity of LiPON thin films has been investigated. The morphology, composition, structure and ionic conductivity of thin films were characterized by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and a.c. impedance measurement. It was found that ionic conductivity of LiPON thin films increases with N content in thin films. XPS measurements reveal that ionic conductivity also keeps relativity with the structure of thin films. Higher the t/d ratio, higher will be the ionic conductivity of LiPON thin films. And both of them can be improved by increasing rf power from 1.5 W/cm2 to 5.5 W/cm2.

  12. Radio-frequency-sheath-driven edge plasma convection and interaction with the H mode

    International Nuclear Information System (INIS)

    It is shown that radio-frequency (rf) antenna sheaths can bias the edge plasma potential and drive steady-state convective cells in the scrape-off layer (SOL). The resulting ExB convective flow opposes the direction of the sheared flow in the SOL induced by the radially decaying Bohm sheath potential. A two-dimensional fluid simulation shows that the interaction of the opposing poloidal flows produces secondary vortices, which connect the edge of the confined plasma to the antenna limiters, when the antenna--plasma separation is typically of order a few times the local electron skin depth at the antenna. Estimates for typical tokamak edge parameters suggest that the transit time of particles and energy across these vortices is rapid enough to cause the broadening of SOL density and temperature profiles observed during high-power heating with ion cyclotron range of frequency (ICRF) antennas in monopole phasing. Radio-frequency-sheath-driven convection is also a good candidate to explain the phasing dependence of the global confinement properties of ICRF H modes on the Joint European Torus (JET) [Fusion Technol. 11, 13 (1987)]. A comparison of the JET H-mode data with the theoretical modeling supports this idea and suggests that ICRF convection may be a useful tool to spread the heat deposition in the divertor and to extend the lifetime of the H mode

  13. The influence of C2H2 and dust formation on the time dependence of metastable argon density in pulsed plasmas

    OpenAIRE

    Stefanovic, Ilija; Sadeghi, Nader; Winter, Jörg

    2010-01-01

    Abstract Diode laser absorption at 772.38 nm is used to measure the time resolved density of Ar*(3 P 2) metastable atoms in a capacitively coupled radio-frequency (RF) discharge running in argon/acetylene mixture at 0.1 mbar. The RF power is pulsed at 100 Hz and the density of Ar*(3 P 2) atoms in the 5 ms ON time and in the afterglow are recorded. Different plasma conditions, namely: 1) pure argon, 2) argon + 7% acetylene before powder formation, 3) argon + 7% acetylene after dust particle...

  14. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    Science.gov (United States)

    Giroletti, M.; Massaro, F.; D'Abrusco, R.; Lico, R.; Burlon, D.; Hurley-Walker, N.; Johnston-Hollitt, M.; Morgan, J.; Pavlidou, V.; Bell, M.; Bernardi, G.; Bhat, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Ewall-Rice, A.; Emrich, D.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Feng, L.; Jacobs, D.; Kudryavtseva, N.; Lenc, E.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2016-04-01

    Context. Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. Aims: We characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. Methods: We cross-correlated the 6100 deg2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. Results: We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120-180 MHz) blazar spectral index is ⟨αlow⟩ = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Conclusions: Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population. Tables 5-7 are only available at the CDS via anonymous ftp to http

  15. Large-signal model of the bilayer graphene field-effect transistor targeting radio-frequency applications: Theory versus experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pasadas, Francisco, E-mail: Francisco.Pasadas@uab.cat; Jiménez, David [Departament d' Enginyeria Electrònica, Escola d' Enginyeria, Universitat Autònoma de Barcelona, 08193 Bellaterra (Spain)

    2015-12-28

    Bilayer graphene is a promising material for radio-frequency transistors because its energy gap might result in a better current saturation than the monolayer graphene. Because the great deal of interest in this technology, especially for flexible radio-frequency applications, gaining control of it requires the formulation of appropriate models for the drain current, charge, and capacitance. In this work, we have developed them for a dual-gated bilayer graphene field-effect transistor. A drift-diffusion mechanism for the carrier transport has been considered coupled with an appropriate field-effect model taking into account the electronic properties of the bilayer graphene. Extrinsic resistances have been included considering the formation of a Schottky barrier at the metal-bilayer graphene interface. The proposed model has been benchmarked against experimental prototype transistors, discussing the main figures of merit targeting radio-frequency applications.

  16. Percutaneous radio-frequency thermocoagulation of the Gasserian ganglion guided by high-speed real-time CT fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koizuka, Shiro [Gunma University Graduate School of Medicine, Department of Anesthesiology, Maebashi (Japan); Gunma University Hospital, Department of Anesthesiology, Maebashi (Japan); Saito, Shigeru; Sekimoto, Kenichi; Tobe, Masaru; Obata, Hideaki [Gunma University Graduate School of Medicine, Department of Anesthesiology, Maebashi (Japan); Koyama, Yoshinori [Gunma University Graduate School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Maebashi (Japan)

    2009-09-15

    Although Gasserian ganglion block is an established treatment for trigeminal neuralgia, the foramen ovale cannot always be clearly visualized by classical X-ray radiography. We present a new method for percutaneous radio-frequency thermocoagulation of the Gasserian ganglion, in which computed tomography (CT) fluoroscopy is used to guide needle placement. In the present study, 15 patients with trigeminal neuralgia underwent percutaneous radio-frequency thermocoagulation of the Gasserian ganglion guided by high-speed real-time CT fluoroscopy. Trigeminal neuralgia was improved in all patients after treatment without any severe complications. Moderate dysesthesia occurred in only one case. CT fluoroscopy-guided percutaneous radio-frequency thermocoagulation of the Gasserian ganglion was safe, quick, and effective for patients with intractable idiopathic trigeminal neuralgia. (orig.)

  17. Percutaneous radio-frequency thermocoagulation of the Gasserian ganglion guided by high-speed real-time CT fluoroscopy

    International Nuclear Information System (INIS)

    Although Gasserian ganglion block is an established treatment for trigeminal neuralgia, the foramen ovale cannot always be clearly visualized by classical X-ray radiography. We present a new method for percutaneous radio-frequency thermocoagulation of the Gasserian ganglion, in which computed tomography (CT) fluoroscopy is used to guide needle placement. In the present study, 15 patients with trigeminal neuralgia underwent percutaneous radio-frequency thermocoagulation of the Gasserian ganglion guided by high-speed real-time CT fluoroscopy. Trigeminal neuralgia was improved in all patients after treatment without any severe complications. Moderate dysesthesia occurred in only one case. CT fluoroscopy-guided percutaneous radio-frequency thermocoagulation of the Gasserian ganglion was safe, quick, and effective for patients with intractable idiopathic trigeminal neuralgia. (orig.)

  18. Large-signal model of the bilayer graphene field-effect transistor targeting radio-frequency applications: Theory versus experiment

    International Nuclear Information System (INIS)

    Bilayer graphene is a promising material for radio-frequency transistors because its energy gap might result in a better current saturation than the monolayer graphene. Because the great deal of interest in this technology, especially for flexible radio-frequency applications, gaining control of it requires the formulation of appropriate models for the drain current, charge, and capacitance. In this work, we have developed them for a dual-gated bilayer graphene field-effect transistor. A drift-diffusion mechanism for the carrier transport has been considered coupled with an appropriate field-effect model taking into account the electronic properties of the bilayer graphene. Extrinsic resistances have been included considering the formation of a Schottky barrier at the metal-bilayer graphene interface. The proposed model has been benchmarked against experimental prototype transistors, discussing the main figures of merit targeting radio-frequency applications

  19. Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S. [Departamento de Energias Renovables, Energia Solar Fotovoltaica, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica (GRIFO), Departamento de Electronica, Escuela Politecnica Superior, Universidad de Alcala, Campus Universitario, 28871 Alcala de Henares, Madrid (Spain)

    2010-02-15

    Aluminum-doped zinc oxide films were deposited at 100 C on polyethylene terephthalate by radio-frequency magnetron sputtering. The sputtering parameters such as RF power and Argon working pressure were varied from 25 to 125 W and from 1.1 to 0.2 Pa, respectively. The structural properties of as-deposited films were analysed by X-ray diffraction, showing that all the deposited films were polycrystalline, with hexagonal structure and a strong preferred c-axis orientation (0 0 2). Full width at half maximum and grain sizes were around 0.27 and ranged from 24 to 32 nm, respectively. The strain state of the samples was also estimated from X-ray diffraction measurements, obtaining compressive stresses from 0.29 to 0.05 GPa. Resistivity as low as 1.1 x 10{sup -3} {omega} cm was achieved for the film deposited at 75 W and 0.2 Pa, sample that showed a low strain state of -0.06 GPa. High optical transmittance ({proportional_to}80%) was exhibited when films were deposited at RF powers below 100 W. Band gap energies ranged from 3.36 to 3.39 eV and a refractive index of 1.80{+-}0.05, constant in the visible region, was also obtained. (author)

  20. Effect of Oxygen Flow Rate on the Properties of Nano columnar ZnO Thin Films Prepared using Radio Frequency Magnetron Sputtering System for Ultraviolet Sensor Applications

    International Nuclear Information System (INIS)

    Nano structured ZnO thin films were deposited on glass substrates using radio frequency (RF) magnetron sputtering system at different oxygen (O2) flow rates ranges between 0 to 40 sccm. By using ZnO target that were bombarded by argon (Ar) plasma generated by RF power of 250 W in the Ar and O2 gas mixture ambient, nano columnar ZnO structure thin films were produced on the substrates as observed through atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The surface roughness of the films found to be decreased with higher O2 flow rates. The ultraviolet-visible (UV-Vis) spectra show that all samples are very transparent in the visible region (400-800 nm) with average transparency above 85 %. The XRD spectra reveal that the deposited films are preferentially grown along the c-axis indicating high ZnO crystallinity. The photocurrent properties indicate that ZnO thin film prepared at O2 flow rate of 20 sccm has the optimum characteristic for ultraviolet sensor applications. This finding suggested that the O2 flow rates play important role and has critical value for semiconducting nano columnar ZnO growth in the sputtering system, which can produce ZnO thin film with high sensitivity of ultraviolet detection. (author)

  1. Hybrid model of atmospheric pressure Ar/O2/TiCl4 radio-frequency capacitive discharge for TiO2 deposition

    International Nuclear Information System (INIS)

    A hybrid global-analytical model of an atmospheric pressure radio-frequency driven capacitive discharge is applied to determine the plasma conditions for TiO2 film deposition. The feed gas is mainly argon with a small fraction of O2 and a smaller fraction of TiCl4. Variations of the discharge parameters and species densities with O2 concentration, discharge power, and flow rate are determined. A simplified chemistry model is developed and compared with the simulation results, showing good agreement. For a base case with Ar/O2/TiCl4 flow rates of 203/30/0.17 sccm, the results indicate that a minimum O2 fraction of 7.3 × 10−4 is required for pure (un-chlorinated) TiO2 film deposition that the active precursor species is TiO2Cl3, with subsequent abstraction of Cl atoms by dissociative electron attachment and that the deposition rates are around 1 nm/s

  2. A single coil radio frequency gradient probe for nuclear magnetic resonance applications.

    Science.gov (United States)

    Christofield, N; Sobieski, D N; Erker, J C; May, S; Augustine, M P

    2012-12-01

    A single coil nuclear magnetic resonance (NMR) probehead and associated electronics capable of asynchronously applying both homogeneous and inhomogeneous radio frequency (rf) pulses to solid, liquid, or gaseous samples is described. This equipment can be interfaced with a conventional single channel NMR spectrometer. Carefully placed PIN diodes on the NMR probehead are used to switch the coil between a homogeneous end tapped configuration and an inhomogeneous center tapped rf gradient configuration. This approach dramatically improves channel isolation in comparison to existing two coil designs. Descriptions of the new probehead, the transistor-transistor logic (TTL) controlled dc pulser for PIN diode gating, and the high power rf switch are provided. Several NMR pulse sequences are used to test the channel isolation and probe performance. Finally an application to liquid phase solvent suppression is provided. PMID:23278008

  3. Perturbations of plant leaflet rhythms caused by electromagnetic radio-frequency radiation.

    Science.gov (United States)

    Ellingsrud, S; Johnsson, A

    1993-01-01

    The minute-range up and down rhythms of the lateral leaflets of Desmodium gyrans has been studied when exposed to electromagnetic radiation in the radio-frequency (RF) range. The RF radiation was applied as homogeneous 27.12 MHz fields in specially-designed exposure cells(and in some cases as non-homogeneous radiation of 27 MHz, amplitude modulated by 50 Hz, in front of commercial diathermy equipment). All fields were applied as pulses. We report effects in the leaflet rhythms such as temporary changes in the amplitude, period, and phase. The radiation could also cause temporary or complete cessations of the rhythms. The lowest dose (8 W/cm2) used was still effective. PMID:8323575

  4. Radio frequency identification (RFID) in health care: privacy and security concerns limiting adoption.

    Science.gov (United States)

    Rosenbaum, Benjamin P

    2014-03-01

    Radio frequency identification (RFID) technology has been implemented in a wide variety of industries. Health care is no exception. This article explores implementations and limitations of RFID in several health care domains: authentication, medication safety, patient tracking, and blood transfusion medicine. Each domain has seen increasing utilization of unique applications of RFID technology. Given the importance of protecting patient and data privacy, potential privacy and security concerns in each domain are discussed. Such concerns, some of which are inherent to existing RFID hardware and software technology, may limit ubiquitous adoption. In addition, an apparent lack of security standards within the RFID domain and specifically health care may also hinder the growth and utility of RFID within health care for the foreseeable future. Safeguarding the privacy of patient data may be the most important obstacle to overcome to allow the health care industry to take advantage of the numerous benefits RFID technology affords.

  5. Radio Frequency Compatibility of an RFID Tag on Glideslope Navigation Receivers

    Science.gov (United States)

    Nguyen, Truong X.; Mielnik, John J.

    2008-01-01

    A process is demonstrated to show compatibility between a radio frequency identification (RFID) tag and an aircraft glideslope (GS) radio receiver. The particular tag chosen was previously shown to have significant peak spurious emission levels that far exceeded the emission limits in the GS aeronautical band. The spurious emissions are emulated in the study by capturing the RFID fundamental transmission and playing back the signal in the GS band. The signal capturing and playback are achieved with a vector signal generator and a spectrum analyzer that can output the in-phase and quadrature components (IQ). The simulated interference signal is combined with a desired GS signal before being injected into a GS receiver s antenna port for interference threshold determination. Minimum desired propagation loss values to avoid interference are then computed and compared against actual propagation losses for several aircraft.

