Sample records for argon iodides

  1. Potassium Iodide (United States)

    Potassium iodide is used to protect the thyroid gland from taking in radioactive iodine that may be released ... damage the thyroid gland. You should only take potassium iodide if there is a nuclear radiation emergency and ...

  2. Potassium Iodide (KI) (United States)

    ... Health Matters Information on Specific Types of Emergencies Potassium Iodide (KI) Language: English Español (Spanish) Recommend on Facebook ... can I get KI (potassium iodide)? What is Potassium Iodide (KI)? KI (potassium iodide) is a salt of ...

  3. dl-Alaninium iodide

    Directory of Open Access Journals (Sweden)

    Kevin Lamberts


    Full Text Available The crystal structure of dl-alanine hydroiodide (1-carboxyethanaminium iodide, C3H8NO2+·I−, is that of an organic salt consisting of N-protonated cations and iodide anions. The compound features homochiral helices of N—H...O hydrogen-bonded cations in the [010] direction; neighbouring chains are related by crystallographic inversion centers and hence show opposite chirality. The iodide counter-anions act as hydrogen-bond acceptors towards H atoms of the ammonium and carboxy groups, and cross-link the chains along [100]. Thus, an overall two-dimensional network is formed in the ab plane. No short contacts occur between iodide anions.

  4. 21 CFR 184.1265 - Cuprous iodide. (United States)


    ... with potassium iodide under slightly acidic conditions. (b) The ingredient must be of a purity suitable... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cuprous iodide. 184.1265 Section 184.1265 Food and... Substances Affirmed as GRAS § 184.1265 Cuprous iodide. (a) Cuprous iodide (copper (I) iodide, CuI, CAS...

  5. Synthesis of mercuric iodide and bismuth tri-iodide nanoparticles for heavy metal iodide films nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Fornaro, L.; Pereira, H.Bentos [Compound Semiconductors Group, CURE, Universidad de la Republica, Rocha (Uruguay); Aguiar, I.; Perez Barthaburu, M. [Compound Semiconductors Group, Facultad de Quimica, Univ. de la Republica, Montevideo (Uruguay)


    We synthesized mercuric iodide and bismuth tri-iodide nanoparticles by suspension in octadecene, from Hg(NO{sub 3}){sub 2}.H{sub 2}O and I{sub 2}, and from Bi(NO{sub 3}){sub 3}.5H{sub 2}O and I{sub 2}, respectively. The best synthesis conditions were 2 h at 70-80 C, followed by 10 min at 110 C for mercuric iodide nanoparticles, and 4 h at 80-110 C, followed by 10 min at 180-210 C for bismuth tri-iodide ones. Nanoparticles were then washed and centrifuged with ether repeatedly. Compounds identity was confirmed by X-ray diffraction (XRD) and energy dispersive spectrometry (EDS). We found shifts of the X-ray diffraction maxima for nanoparticles of both compounds. We characterized the nanoparticles by transmission (TEM) and scanning (SEM) electron microscopy. We obtained disk-like and squared mercuric iodide nanostructures, 80-140 nm and 100-125 nm in size respectively. We also obtained rounded and rod-like bismuth tri-iodide nanoparticles, 30-500 nm in size. Acetonitrile and isopropanol suspensions of mercuric iodide nanoparticles, and acetonitrile suspension of bismuth tri-iodide nanoparticles exhibited peak maxima shifts in their UV-Vis spectra. We synthesized for the first time mercuric iodide and bismuth tri-iodide nanoparticles by the suspension method, although we have not yet obtained uniform shape and size distributions. They offer interesting perspectives for crystalline film nucleation and for improving current applications of these materials, as well as for opening new ones. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. 21 CFR 172.375 - Potassium iodide. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 172.375 Section 172.375 Food and... Dietary and Nutritional Additives § 172.375 Potassium iodide. The food additive potassium iodide may be safely used in accordance with the following prescribed conditions: (a) Potassium iodide may be...

  7. Argon in action

    CERN Multimedia

    Corinne Pralavorio


    Over the past few days, the SPS has been accelerating argon ions, which have started to be sent to the NA61/SHINE experiment. This operating mode, using a new type of ion, required a number of modifications to the accelerator.   Picture 1: a “super-cycle” of the SPS, featuring a proton cycle for the LHC, followed by an argon ion cycle for the North Area. Today, the accelerators are once again juggling particles and even performing completely new tricks. The SPS is supplying beams of argon ions for the first time, at energies never before achieved for this type of beam. They are destined for the NA61/SHINE experiment (see box) located in the North Area, which began receiving the beams on 11 February. Argon ions have a relatively large mass, as they consist of 40 nucleons, so they can be used in a similar way to lead ions. The main difficulty in accelerating them lies in the SPS, where the variation in acceleration frequency is limited. “The SPS was designed for a...

  8. Iodide transport and breast cancer. (United States)

    Poole, Vikki L; McCabe, Christopher J


    Breast cancer is the second most common cancer worldwide and the leading cause of cancer death in women, with incidence rates that continue to rise. The heterogeneity of the disease makes breast cancer exceptionally difficult to treat, particularly for those patients with triple-negative disease. To address the therapeutic complexity of these tumours, new strategies for diagnosis and treatment are urgently required. The ability of lactating and malignant breast cells to uptake and transport iodide has led to the hypothesis that radioiodide therapy could be a potentially viable treatment for many breast cancer patients. Understanding how iodide is transported, and the factors regulating the expression and function of the proteins responsible for iodide transport, is critical for translating this hypothesis into reality. This review covers the three known iodide transporters - the sodium iodide symporter, pendrin and the sodium-coupled monocarboxylate transporter - and their role in iodide transport in breast cells, along with efforts to manipulate them to increase the potential for radioiodide therapy as a treatment for breast cancer.

  9. Future liquid Argon detectors

    CERN Document Server

    Rubbia, A


    The Liquid Argon Time Projection Chamber offers an innovative technology for a new class of massive detectors for rare-event detection. It is a precise tracking device that allows three-dimensional spatial reconstruction with mm-scale precision of the morphology of ionizing tracks with the imaging quality of a "bubble chamber", provides $dE/dx$ information with high sampling rate, and acts as high-resolution calorimeter for contained events. First proposed in 1977 and after a long maturing process, its holds today the potentialities of opening new physics opportunities by providing excellent tracking and calorimetry performance at the relevant multi-kton mass scales, outperforming other techniques. In this paper, we review future liquid argon detectors presently being discussed by the neutrino physics community.

  10. Frequently Asked Questions on Potassium Iodide (KI) (United States)

    ... Bioterrorism and Drug Preparedness Frequently Asked Questions on Potassium Iodide (KI) Share Tweet Linkedin Pin it More sharing ... Drug Administration (FDA) issued a final Guidance on Potassium Iodide as a Thyroid Blocking Agent in Radiation Emergencies) ( ...

  11. 21 CFR 582.5634 - Potassium iodide. (United States)


    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium iodide. 582.5634 Section 582.5634 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5634 Potassium iodide. (a) Product. Potassium iodide. (b) Tolerance. 0.01 percent....

  12. 21 CFR 184.1634 - Potassium iodide. (United States)


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium iodide. 184.1634 Section 184.1634 Food... Specific Substances Affirmed as GRAS § 184.1634 Potassium iodide. (a) Potassium iodide (KI, CAS Reg. No. 7681-11-0) is the potassium salt of hydriodic acid. It occurs naturally in sea water and in...

  13. Depleted argon from underground sources

    Energy Technology Data Exchange (ETDEWEB)

    Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab


    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  14. The Liquid Argon Purity Demonstrator

    CERN Document Server

    Adamowski, M; Dvorak, E; Hahn, A; Jaskierny, W; Johnson, C; Jostlein, H; Kendziora, C; Lockwitz, S; Pahlka, B; Plunkett, R; Pordes, S; Rebel, B; Schmitt, R; Stancari, M; Tope, T; Voirin, E; Yang, T


    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  15. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.


    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  16. Proton Scattering on Liquid Argon (United States)

    Bouabid, Ryan; LArIAT Collaboration


    LArIAT (Liquid Argon In A Test-beam) is a liquid argon time projection chamber (LArTPC) positioned in a charged particle beamline whose primary purpose is to study the response of LArTPC's to charged particle interactions. This previously unmeasured experimental data will allow for improvement of Monte Carlo simulations and development of identification techniques, important for future planned LArTPC neutrino experiments. LArIAT's beamline is instrumented to allow for the identification of specific particles as well as measurement of those particles' incoming momenta. Among the particles present in the beamline, the analysis presented here focuses on proton-Argon interactions. This study uses particle trajectories and calorimetric information to identify proton-Argon interaction candidates. We present preliminary data results on the measurement of the proton-Argon cross-section. Liquid Argon In A Test Beam. The work is my analysis made possible through the efforts of LArIAT detector, data, and software.

  17. [Rare, severe hypersensitivity reaction to potassium iodide]. (United States)

    Korsholm, Anne Sofie; Ebbehøj, Eva; Richelsen, Bjørn


    The literature reports a large variety of adverse reactions to potassium iodide. A severe hypersensitivity reaction to potassium iodide in a 51-year-old woman with Graves' thyrotoxicosis is described. Following administration the patient developed sialadenitis, conjunctivitis, stomatitis and acneiform iododerma that responded dramatically to withdrawal of the potassium iodide and administration with corticosteroids. Awareness of these adverse reactions may prevent prolonged hospitalization and unnecessary tests and treatments.

  18. Uptake of iodide in the marine haptophyte Isochrysis sp. (T.ISO) driven by iodide oxidation. (United States)

    van Bergeijk, Stef A; Hernández Javier, Laura; Heyland, Andreas; Manchado, Manuel; Pedro Cañavate, José


    Uptake of iodide was studied in the marine microalga Isochrysis sp. (isol. Haines, T.ISO) during short-term incubations with radioactive iodide ((125) I(-) ). Typical inhibitors of the sodium/iodide symporter (NIS) did not inhibit iodide uptake, suggesting that iodide is not taken up through this transport protein, as is the case in most vertebrate animals. Oxidation of iodide was found to be an essential step for its uptake by T.ISO and it seemed likely that hypoiodous acid (HOI) was the form of iodine taken up. Uptake of iodide was inhibited by the addition of thiourea and of other reducing agents, like L-ascorbic acid, L-glutathione and L-cysteine and increased after the addition of oxidized forms of the transition metals Fe and Mn. The simultaneous addition of both hydrogen peroxide (H2 O2 ) and a known iodide-oxidizing myeloperoxidase (MPO) significantly increased iodine uptake, but the addition of H2 O2 or MPO separately, had no effect on uptake. This confirms the observation that iodide is oxidized prior to uptake, but it puts into doubt the involvement of H2 O2 excretion and membrane-bound or extracellular haloperoxidase activity of T.ISO. The increase of iodide uptake by T.ISO upon Fe(III) addition suggests the nonenzymatic oxidation of iodide by Fe(III) in a redox reaction and subsequent influx of HOI. This is the first report on the mechanism of iodide uptake in a marine microalga.

  19. Neutron Detection with Mercuric Iodide

    CERN Document Server

    Bell, Z A


    Mercuric iodide is a high-density, high-Z semiconducting material useful for gamma ray detection. This makes it convertible to a thermal neutron detector by covering it with a boron rich material and detecting the 478 keV gamma rays resulting from the sup 1 sup 0 B(n, alpha) sup 7 Li* reaction. However, the 374 barn thermal capture cross section of sup n sup a sup t Hg, makes the detector itself an attractive absorber, and this has been exploited previously. Since previous work indicates that there are no low-energy gamma rays emitted in coincidence with the 368 keV capture gamma from the dominant sup 1 sup 9 sup 9 Hg(n, gamma) sup 2 sup 0 sup 0 Hg reaction, only the 368 keV capture gamma is seen with any efficiency a relatively thin (few mm) detector. In this paper we report preliminary measurements of neutrons via capture reactions in a bare mercuric iodide crystal and a crystal covered in sup 1 sup 0 B-loaded epoxy. The covered detector is an improvement over the bare detector because the presence of both ...

  20. Predissociation dynamics of lithium iodide

    CERN Document Server

    Schmidt, H; Stienkemeier, F; Bogomolov, A S; Baklanov, A V; Reich, D M; Skomorowski, W; Koch, C P; Mudrich, M


    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li+ and LiI+ ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V=650(20) reciprocal cm. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  1. Predissociation dynamics of lithium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H.; Vangerow, J. von; Stienkemeier, F.; Mudrich, M., E-mail: [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany); Bogomolov, A. S. [Institute of Chemical Kinetics and Combustion, Novosibirsk 630090 (Russian Federation); Baklanov, A. V. [Institute of Chemical Kinetics and Combustion, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Reich, D. M.; Skomorowski, W.; Koch, C. P. [Theoretische Physik, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel (Germany)


    The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li{sup +} and LiI{sup +} ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V{sub XA} = 650(20) cm{sup −1}. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

  2. Attainable superheat of argon-helium, argon-neon solutions. (United States)

    Baidakov, Vladimir G; Kaverin, Aleksey M; Andbaeva, Valentina N


    The method of lifetime measurement has been used to investigate the kinetics of spontaneous boiling-up of superheated argon-helium and argon-neon solutions. Experiments were made at a pressure of p = 1.5 MPa and concentrations up to 0.33 mol% in the range of nucleation rates from 10 (4) to 10 (8) s (-1) m (-3). The homogeneous nucleation regime has been distinguished. With good agreement between experimental data and homogeneous nucleation theory in temperature and concentration dependences of the nucleation rate, a systematic underestimation by 0.25-0.34 K has been revealed in superheat temperatures over the saturated line attained by experiment as compared with theoretical values calculated in a macroscopic approximation. The revealed disagreement between theory and experiment is connected with the dependence of the properties of new-phase nuclei on their size.

  3. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  4. Composing Experimental Environment of PRIDE Argon cell

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Seonho; Jang, Yongkuk; Cho, Il Je [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    In PRIDE depleted Uranium feed material and a depleted Uranium mixed with some surrogate material are used for performing engineering scale Pyroprocessing. PRIDE has to maintain inert atmosphere because of the characteristic of Electrolytic Reduction technology, Electro refining technology, Electrowinning technology. The impurity concentration of the Argon cell has to be under 50 ppm(Oxygen, moisture). Atmospheric pressure changes and temperature changes can affect the Argon cell's impurity concentration. In this paper, how to compose the Argon cell impurity concentration under 50 ppm to make the exact optimal experimental environment(Oxygen, moisture) will be introduced. Composing the exact optimal experimental environment by supplying Argon gas have been introduced in this paper. Continuously supplying Argon gas which is heavier than the Oxygen through the bottom of the Argon cell the oxygen eventually discharged through the high vent fan and lower the impurity concentration of Oxygen.

  5. Structural determination of argon trimer

    Directory of Open Access Journals (Sweden)

    Xiguo Xie


    Full Text Available Rare gas clusters are model systems to investigate structural properties at finite size. However, their structures are difficult to be determined with available experimental techniques because of the strong coupling between the vibration and the rotation. Here we experimentally investigated multiple ionization and fragmentation dynamics of argon trimer by ultrashort intense laser fields and reconstructed their structures with Coulomb explosion technique. The measured structure distribution was compared with our finite-temperature ab initio calculations and the discrepancy was discussed. The present study provides a guidance for the development of theoretical methods for exploring the geometric structure of rare gas clusters.

  6. The scintillation of liquid argon

    CERN Document Server

    Heindl, T; Hofmann, M; Krücken, R; Oberauer, L; Potzel, W; Wieser, J; Ulrich, A


    A spectroscopic study of liquid argon from the vacuum ultraviolet at 110 nm to 1000 nm is presented. Excitation was performed using continuous and pulsed 12 keV electron beams. The emission is dominated by the analogue of the so called 2nd excimer continuum. Various additional emission features were found. The time structure of the light emission has been measured for a set of well defined wavelength positions. The results help to interpret literature data in the context of liquid rare gas detectors in which the wavelength information is lost due to the use of wavelength shifters.

  7. Argon purge gas cooled by chill box (United States)

    Spiro, L. W.


    Cooling argon purge gas by routing it through a shop-fabricated chill box reduces charring of tungsten inert gas torch head components. The argon gas is in a cooled state as it enters the torch and prevents buildup of char caused by the high concentrations of heat in the weld area during welding operations.

  8. Simplest Formula of Copper Iodide: A Stoichiometry Experiment. (United States)

    MacDonald, D. J.


    Describes an experiment presented to students as a problem in determining the stoichiometry of "copper iodide" to decide whether it is cuprous iodide or cupric iodide. The experiment illustrates stoichiometry principles, providing experiences with laboratory techniques and numerical computation. Detailed outline (written for student use) is…

  9. Electrochemical reaction rates in a dye sentisised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, Lasse; West, Keld; Winter-Jensen, Bjørn


    The electrochemical reaction rate of the redox couple iodide / tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide / tri......-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI) - all deposited onto fluorine doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrode in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...

  10. Barium iodide and strontium iodide crystals andd scintillators implementing the same (United States)

    Payne, Stephen A; Cherepy, Nerine J; Hull, Giulia E; Drobshoff, Alexander D; Burger, Arnold


    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector according to another embodiment includes a scintillator optic comprising europium-doped strontium iodide providing at least 50,000 photons per MeV. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, wherein a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 A method for manufacturing a crystal suitable for use in a scintillator includes mixing strontium iodide-containing crystals with a source of Eu.sup.2+, heating the mixture above a melting point of the strontium iodide-containing crystals, and cooling the heated mixture near the seed crystal for growing a crystal. Additional materials, systems, and methods are presented.

  11. Methyl Iodide Fumigation of Bacillus anthracis Spores. (United States)

    Sutton, Mark; Kane, Staci R; Wollard, Jessica R


    Fumigation techniques such as chlorine dioxide, vaporous hydrogen peroxide, and paraformaldehyde previously used to decontaminate items, rooms, and buildings following contamination with Bacillus anthracis spores are often incompatible with materials (e.g., porous surfaces, organics, and metals), causing damage or residue. Alternative fumigation with methyl bromide is subject to U.S. and international restrictions due to its ozone-depleting properties. Methyl iodide, however, does not pose a risk to the ozone layer and has previously been demonstrated as a fumigant for fungi, insects, and nematodes. Until now, methyl iodide has not been evaluated against Bacillus anthracis. Sterne strain Bacillus anthracis spores were subjected to methyl iodide fumigation at room temperature and at 550C. Efficacy was measured on a log-scale with a 6-log reduction in CFUs being considered successful compared to the U.S. Environmental Protection Agency biocide standard. Such efficacies were obtained after just one hour at 55 °C and after 12 hours at room temperature. No detrimental effects were observed on glassware, PTFE O-rings, or stainless steel. This is the first reported efficacy of methyl iodide in the reduction of Bacillus anthracis spore contamination at ambient and elevated temperatures.

  12. Potassium iodide capsule treatment of feline sporotrichosis. (United States)

    Reis, Erica G; Gremião, Isabella D F; Kitada, Amanda A B; Rocha, Raphael F D B; Castro, Verônica S P; Barros, Mônica B L; Menezes, Rodrigo C; Pereira, Sandro A; Schubach, Tânia M P


    Sporotrichosis is a mycosis caused by Sporothrix schenckii. The most affected animal is the cat; it has played an important role in the zoonotic transmission of this disease, especially in Rio de Janeiro, Brazil, since 1998. In order to evaluate the treatment of feline sporotrichosis with potassium iodide, an observational cohort was conducted in 48 cats with sporotrichosis at Instituto de Pesquisa Clínica Evandro Chagas, Fiocruz. All cats received potassium iodide capsules, 2.5 mg/kg to 20 mg/kg q24h. The cure rate was 47.9%, treatment failure was 37.5%, treatment abandonment was 10.4% and death was 4.2%. Clinical adverse effects were observed in 52.1% of the cases. Thirteen cats had a mild increase in hepatic transaminase levels during the treatment, six of them presented clinical signs suggestive of hepatotoxicity. Compared to previous studies with itraconazole and iodide in saturated solution, potassium iodide capsules are an alternative for feline sporotrichosis treatment.

  13. Atomic force microscopy of lead iodide crystal surfaces (United States)

    George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Biao, Y.; Burger, A.; Collins, W. E.; Silberman, E.


    Atomic force microscopy (AFM) was used to characterize the surface of lead iodide crystals. The high vapor pressure of lead iodide prohibits the use of traditional high resolution surface study techniques that require high vacuum conditions. AFM was used to image numerous insulating surface in various ambients, with very little sample preparation techniques needed. Freshly cleaved and modified surfaces, including, chemical and vacuum etched, and air aged surfaces, were examined. Both intrinsic and induced defects were imaged with high resolution. The results were compared to a similar AFM study of mercuric iodide surfaces and it was found that, at ambient conditions, lead iodide is significantly more stable than mercuric iodide.

  14. Formulation and optimization of potassium iodide tablets


    Al-Achi, Antoine; Patel, Binit


    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w):...

  15. Opacity of Shock-Generated Argon Plasmas

    Institute of Scientific and Technical Information of China (English)

    王藩侯; 陈敬平; 周显明; 李西军; 经福谦; 孟续军; 孙永盛


    Argon plasmas with uniform density and temperature are generated by a planar shock wave through argon gas. The opacities of argon plasma, covering the thermodynamic states at temperatures of 1.4-2.2eV and in densities of 0.0083- 0.015 g/cm3, are investigated by measuring the emitted radiance versus time at several visible wavelengths. Comparison of the measured opacities with those calculated demonstrates that the average atom model can be used well to describe the essential transport behaviour of photons in argon plasma under the abovementioned thermodynamic condition. A simplified and self-consistent method to deduce the reflectivity R(λ) at the baseplate surface is applied. It demonstrates that the values of R(λ) are all around 0.4 in the experiments, which are basically in agreement with those given by Erskine previously (1994 J. Quant. Spectrosc. Radiat.Transfer 51 97).

  16. Clinical periodontics with the argon laser (United States)

    Finkbeiner, R. L.


    The argon laser has proven to be a valuable tool for the thermodynamic debridement of the periodontal lesion, incisions and tissue fusion. Illustrations of clinical applications and discussion of laser parameters will be provided.

  17. Formulation and optimization of potassium iodide tablets. (United States)

    Al-Achi, Antoine; Patel, Binit


    The use of potassium iodide (KI) as a protective agent against accidental radioactive exposure is well established. In this study, we aimed to prepare a KI tablet formulation using a direct compression method. We utilized Design of Experiment (DoE)/mixture design to define the best formulation with predetermined physical qualities as to its dissolution, hardness, assay, disintegration, and angle of repose. Based on the results from the DoE, the formulation had the following components (%w/w): Avicel 48.70%, silicon dioxide 0.27%, stearic acid (1.00%), magnesium stearate 2.45%, and dicalcium phosphate 18.69%, in addition to potassium iodide 28.89% (130 mg/tablet). This formulation was scaled-up using two tablet presses, a single-punch press and a rotary mini tablet press. The final scaled-up formulation was subjected to a variety of quality control tests, including photo-stability testing. The results indicate that potassium iodide tablets prepared by a rotary mini tablet press had good pharmaceutical characteristics and a shelf-life of 25 days when stored at room temperature protected from light.

  18. Formation of cyanogen iodide by lactoperoxidase. (United States)

    Schlorke, Denise; Flemmig, Jörg; Birkemeyer, Claudia; Arnhold, Jürgen


    The haem protein lactoperoxidase (LPO) is an important component of the anti-microbial immune defence in external secretions and is also applied as preservative in food, oral care and cosmetic products. Upon oxidation of SCN(-) and I(-) by the LPO-hydrogen peroxide system, oxidised species are formed with bacteriostatic and/or bactericidal activity. Here we describe the formation of the inter(pseudo)halogen cyanogen iodide (ICN) by LPO. This product is formed when both, thiocyanate and iodide, are present together in the reaction mixture. Using (13)C nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry we could identify this inter(pseudo)halogen after applying iodide in slight excess over thiocyanate. The formation of ICN is based on the reaction of oxidised iodine species with thiocyanate. Further, we could demonstrate that ICN is also formed by the related haem enzyme myeloperoxidase and, in lower amounts, in the enzyme-free system. As I(-) is not competitive for SCN(-) under physiologically relevant conditions, the formation of ICN is not expected in secretions but may be relevant for LPO-containing products.

  19. Argon Laser Photoablation for Postburn Conjunctival Pigmentation

    Directory of Open Access Journals (Sweden)

    Seong Joon Ahn


    Full Text Available We report a case of an ocular burn injury from boiling water which resulted in conjunctival pigmentation, 1 week following injury. For cosmetic purposes, 2 sessions of argon laser photoablation were performed. One month after laser treatment, conjunctival pigmentation had been successfully removed and the patient was very satisfied with the results. Argon laser photoablation may be an effective way to remove postburn conjunctival pigmentation.

  20. Potassium-argon/argon-40-argon-39 geochronology of Cenozoic alkali basalts from the South China Sea

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa; YANG Yaomin; WANG Kunshan


    Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea,the characteristics of volcanic activi-ty of the South China Sea after spreading were studied.The potassium - argon ages of eight alkali basalt samples from the South China Sea,and the argon - argon ages of two samples among them are reported.Apparent ages of the whole rock are 3.80 to 7.91 Ma with an average value of 5.43 Ma (potassium- argon,whole rock),and there is little difference among samples at the same location,e.g.,4.76~5.78 Ma for location S04-12.The argon - argon ages for the two samples are 6.06 and 4.71 Ma,which lie within the age scope of potassium - argon method.The dating results indicate that rock-forming age is from late Miocene to Pli-ocene,which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea.Volcanic activities occur after the cessation of spreading of the South China Sea,which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea.These dating results,combined with geochemical characteristics of these basalts,the published chronological data for the South China Sea and its adjacent regions,and the updated geophysical data near Hainan Island,suggest that after the cessation of spreading of the South China Sea,there occur widely distributing magmatic activities which primarily is alkali basalt,and the volcanic activity continues to Quaternary.The activity may be relative to Hainan mantle plume originated from core/mantle boundary.

  1. Cu-catalyzed trifluoromethylation of aryl iodides with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide

    Directory of Open Access Journals (Sweden)

    Yuzo Nakamura


    Full Text Available The trifluoromethylation of aryl iodides catalyzed by copper(I salt with trifluoromethylzinc reagent prepared in situ from trifluoromethyl iodide and Zn dust was accomplished. The catalytic reactions proceeded under mild reaction conditions, providing the corresponding aromatic trifluoromethylated products in moderate to high yields. The advantage of this method is that additives such as metal fluoride (MF, which are indispensable to activate silyl groups for transmetallation in the corresponding reactions catalyzed by copper salt by using the Ruppert–Prakash reagents (CF3SiR3, are not required.

  2. Vapor Growth of Mercuric Iodide Tetragonal Prismatic Crystals (United States)


    These steps were followed by immersion in 1% potassium iodide (KI) solution. The apparatus were then cleaned and rinsed thoroughly with deionized (DI...Pergamon Press, 1973. [34] N. Lyakh, “Composition and kinetic characteristics of vapour phase during mercuric iodide growing,” Crystal Res. Technol...DTRA-TR-13-6 Vapor Growth of Mercuric Iodide Tetragonal Prismatic Crystals Approved for public release, distribution is unlimited. March 2013

  3. Argon Collection And Purification For Proliferation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event was a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.

  4. Effect of nitrogen and oxygen on radiolysis of iodide solution

    Energy Technology Data Exchange (ETDEWEB)

    Karasawa, H.; Endo, M. [Hitachi Ltd., Power and Industrial System R+D Divisions, Ibaraki (Japan)


    The effect of nitrogen and oxygen on radiolysis of iodide solution was examined. Direct decomposition of nitrogen by {gamma}-radiation produced nitric acid to decrease a water pH. This resulted in the iodine formation in the radiolysis of iodide solution. Hydrogen peroxide was produced by the radiolysis of water containing oxygen. This worked a reducing agent to suppress the formation of iodine in the radiolysis of iodide solution. In the analytical model, fourteen iodine species were considered and reaction scheme consisted in 124 reactions. The analytical model could estimate the oxidation state of iodide ions. (author) 4 figs., 4 refs.

  5. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project (United States)

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  6. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project (United States)

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  7. Attenuation of vacuum ultraviolet light in liquid argon

    CERN Document Server

    Neumeier, A; Oberauer, L; Potzel, W; Schönert, S; Dandl, T; Heindl, T; Ulrich, A; Wieser, J


    The transmission of liquid argon has been measured, wavelength resolved, for a wavelength interval from 118 to 250 nm. The wavelength dependent attenuation length is presented for pure argon. It is shown that no universal wavelength independent attenuation length can be assigned to liquid argon for its own fluorescence light due to the interplay between the wavelength dependent emission and absorption. A decreasing transmission is observed below 130 nm in both chemically cleaned and distilled liquid argon and assigned to absorption by the analogue of the first argon excimer continuum. For not perfectly cleaned argon a strong influence of impurities on the transmission is observed. Two strong absorption bands at 126.5 and 141.0 nm with approximately 2 and 4 nm width, respectively, are assigned to traces of xenon in argon. A broad absorption region below 180 nm is found for unpurified argon and tentatively attributed to the presence of water in the argon sample.

  8. The addition of iodine to tetramethylammonium iodide (United States)

    Foote, H.W.; Fleischer, M.


    The system tetramethylammonium iodide-iodine-toluene has been studied by the solubility method at 6 and at 25??. The compounds (CH3)4NI3, (CH3)4NI5 and (CH3)4NI11 were found to be stable phases at both temperatures. In addition, the compound (CH3)4NI10 was found at 6?? and the compound (CH3)4NI9 at 25??. The dissociation pressures of the compounds at these temperatures were calculated from the solubility data.

  9. Electronic and optical properties of lead iodide

    DEFF Research Database (Denmark)

    Ahuja, R.; Arwin, H.; Ferreira da Silva, A.


    The electronic properties and the optical absorption of lead iodide (PbI2) have been investigated experimentally by means of optical absorption and spectroscopic ellipsometry, and theoretically by a full-potential linear muffin-tin-orbital method. PbI2 has been recognized as a very promising...... detector material with a large technological applicability. Its band-gap energy as a function of temperature has also been measured by optical absorption. The temperature dependence has been fitted by two different relations, and a discussion of these fittings is given. ©2002 American Institute of Physics....

  10. Novel mercuric iodide polycrystalline nuclear particles counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ. of Jerusalem (Israel)]|[Sandia National Lab., Livermore, CA (United States); Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ. of Jerusalem (Israel)] [and others


    Polycrystalline mercuric iodide nuclear radiation detectors having areas between 0.01 to 100 cm{sup 2} and thicknesses 30 to 600 microns, have been fabricated with single, linear strip and square pixel contact. The large area detectors 10 to 600 cm{sup 2} were produced by industrial ceramic equipment while the smaller ones, about 1 cm{sup 2} area, were produced in the laboratory. The large detectors still had large leakage currents and the production process is being revised. The smaller detectors were tested and their response to lower and higher gamma energy, beta and even 100 GeV muons at CERN will be reported.

  11. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere. (United States)

    Kim, Kitae; Yabushita, Akihiro; Okumura, Masanori; Saiz-Lopez, Alfonso; Cuevas, Carlos A; Blaszczak-Boxe, Christopher S; Min, Dae Wi; Yoon, Ho-Il; Choi, Wonyong


    The chemistry of reactive halogens in the polar atmosphere plays important roles in ozone and mercury depletion events, oxidizing capacity, and dimethylsulfide oxidation to form cloud-condensation nuclei. Among halogen species, the sources and emission mechanisms of inorganic iodine compounds in the polar boundary layer remain unknown. Here, we demonstrate that the production of tri-iodide (I3(-)) via iodide oxidation, which is negligible in aqueous solution, is significantly accelerated in frozen solution, both in the presence and the absence of solar irradiation. Field experiments carried out in the Antarctic region (King George Island, 62°13'S, 58°47'W) also showed that the generation of tri-iodide via solar photo-oxidation was enhanced when iodide was added to various ice media. The emission of gaseous I2 from the irradiated frozen solution of iodide to the gas phase was detected by using cavity ring-down spectroscopy, which was observed both in the frozen state at 253 K and after thawing the ice at 298 K. The accelerated (photo-)oxidation of iodide and the subsequent formation of tri-iodide and I2 in ice appear to be related with the freeze concentration of iodide and dissolved O2 trapped in the ice crystal grain boundaries. We propose that an accelerated abiotic transformation of iodide to gaseous I2 in ice media provides a previously unrecognized formation pathway of active iodine species in the polar atmosphere.

  12. Phase 2 Methyl Iodide Deep-Bed Adsorption Tests

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    Nuclear fission produces fission products (FPs) and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the second phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during the second half of Fiscal Year (FY) 2014. Test results continue to show that methyl iodide adsorption using AgZ can achieve total iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) above 1,000, until breakthrough occurred. However, mass transfer zone depths are deeper for methyl iodide adsorption compared to diatomic iodine (I2) adsorption. Methyl iodide DFs for the Ag Aerogel test adsorption efficiencies were less than 1,000, and the methyl iodide mass transfer zone depth exceeded 8 inches. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption under various conditions specified in the methyl iodide test plan, and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  13. ICARUS and status of liquid argon technology

    CERN Document Server

    Menegolli, Alessandro


    ICARUS T600 is the largest liquid Argon Time Projection Chamber (LAr TPC) detector ever realized. It operates underground at the LNGS laboratory in Gran Sasso. It has been smoothly running since summer 2010, collecting data with the CNGS (Cern to Gran Sasso) beam and with cosmic particles. Liquid Argon TPCs are indeed 'electronic bubble chambers', providing a completely uniform imaging calorimetry with unprecedented accuracy on such massive volumes. ICARUS T600 is internationally considered as a milestone towards the realization of the next generation of massive detectors (tens of ktons) for neutrino and rare event physics. Results will be presented on the data collected so far with the detector.

  14. Kinetic Isotope Effects in the Reduction of Methyl Iodide

    DEFF Research Database (Denmark)

    Holm, Torkil


    a-Deuterium kinetic isotope effects (KIE's) have been determined for the reaction of methyl iodide with a series of reducing agents. Reagents which transfer hydride ion in an SN2 reaction show small inverse or small normal KIE's. Reagents which transfer an electron to methyl iodide to produce...

  15. Positive and negative pulsed corona in argon

    NARCIS (Netherlands)

    Veldhuizen, E.M. van; Rutgers, W.R.; Ebert, U.


    Photographs are obtained of corona discharges in argon at atmospheric pressure using a high resolution, intensified CCD camera. Positive and negative polarity is applied at the curved electrode in a point-plane gap and a plane-plane gap with a protruding point. Branching is observed in the positive

  16. 46 CFR 151.50-36 - Argon or nitrogen. (United States)


    ... 46 Shipping 5 2010-10-01 2010-10-01 false Argon or nitrogen. 151.50-36 Section 151.50-36 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-36 Argon or nitrogen. (a) A cargo tank that contains argon or nitrogen and that has a maximum allowable working pressure of 172 kPa...

  17. Silver iodide sodalite for 129I immobilisation (United States)

    Vance, E. R.; Gregg, D. J.; Grant, C.; Stopic, A.; Maddrell, E. R.


    Silver iodide sodalite was initially synthesised as a fine-grained major phase in a nominally stoichiometric composition following hot isostatic pressing at 850 °C with 100 MPa and its composition, Ag4Al3Si3O12I, was approximately verified by scanning electron microscopy. An alternative preparative method yielded a more dense and stoichiometric AgI sodalite on sintering and HIPing. As found for AgI, the I is released from AgI sodalite much more readily in reducing water than in ordinary water. Thus in normal PCT-B tests, the I release was <0.3 g/L in water, but it was ∼70 g/L under highly reducing conditions. This is an important point with regard to can material if HIPing is used for consolidation.

  18. Novel mercuric iodide polycrystalline nuclear particle counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ. of Jerusalem (Israel)]|[Sandia National Labs., Livermore, CA (United States); Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ. of Jerusalem (Israel); Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L. [LEPSI, Strasbourg (France)


    Polycrystalline mercuric iodide nuclear radiation detectors have been produced in a novel technology. Unlike the normal single-crystal technology, there is no intrinsic limit to the surface on which these detectors can be produced. Detectors with areas up to about 1.5 cm{sup 2}, thicknesses from 30 to 600 {micro}m, and with single electrodes as well as microstrip and pixel contacts have been fabricated and successfully tested with photons in the range of 40--660 keV, {beta} particle`s emitted from a Sr-Y source, and high energy (100 GeV) muons. Results on both charge collection and counting efficiency are reported as well as some very preliminary imaging results. The experimental results on charge collection have been compared with simulation, and a combined {mu}{tau} product 10{sup {minus}7} cm{sup 2}/V for electrons has been estimated.

  19. Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite

    KAUST Repository

    Hermes, Ilka M.


    Methylammonium lead iodide (MAPbI3) perovskite materials show an outstanding performance in photovoltaic devices. However, certain material properties, especially the possible ferroic behavior, remain unclear. We observed distinct nanoscale periodic domains in the piezoresponse of MAPbI3(Cl) grains. The structure and the orientation of these striped domains indicate ferroelasticity as their origin. By correlating vertical and lateral piezoresponse force microscopy experiments performed at different sample orientations with x-ray diffraction, the preferred domain orientation was suggested to be the a1-a2-phase. The observation of these ferroelastic fingerprints appears to strongly depend on the film texture and thus the preparation route. The formation of the ferroelastic twin domains could be induced by internal strain during the cubic-tetragonal phase transition.

  20. Conserved charged amino acid residues in the extracellular region of sodium/iodide symporter are critical for iodide transport activity

    Directory of Open Access Journals (Sweden)

    Liang Ji-An


    Full Text Available Abstract Background Sodium/iodide symporter (NIS mediates the active transport and accumulation of iodide from the blood into the thyroid gland. His-226 located in the extracellular region of NIS has been demonstrated to be critical for iodide transport in our previous study. The conserved charged amino acid residues in the extracellular region of NIS were therefore characterized in this study. Methods Fourteen charged residues (Arg-9, Glu-79, Arg-82, Lys-86, Asp-163, His-226, Arg-228, Asp-233, Asp-237, Arg-239, Arg-241, Asp-311, Asp-322, and Asp-331 were replaced by alanine. Iodide uptake abilities of mutants were evaluated by steady-state and kinetic analysis. The three-dimensional comparative protein structure of NIS was further modeled using sodium/glucose transporter as the reference protein. Results All the NIS mutants were expressed normally in the cells and targeted correctly to the plasma membrane. However, these mutants, except R9A, displayed severe defects on the iodide uptake. Further kinetic analysis revealed that mutations at conserved positively charged amino acid residues in the extracellular region of NIS led to decrease NIS-mediated iodide uptake activity by reducing the maximal rate of iodide transport, while mutations at conserved negatively charged residues led to decrease iodide transport by increasing dissociation between NIS mutants and iodide. Conclusions This is the first report characterizing thoroughly the functional significance of conserved charged amino acid residues in the extracellular region of NIS. Our data suggested that conserved charged amino acid residues, except Arg-9, in the extracellular region of NIS were critical for iodide transport.

  1. Barium iodide and strontium iodide crystals and scintillators implementing the same

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Stephen A.; Cherepy, Nerine J.; Hull, Giulia E.; Drobshoff, Alexander D.; Burger, Arnold


    In one embodiment, a material comprises a crystal comprising strontium iodide providing at least 50,000 photons per MeV, where the strontium iodide material is characterized by a volume not less than 1 cm.sup.3. In another embodiment, a scintillator optic includes europium-doped strontium iodide providing at least 50,000 photons per MeV, where the europium in the crystal is primarily Eu.sup.2+, and the europium is present in an amount greater than about 1.6%. A scintillator radiation detector in yet another embodiment includes a scintillator optic comprising SrI.sub.2 and BaI.sub.2, where a ratio of SrI.sub.2 to BaI.sub.2 is in a range of between 0:1 and 1.0, the scintillator optic is a crystal that provides at least 50,000 scintillation photons per MeV and energy resolution of less than about 5% at 662 keV, and the crystal has a volume of 1 cm.sup.3 or more; the scintillator optic contains more than about 2% europium.

  2. Expression of the human sodium/iodide symporter (hNIS) in xenotransplanted human thyroid carcinoma

    NARCIS (Netherlands)

    Smit, J.W.A.; Schröder - van der Elst, J.P.; Karperien, M.; Que, I.; Romijn, J.A.; Heide, van der D.


    The uptake of iodide in thyroid epithelial cells is mediated by the sodium/iodide symporter (NIS). The uptake of iodide is of vital importance for thyroid physiology and is a prerequisite for radioiodine therapy in thyroid cancer. Loss of iodide uptake due to diminished expression of the human NIS (

  3. Abnormal epidermal changes after argon laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, R.A.; Knobler, R.M.; Aberer, E.; Klein, W.; Kocsis, F.; Ott, E. (Univ. of Vienna (Austria))


    A 26-year-old woman with a congenital port-wine stain on the forehead was treated three times at 2-month intervals with an argon laser. Six months after the last treatment, moderate blanching and mild scaling confined to the treated area was observed. A biopsy specimen of the treated area revealed a significant decrease in ectatic vessels. However, epidermal changes similar to those of actinic keratosis with disorganized cell layers and marked cytologic abnormalities were seen. Analysis of peripheral blood lymphocytes for a defect in DNA repair was negative. Multiple, argon laser-induced photothermal effects may be responsible for the changes observed in our case and may lead to premalignant epidermal transformation.

  4. Explanation of the memory effect in argon

    Directory of Open Access Journals (Sweden)

    Marković Vidosav


    Full Text Available Memory effect - the long time variation of the electrical breakdown time delay on the relaxation time td (τ was observed in argon 24 hours after relaxation times and explained by the long-lived metastable states remaining from the preceding glow. However, the quenching processes reducing the effective lifetime of metastable states several orders of magnitude below that relevant for the time scale of observation were neglected. By applying approximate gas phase models it was found that the early afterglow kinetics up to hundreds of milliseconds is dominated by the decay of molecular argon ions Ar2+ and the approximate value of their ambipolar diffusion coefficient is determined. After that, nitrogen atoms present as impurities and recombined on the cathode surface and/or field emission determine the breakdown time delay down to the cosmic rays and natural radioactivity level.

  5. ATLAS Liquid Argon Calorimeter Module Zero

    CERN Multimedia


    This module was built and tested with beam to validate the ATLAS electromagnetic calorimeter design. One original design feature is the folding. 10 000 lead plates and electrodes are folded into an accordion shape and immersed in liquid argon. As they cross the folds, particles are slowed down by the lead. As they collide with the lead atoms, electrons and photons are ejected. There is a knock-on effect and as they continue on into the argon, a whole shower is produced. The electrodes collect up all the electrons and this signal gives a measurement of the energy of the initial particle. The M0 was fabricated by French institutes (LAL, LAPP, Saclay, Jussieu) in the years 1993-1994. It was tested in the H6/H8 beam lines in 1994, leading to the Technical Design Report in 1996.

  6. Argon gas flow through glass nanopipette (United States)

    Takami, Tomohide; Nishimoto, Kiwamu; Goto, Tadahiko; Ogawa, Shuichi; Iwata, Futoshi; Takakuwa, Yuji


    We have observed the flow of argon gas through a glass nanopipette in vacuum. A glass nanopipette with an inner diameter of 100 nm and a shank length of 3 mm was set between vacuum chambers, and argon gas was introduced from the top of the nanopipette to the bottom. The exit pressure was monitored with an increase in entrance pressure in the range of 50-170 kPa. Knudsen flow was observed at an entrance pressure lower than 100 kPa, and Poiseuille flow was observed at an entrance pressure higher than 120 kPa. The proposed pressure-dependent gas flow method provides a means of evaluating the glass nanopipette before using it for various applications including nanodeposition to surfaces and femtoinjection to living cells.