  6. Synthesis of tungsten oxide, silver, and gold nanoparticles by radio frequency plasma in water

    International Nuclear Information System (INIS)

    Highlights: •RF plasma in water was used for nanoparticle synthesis. •Nanoparticles were produced from erosion of metallic electrode. •Rectangular and spherical tungsten oxide nanoparticles were produced. •No oxidations of the silver and gold spherical nanoparticles were produced. -- Abstract: A process for synthesis of nanoparticles using plasma in water generated by a radio frequency of 27.12 MHz is proposed. Tungsten oxide, silver, and gold nanoparticles were produced at 20 kPa through erosion of a metallic electrode exposed to plasma. Characterization of the produced nanoparticles was carried out by XRD, absorption spectrum, and TEM. The nanoparticle sizes were compared with those produced by a similar technique using plasma in liquid

  7. Theoretical studies of the heating of toroidal plasmas with radio frequency electromagnetic radiation. Final report

    International Nuclear Information System (INIS)

    The continuation of a program of theoretical studies of the heating of toroidal plasmas with radio frequency (RF) electromagnetic radiation is proposed. Funding for this project first began on September 3, 1981, and will expire on April 2, 1982. A summary of the principal accomplishments of the first five months of the project is presented. These include the acquisition of computer terminals and modems, the implementation of existing codes on the MFECC C Cray Computer, the extension of the LHTOR lower hybrid toroidal ray tracing code to the full electromagnetic dispersion relation, the implementation of graphic output from the code, the beginning of extensive parameter studies, the beginning of an analytical treatment of the mode conversion layer associated with singular harmonic absorption, and the introduction of a graduate student into the program

  8. Nanostructural features affecting superconducting radio frequency niobium cavities revealed using TEM and EELS

    CERN Document Server

    Trenikhina, Y; Kwon, J; Zuo, J -M; Zasadzinski, J F

    2015-01-01

    Nanoscale defect structure within the magnetic penetration depth of ~100nm is key to the performance limitations of niobium superconducting radio frequency (SRF) cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120C baking. Furthermore, we demonstrate that adding 800C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120C bake.

  9. Temperature of hydrogen radio frequency plasma under dechlorination process of polychlorinated biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Inada, Y., E-mail: inada@hvg.t.u-tokyo.ac.jp; Abe, K.; Kumada, A.; Hidaka, K. [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Amano, K.; Itoh, K.; Oono, T. [R and D Center, Tokyo Electric Power Company, 4-1 Egasaki-cho, Tsurumi-ku, Yokohama 230-8510 (Japan)

    2014-10-27

    It has been reported that RF (radio frequency) hydrogen plasmas promote the dechlorination process of PCBs (polychlorinated biphenyls) under irradiation of MW (microwave). A relative emission intensity spectroscope system was used for single-shot imaging of two-dimensional temperature distributions of RF hydrogen plasmas generated in chemical solutions with several mixing ratios of isopropyl alcohol (IPA) and insulation oil under MW irradiation. Our experimental results showed that the plasma generation frequencies for the oil-contaminating solutions were higher than that for the pure IPA solution. In addition, the plasma temperature in the compound liquids including both oil and IPA was higher than that in the pure IPA and oil solutions. A combination of the plasma temperature measurements and plasma composition analysis indicated that the hydrogen radicals generated in a chemical solution containing the equal volumes of IPA and oil were almost the same amounts of H and H{sup +}, while those produced in the other solutions were mainly H.

  10. Multifrequency Magneto-optic Bragg Diffraction and Radio Frequency Signal Parallel Processing

    Institute of Scientific and Technical Information of China (English)

    SHANG Dan; WU Bao-jian; QIU Kun

    2008-01-01

    Magneto-optic(MO) coupling of guided optical waves with microwave magnetostatic waves(MSWs) simultaneously excited by multiple radio frequency(RF) signals can lead to multifrequency diffraction effects and then parallel processing of RF signals can be realized by using of the characteristics that diffraction efficiencies(Des) are approximately in direct proportion to RF signals intensities and diffraction angles are related to frequencies of the corresponding RF signals within linear MO interaction region. In this paper, studied is the multifrequency MO Bragg diffraction in first-order MO interaction approximation, and obtained was the approximate analytical expression for principle diffraction efficiency(PDE). Also, put forward was a parallel imaging method of relative intensity of RF signals based on single-frequency diffraction. By calculation and analysis, it is shown that the relative error is not more than 0.3 dB for the case of three RF signals within the frequency space of 60 MHz.

  11. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in radio frequency plasmas

    CERN Document Server

    Daksha, M; Schuengel, E; Korolov, I; Derzsi, A; Koepke, M; Donko, Z; Schulze, J

    2016-01-01

    A Computationally Assisted Spectroscopic Technique to measure secondary electron emission coefficients ($\\gamma$-CAST) in capacitively-coupled radio-frequency plasmas is proposed. This non-intrusive, sensitive diagnostic is based on a combination of Phase Resolved Optical Emission Spectroscopy and particle-based kinetic simulations. In such plasmas (under most conditions in electropositive gases) the spatio-temporally resolved electron-impact excitation/ionization rate features two distinct maxima adjacent to each electrode at different times within each RF period. While one maximum is the consequence of the energy gain of electrons due to sheath expansion, the second maximum is produced by secondary electrons accelerated towards the plasma bulk by the sheath electric field at the time of maximum voltage drop across the adjacent sheath. Due to these different excitation/ionization mechanisms, the ratio of the intensities of these maxima is very sensitive to the secondary electron emission coefficient $\\gamma$...

  12. Coherent coupling between radio frequency, optical, and acoustic waves in piezo-optomechanical circuits

    CERN Document Server

    Balram, Krishna C; Song, Jin Dong; Srinivasan, Kartik

    2015-01-01

    The interaction of optical and mechanical modes in nanoscale optomechanical systems has been widely studied for applications ranging from sensing to quantum information science. Here, we develop a platform for cavity optomechanical circuits in which localized and interacting 1550 nm photons and 2.4 GHz phonons are combined with photonic and phononic waveguides. Working in GaAs facilitates manipulation of the localized mechanical mode either with a radio frequency field through the piezo-electric effect, or optically through the strong photoelastic effect. We use this to demonstrate a novel acoustic wave interference effect, analogous to coherent population trapping in atomic systems, in which the coherent mechanical motion induced by the electrical drive can be completely cancelled out by the optically-driven motion. The ability to manipulate cavity optomechanical systems with equal facility through either photonic or phononic channels enables new device and system architectures for signal transduction betwee...

  13. Realization of Radio-Frequency Quadrupole (RFQ) for accelerator program - manufacturing methodology adopted by industry

    International Nuclear Information System (INIS)

    Radio-Frequency Quadrupole (RFQ) linacs are efficient, compact, low energy ion structures, which have found numerous applications. They use electrical RF focusing and can capture, bunch, and transmit high-current ion beams. The RFQ for the Indian Ion Accelerator program is made of Oxygen free electrolytic (OFE) Copper in 4 segments of one meter each. Each segment is realized from 4 segments of 2 Minor and Major Vanes each. The Major and Minor Vanes are machined from OFE Copper blocks in stages with intermediate thermal treatments in vacuum environment for stress relieving and the coolant channel holes are drilled though the entire body. The final machining including the Vane tip modulation is done using special tools on a CNC machine. The Vane tip modulation and other geometrical parameters of the Vanes are inspected using a CMM to ascertain the required accuracy. This paper is aimed at discussing various aspects of RFQ development at BrahMos and the technologies developed

  14. Upgrade of the radio frequency quadrupole cooler and buncher for the HIE-ISOLDE project

    CERN Document Server

    Babcock, Carla

    2013-01-01

    The upgrade to the ISOLDE facility, HIE-ISOLDE, will include an upgrade to the RFQCB (radio frequency quadrupole cooler and buncher), the focus of which will be fixing the problems of alignment with the current machine, improving the integrity of the vacuum system, stabilizing the internal gas pressure, and the changes associated with a new position. The beam passage inside the RFQCB has been simulated with an independent code to highlight the importance of the internal gas pressure, to motivate design changes in the new RFQCB and to explain ways to improve the performance of the current machine. The suspected misalignment of ISCOOL has been quantified, and, using a simulation of ions passing through the external injection electrodes, the effect of the misalignment on machine acceptance has been detailed. Plans for the future RFQCB test stand and HIE-ISOLDE installation have been outlined. (C) 2013 Elsevier B.V. All rights reserved.

  15. A Novel Design of Radio Frequency Energy Relays on Power Transmission Lines

    Directory of Open Access Journals (Sweden)

    Jin Tong

    2016-06-01

    Full Text Available In this paper, we investigate the energy problem of monitoring sensors on high-voltage power transmission lines and propose a wireless charging scheme for a Radio Frequency IDentification (RFID sensor tag to solve a commercial efficiency problem: the maintenance-caused power outage. Considering the environmental influences on power transmission lines, a self-powered wireless energy relay is designed to meet the energy requirement of the passive RFID sensor tag. The relay can obtain the electric field energy from the transmission lines and wirelessly power the RFID sensor tags around for longer operating distance. A prototype of the energy relay is built and tested on a 110 kv line. The measurement results show that the energy relay can provide stable energy even with the influences of wind, noise and power outage. To our knowledge, it is the first work to power the RFID sensor tags on power transmission lines.

  16. Heat Transfer During Radio Frequency Inductively Coupled Plasma Deposition of Tungsten

    Institute of Scientific and Technical Information of China (English)

    JIANG Xianliang; M.I.BOULOS

    2007-01-01

    Particle melting and substrate temperature are important in controlling deposited density and residual stress in thermal plasma deposition of refractory materials.In this paper,both the heating and cooling behaviours of tungsten particles inside a radio frequency inductively coupled plasma(ICP)and the plasma heat flux to the substrate were investigated.The distribution of the plasma-generated heat on device,powder injection probe,deposition chamber,and substrate Was determined by measuring the water flow rate and the flow-in and flow-out water temperatures in the four parts.Substrate temperature Was measured by a two-colour pyrometer during the ICP deposition of tungsten.Experimental results show that the heat flux to the substrate accounts for about 20% of the total plasma energy,the substrate temperature can reach as high as 2100 K,and the heat loss by radiation is significant in the plasma deposition of tungsten.

  17. Radio frequency identification (RFID technology for academic, logistics and passenger transport applications

    Directory of Open Access Journals (Sweden)

    John Jairo Ramírez Echeverry

    2012-12-01

    Full Text Available Radio frequency identification (RFID technology, from its beginning in the 1980s, has provided solutions in areas in which no identification (ID technology has done so before.  This paper presents three applications in areas having an issue in common: an RFID technology-based solution; these fields were academic topics, logistic support for an event and passenger land transport. Each project identified a problem which needed resolving, the methods and electronic devices used for such solution and the outcomes achieved. The developments shown in this paper indicated the multidisciplinary nature of RFID technology because it achieved new solutions for identifying objects or people in many contexts and not just the consumer goods trade which is the application nowadays most known for using this technology. These projects were developed by members of the Universidad Nacional de Colombia’s High Frequency Electronics and Telecommunications Research Group (CMUN (website: www.cmun.unal.edu.co.

  18. Investigations and applications of field- and photo-emitted electron beams from a radio frequency gun

    Science.gov (United States)

    Panuganti, Sriharsha

    Production of quality electron bunches using efficient ways of generation is a crucial aspect of accelerator technology. Radio frequency electron guns are widely used to generate and rapidly accelerate electron beams to relativistic energies. In the current work, we primarily study the charge generation processes of photoemission and field emission inside an RF gun installed at Fermilab's High Brightness Electron Source Laboratory (HBESL). Specifically, we study and characterize second-order nonlinear photoemission from a Cesium Telluride (Cs2Te) semiconductor photocathode, and field emission from carbon based cathodes including diamond field emission array (DFEA) and carbon nanotube (CNT) cathodes located in the RF gun's cavity. Finally, we discuss the application experiments conducted at the facility to produce soft x-rays via inverse Compton scattering (ICS), and to generate uniformly filled ellipsoidal bunches and temporally-shaped electron beams from the Cs 2Te photocathode.

  19. An electrodeless system for measurement of liquid sample dielectric properties in radio frequency band.

    Science.gov (United States)

    Hartwig, V; Giovannetti, G; Vanello, N; Costantino, M; Landini, L; Benassi, A

    2006-01-01

    An electrodeless measurement system based on a resonant circuit is proposed for the measurement of dielectric properties of liquid samples at RF (radio frequency). Generally, properties as dielectric constant, loss factor and conductivity are measured by parallel plate capacitor cells: this method has several limitations in the case of particular liquid samples and in the range of radiofrequencies. Our method is based on the measurements of resonance frequency and quality factor of a LC resonant circuit in different measuring conditions, without and with the liquid sample placed inside a test tube around which the home made coil is wrapped. The measurement is performed using a network analyzer and a dual loop probe, inductively coupled with the resonant circuit. One of the advantages of this method is the contactless between the liquid sample and the measurement electrodes. In this paper the measurement system is described and test measurements of conventional liquids dielectric properties are reported.

  20. Radio-frequency excitation of single molecules by scanning tunnelling microscopy

    International Nuclear Information System (INIS)

    We have upgraded a low-temperature scanning tunnelling microscope (STM) with a radio-frequency (RF) modulation system to extend STM spectroscopy to the range of low energy excitations (<1 meV). We studied single molecules of a stable hydrocarbon π-radical weakly physisorbed on Au(111). At 5 K thermal excitation of the adsorbed molecules is inhibited due to the lack of short-wavelength phonons of the substrate. We demonstrate resonant excitation of mechanical modes of single molecules by RF tunnelling at 115 MHz, which induces structural changes in the molecule ranging from controlled diffusion and modification of bond angles to bond breaking as the ultimate climax (resonance catastrophe). Our results pave the way towards RF-STM-based spectroscopy and controlled manipulation of molecular nanostructures on a surface. (paper)

  1. Automated handling of textile yarn packages to enhance radio frequency drying

    Energy Technology Data Exchange (ETDEWEB)

    Clapp, T.G. (North Carolina State Univ., Raleigh, NC (United States). Coll. of Textiles)

    1992-11-01

    The benefits of radio frequency (RF) dryers in the textile industry are well documented and include improved product quality, increased drying versatility, uniform drying, and enhanced flexibility for just-in-time (JIT) processing. In spite of these benefits, however, less than 25 of the 400 RF package dryers in use worldwide are located in North America because of the costs associated with additional materials handling operations. This report defines six yarn package handling work functions as candidates for automation, determines the justifiable corporate investment to automate these six functions, and discusses various investment levels and rates of return on such automation. The report also identifies 11 manufacturers that build customized automation equipment and details their systems.

  2. Laser polishing of niobium for superconducting radio-frequency accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang [William and Mary College; Klopf, John M. [William and Mary College; Reece, Charles E. [JLAB; Kelley, Michael J. [JLAB

    2014-08-01

    Interior surfaces of niobium cavities used in superconducting radio frequency accelerators are now obtained by buffered chemical polish and/or electropolish. Laser polishing is a potential alternative, having advantages of speed, freedom from noxious chemistry and availability of in-process inspection. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damage. Computational modeling was used to estimate the surface temperature and gain insight into the mechanism of laser polishing. Power spectral density analysis of surface topography measurements shows that laser polishing can produce smooth topography similar to that obtained by electropolish. This is a necessary first step toward introducing laser polishing as an alternative to the currently practiced chemical polishing.

  3. Flux pinning characteristics in cylindrical ingot niobium used in superconducting radio frequency cavity fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Dhavale Ashavai, Pashupati Dhakal, Anatolii A Polyanskii, Gianluigi Ciovati

    2012-04-01

    We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.

  4. An oblique angle radio frequency sputtering method to fabricate nanoporous hydrophobic TiO2 film

    International Nuclear Information System (INIS)

    In this work, we investigate growth of ordered arrays of amorphous TiO2 nano-columns by using radio frequency sputter deposition technique. The as-prepared thin films were characterized by atomic force microscopy, field emission scanning electron microscopy, X-ray diffraction, and ultraviolet–visible spectroscopy. The nano-columnar films are found to be porous in nature which results from glancing angle sputter deposition. In fact, porosity has a linear relationship with increasing deposition angle. Reflectance of the thin films is also studied as a function of porosity. In addition, contact angle measurements demonstrate the roughness dependent transition from a hydrophilic to a hydrophobic TiO2 surface. - Highlights: • Porous nano-columnar array of TiO2 thin film • Transition of hydrophilic to hydrophobic surface • Correlation of optical property with porosity

  5. Plasma ignition schemes for the SNS radio-frequency driven H- source

    Energy Technology Data Exchange (ETDEWEB)

    Schenkel, T.; Staples, J.W.; Thomae, W.; Reijonen, J.; Gough, R.A.; Leung, K.N.; Keller, R.

    2001-09-06

    The H{sup -} ion source for the Spallation Neutron Source (SNS) is a cesiated, radio-frequency driven (2 MHz) multicusp volume source which operates at a duty cycle of 6% (1 ms pulses and 60 Hz). In pulsed RF driven plasma sources, ignition of the plasma affects the stability of source operation and the antenna lifetime. We are reporting on investigations of different ignition schemes, based on secondary electron generation in the plasma chamber by UV light, a hot filament, a low power RF plasma (cw, 13.56 MHz), as well as source operation solely with the high power (40 kW) 2 MHz RF. We find that the dual frequency, single antenna scheme is most attractive for the operating conditions of the SNS H{sup -} source.

  6. Improved Edge Confinement due to Ion Cyclotron Radio Frequency boronization in the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    徐国盛; 万宝年; 宋梅; 凌必利

    2003-01-01

    The phenomena of improved edge confinement due to ion cyclotron radio frequency boronization were observed with a fast reciprocating Langmuir probe in the HT-7 tokamak. A strong shear layer of radial electric field was produced in the plasma edge region, which resulted in the formation of an edge transport barrier. Consequently,the edge profiles of electron density were steepened, and both the absolute and relative fluctuation levels were suppressed by the shearing E × B flows. Concomitant reduction of the coherence between electron density and poloidal electric field fluctuations and the change of their cross-phase resulted in turbulent particle flux dropping by more than a half at the plasma edge. This demonstrates the de-correlation effect of turbulence and its contribution to edge transport. The results presented here suggest a link between wall conditions and boundary plasma physics, especially an interaction between atomic processes and turbulence through the formation of radial electric field shear at the plasma edge.

  7. Reference antenna techniques for canceling radio frequency interference due to moving sources

    CERN Document Server

    Mitchell, D A; 10.1029/2004RS003152

    2010-01-01

    We investigate characteristics of radio frequency interference (RFI) signals that can affect the excision potential of some interference mitigation algorithms. The techniques considered are those that modify signals from auxiliary reference antennas to model and cancel interference from an astronomical observation. These techniques can be applied in the time domain, where the RFI voltage is modeled and subtracted from the astronomy signal path (adaptive noise canceling), or they can be applied to the autocorrelated and cross-correlated voltage spectra in the frequency domain (postcorrelation canceling). For ideal receivers and a single, statistically stationary interfering signal, both precorrelation and postcorrelation filters can result in complete cancellation of the interference from the observation. The postcorrelation method has the advantage of being applied on tens or hundreds of millisecond timescales rather than tens or hundreds of nanosecond timescales. However, this can be a disadvantage if the RF...

  8. Decentralised information management in facility management using radio frequency identification technology

    Science.gov (United States)

    Cong, Zixiang; Manzoor, Farhan; Yin, Hang; Menzel, Karsten

    2009-07-01

    Facility Management (FM) is a critical component of the operational phase of a building's life cycle, which includes management of building systems and its services. A large quantity of data is collected from maintaining a building through FM. One question that arises is how can this data be distributed between different systems? A solution to this problem is important for facility managers and maintenance staff. This paper discusses the merits of Radio Frequency Identification (RFID) technology and its potential use in applications within the FM sector. The paper also reports a prototypical demonstrator implementation of an RFID based information management system for FM-scenarios. The prototype was deployed and tested in an office room at University College Cork (UCC), Ireland. The applicability of RFID for Decentralised Information Management (DIM) was applied and specific results for demonstration outputs were achieved.

  9. Radio-frequency sheath-plasma interactions with magnetic field tangency points along the sheath surface

    International Nuclear Information System (INIS)

    Computer simulations of radio-frequency (RF) waves propagating across a two-dimensional (2D) magnetic field into a conducting boundary are described. The boundary condition for the RF fields at the metal surface leads to the formation of an RF sheath, which has previously been studied in one-dimensional models. In this 2D study, it is found that rapid variation of conditions along the sheath surface promote coupling of the incident RF branch (either fast or slow wave) to a short-scale-length sheath-plasma wave (SPW). The SPW propagates along the sheath surface in a particular direction dictated by the orientation of the magnetic field with respect to the surface, and the wave energy in the SPW accumulates near places where the background magnetic field is tangent to the surface

  10. Verification of particle simulation of radio frequency waves in fusion plasmas

    International Nuclear Information System (INIS)

    Radio frequency (RF) waves can provide heating, current and flow drive, as well as instability control for steady state operations of fusion experiments. A particle simulation model has been developed in this work to provide a first-principles tool for studying the RF nonlinear interactions with plasmas. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation. This model has been implemented in a global gyrokinetic toroidal code using real electron-to-ion mass ratio. To verify the model, linear simulations of ion plasma oscillation, ion Bernstein wave, and lower hybrid wave are carried out in cylindrical geometry and found to agree well with analytic predictions

  11. Radio-Frequency Characteristics of a Printed Rectangular Helix Slow-Wave Structure

    International Nuclear Information System (INIS)

    A new type of printed rectangular helix slow-wave structure (SWS) is investigated using the field-matching method and the electromagnetic integral equations at the boundaries. The radio-frequency characteristics including the dispersion equation and the coupling impedance for transverse antisymmetric (odd) modes of this structure are analysed. The numerical results agree well with the results obtained by the EM simulation software HFSS. It is shown that the dispersion of the rectangular helix circuit is weakened, the phase velocity is reduced after filling the dielectric materials in the rectangular helix SWS. As a planar slow-wave structure, this structure has potential applications in compact TWTs. (cross-disciplinary physics and related areas of science and technology)

  12. PIC Simulations of the Ion Flow Induced by Radio Frequency Waves in Ion Cyclotron Frequency Range

    International Nuclear Information System (INIS)

    Full text: PIC simulations have been conducted to study the nonlinear interactions of plasmas and radio frequency wave in the ion cyclotron frequency range. It is found that in the presence of the mode conversion from an electromagnetic wave into an electrostatic wave (ion Bernstein wave), the ions near the lower hybrid resonance can be heated by nonlinear Landau damping via the parametric decay. As a result, the ion velocity distribution in the poloidal direction becomes asymmetric near the lower hybrid resonance and an ion poloidal flow is thus produced. The flow directions are opposite on both sides of the lower hybrid resonance. The poloidal flow is mainly produced by the nonlinear Reynolds stress and the electromagnetic force of the incident wave in the radial direction rather than poloidal direction predicted by the existing theories. (author)

  13. Emission pattern of an aluminium nitride target for radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Thin amorphous aluminium nitride films, (a-AlN) have been produced by radio frequency magnetron sputtering at rf power 120W from a highly pure AlN target. The target is mounted below the substrate holder such that its position can be adjusted inside the vacuum chamber. The emission pattern is determined by means of thickness distribution of the deposited material obtained from optical transmission measurements. Holding a set of the process parameters constant and only varying the target-sample distance a three dimensional emission pattern of the AlN target was determined. The deposition rate and emission pattern for 120W and 180W (studied before) were compared. This comparison allows us to consider the target and shielding dimensions of our magnetron to predict the thickness and the sputtering rate distribution for any process parameter and sample target geometry.

  14. Designing shielded radio-frequency phased-array coils for magnetic resonance imaging

    Institute of Scientific and Technical Information of China (English)

    Xu Wen-Long; Zhang Ju-Cheng; Li Xia; Xu Bing-Qiao; Tao Gui-Sheng

    2013-01-01

    In this paper,an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed.The target field method is used to find current densities distributed on primary and shield coils.The stream function technique is used to discretize current densities and to obtain the winding patterns of the coils.The corresponding highly ill-conditioned integral equation is solved by the Tikhonov regularization with a penalty function related to the minimum curvature.To balance the simplicity and smoothness with the homogeneity of the magnetic field of the coil's winding pattern,the selection of a penalty factor is discussed in detail.

  15. Rapidly reconfigurable radio-frequency arbitrary waveforms synthesized on a CMOS photonic chip

    CERN Document Server

    Wang, Jian; Fan, Li; Wu, Rui; Niu, Ben; Varghese, Leo T; Xuan, Yi; Leaird, Daniel E; Wang, Xi; Gan, Fuwan; Weiner, Andrew M; Qi, Minghao

    2014-01-01

    Photonic methods of radio-frequency waveform generation and processing provide performance and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, they suffer from lack of integration and slow reconfiguration speed. Here we propose an architecture of integrated photonic RF waveform generation and processing, and implement it on a silicon chip fabricated in a semiconductor manufacturing foundry. Our device can generate programmable RF bursts or continuous waveforms with only the light source, electrical drives/controls and detectors being off chip. It turns on and off an individual pulse in the RF burst within 4 nanoseconds, achieving a reconfiguration speed three orders of magnitude faster than thermal tuning. The on-chip optical delay elements offers an integrated approach to accurately manipulate individual RF waveform features without constrains set by the speed and timing jitter of electronics, and should find broad applications ranging from high-sp...

  16. Summary of performance of superconducting radio-frequency cavities built from CBMM niobium ingots

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi, E-mail: gciovati@jlab.org; Dhakal, Pashupati, E-mail: dhakal@jlab.org; Kneisel, Peter, E-mail: kneisel@jlab.org; Myneni, Ganapati R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2015-12-04

    Several Nb ingots have been provided by CBMM to Jefferson Lab since 2004 as part of an R&D collaboration aimed at evaluating the performance of superconducting radio-frequency cavities built from ingots with different purity, as a results of different ingot production processes. Approximately 32 multi- and single-cell cavities with resonant frequency between ∼1.3-2.3 GHz were built, treated and tested at 2 K at Jefferson Lab between 2004 and 2014. The average peak surface field achieved in cavities made of RRR∼260 and RRR∼100-150 ingots was (119 ± 4) mT and (100 ± 8) mT, respectively. Higher quality factor values at 2.0 K have been measured in medium-purity, compared to higher purity material.

  17. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S. B., E-mail: sbroy@rrcat.gov.in [Magnetic & Superconducting Materials Section, Materials & Advanced Accelerator Sciences Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Myneni, G. R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, Virginia (United States)

    2015-12-04

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values.

  18. Qualification of niobium materials for superconducting radio frequency cavity applications: View of a condensed matter physicist

    International Nuclear Information System (INIS)

    We address the issue of qualifications of the niobium materials to be used for superconducting radio frequency (SCRF) cavity fabrications, from the point of view of a condensed matter physicist/materials scientist. We focus on the particular materials properties of niobium required for the functioning a SCRF cavity, and how to optimize the same properties for the best SCRF cavity performance in a reproducible manner. In this way the niobium materials will not necessarily be characterized by their purity alone, but in terms of those materials properties, which will define the limit of the SCRF cavity performance and also other related material properties, which will help to sustain this best SCRF cavity performance. Furthermore we point out the need of standardization of the post fabrication processing of the niobium-SCRF cavities, which does not impair the optimized superconducting and thermal properties of the starting niobium-materials required for the reproducible performance of the SCRF cavities according to the design values

  19. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    The context of the investigations are outlined with a short review about recent flame studies at Utrecht University and a discussion about discrepancies and agreements in the literature concerning alkali ionization in flames. The measuring technique chosen is described and the general design of the radio-frequency resonance system presented. The optical track measurements and the theoretical calculations of flame rise velocity are dealt with. The collisional ionization rate constants for Na, K and Cs are determined. The collisional-ionization rate constant for lithium is treated separately by reason of the hydroxide formation. Finally a theoretical model for the conducting flame in a weak, alternating electric field is developed. The relation betaeen the admittance and the flame conductivity in first order approximations is derived. (Auth.)

  20. Surface oxidation of vanadium dioxide films prepared by radio frequency magnetron Sputtering

    Institute of Scientific and Technical Information of China (English)

    Wang Xue-Jin; Liang Chun-Jun; Guan Kang-Ping; Li De-Hua; Nie Yu-Xin; Zhu Shi-Oiu; Huang Feng; Zhang Wei-Wei; Cheng Zheng-Wei

    2008-01-01

    This paper reports that the thermochromic vanadium dioxide films were deposited on various transparent substrates by radio frequency magnetron sputtering,and then aged under circumstance for years.Samples were characterized with several different techniques such as x-ray diffraction,x-ray photoelectron spectroscopy,and Raman,when they were fresh from sputter chamber and aged after years,respectively,in order to determine their structure and composition.It finds that a small amount of sodium occurred on the surface of vanadium dioxide films,which was probably due to sodium ion diffusion from soda-lime glass when sputtering was performed at high substrate temperature.It also finds that aging for years significantly affected the noustoichiometry of vanadium dioxide films,thus inducing much change in Raman modes.

  1. Structural and photoluminescent properties of ZnO films deposited by radio frequency reactive sputtering

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Zinc oxide films with c-axis preferred orientation were deposited on silicon (100) substrates by radio frequency (RF) reactive sputtering. The properties of the sam- ples were characterized by X-ray diffractometer, X-ray photoelectron spectroscopy and fluorescent-spectrophotometer. The effect of sputtering power and substrate temperature on the structural and photoluminescent (PL) properties of the ZnO films was investigated. The results indicated that when the sputtering power is 100 W and the substrate temperature is 300-400℃, it is suitable for the growth of high c-axis orientation and small strain ZnO films. A violet peak at about 380 nm and a blue band at about 430 nm were observed in the room temperature photolumines- cence spectra, and the origin of blue emission was investigated.