  7. Improved Stability of Mercuric Iodide Detectors for Anticoincidence Shields Project (United States)

    National Aeronautics and Space Administration — We propose to utilize guard ring electrode structures and a new film growth technique to create improved polycrystalline mercuric iodide detectors for background...


    CERN Document Server

    Kukhtin, V; The ATLAS collaboration


    The performance of the ATLAS liquid argon endcap and forward calorimeters has been projected at the planned high luminosity LHC option HL-LHC by exposing small calorimeter modules of the electromagnetic, hadronic, and forward calorimeters to high intensity proton beams at IHEP/Protvino accelerator. The results of HV current and of pulse shape analysis, and also the dependence of signal amplitude on beam intensity are presented.

  9. An impact hypothesis for Venus argon anomalies (United States)

    Kaula, W. M.; Newman, W. I.


    The Ar-36+38 argon-excess anomally of Venus has been hypothesized to have its origin in the impact of an outer solar system body of about 100-km diameter. A critical evaluation is made of this hypothesis and its competitors; it is judged that its status must for the time being remain one of 'Sherlock Holmes' type, in that something so improbable must be accepted when all alternatives are eliminated.

  10. Prevention of organic iodide formation in BWR`s

    Energy Technology Data Exchange (ETDEWEB)

    Karjunen, T. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland); Laitinen, T.; Piippo, J.; Sirkiae, P. [VTT Manufacturing Technology (Finland)


    During an accident, many different forms of iodine may emerge. Organic iodides, such as methyl iodide and ethyl iodide, are relatively volatile, and thus their appearance leads to increased concentration of gaseous iodine. Since organic iodides are also relatively immune to most accident mitigation measures, such as sprays and filters, they can affect the accident source term significantly even when only a small portion of iodine is in organic form. Formation of organic iodides may not be limited by the amount of organic substances available. Excessive amounts of methane can be produced, for example, during oxidation of boron carbide, which is used in BWR`s as a neutron absorber material. Another important source is cable insulation. In a BWR, a large quantity of cables is placed below the pressure vessel. Thus a large quantity of pyrolyse gases will be produced, should the vessel fail. Organic iodides can be formed as a result of many different reactions, but at least in certain conditions the main reaction takes place between an organic radical produced by radiolysis and elemental iodine. A necessary requirement for prevention of organic iodide production is therefore that the pH in the containment water pools is kept high enough to eliminate formation of elemental iodine. In a typical BWR the suppression pool water is usually unbuffered. As a result, the pH may be dominated by chemicals introduced during an accident. If no system for adding basic chemicals is operable, the main factor affecting pool water pH may be hydrochloric acid released during cable degradation. Should this occur, the conditions could be very favorable for production of elemental iodine and, consequently, formation of organic iodides. Although high pH is necessary for iodine retention, it could have also adverse effects. High pH may, for example, accelerate corrosion of containment materials and alter the characteristics of the solid corrosion products. (author) 6 figs., 1 tab., 13 refs.

  11. Chloride, bromide and iodide scintillators with europium (United States)

    Zhuravleva, Mariya; Yang, Kan


    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  12. Electrochemical reaction rates in a dye-sensitised solar cell - the iodide/tri-iodide redox system

    DEFF Research Database (Denmark)

    Bay, L.; West, K.; Winther-Jensen, B.


    The electrochemical reaction rate of the redox couple iodide/tri-iodide in acetonitrile is characterised by impedance spectroscopy. Different electrode materials relevant for the function of dye-sensitised solar cells (DSSC) are investigated. Preferably, the reaction with the iodide....../tri-iodide couple should be fast at the counter electrode, i.e. this electrode must have a high catalytic activity towards the redox couple, and the same reaction must be slow on the photo electrode. The catalytic activity is investigated for platinum, poly(3,4-ethylenedioxythiophene) (PEDOT), polypyrrole (PPy......), and polyaniline (PANI)-all deposited onto fluorine-doped tin oxide (FTO) glass. Both Pt and PEDOT are found to have sufficiently high catalytic activities for practical use as counter electrodes in DSSC. The reaction resistance on FTO and anatase confirmed the beneficial effect of a compact anatase layer on top...



    Marcinauskas, Liutauras; Grigonis, Alfonsas; Valincius, Vitas


    The amorphous carbon films were deposited on silicon-metal substrates by plasma jet chemical vapor deposition (PJCVD) and plasma enchanted CVD (PECVD). PJCVD carbon films have been prepared at atmospheric pressure in argon-acetylene and argon-hydrogen-acetylene plasma mixtures. The films deposited in Ar-C2H2 plasma are attributed to graphite-like carbon films. The formation of the nanocrystalline graphite was obtained in Ar-H2-C2H2 plasma. Addition of the hydrogen gas lead to the ...

  14. Iodide kinetics and experimental I-131 therapy in a xenotransplanted human sodium-iodide symporter-transfected human follicular thyroid carcinoma cell line

    NARCIS (Netherlands)

    Smit, J.W.A.; Elst, van der J.P.; Karperien, M.; Que, I.; Stokkel, M.; Heide, van der D.; Romijn, J.A.


    Uptake of iodide is a prerequisite for radioiodide therapy in thyroid cancer. However, loss of iodide uptake is frequently observed in metastasized thyroid cancer, which may be explained by diminished expression of the human sodium-iodide symporter (hNIS). We studied whether transfection of hNIS int

  15. Molecular imaging using sodium iodide symporter (NIS)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Je Yoel [School of Dentistry, Kyungpook National Univ., Daegu (Korea, Republic of)


    Radioiodide uptake in thyroid follicular epithelial cells, mediated by a plasma membrane transporter, sodium iodide symporter (NIS), provides a first step mechanism for thyroid cancer detection by radioiodide injection and effective radioiodide treatment for patients with invasive, recurrent, and/or metastatic thyroid cancers after total thyroidectomy. NIS gene transfer to tumor cells may significantly and specifically enhance internal radioactive accumulation of tumors following radioiodide administration, and result in better tumor control. NIS gene transfers have been successfully performed in a variety of tumor animal models by either plasmid-mediated transfection or virus (adenovirus or retrovirus)-mediated gene delivery. These animal models include nude mice xenografted with human melanoma, glioma, breast cancer of prostate cancer, rats with subcutaneous thyroid tumor implantation, as well as the rat intracranial glioma model. In these animal models, non-invasive imaging of in vivo tumors by gamma camera scintigraphy after radioiodide or technetium injection has been performed successfully, suggesting that the NIS can serve as an imaging reporter gene for gene therapy trials. In addition, the tumor killing effects of I-131, ReO4-188 and At-211 after NIS gene transfer have been demonstrated in in vitro clonogenic assays and in vivo radioiodide therapy studies, suggesting that NIS gene can also serve as a therapeutic requires a more efficient and specific system of gene delivery with better retention of radioiodide in tumor. Results thus far are, however, promising, and suggest that NIS gene transfer followed by radioiodide treatment will allow non-invasive in vivo imaging to assess the outcome of gene therapy and provide a therapeutic strategy for a variety of human diseases.

  16. Evaluation of mercuric iodide ceramic semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M.; Zuck, A.; Braiman, M.; Nissenbaum, J. [Hebrew Univ., Jerusalem (Israel); Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L. [LEPSI (ULP/IN2P3), Strasbourg (France)


    Mercuric iodide ceramic radiation detectors, which can act as nuclear particle counters, have been fabricated with single continuos electrical contacts and with linear strip contacts. They have been tested with different kinds of {gamma} and {beta} sources as well as in a high energy beam at CERN. The detectors were also successfully tested for radiation hardness with irradiation of 5*10{sup 14} neutrons/cm{sup 2}. The ratio of detected photons over the number of absorbed photons has been measured with {gamma} sources of different energies, and it ranges from 20% at 44 keV up to about 30% at 660 keV. An absolute efficiency of 70% has been measured for a 350 {mu}m thick detector for {beta} particles emitted by a {sup 90}Sr source. Charge collection efficiency, defined as the amount of charge induced on the electrodes by a mminimum ionizing particle (MIP) traversing the detector, has been measured in two samples. The average collected charge fits well with a linear curve with slope of 35 electrons/(kV/cm) per 100 {mu}m. This result is well described by a dynamic device simulation, where the free carrier mean lifetime is used as a free parameter, adjusted to a value of 1.5 ns, i.e. about 1/100 of the corresponding lifetime in single crystal HgI{sub 2} detectors. The response to MIP has also been studied with a high energy (100 GeV) muon beam in CERN. A preliminary beam profile is presented while a more detailed analysis is still in progress and will be presented elsewhere. These results together with the low cost of the material make ceramic HgI{sub 2} detectors excellent candidates for large area particle tracking and imaging applications, even in a radiation harsh environment. (orig.). 14 refs.

  17. Argon diffusion from biotite at high temperature and pressure

    Institute of Scientific and Technical Information of China (English)

    陈道公; 贾命命; 李彬贤; 陆全明; 谢鸿森; 侯渭


    t The experiments of argon diffusion dynamics for biotite were carried out at 700 -1000℃ and 0.5 - 2,0 GPa and the diffusion coefficient and activation energy using different models have been calculated. The results indicate that the pressure does affect the argon diffusion and its effect is opposite to that of temperature. When p increases, the activation energy increases and diffusion coefficient decreases. The relation between pressure, closure temperature and cooling rate has been obtained. It is postulated that in low T and high p conditions, the argon diffusion from the environment to the system could occur and incur the appearance of the external argon in minerals.

  18. Argon isotope fractionation induced by stepwise heating (United States)

    Trieloff, Mario; Falter, Martina; Buikin, Alexei I.; Korochantseva, Ekaterina V.; Jessberger, Elmar K.; Altherr, Rainer


    Noble gas isotopes are widely used to elucidate the history of the rocks in which they have been trapped, either from distinct reservoirs or by accumulation following radioactive decay. To extract noble gases from their host rocks, stepwise heating is the most commonly used technique to deconvolve isotopically different components, e.g., atmospheric, in situ radiogenic, or excess radiogenic from mantle or crustal reservoirs. The accurate determination of the isotopic composition of these different components is of crucial importance, e.g., for ages obtained by 40Ar- 39Ar stepheating plateaus. However, diffusion theory-based model calculations predict that the stepwise thermal extraction process from mineral phases induces isotope fractionation and, hence, adulterates the original composition. Such effects are largely unconsidered, as they are small and a compelling experimental observation is lacking. We report the first unequivocal evidence for significant mass fractionation of argon isotopes during thermal extraction, observed on shungite, a carbon-rich Precambrian sedimentary rock. The degree of fractionation, as monitored by 38Ar/ 36Ar and 40Ar/ 36Ar ratios, very well agrees with theoretical predictions assuming an inverse square root dependence of diffusion coefficient and atomic mass, resulting in easier extraction of lighter isotopes. Hence, subatmospheric 40Ar/ 36Ar ratios obtained for argon extracted at low temperatures may not represent paleoatmospheric argon. Shungite argon resembles modern atmospheric composition, but constraints on the timing of trapping appear difficult to obtain, as shungites are multicomponent systems. In 40Ar- 39Ar stepwise heating, the isotope fractionation effect could cause systematic underestimations of plateau ages, between 0.15 and 0.4% depending on age, or considerably higher if samples contain appreciable atmospheric Ar. The magnitude of this effect is similar to the presently achieved uncertainties of this increasingly

  19. Near-infrared scintillation of liquid argon

    CERN Document Server

    Alexander, T; Lippincott, W H; Rubinov, P


    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  20. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab


    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  1. Macrosegregation during Plane Front Solidification of Cesium Iodide wt Percent Thallium Iodide Alloy (United States)

    Sidawi, Ibrahim M. S.

    Macrosegregation produced during directional solidification of CsI-1 wt% TlI by vertical Bridgman technique has been examined in crucibles of varying diameter, from 0.5 to 2.0 cm. Phase diagram and temperature dependence of the thermal conductivity have been determined. The experimentally observed liquid-solid interface shape and the fluid flow behavior have been compared with that computed from the commercially available code FIDAP. Thallium iodide content of the alloy was observed to increase along the length of the directionally solidified specimens, resulting in continuously decreasing light output. The experimentally observed solutal distribution agrees with predictions from the boundary layer model of Favier. The observed macrosegregation behavior suggests that there is a significant convection in the melt even in the smallest crucible diameter of 0.5 cm.

  2. Bismuth tri-iodide radiation detector development (United States)

    Gokhale, Sasmit S.

    Bismuth tri-iodide is an attractive material for room temperature radiation detection. BiI3 demonstrates a number of properties that are apt for semiconductor radiation detection, especially gamma ray spectroscopy. The high atomic number (ZBi = 83 and ZI = 53) and the relatively high density (5.78 g/cm3) cause the material to have good photon stopping power, while the large band-gap (1.67 eV ) allows it to function as a room temperature radiation detector without any cooling mechanism. This work presents the fabrication and characterization of BiI3 radiation detectors. For the purpose of this research detectors were fabricated by cutting BiI3 crystal boules, followed by mechanical and chemical surface treatments. Detectors with various electrode geometries enabling single polarity charge sensing were fabricated. The electrical characteristics and the radiation response of the detectors were measured. The radiation response measurement was performed at room temperature using a 241Am alpha particle source and a 241Am sealed gamma-ray source. The spectral resolutions of the detectors varied from 2.09% - 6.1% for 59.5 keV gamma-rays and between 26% - 40% for 5.48 MeV alpha particles. Charge carrier properties such as the electron and hole mobility and lifetime were also estimated. The electron mobility for an ultrapure BiI 3 detector was estimated to be approximately 433 cm 2/Vs while that for antimony doped BiI3 was estimated to be around 956 cm2/Vs and the mobility-lifetime product for electrons was estimated to be around 5.44 x 10-4 cm 2/V. Detector simulation was performed using the Monte Carlo simulation code MCNP5. A Matlab script which incorporates charge carrier trapping and statistical variation was written to generate a gamma-ray spectrum from the simulated energy deposition spectra. Measured and simulated spectra were compared to extract the charge carrier mobility-lifetime products, which for electrons and holes were estimated to be 5 x 10-3 cm2/V and 1.3 x

  3. Standard free energy of formation of iron iodide (United States)

    Khandkar, A.; Tare, V. B.; Wagner, J. B., Jr.


    An experiment is reported where silver iodide is used to determine the standard free energy of formation of iron iodide. By using silver iodide as a solid electrolyte, a galvanic cell, Ag/AgI/Fe-FeI2, is formulated. The standard free energy of formation of AgI is known, and hence it is possible to estimate the standard free energy of formation of FeI2 by measuring the open-circuit emf of the above cell as a function of temperature. The free standard energy of formation of FeI2 determined by this method is -38784 + 24.165T cal/mol. It is estimated that the maximum error associated with this method is plus or minus 2500 cal/mol.

  4. Phase 1 Methyl Iodide Deep-Bed Adsorption Tests

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    Nuclear fission results in the production of fission products (FPs) and activation products including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Research, demonstrations, and some reprocessing plant experience have indicated that diatomic iodine can be captured with efficiencies high enough to meet regulatory requirements. Research on the capture of organic iodides has also been performed, but to a lesser extent [Jubin 2012b]. Several questions remain open regarding the capture of iodine bound in organic compounds. Deep-bed methyl iodide adsorption testing has progressed according to a multi-laboratory methyl iodide adsorption test plan. This report summarizes the first phase of methyl iodide adsorption work performed according to this test plan using the deep-bed iodine adsorption test system at the Idaho National Laboratory (INL), performed during Fiscal Year (FY) 2013 and early FY-2014. Testing has been performed to address questions posed in the test plan, and followed the testing outline in the test plan. Tests established detection limits, developed procedures for sample analysis with minimal analytical interferences, and confirmed earlier results that show that the methyl iodide reacts when in contact with the AgZ sorbent, and not significantly in the gas flow upstream of the sorbent. The reaction(s) enable separation of the iodine from the organic moiety, so that the iodine can chemisorb onto the sorbent. The organic moiety can form other compounds, some of which are organic compounds that are detected and can be tentatively identified using GC-FID and GCMS. Test results also show that other gas constituents (NOx and/or H2O) can affect the methyl iodide reactions. With NOx and H2O present in the gas stream, the majority of uncaptured iodine exiting iodine-laden sorbent beds is in the form of I2 or HI, species that

  5. Performance of a liquid argon accordion hadronic calorimeter prototype

    Energy Technology Data Exchange (ETDEWEB)

    Gingrich, D.M. [Alberta Univ., Edmonton, AB (Canada); Greeniaus, G. [Alberta Univ., Edmonton, AB (Canada); Kitching, P. [Alberta Univ., Edmonton, AB (Canada); Olsen, B. [Alberta Univ., Edmonton, AB (Canada); Pinfold, J.L. [Alberta Univ., Edmonton, AB (Canada); Rodning, N.L. [Alberta Univ., Edmonton, AB (Canada); Boos, E. [Alma-Ata (Kazakhstan); Schaoutnikov, B.O. [Alma-Ata (Kazakhstan); Aubert, B. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Bazan, A. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Beaugiraud, B. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Boniface, J. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Colas, J. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Jezequel, S. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Leflour, T. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Maire, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Rival, F. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Stipcevic, M. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Thion, J. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; VanDenPlas, D. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Wingerter-Seez, I. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Zolnierowski, Y.P. [Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules; Chmeissani, M. [Universidad Autonoma de Barcelona (Spain); Fernandez, E. [Universidad Autonoma de Barcelona (Spain); Garrido, L. [Universidad Autonoma de Barcelona (Spain); Martinez, M. [Universidad Autonoma de Barcelona (Spain); Padilla, C. [Universidad Autonoma de Barcelona (Spain); Gordon, H.A. [Brookhaven National Lab., Upton, NY (United States); RD3 Colla...


    A liquid argon hadronic calorimeter using the ``accordion`` geometry and the electrostatic transformer readout scheme has been tested at CERN, together with a liquid argon accordion electromagnetic prototype. The results obtained for pions on the linearity, the energy resolution and the uniformity of the calorimeter response are well within the requirements for operation at the LHC. ((orig.))

  6. Comparison of Diode and Argon Laser Lesions in Rabbit Retina

    Institute of Scientific and Technical Information of China (English)

    Hui Zhang; Xiaoxin Li; Bin Li; Jiping Da


    Purpose: To compare the histological alteration of retina with various spot intensities between diode and argon lasers in order to instruct the clinical use of 810 nm diode laser.Methods: Transpupillary retinal photocoagulations were performed on 42 eyes of 27pigmented rabbits. Histopathologic alteration of lesions in different intensities and different time intervals after irradiation produced by diode and argon laser was observed and compared using light microscopy. Areas of various lesions measured by image analysis system (CMIAS) were compared quantitatively.Results: Histopathologically, two-week-old grade 2 lesions produced by diode laser induced the disappearance of outer nuclear cells. More than a half of all showed reduction in number of outer nuclear layer cells in argon. Fibroblasts appeared in the diode grade 3lesions 5 days after irradiation. CMIAS data showed that all the areas of diode lesions immediately after photocoagulation were to be larger than those of argon laser lesions in the same spot intensity (P < 0.05). However, twenty-four hours after photocoagulation, the area of the diode lesions increased less than that of the argon laser lesions (8%vs.23%).Conclusion: The acute histological effect caused by 810 nm diode laser and argon green laser is similar,while the expansion of lesion area 24 hours after photocoagulation was less with the diode laser compared to the argon. This may be the first report in the literature regarding quantitative analysis of the delayed reaction of argon green lasers.

  7. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.


    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...

  8. Low energy background in mercuric iodide X-ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, X.J. [TN Technol., Inc., Round Rock, TX (United States). Dept. of Anal. Instrum.; Natarajan, M. [TN Technol., Inc., Round Rock, TX (United States). Dept. of Anal. Instrum.; Henderson, J. [TN Technol., Inc., Round Rock, TX (United States). Dept. of Anal. Instrum.


    The origins of the continuous background (window effect or dead layer) in mercuric iodide X-ray spectrometers are investigated. It is found that photo-electron escape and carrier diffusion are the dominant mechanisms of incomplete charge collection in the energy range of interest (from 3-60 keV). X-ray spectra measurements, computer calculation and photo-response measurements are presented in support of the proposed model. Many observations of detector behavior made in the manufacturing and application of mercuric iodide X-ray detectors can be explained by this model. (orig.).

  9. Enhanced Olefin Cross Metathesis Reactions: The Copper Iodide Effect (United States)

    Voigtritter, Karl; Ghorai, Subir


    Copper iodide has been shown to be an effective co-catalyst for the olefin cross metathesis reaction. In particular, it has both a catalyst stabilizing effect due to iodide ion, as well as copper(I)-based phosphine-scavenging properties that apply to use of the Grubbs-2 catalyst. A variety of Michael acceptors and olefinic partners can be cross-coupled under mild conditions in refluxing diethyl ether that avoid chlorinated solvents. This effect has also been applied to chemistry in water at room temperature using the new surfactant TPGS-750-M. PMID:21528868

  10. DBU-Promoted Trifluoromethylation of Aryl Iodides with Difluoromethyltriphenylphosphonium Bromide

    Institute of Scientific and Technical Information of China (English)

    Yun Wei; Liuying Yu; Jinhong Lin; Xing Zheng; Jichang Xiao


    DBU-promoted trifluoromethylation of aryl iodides with difluoromethyltriphenylphosphonium bromide (DFPB) in the presence of copper source is described.In this transformation,DBU not only acts as base to deprotonate the difluoromethyl group in DFPB to generate difluoromethylene phosphonium ylide Ph3P+CF2,but also converts the difluorocarbene generated from ylide Ph3P+CF2 into trifluoromethyl anion,finally resulting in the trifluoromethylation of aryl iodides.The reactions proceeded smoothly to afford expected products in moderate to good yields.

  11. Mercuric iodide dosimeter response to high energy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Loewinger, E.; Nissenbaum, J.; Schieber, M.M.


    Mercuric iodide solid state dosimeter response to high energy electron beams of up to 35 MeV is reported. High sensitivity of up to 1.5 V/cGy was observed with a 200 V external bias, as well as several mV/cGy, with no external bias for small volume (approx. 10 mm/sup 3/) detectors. The physical characteristics of the detector response are discussed, showing the feasibility of mercuric iodide as a reliable dosimeter for high energy electron beams.

  12. Improved installation prototype for measurement of low argon-37 activity (United States)

    Pakhomov, Sergei; Dubasov, Yuri


    On-site Inspection (OSI) is a key element of verification of State Parties' compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). An on-site inspection is launched to establish whether or not a nuclear explosion has been carried out. One of the most significant evidence of n underground nuclear explosion (UNE) is detection above background concentrations of argon-37 in near surface air. Argon-37 is formed in large amounts at interaction of neutrons of UNE with the potassium which is a part of the majority of rocks. Its estimated contents for the 100th days after explosion with a energy of 1000 t of TNT near a surface can vary from 1 to 1000 mBq/m3. The background concentrations of argon-37 in subsoil air vary 1 do100 mBq/m3. Traditionally, for argon-37 activity measurement the gas-proportional counters are used. But at Khlopin Radium institute the developments of the new type of highly sensitive and low-background installation capable to provide the required range of measurements of the argon-37 concentration are conducted. The liquid scintillation method of the registration of the low-energetic argon-37 electrons is the basic installation principle and as scintillator, the itself condensed air argon sample is used. Registration of scintillations of liquid argon is made by means of system from 3 PMT which cathodes are cooled near to the temperature of liquid nitrogen together with the measuring chamber in which placed the quartz glass ampule, containing the measured sample of the liquefied argon. For converse the short wavelength photons (λ = 127 nm) of liquid argon scintillations to more long-wave, corresponding to the range of PMT sensitivity, the polymer film with tetra-phenyl-butadiene (TPB) is provided. Even the insignificant impurities of nitrogen, oxygen and others gaseous in the liquid argon samples can to cause the quenching of scintillation, especially their slow components. To account this effect and it influence on change of registration

  13. Merging of high speed argon plasma jets

    Energy Technology Data Exchange (ETDEWEB)

    Case, A.; Messer, S.; Brockington, S.; Wu, L.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 22180 (United States); Elton, R. [University of Maryland, College Park, Maryland 20742 (United States)


    Formation of an imploding plasma liner for the plasma liner experiment (PLX) requires individual plasma jets to merge into a quasi-spherical shell of plasma converging on the origin. Understanding dynamics of the merging process requires knowledge of the plasma phenomena involved. We present results from the study of the merging of three plasma jets in three dimensional geometry. The experiments were performed using HyperV Technologies Corp. 1 cm Minirailguns with a preionized argon plasma armature. The vacuum chamber partially reproduces the port geometry of the PLX chamber. Diagnostics include fast imaging, spectroscopy, interferometry, fast pressure probes, B-dot probes, and high speed spatially resolved photodiodes, permitting measurements of plasma density, temperature, velocity, stagnation pressure, magnetic field, and density gradients. These experimental results are compared with simulation results from the LSP 3D hybrid PIC code.

  14. Commissioning of the ATLAS liquid argon calorimeters

    CERN Document Server

    Rezaie, Erfan

    ATLAS, a multi-purpose detector built at the LHC at CERN, requires an extensive commissioning campaign to be ready for proton-proton collisions. In this work, we focus on the commissioning of the liquid Argon (LAr) calorimeters, with emphasis on commissioning with cosmic rays. First we outline one phase of the commissioning work, which involves testing of the front-end electronics of the two endcap calorimeters. We then describe two cosmic ray generators as input to a Monte-Carlo simulation of cosmic rays in ATLAS, and compare their results. Finally, we explain a technique developed for this work which uses information from the Tile calorimeters to predict the timing of cosmic rays within the LAr calorimeters, because cosmic rays occur randomly in time whereas the electronics are clocked at [Special characters omitted.] . The results from this analysis tool are compared to default tools, using both simulated and real cosmic ray data in the calorimeters.

  15. 40 CFR 415.510 - Applicability; description of the potassium iodide production subcategory. (United States)


    ... potassium iodide production subcategory. 415.510 Section 415.510 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Potassium Iodide Production Subcategory § 415.510 Applicability; description of the potassium iodide production subcategory. The provisions of this subpart are applicable to...

  16. The electrosorption of tetraalkylammonium ions on silver iodide

    NARCIS (Netherlands)

    Keizer, de A.


    The object of the present investigations was to study the ef fect of the adsorption of charged organic ions on electrically charged, solid-liquid interfaces. To that end, symmetrical quater nary ammonium ions were adsorbed on a silver iodide-electrolyte interface at various surface charges. The elec

  17. Confinement Effects in Low-Dimensional Lead Iodide Perovskite Hybrids

    NARCIS (Netherlands)

    Kamminga, Machteld E.; Fang, Honghua; Filip, Marina R.; Giustino, Feliciano; Baas, Jacobus; Blake, Graeme R.; Loi, Maria Antonietta; Palstra, Thomas T. M.


    We use a layered solution crystal growth technique to synthesize high-quality single crystals of phenylalkylammonium lead iodide organic/inorganic hybrid compounds. Single-crystal X-ray diffraction reveals low-dimensional structures consisting of inorganic sheets separated by bilayers of the organic

  18. Radiation-hard polycrystalline mercuric iodide semiconductor particle counters

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. [Hebrew Univ., Jerusalem (Israel)]|[Sandia National Laboratories, Livermore Ca 94556 (United States); Zuck, A.; Melekhov, L.; Nissenbaum, J. [Hebrew Univ., Jerusalem (Israel); Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L. [LEPSI (ULP/IN2P3), Strasbourg (France)


    Mercuric iodide polycrystalline radiation detectors, which can act as nuclear particle counters and for large area imaging devices, have been fabricated using three different methods. Response to X- and gamma rays, beta particles and to 100GeV muons, as well as radiation hardness results are briefly described. (orig.) 8 refs.

  19. 21 CFR 520.763b - Dithiazanine iodide powder. (United States)


    ....763b Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... is administered to dogs by mixing the proper dosage in the dog's food, using the following dosage... contraindicated in animals sensitive to dithiazanine iodide and should be used cautiously, if at all, in dogs...

  20. Argon laser induced changes to the carbonate content of enamel

    Energy Technology Data Exchange (ETDEWEB)

    Ziglo, M.J. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta, Private Practice, Regina, Saskatchewan (Canada); Nelson, A.E., E-mail: [Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta (Canada); Heo, G.; Major, P.W. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada)


    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm{sup -2}) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  1. FY-2015 Methyl Iodide Deep-Bed Adsorption Test Report

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Nicholas Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Watson, Tony Leroy [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    Nuclear fission produces fission and activation products, including iodine-129, which could evolve into used fuel reprocessing facility off-gas systems, and could require off-gas control to limit air emissions to levels within acceptable emission limits. Deep-bed methyl iodide adsorption testing has continued in Fiscal Year 2015 according to a multi-laboratory methyl iodide adsorption test plan. Updates to the deep-bed test system have also been performed to enable the inclusion of evaporated HNO3 and increased NO2 concentrations in future tests. This report summarizes the result of those activities. Test results showed that iodine adsorption from gaseous methyl iodide using reduced silver zeolite (AgZ) resulted in initial iodine decontamination factors (DFs, ratios of uncontrolled and controlled total iodine levels) under 1,000 for the conditions of the long-duration test performed this year (45 ppm CH3I, 1,000 ppm each NO and NO2, very low H2O levels [3 ppm] in balance air). The mass transfer zone depth exceeded the cumulative 5-inch depth of 4 bed segments, which is deeper than the 2-4 inch depth estimated for the mass transfer zone for adsorbing I2 using AgZ in prior deep-bed tests. The maximum iodine adsorption capacity for the AgZ under the conditions of this test was 6.2% (6.2 g adsorbed I per 100 g sorbent). The maximum Ag utilization was 51%. Additional deep-bed testing and analyses are recommended to (a) expand the data base for methyl iodide adsorption and (b) provide more data for evaluating organic iodide reactions and reaction byproducts for different potential adsorption conditions.

  2. Practical reactor production of {sup 41}Ar from argon clathrate

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.R. E-mail:; Duke, M.J.M.; McQuarrie, S.A


    The radionuclide {sup 41}Ar has many ideal properties as a gas flow tracer. However, the modest cross-section of {sup 40}Ar for thermal neutron activation makes preparation of suitable activities of {sup 41}Ar technically difficult particularly for low flux reactors. Argon can however be trapped in a molecular complex called a clathrate that can then be irradiated. We prepared argon clathrate and explored its irradiation and stability characteristics. Argon clathrate can be used to provide gigabecquerel quantities of {sup 41}Ar even with low power reactors.

  3. Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors (United States)

    Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin


    Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.

  4. Defective organification of iodide causing congenital goitrous hypothyroidism. (United States)

    Ishikawa, N; Eguchi, K; Ohmori, T; Momotani, N; Nagayama, Y; Hosoya, T; Oguchi, H; Mimura, T; Kimura, S; Nagataki, S; Ito, K


    A 26-yr-old Japanese woman with congenital goitrous hypo-thyroidism and sensorineural deafness underwent a thyroidectomy. Examination of the thyroid gland revealed characteristic features of multinodular goiter. The T3 and T4 content in thyroglobulin (Tg) were 0.03 and 0.02 mol/mol Tg, respectively. Iodide incorporation into Tg, using slices of the thyroid tissue, revealed that iodide organification of thyroid tissue from our patient was markedly lower than that of normal controls. Then, guaiacol and iodide oxidation activities of thyroid peroxidase (TPO) in our patient's thyroid tissue were lower than those of normal controls (guaiacol assay: 1.92 vs. 30.0 +/- 5.7 mGU/mg protein; iodide assay: 1.1 vs. 6.6 +/- 2.8 mIU/mg protein). Lineweaver-Burk plot analysis of the oxidation rates of guaiacol and iodide indicated that this patient's TPO had a defect in the binding of guaiacol and iodide, but the coupling activity of the patient's TPO was not decreased compared with those of two normal thyroids. In this case and in control subjects, Nothern gel analysis of TPO messenger RNA from unstimulated and TSH-stimulated thyroid cells revealed a 3.2 kilobase species in the former and four distinct messenger RNA species of 4.0, 3.2, 2.1, and 1.7 kilobases in the latter. Western blot analysis of TPOs obtained from this patient and from control subjects identified the same 107 kDa protein, using antimicrosomal antibody-positive serum. We analyzed the coding sequence in the patient's TPO gene by using polymerase chain reaction technique. A single point mutation of G-->C at 1265 base pair was detected only in the TPO gene, but this point mutation does not alter the amino acid residue. It is possible that posttranslational modification such as abnormal glycosylation may occur in the TPO molecules. Furthermore, it is possible that there are differences in the tertiary structures of the TPO molecules between our patient and normal subjects. The above abnormalities of TPO molecules

  5. [Evaluation of potassium iodide in Polish dietary salt]. (United States)

    Andrzejewska, E; Rokicka, B; Gajda, J; Jarecka, J; Oraczewska, A; Karłowski, K


    The consequences of iodine deficiency occurring still in Poland include serious health disorders in the population, such as psycho- somatic retardation, hypothyroidism, endemic goitre, even cretinism. Administration of iodized edible salt with daily diet is an effective method for prevention of iodine deficiency. The condition of success is the proper level of potassium iodide in this salt and adequate distribution of iodized salt in various regions of the country. Successful iodine prophylaxis should be based on iodination of edible salt in amounts of 30 +/- 10 mg of KJ/kg. The permission given in the period from February to May 1994 by the General Sanitary Inspector for the production and marketing of edible salt iodized in proportions of 30 +/- 10 mg KJ/kg opened the possibility of starting its production in salt mines. The purpose of the presently reported work was to assess, in cooperation with the Province Sanitary Epidemiological Stations, the adequacy of iodination of the Polish edible salt produced in the years 1994-1995. The study was carried out according to the Polish Standard "Salt (Sodium Chloride) /PN-80/C-84081.35. Potassium iodide determination by photo colorimetric method." In 1995 the number of edible salt samples analyzed was 2484, and this number included 2129 samples of iodized salt. Potassium iodide content agreeing with the above permission was found in 122 samples, that is in 57.4% of iodized salt samples. In 603 samples (28.3%) of iodized salt this content was below that given in the permissions. In 1994 this study was carried out taking 2172 samples of edible salt, including 1586 samples of iodized salt. The content of potassium iodide agreeing with the permissions (30 +/- 10 mg/kg) was found in 342 samples (28, 1%), but 272 (22.4%) samples of iodized salt produced by salt mines contained lower amounts of potassium iodide than the amount indicated in the permissions, but still within the limits set down in the Polish Standard (20 +/- 5 mg

  6. Study of nuclear recoils in liquid argon with monoenergetic neutrons

    CERN Document Server

    Regenfus, C; Amsler, C; Creus, W; Ferella, A; Rochet, J; Walter, M


    For the development of liquid argon dark matter detectors we assembled a setup in the laboratory to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (E_kin=2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from {\\alpha}-particles at working points relevant to dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the populations of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

  7. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude


    degrees C and evidence was found for the solidification of the melt at 380-440 degrees C, i.e. simultaneously with the onset of decomposition. Between 400 degrees C and 520 degrees C (Ba(C4H9CO2)(2) decomposes in two main steps, first into BaCO3 with release of C4H9COC4H9 (5-nonanone), whereas final......The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...... conversion to BaO takes place with release of CO2. Elemental carbon that is left as a by-product is finally slowly burned by the residual oxygen present in the Ar atmosphere. (C) 2015 Elsevier B.V. All rights reserved....

  8. Liquid argon calorimeter performance at high rates

    CERN Document Server

    Seifert, F; The ATLAS collaboration


    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $10^{12}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  9. Electron avalanches in liquid argon mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.G.; Dardin, S.M.; Kadel, R.W.; Kadyk, J.A.; Wenzel, W.B.; Peskov, V.


    We have observed stable avalanche gain in liquid argon when mixed with small amounts of xenon in the high electric field (>7 MV/cm) near the point of a chemically etched needle in a point-plane geometry. We identify two gain mechanisms, one pressure dependent, and the other independent of the applied pressure. We conclude that the pressure dependent signals are from avalanche gain in gas bubbles at the tip of the needle, while the pressure independent pulses are from avalanche gain in liquid. We measure the decay time spectra of photons from both types of avalanches. The decay times from the pressure dependent pulses decrease (increase) with the applied pressure (high voltage), while the decay times from the pressure independent pulses are approximately independent of pressure or high voltage. For our operating conditions, the collected charge distribution from avalanches is similar for 60 keV or 122 keV photon sources. With krypton additives, instead of Xe, we measure behavior consistent with only the pressure dependent pulses. Neon and TMS were also investigated as additives, and designs for practical detectors were tested.

  10. Liquid Argon Calorimeter performance at High Rates

    CERN Document Server

    Seifert, F; The ATLAS collaboration


    The expected increase of luminosity at HL-LHC by a factor of ten with respect to LHC luminosities has serious consequences for the signal reconstruction, radiation hardness requirements and operations of the ATLAS liquid argon calorimeters in the endcap, respectively forward region. Small modules of each type of calorimeter have been built and exposed to a high intensity proton beam of 50 GeV at IHEP/Protvino. The beam is extracted via the bent crystal technique, offering the unique opportunity to cover intensities ranging from $10^6$ p/s up to $3\\cdot10^{11}$ p/s. This exceeds the deposited energy per time expected at HL-LHC by more than a factor of 100. The correlation between beam intensity and the read-out signal has been studied. The data show clear indications of pulse shape distortion due to the high ionization build-up, in agreement with MC expectations. This is also confirmed from the dependence of the HV currents on beam intensity.

  11. A Study of the Residual 39Ar Content in Argon from Underground Sources

    CERN Document Server

    Xu, J; Galbiati, C; Goretti, A; Guray, G; Hohman, T; Holtz, D; Ianni, A; Laubenstein, M; Loer, B; Love, C; Martoff, C J; Montanari, D; Mukhopadhyay, S; Nelson, A; Rountree, S D; Vogelaar, R B; Wright, A


    The discovery of argon from underground sources with significantly less 39Ar than atmospheric argon was an important step in the development of direct-detection dark matter experiments using argon as the active target. We report on the design and operation of a low background detector with a single phase liquid argon target that was built to study the 39Ar content of the underground argon. Underground argon from the Kinder Morgan CO2 plant in Cortez, Colorado was determined to have less than 0.65% of the 39Ar activity in atmospheric argon.

  12. Size Determination of Argon Clusters from a Rayleigh Scattering Experiment

    Institute of Scientific and Technical Information of China (English)

    LEI An-Le; ZHAI Hua-Jin; LIU Bing-Chen; LI Zhong; NI Guo-Yuan; XU Zhi-Zhan


    Argon clusters are produced in the process of adiabatic expansion of a high backing pressure gas into vacuum through a nozzle. The cluster size is determined by a Rayleigh scattering measurement. The scattered signal measured is proportional to the 2.78th power of gas stagnation pressure. The average cluster sizes vary from 100 to more than 12000 atoms/cluster with the argon gas backing pressures ranging between 3 to 45 atm.

  13. Power Consideration for Pulsed Discharges in Potassium Seeded Argon

    Institute of Scientific and Technical Information of China (English)

    XIA Sheng-Guo; HE Jun-Jia; LIU Ke-Fu


    Minimization of energy consumed in plasma generation is critical for applications, in which a large volume of plasmas is needed. We suggest that a high electron density atmospheric pressure plasmas can be generated by pulsed discharges in potassium seeded argon at an elevated temperature with a very small power input. The ionization efficiency and power budget of pulsed discharges in such plasmas are analytically studied. The results show that ionization efficiency of argon, especially at small reduced electric field E/N (the ratio of the electric field to the gas number density), is improved effectively in the presence of small amount of potassium additives. Power input of pulsed discharge to sustain a prescribed average level of ionization in potassium seeded argon is three orders of magnitude lower than that in pure argon. Further, unlike in pure argon, it is found that very short high-voltage pulses with very high repetition rates are unnecessary in potassium seeded argon. A pulse with 100ns of pulse duration, 5kHz of repetition rate, and 2Td (1 Td = 1 ×10-21 Vm2) of E/N is enough to sustain an electron density of 10l9m-3 in 1 atm 1500 K Ar+0.1% K mixture, with a very small power input of about 0.08 × 104 W/m3.

  14. Purification and deposition of silicon by an iodide disproportionation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tihu (Littleton, CO); Ciszek, Theodore F. (Evergreen, CO)


    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  15. Synthesis and Structure of Bis(4-nitrobenzaldehyde thiosemicarbazone) Cadmium Iodide

    Institute of Scientific and Technical Information of China (English)


    The title complex, bis(4-nitrobenzaldehyde thiosemicarbazone) cadmium iodide (C16H16CdI2N8O4S2) crystallizes in the triclinic system, space group P1 with a=9.632(2), b=11.227(2), c=14.031(3), α= 67.50(3), β= 86.99(3), γ= 66.64(3)°, V=1278.13, Z = 2, Dc = 2.117gcm-3, F(000) = 772, μ =3.472mm-1 MoKα radiation (λ=0.71073), R = 0.0443, wR= 0.1425 for 4529 observed reflections [I>2σ(I)] of 4731 independent reflections. The result shows that the structure contains CdL2I2 (where L = 4-nitrobenzaldehyde thiosemicarbazone) distorted tetrahedral units in which the two ligands are S-bonded as monodentate to cadmium ion; the two iodide ions are also coordinated to Cd(II).

  16. Caloric Effects in Methylammonium Lead Iodide from Molecular Dynamics Simulations


    Liu, Shi; Cohen, Ronald E.


    Organic-inorganic hybrid perovskite architecture could serve as a robust platform for materials design to realize functionalities beyond photovoltaic applications. We explore caloric effects in organometal halide perovskites, taking methylammonium lead iodide (MAPbI$_3$) as an example, using all-atom molecular dynamics simulations with a first-principles based interatomic potential. The adiabatic thermal change is estimated directly by introducing different driving fields in the simulations. ...

  17. Structural insight into iodide uptake by AFm phases. (United States)

    Aimoz, Laure; Wieland, Erich; Taviot-Guého, Christine; Dähn, Rainer; Vespa, Marika; Churakov, Sergey V


    The ability of cement phases carrying positively charged surfaces to retard the mobility of (129)I, present as iodide (I(-)) in groundwater, was investigated in the context of safe disposal of radioactive waste. (125)I sorption experiments on ettringite, hydrotalcite, chloride-, carbonate- and sulfate-containing AFm phases indicated that calcium-monosulfate (AFm-SO(4)) is the only phase that takes up trace levels of iodide. The structures of AFm phases prepared by coprecipitating iodide with other anions were investigated in order to understand this preferential uptake mechanism. X-ray diffraction (XRD) investigations showed a segregation of monoiodide (AFm-I(2)) and Friedel's salt (AFm-Cl(2)) for I-Cl mixtures, whereas interstratifications of AFm-I(2) and hemicarboaluminate (AFm-OH-(CO(3))(0.5)) were observed for the I-CO(3) systems. In contrast, XRD measurements indicated the formation of a solid solution between AFm-I(2) and AFm-SO(4) for the I-SO(4) mixtures. Extended X-ray absorption fine structure spectroscopy showed a modification of the coordination environment of iodine in I-CO(3) and in I-SO(4) samples compared to pure AFm-I(2). This is assumed to be due to the introduction of stacking faults in I-CO(3) samples on one hand and due to the presence of sulfate and associated space-filling water molecules as close neighbors in I-SO(4) samples on the other hand. The formation of a solid solution between AFm-I(2) and AFm-SO(4), with a short-range mixing of iodide and sulfate, implies that AFm-SO(4) bears the potential to retard (129)I.

  18. Development of the strontium iodide coded aperture (SICA) instrument (United States)

    Mitchell, Lee J.; Phlips, Bernard F.; Grove, J. Eric; Cordes, Ryan


    The work reports on the development of a Strontium Iodide Coded Aperture (SICA) instrument for use in space-based astrophysics, solar physics, and high-energy atmospheric physics. The Naval Research Laboratory is developing a prototype coded aperture imager that will consist of an 8 x 8 array of SrI2:Eu detectors, each read out by a silicon photomultiplier. The array would be used to demonstrate SrI2:Eu detector performance for space-based missions. Europium-doped strontium iodide (SrI2:Eu) detectors have recently become available, and the material is a strong candidate to replace existing detector technology currently used for space-based gamma-ray astrophysics research. The detectors have a typical energy resolution of 3.2% at 662 keV, a significant improvement over the 6.5% energy resolution of thallium-doped sodium iodide. With a density of 4.59 g/cm and a Zeff of 49, SrI2:Eu has a high efficiency for MeV gamma-ray detection. Coupling this with recent improvements in silicon photomultiplier technology (i.e., no bulky photomultiplier tubes) creates high-density, large-area, low-power detector arrays with good energy resolution. Also, the energy resolution of SrI2:Eu makes it ideal for use as the back plane of a Compton telescope.

  19. Gold nanoelectrode ensembles for direct trace electroanalysis of iodide. (United States)

    Pereira, Francisco C; Moretto, Ligia M; De Leo, Manuela; Zanoni, Maria V Boldrin; Ugo, Paolo


    A procedure for the standardization of ensembles of gold nanodisk electrodes (NEE) of 30 nm diameter is presented, which is based on the analytical comparison between experimental cyclic voltammograms (CV) obtained at the NEEs in diluted solutions of redox probes and CV patterns obtained by digital simulation. Possible origins of defects sometimes found in NEEs are discussed. Selected NEEs are then employed for the study of the electrochemical oxidation of iodide in acidic solutions. CV patterns display typical quasi-reversible behavior which involves associated chemical reactions between adsorbed and solution species. The main CV characteristics at the NEE compare with those observed at millimeter sized gold disk electrodes (Au-macro), apart a slight shift in E1/2 values and slightly higher peak to peak separation at the NEE. The detection limit (DL) at NEEs is 0.3 microM, which is more than one order of magnitude lower than DL at the Au-macro (4 microM). The mechanism of the electrochemical oxidation of iodide at NEEs is discussed. Finally, NEEs are applied to the direct determination of iodide at micromolar concentration levels in real samples, namely in some ophthalmic drugs and iodized table salt.

  20. Enhanced iodide sequestration by 3-biphenyl-5,6-dihydroimidazo 2,1-b thiazole in sodium/iodide sym-porter (NIS)-expressing cells

    Energy Technology Data Exchange (ETDEWEB)

    Lecat-Guillet, N.; Ambroise, Y. [CEA, DSV, Dept Bioorgan Chem andt IsotopLabelling, Inst Biol and Technol, iBiTecS, F-91191 Gif Sur Yvette (France)


    The ability of the sodium/iodide sym-porter (NIS) to take up iodide has long provided the basis for cyto-reductive gene therapy and cancer treatment with radio-iodide. One of the major limitations of this approach is that radio-iodide retention in NIS-expressing cells is not sufficient for their destruction. We identified and characterized a small organic molecule capable of increasing iodide retention in HEK293 cells permanently transfected with human NIS cDNA (hNIS-HEK293) and in the rat thyroid-derived cell line FRTL-5. In the presence of 3-biphenyl-4'-yl-5,6-dihydroimidazo[2,1-b)thiazole (ISA1), the transmembrane iodide concentration gradient was increased up to 4.5-fold. Our experiments indicate that the imidazo-thiazole derivative acts either by inhibiting anion efflux mechanisms, or by promoting the relocation of iodide into subcellular compartments. This new compound is not only an attractive chemical tool to investigate the mechanisms of iodide flux at the cellular level, but also opens promising perspectives in the treatment of cancer after NIS gene transfer. (authors)

  1. Communication: Trapping a proton in argon: Spectroscopy and theory of the proton-bound argon dimer and its solvation (United States)

    McDonald, D. C.; Mauney, D. T.; Leicht, D.; Marks, J. H.; Tan, J. A.; Kuo, J.-L.; Duncan, M. A.


    Ion-molecule complexes of the form H+Arn are produced in pulsed-discharge supersonic expansions containing hydrogen and argon. These ions are analyzed and mass-selected in a reflectron spectrometer and studied with infrared laser photodissociation spectroscopy. Infrared spectra for the n = 3-7 complexes are characterized by a series of strong bands in the 900-2200 cm-1 region. Computational studies at the MP2/aug-cc-pVTZ level examine the structures, binding energies, and infrared spectra for these systems. The core ion responsible for the infrared bands is the proton-bound argon dimer, Ar-H+-Ar, which is progressively solvated by the excess argon. Anharmonic vibrational theory is able to reproduce the vibrational structure, identifying it as arising from the asymmetric proton stretch in combination with multiple quanta of the symmetric argon stretch. Successive addition of argon shifts the proton vibration to lower frequencies, as the charge is delocalized over more ligands. The Ar-H+-Ar core ion has a first solvation sphere of five argons.

  2. New argon-argon (40Ar/39Ar) radiometric age dates from selected subsurface basalt flows at the Idaho National Laboratory, Idaho (United States)

    Hodges, Mary K.; Turrin, Brent D.; Champion, Duane E.; Swisher, Carl C.


    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected samples for 12 new argon-argon radiometric ages from eastern Snake River Plain olivine tholeiite basalt flows in the subsurface at the Idaho National Laboratory. The core samples were collected from flows that had previously published paleomagnetic data. Samples were sent to Rutgers University for argon-argon radiometric dating analyses.

  3. Removal and sequestration of iodide using silver-impregnated activated carbon. (United States)

    Hoskins, Jay S; Karanfil, Tanju; Serkiz, Steven M


    Two silver-impregnated activated carbons (SIACs) (0.05 and 1.05 wt % silver) and their virgin (i.e., unimpregnated) granular activated carbon (GAC) precursors were investigated for their ability to remove and sequester iodide from aqueous solutions in a series of batch sorption and leaching experiments. Silver content, total iodide concentration, and pH were the factors controlling the removal mechanisms of iodide. Iodide uptake increased with decreasing pH for both SIACs and their virgin GACs. The 0.05% SIAC behaved similarly to its virgin GAC in all experimental conditions because of its low silver content. At pH values of 7 and 8 there was a marked increased in iodide removal for the 1.05% SIAC over that of its virgin GAC, while their performances were similar at a pH of 5. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analyses prior to reaction with iodide showed the presence of metallic silver agglomerates on the 1.05% SIAC surface. After the reaction, elemental mapping with EDX showed the formation of silver iodide agglomerates. Oxidation of metallic silver was observed in the presence of oxygen, and the carbon surface appears to catalyze this reaction. When the molar ratio of silver to iodide was greater than 1 (i.e., M(Ag,SIAC) > M(I,TOTAL)), precipitation of silver iodide was the dominant removal mechanism. However, unreacted silver leached into solution with decreasing pH while iodide leaching did not occur. When M(Ag,SIAC) silver iodide precipitation occurred until all available silver had reacted, and additional iodide was removed from solution by pH-dependent adsorption to the GAC. Under this condition, silver leaching did not occur while iodide leaching increased with increasing pH.

  4. Electrochemistry of silver iodide the capacity of the double layer at the silver iodide-water interface

    NARCIS (Netherlands)

    Lyklema, J.; Overbeek, J.Th.G.


    A method is described for obtaining differential double layer capacities on silver iodide. Especially the influence of the nature and concentration of indifferent electrolytes was investigated, viz., the nitrates of Li·, K·, Rb·, NH4·, H·, Tl·, Mg··, Ba··, Co··, Cd··, Pb··, La···, Th····, the fluori

  5. Evolution of Martian atmospheric argon: Implications for sources of volatiles (United States)

    Hutchins, Kevin S.; Jakosky, Bruce M.

    We have examined processes affecting isotopes of argon (36Ar, 38Ar, 40Ar) in order to determine important atmospheric sources and sinks. Our simple model for argon evolution incorporates production of radiogenic argon in the mantle, outgassing of all argon species by extrusive and intrusive volcanism, and loss to space by knock-on sputtering above the exobase. Sputtering has been shown previously to be an important loss process for atmospheric species, especially isotopes of noble gases, which have few other mechanisms of escape. The integrated evolution of argon (36Ar, 38Ar, and 40Ar, respectively) is modeled in terms of these variables: (1) the planetary concentration of potassium, (2) the fraction of juvenile argon released catastrophically during the first 600 Myr., (3) potential variation in the time-history of sputtering loss from that suggested by Luhmann et al. [1992], and (4) the volume of total outgassing to the surface as compared to outgassing contributed by volcanic release. Our results indicate that Mars has lost between 85-95% of 36Ar and 70-88% of outgassed 40Ar. Due to this substantial loss, the planet must have outgassed the equivalent of between 10 and 100 times the total volume of gases released by extrusive and intrusive volcanics. This indicates that volcanic outgassing, alone, is insufficient to explain the present-day abundances of 36Ar and 40Ar in the Martian atmosphere. Similar calculations for 20Ne suggest outgassed volumes of between 100 and 1800 times in excess of that due to volcanism. This results in a distinct Ne/Ar elemental fractionation, with a preference for outgassing argon, of the order of 10 to 17. Although the results must be evaluated within the model uncertainties, the results are compelling in that they unequivocally show the existence of additional sources of atmospheric volatiles and helps define a means to identify them.

  6. The Molecular Pathway of Argon-Mediated Neuroprotection

    Directory of Open Access Journals (Sweden)

    Felix Ulbrich


    Full Text Available The noble gas argon has attracted increasing attention in recent years, especially because of its neuroprotective properties. In a variety of models, ranging from oxygen-glucose deprivation in cell culture to complex models of mid-cerebral artery occlusion, subarachnoid hemorrhage or retinal ischemia-reperfusion injury in animals, argon administration after individual injury demonstrated favorable effects, particularly increased cell survival and even improved neuronal function. As an inert molecule, argon did not show signs of adverse effects in the in vitro and in vivo model used, while being comparably cheap and easy to apply. However, the molecular mechanism by which argon is able to exert its protective and beneficial characteristics remains unclear. Although there are many pieces missing to complete the signaling pathway throughout the cell, it is the aim of this review to summarize the known parts of the molecular pathways and to combine them to provide a clear insight into the cellular pathway, starting with the receptors that may be involved in mediating argons effects and ending with the translational response.

  7. The Spectroscopic Detectability of Argon in the Lunar Atmosphere

    CERN Document Server

    Parker, J W; Gladstone, G R; Shull, J M; Parker, Joel Wm.


    Direct measurements of the abundance of argon in the lunar atmosphere were made in 1973 by instruments placed on the Moon during the Apollo 17 mission, but the total daytime abundance is unknown due to instrument saturation effects; thus, until we are able to return to the Moon for improved direct measurements, we must use remote sensing to establish the daytime abundance. In this paper, we present a complete analysis of the potential for measuring argon in the lunar atmosphere via emission-line or absorption-line observations. We come to the surprising conclusion that the lower limit established by the in situ lunar argon measurements implies that any absorption-line measurement of argon in the lower, dayside lunar atmosphere requires analysis in the optically-thick regime. In light of this result, we present the results of our EUVS sounding rocket observations of the lunar occultation of Spica, which provide a new upper limit on the abundance of argon in the daytime lunar atmosphere. We also re-analyze a re...

  8. Irradiation damage simulation of Zircaloy-4 using argon ions bombardment

    Institute of Scientific and Technical Information of China (English)

    Dequan Peng; Xinde Bai; Feng Pan


    To simulate irradiation damage, argon ion was implanted in the Zircaloy-4 with the fluence ranging from 1×1016 to 1×1017 cm-2, using accelerating implanter at an extraction voltage of 190 kV and liquid nitrogen temperature. Then the influence of argon ion implantation on the aqueous corrosion behavior of Zircaloy-4 was studied. The valence states of elements in the surface layer of the samples wcrc analyzed using X-ray photoelectron spectroscopy (XPS). Transmission clcctron microscopy (TEM) was used to examine the microstructure of the argon-implanted samples. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted Zircaloy-4 in 1 mol/L H2SO4 solution. It is found that there appear bubbles on the surface of the samples when the argon flucncc is 1×1016 cm-2. The microstructure of argon-implanted samples changes from amor-phous to partial amorphous, then to polycrystallinc, and again to amorphous. The corrosion resistance of implanted samples linearly declines with the increase of flucnce approximately, which is attributed to the linear increase of the irradiation damage.

  9. Characteristics of Knock in Hydrogen-Oxygen-Argon SI Engine

    Energy Technology Data Exchange (ETDEWEB)

    Killingsworth, N; Rapp, V; Flowers, D; Aceves, S; Chen, J; Dibble, R


    A promising approach for improving the efficiency of internal combustion engines is to employ a working fluid with a high specific heat ratio such as the noble gas argon. Moreover, all harmful emissions are eliminated when the intake charge is composed of oxygen, nonreactive argon, and hydrogen fuel. Previous research demonstrated indicated thermal efficiencies greater than 45% at 5.5 compression ratio in engines operating with hydrogen, oxygen, and argon. However, knock limits spark advance and increasing the efficiency further. Conditions under which knock occurs in such engines differs from typical gasoline fueled engines. In-cylinder temperatures using hydrogen-oxygen-argon are higher due to the high specific heat ratio and pressures are lower because of the low compression ratio. Better understanding of knock under these conditions can lead to operating strategies that inhibit knock and allow operation closer to the knock limit. In this work we compare knock with a hydrogen, oxygen, and argon mixture to that of air-gasoline mixtures in a variable compression ratio cooperative fuels research (CFR) engine. The focus is on stability of knocking phenomena, as well as, amplitude and frequency of the resulting pressure waves.

  10. Iron- Catalyzed 1,2-Addition of Perfluoroalkyl Iodides to Alkynes and Alkenes


    Xu, Tao; Cheung, Chi Wai; Hu, Xile


    Iron catalysis has been developed for the intermolecular 1,2-addition of perfluoroalkyl iodides to alkynes and alkenes. The catalysis has a wide substrate scope and high functional-group tolerance. A variety of perfluoroalkyl iodides including CF3I can be employed. The resulting perfluoroalkylated alkyl and alkenyl iodides can be further functionalized by cross-coupling reactions. This methodology provides a straightforward and streamlined access to perfluoroalkylated organic molecules.

  11. Expression of sodium-iodide symporter in thyroid gland tumors: immunohistochemical study

    Directory of Open Access Journals (Sweden)

    Bondarenko O.O.


    Full Text Available One of the key moments of radioiodine therapy, and also radioisotope diagnostics of cancers of a thyroid gland is ability of their cells to accumulate iodide. This ability is provided with activity of the specific transporter – sodium-iodide symporter. Our research has shown disorders of sodium-iodide symporter immunoexpression in all tumors of thyroid gland: from overexpression and absence of plasma membrane expression in differentiated carcinomas, up to weak or actually absent in low differentiated cancers and Hurtle-cells tumors. Thus, there is a prospect of application of the sodium-iodide symporter, as the prognostic marker of thyroid cancers.

  12. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    George, M.A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E. [Fisk Univ., Nashville, TN (United States). Dept. of Physics; Nason, D. [EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations


    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using Atomic Force Microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  13. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals (United States)

    George, M. A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E.; Nason, D.


    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using atomic force microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position, and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  14. The Simulation of the ATLAS Liquid Argon Calorimetry

    CERN Document Server

    Archambault, J P; Carli, T; Costanzo, D; Dell'Acqua, A; Djama, F; Gallas, M; Fincke-Keeler, M; Khakzad, M; Kiryunin, A; Krieger, P; Leltchouk, M; Loch, P; Ma, H; Menke, S; Monnier, E; Nairz, A; Niess, V; Oakham, G; Oram, C; Pospelov, G; Rajagopalan, S; Rimoldi, A; Rousseau, D; Rutherfoord, J; Seligman, W; Soukharev, A; Strízenec, P; Tóth, J; Tsukerman, I; Tsulaia, V; Unal, G; Grahn, K J


    In ATLAS, all of the electromagnetic calorimetry and part of the hadronic calorimetry is performed by a calorimeter system using liquid argon as the active material, together with various types of absorbers. The liquid argon calorimeter consists of four subsystems: the electromagnetic barrel and endcap accordion calorimeters; the hadronic endcap calorimeters, and the forward calorimeters. A very accurate geometrical description of these calorimeters is used as input to the Geant 4-based ATLAS simulation, and a careful modelling of the signal development is applied in the generation of hits. Certain types of Monte Carlo truth information ("Calibration Hits") may, additionally, be recorded for calorimeter cells as well as for dead material. This note is a comprehensive reference describing the simulation of the four liquid argon calorimeteter components.

  15. Liquid Argon Calorimetry with LHC-Performance Specifications

    CERN Multimedia


    % RD-3 Liquid Argon Calorimetry with LHC-Performance Specifications \\\\ \\\\Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. Among the techniques used so far, or under development, the liquid argon sampling calorimetry offers high radiation resistence, good energy resolution (electromagnetic and hadronic), excellent calibration stability and response uniformity. Its rate capabilities, however, do not yet match the requirements for LHC. \\\\ \\\\The aim of this proposal is to improve the technique in such a way that high granularity, good hermiticity and adequate rate capabilities are obtained, without compromising the above mentioned properties. To reach this goal, we propose to use a novel structure, the $^{\\prime\\prime}$accordion$^{\\prime\\prime}$, coupled to fast preamplifiers working at liquid argon temperature. Converter and readout electrodes are no longer planar and perpendicular to particles, as usual, but instead they are wiggled around a plane containing particles. ...

  16. Scintillation time dependence and pulse shape discrimination in liquid argon

    CERN Document Server

    Lippincott, W H; Gastler, D; Hime, A; Kearns, E; McKinsey, D N; Nikkel, J A; Stonehill, L C


    Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background and statistics-limited level of electronic recoil contamination to be $7.6\\times10^{-7}$ between 60 and 128 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 72 keVr. Finally, we develop a maximum likelihood method of pulse shape discrimination using the measured scintillation time dependence and predict the sensitivity to WIMP-nucleon scattering in three configurations of a liquid argon dark matter detector.

  17. Attenuation measurements of vacuum ultraviolet light in liquid argon revisited

    Energy Technology Data Exchange (ETDEWEB)

    Neumeier, A. [Physik-Department E15, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany); Dandl, T.; Himpsl, A. [Physik-Department E12, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany); Hofmann, M. [Physik-Department E15, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany); KETEK GmbH, Hofer Straße 3, 81737 München (Germany); Oberauer, L.; Potzel, W.; Schönert, S. [Physik-Department E15, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany); Ulrich, A., E-mail: [Physik-Department E12, Technische Universität München, James-Franck-Straße 1, 85748 Garching (Germany)


    The attenuation of vacuum ultraviolet light in liquid argon in the context of its application in large liquid noble gas detectors has been studied. Compared to a previous publication several technical issues concerning transmission measurements in general are addressed and several systematic effects were quantitatively measured. Wavelength-resolved transmission measurements have been performed from the vacuum ultraviolet to the near-infrared region. On the current level of sensitivity with a length of the optical path of 11.6 cm, no xenon-related absorption effects could be observed, and pure liquid argon is fully transparent down to the short wavelength cut-off of the experimental setup at 118 nm. A lower limit for the attenuation length of pure liquid argon for its own scintillation light has been estimated to be 1.10 m based on a very conservative approach.

  18. Developing Detectors for Scintillation Light in Liquid Argon for DUNE

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Bruce [Fermilab


    The Deep Underground Neutrino experiment will conduct a broad program of physics research by studying a beam of neutrinos from Fermilab, atmospheric neutrinos, neutrinos from potential supernovae, and potential nucleon decay events. In pursuit of these studies, the experiment will deploy four 10kt fiducial mass liquid argon time projection chambers underground in Lead, South Dakota. Liquid argon time projection chambers allow high-resolution tracking and energy measurements. A precise timing signal is needed to provide the necessary time stamp to localize events in the drift direction. As liquid argon is a natural scintillator, a photon detection system will be deployed to provide such a signal, especially for non-beam events. In the baseline design for the single-phase time projection chamber, the detectors are contained within the anode plane assemblies. The design of two prototypes utilizing wavelength shifters and light guides are presented, and aspects of the research and development program are discussed.

  19. Attenuation measurements of vacuum ultraviolet light in liquid argon revisited

    CERN Document Server

    Neumeier, A; Himpsl, A; Hofmann, M; Oberauer, L; Potzel, W; Schönert, S; Ulrich, A


    The attenuation of vacuum ultraviolet light in liquid argon in the context of its application in large liquid noble gas detectors has been studied. Compared to a previous publication several technical issues concerning transmission measurements in general are addressed and several systematic effects were quantitatively measured. Wavelength-resolved transmission measurements have been performed from the vacuum ultraviolet to the near-infrared region. On the current level of sensitivity with a length of the optical path of 11.6 cm, no xenon-related absorption effects could be observed, and pure liquid argon is fully transparent down to the short wavelength cut-off of the experimental setup at 118 nm. A lower limit for the attenuation length of pure liquid argon for its own scintillation light has been estimated to be 1.10 m based on a very conservative approach.

  20. Studies of Electron Avalanche Behavior in Liquid Argon

    CERN Document Server

    Kim, J G; Jackson, K H; Kadel, R W; Kadyk, J A; Peskov, Vladimir; Wenzel, W A


    Electron avalanching in liquid argon is being studied as a function of voltage, pressure, radiation intensity, and the concentrations of certain additives, especially xenon. The avalanches produced in an intense electric field at the tip of a tungsten needle are initiated by ionization from a moveable americium (241Am) gamma ray source. Photons from xenon excimers are detected as photomultiplier signals in coincidence with the current pulse from the needle. In pure liquid argon the avalanche behavior is erratic, but the addition of even a small amount of xenon (>100ppm) stabilizes the performance. Similar attempts with neon (30%) as an additive to argon have been unsuccessful. Tests with higher energy gamma rays (57Co) yield spectra and other performance characteristics quite similar to those using the 241Am source. Two types of signal pulses are commonly observed: a set of pulses that are sensitive to ambient pressure, and a set of somewhat smaller pulses that are not pressure dependent.

  1. A therapeutic experience on Port Wine hemangiomas with Argon Laser

    Directory of Open Access Journals (Sweden)

    Farahvash M


    Full Text Available Port wine stains are benign but cosmetically devasting congenital angiomas. The argon laser is a therapeutic device newly applied to this condition. Our program was begun 6 years ago. From the beginning, the study was conceived as a clinical investigation of both the port wine stain and its argon laser therapy. A total of 218 patients with port wine stains have been studied and many aspects of their clinical condition detailed. Employing the Argon laser, test spots have been carried out in patients and the results have been analyzed with clinical aspects of the lesions. Altogether, 501 treatments were performed in 218 patients. Good to excellent results were obtained in 81 patients. Moderate Result was obtained in 31 weak result in 65 patients. Most common complication were hyperpigmentation and depressed scar.

  2. Strontium iodide gamma ray spectrometers for planetary science (Conference Presentation) (United States)

    Prettyman, Thomas H.; Rowe, Emmanuel; Butler, Jarrhett; Groza, Michael; Burger, Arnold; Yamashita, Naoyuki; Lambert, James L.; Stassun, Keivan G.; Beck, Patrick R.; Cherepy, Nerine J.; Payne, Stephen A.; Castillo-Rogez, Julie C.; Feldman, Sabrina M.; Raymond, Carol A.


    Gamma rays produced passively by cosmic ray interactions and by the decay of radioelements convey information about the elemental makeup of planetary surfaces and atmospheres. Orbital missions mapped the composition of the Moon, Mars, Mercury, Vesta, and now Ceres. Active neutron interrogation will enable and/or enhance in situ measurements (rovers, landers, and sondes). Elemental measurements support planetary science objectives as well as resource utilization and planetary defense initiatives. Strontium iodide, an ultra-bright scintillator with low nonproportionality, offers significantly better energy resolution than most previously flown scintillators, enabling improved accuracy for identification and quantification of key elements. Lanthanum bromide achieves similar resolution; however, radiolanthanum emissions obscure planetary gamma rays from radioelements K, Th, and U. The response of silicon-based optical sensors optimally overlaps the emission spectrum of strontium iodide, enabling the development of compact, low-power sensors required for space applications, including burgeoning microsatellite programs. While crystals of the size needed for planetary measurements (>100 cm3) are on the way, pulse-shape corrections to account for variations in absorption/re-emission of light are needed to achieve maximum resolution. Additional challenges for implementation of large-volume detectors include optimization of light collection using silicon-based sensors and assessment of radiation damage effects and energetic-particle induced backgrounds. Using laboratory experiments, archived planetary data, and modeling, we evaluate the performance of strontium iodide for future missions to small bodies (asteroids and comets) and surfaces of the Moon and Venus. We report progress on instrument design and preliminary assessment of radiation damage effects in comparison to technology with flight heritage.

  3. Electronic properties and Compton profiles of silver iodide

    Indian Academy of Sciences (India)

    Alpa Dashora; Ambica Marwal; K R Soni; B L Ahuja


    We have carried out an extensive study of electronic properties of silver iodide in - and -phases. The theoretical Compton profiles, energy bands, density of states and anisotropies in momentum densities are computed using density functional theories. We have also employed full-potential linearized augmented plane-wave method to derive the energy bands and the density of states. To compare our theoretical data, isotropic Compton profile measurement on -AgI using 137Cs Compton spectrometer at an intermediate resolution of 0.38 a.u. has been undertaken. The theoretical anisotropies are also interpreted on the basis of energy bands.

  4. Temperature dependent energy levels of methylammonium lead iodide perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Foley, Benjamin J.; Marlowe, Daniel L.; Choi, Joshua J., E-mail:, E-mail:, E-mail: [Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Sun, Keye; Gupta, Mool C., E-mail:, E-mail:, E-mail: [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Saidi, Wissam A. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States); Scudiero, Louis, E-mail:, E-mail:, E-mail: [Chemistry Department and Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164 (United States)


    Temperature dependent energy levels of methylammonium lead iodide are investigated using a combination of ultraviolet photoemission spectroscopy and optical spectroscopy. Our results show that the valence band maximum and conduction band minimum shift down in energy by 110 meV and 77 meV as temperature increases from 28 °C to 85 °C. Density functional theory calculations using slab structures show that the decreased orbital splitting due to thermal expansion is a major contribution to the experimentally observed shift in energy levels. Our results have implications for solar cell performance under operating conditions with continued sunlight exposure and increased temperature.

  5. Polarized spectral complexes of optical functions of monovalent mercury iodide (United States)

    Sobolev, V. V.; Sobolev, V. Val.; Anisimov, D. V.


    Spectral complexes of optical functions of monovalent mercury iodide Hg2I2 were determined for E ⊥ c and E || c polarizations in the range from 2 to 5.5 eV at 4.2 K. The permittivity and characteristic electron energy loss spectra were expanded in simple components with the determination of their main parameters, including the energy of the maximum and the oscillator strength. The calculations were performed based on known reflectance spectra. Computer programs based on Kramers-Kronig relations and the improved parameter-free method of Argand diagrams were used.

  6. Electrolytic coloration of hydroxyl-doped potassium iodide polycrystals (United States)

    Wang, Na; Gu, Hongen; Han, Li; Guo, Meili; Qin, Fang


    Hydroxyl-doped potassium iodide polycrystals were successfully colored electrolytically by using a pointed cathode and a flat anode at various temperatures and electric field strengths, which mainly benefits appropriate coloration temperatures and electric field strengths. Characteristic OH-, O2--Va+ , U, V2, V3, Cu+, Cu-related, I2- , I2, K, F, R1 and R2 spectral bands were observed in Kubelka-Munk functions of the colored polycrystals, and the OH- and O2--Va+ spectral bands at room temperature were determined from Mollwo-Ivey plots. Color center formation in the electrolytic coloration was explained.

  7. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.


    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...

  8. Rotational spectrum and dynamics of tetrahydrofuran-argon

    Energy Technology Data Exchange (ETDEWEB)

    Melandri, S.; Favero, P.G.; Caminati, W. [Dipartimento di Chimica ' G. Ciamician' dell' Universita, Via Selmi 2, I-40126 Bologna (Italy); Lopez, J.C.; Alonso, J.L. [Departamento de Quimica-Fisica, Facultad de Ciencias, Universidad de Valladolid, E-47005 Valladolid (Spain)


    The jet-cooled rotational spectrum of the tetrahydrofuran-argon molecular complex has been investigated by millimeter-wave absorption and Fourier transform microwave spectroscopies. The argon atom is located nearly over the oxygen atom, almost perpendicularly to the COC plane. Each rotational transition is split in two component lines due to the residual pseudorotational effects of the ring in the complex. The splitting between the two vibrational sublevels has been calculated to be 111.345(44) MHz. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved000.

  9. Attosecond-correlated dynamics of two electrons in argon

    Indian Academy of Sciences (India)

    V Sharma; N Camus; B Fischer; M Kremer; A Rudenko; B Bergues; M Kuebel; N G Johnson; M F Kling; T Pfeifer; J Ullrich; R Moshammer


    In this work we explored strong field-induced decay of doubly excited transient Coulomb complex Ar** → Ar2++2. We measured the correlated two-electron emission as a function of carrier envelop phase (CEP) of 6 fs pulses in the non-sequential double ionization (NSDI) of argon. Classical model calculations suggest that the intermediate doubly excited Coulomb complex loses memory of its formation dynamics. We estimated the ionization time difference between the two electrons from NSDI of argon and it is 200 ± 100 as (N Camus et al, Phys. Rev. Lett. 108, 073003 (2012)).

  10. Measurement of Longitudinal Electron Diffusion in Liquid Argon

    CERN Document Server

    Li, Yichen; Thorn, Craig; Qian, Xin; Diwan, Milind; Joshi, Jyoti; Kettell, Steve; Morse, William; Rao, Triveni; Stewart, Jim; Tang, Wei; Viren, Brett


    We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. Our results, which are consistent with previous measurements in the region between 100 to 350 V/cm [1] , are systematically higher than the prediction of Atrazhev-Timoshkin[2], and represent the world's best measurement in the region between 350 to 2000 V/cm. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

  11. Filamentation of ultrashort laser pulses of different wavelengths in argon

    Indian Academy of Sciences (India)



    We investigate the filaments formed by the ultrashort laser pulses with different wavelengths of 400 nm, 586 nm and 800 nm propagating in argon. Numerical results show that, when the input power or the ratio of the input power to the critical power is given, the pulse with 400 nm wavelength has the largest on-axis intensity, as well as the narrowest filament and the most stable beam radius. These results indicate that the pulse with shorter wavelength is more suitable for the long-range propagation in argon.

  12. Persistent Energetic Electrons in Methylammonium Lead Iodide Perovskite Thin Films. (United States)

    Niesner, Daniel; Zhu, Haiming; Miyata, Kiyoshi; Joshi, Prakriti P; Evans, Tyler J S; Kudisch, Bryan J; Trinh, M Tuan; Marks, Manuel; Zhu, X-Y


    In conventional semiconductor solar cells, carriers are extracted at the band edges and the excess electronic energy (E*) is lost as heat. If E* is harvested, power conversion efficiency can be as high as twice the Shockley-Queisser limit. To date, materials suitable for hot carrier solar cells have not been found due to efficient electron/optical-phonon scattering in most semiconductors, but our recent experiments revealed long-lived hot carriers in single-crystal hybrid lead bromide perovskites. Here we turn to polycrystalline methylammonium lead iodide perovskite, which has emerged as the material for highly efficient solar cells. We observe energetic electrons with excess energy ⟨E*⟩ ≈ 0.25 eV above the conduction band minimum and with lifetime as long as ∼100 ps, which is 2-3 orders of magnitude longer than those in conventional semiconductors. The energetic carriers also give rise to hot fluorescence emission with pseudo-electronic temperatures as high as 1900 K. These findings point to a suppression of hot carrier scattering with optical phonons in methylammonium lead iodide perovskite. We address mechanistic origins of this suppression and, in particular, the correlation of this suppression with dynamic disorder. We discuss potential harvesting of energetic carriers for solar energy conversion.

  13. Ionic transport in hybrid lead iodide perovskite solar cells (United States)

    Eames, Christopher; Frost, Jarvist M.; Barnes, Piers R. F.; O'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful


    Solar cells based on organic–inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current–voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3NH3PbI3) are derived from first principles, and are compared with kinetic data extracted from the current–voltage response of a perovskite-based solar cell. We identify the microscopic transport mechanisms, and find facile vacancy-assisted migration of iodide ions with an activation energy of 0.6 eV, in good agreement with the kinetic measurements. The results of this combined computational and experimental study suggest that hybrid halide perovskites are mixed ionic–electronic conductors, a finding that has major implications for solar cell device architectures. PMID:26105623

  14. Numerical modelling of methyl iodide in the eastern tropical Atlantic

    Directory of Open Access Journals (Sweden)

    I. Stemmler


    Full Text Available Methyl iodide (CH3I is a volatile organic halogen compound that contributes significantly to the transport of iodine from the ocean to the atmosphere, where it plays an important role in tropospheric chemistry. CH3I is naturally produced and occurs in the global ocean. The processes involved in the formation of CH3I, however, are not fully understood. In fact, there is an ongoing debate whether production by phytoplankton or photochemical degradation of organic matter is the main source term. Here, both the biological and photochemical production mechanisms are considered in a biogeochemical module that is coupled to a one-dimensional water column model for the eastern tropical Atlantic. The model is able to reproduce observed subsurface maxima of CH3I concentrations. But, the dominating source process cannot be clearly identified as subsurface maxima can occur due to both direct biological and photochemical production. However, good agreement between the observed and simulated difference between surface and subsurface methyl iodide concentrations is achieved only when direct biological production is taken into account. Production rates for the biological CH3I source that were derived from published laboratory studies are shown to be inappropriate for explaining CH3I concentrations in the eastern tropical Atlantic.

  15. Nuclear detonation, thyroid cancer and potassium iodide prophylaxis

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit


    Full Text Available The recent nuclear disaster at Japan has raised global concerns about effects of radioactive leakage in the environment, associated hazards, and how they can be prevented. In this article, we have tried to explain about the guidelines laid down by World Health Organization for a potassium iodide prophylaxis following a nuclear disaster, and its mechanism of action in preventing thyroid cancer. Data was collected mainly from the studies carried out during the Chernobyl disaster of Russia in 1986 and the hazardous effects especially on the thyroid gland were studied. It was seen that radioactive iodine leakage from the nuclear plants mainly affected the thyroid gland, and especially children were at a higher risk at developing the cancers. Potassium Iodide prophylaxis can be administered in order to prevent an increase in the incidence of thyroid cancers in the population of an area affected by a nuclear disaster. However, one has to be cautious while giving it, as using it without indication has its own risks.

  16. Thyroid hormones and iodide in the near-term pregnant rat.

    NARCIS (Netherlands)

    Versloot, P.M.


    Thyroid hormones, thyroxine (T4) and 3,5,3'-triiodothyronine (T3), are produced by the thyroid gland. To synthesize thyroid hormones the thyroid needs iodide. The uptake of iodide as well as the production and secretion of T4 and T3 by the thyroid gland is regulated by thyrotropin (TSH), which is pr

  17. Effects of radiation and temperature on iodide sorption by surfactant-modified bentonite. (United States)

    Choung, Sungwook; Kim, Minkyung; Yang, Jung-Seok; Kim, Min-Gyu; Um, Wooyong


    Bentonite, which is used as an engineered barrier in geological repositories, is ineffective for sorbing anionic radionuclides because of its negatively charged surface. This study modified raw bentonite using a cationic surfactant (i.e., hexadecyltrimethylammonium [HDTMA]-Br) to improve its sorption capability for radioactive iodide. The effects of temperature and radiation on the iodide sorption of surfactant-modified bentonite (SMB) were also evaluated under alkaline pH condition similar to that found in repository environments. Different amounts of surfactant, equivalent to the 50, 100, and 200% cation-exchange capacity of the bentonite, were used to produce the HDTMA-SMB for iodide sorption. The sorption reaction of the SMB with iodide reached equilibrium rapidly within 10 min regardless of temperature and radiation conditions. The rate of iodide sorption increased as the amount of the added surfactant was increased and nonlinear sorption behavior was exhibited. However, high temperature and γ-irradiation ((60)Co) resulted in significantly (∼2-10 times) lower iodide Kd values for the SMB. The results of FTIR, NMR, and XANES spectroscopy analysis suggested that the decrease in iodide sorption may be caused by weakened physical electrostatic force between the HDTMA and iodide, and by the surfactant becoming detached from the SMB during the heating and irradiation processes.

  18. Tungstosilicic Acid: An Efficient and Ecofriendly Catalyst for the Conversion of Alcohols to Alkyl Iodides

    Directory of Open Access Journals (Sweden)

    Masoud Mokhtary


    Full Text Available Treatment of a range of benzylic, allylic, and secondary aliphatic alcohols with potassium iodides in the presence of H4SiW12O40 affords the corresponding alkyl iodides in good to excellent yield with straightforward purification at room temperature in CH3CN.

  19. Bibenzimidazole containing mixed ligand cobalt(III) complex as a selective receptor for iodide

    Digital Repository Service at National Institute of Oceanography (India)

    Indumathy, R.; Parameswarana, P.S.; Aiswarya, C.V.; Nair, B.U.

    -, OH- and OAc- do not bring about any dramatic visual colorimetric changes. However, metallo-receptor 2 brings about vivid color change with iodide anion visually and this could be due to charge transfer transition via ion pair formation with iodide ion...

  20. CuI-catalyzed Synthesis of Aryl Thiocyanates from Aryl Iodides

    Institute of Scientific and Technical Information of China (English)

    Ye Feng WANG; Yuan ZHOU; Jia Rui WANG; Lei LIU; Qing Xiang GUO


    An operationally simple and inexpensive catalyst system was developed for the cross coupling of potassium thiocyanate with aryl iodides by using CuI as catalyst, 1, 10-phenanthroline as ligand, and tetraethylammonium iodide as activator. The procedure is applicable for the synthesis of diverse aryl thiocyanates without any exotic, poisonous reagents.

  1. Thermal decomposition of Yttrium(III) isovalerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao;


    The thermal behaviour of yttrium(III) isovalerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, FTIR-spectroscopy, hot-stage optical microscopy and X-ray diffraction with a laboratory Cu-tube source as well as with a synchrotron radiation source...

  2. Thermal decomposition of yttrium(III) valerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao;


    The thermal decomposition of yttrium(III) valerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction, in-situ synchrotron diffraction and hot-stage microscopy as well as room temperature optical microscopy. Melting...

  3. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm


    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  4. A 2-Dimensional Fluid Model for an Argon Rf Discharge

    NARCIS (Netherlands)

    Passchier, J. D. P.; W. J. Goedheer,


    A fluid model for an argon rf discharge in a cylindrical discharge chamber is presented. The model contains the particle balances for electrons and ions and the electron energy balance. A nonzero autobias voltage is obtained by imposing the condition that the time-averaged current toward the powered

  5. Study of Liquid Argon Dopants for LHC Hadron Calorimetry

    CERN Multimedia


    Hadron calorimetry based on the Liquid Argon Ionisation Chamber technique is one of the choice techniques for LHC-experimentation. A systematic study of the effect of selected dopants on Liquid Argon (LAr) will be carried out with the aim to achieve an improvement on: \\item (i)~``Fast Liquid Argon'' search and study of dopants to increase the drift velocity. It has been already shown that CH&sub4. added at a fraction of one percent increases the drift velocity by a factor of two or more. \\item (ii)~``Compensated Liquid Argon'' search and study of dopants to increase the response to densely ionising particles, resulting in improved compensation, such as photosensitive dopants. \\end{enumerate}\\\\ \\\\ Monitoring of the parameters involved in understanding the response of a calorimeter is essential. In case of doped LAr, the charge yield, the non-saturated drift velocity and the electron lifetime in the liquid should be precisely and simultaneously monitored as they all vary with the level of dopant concentrati...

  6. Human-chromosome alterations induced by argon laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Simi, S.; Colella, C. (Consiglio Nazionale delle Ricerche, Pisa (Italy). Lab. di Mutagenesi e Differenziamento); Agati, G.; Fusi, F. (Florence Univ. (Italy). Ist. di Farmacologia); Corsi, M.F.; Pratesi, R. (Consiglio Nazionale delle Ricerche, Florence (Italy). Lab. di Elettronica Quantistica); Tocco, G.A. (Naples Univ. (Italy). Ist. di Istologia ed Embrilogia)


    The possible occurrence of genetic damage arising from exposure of human cells to visible laser light has been evaluated in PHA-stimulated human lymphocytes. Aneuploidy and chromosome aberrations have been observed after exposure to an argon laser. These findings appear of special interest in view of the possible role of these chromosome alterations in carcinogenesis.

  7. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark


    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/( (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  8. Behavior of Excited Argon Atoms in Inductively Driven Plasmas

    CERN Document Server

    Hebner, G A


    Laser induced fluorescence has been used to measure the spatial distribution of the two lowest energy argon excited states, 1s sub 5 and 1s sub 4 , in inductively driven plasmas containing argon, chlorine and boron trichloride. The behavior of the two energy levels with plasma conditions was significantly different, probably because the 1s sub 5 level is metastable and the 1s sub 4 level is radiatively coupled to the ground state but is radiation trapped. The argon data is compared with a global model to identify the relative importance of processes such as electron collisional mixing and radiation trapping. The trends in the data suggest that both processes play a major role in determining the excited state density. At lower rfpower and pressure, excited state spatial distributions in pure argon were peaked in the center of the discharge, with an approximately Gaussian profile. However, for the highest rfpowers and pressures investigated, the spatial distributions tended to flatten in the center of the disch...

  9. Pressure broadening of acetylene rotational Raman lines by argon


    Ceruti, M; Frenkel, D.; Mctaque, J.P.


    The anisotropic interaction between acetylene and argon has been studied by observing the density dependence of the acetylene pure rotational Raman line broadening. The observed cross sections are approximately twice that predicted from the known polarizabilities and acetylene molecular quadrupole moment. An empirical atom-atom anisotropic potential adequately parametrizes the results.

  10. Pressure broadening of acetylene rotational Raman lines by argon

    NARCIS (Netherlands)

    Ceruti, M.; Frenkel, D.; McTaque, J.P.