  2. Structural and photoluminescent properties of ZnO films deposited by radio frequency reactive sputtering

    Institute of Scientific and Technical Information of China (English)

    PENG XingPing; WANG ZhiGuang; SONG Yin; JI Tao; ZANG Hang; YANG YingHu; JIN YunFan

    2007-01-01

    Zinc oxide films with c-axis preferred orientation were deposited on silicon (100)substrates by radio frequency (RF) reactive sputtering. The properties of the samples were characterized by X-ray diffractometer, X-ray photoelectron spectroscopy and fluorescent-spectrophotometer. The effect of sputtering power and substrate temperature on the structural and photoluminescent (PL) properties of the ZnO films was investigated. The results indicated that when the sputtering power is 100 W and the substrate temperature is 300-400℃, it is suitable for the growth of high c-axis orientation and small strain ZnO films. A violet peak at about 380 nm and a blue band at about 430 nm were observed in the room temperature photoluminescence spectra, and the origin of blue emission was investigated.

  3. A Behavior Level Analytical Method of Electromagnetic Susceptibility for Radio Frequency Receiver

    Institute of Scientific and Technical Information of China (English)

    YAN Zhaowen; YU Xiaofeng; XIE Shuguo; LIU Yan

    2011-01-01

    Based on simplified Volterra model, a behavior-level simulation analysis approach of electromagnetic susceptibility (EMS) for radio frequency (RF) receiver is presented in this article. Third order simplified Volterra model is adopted to analyze receiver EMS. A general criterion for EMS is proposed according to EMS response characteristics in frequency domain, and then the simulation flow charts for calculating susceptibility thresholds are given. This approach is superior to the previous EMS analysis method on receiver, which mainly relies on experiments but lack simulation analysis. Take the dual frequency GPS receiver and zero IF receiver interfered by continue wave as examples for in-band and out-of-band susceptibility threshold calculation. Simulation results show that the proposed method is not only valid and effective, but also reduces the internal storage and simulation time, which is suitable to RF receiver EMS analysis and practical in engineering and technology field.

  4. Blood-brain barrier disruption by continuous-wave radio frequency radiation.

    Science.gov (United States)

    Sirav, Bahriye; Seyhan, Nesrin

    2009-01-01

    The increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of non ionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. This study was designed to investigate the effects of 900 and 1,800 MHz Continuous Wave Radio Frequency Radiation (CW RFR) on the permeability of Blood Brain Barrier (BBB) of rats. Results have shown that 20 min RFR exposure of 900 and 1,800 MHz induces an effect and increases the permeability of BBB of male rats. There was no change in female rats. The scientific evidence on RFR safety or harm remains inconclusive. More studies are needed to demonstrate the effects of RFR on the permeability of BBB and the mechanisms of that breakdown. PMID:19811403

  5. Flux pinning characteristics in cylindrical ingot niobium used in superconducting radio frequency cavity fabrication

    CERN Document Server

    Dhavale, Asavari S; Polyanskii, Anatolii A; Ciovati, Gianluigi

    2012-01-01

    We present the results of from DC magnetization and penetration depth measurements of cylindrical bulk large-grain (LG) and fine-grain (FG) niobium samples used for the fabrication of superconducting radio frequency (SRF) cavities. The surface treatment consisted of electropolishing and low temperature baking as they are typically applied to SRF cavities. The magnetization data were fitted using a modified critical state model. The critical current density Jc and pinning force Fp are calculated from the magnetization data and their temperature dependence and field dependence are presented. The LG samples have lower critical current density and pinning force density compared to FG samples which implies a lower flux trapping efficiency. This effect may explain the lower values of residual resistance often observed in LG cavities than FG cavities.

  6. Radio-frequency assisted pulsed laser deposition of nanostructured WOx films

    International Nuclear Information System (INIS)

    The synthesis of tungsten oxide films with large surface area is promising for gas sensing applications. Thin WOx films were obtained by radio-frequency assisted pulsed laser deposition (RF-PLD). A tungsten target was ablated at 700 and 900 Pa in reactive oxygen, or in a 50% mixed oxygen-helium atmosphere at the same total pressure values. Corning glass was used as substrate, at temperatures including 673, 773 and 873 K. Other deposition parameters such as laser fluence (4.5 J cm-2), laser wavelength (355 nm), radiofrequency power (150 W), target to substrate distance (4 cm), laser spot area (0.7 mm2), and number of laser shots (12,000) were kept fixed. The sensitivity on the deposition conditions of morphology, nanostructure, bond coordination, and roughness of the obtained films were analyzed by scanning and transmission electron microscopy, micro-Raman spectroscopy, and atomic force microscopy.

  7. Atom-Based Sensing of Weak Radio Frequency Electric Fields Using Homodyne Readout

    CERN Document Server

    Kumar, Santosh; Kübler, Harald; Sheng, Jiteng; Shaffer, James P

    2016-01-01

    We utilize a homodyne detection technique to achieve a new sensitivity limit for atom-based, absolute radio-frequency electric field sensing of $\\mathrm{5 \\mu V cm^{-1} Hz^{-1/2} }$. A Mach-Zehnder interferometer is used for the homodyne detection. With the increased sensitivity, we investigate the dominant dephasing mechanisms that affect the performance of the sensor. In particular, we present data on power broadening, collisional broadening and transit time broadening. Our results are compared to density matrix calculations. We show that photon shot noise in the signal readout is currently a limiting factor. We suggest that new approaches with superior readout with respect to photon shot noise are needed to increase the sensitivity further.

  8. Radio-frequency Electrometry Using Rydberg Atoms in Vapor Cells: Towards the Shot Noise Limit

    Science.gov (United States)

    Kumar, Santosh; Fan, Haoquan; Jahangiri, Akbar; Kuebler, Harald; Shaffer, James P.; 5. Physikalisches Institut, Universitat Stuttgart, Germany Collaboration

    2016-05-01

    Rydberg atoms are a promising candidate for radio frequency (RF) electric field sensing. Our method uses electromagnetically induced transparency with Rydberg atoms in vapor cells to read out the effect that the RF electric field has on the Rydberg atoms. The method has the potential for high sensitivity (pV cm-1 Hz- 1 / 2) and can be self-calibrated. Some of the main factors limiting the sensitivity of RF electric field sensing from reaching the shot noise limit are the residual Doppler effect and the sensitivity of the optical read-out using the probe laser. We present progress on overcoming the residual Doppler effect by using a new multi-photon scheme and reaching the shot noise detection limit using frequency modulated spectroscopy. Our experiments also show promise for studying quantum optical effects such as superradiance in vapor cells using Rydberg atoms. This work is supported by DARPA, ARO, and NRO.

  9. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    Energy Technology Data Exchange (ETDEWEB)

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  10. Dispersive radio frequency electrometry using Rydberg atoms in a prism-shaped atomic vapor cell

    Science.gov (United States)

    Fan, H. Q.; Kumar, S.; Kübler, H.; Shaffer, J. P.

    2016-05-01

    We introduce a method to measure radio frequency (RF) electric fields (E-fields) using atoms contained in a prism-shaped vapor cell. The method utilizes the concept of electromagnetically induced transparency with Rydberg atoms. The RF E-field induces changes in the index of refraction of the vapor resulting in deflection of the probe laser beam as it passes through the prism-shaped vapor cell. We measured a minimum RF E-field of 8.25 μ {{Vcm}}-1 with a sensitivity of ∼ 46.5 μ {{Vcm}}-1 {{Hz}}-1/2. The experimental results agree with a numerical model that includes dephasing effects. We discuss possible improvements to obtain higher sensitivity for RF E-field measurements.

  11. Transition radiation at radio frequencies from ultra-high energy neutrino-induced showers

    CERN Document Server

    Motloch, Pavel; Privitera, Paolo; Zas, Enrique

    2015-01-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium - like ice, salt or regolith - has been extensively investigated as a promising technique to search for ultra-high energy (UHE) neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to $\\sim$ 1 GHz. These properties encourage further work to evaluate the potential of a large-aperture UHE neutrino experiment based on detection of transition radiation.

  12. Performance Analysis of a Hardware Implemented Complex Signal Kurtosis Radio-Frequency Interference Detector

    Science.gov (United States)

    Schoenwald, Adam J.; Bradley, Damon C.; Mohammed, Priscilla N.; Piepmeier, Jeffrey R.; Wong, Mark

    2016-01-01

    In the field of microwave radiometry, Radio Frequency Interference (RFI) consistently degrades the value of scientific results. Through the use of digital receivers and signal processing, the effects of RFI on scientific measurements can be reduced depending on certain circumstances. As technology allows us to implement wider band digital receivers for radiometry, the problem of RFI mitigation changes. Our work focuses on finding a detector that outperforms real kurtosis in wide band scenarios. The algorithm implemented is a complex signal kurtosis detector which was modeled and simulated. The performance of both complex and real signal kurtosis is evaluated for continuous wave, pulsed continuous wave, and wide band quadrature phase shift keying (QPSK) modulations. The use of complex signal kurtosis increased the detectability of interference.

  13. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain

    Science.gov (United States)

    Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Shi, Yan

    2016-06-01

    In this paper, an electromagnetic metasurface is designed, fabricated, and experimentally demonstrated to generate multiple orbital angular momentum (OAM) vortex beams in radio frequency domain. Theoretical formula of compensated phase-shift distribution is deduced and used to design the metasurface to produce multiple vortex radio waves in different directions with different OAM modes. The prototype of a practical configuration of square-patch metasurface is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that multiple OAM vortex waves can be simultaneously generated by using a single electromagnetic metasurface. The proposed method paves an effective way to generate multiple OAM vortex waves in radio and microwave wireless communication applications.

  14. Upgrade of the radio frequency quadrupole cooler and buncher for the HIE-ISOLDE project

    Science.gov (United States)

    Babcock, Carla; Giles, Tim

    2013-12-01

    The upgrade to the ISOLDE facility, HIE-ISOLDE, will include an upgrade to the RFQCB (radio frequency quadrupole cooler and buncher), the focus of which will be fixing the problems of alignment with the current machine, improving the integrity of the vacuum system, stabilizing the internal gas pressure, and the changes associated with a new position. The beam passage inside the RFQCB has been simulated with an independent code to highlight the importance of the internal gas pressure, to motivate design changes in the new RFQCB and to explain ways to improve the performance of the current machine. The suspected misalignment of ISCOOL has been quantified, and, using a simulation of ions passing through the external injection electrodes, the effect of the misalignment on machine acceptance has been detailed. Plans for the future RFQCB test stand and HIE-ISOLDE installation have been outlined.

  15. Strong Meissner screening change in superconducting radio frequency cavities due to mild baking

    Energy Technology Data Exchange (ETDEWEB)

    Romanenko, A., E-mail: aroman@fnal.gov; Grassellino, A.; Barkov, F. [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Suter, A.; Salman, Z.; Prokscha, T. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2014-02-17

    We investigate “hot” regions with anomalous high field dissipation in bulk niobium superconducting radio frequency cavities for particle accelerators by using low energy muon spin rotation (LE-μSR) on corresponding cavity cutouts. We demonstrate that superconducting properties at the hot region are well described by the non-local Pippard/BCS model for niobium in the clean limit with a London penetration depth λ{sub L}=23±2 nm. In contrast, a cutout sample from the 120 ∘C baked cavity shows a much larger λ>100 nm and a depth dependent mean free path, likely due to gradient in vacancy concentration. We suggest that these vacancies can efficiently trap hydrogen and hence prevent the formation of hydrides responsible for rf losses in hot regions.

  16. Note: A versatile radio-frequency source for cold atom experiments.

    Science.gov (United States)

    Li, Na; Wu, Yu-Ping; Min, Hao; Yang, Tao; Jiang, Xiao

    2016-08-01

    A radio-frequency (RF) source designed for cold atom experiments is presented. The source uses AD9858, a direct digital synthesizer, to generate the sine wave directly, up to 400 MHz, with sub-Hz resolution. An amplitude control circuit consisting of wideband variable gain amplifier and high speed digital to analog converter is integrated into the source, capable of 70 dB off isolation and 4 ns on-off keying. A field programmable gate array is used to implement a versatile frequency and amplitude co-sweep logic. Owing to modular design, the RF sources have been used on many cold atom experiments to generate various complicated RF sequences, enriching the operation schemes of cold atoms, which cannot be done by standard RF source instruments. PMID:27587180

  17. Operating experience of upgraded radio frequency source at 76 MHz coupled to heavy ion RFQ

    International Nuclear Information System (INIS)

    A heavy ion radio frequency quadrupole (RFQ) accelerator has been developed at BARC (BARC). A RF source which was designed and developed at 76 MHz earlier, has been upgraded and coupled to heavy ion RFQ successfully. The DC bias supplies of this source have been replaced with new supplies having high efficiency and well filteration against RF interference (RFI). The driver of main power amplifier has been replaced with indigenously designed and developed unit. The earlier introduced microcontroller based interlock experienced RF noise issues. So, this circuit has been modified with the new circuit. With these modifications, the performance of the RF source was improved. Additionally, a separate low power RF source of around 100+ Watt was designed, developed and integrated with RFQ for its RF conditioning. This paper describes the details of up gradation of technologies implemented and coupling experience of this RF source with heavy ion RFQ. (author)

  18. Scientific expertise from the inside: AFSSET Working Group on Radio-frequencies (2008-2009)

    International Nuclear Information System (INIS)

    Although there is now a large amount of social science research on scientific expertise and expert groups, direct evidence by sociologists who themselves participated in scientific expert groups assessing controversial topics remain rare. This paper offers just this type of feedback. The aim is to analyse the production of scientific expert opinions based on personal experience: the author's participation as a sociologist in an expert committee set up by the former French Agency for the Safety of Health, the Environment and Work (AFSSET) on the topic of radio-frequencies. Several problematic aspects of these groups will thus be discussed from this concrete experience: the problem of the composition of the expert group, the issue of conflicts of interest, the organisation of the work within the group, the effects of the presence of an observer from an association, and the differences between performing scientific research and providing scientific expert opinions. (authors)

  19. Transition radiation at radio frequencies from ultrahigh-energy neutrino-induced showers

    Science.gov (United States)

    Motloch, Pavel; Alvarez-Muñiz, Jaime; Privitera, Paolo; Zas, Enrique

    2016-02-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium—like ice, salt, soil, or regolith—has been extensively investigated as a promising technique to search for ultrahigh-energy neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth's surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to ˜1 GHz . These properties encourage further work to evaluate the potential of a large-aperture ultrahigh-energy neutrino experiment based on the detection of transition radiation.

  20. Dynamics of dust particles in a collisional radio-frequency plasma sheath

    International Nuclear Information System (INIS)

    In this work, we have examined the dynamics of a single dust particle in a non-ionized radio-frequency plasma sheath. For this, we have used a steady state one-dimensional time-averaged model where the electrons are considered to be in thermal equilibrium, while the positive ions are described by cold fluid equations. The interactions between ions and neutrals are considered. Numerous forces acting on the dust particles, such as electric force, gravitational force, neutral drag force and ion drag force are taken into account. The numerical results show that the ion–neutral collisions have significant effects on the properties of the motion of the dust. The dust oscillation frequency increases and the equilibrium position of the dust particle drops when the coefficient of ion collision increases. (paper)

  1. Structure and process design of separated function radio frequency quadruple accelerator

    International Nuclear Information System (INIS)

    The construction features of separated function radio frequency quadrupole(SFRFQ) accelerator are presented, which include the structure of diaphragms electrodes, integral split ring supporting system, cooling system, tuning system and their manufacturing engineering. The analysis with 8753ES network analyzer proves that the tuning system works successfully to tune the SFRFQ frequency at 26.07 MHz as required by the whole acceleration system without significant quality factor declining. The Roentgen spectrum test at high power proves that the inter-vane Jantage can reach higher than the design value of 70 kV. Beam commissioning was carried out to accelerate the O+ ions from 1.03 MeV to 1.65 MeV, which demonstrates that the mechanical design of SFRFQ accelerator can satisfy the experimental demands and the SFRFQ prototype cavity runs stably as designed. (authors)

  2. Higher order modes in superconducting radio frequency resonators for energy recovery linacs

    International Nuclear Information System (INIS)

    The main scope of this work is the automation of the extraction procedure of the external quality factors of Higher Order Modes (HOMs) in Superconducting Radio Frequency (SRF) cavities. The HOMs are generated by charged particle beams traveling through a SRF cavity at the speed of light. The HOMs decay very slowly, depending on localization inside the structure and cell-to-cell coupling, and may influence succeeding charged particle bunches. Thus it is important, at the SRF cavity design optimization stage, to calculate the external quality factors (Qext) of HOMs. Traveling Poles Elimination (TPE) scheme was used to automatically extract Qext from the transmission spectra and careful eigenmode analysis of the SC cavity was performed to confirm TPE results. The eigenmode analysis also delivers important information about band structure, cell-to-cell coupling of HOMs and allows rapid identification of modes that could interact with the charged particle bunches.

  3. On the physical limitations for radio frequency absorption in gold nanoparticle suspensions

    CERN Document Server

    Nordebo, Sven; Ivanenko, Yevhen; Sjöberg, Daniel; Bayford, Richard

    2016-01-01

    This paper presents a study on the physical limitations for radio frequency absorption in gold nanoparticle suspensions. A canonical spherical geometry is considered consisting of a spherical suspension of colloidal gold nanoparticles characterized as an arbitrary passive dielectric material which is immersed in an arbitrary lossy medium. A relative heating coefficient and a corresponding optimal near field excitation are defined taking the skin effect of the surrounding medium into account. For small particle suspensions the optimal excitation is an electric dipole field for which explicit asymptotic expressions are readily obtained. It is then proven that the optimal permittivity function yielding a maximal absorption inside the spherical suspension is a conjugate match with respect to the surrounding lossy material. For a surrounding medium consisting of a weak electrolyte solution the optimal conjugate match can then readily be realized at a single frequency, e.g., by tuning the parameters of a Drude mode...

  4. Particle simulation for direct plasma injection in a radio frequency quadrupole matching section

    International Nuclear Information System (INIS)

    We have been investigating direct plasma injection scheme (DPIS) for high-intensity heavy-ion beam acceleration. In the DPIS, laser-produced plasma is directly injected into a radio frequency quadrupole (RFQ) linac. To study the beam dynamics of the ion injection in the DPIS, we tracked particle motions in the RFQ matching section using three-dimensional particle-in-cell method. As a result of the numerical simulation, we found that the electrostatic field generated by the extraction electrode reduces the transmission efficiency. To avoid the radially defocusing force, the input beam into the RFQ has to be initially convergent. In the DPIS, further optimization of the plasma density is required for better matching.

  5. Upgrading producer gas quality from rubber wood gasification in a radio frequency tar thermocatalytic treatment reactor.

    Science.gov (United States)

    Anis, Samsudin; Zainal, Z A

    2013-12-01

    This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.

  6. Reclamation of niobium compounds from ionic liquid electrochemical polishing of superconducting radio frequency cavities

    Energy Technology Data Exchange (ETDEWEB)

    Wixtrom, Alex I. [Christopher Newport University, Newport News, VA (United States); Buhler, Jessica E. [Christopher Newport University, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Abdel-Fattah, Tarek M. [Christopher Newport University, Newport News, VA (United States)

    2013-06-01

    Recent research has shown that choline chloride (vitamin B4)-based solutions can be used as a greener alternative to acid-based electrochemical polishing solutions. This study demonstrated a successful method for electrochemical deposition of niobium compounds onto the surface of copper substrates using a novel choline chloride-based ionic liquid. Niobium ions present in the ionic liquid solution were dissolved into the solution prior to deposition via electrochemical polishing of solid niobium. A black coating was clearly visible on the surface of the Cu following deposition. This coating was analyzed using scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and X-ray fluorescence spectroscopy (XRF). This ionic liquid-based electrochemical deposition method effectively recycles previously dissolved niobium from electrochemical polishing of superconducting radio frequency (SRF) cavities.

  7. A radio-frequency coil for the microwave characterization of vortex dynamics in thin film superconductors.

    Science.gov (United States)

    Cuadra-Solís, Pedro-de-Jesús; Fernández-Martínez, Antoni; Hernàndez, Joan Manel; García-Santiago, Antoni; Vanacken, Johan; Moshchalkov, Victor V

    2015-06-01

    A radio-frequency coil for the experimental investigation of the magnetic properties of thin superconducting films under microwave fields at different values of temperature and dc magnetic field has been developed. The system has been used for low-temperature microwave frequency-dependent magnetization measurements in a Pb thin film with an engineered periodical antidot array. The characteristic frequencies and the electric and magnetic fields of the resonant system formed by a multi-turn coil with a sample loaded in its core are estimated using the helical approach. A good agreement of the calculated values with those recorded in swept-frequency spectra is obtained. The relation between the characteristics of the resonant structure and the frequency-driven magnetic response of the sample at different nominal microwave powers documents the capability and sensitivity of the layout. PMID:26133852

  8. Overall performance evaluation using an equivalent circuit model for radio-frequency single-electron transistors

    International Nuclear Information System (INIS)

    Charge sensitivities of a radio-frequency single-electron transistor (RF-SET) by using amplitude (AD) and phase-shift detection (PSD) of the reflected RF signals were experimentally studied. It was found that AD is most sensitive at the resonant frequency while PSD is most sensitive at a frequency slightly off the resonance. The best PSD sensitivity is better than the best AD one when the quality factor of a tank circuit is higher than 10; the higher Q-value is, the superior PSD. The maximal change in reflection amplitude and phase-shift were found proportional to the SET conductance change. The above experimental findings were confirmed by the calculation based on an equivalent circuit model

  9. Impact of radio-frequency identification (RFID) technologies on the hospital supply chain: a literature review.

    Science.gov (United States)

    Coustasse, Alberto; Tomblin, Shane; Slack, Chelsea

    2013-01-01

    Supply costs account for more than one-third of the average operating budget and constitute the second largest expenditure in hospitals. As hospitals have sought to reduce these costs, radio-frequency identification (RFID) technology has emerged as a solution. This study reviews existing literature to gauge the recent and potential impact and direction of the implementation of RFID in the hospital supply chain to determine current benefits and barriers of adoption. Findings show that the application of RFID to medical equipment and supplies tracking has resulted in efficiency increases in hospitals with lower costs and increased service quality. RFID technology can reduce costs, improve patient safety, and improve supply chain management effectiveness by increasing the ability to track and locate equipment, as well as monitoring theft prevention, distribution management, and patient billing. Despite ongoing RFID implementation in the hospital supply chain, barriers to widespread and rapid adoption include significant total expenditures, unclear return on investment, and competition with other strategic imperatives.

  10. On the passage of high-level pulsed radio frequency interference through a nonlinear satellite transponder

    Science.gov (United States)

    Weinberg, A.

    1984-01-01

    Attention is given to the uncoded bit error rate (BER) performance of a satellite communications system whose modulation scheme is binary PSK and whose transponder contains an arbitrary amplitude nonlinearity, all in the presence of high level pulsed radio frequency interference (RFI). A general approach is presented for direct BER evaluations, in contrast to other approaches which may employ SNR suppression factors. The computed results are based on arbitrarily specified RFI scenarios, in the presence of hard limiter, clipper, or blanker amplitude nonlinearities. Performance curves demonstrate the superiority of an appropriately chosen blanker when the RFI environment is most severe. The results obtained also pertain to the sensitivity of performance to the information bit rate, signal power variations, and the ratio of CW to noise content. The CW effects are found to be the most severe.

  11. Pulsed radio frequency interference effects on data communications via satellite transponder

    Science.gov (United States)

    Weinberg, A.; Hong, Y.

    1979-01-01

    Power-limited communication links may be susceptible to significant degradation if intentional or unintentional pulsed high level radio frequency interference (RFI) is present. Pulsed RFI is, in fact, of current interest to NASA in studies relating to its Tracking and Data Relay Satellite System (TDRSS). The present paper examines the impact of pulsed RFI on the error probability performance of a power-limited satellite communication link: the assumed modulation scheme is PN coded binary PSK. The composite effects of thermal noise, pulsed CW and pulsed Gaussian noise are analyzed, where RFI arrivals are assumed to follow Poisson statistics. Under the assumption that the satellite repeater is ideal and that integrate and dump filtering is employed at the ground receiver, an exact error probability expression and associated approximations are derived. Computed results are generated using an arbitrarily specified RFI model.

  12. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity.

    Science.gov (United States)

    Ciovati, G; Anlage, Steven M; Baldwin, C; Cheng, G; Flood, R; Jordan, K; Kneisel, P; Morrone, M; Nemes, G; Turlington, L; Wang, H; Wilson, K; Zhang, S

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ~1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  13. Pulsed radio-frequency discharge inductively coupled plasma mass spectrometry for oxide analysis

    Science.gov (United States)

    Li, Weifeng; Yin, Zhibin; Hang, Wei; Li, Bin; Huang, Benli

    2016-08-01

    A direct solid sampling technique has been developed based on a pulsed radio-frequency discharge (RFD) in mixture of N2 and Ar environment at atmospheric pressure. With an averaged input power of 65 W, a crater with the diameter of 80 μm and depth of 50 μm can be formed on sample surface after discharge for 1 min, suggesting the feasibility of the pulsed RFD for sampling nonconductive solids. Combined with inductively coupled plasma mass spectrometry (ICPMS), this technique allows to measure elemental composition of solids directly with relative standard deviation (RSD) of ~ 20%. Capability of quantitative analysis was demonstrated by the use of soil standards and artificial standards. Good calibration linearity and limits of detection (LODs) in range of 10- 8-10- 9 g/g were achieved for most elements.

  14. Site selection for a radio astronomy observatory in Turkey: atmospherical, meteorological, and radio frequency analyses

    Science.gov (United States)

    Küçük, Ibrahim; Üler, Ipek; Öz, Şükriye; Onay, Sedat; Özdemir, Ali Rıza; Gülşen, Mehmet; Sarıkaya, Mikail; Dag˜Tekin, Nazlı Derya; Özeren, Ferhat Fikri

    2012-03-01

    Selecting the future site for a large Turkish radio telescope is a key issue. The National Radio Astronomy Observatory is now in the stage of construction at a site near Karaman City, in Turkey. A single-dish parabolic radio antenna of 30-40 m will be installed near a building that will contain offices, laboratories, and living accommodations. After a systematic survey of atmospheric, meteorological, and radio frequency interference (RFI) analyses, site selection studies were performed in a predetermined location in Turkey during 2007 and 2008. In this paper, we described the experimental procedure and the RFI measurements on our potential candidate's sites in Turkey, covering the frequency band from 1 to 40 GHz.

  15. Investigations and Applications of Field- and Photo-emitted Electron Beams from a Radio Frequency Gun

    Energy Technology Data Exchange (ETDEWEB)

    Panuganti, SriHarsha [Northern Illinois Univ., DeKalb, IL (United States)

    2015-08-01

    Production of quality electron bunches using e cient ways of generation is a crucial aspect of accelerator technology. Radio frequency electron guns are widely used to generate and rapidly accelerate electron beams to relativistic energies. In the current work, we primarily study the charge generation processes of photoemission and eld emission inside an RF gun installed at Fermilab's High Brightness Electron Source Laboratory (HBESL). Speci cally, we study and characterize second-order nonlinear photoemission from a Cesium Telluride (Cs2Te) semiconductor photocathode, and eld emission from carbon based cathodes including diamond eld emission array (DFEA) and carbon nanotube (CNT) cathodes located in the RF gun's cavity. Finally, we discuss the application experiments conducted at the facility to produce soft x-rays via inverse Compton scattering (ICS), and to generate uniformly lled ellipsoidal bunches and temporally shaped electron beams from the Cs2Te photocathode.

  16. Recent Advances in Programmable Photonic-Assisted Ultrabroadband Radio-Frequency Arbitrary Waveform Generation

    CERN Document Server

    Rashidinejad, Amir; Weiner, Andrew M

    2015-01-01

    This paper reviews recent advances in photonic-assisted radio-frequency arbitrary waveform generation (RF-AWG), with emphasis on programmable ultrabroadband microwave and millimeter-wave waveforms. The key enabling components in these techniques are programmable optical pulse shaping, frequency-to-time mapping via dispersive propagation, and high-speed photodetection. The main advantages and challenges of several different photonic RF-AWG schemes are discussed. We further review some proof-of-concept demonstrations of ultrabroadband RF-AWG applications, including high-resolution ranging and ultrabroadband non-line-of-sight channel compensation. Finally, we present recent progress toward RF-AWG with increased time aperture and time-bandwidth product.

  17. Proton Beam Verification using RF Power Measurement Data for a cw Radio Frequency Quadrupole LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Bolme, G.O.; Hardek, T.W.; Hansborough, L.D.; Hodgkins, D.J.; Keffeler, D.R.; Sherman, J.D.; Smith, H.V.; Stevens, R.R.; Young, L.M.; Zaugg, T.J.; Arvin, A.H.; Bolt, A.S.; Richards, M.C.; Balleyguier, P.P.; Kamperschroer, J.H.