    The anisotropic interaction between acetylene and argon has been studied by observing the density dependence of the acetylene pure rotational Raman line broadening. The observed cross sections are approximately twice that predicted from the known polarizabilities and acetylene molecular quadrupole m

  11. Attachment cooling of electrons in oxygen-argon and SF6-argon mixtures (United States)

    Babaeva, Natalia; Kim, Sung Jin; Park, Gan Young; Lee, Jae Koo


    In e-beam sustained plasma different electron temperature can be obtained. Thus, in plasma of capacitive RF discharges in inert gases typical electron temperature is of the order of 2-3 eV. At certain conditions, in plasma of electronegative gases electron temperature can approach ion/neutral temperature. We consider e-beam sustained plasma of electronegative gases and their mixtures with argon where the main mechanism of plasma neutralization is connected with electron-molecule attachment. In such plasma, due to retardation of fast electrons of e-beam secondary electrons are created which loose their energy due to attachment. It is shown, that at certain conditions (in dependence of the e-beam intensity and spectrum of secondary electrons) electron temperature can obtain the values comparable or even less than temperature of neutral component. The effect can be explained by the increase of attachment rate coefficient with the increase of electron temperature (mean electron energy). Such a dependence leads to attachment of the fastest plasma electrons and selective loss of electrons whose energy exceeds the mean electron energy and, as a result, to effective electron cooling. The theoretical and numerical analysis of the problem has been conducted. The numerical results obtained using ELENDIF code are compared with Particle-in-cell/Monte Carlo simulations under similar conditions.

  12. Conversion of an atomic to a molecular argon ion and low pressure argon relaxation (United States)

    M, N. Stankov; A, P. Jovanović; V, Lj Marković; S, N. Stamenković


    The dominant process in relaxation of DC glow discharge between two plane parallel electrodes in argon at pressure 200 Pa is analyzed by measuring the breakdown time delay and by analytical and numerical models. By using the approximate analytical model it is found that the relaxation in a range from 20 to 60 ms in afterglow is dominated by ions, produced by atomic-to-molecular conversion of Ar+ ions in the first several milliseconds after the cessation of the discharge. This conversion is confirmed by the presence of double-Gaussian distribution for the formative time delay, as well as conversion maxima in a set of memory curves measured in different conditions. Finally, the numerical one-dimensional (1D) model for determining the number densities of dominant particles in stationary DC glow discharge and two-dimensional (2D) model for the relaxation are used to confirm the previous assumptions and to determine the corresponding collision and transport coefficients of dominant species and processes. Project supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ON171025).

  13. 21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology. (United States)


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for...

  14. Determination of Trace Iodide in Sodium Bisulfite Aqueous Solution by Ion Chromatography with UV Detection

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.S.; Kim, D.Y.; Choi, K.S.; Park, S.D.; Han, S.H. [Korea Atomic Energy Research Institute, Taejon (Korea)


    The iodide was recovered from a simulated spent fuel to the sodium bisulfite aqueous solution. It was discussed that the trace iodide (below 1 ppm) was determined without the matrix effect of 0.1 M sodium bisulfite and 1 mM HNO{sub 3} in aqueous solution by ion chromatography with UV detection. AS4A-SC(DIONEX) column and UV-absorption spectrophotometer were used. The UV-absorption spectra of sodium bisulfite nitric acid and iodide were obtained, and then 230 nm was selected as an absorption wavelength for iodide determination. 0.1 M NaCl eluent was optimum condition. In this condition the calibration curve of iodide was obtained on the range of about 0-1,000 ppb. The linear coefficient was 0.99993 and the detection limit was 5 ppb. The relative standard deviation was 1.26%. (author). 17 refs., 3 tabs., 4 figs.

  15. The Determination of Iodide Based on a Flow-injection Coupling Irreversible Biamperometry

    Institute of Scientific and Technical Information of China (English)

    Li Jun LI; Hao CHENG; Wen Yi HUANG; Hong Xing KONG; Jian Ling WU; Jian Ping LU; Wei GAO; Jun Feng SONG


    A novel flow-injection irreversible biamperometric method is described for the direct determination of iodide. The method is based on electrochemical oxidation of iodide at the gold electrode and the reduction of permanganate at the platinum electrode to form an irreversible biamperometric detection system. Under the applied potential difference of 0 V, in the 0.05mol/L sulfuric acid, iodide can be determined over the range 4.00×10-7-l.00×l0-5 mol/L with a sampling frequency of 120 samples per hour. The detection limit for Ⅰ- is 3.0× 10-7 mol/L and the RSD for 40 replicate determinations of 4.0×10-5 mol/L potassium iodide is 1.68%. The new method was applied to the analysis of iodide in table salt with satisfactory results.

  16. Synthesis, growth, structural, thermal, optical properties of new metal-organic crystals: Methyltriphenylphosphonium iodide thiourea and methyltriphenylphosphonium iodide chloroform hemisolvate (United States)

    Shivachev, Boris L.; Kossev, Krassimir; Dimowa, Louiza T.; Yankov, Georgi; Petrov, Todor; Nikolova, Rositsa P.; Petrova, Nadia


    Crystals of methyltriphenylphosphonium iodide thiourea (1) and methyltriphenylphosphonium iodide chloroform hemisolvate (2) were obtained for the first time. Fourier transform infrared (FTIR) spectral studies have been performed to identify the functional groups. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study their thermal properties. The optical transmittance window and the lower cutoff wavelength have been identified by UV-vis studies. Crystals of the title compounds suitable for single crystal X-ray analyses were successfully grown by slow evaporation and diffraction data were collected to elucidate the molecular structure and interactions. The proton donors (phosphonium) and proton acceptor (iodine) in the structure of 1 provide infrastructure to introduce charge asymmetry while in 2 chloroform molecule is not involved in the charge transfer. An optical quality crystal of 1 (5×4×2 mm3) was obtained by macroseeding. The crystal has developed facets with major ones (001) and (00¯1). A crystal of 1 was tested with 1060 nm laser radiation and showed second harmonic generation (SHG).

  17. Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Shrestha, Niraj; Ghimire, Kiran; Grice, Corey R.; Wang, Changlei; Xiao, Yuqing; Cimaroli, Alexander J.; Ellingson, Randy J.; Podraza, Nikolas J.; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa


    Mixed tin (Sn)-lead (Pb) perovskites with high Sn content exhibit low bandgaps suitable for fabricating the bottom cell of perovskite-based tandem solar cells. In this work, we report on the fabrication of efficient mixed Sn-Pb perovskite solar cells using precursors combining formamidinium tin iodide (FASnI3) and methylammonium lead iodide (MAPbI3). The best-performing cell fabricated using a (FASnI3)0.6(MAPbI3)0.4 absorber with an absorption edge of ~1.2 eV achieved a power conversion efficiency (PCE) of 15.08 (15.00)% with an open-circuit voltage of 0.795 (0.799) V, a short-circuit current density of 26.86(26.82) mA/cm2, and a fill factor of 70.6(70.0)% when measured under forward (reverse) voltage scan. The average PCE of 50 cells we have fabricated is 14.39 +/- 0.33%, indicating good reproducibility.

  18. Horizontal Ampoule Growth and Characterization of Mercuric Iodide at Controlled Gas Pressures for X-Ray and Gamma Ray Spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas S. [Kansas State Univ., Manhattan, KS (United States). Semiconductor Materials and Radiological Technologies Lab., Dept. of Nuclear and Mechanical Engineering; Ariesanti, Elsa [Kansas State Univ., Manhattan, KS (United States). Semiconductor Materials and Radiological Technologies Lab., Dept. of Nuclear and Mechanical Engineering; Corcoran, Bridget [Kansas State Univ., Manhattan, KS (United States). Semiconductor Materials and Radiological Technologies Lab., Dept. of Nuclear and Mechanical Engineering


    The project developed a new method for producing high quality mercuric iodide crystals of x-ray and gamma spectrometers. Included are characterization of mercuric iodide crystal properties as a function of growth environment and fabrication and demonstration of room-temperature-operated high-resolution mercuric iodide spectrometers.

  19. Morphological effects in the quantum yield of cesium iodide

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Barbo, F. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Bertolo, M. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Bianco, A. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Braem, A. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Cerasari, S. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Coluzza, C. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Dell`Orto, T. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Fontana, S. [Sincrotrone Trieste SpA, Padriciano 99, 34012 Trieste (Italy); Margaritondo, G. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Nappi, E. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Paic, G. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Piuz, F. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments; Sanjines, R. [Ecole Politechnique Federale, Lausanne (Switzerland). DP-IPA PH-Ecublens; Scognetti, T. [Istituto Nazionale di Fisica Nucleare, Bari (Italy); Sgobba, S. [European Organization for Nuclear Research, Geneva (Switzerland). Div. Particle Physics Experiments


    We demonstrated that polycrystalline cesium iodide (CsI) on large area Ni/Au coated printed board provides a quantum efficiency (QE) higher by a factor of 2 than the films deposited on the standard Cu/Au printed circuits. This is the most important result of the present systematic study of the QE lateral inhomogeneity for CsI on different substrates. We found a strong correlation between the QE lateral variation and the morphological homogeneity of the films. The QE was measured by UV photoelectron emission microscopy and spatially resolved X-ray photoemission, and the morphology studies were performed by secondary electron microscopy, X-ray diffraction and scanning tunneling microscopy. (orig.).

  20. Electronic characterization of mercuric iodide gamma ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Gerrish, V.M.


    During the past four years the yield of high resolution mercuric iodide (HgI[sub 2]) gamma ray spectrometers produced at EG G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI[sub 2] synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI[sub 2] spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI[sub 2] surface, probably due to surface states formed prior to contact deposition.

  1. Electronic characterization of mercuric iodide gamma ray spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Gerrish, V.M.


    During the past four years the yield of high resolution mercuric iodide (HgI{sub 2}) gamma ray spectrometers produced at EG&G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI{sub 2} synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI{sub 2} spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI{sub 2} surface, probably due to surface states formed prior to contact deposition.

  2. Dual frequency cavitation event sensor with iodide dosimeter. (United States)

    Ebrahiminia, Ali; Mokhtari-Dizaji, Manijhe; Toliyat, Tayebeh


    The inertial cavitation activity depends on the sonication parameters. The purpose of this work is development of dual frequency inertial cavitation meter for therapeutic applications of ultrasound waves. In this study, the chemical effects of sonication parameters in dual frequency sonication (40 kHz and 1 MHz) were investigated in the progressive wave mode using iodide dosimetry. For this purpose, efficacy of different exposure parameters such as intensity, sonication duration, sonication mode, duty factor and net ultrasound energy on the inertial cavitation activity have been studied. To quantify cavitational effects, the KI dosimeter solution was sonicated and its absorbance at a wavelength of 350 nm was measured. The absorbance values in continuous sonication mode was significantly higher than the absorbance corresponding to the pulsed mode having duty factors of 20-80% (plevel intensity (sensor can be useful for ultrasonic treatments.

  3. Development of mercuric iodide detectors for XAS and XRD measurements

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K.; Iwanczyk, J.S.; Dabrowski, A.J.; Hedman, B.; Penner-Hakn, J.E.; Roe, A.L.; Hodgson, K.O.; Beyerle, A.


    A prototype element for an energy dispersive detector (EDD) array was constructed using a Mercuric Iodide detector. Both detector and front end FET could be thermoelectrically cooled. Tested at SSRL, the detector had 250 eV electronic noise and 315 eV resolution at 5.9 keV. K line fluorescence spectra were collected for selected elements between Cl (2622 eV) and Zn (8638 eV). Count rate capability to 60,000 cps was demonstrated. Several detector parameters were measured, including energy linearity, resolution vs. shaping time, and detector dead time. An EXAFS (extended x-ray absorption fine structure) spectrum was recorded and compared to simultaneously collected transmission data.

  4. Radiative efficiency of lead iodide based perovskite solar cells (United States)

    Tvingstedt, Kristofer; Malinkiewicz, Olga; Baumann, Andreas; Deibel, Carsten; Snaith, Henry J.; Dyakonov, Vladimir; Bolink, Henk J.


    The maximum efficiency of any solar cell can be evaluated in terms of its corresponding ability to emit light. We herein determine the important figure of merit of radiative efficiency for Methylammonium Lead Iodide perovskite solar cells and, to put in context, relate it to an organic photovoltaic (OPV) model device. We evaluate the reciprocity relation between electroluminescence and photovoltaic quantum efficiency and conclude that the emission from the perovskite devices is dominated by a sharp band-to-band transition that has a radiative efficiency much higher than that of an average OPV device. As a consequence, the perovskite have the benefit of retaining an open circuit voltage ~0.14 V closer to its radiative limit than the OPV cell. Additionally, and in contrast to OPVs, we show that the photoluminescence of the perovskite solar cell is substantially quenched under short circuit conditions in accordance with how an ideal photovoltaic cell should operate.

  5. Evidence for Argon Content in Pure Oxygen from Thermal Data (United States)

    Steur, Peter P. M.; Yang, Inseok; Pavese, Franco


    Since many years it is known that argon impurities in oxygen change the temperature of the oxygen triple point by +12 K{\\cdot }mol^{-1} (positive, while most impurities decrease the temperature) without any effect on the melting range of this transition, for the impurity concentrations usually encountered in nominally pure gases. It has been hypothesized that thermal measurements on the α -β solid-to-solid transition at 23.8 K or the β -γ solid-to-solid transition at 43.8 K may give reliable evidence regarding the argon content. However, such measurements require very long times for full completion of each transition (with prohibitive costs if liquid helium is used) and for the α -β solid-to-solid transition the heat pulse method cannot be applied reliably. The availability of closed-cycle refrigerators permits the first obstacle to be surmounted. The automatic system earlier developed at INRIM during the EU Multicells project and used extensively for the project on the isotopic effect in neon is perfectly suited for such measurements. Thus, the uncertainties of the temperature measurements are similar to those obtained previously (of the order of 0.1 mK or less). Three argon-in-oxygen mixtures were prepared gravimetrically and certified at KRISS, just as was previously done for the work on the neon isotopic compositions. Results of continuous-current measurements on the α -β solid-to-solid transition, along with the triple-point data obtained with the heat pulse method, are presented for one cell with a known doped argon content, to be compared with similar data from a cell with oxygen of very high purity. In addition, some preliminary data for the β -γ solid-to-solid transition are given. The measurements on the mixture with the highest argon content, about 1002 μmol{\\cdot } mol^{-1}, imply a (linear) sensitivity of (116 ± 7) K{\\cdot }mol^{-1} for the α -β transition. This sensitivity may be different at much lower argon contents, and follow

  6. Development of w/o microemulsion for transdermal delivery of iodide ions. (United States)

    Lou, Hao; Qiu, Ni; Crill, Catherine; Helms, Richard; Almoazen, Hassan


    The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5% w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. These studies included: mean droplet size, pH, viscosity, conductivity, and chemical stability tests. In vitro human skin permeation studies were conducted to evaluate the diffusion of the iodide ion through human skin. The w/o microemulsion formulations were stable and compatible with iodide ions with water content ranging from 5% to 23% w/w. The addition of KI influenced the physicochemical properties of microemulsion as compared to blank microemulsion formulations. In vitro human skin permeation studies indicated that selected formulations improved iodide ion diffusion significantly as compared to control (KI solution; P valueIodide ions were entrapped within the aqueous core of w/o microemulsion. Span 20, ethanol and Capryol 90 protected the iodide ions against oxidation and formed a stable microemulsion. It is worth to note that according to Hofmeister series, iodide ions tend to lower the interfacial tension between water and oil and consequently enhance overall stability. This work illustrates that microemulsion system can be utilized as a vehicle for the transdermal administration of iodide.

  7. A pressurized argon gas TPC as DUNE near detector

    CERN Document Server

    Martin-Albo, J


    DUNE is a new international experiment for neutrino physics and nucleon decay searches. It will consist of two detectors, about 1300 km apart, exposed to a multi-megawatt neutrino beam that will be built at Fermilab. One of the two detectors will be installed several hundred meters downstream of the neutrino production point with the primary role of characterising the energy spectrum and composition of the beam as well as performing precision measurements of neutrino cross sections. For the design of this so-called near detector, the DUNE Collaboration is considering, among other technologies, a pressurized argon gas time projection chamber. Such a detector, thanks to its low density and low detection thresholds, would allow the detailed measurement in argon of nuclear effects at the neutrino interaction vertex, which are considered at present one of the most important sources of systematic uncertainty for neutrino oscillation measurements.

  8. Trimming of a Migrated Biliary Nitinol Stent Using Argon Plasma

    Directory of Open Access Journals (Sweden)

    Hiroyuki Matsubayashi


    Full Text Available Metallic stent migration is a well-known complication which cannot always be managed by removal or repositioning, especially in case of uncovered stent. We report a patient who developed obstructive jaundice due to migration of an expandable metallic stent (EMS inserted in the lower bile duct. Trimming of the EMS using argon plasma was performed, with the power setting of 60 W and 2.0 l/min of argon flow. The distal part of the EMS was removed and mechanical cleaning using balloon catheter was performed for remnant EMS. Without additional stent insertion, jaundice was relieved in a few days. No complication was recognized during the procedure and no recurrence of jaundice in the rest of his life.

  9. Measurement of longitudinal electron diffusion in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yichen, E-mail: [Physics Department, Brookhaven National Laboratory, 20 Pennsylvania St., Building 510E, Upton, NY 11973 (United States); Tsang, Thomas [Instrumentation Division, Brookhaven National Laboratory, 20 N. Technology St., Building 535B, Upton, NY 11973 (United States); Thorn, Craig; Qian, Xin; Diwan, Milind; Joshi, Jyoti; Kettell, Steve; Morse, William [Physics Department, Brookhaven National Laboratory, 20 Pennsylvania St., Building 510E, Upton, NY 11973 (United States); Rao, Triveni [Instrumentation Division, Brookhaven National Laboratory, 20 N. Technology St., Building 535B, Upton, NY 11973 (United States); Stewart, James; Tang, Wei; Viren, Brett [Physics Department, Brookhaven National Laboratory, 20 Pennsylvania St., Building 510E, Upton, NY 11973 (United States)


    We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. In the region between 100 and 350 V/cm, our results show a discrepancy with the previous measurement [1]. In the region between 350 and 2000 V/cm, our results represent the world's best measurement. Over the entire measured electric field range, our results are systematically higher than the calculation of Atrazhev‐Timoshkin [2]. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

  10. Breakdown voltage of metal-oxide resistors in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Bagby, L. F. [Fermilab; Gollapinni, S. [Kansas State U.; James, C. C. [Fermilab; Jones, B. J.P. [MIT; Jostlein, H. [Fermilab; Lockwitz, S. [Fermilab; Naples, D. [Pittsburgh U.; Raaf, J. L. [Fermilab; Rameika, R. [Fermilab; Schukraft, A. [Fermilab; Strauss, T. [Bern U., LHEP; Weber, M. S. [Bern U., LHEP; Wolbers, S. A. [Fermilab


    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131 kV pulses, the limit of the test setup.

  11. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baron, S; Baroncelli, A; Barr, A J; Barreiro, F; BarreiroGuimarães da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Bathe, S; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Bedajanek, I; Beddall, A J; Beddall, A; Bednár, P; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Booth, J R A; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Bosteels, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Brett, N D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camarri, P; Cambiaghi, M; Cameron, D; Campabadal-Segura, F; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans-Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernadez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N; Cataldi, G; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cauz, D; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Cevenini, F; Chafaq, A; Chakraborty, D; Chan, K; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chen, H; Chen, S; Chen, T; Chen, X; Cheng, S; Cheplakov, A; Chepurnov, V F; Cherkaoui El Moursli, R; Tcherniatine, V; Chesneanu, D; Cheu, E; Cheung, S L; Chevalier, L; Chevallier, F; Chiarella, V; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chizhov, M; Choudalakis, G; Chouridou, S; Chren, D; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciobotaru, M D; Ciocca, C; Ciocio, A; Cirilli, M; Citterio, M; Clark, A; Cleland, W; Clemens, J C; Clement, B; Clement, C; Clements, D; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coelli, S; Coggeshall, J; Cogneras, E; Cojocaru, C D; Colas, J; Cole, B; Colijn, A P; Collard, C; Collins, N J; Collins-Tooth, C; Collot, J; Colon, G; Coluccia, R; Conde Muiño, P; Coniavitis, E; Consonni, M; Constantinescu, S; Conta, C; Conventi, F; Cook, J; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cooper-Smith, N J; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Coura Torres, R; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Cranshaw, J; Cristinziani, M; Crosetti, G; Crupi, R; Crépé-Renaudin, S; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cwetanski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Silva, P V M; Da Via, C; Dabrowski, W; Dai, T; Dallapiccola, C; Dallison, S J; Daly, C H; Dam, M; Danielsson, H O; Dannheim, D; Dao, V; Darbo, G; Darlea, G L; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davison, A R; Dawson, I; Dawson, J W; Daya, R K; De, K; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S; Deberg, H; Dedes, G; Dedovich, D V; Defay, P O; Degenhardt, J; Dehchar, M; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delruelle, N; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Deng, W; Denisov, S P; Dennis, C; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diblen, F; Diehl, E B; Dietrich, J; Diglio, S; Dindar Yagci, K; Dingfelder, D J; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djilkibaev, R; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Dobbs, M; Dobos, D; Dobson, E; Dobson, M; Dodd, J; Dogan, O B; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donega, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A; Doyle, A T; Drasal, Z; Driouichi, C; Dris, M; Dubbert, J; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen , M; Duflot, L; Dufour, M-A; Dunford, M; Duperrin, A; Duran-Yildiz, H; Dushkin, A; Duxfield, R; Dwuznik, M; Düren, M; Ebenstein, W L; Ebke, J; Eckert, S; Eckweiler, S; Edmonds, K; Edwards, C A; Eerola, P; Egorov, K; Ehrenfeld, W; Ehrich, T; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Ely, R; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Eppig, A; Epshteyn, V S; Ereditato, A; Eriksson, D; Ermoline, I; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evans, H; Fabbri, L; Fabre, C; Faccioli, P; Facius, K; Fakhrutdinov, R M; Falciano, S; Falou, A C; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Fayard, L; Fayette, F; Febbraro, R; Federic, P; Fedin, O L; Fedorko, I; Fedorko, W; Feligioni, L; Felzmann, C U; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Ferland, J; Fernandes, B; Fernando, W; Ferrag, S; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; Ferrer, A; Ferrer, M L; Ferrere, D; Ferretti, C; Fiascaris, M; Fiedler, F; Filipcic, A; Filippas, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Flores-Castillo, L R; Flowerdew, M J; Föhlisch, F; Fokitis, M; Fonseca Martin, T; Forbush, D A; Formica, A; Forti, A; Fortin, D; Foster, J M; Fournier, D; Foussat, A; Fowler, A J; Fowler, K; Fox, H; Francavilla, P; Franchino, S; Francis, D; Franklin, M; Franz, S; Fraternali, M; Fratina, S; Freestone, J; French, S T; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallas, M V; Gallop, B J; Gallus, P; Galyaev, E; Gan, K K; Gao, Y S; Gaponenko, A; Garcia-Sciveres, M; Garcí­a, C; Garcí­a Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Gatti, C; Gaudio, G; Gaumer, O; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gayde, J-C; Gazis, E N; Ge, P; Gee, C N P; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Genest, M H; Gentile, S; Georgatos, F; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghez, P; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gilbert, L M; Gilchriese, M; Gilewsky, V; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giovannini, P; Giraud, P F; Girtler, P; Giugni, D; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glazov, A; Glitza, K W; Glonti, G L; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Göttfert, T; Goggi, V; Goldfarb, S; Goldin, D; Golling, T; Gollub, N P; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Gonella, L; Gong, C; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorisek, A; Gornicki, E; Goryachev, S V; Goryachev, V N; Gosdzik, B; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Granado Cardoso, L; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Green, B; Greenshaw, T; Greenwood, Z D; Gregor, I M; Grenier, P; Griesmayer, E; Griffiths, J; Grigalashvili, N; Grillo, A A; Grimm, K; Grinstein, S; Grishkevich, Y V; Groer, L S; Grognuz, J; Groh, M; Groll, M; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guarino, V J; Guicheney, C; Guida, A; Guillemin, T; Guler, H; Gunther, J; Guo, B; Gupta, A; Gusakov, Y; Gutierrez, A; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hackenburg, R; Hadavand, H K; Hadley, D R; Haefner, P; Härtel, R; Hajduk, Z; Hakobyan, H; Haller, J; Hamacher, K; Hamilton, A; Hamilton, S; Han, H; Han, L; Hanagaki, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansl-Kozanecka, T; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harrington, R D; Harris, O B; Harris, O M; Harrison, K; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hashemi, K; Hassani, S; Hatch, M; Haug, F; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, D; Hayakawa, T; Hayward, H S; Haywood, S J; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, M; Hellman, S; Helsens, C; Hemperek, T; Henderson, R C W; Henke, M; Henrichs, A; Henriques-Correia, A M; Henrot-Versille, S; Hensel, C; Henß, T; Hershenhorn, A D; Herten, G; Hertenberger, R; Hervas, L; Hessey, N P; Hidvegi, A; Higón-Rodriguez, E; Hill, D; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hirose, M; Hirsch, F; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holmgren, S O; Holy, T; Holzbauer, J L; Homma, Y; Homola, P; Horazdovsky, T; Hori, T; Horn, C; Horner, S; Horvat, S; Hostachy, J-Y; Hou, S; Houlden, M A; Hoummada, A; Howe, T; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Huang, G S; Hubacek, Z; Hubaut, F; Huegging, F; Hughes, E W; Hughes, G; Hughes-Jones, R E; Hurst, P; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilyushenka, Y; Imori, M; Ince, T; Ioannou, P; Iodice, M; Irles-Quiles, A; Ishikawa, A; Ishino, M; Ishmukhametov, R; Isobe, T; Issakov, V; Issever, C; Istin, S; Itoh, Y; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, J N; Jackson, P; Jaekel, M; Jahoda, M; Jain, V; Jakobs, K; Jakobsen, S; Jakubek, J; Jana, D; Jansen, E; Jantsch, A; Janus, M; Jared, R C; Jarlskog, G; Jarron, P; Jeanty, L; Jelen, K; Jen-La Plante, I; Jenni, P; Jez, P; Jézéquel, S; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, G; Jin, S; Jinnouchi, O; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T W; Jones, T J; Jonsson, O; Joos, D; Joram, C; Jorge, P M; Juranek, V; Jussel, P; Kabachenko, V V; Kabana, S; Kaci, M; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kaiser, S; Kajomovitz, E; Kalinovskaya, L V; Kalinowski, A; Kama, S; Kanaya, N; Kaneda, M; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Karagounis, M; Karagoz Unel, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasmi, A; Kass, R D; Kastanas, A; Kastoryano, M; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kayumov, F; Kazanin, V A; Kazarinov, M Y; Kazi, S I; Keates, J R; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Kelly, M; Kennedy, J; Kenyon, M; Kepka, O; Kerschen, N; Kersevan, B P; Kersten, S; Kessoku, K; Khakzad, M; Khalil-zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Kholodenko, A G; Khomich, A; Khoriauli, G; Khovanskiy, N; Khovanskiy, V; Khramov, E; Khubua, J; Kilvington, G; Kim, H; Kim, M S; Kim, P C; Kim, S H; Kind, O; Kind, P; King, B T; Kirk, J; Kirsch, G P; Kirsch, L E; Kiryunin, A E; Kisielewska, D; Kittelmann, T; Kiyamura, H; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimentov, A; Klingenberg, R; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Klute, M; Kluth, S; Knecht, N S; Kneringer, E; Ko, B R; Kobayashi, T; Kobel, M; Koblitz, B; Kocian, M; Kocnar, A; Kodys, P; Köneke, K; König, A C; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kohn, F; Kohout, Z; Kohriki, T; Kokott, T; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollar, D; Kolos, S; Kolya, S D; Komar, A A; Komaragiri, J R; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konovalov, S P; Konstantinidis, N; Koperny, S; Korcyl, K; Kordas, K; Koreshev, V; Korn, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kostka, P; Kostyukhin, V V; Kotamäki, M J; Kotov, S; Kotov, V M; Kotov, K Y; Koupilova, Z; Kourkoumelis, C; Koutsman, A; Kowalewski, R; Kowalski, H; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kreisel, A; Krejci, F; Krepouri, A; Kretzschmar, J; Krieger, P; Krobath, G; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumshteyn, Z V; Kubota, T; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kupco, A; Kurashige, H; Kurata, M; Kurchaninov, L L; Kurochkin, Y A; Kus, V; Kuykendall, W; Kuznetsova, E; Kvasnicka, O; Kwee, R; La Rosa, M; La Rotonda, L; Labarga, L; Labbe, J; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lamanna, M; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lane, J L; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larionov, A V; Larner, A; Lasseur, C; Lassnig, M; Laurelli, P; Lavrijsen, W; Laycock, P; Lazarev, A B; Lazzaro, A; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M; Lebedev, A; Lebel, C; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lefebvre, M; Legendre, M; LeGeyt, B C; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leitner, R; Lelas, D; Lellouch, D; Lellouch, J; Leltchouk, M; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leroy, C; Lessard, J-R; Lester, C G; Leung Fook Cheong, A; Levêque, J; Levin, D; Levinson, L J; Levitski, M S; Levonian, S; Lewandowska, M; Leyton, M; Li, H; Li, J; Li, S; Li, X; Liang, Z; Liang, Z; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Liko, D; Lilley, J N; Lim, H; Limosani, A; Limper, M; Lin, S C; Lindsay, S W; Linhart, V; Linnemann, J T; Liolios, A; Lipeles, E; Lipinsky, L; Lipniacka, A; Liss, T M; Lissauer, D; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, M; Liu, S; Liu, T; Liu, Y; Livan, M; Lleres, A; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Lockwitz, S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Loken, J; Lopes, L; Lopez Mateos, D; Losada, M; Loscutoff, P; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Lovas, L; Love, J; Love, P; Lowe, A J; Lu, F; Lu, J; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luisa, L; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundquist, J; Lutz, G; Lynn, D; Lys, J; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Macek, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magalhaes Martins, P J; Magradze, E; Magrath, C A; Mahalalel, Y; Mahboubi, K; Mahmood, A; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makouski, M; Makovec, N; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Maltezos, S; Malyshev, V; Malyukov, S; Mambelli, M; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandic, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manjavidze, I D; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marcisovsky, M; Marino, C P; Marques, C N; Marroquim, F; Marshall, R; Marshall, Z; Martens, F K; Marti i Garcia, S; Martin, A J; Martin, A J; Martin, B; Martin, B; Martin, F F; Martin, J P; Martin, T A; Martin dit Latour, B; Martinez, M; Martinez Outschoorn, V; Martini, A; Martynenko, V; Martyniuk, A C; Maruyama, T; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massaro, G; Massol, N; Mastroberardino, A; Masubuchi, T; Mathes, M; Matricon, P; Matsumoto, H; Matsunaga, H; Matsushita, T; Mattravers, C; Maxfield, S J; May, E N; Mayne, A; Mazini, R; Mazur, M; Mazzanti, M; Mazzanti, P; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCubbin, N A; McFarlane, K W; McGlone, H; Mchedlidze, G; McLaren, R A; McMahon, S J; McMahon, T R; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T M; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melamed-Katz, A; Mellado Garcia, B R; Meng, Z; Menke, S; Meoni, E; Merkl, D; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A M; Messmer, I; Metcalfe, J; Mete, A S; Meyer, J-P; Meyer, J; Meyer, T C; Meyer, W T; Miao, J; Micu, L; Middleton, R P; Migas, S; Mijovic, L; Mikenberg, G; Mikuz, M; Miller, D W; Mills, W J; Mills, C M; Milov, A; Milstead, D A; Minaenko, A A; Miñano, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Mir, L M; Mirabelli, G; Misawa, S; Miscetti, S; Misiejuk, A; Mitrevski, J; Mitsou, V A; Miyagawa, P S; Mjörnmark, J U; Mladenov, D; Moa, T; Mockett, P; Moed, S; Moeller, V; Mönig, K; Möser, N; Mohn, B; Mohr, W; Mohrdieck-Möck, S; Moles-Valls, R; Molina-Perez, J; Moloney, G; Monk, J; Monnier, E; Montesano, S; Monticelli, F; Moore, R W; Mora-Herrera, C; Moraes, A; Morais, A; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morii, M; Morley, A K; Mornacchi, G; Morozov, S V; Morris, J D; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mudrinic, M; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Muenstermann, D; Muir, A; Murillo Garcia, R; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagano, K; Nagasaka, Y; Nairz, A M; Nakamura, K; Nakano, I; Nakatsuka, H; Nanava, G; Napier, A; Nash, M; Nation, N R; Nattermann, T; Naumann, T; Navarro, G; Nderitu, S K; Neal, H A; Nebot, E; Nechaeva, P; Negri, A; Negri, G; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neusiedl, A; Neves, R N; Nevski, P; Newcomer, F M; Nicholson, C; Nickerson, R B; Nicolaidou, R; Nicolas, L; Nicoletti, G; Niedercorn, F; Nielsen, J; Nikiforov, A; Nikolaev, K; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, H; Nilsson, P; Nisati, A; Nishiyama, T; Nisius, R; Nodulman, L; Nomachi, M; Nomidis, I; Nomoto, H; Nordberg, M; Nordkvist, B; Notz, D; Novakova, J; Nozaki, M; Nozicka, M; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Neil, D C; O'Shea, V; Oakham, F G; Oberlack, H; Ochi, A; Oda, S; Odaka, S; Odier, J; Odino, G A; Ogren, H; Oh, S H; Ohm, C C; Ohshima, T; Ohshita, H; Ohsugi, T; Okada, S; Okawa, H; Okumura, Y; Olcese, M; Olchevski, A G; Oliveira, M; Oliveira Damazio, D; Oliver, J; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Omachi, C; Onofre, A; Onyisi, P U E; Oram, C J; Ordonez, G; Oreglia, M J; Oren, Y; Orestano, D; Orlov, I; Oropeza Barrera, C; Orr, R S; Ortega, E O; Osculati, B; Osuna, C; Otec, R; Ottersbach, J P; Ould-Saada, F; Ouraou, A; Ouyang, Q; Owen, M; Owen, S; Ozcan, V E; Ozone, K; Ozturk, N; Pacheco Pages, A; Padhi, S; Padilla Aranda, C; Paganis, E; Pahl, C; Paige, F; Pajchel, K; Pal, A; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panes, B; Panikashvili, N; Panitkin, S; Pantea, D; Panuskova, M; Paolone, V; Papadopoulou, Th D; Park, S J; Park, W; Parker, M A; Parker, S I; Parodi, F; Parsons, J A; Parzefall, U; Pasqualucci, E; Passardi, G; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Patricelli, S; Patwa, A; Pauly, T; Peak, L S; Pecsy, M; Pedraza Morales, M I; Peleganchuk, S V; Peng, H; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Persembe, S; Perus, P; Peshekhonov, V D; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Pfeifer, B; Phan, A; Phillips, A W; Piacquadio, G; Piccinini, M; Piegaia, R; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinfold, J L; Ping, J; Pinto, B; Pirotte, O; Pizio, C; Placakyte, R; Plamondon, M; Plano, W G; Pleier, M-A; Poblaguev, A; Poddar, S; Podlyski, F; Poffenberger, P; Poggioli, L; Pohl, M; Polci, F; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomarede, D M; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popovic, D S; Poppleton, A; Popule, J; Portell Bueso, X; Porter, R; Pospelov, G E; Pospichal, P; Pospisil, S; Potekhin, M; Potrap, I N; Potter, C J; Potter, C T; Potter, K P; Poulard, G; Poveda, J; Prabhu, R; Pralavorio, P; Prasad, S; Pravahan, R; Preda, T; Pretzl, K; Pribyl, L; Price, D; Price, L E; Prichard, P M; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przysiezniak, H; Psoroulas, S; Ptacek, E; Puigdengoles, C; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qi, M; Qian, J; Qian, W; Qian, Z; Qin, Z; Qing, D; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radics, B; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammes, M; Ratoff, P N; Rauscher, F; Rauter, E; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Reljic, D; Rembser, C; Ren, Z L; Renkel, P; Rescia, S; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richards, A; Richards, R A; Richter, D; Richter, R; Richter-Was, E; Ridel, M; Rieke, S; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E R; Roa-Romero, D A; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, M; Robson, A; Rocha de Lima, J G; Roda, C; Rodriguez, D; Rodriguez Garcia, Y; Roe, S; Røhne, O; Rojo, V; Rolli, S; Romaniouk, A; Romanov, V M; Romeo, G; Romero-Maltrana, D; Roos, L; Ros, E; Rosati, S; Rosenbaum, G A; Rosenberg, E I; Rosselet, L; Rossi, L P; Rotaru, M; Rothberg, J; Rottländer, I; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, G; Rühr, F; Ruggieri, F; Ruiz-Martinez, A; Rumyantsev, L; Rusakovich, N A; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Ryadovikov, V; Ryan, P; Rybkin, G; Rzaeva, S; Saavedra, A F; Sadrozinski, H F-W; Sadykov, R; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salihagic, D; Salnikov, A; Salt, J; Salvachua-Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchis Lozano, M A; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandstroem, R; Sandvoss, S; Sankey, D P C; Sanny, B; Sansoni, A; Santamarina Rios, C; Santi, L; Santoni, C; Santonico, R; Santos, D; Santos, J; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sasaki, O; Sasaki, T; Sasao, N; Satsounkevitch, I; Sauvage, G; Savard, P; Savine, A Y; Savinov, V; Sawyer, L; Saxon, D H; Says, L P; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Schaarschmidt, J; Schacht, P; Schäfer, U; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schlereth, J L; Schmid, P; Schmidt, M P; Schmieden, K; Schmitt, C; Schmitz, M; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schreiner, A; Schroeder, C; Schroer, N; Schroers, M; Schuler, G; Schultes, J; Schultz-Coulon, H-C; Schumacher, J; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Scott, W G; Searcy, J; Sedykh, E; Segura, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Seliverstov, D M; Sellden, B; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Seuster, R; Severini, H; Sevior, M E; Sfyrla, A; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaver, L; Shaw, C; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shimojima, M; Shin, T; Shmeleva, A; Shochet, M J; Shupe, M A; Sicho, P; Sidoti, A; Siebel, A; Siegert, F; Siegrist, J; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simmons, B; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sisakyan, A N; Sivoklokov, S Yu; Sjoelin, J; Sjursen, T B; Skubic, P; Skvorodnev, N; Slater, M; Slavicek, T; Sliwa, K; Sloper, J; Sluka, T; Smakhtin, V; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snuverink, J; Snyder, S; Soares, M; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solfaroli-Camillocci, E; Solodkov, A A; Solovyanov, O V; Soluk, R; Sondericker, J; Sopko, V; Sopko, B; Sosebee, M; Sosnovtsev, V V; Sospedra-Suay, L; Soukharev, A; Spagnolo, S; Spanò, F; Speckmayer, P; Spencer, E; Spighi, R; Spigo, G; Spila, F; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahl, T; Stamen, R; Stancu, S N; Stanecka, E; Stanek, R W; Stanescu, C; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Stastny, J; Staude, A; Stavina, P; Stavropoulos, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stevenson, K; Stewart, G; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Soh, D A; Su, D; Suchkov, S I; Sugaya, Y; Sugimoto, T; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Sushkov, S; Susinno, G; Sutton, M R; Suzuki, T; Suzuki, Y; Sviridov, Yu M; Sykora, I; Sykora, T; Szymocha, T; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taga, A; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tappern, G P; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Taylor, C; Taylor, F E; Taylor, G N; Taylor, R P; Taylor, W; Teixeira-Dias, P; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Terwort, M; Testa, M; Teuscher, R J; Tevlin, C M; Thadome, J; Thananuwong, R; Thioye, M; Thoma, S; Thomas, J P; Thomas, T L; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, R J; Thompson, A S; Thomson, E; Thun, R P; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timmermans, C J W P; Tipton, P; Tique-Aires-Viegas, F J; Tisserant, S; Tobias, J; Toczek, B; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomasek, L; Tomasek, M; Tomasz, F; Tomoto, M; Tompkins, D; Tompkins, L; Toms, K; Tong, G; Tonoyan, A; Topfel, C; Topilin, N D; Torrence, E; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Tovey, S N; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Trinh, T N; Tripiana, M F; Triplett, N; Trivedi, A; Trocmé, B; Troncon, C; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiafis, I; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Tuts, P M; Twomey, M S; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Underwood, D G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urkovsky, E; Urquijo, P; Urrejola, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valente, P; Valentinetti, S; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W; Vandoni, G; Vaniachine, A; Vankov, P; Vannucci, F; Varela Rodriguez, F; Vari, R; Varnes, E W; Varouchas, D; Vartapetian, A; Varvell, K E; Vasilyeva, L; Vassilakopoulos, V I; Vazeille, F; Vegni, G; Veillet, J J; Vellidis, C; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vetterli, M C; Vichou, I; Vickey, T; Viehhauser, G H A; Villa, M; Villani, E G; Villaplana Perez, M; Villate, J; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Viret, S; Virzi, J; Vitale, A; Vitells, O V; Vivarelli, I; Vives Vaques, F; Vlachos, S; Vlasak, M; Vlasov, N; Vogt, H; Vokac, P; Volpi, M; Volpini, G; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V; Vorobiev, A P; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vudragovic, D; Vuillermet, R; Vukotic, I; Wagner, P; Wahlen, H; Walbersloh, J; Walder, J; Walker, R; Walkowiak, W; Wall, R; Wang, C; Wang, H; Wang, J; Wang, J C; Wang, S M; Ward, C P; Warsinsky, M; Wastie, R; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Webel, M; Weber, J; Weber, M D; Weber, M; Weber, M S; Weber, P; Weidberg, A R; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wen, M; Wenaus, T; Wendler, S; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Werthenbach, U; Wessels, M; Whalen, K; Wheeler-Ellis, S J; Whitaker, S P; White, A; White, M J; White, S; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik, L A M; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winklmeier, F; Wittgen, M; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wraight, K; Wright, C; Wright, D; Wrona, B; Wu, S L; Wu, X; Wulf, E; Xella, S; Xie, S; Xie, Y; Xu, D; Xu, N; Yamada, M; Yamamoto, A; Yamamoto, S; Yamamura, T; Yamanaka, K; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yao, W-M; Yao, Y; Yasu, Y; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Youssef, S P; Yu, D; Yu, J; Yu, M; Yu, X; Yuan, J; Yuan, L; Yurkewicz, A; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zambrano, V; Zanello, L; Zarzhitsky, P; Zaytsev, A; Zeitnitz, C; Zeller, M; Zema, P F; Zemla, A; Zendler, C; Zenin, O; Zenis, T; Zenonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhan, Z; Zhang, H; Zhang, J; Zhang, Q; Zhang, X; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zheng, S; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, Y; Zhuang, X; Zhuravlov, V; Zilka, B; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Zivkovic, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; zur Nedden, M; Zutshi, V


    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  12. Treatment of facial vascular lesions with an argon laser (United States)

    Szymanczyk, Jacek; Golebiowska, Aleksandra; Michalska, I.


    Two-hundred-ninety-six patients with various vascular lesions of the face have been treated with argon laser LAK-1 in the Department of Dermatology Warsaw Medical Academy since April 1992. The diagnosis of the treated lesions was port-wine stains, multiple telangiectasiae and small, most often induced by trauma hemangioma cavernosum of the lip. Best results were achieved in the patients with small hemangiomas cavernosum of the lip and multiple telangiectasiae on the face. Cure rate in this group was 100%. In 112 port-wine stain cases fading of 50 - 75% comparing with the adjacent skin was achieved. With stress, the argon laser therapy is a method of choice for the treatment of hemangioma cavernosum, port-wine stains and multiple teleagiectasiae of the face.