    1999-03-29

    A cw radio frequency quadrupole (RFQ) LINAC section and klystrode based rf system was obtained from the Chalk River Laboratories and was recommissioned at LANL to conduct demonstration proton beam experiments in support of a spallation neutron source driver for tritium production. A variation of the Low Energy Demonstration Accelerator (LEDA) proton injector, modified to operate at 50 keV, was mated to the RFQ and was operated to support the high current (up to 100 mA), proton beam advance studies for the Accelerator Production of Tritium (APT) program. Detailed measurements and calibrations of the RFQ at both low and high power provided the corroborating data to other available beam measurements for verification of the accelerator design.

  18. Population density effect on radio frequencies interference (RFI) in radio astronomy

    Science.gov (United States)

    Umar, Roslan; Abidin, Zamri Zainal; Ibrahim, Zainol Abidin; Hassan, Mohd Saiful Rizal; Rosli, Zulfazli; Hamidi, Zety Shahrizat

    2012-06-01

    Radio astronomical observation is infected by wide range of Radio Frequency Interference (RFI). We will also use information gathered from on-site RFI level measurements on selected 'good' areas generated by this study. After investigating a few suitable sites we will commence to the site and construct the RFI observation. Eventually, the best area we will be deciding from the observations soon. The result of this experiment will support our planning to build the first radio telescope in Malaysia. Radio observatories normally are located in remote area, in order to combat RFI from active spectrum users and radio noise produced in industrial or residential areas. The other solution for this problem is regulating the use of radio frequencies in the country (spectrum management). Measurement of RFI level on potential radio astronomical site can be done to measure the RFI levels at sites. Seven sites are chosen divide by three group, which is A, B and C. In this paper, we report the initial testing RFI survey for overall spectrum (0-2GHz) for those sites. The averaged RFI level above noise level at the three group sites are 19.0 (+/-1.79) dBm, 19.5 (+/-3.71) dBm and 17.0 (+/-3.71) dBm and the averaged RFI level above noise level for without main peaks are 20.1 (+/-1.77) dBm, 19.6 (+/-3.65) dBm and 17.2 (+/-1.43) dBm respectively.

  19. EPICS based low-level radio frequency control system in LIPAc

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Julio, E-mail: julio.calvo@ciemat.es [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Ciemat (Spain); Rivers, Mark L. [Department of Geophysical Sciences and Center for Advanced Radiation Sources, The University of Chicago (United States); Patricio, Miguel A. [Departamento de Informatica, Universidad Carlos III de Madrid (Spain); Ibarra, Angel [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Ciemat (Spain)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The system proposed can control amplitude and phase of each cavity. Black-Right-Pointing-Pointer Rapid diagnostics are refreshed in milliseconds. Black-Right-Pointing-Pointer Increasing control parameters will not increase consumed time neither complexity. Black-Right-Pointing-Pointer IQ demodulation can be achieved thanks to the transformed values at driver level. - Abstract: The IFMIF-EVEDA (International Fusion Materials Irradiation Facility - Engineering Validation and Engineering Design Activity) linear accelerator, known as Linear IFMIF Prototype Accelerator (LIPAc), will be a 9 MeV, 125 mA continuous wave (CW) deuteron accelerator prototype to validate the technical options of the accelerator design for IFMIF. The primary mission of such facility is to test and verify materials performance when subjected to extensive neutron irradiation of the type encountered in a fusion reactor to prepare for the design, construction, licensing and safe operation of a fusion demonstration reactor (DEMO). The radio frequency (RF) power system of IFMIF-EVEDA consists of 18 RF chains working at 175 MHz with three amplification stages each. The low-level radio frequency (LLRF) controls the amplitude and phase of the signal to be synchronized with the beam and it also controls the resonance frequency of the cavities. The system is based on a commercial compact peripheral component interconnect (cPCI) field programmable gate array (FPGA) board, provided by Lyrtech and controlled by a Windows host PC. For this purpose, it is mandatory to communicate the cPCI FPGA board from EPICS Channel Access [1]. A software architecture on EPICS framework in order to control and monitor the LLRF system is presented.

  20. Endoscopic resection of nasopharyngeal angiofibroma: the role of radio-frequency coblation

    Directory of Open Access Journals (Sweden)

    Rohana Ali

    2011-09-01

    Full Text Available Nasopharyngeal angiofibromas are histologically benign but locally aggressive vascular tumors that can result in major morbidity and mortality. They exclusively affect adolescent male and are rare in patients older than 25 years. The management of nasopharyngeal angiofibroma is primarily surgical. Most small and medium sized tumors are resected endoscopically with a microdebrider. Our presentation demonstrates the role of radio-frequency coblation in the endoscopic management of angiofibroma that is confined to the nasal cavity, nasopharynx and paranasal sinuses. Through a brief video presentation, viewers will be able to appreciate the role of this instrument. We reviewed the case of an adult male patient who presented to our institute with nasopharyngeal angiofibroma. He underwent pre-operative embolization followed by endoscopic coblation of the tumor. A video demonstration is presented of a patient with nasopharyngeal angiofibroma who underwent successful transnasal endoscopic coblation. The coblator was used to resect the tumour attachment at the posterior end of the middle turbinate and the nasopharynx. The tumor was resected en-bloc and pushed into the oropharynx and eventually removed trans-orally. The natural ostium of the sphenoid sinus was enlarged and the residual tumor was removed. Absorbable nasal packing was inserted for haemostasis. Intra-operative bleeding was negligible. Radio-frequency coblation has a definite role in the endoscopic resection of small and medium sized nasopharyngeal angiofibroma. This technique is easy to learn and is extremely efficient. Tumors can be removed with minimal or no damage to surrounding tissues and intra-operative bleeding is negligible.

  1. Epidemiological studies of radio-frequency radiation: Current status and areas of concern

    Energy Technology Data Exchange (ETDEWEB)

    Goldsmith, John R. [Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva (Israel)

    1996-02-11

    These comments deal with the possible impact on human populations of intense sources of radio-frequency radiation, and not the much lower level of the usual sources of such radiation associated, for example with household appliances. These intense sources were developed and extensively used first in World War II (1940-45). Much of the health evaluation has been done by, and for, military organizations. There are important differences in the energy generated by low frequency (ELF) and radar; it then follows that there may be differences in their effects on human populations. Problems common to both types are: (1) the uncertainty as to biological mechanisms; (2) weak experimental evidence of effect; (3) epidemiological preoccupation with carcinogenesis, with its latency and low incidence. For both types there is the presumption of greater occupational than community risk, the latter often not well studied, and problems as to exposure quantification and specificity. To these one must add (4) the inherently epidemiological problems of a study at a given source of adequate sample size, case-findings, exposure estimation, confounders, and residential and job instability. Despite these problems, there are findings from sets of studies which suggest four possible health effects from radar (radio-frequency radiation) exposure: (A) disturbances in blood counts, not necessarily of clinical severity; (B) changes in chromosomes of white blood cells; (C) increases in frequency of unfavorable reproductive outcomes, especially spontaneous abortion, and (D) increases in cancers of certain sites. A review article on this topic was published elsewhere, providing evidence from various exposures on such possible effects. A brief critique is provided of evidence on these four possible effects, identifying some areas of uncertainty for which studies at sites like Skrunda could provide useful information

  2. Radio-frequency inductively coupled plasma-chemical installation for preparation of nanodispersed powders

    International Nuclear Information System (INIS)

    Full text: The wide application of radio-frequency inductively coupled plasma (rf-ICP) is due to the following. Rf-ICPs are clean because these types of plasma do not use any electrode and, hence, are contamination free. Rf-ICPs are stable and can be used over a wide range of operating conditions. They have relatively large volumes and low plasma velocities, which result in complete melting of the solid materials in materials processing because of the longer residence time. The preciseness of the rf-ICPs is important in determining contamination effects (which inevitably occur because of electrode evaporation and nozzle ablation) on gas circuit breaker arcs as well as to predict plasma properties for all materials processing, and any gas or mixture of gases can be excited by the rf fields, so there is wide flexibility when choosing plasma gas(es) depending on the type of application [1].; The experimental plasma set-up used for the production of nanosized powders (carbides, carbon nano-structures (nanotubes, fullerenes), oxides, nitrides, catalysts, pigments, etc.) consists of a radio-frequency generator (maximum power 60 kW, frequency 1+30 MHz), a water-cooled quartz plasma-chemical reactor with inductor, raw powder and gas supply systems, a gas quenching device, heat exchangers and cloth filter for powder collection. Ar, N2, Ar+N2, air, air+O2, and Ar+H2 can be used as plasma-forming gases. The quenching gases are air, Ar, N2, and CO2. The raw powder is injected into the upper part of the plasma-chemical reactor. A chemical reaction is carried out in the reactor and after complete evaporation of the micron size powder, it enters the quenching device. After that, the nanosized product is captured by the heat exchangers and cloth filter

  3. EPICS based low-level radio frequency control system in LIPAc

    International Nuclear Information System (INIS)

    Highlights: ► The system proposed can control amplitude and phase of each cavity. ► Rapid diagnostics are refreshed in milliseconds. ► Increasing control parameters will not increase consumed time neither complexity. ► IQ demodulation can be achieved thanks to the transformed values at driver level. - Abstract: The IFMIF–EVEDA (International Fusion Materials Irradiation Facility – Engineering Validation and Engineering Design Activity) linear accelerator, known as Linear IFMIF Prototype Accelerator (LIPAc), will be a 9 MeV, 125 mA continuous wave (CW) deuteron accelerator prototype to validate the technical options of the accelerator design for IFMIF. The primary mission of such facility is to test and verify materials performance when subjected to extensive neutron irradiation of the type encountered in a fusion reactor to prepare for the design, construction, licensing and safe operation of a fusion demonstration reactor (DEMO). The radio frequency (RF) power system of IFMIF–EVEDA consists of 18 RF chains working at 175 MHz with three amplification stages each. The low-level radio frequency (LLRF) controls the amplitude and phase of the signal to be synchronized with the beam and it also controls the resonance frequency of the cavities. The system is based on a commercial compact peripheral component interconnect (cPCI) field programmable gate array (FPGA) board, provided by Lyrtech and controlled by a Windows host PC. For this purpose, it is mandatory to communicate the cPCI FPGA board from EPICS Channel Access [1]. A software architecture on EPICS framework in order to control and monitor the LLRF system is presented.

  4. Exposure to radio-frequency electromagnetic fields and behavioural problems in Bavarian children and adolescents

    International Nuclear Information System (INIS)

    Only few studies have so far investigated possible health effects of radio-frequency electromagnetic fields (RF EMF) in children and adolescents, although experts discuss a potential higher vulnerability to such fields. We aimed to investigate a possible association between measured exposure to RF EMF fields and behavioural problems in children and adolescents. 1,498 children and 1,524 adolescents were randomly selected from the population registries of four Bavarian (South of Germany) cities. During an Interview data on participants' mental health, socio-demographic characteristics and potential confounders were collected. Mental health behaviour was assessed using the German version of the Strengths and Difficulties Questionnaire (SDQ). Using a personal dosimeter, we obtained radio-frequency EMF exposure profiles over 24 h. Exposure levels over waking hours were expressed as mean percentage of the reference level. Overall, exposure to radiofrequency electromagnetic fields was far below the reference level. Seven percent of the children and 5% of the adolescents showed an abnormal mental behaviour. In the multiple logistic regression analyses measured exposure to RF fields in the highest quartile was associated to overall behavioural problems for adolescents (OR 2.2; 95% CI 1.1-4.5) but not for children (1.3; 0.7-2.6). These results are mainly driven by one subscale, as the results showed an association between exposure and conduct problems for adolescents (3.7; 1.6-8.4) and children (2.9; 1.4-5.9). As this is one of the first studies that investigated an association between exposure to mobile telecommunication networks and mental health behaviour more studies using personal dosimetry are warranted to confirm these findings.

  5. Radio-Frequency (RF) Devices for Safeguards: Where We Are and Where We Need to Go

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Nathan C [ORNL; Younkin, James R [ORNL; Pickett, Chris A [ORNL; Whitaker, J Michael [ORNL

    2011-01-01

    Radio-Frequency (RF) devices have revolutionized many aspects of modern industrial processes. RF technology can enable wireless communication for tag identification, sensor communication, and asset tracking. Radio-frequency identification (RFID) is a technology that utilizes wireless communication to interrogate and identify an electronic tag attached to an item in order to identify the item. The technology can come in many forms: passive or active tags, low to ultra-wideband frequencies, small paper-thin tags to brick-sized units, and simple tags or highly integrated sensor packages. RF technology, and specifically RFID, has been applied widely in commercial markets for inventory, supply chain management, and asset tracking. Several recent studies have demonstrated the safeguards benefits of utilizing RFID versus conventional inventory tagging methods for tracking nuclear material. These studies have indicated that the RF requirements for safeguards functions are more stringent than the RF requirements for other inventory tracking and accounting applications. Additionally, other requirements must be addressed, including environmental and operating conditions, authentication, and tag location and attachment. Facility restrictions on radio spectrum, method of tag attachment, and sensitivity of the data collected impact the tag selection and system design. More important, the intended use of the system must be considered. The requirements for using RF to simply replace or supplement container identifiers such as bar codes that facilitate the inventory function will differ greatly from the requirements for deploying RF for unattended monitoring applications. Several studies have investigated these considerations to advance commercial RF devices for safeguards use, and a number of system concepts have been developed. This paper will provide an overview of past studies and current technologies, and will investigate the requirements, existing gaps, and several potential

  6. Two-dimensional attractive Fermi gases' excitations and radio-frequency spectra across the BEC/BCS crossover

    Science.gov (United States)

    Hazzard, Kaden

    2012-06-01

    We calculate the radio-frequency spectra of two-dimensional attractive Fermi gases, including final state interactions, motivated by recent measurements by the groups of Koehl, Thomas, and Zwierlein. The calculation includes coherent excitations generated by the radio-frequency probe on top of the mean field solution. We find that although the gap is identical to the two particle theory, spectral shapes are modified both by many-body effects and by final state interactions. We compare these shapes to experimental measurements.

  7. Model of the Radio Frequency (RF) Excitation Response from Monopole and Dipole Antennas in a Large Scale Tank

    Science.gov (United States)

    Wilson, Jeffrey D.; Zimmerli, Gregory A.

    2012-01-01

    Good antenna-mode coupling is needed for determining the amount of propellant in a tank through the method of radio frequency mass gauging (RFMG). The antenna configuration and position in a tank are important factors in coupling the antenna to the natural electromagnetic modes. In this study, different monopole and dipole antenna mounting configurations and positions were modeled and responses simulated in a full-scale tank model with the transient solver of CST Microwave Studio (CST Computer Simulation Technology of America, Inc.). The study was undertaken to qualitatively understand the effect of antenna design and placement within a tank on the resulting radio frequency (RF) tank spectrum.