  13. Detection of Cherenkov light emission in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Antonello, M.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Bekman, B.; Benetti, P.; Bernardini, E.; Bischofberger, M.; Borio di Tigliole, A.; Brunetti, R.; Bueno, A.; Calligarich, E.; Campanelli, M.; Carpanese, C.; Cavalli, D.; Cavanna, F. E-mail:; Cennini, P.; Centro, S.; Cesana, A.; Chen, C.; Chen, D.; Chen, D.B.; Chen, Y.; Cieslik, C.; Cline, D.; Dai, Z.; De Vecchi, C.; Dabrowska, A.; Dolfini, R.; Felcini, M.; Ferrari, A.; Ferri, F.; Ge, Y.; Gibin, D.; Gigli Berzolari, A.; Gil-Botella, I.; Graczyk, K.; Grandi, L.; Guglielmi, A.; He, K.; Holeczek, J.; Huang, X.; Juszczak, C.; Kielczewska, D.; Kisiel, J.; Kozlowski, T.; Laffranchi, M.; Lagoda, J.; Li, Z.; Lu, F.; Ma, J.; Markiewicz, M.; Matthey, C.; Mauri, F.; Mazza, D.; Meng, G.; Messina, M.; Montanari, C.; Muraro, S.; Navas-Concha, S.; Nurzia, G.; Otwinowski, S.; Ouyang, Q.; Palamara, O.; Pascoli, D.; Periale, L.; Piano Mortari, G.B.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Polchlopek, W.; Rancati, T.; Rappoldi, A.; Raselli, G.L.; Rico, J.; Rondio, E.; Rossella, M.; Rubbia, A.; Rubbia, C.; Sala, P.; Scannicchio, D.; Segreto, E.; Seo, Y.; Sergiampietri, F.; Sobczyk, J.; Stepaniak, J.; Szarska, M.; Szeptycka, M.; Terrani, M.; Ventura, S.; Vignoli, C.; Wang, H.; Woo, J.; Xu, G.; Xu, Z.; Zalewska, A.; Zalipska, J.; Zhang, C.; Zhang, Q.; Zhen, S.; Zipper, W


    Detection of Cherenkov light emission in liquid argon has been obtained with an ICARUS prototype, during a dedicated test run at the Gran Sasso Laboratory external facility. Ionizing tracks from cosmic ray muons crossing the detector active volume have been collected in coincidence with visible light signals from a photo-multiplier (PMT) immersed in liquid argon. A 3D reconstruction of the tracks has been performed exploiting the ICARUS imaging capability. The angular distributions of the tracks triggered by the PMT signals show an evident directionality. By means of a detailed Monte Carlo simulation we show that the geometrical characteristics of the events are compatible with the hypothesis of Cherenkov light emission as the main source of the PMT signals.

  14. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Xiao, Tang;


    The thermal decomposition of La(C3H7CO2)3·xH2O (x≈0.82) was studied in argon during heating at 5K/min. After the loss of bound H2O, the anhydrous butyrate presents at 135°C a phase transition to a mesophase, which turns to an isotropic liquid at 180°C. The decomposition of the anhydrous butyrate ...

  15. Liquid Argon Hadronic EndCap Production Database

    CERN Document Server

    Oram, C J; Wielers, M


    This document describes the contents of the Liquid Argon Hadronic EndCap (HEC) Production Database. At the time of the PRR (Production Readiness Review), the groups responsible for the production of the LAr HEC components and modules were required to provide a detailed plan as to what data should be stored in the production database and how the data should be accessed, displayed and queried in all reasonable foreseeable circumstances. This document describes the final database.

  16. Monte Carlo Simulation of Argon in Nano-Space

    Institute of Scientific and Technical Information of China (English)

    CHEN Min; YANG Chun; GUO Zeng-Yuan


    Monte Carlo simulations are performed to investigate the thermodynamic properties of argon confined in nano-scale cubes constructed of graphite walls. A remarkable depression of the system pressures is observed. The simulations reveal that the length-scale of the cube, the magnitude of the interaction between the fluid and the graphite wall and the density of the fluid exhibit reasonable effects on the thermodynamic property shifts of the luid.

  17. Measurement of scintillation efficiency for nuclear recoils in liquid argon

    CERN Document Server

    Gastler, D; Hime, A; Stonehill, L C; Seibert, S; Klein, J; Lippincott, W H; McKinsey, D N; Nikkel, J A


    The scintillation light yield of liquid argon from nuclear recoils relative to electronic recoils has been measured as a function of recoil energy from 10 keVr up to 250 keVr. The scintillation efficiency, defined as the ratio of the nuclear recoil scintillation response to the electronic recoil response, is 0.25 \\pm 0.02 + 0.01(correlated) above 20 keVr.

  18. Argon laser photocoagulation of cyclodialysis clefts after cataract surgery

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, B. [Univ. of Lund, Dept. of Ophthalmology, Lund (Sweden)


    Three patients with cyclodialysis clefts, hypotony and hypotonic retinopathy subsequent to cataract surgery were treated with argon laser photocoagulation. The hypotony was reversed in each patient and their visual acuity was normalized. Laser photocoagulation is a noninvasive treatment that can be repeated easily and safely. The complications of the treatment are minor. A hypertensive episode commonly occurs in the early postoperative period. (au) 8 refs.

  19. Investigation of Non-Equilibrium Argon and Hydrogen Plasmas. (United States)

    Braun, Christopher Gifford


    Theoretical and experimental investigations are made into non-equilibrium argon and hydrogen partially -ionized plasmas characteristic of glow discharge devices such as thyratrons and discharge tubes. For an argon plasma, the development and use of a collisional-radiative, steady -state, three-energy-level model is presented and experimental measurements on pulsed argon plasmas are briefly mentioned. Two different theoretical argon plasma models are discussed; the first is numerically solved using a non-Maxwellian electron distribution function, while the second is solved analytically, including atom-atom inelastic collisions, assuming Maxwellian electron and atom distribution functions. For a hydrogen plasma, experimental measurements using fluorescence and laser-induced fluorescence have been made in a modified hydrogen thyratron over a wide current density range (from 100 to 8,000 A/cm('2)) for the atomic hydrogen population densities n = 2,3,4. A pronounced rise in the atomic hydrogen excited state populations is observed after the end of the current pulse. A new method to measure the time-resolved electron density has been developed and results are presented. A time-dependent model for atomic hydrogen plasmas typical of a thyratron has been constructed, and preliminary results are shown. This model includes ten atomic energy levels (n = 1 to n = 9 and the continuum), takes into account energy balance with an externally supplied current density and assumes a Maxwellian electron distribution function. Implications of these measurements and theoretical analysis upon the operation of thyratrons are discussed. (Copies available exclusively from Micrographics Department, Doheny Library, University of Southern California, Los Angeles, CA 90089 -0182.).

  20. Metal clusters on supported argon layers; Metallcluster auf dielektrischen Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Bernhard


    The deposition of small sodium clusters on supported Ar(001)-surfaces is simulated. Theoretical description is achieved by a hierarchical model consisting of time-dependent DFT and molecular dynamics. The valence electrons of the sodium atoms are considered by Kohn-Sham-Scheme with self interaction correction. The interaction of argon atoms and sodium ions is described by atom-atom potentials whereas the coupling to the QM electrons is done by local pseudo-potentials. A decisive part of the model is the dynamical polarizability of the rare-gas atoms. The optional metal support is considered by the method of image charges. The influence of the forces caused by image charges and the influence of the number of argon monolayers on structure, optical response and deposition dynamics of Na{sub 6} and Na{sub 8} is investigated. There is very little influence on cluster structure and only a small shift of the cluster perpendicular to the surface. Concerning optical response the position of the Mie plasmon peak stays robust whereas the details of spectral fragmentation react very sensitively to changes. The forces caused by image charges of the metal support play only a little role with the dynamics of deposition while the thickness of the argon surface strongly influences the dissipation. (orig.)

  1. Cryogenic Tests of the Atlas Liquid Argon Calorimeter

    CERN Document Server

    Fabre, C; Chalifour, M; Gonidec, A; Passardi, Giorgio


    The ATLAS liquid argon calorimeter consists of the barrel and two end-cap detectors housed in three independent cryostats filled with a total volume of 78 m3 of liquid argon. During cool-down the temperature differences in the composite structure of the detectors must be kept within strict limits to avoid excessive mechanical stresses and relative displacements. During normal operation the formation of gas bubbles, which are detrimental to the functioning of the detector, must be prevented and temperature gradients of less than 0.7 K across the argon bath are mandatory due to the temperature dependence of the energy measurements. Between April 2004 and May 2005 the barrel (120 t) and one end-cap (219 t) underwent qualification tests at the operating temperature of 87.3 K using a dedicated test facility at ground level. These tests provided a validation of the cooling methods to be adopted in the final underground configuration. In total 6.9 GJ and 15.7 GJ were extracted from the calorimeters and a temperature...

  2. Isotopic fractionation of argon during stepwise release from shungite (United States)

    Rison, W.


    It is noted that in previous attempts to determine the Ar-40/Ar-36 ratio in the ancient atmosphere, the only direct measurement yielding a value below the atmospheric value of today is for argon released at low temperatures from a pre-Cambrian shungite. In the present work, a low value for Ar-40/Ar-36 in gas released from a type I shungite at low temperatures is confirmed. Attention is given to a study of the accompanying Ar-38/Ar-36 ratios and the enhanced ratio of Ar-40/Ar-36 for the fractions released at high temperatures which shows that the effect observed is a result of the stepwise heating and the argon diffusion mobilized thereby. It is suggested that the low Ar-40/Ar-36 obtained in the past is from the same source rather than reflecting the isotropic composition of the pre-Cambrian atmosphere, and that the type I shungite may exhibit simple volume diffusion over macroscopic dimensions as glasses do. It is concluded that if this is so, the diffusion parameters obtained from the data would imply rapid exchange with the atmosphere for any argon initially trapped in the veins of the material.

  3. Space-charge effects in liquid argon ionization chambers (United States)

    Rutherfoord, J. P.; Walker, R. B.


    We have uniformly irradiated liquid argon ionization chambers with betas from high-activity 90Sr sources. The radiation environment is similar to that in the liquid argon calorimeters which are part of the ATLAS detector installed at CERN's Large Hadron Collider (LHC). We measured the resulting ionization current over a wide range of applied potential for two different source activities and for three different chamber gaps. These studies provide operating experience at exceptionally high ionization rates. In particular they indicate a stability at the 0.1% level for these calorimeters over years of operation at the full LHC luminosity when operated in the normal mode at an electric field E = 1.0 kV / mm. We can operate these chambers in the normal mode or in the space-charge limited regime and thereby determine the transition point between the two. This transition point is parameterized by a positive argon ion mobility of μ+ = 0.08 ± 0.02mm2 / V s at a temperature of 88.0±0.5 K and at a pressure of 1.02±0.02 bar. In the space-charge limited regime the ionization currents are degraded and show signs of instability. At the highest electric fields in our study (6.7 kV/mm) the ionization current is still slowly rising with increasing electric field.

  4. Free electron lifetime achievements in liquid Argon imaging TPC

    Energy Technology Data Exchange (ETDEWEB)

    Baibussinov, B; Ceolin, M Baldo; Centro, S; Cieslik, K; Farnese, C; Fava, A; Gibin, D; Guglielmi, A; Meng, G; Pietropaolo, F; Varanini, F; Ventura, S [INFN, Sezione di Padova via Marzolo 8, I-35131 Padova (Italy); Calligarich, E [INFN, Sezione di Pavia via Bassi 6, I-27100 Pavia (Italy); Rubbia, C, E-mail: Carlo.Rubbia@cern.c [Laboratori Nazionali del Gran Sasso dell' INFN I-67010 Assergi (Italy)


    A key feature for the success of the liquid Argon imaging TPC (LAr-TPC) technology is the industrial purification against electro-negative impurities, especially Oxygen and Nitrogen remnants, which have to be continuously kept at an exceptionally low level by filtering and recirculating liquid Argon. Improved purification techniques have been applied to a 120 liters LAr-TPC test facility in the INFN-LNL laboratory. Through-going muon tracks have been used to determine the free electron lifetime in liquid Argon against electro-negative impurities. The short path length here observed (30 cm) is compensated by the high accuracy in the observation of the specific ionization of cosmic ray muons at sea level as a function of the drift distance. A free electron lifetime of tau {approx} (21.4{sup +7.3}{sub -4.3}) ms, namely > 15.8 ms at 90% C.L. has been observed over several weeks under stable conditions, corresponding to a residual Oxygen equivalent of {approx} 15 ppt (part per trillion). At 500 V/cm, the free electron speed is 1.5 mm/mus. In a LAr-TPC a free electron lifetime in excess of 15 ms corresponds for instance to an attenuation of less than 20% after a drift path of 5 m, opening the way to the operation of the LAr-TPC with exceptionally long drift distances.

  5. Tin LPP plasma control in the argon cusp source (United States)

    McGeoch, Malcolm W.


    The argon cusp plasma has been introduced [1,2] for 500W class tin LPP exhaust control in view of its high power handling, predicted low tin back-scatter from a beam dump, and avoidance of hydrogen usage. The physics of tin ion control by a plasma is first discussed. Experimentally, cusp stability and exhaust disc geometry have previously been proved at full scale [2], the equivalent of 300W-500W usable EUV. Here we verify operation of the plasma barrier that maintains a high argon density next to the collector, for its protection, and a low density in the long path toward the intermediate focus, for efficiency. A pressure differential of 2Pa has been demonstrated in initial work. Other aspects of tin LPP plasma control by the cusp have now been demonstrated using tin ions from a low Hz 130mJ CO2 laser pulse onto a solid tin surface at the cusp center. Plasma is rejected at the design to match a specified exhaust power is discussed. In view of this work, argon cusp exhaust control appears to be very promising for 500W class tin LPP sources.

  6. Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon

    Institute of Scientific and Technical Information of China (English)

    XU Guimin; ZHANG Guanjun; SHI Xingmin; MA Yue; WANG Ning; LI Yuan


    A coaxial dielectric barrier discharge plasma jet Was designed,which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply,and an atmospheric pressure glow-like discharge Was achieved.Two kinds of typical bacteria,i.e.,the Staphylococcus aureus(S.aurens)and Escherichia coil(E.coil),were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma.The killing log value (KLV)of S.aureus reached up to 5.38 with a treatment time of 90 s and that of E.coil up to 5.36 with 60 s,respectively.According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation,while the heat,electric field and UV photons had little effect.

  7. Readiness of the ATLAS liquid argon calorimeter for LHC collisions (United States)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Aktas, A.; Alam, M. S.; Alam, M. A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R. L.; Bathe, S.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H. S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G. A.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V. G.; Bondioli, M.; Boonekamp, M.; Booth, J. R. A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I. R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carron Montero, S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Cole, B.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Daly, C. H.; Dam, M.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A. R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Cruz-Burelo, E.; de La Taille, C.; de Mora, L.; de Oliveira Branco, M.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; de Zorzi, G.; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S. P.; Dennis, C.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Domenico, A.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D. J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M. T.; Doxiadis, A.; Doyle, A. T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M. J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giovannini, P.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N. P.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Gonella, L.; Gong, C.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goryachev, S. V.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Granado Cardoso, L.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Grishkevich, Y. V.; Groer, L. S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harrington, R. D.; Harris, O. B.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayward, H. S.; Haywood, S. J.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J. N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R. C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P. M.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L. V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kind, O.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. S.; Kneringer, E.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kostka, P.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasny, M. W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z. V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Lane, J. L.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Le Vine, M.; Leahu, M.; Lebedev, A.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Legendre, M.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.-R.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J. N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S. C.; Lindsay, S. W.; Linhart, V.; Linnemann, J. T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Lovas, L.; Love, J.; Love, P.; Lowe, A. J.; Lu, F.; Lu, J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magradze, E.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marcisovsky, M.; Marino, C. P.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti I Garcia, S.; Martin, A. J.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martynenko, V.; Martyniuk, A. C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S. J.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCubbin, N. A.; McFarlane, K. W.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T. M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B. R.; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A. M.; Messmer, I.; Metcalfe, J.; Mete, A. S.; Meyer, J.-P.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Micu, L.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikuž, M.; Miller, D. W.; Mills, W. J.; Mills, C. M.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V. A.; Miyagawa, P. S.; Mjörnmark, J. U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R. W.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morley, A. K.; Mornacchi, G.; Morozov, S. V.; Morris, J. D.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neusiedl, A.; Neves, R. N.; Nevski, P.; Newcomer, F. M.; Nicholson, C.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nožička, M.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Ortega, E. O.; Osculati, B.; Osuna, C.; Otec, R.; P Ottersbach, J.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th. D.; Park, S. J.; Park, W.; Parker, M. A.; Parker, S. I.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L. S.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V. D.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Potter, K. P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R. A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E. R.; Roa Romero, D. A.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N. A.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A. F.; Sadrozinski, H. F.-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchis Lozano, M. A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjoelin, J.; Sjursen, T. B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D. A.; Su, D.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu. M.; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, R. P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thomas, T. L.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomson, E.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasilyeva, L.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Villa, M.; Villani, E. G.; Villaplana Perez, M.; Villate, J.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O. V.; Vivarelli, I.; Vives Vaques, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J. C.; Wang, S. M.; Ward, C. P.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Webel, M.; Weber, J.; Weber, M. D.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S. L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zur Nedden, M.; Zutshi, V.


    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along η (averaged over φ) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained using the ATLAS readout, data acquisition, and reconstruction software indicate that the liquid argon calorimeter is well-prepared for collisions at the dawn of the LHC era.

  8. K-Ar age of young volcanic rocks and excess argon--Binary mixing model and quantitative study of excess argon effect

    Institute of Scientific and Technical Information of China (English)


    A binary mixing model for excess argon is suggested in the note. According to this model and the data of excess argon component obtained in our experiment , a quantitative study of the effect of excess argon on real K-Ar age of young volcanic rocks is done. The result indicates that the effect of 5% excess argon component in samples on K-Ar age of the samples more than 2 Ma is less than 7.36% and can lead K-Ar age of 0.5 Ma samples to increase by 32.4%, while 1% excess argon component leads K-Ar age of 0.5 Ma samples to increase by 6.26%. Therefore, when pre-processed excess argon component is ≤1%, K-Ar age of the samples more than 0.5 Ma should be credible. On this basis we suggest a principal opinion for evaluation of previous K-Ar dating results and propose that the matrix is used to determine K-Ar age of young volcanic rocks. For the samples less than 0.2 Ma, in the case of high excess argon content, even if only 1% excess argon component exists in their matrix, it can also greatly affect their K-A age. Thus it must be careful to treat the dating result.

  9. A Direct Transformation of Aryl Aldehydes to Benzyl Iodides Via Reductive Iodination

    Energy Technology Data Exchange (ETDEWEB)

    Ruso, Jayaraman Sembian; Rajendiran, Nagappan; Kumaran, Rajendran Senthil [Univ. of Madras, Chennai (India)


    A facile transformation of aryl aldehydes to benzyl iodides through one-pot reductive iodination is reported. This protocol displays remarkable functional group tolerance and the title compound was obtained in good to excellent yield.

  10. Kinetics and mechanism of the mercury(II)-assisted hydrolysis of methyl iodide. (United States)

    Celo, Valbona; Scott, Susannah L


    The kinetics and mechanism of the reaction of aqueous Hg(II) with methyl iodide have been investigated. The overall reaction is best described as Hg(II)-assisted hydrolysis, resulting in quantitative formation of methanol and, in the presence of excess methyl iodide, ultimately, HgI2 via the intermediate HgI+. The kinetics are biexponential when methyl iodide is in excess. At 25 degrees C, the acceleration provided by Hg2+ is 7.5 times greater than that caused by HgI+, while assistance of hydrolysis was not observed for HgI2. Thus, the reactions are not catalytic in Hg(II). The kinetics are consistent with an SN2-M+ mechanism involving electrophilic attack at iodide. As expected, methylation of mercury is not a reaction pathway; traces of methylmercury(II) are artifacts of the extraction/preconcentration procedure used for methylmercury analysis.

  11. Fluorescence characteristics of 5-amino salicylic acid: An iodide recognition study (United States)

    Arora, Priyanka; Suyal, Kanchan; Joshi, Neeraj K.; Joshi, Hem Chandra; Pant, Sanjay

    In this paper we report the effect of iodide on the fluorescence of 5-amino salicylic acid (5-ASA). In the absence of iodide, prominent blue green (BG) emission band at ˜465 nm (broad) is observed in aprotic solvents whereas violet (V) emission at ˜408 nm, blue green (BG) at ˜480 nm and green (G) at ˜500 nm are observed in case of protic solvents. On the addition of iodide ion (I-), the intensity of BG fluorescence is enhanced in case of aprotic solvents. On the other hand the G band is enhanced in protic solvents and decrease in the intensity of the V band is observed. The effect of hydrogen bonding as well as the interplay of neutral and ionic species is invoked to explain the observed results. The study projects the application of this system in iodide recognition in protic/aprotic environments.

  12. Horseradish Peroxidase-Mediated, Iodide-Catalyzed Cascade Reaction for Plasmonic Immunoassays. (United States)

    Xianyu, Yunlei; Chen, Yiping; Jiang, Xingyu


    This report outlines an enzymatic cascade reaction for signal transduction and amplification for plasmonic immunoassays by using horseradish peroxidase (HRP)-mediated aggregation of gold nanoparticles (AuNPs). HRP-catalyzed oxidation of iodide and iodide-catalyzed oxidation of cysteine is employed to modulate the plasmonic signals of AuNPs. It agrees well with the current immunoassay platforms and allows naked-eye readout with enhanced sensitivity, which holds great promise for applications in resource-constrained settings.

  13. Air-Driven Potassium Iodide-Mediated Oxidative Photocyclization of Stilbene Derivatives. (United States)

    Matsushima, Tomoya; Kobayashi, Sayaka; Watanabe, Soichiro


    A new method has been developed for the potassium iodide-mediated oxidative photocyclization of stilbene derivatives. Compared with conventional iodine-mediated oxidative photocyclization reactions, this new method requires shorter reaction times and affords cyclized products in yields of 45-97%. This reaction proceeds with a catalytic amount of potassium iodide and works in an air-driven manner without the addition of an external scavenger. The radical-mediated oxidative photocyclization of stilbene derivatives using TEMPO was also investigated.

  14. [Study on the stability of potassium iodide of the iodized salt]. (United States)

    Voudouris, E


    The stability of potassium iodide in iodized salt has been studied with respect to the purity of the salt used as raw material. It has been found that the iodized salt prepared from high purity salt and preserved under proper conditions (protection from light, humidity and high temperatures) keeps, for several months, the most of the initially added potassium iodide, without any addition of stabilizers, except for a small bicarbonate.

  15. Permeation of iodide from iodine-enriched yeast through porcine intestine. (United States)

    Ryszka, Florian; Dolińska, Barbara; Zieliński, Michał; Chyra, Dagmara; Dobrzański, Zbigniew


    Iodine deficiency is a common phenomenon, threatening the whole global human population. Recommended daily intake of iodine is 150 μg for adults and 250 μg for pregnant and breastfeeding women. About 50% of human population can be at risk of moderate iodine deficiency. Due to this fact, increased iodine supplementation is recommended, through intake of iodized mineral water and salt iodization. The aim of this study was to investigate permeation and absorption of iodide from iodine bioplex (experimental group) in comparison with potassium iodide (controls). Permeation and absorption processes were investigated in vitro using a porcine intestine. The experimental model was based on a standard Franz diffusion cell (FD-Cell). The iodine bioplex was produced using Saccharomyces cerevisiae yeast and whey powder: iodine content - 388 μg/g, total protein - 28.5%, total fat - 0.9%., glutamic acid - 41.2%, asparaginic acid - 29.4%, lysine - 24.8%; purchased from: F.Z.N.P. Biochefa, Sosnowiec, Poland. Potassium iodide was used as controls, at 388 μg iodine concentration, which was the same as in iodine-enriched yeast bioplex. A statistically significant increase in iodide permeation was observed for iodine-enriched yeast bioplex in comparison with controls - potassium iodide. After 5h the total amount of permeated iodide from iodine-enriched yeast bioplex was 85%, which is ~ 2-fold higher than controls - 37%. Iodide absorption was by contrast statistically significantly higher in controls - 7.3%, in comparison with 4.5% in experimental group with iodine-enriched yeast bioplex. Presented results show that iodide permeation process dominates over absorption in case of iodine-enriched yeast bioplex.

  16. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl


    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  17. Mechanistic aspects of ingested chlorine dioxide on thyroid function: impact of oxidants on iodide metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Bercz, J.P.; Jones, L.L.; Harrington, R.M.; Bawa, R.; Condie, L.


    Toxicological studies dealing with recent findings of health effects of drinking water disinfectants are reviewed. Experiments with monkeys and rodents indicate that the biological activity of ingested disinfectants is expressed via their chemical interaction with the mucosal epithelia, secretory products, and nutritional contents of the alimentary tract. Evidence exists that a principal partner of this redox interaction is the iodide of nutritional origin that is ubiquitous in the gastrointestinal tract. Thus the observation that subchronic exposure to chlorine dioxide (ClO/sub 2/) in drinking water decreases serum thyroxine levels in mammalian species can be best explained with changes produced in the chemical form of the bioavailable iodide. Ongoing and previously reported mechanistic studies indicate that oxidizing agents such as chlorine-based disinfectants oxidize the basal iodide content of the gastrointestinal tract. The resulting reactive iodine species readily attaches to organic matter by covalent bonding. Evidence suggests that the extent to which such iodinated organics are formed is proportional to the magnitude of the electromotive force and stoichiometry of the redox couple between iodide and the disinfectant. Because the extent of thyroid uptake of the bioavailable iodide does not decrease during ClO/sub 2/ ingestion, it seems that ClO/sub 2/ does not cause iodide deficiency of sufficient magnitude to account for the decease in hormonogenesis. Absorption of one or more of iodinated molecules, e.g., nutrient, hormones, or cellular constituents of the alimentary tract having thyromimetic or thyroid inhibitory properties, is a better hypothesis for the effects seen.

  18. Lead iodide X-ray and gamma-ray spectrometers for room and high temperature operation

    Energy Technology Data Exchange (ETDEWEB)

    Hermon, H.; James, R.B.; Cross, E. [and others


    In this study, we report on the results of the investigation of lead iodide material properties. The effectiveness of zone refining purification methods on the material purity is determined by ICP-MS and ICP-OES and correlated to the electrical and physical material properties. We show that this zone refining method is very efficient in removing impurities from lead iodide and we also determine the segregation coefficient for some of these impurities. Triple axis x- ray diffraction (TAD) analysis has been used to determine the crystalline perfection of the lead iodide after applying various cutting, etching, and fabrication methods. The soft lead iodide crystal was found to be damaged when cleaved by a razor blade, but by using a diamond wheel saw, followed by etching, the crystallinity of the material was improved, as observed by TAD. Low temperature photoluminescence also indicates an improvement in the material properties of the purified lead iodide. Electrical properties of lead iodide such as carrier mobility, were calculated based on carrier- phonon scattering. The results for the electrical properties were in good agreement with the experimental data.

  19. Critical evaluation of acetylthiocholine iodide and acetylthiocholine chloride as substrates for amperometric biosensors based on acetylcholinesterase. (United States)

    Bucur, Madalina-Petruta; Bucur, Bogdan; Radu, Gabriel-Lucian


    Numerous amperometric biosensors have been developed for the fast analysis of neurotoxic insecticides based on inhibition of cholinesterase (AChE). The analytical signal is quantified by the oxidation of the thiocholine that is produced enzymatically by the hydrolysis of the acetylthiocholine pseudosubstrate. The pseudosubstrate is a cation and it is associated with chloride or iodide as corresponding anion to form a salt. The iodide salt is cheaper, but it is electrochemically active and consequently more difficult to use in electrochemical analytical devices. We investigate the possibility of using acetylthiocholine iodide as pseudosubstrate for amperometric detection. Our investigation demonstrates that operational conditions for any amperometric biosensor that use acetylthiocholine iodide must be thoroughly optimized to avoid false analytical signals or a reduced sensitivity. The working overpotential determined for different screen-printed electrodes was: carbon-nanotubes (360 mV), platinum (560 mV), gold (370 mV, based on a catalytic effect of iodide) or cobalt phthalocyanine (110 mV, but with a significant reduced sensitivity in the presence of iodide anions).

  20. Stability and electronic properties of two-dimensional indium iodide (United States)

    Wang, Jizhang; Dong, Baojuan; Guo, Huaihong; Yang, Teng; Zhu, Zhen; Hu, Gan; Saito, Riichiro; Zhang, Zhidong


    Based on ab initio density functional calculations, we studied the stability and electronic properties of two-dimensional indium iodide (InI). The calculated results show that monolayer and few-layer InI can be as stable as its bulk counterpart. The stability of the monolayer structure is further supported by examining the electronic and dynamic stability. The interlayer interaction is found to be fairly weak (˜160 meV/atom) and mechanical exfoliation to obtain monolayer and few-layer structures will be applicable. A direct band gap of 1.88 eV of the bulk structure is obtained from the hybrid functional method, and is comparable to the experimental one (˜2.00 eV). The electronic structure can be tuned by layer stacking and external strain. The size of the gap is a linear function of an inverse number of layers, suggesting that we can design few-layer structures for optoelectronic applications in the visible optical range. In-plane tensile or hydrostatic compressive stress is found to be useful not only in varying the gap size to cover the whole visible optical range, but also in inducing a semiconductor-metal transition with an experimentally accessible stress. The present result strongly supports the strategy of broadening the scope of group-V semiconductors by looking for isoelectronic III-VII atomic-layered materials.

  1. Persistent photovoltage in methylammonium lead iodide perovskite solar cells (United States)

    Baumann, A.; Tvingstedt, K.; Heiber, M. C.; Väth, S.; Momblona, C.; Bolink, H. J.; Dyakonov, V.


    We herein perform open circuit voltage decay (OCVD) measurements on methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells to increase the understanding of the charge carrier recombination dynamics in this emerging technology. Optically pulsed OCVD measurements are conducted on CH3NH3PbI3 solar cells and compared to results from another type of thin-film photovoltaics, namely, the two reference polymer-fullerene bulk heterojunction solar cell devices based on P3HT:PC60BM and PTB7:PC70BM blends. We observe two very different time domains of the voltage transient in the perovskite solar cell with a first drop on a short time scale that is similar to the decay in the studied organic solar cells. However, 65%-70% of the maximum photovoltage persists on much longer timescales in the perovskite solar cell than in the organic devices. In addition, we find that the recombination dynamics in all time regimes are dependent on the starting illumination intensity, which is also not observed in the organic devices. We then discuss the potential origins of these unique behaviors.

  2. Structural Effects on the Bandstructure of Methylammonium Lead Iodide (United States)

    Bernardi, Marco; Barker, Bradford A.; Vigil-Fowler, Derek; Neaton, Jeffrey B.; Louie, Steven G.; Louie Team

    Metal-organic halide perovskites possess peculiar physical properties. The carrier diffusion length in methylammonium lead iodide (MAPbI) exceeds 1 μm, but this unusually high value for a solution-processed material is poorly understood. We developed first-principles calculations of carrier lifetimes and diffusion lengths in semiconductors, which require accurate knowledge of the bandstructure. In this talk, we show that in MAPbI the structure strongly affects the bandstructure and band edges, and that density functional theory (DFT) is unable to predict the room temperature tetragonal structure due to the polymorphism of MAPbI. The Rashba splitting induced by the spin-orbit interaction, and the DFT band gap and effective masses, all depend strongly on the chosen structure, a point that previous work failed to address. Working with multiple stochastic realizations of large unit cells with random methylammonium orientations, we compute average effective masses and show that the effective mass depends linearly on the band gap. The average Rashba coefficient we find is an order of magnitude smaller than previously reported, and the band edges are almost parabolic. Our structures possess the correct symmetry and are free of the spurious Pb off-centering assumed in previous work. We identify the correct starting point for GW bandstructure calculations and to compute the carrier lifetime and diffusion length.

  3. Chloride, bromide and iodide scintillators with europium doping (United States)

    Zhuravleva, Mariya; Yang, Kan


    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  4. Temporal evolution of electron beam generated Argon plasma in pasotron device (United States)

    Khandelwal, Neha; Pal, U. N.; Prakash, Ram; Choyal, Y.


    The plasma- assisted slow wave oscillator (PASOTRON) is a high power microwave source in which the electron beam in the interaction region is confined by the background plasma. The plasma is generated by impact ionization of background gas with the electron beam. A model has been developed for temporal evolution of Argon plasma in pasotron device. In this model, we consider electron beam of energy E interacting with Argon gas. The resulting ionization creates quasi neutral argon plasma composed of argon Ar atoms, singly ionized ions Ar+1and electrons having energy from 0 to E. Electron impact excitation, ionization, radiative decay, radiative recombination and three body recombination processes are considered in this model. Population of ground and excited states of argon atom, ground state of argon ion as well as the population of electron energy groups is calculated by solving time dependent rate equations. Temporal evolution of electron beam generated plasma is given.

  5. Effects of argon gas flow rate and guide shell on oxygen concentration in Czochralski silicon growth

    Institute of Scientific and Technical Information of China (English)


    φ200 mm silicon single crystals were grown in the φ450 mm hot zone of a Czochralski (CZ) furnace. By modifying the pattern and the velocity of the argon flow, the silicon single crystals with different oxygen concentrations were obtained. Through numerical simulation, the velocity of the argon gas flow was plotted for the first time. The experiment results were analyzed and the optimum condition of the argon flow with the lowest oxygen concentration was obtained.

  6. Influence of argon laser curing on resin bond strength. (United States)

    Hinoura, K; Miyazaki, M; Onose, H


    Light cured resin composites are usually cured with halogen lamps whose light output decreases with time and distance to the resin surface. This study compared bond strengths of resins to tooth structure cured with either an argon laser or a conventional halogen light. The enamel and dentin of bovine incisors were ground on the buccal surface with wet #600 grit SiC paper. A 4 x 2 mm mold was placed on the tooth surface and Scotchbond 2/Silux and Clearfil Photobond/Photo Clearfil A were placed into the molds and cured using a Quick Light or an argon laser for exposure times of 10, 20, and 30 seconds, and distances of 0.0, 0.5, 1.0, and 1.5 mm from the resin surface. The intensity of the Quick Light was measured as 510 mW/cm2 at 470 +/- 15 nm and the intensity of the argon laser was adjusted to 510 mW/cm2 before curing. Shear bond tests at a crosshead speed of 1.0 mm/min were performed after 24 hours of storage in water. The bond strengths obtained with the halogen lamp and the laser were not significantly different at the same exposure times and at 0.0 or 0.5 mm from the resin surface. The laser cured bond strengths did not decrease with increasing distance whereas there was a significant decrease in halogen bond strengths at distances greater than 0.5 mm for both resins. The use of the laser might provide a clinical advantage in cases where the curing light source cannot be brought into proximity to the surface of the resin.

  7. Effects of argon flow on impurities transport in a directional solidification furnace for silicon solar cells (United States)

    Li, Zaoyang; Liu, Lijun; Ma, Wencheng; Kakimoto, Koichi


    A global simulation including coupled oxygen and carbon transport was carried out to study the argon flow effects on the impurities transport in a directional solidification furnace for silicon solar cells. The simulation is based on a fully coupled calculation of the thermal and flow fields in a furnace including argon gas flow and melt convection. Five chemical reactions are considered in the impurity transport model. The effects of both the argon flow rate and the furnace pressure were examined. It was found that the argon flow has an important effect on the silicon melt convection, which will further influence the evaporation characteristic of SiO at the melt free surface. The amount of SiO carried away by the argon flow increases with increase in the argon flow rate while the CO gas can be prevented from being transported to the melt free surface. There exists a peak value for the concentration of impurities in the furnace chamber regarding argon flow rate due to the correlation among SiO evaporated, reacted and taken away. The pressure also influences the impurity transport in the furnace by modifying the pattern of argon flow. The numerical results demonstrate a method to control the oxygen and carbon transport in a directional solidification furnace by adjusting the argon flow rate and the furnace pressure.

  8. Kinetic modeling of the Townsend breakdown in argon (United States)

    Macheret, S. O.; Shneider, M. N.


    Kinetic modeling of the Townsend breakdown in argon was performed in the "forward-back" approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  9. Large Area Pico-second Photodetectors (LAPPD) in Liquid Argon (United States)

    Dharmapalan, Ranjan; Lappd Collaboration


    The Large Area Pico-second Photodetector (LAPPD) project has recently produced the first working devices with a small form factor and pico-second timing resolution. A number of current and proposed neutrino and dark matter experiments use liquid argon as a detector medium. A flat photodetector with excellent timing resolution will help with background suppression and improve the overall sensitivity of the experiment. We present the research done and some preliminary results to customize the LAPPD devices to work in a cryogenic environment. Argonne National Laboratory (LDRD) and DOE.

  10. Optical fiber read-out for liquid argon scintillation light

    CERN Document Server

    Csáthy, J Janicskó; Kratz, J; Schönert, S; Wiesinger, Ch


    In this paper we describe the performance of a light detector for Ar scintillation light made of wavelength-shifting (WLS) fibers connected to Silicon-Photomultipliers (SiPM). The setup was conceived to be used as anti-Compton veto for high purity germanium (HPGe) detectors operated directly in liquid Argon (LAr). Background suppression efficiencies for different radioactive sources were measured in a test cryostat with about 800 kg LAr. This work was part of the R\\&D effort for the GERDA experiment.

  11. Dimerization of argon and the properties of its small clusters (United States)

    Titov, S. V.; Serov, S. A.; Ostrovskii, G. M.


    Statistical thermodynamic means are used to study the bound state of a small cluster AN (2 ≤ N ≤ 5) of Lennard-Jones particles in a spherical cavity. The statistical sum is calculated by the Monte Carlo method. For the dimer, integration is reduced to quadratures. The integration region contains only phase space points corresponding to the bound cluster state. Dimerization constant 2A = A2 is calculated via the probability of finding a molecule in the bound state using the example of argon.

  12. The abundances of neon, sulfur, and argon in planetary nebulae (United States)

    Beck, S. C.; Lacy, J. H.; Townes, C. H.; Aller, L. H.; Geballe, T. R.; Baas, F.


    New infrared observations of Ne II, Ar III, and S IV are used in optical observations of other ionization states of the considered elements to evaluate the abundances of neon, argon, and sulfur in 18 planetary nebulae. Attention is also given to one or more of the infrared lines in 18 other nebulae. It is pointed out that S IV was detected in approximately 90% of the observed objects, while Ar III was found in about 80%, and Ne II in roughly one-third. It is noted that optical observations typically include only a limited region of the nebula, while the infrared measurements frequently involve integration over the entire nebular image.

  13. Liquid Argon TPC Signal Formation, Signal Processing and Hit Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Baller, Bruce [Fermilab


    This document describes the early stage of the reconstruction chain that was developed for the ArgoNeuT and MicroBooNE experiments at Fermilab. These experiments study accelerator neutrino interactions that occur in a Liquid Argon Time Projection Chamber. Reconstructing the properties of particles produced in these interactions requires knowledge of the micro-physics processes that affect the creation and transport of ionization electrons to the readout system. A wire signal deconvolution technique was developed to convert wire signals to a standard form for hit reconstruction, to remove artifacts in the electronics chain and to remove coherent noise.

  14. Electrical and spectroscopic characterization of a surgical argon plasma discharge (United States)

    Keller, Sandra; Bibinov, Nikita; Neugebauer, Alexander; Awakowicz, Peter


    For electrosurgical procedures, the argon plasma coagulation (APC) discharge is a well-established atmospheric-pressure plasma tool for thermal haemostasis and devitalization of biological tissue. To characterize this plasma source, voltage-current measurements, microphotography, optical emission spectroscopy and numerical simulation are applied. Two discharge modes are established during the operation of the APC plasma source. A short transient spark discharge is ignited within the positive half period of the applied high voltage after a streamer channel connects the APC probe and the counter-electrode. During the second phase, which continues under negative high voltage, a glow discharge is stabilized in the plasma channel.

  15. Study of a Novel Concept for a Liquid Argon Calorimeter \

    CERN Multimedia


    % RD33 \\\\ \\\\ The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter prototype is proposed as a generic R\\&D project for a novel concept of calorimetry in proton-proton and electron-positron collider detectors: the $^{\\prime$Thin Gap Turbine$^{\\prime}$ (TGT). The TGT calorimeter has a modular construction, is flexible in its longitudinal and transverse granularity, and offers a uniform energy response and resolution, independent of the production angle of incident particles. An important aspect of the project is the development of fast, radiation-hard front-end electronics which is operating in the cold.

  16. Imaging with polycrystalline mercuric iodide detectors using VLSI readout

    Energy Technology Data Exchange (ETDEWEB)

    Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L.; Schieber, M.; Zuck, A.; Melekhov, L.; Saado, Y.; Hermon, H.; Nissenbaum, J


    Potentially low cost and large area polycrystalline mercuric iodide room-temperature radiation detectors, with thickness of 100-600 {mu}m have been successfully tested with dedicated low-noise, low-power mixed signal VLSI electronics which can be used for compact, imaging solutions. The detectors are fabricated by depositing HgI{sub 2} directly on an insulating substrate having electrodes in the form of microstrips and pixels with an upper continuous electrode. The deposition is made either by direct evaporation or by screen printing HgI{sub 2} mixed with glue such as Poly-Vinyl-Butiral. The properties of these first-generation detectors are quite uniform from one detector to another. Also for each single detector the response is quite uniform and no charge loss in the inter-electrode space have been detected. Because of the low cost and of the polycrystallinity, detectors can be potentially fabricated in any size and shape, using standard ceramic technology equipment, which is an attractive feature where low cost and large area applications are needed. The detectors which act as radiation counters have been tested with a beta source as well as in a high-energy beam of 100 GeV muons at CERN, connected to VLSI, low noise electronics. Charge collection efficiency and uniformity have been studied. The charge is efficiently collected even in the space between strips indicating that fill factors of 100% could be reached in imaging applications with direct detection of radiation. Single photon counting capability is reached with VLSI electronics. These results show the potential of this material for applications demanding position sensitive, radiation resistant, room-temperature operating radiation detectors, where position resolution is essential, as it can be found in some applications in high-energy physics, nuclear medicine and astrophysics.

  17. Effect of Excessive Potassium Iodide on Rat Aorta Endothelial Cells. (United States)

    Zhang, Man; Zou, Xiaoyan; Lin, Xinying; Bian, Jianchao; Meng, Huicui; Liu, Dan


    The aim of the current study was to investigate the effect of excess iodine on rat aorta endothelial cells and the potential underlying mechanisms. Rat aorta endothelial cells were cultured with iodide ion (3506, 4076, 4647, 5218, 5789, 6360, 6931, and 7512 mg/L) for 48 h. Morphological changes of cells were observed with microscope after Wright-Giemsa staining and acridine orange staining. Cell proliferation was determined with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and cell apoptosis was assessed with flow cytometry. The activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), endothelial nitric oxide synthase (eNOS), induced nitric oxide synthase (iNOS), and concentrations of malondialdehyde (MDA), glutathione (GSH), and protein carbonyl in culture medium were determined with colorimetric method. The expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was detected by enzyme linked immunosorbent assay. The results showed that excess iodine induced abnormal morphologic changes of cells, inhibited cell proliferation, and increased apoptosis rate. Iodine also reduced the activity of SOD, GSH-Px, and concentrations of GSH and increased the concentrations of MDA and protein carbonyl in a dose-dependent manner. Moreover, excess iodine decreased the activity of eNOS and increased the activity of iNOS and the expression of ICAM-1 and VCAM-1 in culture medium. Our results suggested that excess iodine exposure increased oxidative stress, caused damage of vascular endothelial cells, and altered the expression of adhesion factors and the activity of NOS. These changes may explain the mechanisms underlying excess iodine-induced vascular injury.


    Directory of Open Access Journals (Sweden)

    I Wayan Hartadi Noor


    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Graves’ disease is the most common form of thyrotoxicosis, with a peak incidence in the 20-40 year of age group. Females are involved about five times more commonly than male. The easiest sign to recognize patients with Graves’ disease is the present of Graves’ ophthalmopathy. The diagnosis of Graves’ disease may sometimes base only on a physical examination and a medical history. Diffuse thyroid enlargement and sign of thyrotoxicosis, mainly ophthalmopathy and to lesser extent dermopathy, usually adequate for diagnosis. TSH test combined with FT4 test is usually the first laboratory test performs in these patients. The patients suffered Graves’ disease can be treated with antithyroid drug therapy or undergo subtotal Thyroidectomy. Another therapy is by using sodium iodide-131, where this therapy has advantages including easy administration, effectiveness, low expense, and absence of pain. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  19. Modeling the Detection of Organic and Inorganic Compounds Using Iodide-Based Chemical Ionization. (United States)

    Iyer, Siddharth; Lopez-Hilfiker, Felipe; Lee, Ben H; Thornton, Joel A; Kurtén, Theo


    Iodide-based chemical ionization mass spectrometry (CIMS) has been used to detect and measure concentrations of several atmospherically relevant organic and inorganic compounds. The significant electronegativity of iodide and the strong acidity of hydroiodic acid makes electron transfer and proton abstraction essentially negligible, and the soft nature of the adduct formation ionization technique reduces the chances of sample fragmentation. In addition, iodide has a large negative mass defect, which, when combined with the high resolving power of a high resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS), provides good selectivity. In this work, we use quantum chemical methods to calculate the binding energies, enthalpies and free energies for clusters of an iodide ion with a number of atmospherically relevant organic and inorganic compounds. Systematic configurational sampling of the free molecules and clusters was carried out at the B3LYP/6-31G* level, followed by subsequent calculations at the PBE/SDD and DLPNO-CCSD(T)/def2-QZVPP//PBE/aug-cc-pVTZ-PP levels. The binding energies, enthalpies, and free energies thus obtained were then compared to the iodide-based University of Washington HR-ToF-CIMS (UW-CIMS) instrument sensitivities for these molecules. We observed a reasonably linear relationship between the cluster binding enthalpies and logarithmic instrument sensitivities already at the PBE/SDD level, which indicates that relatively simple quantum chemical methods can predict the sensitivity of an iodide-based CIMS instrument toward most molecules. However, higher level calculations were needed to treat some outlier molecules, most notably oxalic acid and methylerythritol. Our calculations also corroborated the recent experimental findings that the molecules that the UW-CIMS detects at maximum sensitivity usually have binding enthalpies to iodide which are higher than about 26 kcal/mol, depending slightly on the level of theory.

  20. Iodide Residues in Milk Vary between Iodine-Based Teat Disinfectants. (United States)

    French, Elizabeth A; Mukai, Motoko; Zurakowski, Michael; Rauch, Bradley; Gioia, Gloria; Hillebrandt, Joseph R; Henderson, Mark; Schukken, Ynte H; Hemling, Thomas C


    Majority of iodine found in dairy milk comes from the diet and teat disinfection products used during milking process. The objective of this study was to evaluate the effects of 4 iodine-based teat dips on milk iodide concentrations varying in iodine level (0.25% vs. 0.5%, w/w), normal low viscosity dip versus barrier dip, and application method (dip vs. spray) to ensure safe iodine levels in dairy milk when these products are used. The iodine exposure study was performed during a 2-wk period. The trial farm was purged of all iodine-based disinfection products for 21 d during a prestudy "washout period," which resulted in baseline milk iodide range of 145 to 182 ppb. During the experiment, iodine-based teat dips were used as post-milking teat disinfectants and compared to a non-iodine control disinfectant. Milk iodide residue levels for each treatment was evaluated from composited group samples. Introduction of different iodine-based teat disinfectants increased iodide residue content in milk relative to the control by between 8 and 29 μg/L when averaged across the full trial period. However, residues levels for any treatment remained well below the consumable limit of 500 μg/L. The 0.5% iodine disinfectant increased milk iodide levels by 20 μg/L more compared to the 0.25% iodine. Compared to dip-cup application, spray application significantly increased milk iodide residue by 21 μg/L and utilized approximately 23% more teat dip. This carefully controlled study demonstrated an increase in milk iodide concentrations from iodine disinfectants, but increases were small and within acceptable limits.

  1. Monte Carlo simulation of electron back diffusion in argon (United States)

    Radmilović, M.; Stojanović, V.; Petrović, Z. Lj.


    Monte Carlo simulation was applied to study the back-diffusion of electrons in argon at low and moderate values of E/N from 10Td to 10 kTd. Simulations were performed for gaps of 1 cm and for pressures corresponding to the breakdown voltages taken from experimental Paschen curves. Effects of inelastic collisions, ionization, reflection of electrons and anisotropic scattering as well as anisotropic initial and reflected angular distributions of electrons were included. A complete and detailed set of electron scattering cross sections that describes well electron transport in argon was used. We found a very good agreement of the results of simulations with the experimental data for well defined initial conditions, and with several models available in the literature.(A.V. Phelps and Z.LJ. Petrović), Plasma Sources Sci. Tehnol. 8, R21 (1999). While effect of reflection may be large, for realistic values of reflection coefficient and for realistic secondary electron productions the effect may be neglected for the accuracy required in gas discharge modeling.

  2. Converging of Argon Cluster Ion Beams with a Glass Capillary (United States)

    Shoji, Kazuhiro; Iuchi, Kensuke; Izumi, Motoki; Moritani, Kousuke; Inui, Norio; Mochiji, Kozo

    We have investigated the converging behavior of argon gas cluster ion beam passed through a glass capillary. The gas cluster ions are attractive as a projectile for SIMS from the view point of minimization of the damages. The cluster ion beam of 5 keV consisting of 500˜3000 argon atoms was injected in the capillary. The inner diameters of the capillary at the inlet and outlet were 0.8 mm and 9.6˜140 μm, respectively. Ion current from the outlet of the all the capillaries were detected. We obtained the converging factor of 2˜7, which depended on the incident ion current. The kinetic energy of the incident ions was found to be reduced by 20˜30% by passing through the capillary. Contrary, the velocity of the ions was not changed. These facts suggest that the cluster becomes 20˜30% smaller in mass by passing through the capillary. As far as we know, this is the first report on the study of the converging of cluster ions by using a glass capillary.

  3. [Determination of iodide, thiocyanate and perchlorate ions in environmental water by two-dimensional ion chromatography]. (United States)

    Lin, Li; Wang, Haibo; Shi, Yali


    A procedure for the determination of iodide, thiocyanate and perchlorate ions in environmental water by two-dimensional ion chromatography has been developed. At first the iodide, thiocyanate and perchlorate ions were separated from interfering ions by a column (IonPac AS16, 250 mm x 4 mm). The iodide ion, thiocyanate and perchlorate ions were then enriched with an enrichment column (MAC-200, 80 mm x 0.75 mm). In the 2nd-dimensional chromatography, iodide thiocyanate and perchlorate ions were separated and quantified by a capillary column (IonPac AS20 Capillary, 250 mm x 0.4 mm). The linear ranges were 0.05 -100 pg/L with correlation coefficients of 0. 999 9, and the detection limits were 0. 02 - 0.05 micro gg/L. The spiked recoveries of iodide, thiocyanate and perchlorate ions were in the range of 85.1% to 100.1%. The relative standard deviations of the recoveries were 1.7% to 4.9%.

  4. Trapping radiodine, in the form of methyl iodide, on nuclear carbon

    Energy Technology Data Exchange (ETDEWEB)

    Nacapricha, D. [Mahidol Univ., Bangkok (Thailand); Taylor, C. [John Moores Univ., Liverpool (United Kingdom)


    Studies have been performed on potassium-iodide-impregnated charcoals of the type used in the nuclear industry for trapping radioiodine released during nuclear fission. The effects of various parameters on the trapping efficiency of methyl iodide have been investigated. A variation in particle size within a bulk charcoal caused poor precision in K value measurements because of differences in surface area, pore volume, and bed density, leading to differences in the deposition of the impregnant. Precision is improved by sieving the charcoal to a narrower size because smaller particles have a higher porosity. This finding is supported by surface area and pore measurements. Two methods of impregnation are compared by measuring K values and the deposition of potassium iodide. Charcoal impregnated by rotary evaporation exhibits both higher K values and higher potassium iodide contents than sprayed charcoal. Two designs of spraying drum are compared: a drum with helical vanes allows more efficient deposition and more uniform distribution of impregnant than a drum with axial vanes. A decrease in the K value with increasing humidity correlates with the available surface area. A similar correlation exists between water content and available pore volume. Aging of potassium-iodide-impregnated charcoal, caused by the formation of oxygen complexes on the surface, is associated with significant falls in K value. K values of charcoals also can be restored to at least their original values by heat treatment in the absence of air. 12 refs., 6 figs., 1 tab.

  5. Estradiol decreases iodide uptake by rat thyroid follicular FRTL-5 cells

    Directory of Open Access Journals (Sweden)

    Furlanetto T.W.


    Full Text Available Estradiol has well-known indirect effects on the thyroid. A direct effect of estradiol on thyroid follicular cells, increasing cell growth and reducing the expression of the sodium-iodide symporter gene, has been recently reported. The aim of the present investigation was to study the effect of estradiol on iodide uptake by thyroid follicular cells, using FRTL-5 cells as a model. Estradiol decreased basal iodide uptake by FRTL-5 cells from control levels of 2.490 ± 0.370 to 2.085 ± 0.364 pmol I-/µg DNA at 1 ng/ml (P<0.02, to 1.970 ± 0.302 pmol I-/µg DNA at 10 ng/ml (P<0.003, and to 2.038 ± 0.389 pmol I-/µg DNA at 100 ng/ml (P<0.02. In addition, 4 ng/ml estradiol decreased iodide uptake induced by 0.02 mIU/ml thyrotropin from 8.678 ± 0.408 to 7.312 ± 0.506 pmol I-/µg DNA (P<0.02. A decrease in iodide uptake by thyroid cells caused by estradiol has not been described previously and may have a role in goiter pathogenesis.

  6. Processes of adsorption/desorption of iodides and cadmium cations onto/from Ag(111

    Directory of Open Access Journals (Sweden)



    Full Text Available In this work, the adsorption/desorption processes of iodides and cadmium cations in the presence of iodides onto/from Ag(111 were investigated. It was shown that both processes were complex, characterized by several peaks on the cyclic voltammograms (CVs. By PeakFit analysis of the recorded CVs and subsequent fitting of the obtained peaks by the Frumkin adsorption isotherm, the interaction parameter (f and the Gibbs energy of adsorption (DGads for each adsorbed phase were determined. In the case of iodide adsorption, four peaks were characterized by negative values of f, indicating attractive lateral interaction between the adsorbed anions, while two of them possessed value of f < –4, indicating phase transition processes. The adsorption/desorption processes of cadmium cations (underpotential deposition – UPD of cadmium in the presence of iodide anions was characterized by two main peaks, each of them being composed of two or three peaks with negative values of f. By the analysis of charge vs. potential dependences obtained either from the CVs or current transients on potentiostatic pulses, it was concluded that adsorbed iodides did not undergo desorption during the process of Cd UPD, but became replaced by Cd ad-atoms and remained adsorbed on top of a Cd layer and/or in between Cd the ad-atoms.

  7. Proton and iodine-127 nuclear magnetic resonance studies on the binding of iodide by lactoperoxidase

    Energy Technology Data Exchange (ETDEWEB)

    Sakurada, J.; Takahashi, S.; Shimizu, T.; Hatano, M.; Nakamura, S.; Hosoya, T.


    Interaction of an iodide ion with lactoperoxidase was studied by the use of /sup 1/H NMR, /sup 127/I NMR, and optical difference spectrum techniques. /sup 1/H NMR spectra demonstrated that a major broad hyperfine-shifted signal at about 60 ppm, which is ascribed to the heme peripheral methyl protons, was shifted toward high field by adding KI, indicating the binding of iodide to the active site of the enzyme; the dissociation constant was estimated to be 38 mM at pH 6.1. The binding was further detected by /sup 127/I NMR, showing no competition with cyanide. Both /sup 1/H NMR and /sup 127/I NMR revealed that the binding of iodide to the enzyme is facilitated by the protonation of an ionizable group with a pK/sup a/ value of 6.0-6.8, which is presumably the distal histidyl residue. Optical difference spectra showed that the binding of an aromatic donor molecule to the enzyme is slightly but distinctly affected by adding KI. On the basis of these results, it was suggested that an iodide ion binds to lactoperoxidase outside the heme crevice but at the position close enough to interact with the distal histidyl residue which possibly mediates electron transport in the iodide oxidation reaction.

  8. Towards a liquid Argon TPC without evacuation filling of a 6$m^3$ vessel with argon gas from air to ppm impurities concentration through flushing

    CERN Document Server

    Curioni, A; Gendotti, A; Knecht, L; Lussi, D; Marchionni, A; Natterer, G; Resnati, F; Rubbia, A; Coleman, J; Lewis, M; Mavrokoridis, K; McCormick, K; Touramanis, C


    In this paper we present a successful experimental test of filling a volume of 6 $m^3$ with argon gas, starting from normal ambient air and reducing the impurities content down to few parts per million (ppm) oxygen equivalent. This level of contamination was directly monitored measuring the slow component of the scintillation light of the Ar gas, which is sensitive to $all$ sources of impurities affecting directly the argon scintillation.

  9. Ful distil ation argon producing crud argon column on operating experience%全精馏制氩粗氩塔操作经验浅谈

    Institute of Scientific and Technical Information of China (English)



    This paper briefly introduces the ful distil ation argon recovery process in the crude argon column in air separation system of cooling,heating and put some matters needing attention in use.%简要介绍了全精馏制氩过程中粗氩塔在空分系统降温、升温及投用中的一些注意事项。

  10. Study of electron recombination in liquid argon with the ICARUS TPC

    Energy Technology Data Exchange (ETDEWEB)

    Amoruso, S.; Antonello, M.; Aprili, P.; Arneodo, F.; Badertscher, A.; Baiboussinov, B.; Baldo Ceolin, M.; Battistoni, G.; Bekman, B.; Benetti, P.; Bischofberger, M.; Borio di Tigliole, A.; Brunetti, R.; Bruzzese, R.; Bueno, A.; Buzzanca, M.; Calligarich, E.; Campanelli, M.; Carbonara, F.; Carpanese, C.; Cavalli, D.; Cavanna, F.; Cennini, P.; Centro, S.; Cesana, A.; Chen, C.; Chen, D.; Chen, D.B.; Chen, Y.; Cieslik, K.; Cline, D.; Cocco, A.G.; Dai, Z.; De Vecchi, C.; Dabrowska, A.; Di Cicco, A.; Dolfini, R.; Ereditato, A.; Felcini, M.; Ferrari, A.; Ferri, F.; Fiorillo, G.; Galli, S.; Ge, Y.; Gibin, D.; Gigli Berzolari, A.; Gil-Botella, I.; Graczyk, K.; Grandi, L.; Guglielmi, A.; He, K.; Holeczek, J.; Huang, X.; Juszczak, C.; Kielczewska, D.; Kisiel, J.; Kozlowski, T.; Laffranchi, M.; Lagoda, J.; Li, Z.; Lu, F.; Ma, J.; Mangano, G.; Markiewicz, M.; Martinez de la Ossa, A.; Matthey, C.; Mauri, F.; Meng, G.; Messina, M.; Montanari, C.; Muraro, S.; Navas-Concha, S.; Otwinowski, S.; Ouyang, Q.; Palamara, O.; Pascoli, D.; Periale, L.; Piano Mortari, G.B.; Piazzoli, A.; Picchi, P.; Pietropaolo, F.; Polopek, W.; Rancati, T.; Rappoldi, A.; Raselli, G.L.; Rico, J.; Rondio, E.; Rossella, M.; Rubbia, A.; Rubbia, C.; Sala, P.R. E-mail:; Santorelli, R.; Scannicchio, D.; Segreto, E.; Seo, Y.; Sergiampietri, F.; Sobczyk, J.; Spinelli, N.; Stepaniak, J.; Sulej, R.; Szarska, M.; Szeptycka, M.; Terrani, M.; Velotta, R.; Ventura, S.; Vignoli, C.; Wang, H.; Wang, X.; Woo, J.; Xu, G.; Xu, Z.; Zalewska, A.; Zhang, C.; Zhang, Q.; Zhen, S.; Zipper, W


    Electron recombination in liquid argon (LAr) is studied by means of charged particle tracks collected in various ICARUS liquid argon TPC prototypes. The dependence of the recombination on the particle stopping power has been fitted with a Birks functional dependence. The simulation of the process of electron recombination in Monte Carlo calculations is discussed. A quantitative comparison with previously published data is carried out.

  11. High-pressure gas hydrates of argon: compositions and equations of state. (United States)

    Manakov, Andrey Yu; Ogienko, Andrey G; Tkacz, Marek; Lipkowski, Janusz; Stoporev, Andrey S; Kutaev, Nikolay V


    Volume changes corresponding to transitions between different phases of high-pressure argon gas hydrates were studied with a piston-cylinder apparatus at room temperature. Combination of these data with the data taken from the literature allowed us to obtain self-consistent set of data concerning the equations of state and compositions of the high-pressure hydrates of argon.

  12. Teeming stream protection using an argon shroud during casting of steel ingots (United States)

    Zhang, Chao-jie; Bao, Yan-ping; Wang, Min; Zhang, Le-chen


    Two kinds of argon shroud protection devices with two different basic structures were designed and investigated. Industrial experiments and numerical simulations were used to examine the protection effect, and the mechanism of air entrapment during the casting of steel ingots was analyzed. The influence of the structure of the argon shroud protection device on the protection effect was investigated. An argon shroud protection device mounted to the nozzle holder on the bottom of the ladle does not provide a good protection effect because air can easily flow into the teeming system and cause reoxidation of molten steel during teeming. By contrast, an argon shroud protection device seated on the top of the central trumpet provides an excellent protection effect, where air has little chance of flowing into the teeming system during casting. The feasibilities of the argon shroud protection devices are discussed.

  13. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging. (United States)

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie


    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy.

  14. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol (United States)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying


    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  15. Quantification of propidium iodide delivery with millisecond electric pulses: A model study

    CERN Document Server

    Yu, Miao


    A model study of propidium iodide delivery with millisecond electric pulses is presented; this work is a companion of the experimental efforts by Sadik et al. [1]. Both membrane permeabilization and delivery are examined with respect to six extra-cellular conductivities. The transmembrane potential of the permeabilized regions exhibits a consistent value, which corresponds to a bifurcation point in the pore-radius-potential relation. Both the pore area density and membrane conductance increase with an increasing extra-cellular conductivity. On the other hand, the inverse correlation between propidium iodide delivery and extra-cellular conductivity as observed in the experiments is quantitatively captured by the model. This agreement confirms that this behavior is primarily mediated by electrophoretic transport during the pulse. The results suggest that electrophoresis is important even for the delivery of small molecules such as propidium iodide. The direct comparison between model prediction and experimental...

  16. Salty glycerol versus salty water surface organization: bromide and iodide surface propensities. (United States)

    Huang, Zishuai; Hua, Wei; Verreault, Dominique; Allen, Heather C


    Salty NaBr and NaI glycerol solution interfaces are examined in the OH stretching region using broadband vibrational sum frequency generation (VSFG) spectroscopy. Raman and infrared (IR) spectroscopy are used to further understand the VSFG spectroscopic signature. The VSFG spectra of salty glycerol solutions reveal that bromide and iodide anions perturb the interfacial glycerol organization in a manner similar as that found in aqueous halide salt solutions, thus confirming the presence of bromide and iodide anions at the glycerol surface. Surface tension measurements are consistent with the surface propensity suggested by the VSFG data and also show that the surface excess increases with increasing salt concentration, similar to that of water. In addition, iodide is shown to have more surface prevalence than bromide, as has also been determined from aqueous solutions. These results suggest that glycerol behaves similarly to water with respect to surface activity and solvation of halide anions at its air/liquid interface.

  17. Preparation, Characterization and Optical Properties of Host-guest Nanocomposite Material Mordenite-silver Iodide

    Institute of Scientific and Technical Information of China (English)


    Silver iodide nanoclusters were successfully prepared in the channels of mordenite by a heat diffusion method. Powder X-ray diffraction, adsorption technique and infrared spectroscopy were used to characterize the prepared materials, which showed that the guest silver iodide had been encapsulated in the channels of mordenite. The optical properties of the solid phase diffuse reflectance absorption of nanocomposite material NaM-AgI were studied, showing that the absorption bands of the diffuse reflectance absorption of the prepared material moved to the region of high energy. The absorption peak of the material prepared shifted to the region of high energy. Namely, blue shift was caused. This has demonstrated the incorporation of silver iodide into the channels of the zeolite. We observed the luminescence and surface photovoltage spectra of NaM-AgI sample, proposing the mechanisms of the photoluminescence and photovoltaic responses.

  18. New Microporous Polymer Electrolyte Based on Polysiloxane Grafted with Imidazolium Iodide Moieties for DSSC

    Directory of Open Access Journals (Sweden)

    Yan Yang


    Full Text Available Two types of polysiloxane grafted with different ratio of imidazolium iodide moieties (IL-SiO2 have been synthesized to develop a micro-porous polymer electrolyte for quasi-solid-state dye-sensitized solar cells. The samples were characterized by 1HNMR, FT-IR spectrum, XRD, TEM and SEM, respectively. Moreover, the ionic conductivity of the electrolytes was measured by electrochemical workstation. Nanostructured polysiloxane containing imidazolium iodide showed excellent compatibility with organic solvent and polymer matrix for its ionic liquid characteristics. Increasing the proportion of imidazolium iodide moieties in polysiloxane improved the electrochemical behavior of the gel polymer electrolyte. A dye-sensitized solar cell with gel polymer electrolyte yielded an open-circuit voltage of 0.70 V, short-circuit current of 11.19 mA cm−2, and the conversion efficiency of 3.61% at 1 sun illumination.

  19. Optimization of mercuric iodide platelets growth by the polymer controlled vapor transport method

    Directory of Open Access Journals (Sweden)

    Fornaro L.


    Full Text Available Mercuric iodide crystals in their platelet habit were grown by the polymer controlled vapor transport method. Mercuric iodide 99% in purity was sublimated at temperatures about 122 - 126 °C and vacuum conditions (10-5 mmHg, after selecting an appropriate polymer. Temperature profiles and experimental heat transfer models were determined for two growth furnaces using different insulator configurations for the cold extreme (air, ceramic wool, grilon, copper and ceramic wool. Growth conditions for few and separate nucleation points and large crystals were determined. Representative samples were characterized by optical microscopy and by measuring the current density and apparent resistivity of the material. Future optimization and comparisons with others mercuric iodide crystal growth methods are included.

  20. Effect of Cytokine on the Expression of Sodium Iodide Symporter Gene in Breast Cancer Cell

    Institute of Scientific and Technical Information of China (English)

    JIAYue; LIUChao; TANGWei; LIUCui-ping; QINYou-wen; YUANQing-xing; LIQian; MAOXiao-dong; DIFu-song


    To investigate the effect of cytokines (TNF-α, IFN-γ and IL-6) on the expression of sodi-um-iodide symporter(NIS) gene in breast cancer cell (MCF-7). Methods:The breast cancer cell was cultureds with negative control culture or cultures with different concentrations of cytokines for 72 h. NIS germ mRNA in breast cancer cells cultured was determined by reverse transcriptase-polymerase chain reaction(RT-PCR). Results:Expression of sodium-iodide symporter mRNA can be found decreasing along with increasing the concentration of cytokine dose-depen-dently. Conchzs/on ~ Cytokine may play a role in iodide-uptake modulating in breast cancer cells by their effect on NIS germ expression.

  1. All-Solid-State Iodide Selective Electrode for Iodimetry of Iodized Salts and Vitamin C

    Directory of Open Access Journals (Sweden)



    Full Text Available A laboratory-made all-solid state iodide selective electrode, with Ag2S-AgI coated on a graphite rod recovered from dry cell battery, was prepared according to previous procedures. The electrode’s linear response to iodide was in the concentration range of 10-6 M to 10-1 M with a slope of 56.85 mV/decade and a detection limit of 6×10-7M. Iodate recovery test for laboratory formulated iodate-iodized salt was found to be 98.6 % with a standard deviation of 1.14%. The titratability of the iodized salt solution was at least 10-200 ppm potassium iodate (6-120 ppm iodine, exhibiting distinct endpoints in the range wider than the ones set in regulatory standards and reflecting that QC monitoring in production and stability decline of iodine content upon storage can be performed with the electrode method. On the basis this potentiometric titration, the application of the laboratory-made iodide electrode (vs. a saturated calomel reference electrode was extended to the determination of iodine in commercial iodized salts. In all the iodine assays, the iodate-iodized salt was initially treated with acid and an excess of iodide before titration against Na2S2O3 solution. The iodine content in table salts iodized with iodide was determined by direct potentiometry. The electrode was further used for vitamin C (ascorbic acid determinations in pharmaceutical tablets and orange juice by back titrating excess I3- against standard Na2S2O3 in acidic media. The overall outcome is that the iodide ISE can be used as sharp endpoint indicator for these titrimetric reactions in place of the well known official, but visually monitored, starch- triodide end-point reaction detection.

  2. Kinetic modeling of the Townsend breakdown in argon

    Energy Technology Data Exchange (ETDEWEB)

    Macheret, S. O.; Shneider, M. N. [Department of Mechanical and Aerospace Engineering, Princeton University, D-414 Engineering Quadrangle, Princeton, New Jersey 08544 (United States)


    Kinetic modeling of the Townsend breakdown in argon was performed in the “forward-back” approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  3. Grid pattern Argon Laser photocoagulation for diabetic diffuse macular edema

    Directory of Open Access Journals (Sweden)

    Karkhane R


    Full Text Available Purpose: to determine the effect of Grid pattern laser photocoagulation on diabetic diffuse macular edema with assessment of visual outcome. Patients & Methods: The author reviewed the medical records of 84 eyes of 62 patients with diabetic diffuse macular edema treated with Grid pattern green Argon laser photocoagulation in Farabi Eye Hospital between the years 1992-1995, the follow-up period was 16-48 months (average 24.55±6.42, median 28 mounths. Results: Visual acuity was improved in 11.9%; unchanged in 65.4% and worsened in 22.7% of eyes. Conclusion: In assessing long-term visual outcome, Grid laser photocoagulation is an effective modality in maintaining or improving visual acuity.

  4. A Thermodynamic Model for Argon Plasma Kernel Formation

    Directory of Open Access Journals (Sweden)

    James Keck


    Full Text Available Plasma kernel formation of argon is studied experimentally and theoretically. The experiments have been performed in a constant volume cylindrical vessel located in a shadowgraph system. The experiments have been done in constant pressure. The energy of plasma is supplied by an ignition system through two electrodes located in the vessel. The experiments have been done with two different spark energies to study the effect of input energy on kernel growth and its properties. A thermodynamic model employing mass and energy balance was developed to predict the experimental data. The agreement between experiments and model prediction is very good. The effect of various parameters such as initial temperature, initial radius of the kernel, and the radiation energy loss have been investigated and it has been concluded that initial condition is very important on formation and expansion of the kernel.

  5. Uranium (III) precipitation in molten chloride by wet argon sparging (United States)

    Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis


    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl2 (30-70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10-4.0, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl3 precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO2 powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation.

  6. Photodegradation Mechanisms of Tetraphenyl Butadiene Coatings for Liquid Argon Detectors

    CERN Document Server

    Jones, B J P; Conrad, J M; Pla-Dalmau, A


    We report on studies of degradation mechanisms of tetraphenyl butadiene (TPB) coatings of the type used in neutrino and dark matter liquid argon experiments. Using gas chromatography coupled to mass spectrometry we have detected the ultraviolet-blocking impurity benzophenone (BP). We monitored the drop in performance and increase of benzophenone concentration in TPB plates with exposure to ultraviolet (UV) light, and demonstrate the correlation between these two variables. Based on the presence and initially exponential increase in the concentration of benzophenone observed, we propose that TPB degradation is a free radical-mediated photooxidation reaction, which is subsequently confirmed by displaying delayed degradation using a free radical inhibitor. Finally we show that the performance of wavelength-shifting coatings of the type envisioned for the LBNE experiment can be improved by 10-20%, with significantly delayed UV degradation, by using a 20% admixture of 4-tert-Butylcatechol.

  7. Image Segmentation in Liquid Argon Time Projection Chamber Detector

    CERN Document Server

    Płoński, Piotr; Sulej, Robert; Zaremba, Krzysztof


    The Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. An efficient and automatic reconstruction procedures are required to exploit potential of this imaging technology. Herein, a novel method for segmentation of images from LAr-TPC detectors is presented. The proposed approach computes a feature descriptor for each pixel in the image, which characterizes amplitude distribution in pixel and its neighbourhood. The supervised classifier is employed to distinguish between pixels representing particle's track and noise. The classifier is trained and evaluated on the hand-labeled dataset. The proposed approach can be a preprocessing step for reconstructing algorithms working directly on detector images.

  8. Thermal decomposition of yttrium(III) hexanoate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Suarez Guevara, Maria Josefina; Attique, Fahmida;


    The thermal decomposition of yttrium(III) hexanoate (Y(C5H11CO2)3)·xH2O in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction at a laboratory Cu-tube source and in-situ experiments at a synchrotron radiation source as well as hot...... into Y2O2CO3 with release of CO2 and 6-undecanone between 280°C and 490°C. A side reaction appears to yield elemental carbon and volatile decane (C10H22). Y2O2CO3 is converted to Y2O3 with release of CO2 between 500°C and 975°C....

  9. Electron Neutrino Classification in Liquid Argon Time Projection Chamber Detector

    CERN Document Server

    Płoński, Piotr; Sulej, Robert; Zaremba, Krzysztof


    Neutrinos are one of the least known elementary particles. The detection of neutrinos is an extremely difficult task since they are affected only by weak sub-atomic force or gravity. Therefore large detectors are constructed to reveal neutrino's properties. Among them the Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. The computerized methods for automatic reconstruction and identification of particles are needed to fully exploit the potential of the LAr-TPC technique. Herein, the novel method for electron neutrino classification is presented. The method constructs a feature descriptor from images of observed event. It characterizes the signal distribution propagated from vertex of interest, where the particle interacts with the detector medium. The classifier is learned with a constructed feature descriptor to decide whether the images represent the electron neutrino or cascade produced by photons. The proposed ap...

  10. The liquid argon TPC for the ICARUS experiment

    CERN Document Server

    Arneodo, F


    The ICARUS project aims at the realisation of a large liquid argon TPC to be run at the Underground Laboratories of Gran Sasso in Italy. An intense R&D; activity has put on firm grounds this new detector technology and experimentally confirmed its feasibility on a few ton scale. Based on these solid achievements, the collaboration is now confident of being able to build and safely operate a multi-kton detector. The reseach program of the experiment involves the systematic study of a wide spectrum of physical phenomena covering many orders of magnitude in the energy deposited in the detector: from the few MeV of solar neutrino interactions, to the about one GeV of the proton decay and atmospheric neutrinos, up to the higher energies of neutrinos from accelerators.

  11. Development of membrane cryostats for large liquid argon neutrino detectors

    CERN Document Server

    Montanari, D; Gendotti, A; Geynisman, M; Hentschel, S; Loew, T; Mladenov, D; Montanari, C; Murphy, S; Nessi, M; Norris, B; Noto, F; Rubbia, A; Sharma, R; Smargianaki, D; Stewart, J; Vignoli, C; Wilson, P; Wu, S


    A new collaboration is being formed to develop a multi-kiloton Long-Baseline neutrino experiment that will be located at the Surf Underground Research Facility (SURF) in Lead, SD. In the present design, the detector will be located inside cryostats filled with 68,400 ton of ultrapure liquid argon (less than 100 parts per trillion of oxygen equivalent contamination). To qualify the membrane technology for future very large-scale and underground implementations, a strong prototyping effort is ongoing: several smaller detectors of growing size with associated cryostats and cryogenic systems will be designed and built at Fermilab and CERN. They will take physics data and test different detector elements, filtration systems, design options and installation procedures. In addition, a 35 ton prototype is already operational at Fermilab and will take data with single-phase detector in early 2016. After the prototyping phase, the multi-kton detector will be constructed. After commissioning, it will detect and study ne...

  12. Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching

    Directory of Open Access Journals (Sweden)

    Jolie M. Nokes


    Full Text Available We present a rapid, simple, and scalable approach to achieve superhydrophobic (SH substrates directly in commodity shrink wrap film utilizing Argon (Ar plasma. Ar plasma treatment creates a stiff skin layer on the surface of the shrink film. When the film shrinks, the mismatch in stiffness between the stiff skin layer and bulk shrink film causes the formation of multiscale hierarchical wrinkles with nano-textured features. Scanning electron microscopy (SEM images confirm the presence of these biomimetic structures. Contact angle (CA and contact angle hysteresis (CAH measurements, respectively, defined as values greater than 150° and less than 10°, verified the SH nature of the substrates. Furthermore, we demonstrate the ability to reliably pattern hydrophilic regions onto the SH substrates, allowing precise capture and detection of proteins in urine. Finally, we achieved self-driven microfluidics via patterning contrasting superhydrophilic microchannels on the SH Ar substrates to induce flow for biosensing.

  13. The ATLAS liquid Argon calorimeters read-out system

    CERN Document Server

    Blondel, A; Fayard, L; La Marra, D; Léger, A; Matricon, P; Perrot, G; Poggioli, L; Prast, J; Riu, I; Simion, S


    The calorimetry of the ATLAS experiment takes advantage of different detectors based on the liquid Argon (LAr) technology. Signals from the LAr calorimeters are processed by various stages before being delivered to the Data Acquisition system. The calorimeter cell signals are received by the front-end boards, which digitize a predetermined number of samples of the bipolar waveform and sends them to the Read-Out Driver (ROD) boards. The ROD board receives triggered data from 1028 calorimeter cells, and determines the precise energy and timing of the signals by processing the discrete samplings of the pulse. In addition, it formats the digital stream for the following elements of the DAQ chain, and performs monitoring. The architecture and functionality of the ATLAS LAr ROD board are discussed, along with the final design of the Processing Unit boards housing the Digital Signal Processors (DSP). (9 refs).

  14. Large area liquid argon detectors for interrogation systems

    Energy Technology Data Exchange (ETDEWEB)

    Gary, Charles; Kane, Steve; Firestone, Murray I.; Smith, Gregory [Adelphi Technology LLC, Purdue Technology Center, 5225 Exploration Drive, Indianapolis, IN 46241 (United States); Gozani, Tsahi; Brown, Craig; Kwong, John; King, Michael J. [Rapiscan Laboratories, 520 Almanor Avenue, Sunnyvale, CA 94085 (United States); Nikkel, James A.; McKinsey, Dan [Physics Department, Yale University, New Haven, CT 06520 (United States)


    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  15. Flush-mounted probe diagnostics for argon glow discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liang, E-mail:; Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang [Science and Technology on Space Physics Laboratory, Beijing 100076 (China)


    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  16. Nitridation in Photon-Assisted Process Using Argon Excimer Lamp (United States)

    Toshikawa, Kiyohiko; Amari, Kouichi; Ishimura, Sou; Katto, Masahito; Yokotani, Atsushi; Kurosawa, Kou


    We attempted silicon nitridation that continuously deposits silicon with monosilane (SiH4) and nitrides the silicon with ammonia (NH3) at a low temperature using a vacuum ultraviolet excimer lamp. We used an argon excimer lamp (λ=126 nm, h ν=9.8 eV) so that SiH4 and NH3 can absorb photons and dissociate. Nitrogen exists only near the film surface at a low temperature, and its concentration increases at a high temperature. This photon-assisted process is very feasible for the nitridation of semiconductor devices and flat panel displays in the near future, because it is a low-temperature and low-damage process.

  17. Argon plasma coagulation for treatment of hemorrhagic radiation gastroduodenitis

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Shu-Ji; Aoyama, Nobuo; Shirasaka, Daisuke; Inoue, Takashi; Kuroda, Kohei; Ebara, Shigeyuki; Tamura, Takao; Miyamoto, Masaki; Kasuga, Masato [Kobe Univ. (Japan). Graduate School of Medicine


    A 79-year-old man who had received radiotherapy for portal vein thrombosis due to hepatocellular carcinoma (HCC) 5 months earlier, showed progressive anemia and melena. Endoscopy on admission revealed diffuse bleeding from multiple telangiectasias on the anterior wall of the antrum and bulbus. We treated this patient with a new non-contact hemostatic method: the argon plasma coagulator (APC). The melena stopped after the first session and the hemoglobin level remained stable for 7 months. No delayed complications have been observed. Gastrointestinal bleeding from chronic radiation gastroduodenitis is rarely reported compared with radiation proctitis. This case demonstrates that APC is effective for hemostasis of diffuse bleeding from radiation gastroduodenitis, just as for radiation protitis. (author)

  18. Studies on argon collisions with smooth and rough tungsten surfaces. (United States)

    Ozhgibesov, M S; Leu, T S; Cheng, C H; Utkin, A V


    The aim of this work is to investigate argon scattering behaviors on the smooth and rough tungsten surfaces. Current work deals with numerical simulation of nanoscale heat transfer process accompanying with rarefied gas-solid substrate interactions using molecular dynamics (MD) method. Taking into account that this method is very time consuming, MD simulation using CUDA capable Graphic Cards is implemented. The results found that imperfection of the surface significantly influences on gas atom's momentum change upon collision. However, the energy exchange rate remains unchanged regardless to the surface roughness. This finding is in contrast with the results in extant literatures. We believed the results found in this paper are important for both numerical and theoretical analyses of rarefied gas flow in micro- and nano-systems where the choice of boundary conditions significantly influences flow.

  19. Argon plasma immersion ion implantation of polystyrene films

    Energy Technology Data Exchange (ETDEWEB)

    Kondyurin, A. [Applied and Plasma Physics, School of Physics (A28), University of Sydney, New South Wales 2006 (Australia)], E-mail:; Gan, B.K.; Bilek, M.M.M.; McKenzie, D.R.; Mizuno, K. [Applied and Plasma Physics, School of Physics (A28), University of Sydney, New South Wales 2006 (Australia); Wuhrer, R. [Microstructural Analysis Unit, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007 (Australia)


    Plasma immersion ion implantation (PIII), using bias voltages of 5, 10, 15 and 20 kV in an argon plasma and fluences in the range of 2 x 10{sup 14}-2 x 10{sup 16} ions/cm{sup 2}, was applied to 100 nm polystyrene films coated on silicon wafer substrates. The etching kinetics and structural changes induced in the polystyrene films were investigated with ellipsometry, Raman and FTIR spectroscopies, optical and scanning electron microscopies, atomic force microscopy and contact angle measurements. Effects such as carbonisation, oxidation and cross-linking were observed and their dependence on the applied bias voltage is reported. Variations in the etching rate during the PIII process and its relationship to carbonisation of the modified surface layer are explored.

  20. Photoionisation studies of homogeneous argon and krypton clusters using TPEPICO

    Energy Technology Data Exchange (ETDEWEB)

    Kamke, W.; Vries, J. de; Krauss, J.; Kaiser, E.; Kamke, B.; Hertel, I.V. (Freiburg Univ. (Germany, F.R.). Fakultaet fuer Physik)


    The photoionisation threshold region of homogeneous argon and krypton clusters Ar{sub n} and Kr{sub n} for n up to 24 formed in a free jet expansion has been studied in detail, using the threshold photoelectron photoion coincidence (TPEPICO) time of flight technique. Measurements performed at a variety of different expansion conditions (nozzle temperature and stagnation pressure) demonstrate that fragmentation of larger clusters contributes substantially to the shape of the TPEPICO spectra even for the smallest clusters and at all photon energies higher than about 200 meV to 400 meV above the ionisation threshold. The determination of ionisation potentials for these cluster ions is discussed and careful estimates are given and compared with recent theoretical values. (orig.).

  1. Spectroscopic studies of cryogenic fluids: Benzene in argon and helium (United States)

    Nowak, R.; Bernstein, E. R.


    Energy shifts and bandwidths of the 610 vibronic feature of the 1B2u←1A1g optical absorption spectrum of benzene dissolved in supercritical argon and helium, and in liquid argon are reported as a function of pressure, temperature, and density. Benzene/Ar solutions display red shifts of the 610 transition with increasing density but the dependence is found to be nonlinear at high densities. Benzene/He solutions evidence blue shifts of the 610 transition as a function of increasing density which also becomes nonlinear at high densities. Only small spectral shifts are recorded if the density is kept constant and pressure and temperature are varied simultaneously. In addition, a small density independent temperature effect on the transition energy shift is identified. Experimental results are compared to dielectric (Onsager-Böttcher and Wertheim) and quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute absorption energy. Reasonably good agreement between experiment and theory is found only for the benzene/Ar system at relatively low densities. The theory fails to predict energy shifts for both the benzene/He and high density benzene/Ar systems. This result is different from the findings for the benzene/N2 and benzene/C3H8 solutions and can be interpreted qualitatively in terms of competition between dispersive attractive and repulsive interactions as a function of density. The failure of the theory to describe these transition energy shifts is attributed to the omission of explicit repulsive interactions terms in the theoretical models employed.

  2. Iodide uptake in human anaplastic thyroid carcinoma cells after transfer of the human thyroid peroxidase gene

    Energy Technology Data Exchange (ETDEWEB)

    Haberkom, U. [Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg (Germany); Dept. of Nuclear Medicine, Univ. of Heidelberg (Germany); Altmann, A.; Jiang, S.; Morr, I.; Mahmut, M. [Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg (Germany); Eisenhut, M. [Dept. of Nuclear Medicine, Univ. of Heidelberg (Germany)


    Human thyroperoxidase (hTPO) is critical for the accumulation of iodide in thyroid tissues. Poorly differentiated and anaplastic thyroid tumours which lack thyroid-specific gene expression fail to accumulate iodide and, therefore, do not respond to iodine-131 therapy. We consequently investigated whether transfer of the hTPO gene is sufficient to restore the iodide-trapping capacity in undifferentiated thyroid and non-thyroid tumour cells. The human anaplastic thyroid carcinoma cell lines C643 and SW1736, the rat Morris hepatoma cell line MH3924A and the rat papillary thyroid carcinoma cell line L2 were used as in vitro model systems. Employing a bicistronic retroviral vector based on the myeloproliferative sarcoma virus for the transfer of the hTPO and the neomycin resistance gene, the C643 cells and SW1736 cells were transfected while the L2 cells and MH3924A cells were infected with retroviral particles. Seven recombinant C643 and seven SW1736 cell lines as well as four recombinant L2 and four MH3924A cell lines were established by neomycin selection. They were studied for hTPO expression using an antibody-based luminescence kit, followed by determination of the enzyme activity in the guaiacol assay and of the iodide uptake capacity in the presence of Na{sup 125}I. Genetically modified cell lines expressed up to 1,800 times more hTPO as compared to wild type tumour cells. The level of hTPO expression varied significantly between individual neomycin-resistant cell lines, suggesting that the recombinant retroviral DNA was integrated at different sites of the cellular genome. The accumulation of iodide, however, was not significantly enhanced in individual recombinant cell lines, irrespective of low or high hTPO expression. Moreover, there was no correlation between hTPO expression and enzyme activity in individual cell lines. The transduction of the hTPO gene per se is not sufficient to restore iodide trapping in non-iodide-concentrating tumour cells. Future

  3. Development of W/O Microemulsion for Transdermal Delivery of Iodide Ions


    Lou, Hao; Qiu, Ni; Crill, Catherine; Helms, Richard; Almoazen, Hassan


    The objective of this study was to develop a water-in-oil (w/o) microemulsion which can be utilized as a transdermal delivery for iodide ions. Several w/o microemulsion formulations were prepared utilizing Span 20, ethanol, Capryol 90®, and water. The selected formulations had 5%, 10%, 15%, 20%, and a maximum of 23% w/w water content. Potassium iodide (KI) was incorporated in all formulations at 5% w/v. Physicochemical characterizations were conducted to evaluate the structure and stability. ...