  8. Explanation of the memory effect in argon

    Directory of Open Access Journals (Sweden)

    Marković Vidosav

    2005-01-01

    Full Text Available Memory effect - the long time variation of the electrical breakdown time delay on the relaxation time td (τ was observed in argon 24 hours after relaxation times and explained by the long-lived metastable states remaining from the preceding glow. However, the quenching processes reducing the effective lifetime of metastable states several orders of magnitude below that relevant for the time scale of observation were neglected. By applying approximate gas phase models it was found that the early afterglow kinetics up to hundreds of milliseconds is dominated by the decay of molecular argon ions Ar2+ and the approximate value of their ambipolar diffusion coefficient is determined. After that, nitrogen atoms present as impurities and recombined on the cathode surface and/or field emission determine the breakdown time delay down to the cosmic rays and natural radioactivity level.

  9. Essays on the Effect of Radio Frequency Identification (RFID) on the Management of Healthcare Supply Chain Performance

    Science.gov (United States)

    Cakici, Ozden Engin

    2012-01-01

    This dissertation examines three issues on the effect of Radio Frequency Identification (RFID) on the management of healthcare supply chain performance within the context of inventory management. Motivated by a case study conducted in a radiology practice, the second chapter analyzes the incremental benefits of RFID over barcodes for managing…

  10. Evaluation of Current Literature to Determine the Potential Effects of Radio Frequency Identification on Technology Used in Diabetes Care

    OpenAIRE

    Christe, Barbara

    2009-01-01

    This article examines recently published studies exploring the impact of radio frequency identification (RFID) systems on the technology involved in patient care. The conclusions will be extrapolated to include insulin delivery devices. Background material will also be presented to support examination of the variables involved in electromagnetic fields and potential interference from these RFID systems.

  11. A radio-frequency single-electron transistor based on an InAs/InP heterostructure nanowire

    DEFF Research Database (Denmark)

    Nilsson, Henrik A.; Duty, Tim; Abay, Simon;

    2008-01-01

    We demonstrate radio frequency single-electron transistors fabricated from epitaxially grown InAs/InP heterostructure nanowires. Two sets of double-barrier wires with different barrier thicknesses were grown. The wires were suspended 15 nm above a metal gate electrode. Electrical measurements on ...

  12. Radio frequency phototube and optical clock: High resolution, high rate and highly stable single photon timing technique

    Energy Technology Data Exchange (ETDEWEB)

    Margaryan, Amur

    2011-10-01

    A new timing technique for single photons based on the radio frequency phototube and optical clock or femtosecond optical frequency comb generator is proposed. The technique has a 20 ps resolution for single photons, is capable of operating with MHz frequencies and achieving 10 fs instability level.

  13. Semiconducting ZnSn_xGe_(1−x)N_2 alloys prepared by reactive radio-frequency sputtering

    OpenAIRE

    Shing, Amanda M.; Coronel, Naomi C.; Lewis, Nathan S.; Atwater, Harry A.

    2015-01-01

    We report on the fabrication and structural and optoelectronic characterization of II-IV-nitride ZnSn_x Ge(1−x)N_2 thin-films. Three-target reactive radio-frequency sputtering was used to synthesize non-degenerately doped semiconducting alloys having

  14. Semiconducting ZnSnxGe1−xN2 alloys prepared by reactive radio-frequency sputtering

    OpenAIRE

    Shing, Amanda M.; Coronel, Naomi C.; Lewis, Nathan S.; Atwater, Harry A.

    2015-01-01

    We report on the fabrication and structural and optoelectronic characterization of II-IV-nitride ZnSnxGe1−xN2 thin-films. Three-target reactive radio-frequency sputtering was used to synthesize non-degenerately doped semiconducting alloys having

  15. Industrial-scale radio frequency treatments for insect control in walnuts I. Heating uniformity and energy efficiency

    Science.gov (United States)

    Conducting industrial-scale confirmatory treatments is the final step in developing commercially and environmentally sound insect control technologies for in-shell walnuts using radio frequency (RF) energy as an alternative to chemical fumigation. Improving heating uniformity of in-shell walnuts in ...

  16. An Analysis of Near Field and Application of a New Comb—shaped Antenna for Radio Frequency Identification

    Institute of Scientific and Technical Information of China (English)

    YUXing-qi; SHENShuj-qun; 等

    2001-01-01

    Anew comb-shaped antenna for radio frequency identification is proposed.The kind of antenna can re-place some antenna array.So it is very convenient for omnidirectional identification.The test result proves this an-tenna is viable.

  17. Automatic DGD and GVD compensation at 640 Gb/s based on scalar radio-frequency spectrum measurement

    DEFF Research Database (Denmark)

    Paquot, Yvan; Schröder, Jochen; Palushani, Evarist;

    2013-01-01

    of separate GVD and DGD compensators using an impairment monitor based on an integrated all-optical radio-frequency (RF) spectrum analyzer. We show that low-bandwidth measurement of only a single tone in the RF spectrum is sufficient for automatic compensation for multiple degrees of freedom using...

  18. 78 FR 49529 - Radio Frequency Wireless Technology in Medical Devices; Guidance for Industry and Food and Drug...

    Science.gov (United States)

    2013-08-14

    ... Technology in Medical Devices; Guidance for Industry and Food and Drug Administration Staff; Availability... Medical Devices; Guidance for Industry and Food and Drug Administration Staff.'' This guidance document is... ``Radio Frequency Wireless Technology in Medical Devices; Guidance for Industry and Food and...

  19. Annealing kinetics of a-Si:H deposited by concentric-electrode rf glow discharge at room temperature

    OpenAIRE

    Conde, J. P.; Chan, K. K.; Blum, J.M.; Arienzo, M.; Monteiro, P. A.; Ferreira, J. A.; Chu, V.; Wyrsch, Nicolas

    2008-01-01

    The irreversible isothermal annealing of the as-deposited defects of hydrogenated amorphous silicon, a-Si:H, deposited at room temperature by concentric-electrode radio-frequency glow discharge is studied using dark and photoconductivity, space-charge limited current, and time-of-flight. The photoconductivity increases as a power law of the annealing time with exponent 0.8. The density of states at the Fermi level, measured by space-charge limited current, is inversely proportional to the ann...

  20. Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats.

    Science.gov (United States)

    Sırav, Bahriye; Seyhan, Nesrin

    2016-09-01

    With the increased use of mobile phones, their biological and health effects have become more important. Usage of mobile phones near the head increases the possibility of effects on brain tissue. This study was designed to investigate the possible effects of pulse modulated 900MHz and 1800MHz radio-frequency radiation on the permeability of blood-brain barrier of rats. Study was performed with 6 groups of young adult male and female wistar albino rats. The permeability of blood-brain barrier to intravenously injected evans blue dye was quantitatively examined for both control and radio-frequency radiarion exposed groups. For male groups; Evans blue content in the whole brain was found to be 0.08±0.01mg% in the control, 0.13±0.03mg% in 900MHz exposed and 0.26±0.05mg% in 1800MHz exposed animals. In both male radio-frequency radiation exposed groups, the permeability of blood-brain barrier found to be increased with respect to the controls (pradiation exposure was found more effective on the male animals (p0.01). However 900MHz pulse modulated radio-frequency exposure was found effective on the permeability of blood-brain barrier of female animals. Results have shown that 20min pulse modulated radio-frequency radiation exposure of 900MHz and 1800MHz induces an effect and increases the permeability of blood-brain barrier of male rats. For females, 900MHz was found effective and it could be concluded that this result may due to the physiological differences between female and male animals. The results of this study suggest that mobile phone radation could lead to increase the permeability of blood-brain barrier under non-thermal exposure levels. More studies are needed to demonstrate the mechanisms of that breakdown.

  1. Surface analysis by glow discharge spectrometry: cathode zone and sputtering yield

    International Nuclear Information System (INIS)

    Applications of the glow discharge optical spectroscopy for surface analysis are numerous. Moreover, this method enables to get qualitative and semi-quantitative results which are already significant. However, we should improve our knowledge of the physical parameters involved in the glow discharge lamp mechanisms and learn to handle such phenomena. The problems can be divided into two categories: sputtering of the target under argon ions accelerated in the cathode dark space, and luminous emission of torn away species which reach the negative glow region. Our aim was to take stock of the present theoretical knowledge which can be applied to the specific self-maintained glow discharge plasma. Moreover, we tried to link together (often roughly) the basic discharge parameters, i.e. current intensity I, voltage of the lamp Vg, pressure of the gas p. Specially a comparison between theoretical and experimental results was established concerning the pure target sputtering yields. The contribution of the argon ions striking the cathode is estimated taking into account their energetic distribution. The role of the fast argon neutrals produced by charge exchange with the ions is important; we evaluated their energetic distribution and their contribution to sputtering. The total theoretical sputtering yield is inferred: the comparison with experimental results is presented. The role of the gas temperature is emphasized

  2. Detection of surface glow related to spacecraft glow phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Langer, W.D.; Cohen, S.A.; Manos, D.M.; Motley, R.W.; Ono, M.; Paul, S.; Roberts, D.; Selberg, H.

    1986-02-01

    We have developed a high flux source of low energy neutral beams to study the spacecraft glow phenomena by using a biased limiter to neutralize plasma in ACT-1. Beams of nitrogen and nitrogen-oxygen mixtures with energies of 1 to 15 eV and fluxes greater than or equal to 10/sup 14//cm/sup 2//s were directed on target surfaces consisting of Z-302 and Z-306 paints. With the nitrogen beams we successfully detected a glow due to beam-surface interactions. In addition, we discovered a volume glow effect due to beam-gas interactions which may also play a role in spacecraft glow. 11 refs., 14 figs.

  3. Analytical–numerical global model of atmospheric-pressure radio-frequency capacitive discharges

    International Nuclear Information System (INIS)

    A one-dimensional hybrid analytical–numerical global model of atmospheric-pressure, radio-frequency (rf) driven capacitive discharges is developed. The feed gas is assumed to be helium with small admixtures of oxygen or nitrogen. The electrical characteristics are modeled analytically as a current-driven homogeneous discharge. The electron power balance is solved analytically to determine a time-varying Maxwellian electron temperature, which oscillates on the rf timescale. Averaging over the rf period yields effective rate coefficients for gas phase activated processes. The particle balance relations for all species are then integrated numerically to determine the equilibrium discharge parameters. The coupling of analytical solutions of the time-varying discharge and electron temperature dynamics, and numerical solutions of the discharge chemistry, allows for a fast solution of the discharge equilibrium. Variations of discharge parameters with discharge composition and rf power are determined. Comparisons are made to more accurate but numerically costly fluid models, with space and time variations, but with the range of parameters limited by computational time. (paper)

  4. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Bayliss, D L; Walsh, J L; Iza, F; Kong, M G [Department of Electronic and Electrical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Shama, G [Department of Chemical Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)], E-mail: m.g.kong@lboro.ac.uk

    2009-11-15

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  5. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet

    Science.gov (United States)

    Bayliss, D. L.; Walsh, J. L.; Shama, G.; Iza, F.; Kong, M. G.

    2009-11-01

    Surface-borne amyloid aggregates with mature fibrils are used as a non-infectious prion model to evaluate cold atmospheric plasmas (CAPs) as a prion inactivation strategy. Using a helium-oxygen CAP jet with pulsed radio-frequency (RF) excitation, amyloid aggregates deposited on freshly cleaved mica discs are reduced substantially leaving only a few spherical fragments of sub-micrometer sizes in areas directly treated by the CAP jet. Outside the light-emitting part of the CAP jet, plasma treatment results in a 'skeleton' of much reduced amyloid stacks with clear evidence of fibril fragmentation. Analysis of possible plasma species and the physical configuration of the jet-sample interaction suggests that the skeleton structures observed are unlikely to have arisen as a result of physical forces of detachment, but instead by progressive diffusion of oxidizing plasma species into porous amyloid aggregates. Composition of chemical bonds of this reduced amyloid sample is very different from that of intact amyloid aggregates. These suggest the possibility of on-site degradation by CAP treatment with little possibility of spreading contamination elsewhere , thus offering a new reaction chemistry route to protein infectivity control with desirable implications for the practical implementation of CAP-based sterilization systems.

  6. Pulsed Discharge Effects on Bacteria Inactivation in Low-Pressure Radio-Frequency Oxygen Plasma

    Science.gov (United States)

    Vicoveanu, Dragos; Ohtsu, Yasunori; Fujita, Hiroharu

    2008-02-01

    The sporicidal effects of low-pressure radio frequency (RF) discharges in oxygen, produced by the application of continuous and pulsed RF power, were evaluated. For all cases, the survival curves showed a biphasic evolution. The maximum efficiency for bacteria sterilization was obtained when the RF power was injected in the continuous wave mode, while in the pulsed mode the lowest treatment temperature was ensured. The inactivation rates were calculated from the microorganism survival curves and their dependencies on the pulse characteristics (i.e., pulse frequency and duty cycle) were compared with those of the plasma parameters. The results indicated that the inactivation rate corresponding to the first phase of the survival curves is related to the time-averaged intensity of the light emission by the excited neutral atoms in the pulsed plasma, whereas the inactivation rate calculated from the second slope of the survival curves and the time-averaged plasma density have similar behaviors, when the pulse parameters were modified.

  7. PROTOTYPE DESIGN SYSTEM FOR MOBILE WEB USING RADIO FREQUENCY IDENTIFICATION AT PARKING BUILDING

    Directory of Open Access Journals (Sweden)

    Derwin Suhartono

    2013-01-01

    Full Text Available Several factors cause people forget things. They are retrieval failure, interference failure to store and motivated forgetting. So, it is considered to have tools in order to prevent those. This happens almost everywhere, including when the drivers forgot where their car has been parked. Furthermore, the increase of parking fee is also considerable. The purpose of this research is to design a prototype system for mobile web as one of the helpful tools for car parking location reminder using Radio Frequency Identification (RFID technology that implemented at the parking building. The research is conducted by direct observation of the current system, do a comparison of similar applications, design the architecture of the system, make the programs, create a mock-up and mobile web as a prototype. The result of this research is a prototype of parking location reminder using RFID-based on mobile web. The mobile web displays information menu such as the location and the parking information. Based on the research, it is concluded that the mobile web can be used as one of solutions for parking location reminder and allows users to view information such as the parking duration and the parking fee estimation.

  8. On the comparison of energy sources: feasibility of radio frequency and ambient light harvesting

    CERN Document Server

    Korotkevich, Alexander O; Lavrova, Olga; Coutsias, Evangelos

    2015-01-01

    With growing interest in multi source energy harvesting including integrated microchips we propose a comparison of radio frequency (RF) and solar energy sources in a typical city. Harvesting devices for RF and solar energy will be competing for space of a compact micro or nano device as well as for orientation with respect to the energy source. This is why it is important to investigate importance of every source of energy and make a decision whether it will be worthwhile to include such harvesters. We considered theoretically possible irradiance by RF signal in different situations, typical for the modern urban environment and compared it with ambient solar energy sources available through the night, including moon light. Our estimations show that solar light energy dominates by far margin practically all the time, even during the night, if there is a full moon in the absence of clouds. At the same time, in the closed compartments or at the new moon RF harvesting can be beneficial as a source of "free" energ...