  4. All-Solid-State Iodide Selective Electrode for Iodimetry of Iodized Salts and Vitamin C




    A laboratory-made all-solid state iodide selective electrode, with Ag2S-AgI coated on a graphite rod recovered from dry cell battery, was prepared according to previous procedures. The electrode’s linear response to iodide was in the concentration range of 10-6 M to 10-1 M with a slope of 56.85 mV/decade and a detection limit of 6×10-7M. Iodate recovery test for laboratory formulated iodate-iodized salt was found to be 98.6 % with a standard deviation of 1.14%. The titratability of the iodize...

  5. Tris(1,2-dimethoxyethane-κ2O,O′iodidocalcium iodide

    Directory of Open Access Journals (Sweden)

    Siou-Wei Ou


    Full Text Available In the title complex, [CaI(C4H10O23]I, the CaII atom is seven-coordinated by six O atoms from three 1,2-dimethoxyethane (DME ligands and one iodide anion in a distorted pentagonal–bipyramidal geometry. The I atom and one of the O atoms from a DME ligand lie in the axial positions while the other O atoms lie in the basal plane. The other iodide anion is outside the complex cation.

  6. Glycosylation of Sodium/Iodide Symporter (NIS) Regulates Its Membrane Translocation and Radioiodine Uptake


    Taemoon Chung; Hyewon Youn; Chan Joo Yeom; Keon Wook Kang; June-Key Chung


    Purpose Human sodium/iodide symporter (hNIS) protein is a membrane glycoprotein that transports iodide ions into thyroid cells. The function of this membrane protein is closely regulated by post-translational glycosylation. In this study, we measured glycosylation-mediated changes in subcellular location of hNIS and its function of iodine uptake. Methods HeLa cells were stably transfected with hNIS/tdTomato fusion gene in order to monitor the expression of hNIS. Cellular localization of hNIS ...

  7. Atmospheric dispersion of argon-41 from anuclear research reactor: measurement and modeling of plume geometry and gamma radiation field

    DEFF Research Database (Denmark)

    Lauritzen, Bent; Astrup, Poul; Drews, Martin


    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine release of argon-41 from the BR1 research reactor in Mol, Belgium. Simultaneous measurements of plume geometry and radiation fields for argon-41 decay were performed as well as measurements of the argon...

  8. Studying Equilibrium in the Chemical Reaction between Ferric and Iodide Ions in Solution Using a Simple and Inexpensive Approach (United States)

    Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna


    A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…

  9. Efficiency enhancement in dye sensitized solar cells using gel polymer electrolytes based on a tetrahexylammonium iodide and MgI2 binary iodide system. (United States)

    Bandara, T M W J; Dissanayake, M A K L; Jayasundara, W J M J S R; Albinsson, I; Mellander, B-E


    Quasi-solid-state dye-sensitized solar cells have drawn the attention of scientists and technologists as a potential candidate to supplement future energy needs. The conduction of iodide ions in quasi-solid-state polymer electrolytes and the performance of dye sensitized solar cells containing such electrolytes can be enhanced by incorporating iodides having appropriate cations. Gel-type electrolytes, based on PAN host polymers and mixture of salts tetrahexylammonium iodide (Hex4N(+)I(-)) and MgI2, were prepared by incorporating ethylene carbonate and propylene carbonate as plasticizers. The salt composition in the binary mixture was varied in order to optimize the performance of solar cells. The electrolyte containing 120% Hex4N(+)I(-) with respect to weight of PAN and without MgI2 showed the highest conductivity out of the compositions studied, 2.5 × 10(-3) S cm(-1) at 25 °C, and a glass transition at -102.4 °C. However, the electrolyte containing 100% Hex4N(+)I(-) and 20% MgI2 showed the best solar cell performance highlighting the influence of the cation on the performance of the cell. The predominantly ionic behaviour of the electrolytes was established from the dc polarization data and all the electrolytes exhibit iodide ion transport. Seven different solar cells were fabricated employing different electrolyte compositions. The best cell using the electrolyte with 100% Hex4N(+)I(-) and 20% MgI2 with respect to PAN weight showed 3.5% energy conversion efficiency and 8.6 mA cm(-2) short circuit current density.

  10. Modelling the effect of arbitrary P-T-t histories on argon diffusion in minerals using the MacArgon program for the Apple Macintosh (United States)

    Lister, Gordon S.; Baldwin, Suzanne L.


    Argon diffusion in mineral grains has been numerically modelled using P-T-t histories that may be relevant to multiply metamorphosed orogenic terranes and for rocks that have resided at high ambient temperatures in the Earth's crust for long durations. The MacArgon program generates argon concentration profiles in minerals assuming argon loss occurs via volume diffusion. It can be run on an Apple Macintosh computer, with arbitrary P-T-t histories used as input. Finite-difference equations are used in the calculation of 40Ar∗ concentration profiles across individual diffusion domains. The associated MacSpectrometer generates model spectra after a P-T-t history has been specified. The form of model {40Ar }/{39Ar } apparent age spectra suggests that considerable caution needs to be exercised in the use of the closure temperature concept and in the interpretation of the significance of plateaux observed in many {40Ar }/{39Ar } apparent age spectra, particularly in cases involving metamorphic rocks, where complex P-T-t histories might apply. Although modelled spectra cannot be directly compared to experimentally determined {40Ar }/{39Ar } age spectra, especially when hydrous phases are involved or in cases where loss of argon has not occurred via volume diffusion, they do provide insight into theoretically expected age spectra for samples that have experienced complex P-T-t histories. MacArgon can be obtained by e-mail from MacArgon with enquiries to

  11. Tissue gas and blood analyses of human subjects breathing 80% argon and 20% oxygen (United States)

    Horrigan, D. J.; Wells, C. H.; Guest, M. M.; Hart, G. B.; Goodpasture, J. E.


    Eight human volunteers, individually studied in a hyperbaric chamber, breathed: (1) air at 1 ATA; (2) 80% argon and 20% oxygen at 1 ATA for 30 min; (3) air at 1 ATA for 30 min; (4) 100% O2 at 1 ATA for 30 min; (5) air at 1 ATA for 30 min; (6) 100% O2 at 2 ATA for 60 min; and (7) 80% argon and 20% oxygen at 1 ATA for 30 min. Oxygen, carbon dioxide, nitrogen, and argon tensions were measured in muscle and subcutaneous tissue by mass spectroscopic analyses. Venous blood obtained at regular intervals was analyzed for coagulation and fibrinolytic factors. Inert gas narcosis was not observed. After breathing argon for 30 min, muscle argon tensions were almost three times the subcutaneous tensions. Argon wash-in mirrored nitrogen wash-out. Argon wash-in and wash-out had no effect on tissue PO2 or PCO2. Coagulation and fibrinolytic changes usually associated with vascular bubbles were absent.

  12. Wetting and evaporation of argon nanodroplets on smooth and rough substrates: Molecular dynamics simulations (United States)

    Li, Qun; Wang, Baohe; Chen, Yonggang; Zhao, Zongchang


    Wetting and evaporation behaviors of argon nanodroplets on smooth and rough substrates are studied using molecular dynamics simulations. Effects of interaction energy between solid and argon atoms on wetting and evaporation and differences between nanodroplets on smooth and rough substrates have been investigated. The results show that for both smooth and rough substrates, as the interaction energy between solid and argon atoms increases, the contact angle and total evaporation increase. For rough substrates, the variations of contact angle and contact radius during evaporation progress are much more complex and the total evaporation is much larger than that of smooth substrates.

  13. Surface compositional changes in GaAs subjected to argon plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Surdu-Bob, C.C.; Sullivan, J.L.; Saied, S.O.; Layberry, R.; Aflori, M


    X-ray photoelectron spectroscopy (XPS) has been employed to study surface compositional changes in GaAs (1 0 0) subjected to argon plasma treatment. The experimental results have been explained in terms of predicted argon ion energies, measured ion densities and etch rates. A model is proposed for the processes taking place at the surface of GaAs in terms of segregation, sputtering and surface relaxation. Stopping and range of ions in matter (SRIM) code has also been employedan aid to identification of the mechanisms responsible for the compositional changes. Argon plasma treatment induced surface oxidation at very low energies and sputtering and surface damage with increasing energy.

  14. Cryogenic System for the Test Facilities of the ATLAS Liquid Argon Calorimeter Modules

    CERN Document Server

    Bremer, J; Chalifour, M; Haug, F; Passardi, Giorgio; Tischhauser, Johann


    To perform cold tests on the different modules of the ATLAS liquid argon calorimeter, a cryogenic system has been constructed and is now operated at the CERN North Experimental Area. Three different test cryostats will house the modules, which can also be exposed to particle beams for calibration purposes. The three cryostats share a common liquid argon and liquid nitrogen distribution system. The system is rather complex since it has to allow operations of the three cryostats at the same time. Liquid nitrogen is used as cold source for both the cool-down of the cryostats and for normal operation of the cryostats filled with liquid argon.

  15. Iodide-induced thyrotoxicosis in a thyroidectomized patient with metastatic thyroid carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinari, M.; Tokuyama, T.; Okamura, K.; Sato, K.; Kusuda, K.; Fujishima, M.


    An unusual case of iodide-induced thyrotoxicosis is documented in this article. The patient was a 64-year-old euthyroid man with acromegaly. He also had multiple follicular and papillary thyroid carcinomas with a metastatic lesion in the lumbar vertebrae. After a total thyroidectomy, he became slightly hypothyroid, and the lumbar lesion began to incorporate /sup 131/I by scintigraphy. When an iodine-containing contrast medium happened to be injected, a transient increase of serum thyroid hormone level was observed. After complete thyroid ablation with 83 mCi of /sup 131/I, the oral administration of 100 mg of potassium iodide for 7 days induced a prominent increase of serum thyroid hormone level. These findings indicated that the metastatic thyroid carcinoma could produce excess thyroid hormone insofar as a sufficient amount of iodide was given. Although this is the first report of such a case, iodide-induced thyrotoxicosis may not be rare in patients with thyroid carcinomas because the Wolff-Chaikoff effect is thought to be lost, and the organic iodinating activity and lysosomal protease activity are well-preserved.

  16. Leaching of iodide (I(-)) and iodate (IO3(-)) anions from synthetic layered double hydroxide materials. (United States)

    Theiss, Frederick L; Ayoko, Godwin A; Frost, Ray L


    Several studies have previously demonstrated that layered double hydroxides (LDHs) show considerable potential for the adsorption of radioiodine from aqueous solution; however, few studies have demonstrated that these materials are able to store radioactive (131)I for an acceptable period. The leaching of iodide (I(-)) and iodate (IO3(-)) form Mg/Al LDHs has been carried out. Contact time appeared to be a more significant variable for the leaching of iodate (IO3(-)) compared to that of iodide (I(-)). Experimental results are fitted to the pseudo second order model, suggesting that diffusion is likely to be the rate-limiting step. The presence of carbonate in the leaching solution appeared to significantly increase the leaching of iodide (I(-)) as did the presence of chloride to a lesser extent. The maximum amount of iodate (IO3(-)) leached using ultrapure water as the leaching solution was 21% of the iodate (IO3(-)) originally present. The corresponding result for iodide (I(-)) was even lower at 3%.

  17. Photodissociation of sodium iodide and resonant ionization of sodium atom produced

    Institute of Scientific and Technical Information of China (English)

    HUO Bing-hai; Z.T.Salim; A.H.Bakery


    Resonant ionization spectroscopy (RIS) and resonant ionization mass spectroscopy (RIMS) are employed to detect the photodissociation product of sodium iodide molecules in a molecular beam in an intense laser field in the absence of the buffer gases. Time of flight mass spectra is recorded. In particular, the appearances of multiphoton ionization are discussed.

  18. Preparation and Luminescence Thermochromism of Tetranuclear Copper(I)-Pyridine-Iodide Clusters (United States)

    Parmeggiani, Fabio; Sacchetti, Alessandro


    A simple and straightforward synthesis of a tetranuclear copper(I)-pyridine-iodide cluster is described as a laboratory experiment for advanced inorganic chemistry undergraduate students. The product is used to demonstrate the fascinating and visually impressive phenomenon of luminescence thermochromism: exposed to long-wave UV light, the…

  19. The sodium iodide symporter (NIS) and potential regulators in normal, benign and malignant human breast tissue.

    LENUS (Irish Health Repository)

    Ryan, James


    The presence, relevance and regulation of the Sodium Iodide Symporter (NIS) in human mammary tissue remains poorly understood. This study aimed to quantify relative expression of NIS and putative regulators in human breast tissue, with relationships observed further investigated in vitro.

  20. Research data supporting "Photon recycling in lead-iodide perovskite solar cells"


    Pazos-Outón, Luis M.; Szumilo, Monika; Lamboll, Robin; Richter, Johannes M.; Crespo-Quesada, Micaela; Abdi - Jalebi, Mojtaba; Beeson, Harry J.; Vrucinic, Milan; Alsari, Mejd; Snaith, Henry J.; Ehrler, Bruno; Friend, Richard H.; Deschler, Felix


    Data for the figures presented in the manuscript. These research data support “Photon recycling in lead-iodide perovskite solar cells” published in “Science” ( This work was supported by the EPSRC [grant number EP/M005143/1] and Winton Programme for the Physics of Sustainability.

  1. Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites

    NARCIS (Netherlands)

    Bakulin, Artem A.; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Mueller, Christian; Glaser, Tobias; Lovrincic, Robert; Sun, Zhenhua; Chen, Zhuoying; Walsh, Aron; Frost, Jarvist M.; Jansen, Thomas L. C.


    The introduction of a mobile and polarized organic moiety as a cation in 3D lead-iodide perovskites brings fascinating optoelectronic properties to these materials. The extent and the time scales of the orientational mobility of the organic cation and the molecular mechanism behind its motion remain

  2. Multiple subcutaneous mycetomas caused by Pseudallescheria boydii: response to therapy with oral potassium iodide solution. (United States)

    Khan, Fida A; Hashmi, Shahrukh; Sarwari, Arif R


    We describe the case of a sixteen-year-old male who presented with multiple subcutaneous mycetomas proven on culture to be secondary to Pseudallescheria boydi., The lesions responded completely to oral potassium iodide solution. To our knowledge this has never been reported in humans.

  3. Regioselective iodination of aromatic compounds with potassium iodide in the presence of benzyltriphenylphosphonium perchlorate

    Institute of Scientific and Technical Information of China (English)

    Jalal Albadi; Masoumeh Abedini; Nasir Iravani


    A simple and efficient method for the selective iodination of various aromatic compounds by using potassium iodide in the presence of benzyltriphenylphosphonium perchlorate,is reported.This method provides several advantages such as good selectivity between ortho and para positions of aromatic compounds and high yields of the products.

  4. The Reaction between Iron(II) Iodide and Potassium Dichromate(VI) in Acidified Aqueous Solution (United States)

    Talbot, Christopher


    This "Science note" teaching lesson explores the possible reaction between the ions in a reaction mixture consisting of iron(II) iodide and potassium dichromate(VI) in acidified aqueous solution. The electrode potentials will be used to deduce any spontaneous reactions under standard thermodynamic conditions (298 K, 1 bar (approximately…

  5. Relaxation of the Silver/Silver Iodide Electrode in Aqueous Solution

    NARCIS (Netherlands)

    Peverelli, K.J.


    The aim of this study is to detect and characterize relaxation processes on silver/silver iodide electrodes in aqueous electrolyte solution. The information obtained is to be used for an estimation of the consequences of similar processes on colloidal AgI particles during encounter.In chapter 1 a ge

  6. Activation of lactoperoxidase by heme-linked protonation and heme-independent iodide binding. (United States)

    Toyama, Akira; Tominaga, Aya; Inoue, Tatsuo; Takeuchi, Hideo


    Lactoperoxidase (LPO), a mammalian secretory heme peroxidase, catalyzes the oxidation of thiocyanate by hydrogen peroxide to produce hypothiocyanate, an antibacterial agent. Although LPO is known to be activated at acidic pH and in the presence of iodide, the structural basis of the activation is not well understood. We have examined the effects of pH and iodide concentration on the catalytic activity and the structure of LPO. Electrochemical and colorimetric assays have shown that the catalytic activity is maximized at pH 4.5. The heme Soret absorption band exhibits a small red-shift at pH 5.0 upon acidification, which is ascribable to a structural transition from a neutral to an acidic form. Resonance Raman spectra suggest that the heme porphyrin core is slightly contracted and the Fe-His bond is strengthened in the acidic form compared to the neutral form. The structural change of LPO upon activation at acidic pH is similar to that observed for myeloperoxidase, another mammalian heme peroxidase, upon activation at neutral pH. Binding of iodide enhances the catalytic activity of LPO without affecting either the optimum pH of activity or the heme structure, implying that the iodide binding occurs at a protein site away from the heme-linked protonation site.

  7. Distribution of bromine in mixed iodide-bromide organolead perovskites and its impact on photovoltaic performance

    NARCIS (Netherlands)

    Zhou, Yang; Wang, Feng; Fang, Hong-Hua; Loi, Maria Antonietta; Xie, Fang-Yan; Zhao, Ni; Wong, Ching-Ping


    Mixed iodide-bromide (I-Br) organolead perovskites are of great interest for both single junction and tandem solar cells since the optical bandgap of the materials can be tuned by varying the bromine to iodine ratio. Yet, it remains unclear how bromine incorporation modifies the properties of the pe

  8. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications

    NARCIS (Netherlands)

    Fang, Hong-Hua; Wang, Feng; Adjokatse, Sampson; Zhao, Ni; Even, Jacky; Loi, Maria Antonietta


    Formamidinium lead iodide (FAPbI(3)) is a newly developed hybrid perovskite that potentially can be used in high-efficiency solution-processed solar cells. Here, the temperature-dependent dynamic optical properties of three types of FAPbI(3) perovskite films (fabricated using three different precurs

  9. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J.; Ekberg, C. (Chalmers Univ. of Technology, Goeteborg (Sweden)); Kaerkelae, T.; Auvinen, A. (VTT, Espoo (Finland)); Glaenneskog, H. (Vattenfall Power Consultant, Goeteborg (Sweden))


    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment, was started. During year 2008 (NROI-1) the radiolytic oxidation of elemental iodine was investigated and during 2009 (NROI-2), the radiolytic oxidation of organic iodine was studied. This project (NROI-3) is a continuation of the investigation of the oxidation of organic iodine. The project has been divided into two parts. 1. The aims of the first part were to investigate the effect of ozone and UV-radiation, in dry and humid conditions, on methyl iodide. 2. The second project was about gamma radiation (approx20 kGy/h) and methyl iodide in dry and humid conditions. 1. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UV-radiation intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. The particle formation was instant and extensive when methyl iodide was exposed to ozone and/or radiation at all temperatures. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-200 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine oxides (I{sub xO{sub y}). However, the correct speciation of the formed particles was difficult to obtain because the particles melted and fused together under the electron beam. 2. The results from this sub-project are more inconsistent and hard to interpret. The particle formation was significant lesser than corresponding experiments when ozone/UV-radiation was used instead of gamma radiation. The transport of gaseous methyl iodide through the facility was

  10. Numerical and experimental study of transferred arcs in argon

    Energy Technology Data Exchange (ETDEWEB)

    Bini, R [Department of Mechanical Engineering, Politecnico di Milano, Via Bonardi 9, 20133 Milan (Italy); Monno, M [Department of Mechanical Engineering, Politecnico di Milano, Via Bonardi 9, 20133 Milan (Italy); Boulos, M I [Centre de Recherche en Energie, Plasma et Electrochimie (CREPE), Department de Genie Chimique Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, J1K1R2 (Canada)


    The bidimensional model of the electric arc is enhanced with the plasma-electrodes interaction to predict the properties and the energy distribution of an argon arc operating with current intensities between 100 and 200 A and electrode gaps of 10 and 20 mm. An adaptive numerical insulation is applied to the cathode, to properly simulate its thermionic emission mechanism and overcome the dependence on empirical distributions of the current density at its tip. The numerical results are quantitatively compared with the data obtained from calorimetric and spectroscopical measurements, performed on a device which generates a transferred arc between a water cooled copper anode and a thoriated tungsten cathode enclosed in a stainless steel chamber. The calculation of the heat fluxes towards the electrodes permits to determine the amount of power delivered to each component of the arc system (the anode, the cathode assembly and the chamber) and to evaluate the overall efficiency of the process for different configurations. The agreement between theory and data, over the range of parameters investigated, is sensible both in the temperature profiles and in the energy distributions. In such configurations, the conduction from the hot gas is the most relevant term in the overall heat transferred to the anode, but it is the electron transfer which rules the heat transfer in the arc attachment zone. The arc attachment radius is also dependent on the process parameters and increases with the arc current (from approximately 5 mm at 100 A to 7 mm at 200 A) and the arc length. However the maximum heat flux reached on the axis decreases increasing the gap between the electrodes, although more power is delivered to the anode due to the radial spreading of the plasma. A 10 mm 200 A argon arc releases to the anode about 2.6 kW, which corresponds to 75% of the total arc power available. If the arc is extended to 20 mm the power transferred rises by nearly 350 W, but the overall

  11. Conversion of Iodide to Hypoiodous Acid and Molecular Iodine at the Air-Water Interface (United States)

    Pillar, E. A.; Guzman, M. I.


    Sea spray aerosols continuously transfer a significant amount of halides to the marine boundary layer, where they play a major role in the depletion of tropospheric ozone. The reactivity of iodide is of special interest in sea spray aerosols, where this species is enriched relative to chloride and bromide in surface seawater. This work presents laboratory experiments that provide mechanistic information to understand the reactivity of halides in atmospheric aerosols. Pneumatically assisted electrospray is used to aerosolize solutions of sodium iodide (0.01-100 μM), which are rapidly (~3 μs) oxidized by ozone at 25 °C. Reaction products include HIO, IO2-, IO3-, I2, HI2O-, and I3-, all identified by mass spectrometry. The distribution of products varies along two different reaction pathways, one favoring the production of I2 and HIO for typical tropospheric ozone levels (~50 ppbv), and another one directed to the production of IO3- at higher oxidizer concentrations. The formation of products increases exponentially with rising concentrations of initial sodium iodide, [NaI]0. The process is determined to be pH independent for the pH range 6-8 representative of surface waters. The substitution of aqueous solutions by organic solvents, such as methanol or acetonitrile, causes a decrease in the surface tension and lifetime of the droplets, leading to larger I2 production. The presence of surface active organic compounds, which alter the structure of the interfacial region, promote the pathway of I2 formation over IO3-. In conclusion, this presentation will show how the oxidation of iodide in aqueous microdroplets can release reactive gas-phase species, such as I2 and HIO, capable to affect tropospheric ozone globally. Normalized intensity of products observed during the ozonolysis of iodide solutions at 130 ppbv ozone. Cone voltage = 70 V, needle voltage = 2.5 kV.

  12. [The application of eosin and propidium iodide in evaluation of vitality of human spermatozoa]. (United States)

    Ploskonos, М В


    The article analyzes comparative assessment of vitality of spermatozoa by condition of permeability of membranes for eosin and propidium iodide and comparison of results acquired using technique of light and fluorescent microscopy. The comparison of data of light microscopy with eosin staining with data of fluorescent microscopy with propidium iodide staining demonstrated that percentage of content of spermatozoa separated from ejaculates of 28 fertile males and stained with eosin was reliably higher (34.8 ± 3.2) than percentage of content of spermatozoa with stained with propidium iodide (2.1 ± 4.0). After incubation of spermatozoa under room temperature during 24 hours percentage of unviable cells with stained eosin also was higher than in case of propidium iodide staining correspondingly (44.5 ± 3.3% and 34.7 ± 3.6%). The analysis of vitality of spermatozoa under damaging effect of oxidative stress on cell membrane developed by 4 hours incubation with 200 mkM of hydrogen peroxide (H2O2) demonstrated that under staining of spermatozoa with propidium iodide significantly higher percentage of damaged cells is detected. In such cases, eosin staining is less suitable for detection of vitality of spermatozoa (73.6 ± 5.8% against 51.7 ± 6.4%). The carried out experiment demonstrates that in case of detected effects on spermatozoa (for example, effect of oxidative stress) the light microscopy insufficiently adequate reflects degree of damage of membranes of spermatozoa. The fluorescent microscopy detects a higher percentage of spermatozoa with damaged membrane.

  13. 碘化物对金精矿碘化浸出过程的影响%Effects of different iodides on gold concentrates leaching process in iodine­iodide solution

    Institute of Scientific and Technical Information of China (English)

    李绍英; 王海霞; 孙春宝; 赵留成; 阎志强


    Using the iodine­iodide leaching system, the effects of different iodides (ammonium iodide,potassium iodide, hydrogen iodide)on gold concentrates leaching process were discussed from the influence factors, such as initial iodine content, iodine and iodide ratio and solution pH value. The results show that, when ammonium iodide or potassium iodide is used as complex agent,under the conditions of initial iodine content of 1%, iodine and iodide molar ratio of 1:8, pH value of 7, liquid­solid ratio of 4:1, stirring speed of 600 r/min, leaching time of 4 h and temperature of 25℃, the gold leaching rates are around 90%;whereas the gold leaching effect is poorer when hydrogen iodide(aqueous solution is hydroiodic acid) is used as complex agent, and the gold leaching rate is only 75%. Considering the difference of leaching effect and availability of industry and so on,potassium iodide is the suitable complex reagent of gold concentrate leaching in iodine­iodide solution.%  采用碘−碘化物浸出体系,从碘初始含量、碘与碘化物摩尔比和浸出液pH值3个影响因素入手,考察不同碘化物(碘化铵、碘化钾和碘化氢)对金精矿碘化浸出过程的影响。结果表明:在碘初始含量为1%,碘与碘化物摩尔比为1:8,浸出液pH值为7,液固比为4:1,搅拌速度为600 r/min,浸出时间为4 h,温度为25℃的条件下,用碘化铵或碘化钾作为碘化浸金的络合剂,金的浸出率均能达到90%左右,而用碘化氢(其水溶液为氢碘酸)作络合剂时,金的浸出率仅有75%。考虑到不同碘化物浸金效果差异及工业应用的可行性等因素,确定碘化钾为适宜的金精矿碘化浸出络合剂。

  14. Performance of the Signal Vacuum Cables of the Liquid Argon Calorimeter Endcap Cryostat Signal Feedthroughs

    CERN Document Server

    Axen, D A; Dowling, A; Dowling, A S; Fincke-Keeler, M; Hodges, T; Holness, F; Ince, T; Keeler, Richard K; Langstaf, R; Lefebvre, M; Lenckowski, M; Lindner, J; MacDonald, R; McDonald, R; Muzzeral, E; Poffenberger, P R; Van Uytven, J; Vowles, G; Wiggins, W


    This note presents of brief summary of the design specification and the performance under test of the signal vacuum cables which are used in the signal feedthroughs of the ATLAS liquid argon calorimeter endcap cryostats.

  15. Simulations of argon accident scenarios in the ATLAS experimental cavern a safety analysis

    CERN Document Server

    Balda, F


    Some characteristic accidents in the ATLAS experimental cavern (UX15) are simulated by means of STAR-CD, a code using the "Finite-Volume" method. These accidents involve different liquid argon leaks from the barrel cryostat of the detector, thus causing the dispersion of the argon into the Muon Chamber region and the evaporation of the liquid. The subsequent temperature gradients and distribution of argon concentrations, as well as their evolution in time are simulated and discussed, with the purpose of analysing the dangers related to asphyxiation and to contact with cryogenic fluids for the working personnel. A summary of the theory that stands behind the code is also given. In order to validate the models, an experimental test on a liquid argon spill performed earlier is simulated, showing that the program is able to output reliable results. At the end, some safety-related recommendations are listed.

  16. Microwave Spectrum and Molecular Structure of the ARGON-CIS-1,2-DICHLOROETHYLENE Complex (United States)

    Marshall, Mark D.; Leung, Helen O.; Nelson, Craig J.; Yoon, Leonard H.


    The non-planar molecular structure of the complex formed between the argon atom and cis-1,2-dichloroethylene is determined via analysis of its microwave spectrum. Spectra of the 35Cl and 37Cl isotopologues are observed in natural abundance and the nuclear quadrupole splitting due to the two chlorine nuclei is fully resolved. In addition, the complete quadrupole coupling tensor for the cis-1,2-dichloroethylene molecule, including the single non-zero off-diagonal element, has been determined. Unlike the argon-cis-1,2-difluoroethylene and the argon-vinyl chloride complexes, tunneling between the two equivalent non-planar configurations of argon-cis-1,2-dichloroethylene is not observed.

  17. Self-assembled heterogeneous argon/neon core-shell clusters studied by photoelectron spectroscopy. (United States)

    Lundwall, M; Pokapanich, W; Bergersen, H; Lindblad, A; Rander, T; Ohrwall, G; Tchaplyguine, M; Barth, S; Hergenhahn, U; Svensson, S; Björneholm, O


    Clusters formed by a coexpansion process of argon and neon have been studied using synchrotron radiation. Electrons from interatomic Coulombic decay as well as ultraviolet and x-ray photoelectron spectroscopy were used to determine the heterogeneous nature of the clusters and the cluster structure. Binary clusters of argon and neon produced by coexpansion are shown to exhibit a core-shell structure placing argon in the core and neon in the outer shells. Furthermore, the authors show that 2 ML of neon on the argon core is sufficient for neon valence band formation resembling the neon solid. For 1 ML of neon the authors observe a bandwidth narrowing to about half of the bulk value.

  18. Free electron lifetime achievements in Liquid Argon Imaging TPC

    CERN Document Server

    Baibussinov, B; Calligarich, E; Centro, S; Cieslik, K; Farnese, C; Fava, A; Gibin, D; Guglielmi, A; Meng, G; Pietropaolo, F; Rubbia, C; Varanini, F; Ventura, S


    A key feature for the success of the Liquid Argon TPC technology is the industrial purification against electro-negative impurities, especially Oxygen and Nitrogen remnants, which have to be initially and continuously kept at an exceptional purity. New purification techniques have been applied to a 120 litres LAr-TPC test facility in the INFN-LNL laboratory. Through-going muon tracks have been used to monitor the LAr purity. The short path length used (30 cm) is compensated by the high accuracy in the observation of the specific ionization of cosmic rays muons at sea level. A free electron lifetime of (21.4+7.3-4.3) ms, namely > 15.8 ms at 90 % C.L. has been observed under stable conditions over several weeks, corresponding to about 15 ppt (part per trillion) of Oxygen equivalent. At 500 V/cm, where the electron speed is approximately of 1.5 mm/us, the free electron lifetime >15 ms corresponds to an attenuation <15 % for a drift path of 5 m, opening the way to reliable operation of LAr TPC for exceptionall...

  19. Ab interno sclerostomy with a high-powered argon endolaser. (United States)

    Jaffe, G J; Williams, G A; Mieler, W F; Radius, R L


    We used a high-energy argon blue-green laser (15-W maximum power output) to create full-thickness sclerostomies from the region of the anterior chamber angle to the subconjunctival space in pigmented rabbits using an ab interno approach. One to four laser pulses delivered through a 300-micron noncontact fiberoptic probe produced patent sclerostomies in all 20 eyes treated using 0.1-second pulse duration and 5 to 14 W of power. No intraoperative complications were encountered. Intraocular pressure, measured in 12 animals, decreased an average of 12 mm Hg in the treated eye relative to the fellow eye on the first postoperative day. The drop in intraocular pressure was associated with formation of a functioning filtration bleb. Intraocular pressure returned to preoperative levels in ten of 12 (83%) of the animals by the fourth postoperative day, and there was an associated flattening of the filtration bleb. Histologic and radioautographic analysis indicated that the effect of the laser was focal. Tissue damage and cellular proliferative response were limited to within approximately 200 micron of the wound margin.

  20. Using History To Teach Scientific Method: The Case of Argon (United States)

    Giunta, Carmen J.


    The history of science is full of stories that exhibit scientific methodology to an exemplary degree. Such stories can be vehicles for the teaching of scientific thought to non-science majors in general-education science courses, particularly if they do not involve much technical background and are told in ordinary language. This paper illustrates the kind of lessons that can be gleaned from such stories by examining the discovery of argon, an episode replete with examples of how scientists pursue knowledge. Lord Rayleigh's use of multiple methods to determine the density of nitrogen; his persistent tracking down of a small but real anomaly in those measurements; his and William Ramsay's eventual realization that the anomaly was due to a previously unknown but relatively plentiful component of the atmosphere, an inert, monatomic gas; and Ramsay's subsequent successful search for other members of the inert gas family all illustrate the scientific approach to knowledge. This story can be presented to students in Rayleigh's words, annotated to supply background material and to pose questions.

  1. Liquid argon scintillation light studies in LArIAT

    Energy Technology Data Exchange (ETDEWEB)

    Kryczynski, Pawel [Fermilab


    The LArIAT experiment is using its Liquid Argon Time Projection Chamber (LArTPC) in the second run of data-taking at the Fermilab Test Beam Facility. The goal of the experiment is to study the response of LArTPCs to charged particles of energies relevant for planned neutrino experiments. In addition, it will help to develop and evaluate the performance of the simulation, analysis, and reconstruction software used in other LAr neutrino experiments. Particles from a tertiary beam detected by LArIAT (mainly protons, pions and muons) are identified using a set of beamline detectors, including Wire Chambers, Time of Flight counters and Cherenkov counters, as well as a simplified sampling detector used to detect muons. In its effort towards augmenting LArTPC technology for other neutrino experiments, LArIAT also takes advantage of the scintillating capabilities of LAr and is testing the possibility of using the light signal to help reconstruct calorimetric information and particle ID. In this report, we present results from these studies of the scintillation light signal to evaluate detector performance and calorimetry.

  2. TPEPICO studies near ionization threshold of argon and krypton clusters

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, J.; Vries, J. de; Steger, H.; Kaiser, E.; Kamke, B.; Kamke, W. (Freiburg Univ. (Germany, F.R.). Fakultaet fuer Physik Freiburg Univ. (Germany, F.R.). Freiburger Materialforschungszentrum)


    Single photon ionization of argon- and krypton clusters has been studied in the region between threshold and the ionization potential of the corresponding atom. Synchrotron radiation from the electron storage ring BESSY is used to ionize the clusters; threshold-photoelectron-photoion-coincidence (TPEPICO)-time-of-flight technique is used to detect ions correlated with the emission of zero-kinetic-energy-electrons. The spectra of the clusters in the range of n=2 to 15 are discussed in view of the extensive fragmentation taking place in these systems. In order to characterize the properties of the clusters a method using scaling laws is applied. The principles and the deduction of Hagena's scaling parameter {Gamma}{sup *} are briefly reviewed. Using {Gamma}{sup *} an experimentally derived mean cluster size for molecular beams can be assigned. This allows one to clearly demonstrate the systematic variations of the measured spectra due to cluster fragmentation. As a general feature it is observed that, in the range studied, the peak in the measured ionization rate for a cluster ion (fragment) of a given size shifts to higher photon energies as the mean cluster size is increased. (orig.).

  3. Nonthermal atmospheric argon plasma jet effects on Escherichia coli biomacromolecules. (United States)

    Hosseinzadeh Colagar, Abasalt; Memariani, Hamed; Sohbatzadeh, Farshad; Valinataj Omran, Azadeh


    Nonthermal atmospheric plasma jet, a promising technology based on ionized gas at low temperatures, can be applied for disinfection of contaminated surfaces. In this study, Escherichia coli cells and their macromolecules were exposed to the nonthermal atmospheric argon plasma jet for different time durations. Total protein, genomic DNA, and malondialdehyde (MDA) levels of E. coli were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining; agarose gel electrophoresis; and measurement of absorbance at 534 nm, respectively. After exposure, the spectroscopic results of liquid samples indicated that the survival reduction of E. coli can reach to 100 % in an exposure time of 600 s. Moreover, inactivation zones of E. coli, DNA degradation, and MDA levels were significantly increased. Additionally, banding patterns of total protein were changed and amino acid concentrations increased following ninhydrin test. The experimental results suggest that the nonthermal plasma could serve as an effective instrument for both sterilizing E. coli and degrading macromolecules from the surface of the objects being sterilized.

  4. Configurational Entropy,Diffusivity and Potential Energy Landscape in Liquid Argon

    Institute of Scientific and Technical Information of China (English)

    DUAN Yong-Ping; MA Cong-Xiao; LI Jia-Yun; LI Cong; WANG Dan; LI Mei-Li; SUN Min-Hua


    The configurational entropy, diffusion coefficient, dynamics and thermodynamics fragility indices of liquid argon are calculated using molecular dynamics simulations at two densities. The relationship between dynamics and thermodynamics properties is studied. The diffusion coefficient depends linearly on configurational entropy, which is consistent with the hypothesis of Adam-Gibbs. The consistence of dynamics and thermodynamics fragility indices demonstrates that dynamical behaviour is governed by thermodynamics behaviour in glass transition of liquid argon.

  5. Effect of Ginkgo biloba on the lesions induced by retinal argon laser photocoagulation in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Clairambault, P.; Pairault, C.; Droy-Lefaix, M.T.; Magnier, B.; Magnier, M.


    In rabbits, retinal argon laser photocoagulation disrupts the arrangement of cell layers and produces interstitial edema. Photochemical and thermal energy is released with production of free oxygenated radicals that are responsible for destruction of cell membranes. Retinal argon laser photocoagulation in rabbits was used as a pharmacologic model to evaluate the protective effect of EGB 761 against membrane lesions and edema. As a strong free radicals scavengers, EGB 761 confirms its protective action on cells membranes and its anti-edema effect.

  6. Detection of scintillation light in coincidence with ionizing tracks in a liquid argon time projection chamber

    CERN Document Server

    Cennini, P; Rubbia, Carlo; Sergiampietri, F; Bueno, A G; Campanelli, M; Goudsmit, P; Rubbia, André; Periale, L; Suzuki, S; Chen, C; Chen, Y; He, K; Huang, X; Li, Z; Lu, F; Ma, J; Xu, G; Xu, Z; Zhang, C; Zhang, Q; Zheng, S; Cavanna, F; Mazza, D; Piano Mortari, G; Petrera, S; Rossi, C; Mannocchi, G; Picchi, P; Arneodo, F; De Mitri, I; Palamara, O; Cavalli, D; Ferrari, A; Sala, P R; Borio di Tigliole, A A; Cesana, A; Terrani, M; Zavattari, C; Baibusinov, S; Bettini, A; Carpanese, C; Centro, Sandro; Favaretto, D; Pascoli, D; Pepato, Adriano; Pietropaolo, F; Ventura, Sandro; Benetti, P; Calligarich, E; Campo, S; Coco, S; Dolfini, R; Ghedi, B; Gigli-Berzolari, A; Mauri, F; Mazzone, L; Montanari, C; Piazzoli, A; Rappoldi, A; Raselli, G L; Rebuzzi, D; Rossella, M; Scannicchio, D A; Torre, P; Vignoli, C; Cline, D; Otwinowski, S; Wang, H; Woo, J


    A system to detect light from liquid argon scintillation has been implemented in a small, ICARUS-like, liquid argon time projection chamber. The system, which uses a VUV-sensitive photomultiplier to collect the light, has recorded many ionizing tracks from cosmic-rays in coincidence with scintillation signals. Our measurements demonstrate that scintillation light detection can provide an effective method for absolute time measurement of events and eventually a useful trigger signal. (19 refs).

  7. Optically Forbidden Excitations of 3s Electron of Argon by Fast Electron Impact

    Institute of Scientific and Technical Information of China (English)

    朱林繁; 成华东; 刘小井; 田鹏; 苑震生; 李文斌; 徐克尊


    The electron energy loss spectrum of argon in the energy region of 24.5-30.5eV was measured at 2.5 keV impact energy. The line profile parameters of the optically forbidden excitations of 3s-1ns (n = 4-6) and 3s-1nd (n = 3-7) of argon, I.e.,Eγ,Г,q and p,were determined.

  8. Installation of signal feedthroughs on an ATLAS liquid-argon calorimeter end-cap cryostat

    CERN Multimedia

    Maximilien Brice


    The liquid-argon calorimeters used for hadronic energy measurements in the end-cap regions of the ATLAS detector are housed in cryostats to maintain the argon at the very low temperature required. The cryostats are equipped with signal feedthroughs, through which pass the electrical lines carrying signals from the calorimeters. Photos 01, 02, 03: Installation of the signal feedthroughs on the first of the two end-cap cryostats.

  9. Results from the first use of low radioactivity argon in a dark matter search (United States)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration


    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).