  9. Preparation and properties of erbium oxide films deposited by radio frequency magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanping [China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Zhu, Shengfa, E-mail: zhushf-306@163.com [China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Liu, Tianwei; Li, Fangfang; Zhang, Yanzhi [China Academy of Engineering Physics, Mianyang 621900, Sichuan Province (China); Rao, Yongchu; Zhang, Yongbin [Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907, Sichuan Province (China)

    2014-07-01

    The erbium oxide (Er{sub 2}O{sub 3}) film is considered as a candidate for tritium permeation barrier in recent years because of its low permeation reduced ratio and easy accessibility. Erbium oxide films with different thickness were prepared by radio frequency magnetron sputtering with varying substrate temperature and sputtering time. The film surface morphology, structure, residual stress and deuterium permeation behavior were investigated. The films were compact and smooth, while the thickness varied from 200 nm to 1000 nm. The (2 2 2) preferential orientation of Er{sub 2}O{sub 3} depressed, when the substrate temperature above 200 °C. With the substrate temperature increasing from RT to 200 °C, the compressive stress became larger, and it converted into tensile stress deposited at 400 °C. The residual stress transformed from tensile to compressive stress as the film got thicker. The permeation flux of the sample deposited with Er{sub 2}O{sub 3} film was 2 orders of magnitude less than that of uncoated one. The permeation reduced factor (PRF) of 0.5-μm Er{sub 2}O{sub 3} film deposited at room temperature is about 300 at 773 K.

  10. Binder-free highly conductive graphene laminate for low cost printed radio frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xianjun; Leng, Ting; Zhang, Xiao; Hu, Zhirun, E-mail: Z.Hu@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester (United Kingdom); Chen, Jia Cing; Chang, Kuo Hsin [BGT Materials Limited, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Geim, Andre K. [Manchester Centre for Mesoscience and Nanotechnology, University of Manchester, Manchester (United Kingdom); Novoselov, Kostya S. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)

    2015-05-18

    In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 10{sup 4 }S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks.

  11. Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system.

    Science.gov (United States)

    Hannan, M A; Arebey, Maher; Begum, R A; Basri, Hassan

    2011-12-01

    This paper deals with a system of integration of Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system. RFID, GPS, GPRS and GIS along with camera technologies have been integrated and developed the bin and truck intelligent monitoring system. A new kind of integrated theoretical framework, hardware architecture and interface algorithm has been introduced between the technologies for the successful implementation of the proposed system. In this system, bin and truck database have been developed such a way that the information of bin and truck ID, date and time of waste collection, bin status, amount of waste and bin and truck GPS coordinates etc. are complied and stored for monitoring and management activities. The results showed that the real-time image processing, histogram analysis, waste estimation and other bin information have been displayed in the GUI of the monitoring system. The real-time test and experimental results showed that the performance of the developed system was stable and satisfied the monitoring system with high practicability and validity.

  12. Project PROMETHEUS: Design and Construction of a Radio Frequency Quadrupole at TAEK

    CERN Document Server

    Turemen, G; Mete, O; Celik, M; Sali, Z; Akgun, Y; Alacakir, A; Bolukdemir, S; Durukan, E; Karadeniz, H; Recepoglu, E; Cavlan, E; Unel, G; Erhan, S

    2013-01-01

    The PROMETHEUS Project is ongoing for the design and development of a 4-vane radio frequency quadrupole (RFQ) together with its H+ ion source, a low energy beam transport (LEBT) line and diagnostics section. The main goal of the project is to achieve the acceleration of the low energy ions up to 1.5 MeV by an RFQ (352 MHz) shorter than 2 meter. A plasma ion source is being developed to produce a 20 keV, 1 mA H+ beam. Simulation results for ion source, transmission and beam dynamics are presented together with analytical studies performed with newly developed RFQ design code DEMIRCI. Simulation results shows that a beam transmission 99% could be achieved at 1.7 m downstream reaching an energy of 1.5 MeV. As the first phase an Aluminum RFQ prototype, the so-called cold model, will be built for low power RF characterization. In this contribution the status of the project, design considerations, simulation results, the various diagnostics techniques and RFQ manufacturing issues are discussed.

  13. Effect of Radio Frequency Heating on Yoghurt, II: Microstructure and Texture

    Directory of Open Access Journals (Sweden)

    Caroline Siefarth

    2014-06-01

    Full Text Available Radio frequency (RF heating was applied to stirred yoghurt after culturing in order to enhance the shelf-life and thereby meet industrial demands in countries where the distribution cold chain cannot be implicitly guaranteed. In parallel, a convectional (CV heating process was also tested. In order to meet consumers’ expectations with regard to texture and sensory properties, the yoghurts were heated to different temperatures (58, 65 and 72 °C. This second part of our feasibility study focused on the changes in microstructure and texture caused by post-fermentative heat treatment. It was shown that there were always microstructural changes with additional heat treatment. Compared to the dense and compact casein network in the stirred reference yoghurt, network contractions and further protein aggregation were observed after heat treatment, while at the same time larger pore geometries were detected. The changes in microstructure as well as other physical and sensorial texture properties (syneresis, hardness, cohesiveness, gumminess, apparent viscosity, G’, G’’, homogeneity were in good agreement with the temperature and time of the heat treatment (thermal stress. The RF heated products were found to be very similar to the stirred reference yoghurt, showing potential for further industrial development such as novel heating strategies to obtain products with prolonged shelf-life.

  14. Improved Radio Frequency Identification Indoor Localization Method via Radial Basis Function Neural Network

    Directory of Open Access Journals (Sweden)

    Dongliang Guo

    2014-01-01

    Full Text Available Indoor localization technique has received much attention in recent years. Many techniques have been developed to solve the problem. Among the recent proposed methods, radio frequency identification (RFID indoor localization technology has the advantages of low-cost, noncontact, non-line-of-sight, and high precision. This paper proposed two radial basis function (RBF neural network based indoor localization methods. The RBF neural networks are trained to learn the mapping relationship between received signal strength indication values and position of objects. Traditional method used the received signal strength directly as the input of neural network; we added another input channel by taking the difference of the received signal strength, thus improving the reliability and precision of positioning. Fuzzy clustering is used to determine the center of radial basis function. In order to reduce the impact of signal fading due to non-line-of-sight and multipath transmission in indoor environment, we improved the Gaussian filter to process received signal strength values. The experimental results show that the proposed method outperforms the existing methods as well as improves the reliability and precision of the RFID indoor positioning system.

  15. Reversibly Stretchable, Optically Transparent Radio-Frequency Antennas Based on Wavy Ag Nanowire Networks.

    Science.gov (United States)

    Kim, Byoung Soo; Shin, Keun-Young; Pyo, Jun Beom; Lee, Jonghwi; Son, Jeong Gon; Lee, Sang-Soo; Park, Jong Hyuk

    2016-02-01

    We report a facile approach for producing reversibly stretchable, optically transparent radio-frequency antennas based on wavy Ag nanowire (NW) networks. The wavy configuration of Ag NWs is obtained by floating the NW networks on the surface of water, followed by compression. Stretchable antennas are prepared by transferring the compressed NW networks onto elastomeric substrates. The resulting antennas show excellent performance under mechanical deformation due to the wavy configuration, which allows the release of stress applied to the NWs and an increase in the contact area between NWs. The antennas formed from the wavy NW networks exhibit a smaller return loss and a higher radiation efficiency when strained than the antennas formed from the straight NW networks, as well as an improved stability in cyclic deformation tests. Moreover, the wavy NW antennas require a relatively small quantity of NWs, which leads to low production costs and provides an optical transparency. These results demonstrate the potential of these wavy Ag NW antennas in applications of wireless communications for wearable systems.

  16. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy

    Science.gov (United States)

    Tamarov, Konstantin P.; Osminkina, Liubov A.; Zinovyev, Sergey V.; Maximova, Ksenia A.; Kargina, Julia V.; Gongalsky, Maxim B.; Ryabchikov, Yury; Al-Kattan, Ahmed; Sviridov, Andrey P.; Sentis, Marc; Ivanov, Andrey V.; Nikiforov, Vladimir N.; Kabashin, Andrei V.; Timoshenko, Victor Yu

    2014-11-01

    Offering mild, non-invasive and deep cancer therapy modality, radio frequency (RF) radiation-induced hyperthermia lacks for efficient biodegradable RF sensitizers to selectively target cancer cells and thus avoid side effects. Here, we assess crystalline silicon (Si) based nanomaterials as sensitizers for the RF-induced therapy. Using nanoparticles produced by mechanical grinding of porous silicon and ultraclean laser-ablative synthesis, we report efficient RF-induced heating of aqueous suspensions of the nanoparticles to temperatures above 45-50°C under relatively low nanoparticle concentrations (nanoparticles the heating rate was linearly dependent on nanoparticle concentration, while laser-ablated nanoparticles demonstrated a remarkably higher heating rate than porous silicon-based ones for the whole range of the used concentrations from 0.01 to 0.4 mg/mL. The observed effect is explained by the Joule heating due to the generation of electrical currents at the nanoparticle/water interface. Profiting from the nanoparticle-based hyperthermia, we demonstrate an efficient treatment of Lewis lung carcinoma in vivo. Combined with the possibility of involvement of parallel imaging and treatment channels based on unique optical properties of Si-based nanomaterials, the proposed method promises a new landmark in the development of new modalities for mild cancer therapy.

  17. Monitoring Pharmacy Student Adherence to World Health Organization Hand Hygiene Indications Using Radio Frequency Identification.

    Science.gov (United States)

    Decker, Andrew S; Cipriano, Gabriela C; Tsouri, Gill; Lavigne, Jill E

    2016-04-25

    Objective. To assess and improve student adherence to hand hygiene indications using radio frequency identification (RFID) enabled hand hygiene stations and performance report cards. Design. Students volunteered to wear RFID-enabled hospital employee nametags to monitor their adherence to hand-hygiene indications. After training in World Health Organization (WHO) hand hygiene methods and indications, student were instructed to treat the classroom as a patient care area. Report cards illustrating individual performance were distributed via e-mail to students at the middle and end of each 5-day observation period. Students were eligible for individual and team prizes consisting of Starbucks gift cards in $5 increments. Assessment. A hand hygiene station with an RFID reader and dispensing sensor recorded the nametag nearest to the station at the time of use. Mean frequency of use per student was 5.41 (range: 2-10). Distance between the student's seat and the dispenser was the only variable significantly associated with adherence. Student satisfaction with the system was assessed by a self-administered survey at the end of the study. Most students reported that the system increased their motivation to perform hand hygiene as indicated. Conclusion. The RFID-enabled hand hygiene system and benchmarking reports with performance incentives was feasible, reliable, and affordable. Future studies should record video to monitor adherence to the WHO 8-step technique.

  18. Fluid-dynamic characterization of a radio-frequency induction thermal plasma system for nanoparticle synthesis

    International Nuclear Information System (INIS)

    The fluid flow in a radio-frequency induction thermal plasma (RF-ITP) system for the synthesis of nanoparticles has been characterized using three- and two-dimensional modelling supported by enthalpy probe and calorimetric measurements in order to provide insights for the improvement of the process. The RF-ITP system is composed of a commercial inductively coupled plasma torch mounted on a reaction chamber that is equipped with viewports for diagnostics. The three-dimensional model predicted an almost axisymmetric temperature field in the reaction chamber in agreement with enthalpy probe measurements performed along two perpendicular scan axes, whereas recirculating flow patterns resulted in being strongly non-axisymmetric. Temperature profiles at two distances (60 mm and 100 mm) from the torch outlet have been calculated using two-dimensional modelling and compared with enthalpy probe measurements for different operating conditions with the aim of validating the predictive ability of the modelling tool. Calorimetric measurements have been performed in order to estimate the power coupled to the torch, which is usually an arbitrary input parameter for the models. Poor agreement was obtained between energy balances from modelling and from calorimetric measurements and, starting from this, a discussion on the uncertainties in the calculation of the radiative losses has been proposed. Finally, new insights for the improvement of the process of nanoparticle synthesis in the RF-ITP system are suggested. (paper)

  19. Radio frequency tomography for the investigation of cracks in reinforced concrete structures

    Science.gov (United States)

    Negishi, Tadahiro; Gennarelli, Gianluca; Soldovieri, Francesco; Erricolo, Danilo

    2016-04-01

    We are interested in investigating the presence of cracks inside reinforced concrete structures using Radio Frequency Tomography (RFT). RFT applies electromagnetic waves to probe the environment and is based on the use of multiple transmitting and receiving antennas. RFT is a multistatic system where the volume under investigation is illuminated and observed from different directions, which results into an increase in resolution. In an application of RFT there are two main phases: the forward problem and the inverse reconstruction. The forward problem consists in the determination of the electromagnetic field scattered by the volume under investigation, which is illuminated by the transmitters. The scattered field depends on the spatial distribution of the dielectric permittivity in the volume under investigation. This distribution determines the contrast function. The inverse problem consists of the reconstruction of the contrast function from the scattered electromagnetic field. One of the challenges in RFT is the determination of the best approach to solve the inverse problem. In order to focus solely on the behavior of the inverse approach, we consider simplified geometries for the volume under investigation, such as a cylindrical concrete pillar with a metallic steel bar that is coaxial to the cylinder. In this way, it is possible to analytically evaluate the scattered electromagnetic field in an exact way. We then investigate the behavior of the reconstruction approach from the point of view of (1) geometry of the illumination and observation antennas; (2) frequency used to illuminate the volume under interest; (3) fusion of the results obtained at various frequencies.

  20. AGENT AND RADIO FREQUENCY IDENTIFICATION BASED ARCHITECTURE FOR SUPERMARKET INFORMATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Hasan Al-Sakran

    2013-01-01

    Full Text Available In recent years the acceptance of Radio Frequency Identification (RFID technology in business environments has been increasing rapidly due to its competitive business value. Adopting a suitable RFID-based information system has become increasingly important for supermarkets. However, most supermarkets still use conventional barcode-based systems to manage their information processes, which are consistently reported as one of the most unenthusiastic aspects of supermarket shopping for both customers and management. We propose an RFID agent-based architecture that adopts intelligent agent technology with an RFID based applications. RFID provides capability to uniquely identify an object within a supermarket area, while agents are able to establish a channel of communication which can be used to facilitate communications between a RFID device and supermarket back-end system. The proposed framework includes a design of intelligent mobile shopping cart equipped with both RFID and agent technologies. As a result of using the proposed RFID agent based architecture, the customer shopping experience will be improved due to ease of retrieving of the detailed information on items and quick checkout by scanning all items at once, thus eliminating queues. From supermarket management point of view the proposed architecture will reduce the cost of operation e.g., decreasing cost of goods sold which comes in the form of labor efficiency in areas of checkout operation, inventory management and alerting the supermarket management when a certain product is running out of stock and needs to be restocked.