  10. Low radioactivity argon dark matter search results from the DarkSide-50 experiment

    CERN Document Server

    Agnes, P; Albuquerque, I F M; Alexander, T; Alton, A K; Arisaka, K; Back, H O; Baldin, B; Biery, K; Bonfini, G; Bossa, M; Bottino, B; Brigatti, A; Brodsky, J; Budano, F; Bussino, S; Cadeddu, M; Cadonati, L; Cadoni, M; Calaprice, F; Canci, N; Candela, A; Cao, H; Cariello, M; Carlini, M; Catalanotti, S; Cavalcante, P; Chepurnov, A; Cocco, A G; Covone, G; Crippa, L; D'Angelo, D; D'Incecco, M; Davini, S; De Cecco, S; De Deo, M; De Vincenzi, M; Derbin, A; Devoto, 25 A; Di Eusanio, F; Di Pietro, G; Edkins, E; Empl, A; Fan, A; Fiorillo, G; Fomenko, K; Forster, G; Franco, D; Gabriele, F; Galbiati, C; Giganti, C; Goretti, A M; Granato, F; Grandi, L; Gromov, M; Guan, M; Guardincerri, Y; Hackett, B R; Herner, K; Hungerford, E V; Ianni, Al; Ianni, An; James, I; Jollet, C; Keeter, K; Kendziora, C L; Kobychev, V; Koh, G; Korablev, D; Korga, G; Kubankin, A; Li, X; Lissia, M; Lombardi, P; Luitz, S; Ma, Y; Machulin, I N; Mandarano, A; Mari, S M; Maricic, J; Marini, L; Martoff, C J; Meregaglia, A; Meyers, P D; Miletic, T; Milincic, R; Montanari, D; Monte, A; Montuschi, M; Monzani, M; Mosteiro, P; Mount, B J; Muratova, V N; Musico, P; Napolitano, J; Nelson, A; Odrowski, S; Orsini, M; Ortica, F; Pagani, L; Pallavicini, M; Pantic, E; Parmeggiano, S; Pelczar, K; Pelliccia, N; Perasso, S; Pocar, A; Pordes, S; Pugachev, D A; Qian, H; Randle, K; Ranucci, G; Razeto, A; Reinhold, B; Renshaw, A L; Romani, A; Rossi, B; Rossi, N; Rountree, D; Sablone, D; Saggese, P; Saldanha, R; Sands, W; Sangiorgio, S; Savarese, C; Segreto, E; Semenov, D A; Shields, E; Singh, P N; Skorokhvatov, M D; Smallcomb, M; Smirnov, O; Sotnikov, A; Stanford, C; Suvorov, Y; Tartaglia, R; Tatarowicz, J; Testera, G; Tonazzo, A; Trinchese, P; Unzhakov, E V; Vishneva, A; Vogelaar, B; Wada, M; Walker, S; Wang, H; Wang, Y; Watson, A W; Westerdale, S; Wilhelmi, J; Wojcik, M M; Xiang, X; Xu, J; Yang, C; Yoo, J; Zavatarelli, S; Zec, A; Zhong, W; Zhu, C; Zuzel, G


    The DarkSide-50 dark matter search reports the first results obtained using a target of low-radioactivity argon extracted from underground sources. The experiment is located at the Laboratori Nazionali del Gran Sasso and uses a two-phase time projection chamber as a detector. A total of 155 kg of low radioactivity argon has been obtained, and we have determined that underground argon is depleted in Ar-39 by a factor (1.4 +- 0.2) x 10^3 relative to atmospheric argon. The underground argon was also found to contain (2.05 +- 0.13) mBq/kg of Kr-85. We found no evidence for dark matter in the form of WIMPs in 70.9 live-days of data with a fiducial mass of (36.9 +- 0.6) kg. When combined with our preceding search with an atmospheric argon target, we set a 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section of 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43 cm^2 ) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2 ).

  11. Condensed argon isentropic compression with ultrahigh magnetic field pressure: Experimental design. Post-shot report

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, A.I.; Boriskov, G.V.; Dolotenko, M.I. [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)] [and others


    This report continues the series of work devoted to experimental study of a high-dense condensed argon state. Remember that according to work of Kwon et. al., hexagonal close-packed structure is profitable in terms of energy rather than face-centered argon structure (stable with zero pressure). What is most interesting and intriguing here is the issue of possible argon metallization, when it is compressed up to the densities more than 9.17 g/cm{sup 3}. In the experiment of 1995 (the arrangement and data are described in a cited reference) the authors recorded appearance of conductivity in argon, which is non-conductive in the initial state, when it is compressed more than a factor of four. The peak value of argon specific conductivity recorded in this experiment did not exceed 10 (Ohm x cm){sup {minus}1}. This value of conductivity is characteristic of semiconductors, but not metals, which have 10{sup 4} (Ohm x cm){sup {minus}1}. At this stage of the work the main attention is paid to recording of argon conductive state and studying the possibilities of multiframed radiography of the sample in the compressed state.

  12. Radioactive iodide (131 I-) excretion profiles in response to potassium iodide (KI) and ammonium perchlorate (NH4ClO4) prophylaxis. (United States)

    Harris, Curtis; Dallas, Cham; Rollor, Edward; White, Catherine; Blount, Benjamin; Valentin-Blasini, Liza; Fisher, Jeffrey


    Radioactive iodide ((131)I-) protection studies have focused primarily on the thyroid gland and disturbances in the hypothalamic-pituitary-thyroid axis. The objective of the current study was to establish (131)I- urinary excretion profiles for saline, and the thyroid protectants, potassium iodide (KI) and ammonium perchlorate over a 75 hour time-course. Rats were administered (131)I- and 3 hours later dosed with either saline, 30 mg/kg of NH(4)ClO(4) or 30 mg/kg of KI. Urinalysis of the first 36 hours of the time-course revealed that NH(4)ClO(4) treated animals excreted significantly more (131)I- compared with KI and saline treatments. A second study followed the same protocol, but thyroxine (T(4)) was administered daily over a 3 day period. During the first 6-12 hour after (131)I- dosing, rats administered NH(4)ClO(4) excreted significantly more (131)I- than the other treatment groups. T(4) treatment resulted in increased retention of radioiodide in the thyroid gland 75 hour after (131)I- administration. We speculate that the T(4) treatment related reduction in serum TSH caused a decrease synthesis and secretion of thyroid hormones resulting in greater residual radioiodide in the thyroid gland. Our findings suggest that ammonium perchlorate treatment accelerates the elimination rate of radioiodide within the first 24 to 36 hours and thus may be more effective at reducing harmful exposure to (131)I- compared to KI treatment for repeated dosing situations. Repeated dosing studies are needed to compare the effectiveness of these treatments to reduce the radioactive iodide burden of the thyroid gland.

  13. Experimental study on iodine chemistry (EXSI) - Containment experiments with methyl iodide

    Energy Technology Data Exchange (ETDEWEB)

    Holm, J.; Glaenneskog, H.; Ekberg, C. (Chalmers Univ. of Technology (Sweden)); Kaerkelae, T.; Auvinen, A. (VTT Technical Research Centre of Finland (Finland))


    An experimental study on radiolytic decomposition of methyl iodide was conducted in co-operation between VTT and Chalmers University of Technology as a part of the NKS-R programs. The behaviour of iodine during a severe accident has been studied in several experimental programs, ranging from the large-scale PHEBUS FP tests and intermediate-scale ThAI tests to numerous separate effect studies. In year 2008 the NROI project, a Nordic collaboration studying iodine chemistry in the containment was started. During 2009, oxidation of iodine, especially organic iodine, was studied within the NROI project. The chemistry of organic iodine in the gas phase is still one of the greatest remaining uncertainties concerning iodine behaviour during a severe accident. During the first year of the NROI project the oxidation of elemental iodine, I2, with ozone and UV-light was investigated. In this study organic iodide, in this case methyl iodide, was investigated in similar conditions as in the NROI-1 project. The experimental facility applied in this study is based on the sampling system built at VTT for the ISTP project CHIP conducted by IRSN. The experimental facility and the measuring technology are sophisticated and unique in the area of nuclear research as well as in the field of aerosol science. Experimental results showed that the methyl iodide concentration in the facility was reduced with increasing temperature and increasing UVC intensity. Similar behaviour occurred when ozone was present in the system. Formed organic gas species during the decomposition of methyl iodide was mainly formaldehyde and methanol. Instant and extensive particle formation occurred when methyl iodide was transported through a UVC radiation field and/or when ozone was present. The size of the formed primary particles was about 10 nm and the size of secondary particles was between 50-150 nm. From the SEM-EDX analyses of the particles, the conclusion was drawn that these were some kind of iodine

  14. Influence of Additive Gas on Electrical and Optical Characteristics of Non-equilibrium Atmospheric Pressure Argon Plasma Jet%Influence of Additive Gas on Electrical and Optical Characteristics of Non-equilibrium Atmospheric Pressure Argon Plasma Jet

    Institute of Scientific and Technical Information of China (English)

    费小猛; Shin-ichi KURODA; Yuki KONDO; Tamio MORI; Katsuhiko HOSOI


    Electrical and optical properties of an argon plasma jet were characterized. In particular, effects of an additive gas, namely nitrogen or oxygen, on these properties were studied in detail. The plasma jet was found to be of a glow-like discharge, which scarcely changed upon the injection of an additive gas, either directly or through a glass capillary. Optical emission spectroscopy characterization revealed that excited argon atoms were the predominant active species in this plasma jet. Metastable argon atoms were highly quenched, and N2(C3yIu) became the main energy carrier following nitrogen injection. When oxygen was added to the afterglow zone through a glass capillary, no significant quenching effect was observed and the number of oxygen atoms decreased with the increase in oxygen concentration. Finally, to demonstrate an application of this plasma jet, a high-density polyethylene surface was treated with argon, argon/nitrogen, and argon/oxygen plasmas.

  15. Alternating current electrical properties of Argon plasma treated jute

    Directory of Open Access Journals (Sweden)

    Md. Masroor Anwer


    Full Text Available Low temperature plasma (LTP treatment, a kind of environment friendly surface modification technique, was applied to biodegradable and environment friendly jute fibre with the use of nonpolymerizing gas, namely argon, at various discharge power levels and exposure times with a definite flow rate. Scanning electron microscopy (SEM microphotographs reveal that the roughness of the fibre surfaces increases with the increase of discharge power and exposure time. This is caused due to the bombardment of high energetic ions on the fibre surface and the fibres become sputtered. The capacitance and the electrical conductance of raw and LTP treated jute fibre were measured as a function of frequency at room temperature. The dielectric constant, conductivity, dielectric loss-tangent and the surface morphology of raw and LTP treated jute as a function of frequency were studied at room temperature. It was observed that for all the samples the dielectric constant almost constant at lower frequencies and then decreases gradually in the high frequency region. In addition, dielectric constant increases with the increase of plasma treatment time as well as discharge power. It is also observed for all the samples that the conductivity increases as the frequency increases with a lower slope in the low frequency region and with a higher slope in the higher frequency region. In addition, the conductivity decreases with the increase of plasma exposure time as well as discharge power. The conductivity increases with frequency due to the hopping mechanism of electrons. The dependence of the dielectric loss-tangent with frequency at different treatment times and discharge powers for all the jute samples show small relaxation peaks in the very low frequency region. The dielectric loss-tangent decreases with the increase of both plasma treatment time and discharge power. In addition, the relaxation peaks are shifted to the higher frequency region as the plasma treatment

  16. Scintillation light from cosmic-ray muons in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Whittington, Denver Wade [Indiana Univ., Bloomington, IN (United States). Physics Dept.; Mufson, S. [Indiana Univ., Bloomington, IN (United States). Astronomy Dept.; Howard, B. [Indiana Univ., Bloomington, IN (United States). Physics Dept.


    This paper reports the results of an experiment to directly measure the time-resolved scintillation signal from the passage of cosmic-ray muons through liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches. The experiment was carried out at the TallBo dewar facility at Fermilab using prototype light guide detectors and electronics developed for the Deep Underground Neutrino Experiment. Two models are presented for the time structure of the scintillation light, a phenomenological model and a physically-motivated model. Both models find tT = 1:52 ms for the decay time constant of the Ar 2 triplet state. These models also show that the identification of the “early” light fraction in the phenomenological model, FE 25% of the signal, with the total light from singlet decays is an underestimate. The total fraction of singlet light is FS 36%, where the increase over FE is from singlet light emitted by the wavelength shifter through processes with long decay constants. The models were further used to compute the experimental particle identification parameter Fprompt, the fraction of light coming in a short time window after the trigger compared with the light in the total recorded waveform. The models reproduce quite well the typical experimental value 0.3 found by dark matter and double b-decay experiments, which suggests this parameter provides a robust metric for discriminating electrons and muons from more heavily ionizing particles.

  17. Cooperative effect of silver in copper-catalyzed trifluoromethylation of aryl iodides using Me3SiCF3

    KAUST Repository

    Weng, Zhiqiang


    An effective model of cooperative effect of silver for the coppercatalyzed trifluoromethylation of activated and unactivated aryl iodides to trifluoromethylated arenes using Me3SiCF3 was achieved with a broad substrate scope. © 2011 American Chemical Society.

  18. Formation of iodinated disinfection by-products during oxidation of iodide-containing water with potassium permanganate. (United States)

    Ye, Tao; Xu, Bin; Lin, Yi-Li; Hu, Chen-Yan; Xia, Sheng-Ji; Lin, Lin; Mwakagenda, Seleli Andrew; Gao, Nai-Yun


    This study shows that iodinated disinfection by-products (I-DBPs) including iodoform (IF), iodoacetic acid (IAA) and triiodoacetic acid (TIAA) can be produced when iodide-containing waters are in contact with potassium permanganate. IF was found as the major I-DBP species during the oxidation. Iodide was oxidized to HOI, I(2) and I(3)(-), consequently, which led to the formation of iodinated organic compounds. I-DBPs varied with reaction time, solution pH, initial concentrations of iodide and potassium permanganate. Yields of IF, IAA and TIAA increased with reaction time and considerable I-DBPs were formed within 12 h. Peak IF yields were found at circumneutral pH range. However, formation of IAA and TIAA was favored under acidic conditions. Molar ratio of iodide to potassium permanganate showed significant influence on formation of IF, IAA and TIAA. The formation of IF, IAA and TIAA also depended on the characteristics of the waters.

  19. Gap energy studied by optical transmittance in lead iodide monocrystals grown by Bridgman's Method

    Directory of Open Access Journals (Sweden)

    Veissid N.


    Full Text Available The bandgap energy as a function of temperature has been determined for lead iodide. The monocrystal was obtained in a vacuum sealed quartz ampoule inside a vertical furnace by Bridgman's method. The optical transmittance measurement enables to evaluate the values of Eg. By a fitting procedure of Eg as a function of temperature is possible to extract the parameters that govern its behavior. The variation of Eg with temperature was determined as: Eg(T = Eg(0 - aT2/(a + T, with: Eg(0 = (2.435 ± 0.008 eV, a = (8.7 ± 1.3 x 10-4 eV/K and a = (192 ± 90 K. The bandgap energy of lead iodide at room temperature was found to be 2.277 ± 0.007 eV.

  20. Induction of iodide uptake in transformed thyrocytes: a compound screening in cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, Eleonore [University of Tuebingen, Department of Endocrinology, Metabolism, Nephrology and Clinical Chemistry, Internal Medicine, Tuebingen (Germany); Brossart, Peter [University of Tuebingen, Department of Haematology, Oncology, Immunology and Rheumatology, Internal Medicine, Tuebingen (Germany); Wahl, Richard [University of Tuebingen, Department of Endocrinology, Metabolism, Nephrology and Clinical Chemistry, Internal Medicine, Tuebingen (Germany); Department IV, Internal Medicine, Tuebingen (Germany)


    Retinoic acid presently is the most advanced agent able to improve the efficacy of radioiodine therapy in differentiated thyroid carcinoma. In order to identify compounds with higher efficacy a panel of pharmacologically well-characterized compounds with antitumour action in solid cancer cell lines was screened. The effects of the compounds on iodide uptake, cell number, proliferation and apoptosis were evaluated. In general, compounds were more effective in cell lines derived from more aggressive tumours. The effectiveness in terms of number of responsive cell lines and maximal increase in iodide uptake achieved decreased in the order: APHA > valproic acid {approx} sirolimus {approx} arsenic trioxide > retinoic acid {approx} lovastatin > apicidine {approx} azacytidine {approx} retinol {approx} rosiglitazone {approx} bortezomib. We hypothesize that testing of cells from primary tumours or metastases in patients may be a way to identify compounds with optimum therapeutic efficacy for individualized treatment. (orig.)

  1. Preparation,Characterization and Optical Properties of Hostguest Nanocomposite Material Mordenite—silver Iodide

    Institute of Scientific and Technical Information of China (English)

    ZHAIQing-zhou; QIUShi-lun


    Silver iodide nanoclusters were successfully prepared in the channels of mordenite by a heat diffusion method.Powder X-ray diffraction.adsorption technique and infrared spectroscopy were used to characterize the prepared materials,which showed that the guest silver iodied had been encapsulated in the channels of mordenite.The optical properties of the solid phase diffuse reflectance absorption of nanocomposite material NaM-AgI were studied,showing that the absorption bands of the diffuse reflectance absorption of the prepared material moved to the region of high energy.The absorption peak of the material prepared shifted to the region of high energy.Namely,blue shift was caused.This has demonstrated the incorporation of silver iodide into the channels of the zeolite.We observed the luminescence and surface photovoltage spectra of NaM-AgI sample,proposing the mechanisms of the photoluminescence and photovoltaic responses.

  2. Solvatochromic effect and kinetics of methyl violet reduction with potassium iodide in water-isopropanol mixtures (United States)

    Ashfaq, Maria; Saeed, Rehana; Khan, Sameera Razi; Masood, Summyia


    The solvent influence on the reduction kinetics of methyl violet with iodide in binary mixture of aqueous isopropanol was investigated spectrophotometrically. The absorption spectra of methyl violet were recorded in water, aqueous isopropanol and absolute isopropanol. In these solvents λmax was in the range from 580.5 to 582.5 nm. The CNIBS/R-K model was used to calculate the solvatochromic parameters in a binary mixture; polynomial equation was also applied to describe the experimental data. The transition energies ( E T) were calculated. They show bathochromic shift with the decrease in the polarity of the solvent. The temperature was varied from 298-318 K, while the pH of the reaction was maintained at 4.99 and 6.00. The reduction reaction was found to be first order by potassium iodide and zero order by methyl violet. The thermodynamic parameters were also evaluated to support the kinetic data.

  3. Crystal structure of catena-poly[[potassium-tri-μ-dimethylacetamide-κ6O:O] iodide

    Directory of Open Access Journals (Sweden)

    Cezar-Catalin Comanescu


    Full Text Available The structure of catena-poly[[potassium-tri-μ-dimethylacetamide-κ6O:O] iodide], {[K(C4H9NO3]I}n, at 120 K has trigonal (P-3 symmetry. The structure adopts a linear chain motif parallel to the crystallographic c axis. Two crystallographically independent K+ cations are present in the asymmetric unit located on threefold rotoinversion axes at [0, 0, 0] and [0, 0, 1/2] and are bridged by the O atoms of the acetamide moiety. This is an example of a rare μ2-bridging mode for dimethylacetamide O atoms. The iodide counter-ion resides on a threefold rotation axis in the channel formed by the [K(C4H9NO]+ chains.

  4. Gastro-intestinal basidiobolomycosis in a 2-year-old boy: dramatic response to potassium iodide. (United States)

    Sanaei Dashti, Anahita; Nasimfar, Amir; Hosseini Khorami, Hossein; Pouladfar, Gholamreza; Kadivar, Mohammad Rahim; Geramizadeh, Bita; Khalifeh, Masoomeh


    Gastro-intestinal basidiobolomycosis (GIB) is a rare fungal infection caused by Basidiobolus ranarum. Treatment includes surgical resection and long-term antifungal therapy. A 2.5-year-old boy presented with a 10-day history of abdominal pain, fever and diarrhoea, and a palpable abdominal mass was detected. Resection was undertaken and histology confirmed basidiobolomycosis. Treatment with amphotericin B and itraconazole was commenced, but the infection progressed and spread to involve the intestines, liver, ribs and lung, and also the abdominal wall after 6 months, requiring four operative procedures. Because of unresponsiveness to amphotericin and itraconazole, oral potassium iodide was added which resulted in complete resolution of the infection. Potassium iodide is an essential component of the treatment of systemic B. ranarum.

  5. Conclusion on the peer review of the pesticide risk assessment of the active substance potassium iodide

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority


    Full Text Available The conclusions of the European Food Safety Authority (EFSA following the peer review of the initial risk assessments carried out by the competent authority of the rapporteur Member State the Netherlands, for the pesticide active substance potassium iodide are reported. The context of the peer review was that required by Commission Regulation (EU No 188/2011. The conclusions were reached on the basis of the evaluation of the representative uses of potassium iodide as a fungicide on tomatoes, sweet peppers, cucumber, eggplant, strawberries and ornamental flowers in greenhouse and field applications on strawberries. The reliable endpoints concluded as being appropriate for use in regulatory risk assessment, derived from the available studies and literature in the dossier peer reviewed, are presented. Missing information identified as being required by the regulatory framework is listed. Concerns are identified.

  6. Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions

    Directory of Open Access Journals (Sweden)

    Andrzej Tracz


    Full Text Available Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM and cross metathesis (CM reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  7. Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions (United States)

    Tracz, Andrzej; Matczak, Mateusz; Urbaniak, Katarzyna


    Summary Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM) and cross metathesis (CM) reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities. PMID:26664602

  8. Nitro-Grela-type complexes containing iodides - robust and selective catalysts for olefin metathesis under challenging conditions. (United States)

    Tracz, Andrzej; Matczak, Mateusz; Urbaniak, Katarzyna; Skowerski, Krzysztof


    Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM) and cross metathesis (CM) reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  9. Development and testing of a silver chloride-impregnated activated carbon for aqueous removal and sequestration of iodide. (United States)

    Karanfil, T; Moro, E C; Serkiz, S M


    Silver impregnated activated carbon (SIAC) can effectively remove iodide from water and sequester it in the form of AgI(s)). Given the extremely insoluble nature of AgI(s), the spent SIAC can be safely disposed of in land burial facilities. However, when the molar ratio of silver to iodide is greater than one, which is typical for waters contaminated with iodide, unreacted silver on the SIAC leached into solution with decreasing pH. To minimize silver leaching, a silver chloride impregnated activated carbon (SIAC-Cl) was produced from a SIAC. Scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and X-Ray Diffraction (XRD) analyses confirmed the presence of silver chloride on the SIAC-Cl. Batch isotherm experiments conducted at pH 5, 7 and 8 showed that the iodide uptakes of SIAC-Cl and SIAC were similar and independent of pH. SEM/EDX and XRD analyses after reaction with iodide indicated that chloride was exchanged with iodide to form AgI(s) on the SIAC-Cl. Batch leaching experiments demonstrated that leaching of silver from SIAC-Cl under acidic conditions was significantly lower than from SIAC. The performance of SIAC and SIAC-Cl for practical applications was evaluated by conducting column experiments using a radioactively contaminated groundwater that included 129I. SIAC and SIAC-Cl showed similar degrees of iodide uptake. However, a significant degree of silver leaching, about 50% of the total silver, occurred from the SIAC during the course of the column experiments, whereas silver leaching from SIAC-Cl was remarkably low (only 6% of the total silver). SIAC-Cl appears to be a suitable getter material to remove and sequester iodide from contaminated waste streams.

  10. Peroxide effects of iodide excess on mitochondria in Fischer rat thyroid cell line in the early period

    Institute of Scientific and Technical Information of China (English)



    Objective To investigate the peroxide effects of iodide excess on mitochondria in Fischer rat thyroid cell line(FRTL)in the early period.Methods After treatment with 0.0 mmol/L(control group)or 0.1 mmol/L potassium iodide(KI)for 2,4 and 24 h,respectively,changes of mitochondrial superoxide formation were assayed by flow cytometry and fluorescence microscopy using mitochondria-targeted hydroethidine(Mito SOX).

  11. Effects of short-term potassium iodide treatment for thyrotoxicosis due to Graves disease in children and adolescents


    Jeong, Kyung Uk; Lee, Hae Sang; Hwang, Jin Soon


    Purpose Graves disease is the most common cause of hyperthyroidism in children. Inorganic iodide has been used in combination with antithyroid drugs for more effective normalization of thyroid hormones in some cases of severe thyrotoxicosis. This study aimed to investigate clinical characteristics of childhood thyrotoxicosis and effectiveness of inorganic iodide in the early phase of treatment. Methods Sixty-seven pediatric patients (53 girls/14 boys, 11.1±3.4 years of age), with newly diagno...

  12. Study on Growth and Optical, Scintillation Properties of Thallium Doped Cesium Iodide –Scintillator Crystal

    Directory of Open Access Journals (Sweden)

    B. Ravi


    Full Text Available Single crystal of Thallium doped cesium Iodide –Scintillator crystal was grown using vertical Bridgeman technique. The grown crystal was included for cutting and polishing for the characterization purpose and this crystal was studied by optical transmission properties, photo luminescence and thermally luminescence characteristics. Gamma-ray detectors were fabricated using the grown crystal that showed good linearity and nearly 7.5% resolution at 662 keV.

  13. Rationale for the real-time and dynamic cell death assays using propidium iodide


    Zhao, Hong; Oczos, Jadwiga; Janowski, Pawel; Trembecka, Dominika; Dobrucki, Jurek; Darzynkiewicz, Zbigniew; Wlodkowic, Donald


    We have recently reported an innovative approach to use charged fluorochromes such as propidium iodide (PI) in the real-time, dynamic cell viability assays. The present study was designed to provide a mechanistic rationale for the kinetic assays using cell permeability markers. Uptake of PI by live cells, effect on the cell cycle, long term proliferation capacity, DNA damage response and pharmacologic interactions with anticancer drugs were studied using both laser scanning microscopy and las...

  14. Studies on the Mechanisms of Methyl Iodide Adsorption and Iodine Retention on Silver-Mordenite

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Soelberg, Nick [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    Silver-containing mordenite (MOR) is a longstanding benchmark for radioiodine capture, reacting with molecular iodine (I2) to form AgI. However the mechanisms for organoiodine capture are not well understood. Here we investigate the capture of methyl iodide from complex mixed gas streams by combining chemical analysis of the effluent gas stream with in depth characterization of the recovered sorbent.

  15. Study on the Preparation and Characteristics of Cellulose/Silver Iodide Nanocomposite Film. (United States)

    Lee, Yang Hun; Han, Sung Soo; Kang, Young Ah; Shin, Eun Joo


    In this study, the structure and properties of an organic-inorganic composite material prepared from cellulose doped with fine particles of silver iodide (AgI) were examined. The preparation of the composite involved the complexation of cellulose with polyiodide ions, such as I- and 13-, by immersion in iodine/potassium iodide (I2/KI: 0.2, 0.4, 0.6, 0.8, 1.0 M) or potassium iodide (KI: 0.6, 1.2, 1.8, 2.4, 3.0 M) aqueous solutions followed by reaction in a silver nitrate (AgNO3:1.0 M) aqueous solution. These procedures resulted in the in situ formation of fine β-AgI particles within the cellulose matrix. The characteristics and conductivities of prepared cellulose/silver iodide (AgI) nanocomposite films with different I2/KI and KI concentrations were investigated. AgI particle formation and aggregation increased on increasing I2/KI and KI concentrations as determined by SEM. X-ray results showed that KI could penetrate the cellulose crystal region and form AgI particles. The electrical conductivities of nanocomposite films treated with KI were higher than that of I2/KI at < 1.0 M of I2/KI and 3 M of KI, although the weight gain by AgI formation was lower than that of I2/KI. This was also attributed to the formation of smaller AgI particles and crystal defects. Highest electrical conductivity (3.8 x 10(-7) Ω(-1) cm(-1)) was obtained from the cellulose films (1.25 x 10(-11) Ω(-1) cm(-1)) treated with the aqueous solutions of 1.0 M I2/KI and 1.0 M AgNO3.

  16. Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors

    CERN Document Server

    Galbiati, C


    We report on the first measurement of 39Ar in argon from underground natural gas reservoirs. The gas stored in the US National Helium Reserve was found to contain a low level of 39Ar. The ratio of 39Ar to stable argon was found to be <=4x10-17 (84% C.L.), less than 5% the value in atmospheric argon (39Ar/Ar=8x10-16). The total quantity of argon currently stored in the National Helium Reserve is estimated at 1000 tons. 39Ar represents one of the most important backgrounds in argon detectors for WIMP dark matter searches. The findings reported demonstrate the possibility of constructing large multi-ton argon detectors with low radioactivity suitable for WIMP dark matter searches.

  17. Radiofrequency induction on sodium/iodide symporter expression of thyroid cancer

    Institute of Scientific and Technical Information of China (English)

    Youxin Tian; Qinjiang Liu; Yaqiong Ni


    Objective:The aim of this study was to investigate the ef ects of radiofrequency treatment on sodium/iodide symporter expression of thyroid cancer cells. Methods:In 29 thyroid cancer patients with low or no expression of soda\\iodide symporter, the radio frequency combined 131I therapy was used, the whole-body scintigraphy and serum Ig were detected before and after the radiofrequency treatment. Results:The whole-body scintigraphy showed that 4 cases (4/29) before radiofrequency treatment had positive iodine uptake, 19 cases (19/29) two weeks after radiofrequency treatment had the positive iodine uptake, 12 cases (12/29) four weeks after radiofrequency treatment had the positive iodine uptake. Four weeks after radiofrequency treatment, 5 cases had increased serum Ig levels, 17 cases had decreased serum Ig levels, 7 cases showed no change. 25 cases (25/29) were ef ective, 15 cases (15/29) were cured. Conclusion:The radiofrequency induced the non-expressed the sodium/iodide symporter of thyroid cancer cells regain the iodine intake ability, it improved the clinical ef icacy of 131I therapy in dedif erentiated thyroid cancer.

  18. Deteksi Natrium/Iodide Symporter (NIS pada Galur Sel Kanker Payudara SKBR3 dengan Imunositofluoresens

    Directory of Open Access Journals (Sweden)

    Aisyah Elliyanti


    Full Text Available SKBR-3 cell line is a breast cancer model for human epidermal growth factor receptor2 (HER2 positive. Only 50% of patients of this type have fully responded to chemotherapy. Natrium iodide symporter expression correlates with the uptake and ability of cells to accumulate radioiodine. The aim of this study was to examine natrium/iodide symporter (NIS expression and its distribution with and without epidermal growth factor (EGF treatment using immunocytofluoresence (ICF. This study was conducted at the Cell Culture Laboratory, Faculty of Medicine, Universitas Padjadjaran from September 2013 to April 2014. SKBR3 cells were cultured until 70% confluent. Cells were then divided into two groups: treatment group and control group. The treatment group was treated with EGF 50 ng/mL. Cells were incubated with primary antibody rabbit polyclonal antibody anti-NIS, and then were followed with secondary-antibody goat polyclonal antibody to rabbit. Data from the observation were then assessed semi-quantitatively. Natrium/iodide symporter was seen to be expressed and distributed in the cytoplasm. Cells induced by EGF showed significant increase in NIS expression in cytoplasm and its distribution in cell membrane. It is concluded that the SKBR3 cells express NIS in cytoplasm and that EGF induction increases NIS expression and distribution in cell membrane. This finding leads to a potential ability of breast cancer cells to uptake and accumulate radioiodine.

  19. Uptake of iodide by a mixture of metallic copper and cupric compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lefevre, G.; Alnot, M.; Ehrhardt, J.J.; Bessiere, J. [Univ. Henri Poincare Nancy 1, Villers les Nancy (France). Lab. de Chimie Physique pour l`Environnement


    Environmental contaminants harmful to the health of present and future generations involve nuclear fission products as iodine radioisotopes. {sup 129}I is potentially one of the more mobile products because of its long half-life and its tendency to go into solution as an anion that is not retarded with silicate minerals. Ability of copper/cupric compound mixtures to remove iodide from solution was investigated to predict sorption of radioactive iodine in the environment and to assess their use in a nuclear reprocessing method. Thermodynamic calculations were performed to study the stability of such mixtures in solution and to obtain equilibrium constants of Cu(0)/Cu(II)/I{sup {minus}} and Cu(0)/Cu(II)/Cl{sup {minus}} systems. Both calculations and experimental results showed that a Cu(0)/Cu{sub 3}(OH){sub 2}(CO{sub 3}){sub 2} (azurite) mixture selectively uptakes iodide ions (initial concentrations: 10{sup {minus}2} and 10{sup {minus}1} M) in the presence of 10{sup {minus}1} M chloride ions. Reaction of iodide with copper powder and azurite crystal or copper plate and azurite powder have also been investigated, leading to precipitation of CuI onto massive copper phase. The different solids were separately analyzed by XPS and MEB-EDX, giving some insight in the uptake mechanism. It is proposed that soluble copper released by the cupric compound is reduced at the surface of metallic copper, leading to a preferential precipitation of CuI on copper surface.

  20. Use of potassium iodide in dermatology: updates on an old drug. (United States)

    Costa, Rosane Orofino; Macedo, Priscila Marques de; Carvalhal, Aline; Bernardes-Engemann, Andréa Reis


    Potassium iodide, as a saturated solution, is a valuable drug in the dermatologist's therapeutic arsenal and is useful for the treatment of different diseases due to its immunomodulatory features. However, its prescription has become increasingly less frequent in dermatology practice. Little knowledge about its exact mechanism of action, lack of interest from the pharmaceutical industry, the advent of new drugs, and the toxicity caused by the use of high doses of the drug are some possible explanations for that. Consequently, there are few scientific studies on the pharmacological aspects, dosage and efficacy of this drug. Also, there is no conventional standard on how to manipulate and prescribe the saturated solution of potassium iodide, which leads to unawareness of the exact amount of the salt being delivered in grams to patients. Considering that dosage is directly related to toxicity and the immunomodulatory features of this drug, it is essential to define the amount to be prescribed and to reduce it to a minimum effective dose in order to minimize the risks of intolerance and thus improve treatment adherence. This review is relevant due to the fact that the saturated solution of potassium iodide is often the only therapeutic choice available for the treatment of some infectious, inflammatory and immune-mediated dermatoses, no matter whether the reason is specific indication, failure of a previous therapy or cost-effectiveness.

  1. Toxic impact of bromide and iodide on drinking water disinfected with chlorine or chloramines. (United States)

    Yang, Yang; Komaki, Yukako; Kimura, Susana Y; Hu, Hong-Ying; Wagner, Elizabeth D; Mariñas, Benito J; Plewa, Michael J


    Disinfectants inactivate pathogens in source water; however, they also react with organic matter and bromide/iodide to form disinfection byproducts (DBPs). Although only a few DBP classes have been systematically analyzed for toxicity, iodinated and brominated DBPs tend to be the most toxic. The objectives of this research were (1) to determine if monochloramine (NH2Cl) disinfection generated drinking water with less toxicity than water disinfected with free chlorine (HOCl) and (2) to determine the impact of added bromide and iodide in conjunction with HOCl or NH2Cl disinfection on mammalian cell cytotoxicity and genomic DNA damage induction. Water disinfected with chlorine was less cytotoxic but more genotoxic than water disinfected with chloramine. For both disinfectants, the addition of Br(-) and I(-) increased cytotoxicity and genotoxicity with a greater response observed with NH2Cl disinfection. Both cytotoxicity and genotoxicity were highly correlated with TOBr and TOI. However, toxicity was weakly and inversely correlated with TOCl. Thus, the forcing agents for cytotoxicity and genotoxicity were the generation of brominated and iodinated DBPs rather than the formation of chlorinated DBPs. Disinfection practices need careful consideration especially when using source waters containing elevated bromide and iodide.

  2. Simple and rapid determination of iodide in table salt by stripping potentiometry at a carbon-paste electrode. (United States)

    Svancara, Ivan; Ogorevc, Bozidar; Nović, Milko; Vytras, Karel


    A simple and rapid procedure, utilising constant-current stripping analysis (CCSA) at a carbon-paste electrode containing tricresyl phosphate as a pasting liquid (TCP-CPE), has been developed for the determination of iodide in table salt. Because of a synergistic accumulation mechanism based on ion-pairing and extraction of iodide in combination with electrolytic pretreatment of the TCP-CPE, the method is selective for iodide and enables direct determination of iodide in samples of table salt containing anti-caking agents such as K(4)[Fe(CN)(6)] (food additive "E 536") or MgO. The iodide content (calculated as KI) can be determined in a concentration range of 2 to 100 mg kg(-1) salt, with a detection limit (S/N=3) of 1 mg kg(-1), and a recovery from 90 to 115%. The proposed method has been used to determine iodide in several types of artificially iodised table salt and in one sample of natural sea salt. The results obtained agreed well with those obtained by use of three independent reference methods (titration, spectrophotometry, and ICP-MS) used to validate the CCSA method, indicating that the developed method is applicable as a routine procedure for rapid testing in salt production process control and in the analysis of marketed table salts.

  3. Activation of the Nrf2-Keap 1 Pathway in Short-Term Iodide Excess in Thyroid in Rats

    Directory of Open Access Journals (Sweden)

    Tingting Wang


    Full Text Available Wistar rats were randomly divided into groups of varying iodide intake: normal iodide; 10 times high iodide; and 100 times high iodide on Days 7, 14, and 28. Insignificant changes were observed in thyroid hormone levels (p>0.05. Urinary iodine concentration and iodine content in the thyroid glands increased after high consumption of iodide from NI to 100 HI (p<0.05. The urinary iodine concentration of the 100 HI group on Days 7, 14, and 28 was 60–80 times that of the NI group. The mitochondrial superoxide production and expressions of Nrf2, Srx, and Prx 3 all significantly increased, while Keap 1 significantly decreased in the 100 HI group when compared to the NI or 10 HI group on Days 7, 14, and 28 (p<0.05. Immunofluorescence staining results showed that Nrf2 was localized in the cytoplasm in NI group. Although Nrf2 was detected in both cytoplasm and nucleus in 10 HI and 100 HI groups, a stronger positive staining was found in the nucleus. We conclude that the activation of the Nrf2-Keap 1 antioxidative defense mechanism may play a crucial role in protecting thyroid function from short-term iodide excess in rats.

  4. Activation of the Nrf2-Keap 1 Pathway in Short-Term Iodide Excess in Thyroid in Rats (United States)

    Liang, Xue


    Wistar rats were randomly divided into groups of varying iodide intake: normal iodide; 10 times high iodide; and 100 times high iodide on Days 7, 14, and 28. Insignificant changes were observed in thyroid hormone levels (p > 0.05). Urinary iodine concentration and iodine content in the thyroid glands increased after high consumption of iodide from NI to 100 HI (p Prx 3 all significantly increased, while Keap 1 significantly decreased in the 100 HI group when compared to the NI or 10 HI group on Days 7, 14, and 28 (p < 0.05). Immunofluorescence staining results showed that Nrf2 was localized in the cytoplasm in NI group. Although Nrf2 was detected in both cytoplasm and nucleus in 10 HI and 100 HI groups, a stronger positive staining was found in the nucleus. We conclude that the activation of the Nrf2-Keap 1 antioxidative defense mechanism may play a crucial role in protecting thyroid function from short-term iodide excess in rats. PMID:28133506

  5. Fast-imaging and spectroscopic analysis of atmospheric argon streamers for large gap arc breakdown (United States)

    Pachuilo, Michael; Stefani, Francis; Bengtson, Roger; Raja, Laxminarayan


    A non-equilibrium plasma source has been developed to assist in the low-voltage arc breakdown of large electrode gaps. The source consists of a dielectric embedded wire helically wound around a confining cylindrical quartz chamber. Annular electrodes cap the ends of the quartz chamber. An argon feed gas is used to provide a uniform environment and exhausts to ambient atmospheric conditions. A negative polarity 50 kV trigger pulse is applied to the embedded trigger wire to initiate the arc breakdown. Application of the trigger pulse produces a localized coronal discharges along the inner surface of the quartz tube. The corona provides seed electrons through which streamers propagate from one of the main discharge electrode along the quartz surface until it reaches the opposite electrode to bridge the gap. Once the gap is bridged a spark over occurs and robust arc discharge is formed in the chamber volume. Fast imaging of the streamer propagation establishes its velocity in the range of ~ 100 km/s. Spectroscopy of the streamer discharge in atmospheric argon has been conducted and electron temperature and number density estimated from a collision radiative model. Argon spectrum is dominated by neutral argon lines in the 650--950 nm range, and singly ionized argon lines are observed in the ultra-violet to near UV (300--400 nm). Research was performed in connection with AFOSR Contract FA9550-11-1-0062.

  6. Argon laser versus erbium:YAG laser in the treatment of xanthelasma palpebrarum (United States)

    Abdelkader, Mona; Alashry, Shereen Ezzelregal


    Background Xanthelasma palpebrarum is the most common of the xanthomas with asymptomatic, symmetrical, bilateral, soft, yellow, polygonal papules around the eyelids. Though it is a benign lesion causing no functional disturbance, it is esthetically annoying. The surgical laser offers an extremely elegant and powerful solution to this problem. Objective To evaluate the effectiveness of erbium:YAG and argon lasers in the treatment of xanthelasma lesions. Patients and methods Forty patients were included in the study. Twenty patients (15 patients were bilateral with 30 eyes either in the upper or lower lid and 5 patients were unilateral) were treated with erbium:YAG laser. Another 20 patients (10 patients were bilateral with 20 eyes and 10 patients were unilateral) were treated with argon laser. Results In the majority of treated patients (either treated with erbium:YAG or argon laser), xanthelasma lesions were completely disappeared or significantly decreased in size. Two patients showed pigmentary changes in the form of hypopigmentation with erbium:YAG laser (one case), another case showed hyperpigmentation. No intraoperative complication was observed. No significant scar or recurrence was observed. Conclusion Argon laser in xanthelasma is an easy, effective, and safe method of treatment for small lesions and YAG laser is more better for large lesions than argon laser. PMID:25892929

  7. Effects of oxygen concentration on atmospheric pressure dielectric barrier discharge in Argon-Oxygen Mixture (United States)

    Li, Xuechun; Li, Dian; Wang, Younian


    A dielectric barrier discharge (DBD) can generate a low-temperature plasma easily at atmospheric pressure and has been investigated for applications in trials in cancer therapy, sterilization, air pollution control, etc. It has been confirmed that reactive oxygen species (ROS) play a key role in the processes. In this work, we use a fluid model to simulate the plasma characteristics for DBD in argon-oxygen mixture. The effects of oxygen concentration on the plasma characteristics have been discussed. The evolution mechanism of ROS has been systematically analyzed. It was found that the ground state oxygen atoms and oxygen molecular ions are the dominated oxygen species under the considered oxygen concentrations. With the oxygen concentration increasing, the densities of electrons, argon atomic ions, resonance state argon atoms, metastable state argon atoms and excited state argon atoms all show a trend of decline. The oxygen molecular ions density is high and little influenced by the oxygen concentration. Ground state oxygen atoms density tends to increase before falling. The ozone density increases significantly. Increasing the oxygen concentration, the discharge mode begins to change gradually from the glow discharge mode to Townsend discharge mode. Project supported by the National Natural Science Foundation of China (Grant No. 11175034).

  8. Measurement of the attenuation length of argon scintillation light in the ArDM LAr TPC

    CERN Document Server

    Calvo, J; Crivelli, P; Daniel, M; DiLuise, S; Gendotti, A; Horikawa, S; Molina-Bueno, L; Montes, B; Mu, W; Murphy, S; Natterer, G; Ngyuen, K; Periale, L; Quan, Y; Radics, B; Regenfus, C; Romero, L; Rubbia, A; Santorelli, R; Sergiampietri, F; Viant, T; Wu, S


    We report on a measurement of the attenuation length for the scintillation light in the tonne size liquid argon target of the ArDM dark matter experiment. The data was recorded in the first underground operation of the experiment in single-phase operational mode. The results were achieved by comparing the light yield spectra from 39-Ar and 83m-Kr to a description of the ArDM setup with a model of full light ray tracing. A relatively low value close to 0.5 m was found for the attenuation length of the liquid argon bulk to its own scintillation light. We interpret this result as a presence of optically active impurities in the liquid argon which are not filtered by the installed purification systems. We also present analyses of the argon gas employed for the filling and discuss cross sections in the vacuum ultraviolet of various molecules in respect to purity requirements in the context of large liquid argon installations.

  9. Study of an Atmospheric Pressure Plasma Jet of Argon Generated by Column Dielectric Barrier Discharge (United States)

    Nur, M.; Kinandana, A. W.; Winarto, P.; Muhlisin, Z.; Nasrudin


    An atmospheric of argon plasma jet was generated by using column dielectric barrier discharge has been investigated. In this study, argon gas was passed through the capillary column by regulating the flow rate of gas. This atmospheric pressure plasma jet (APPJ) was generated by a sinusoidal AC high voltage in the range of 0.4 kV to 10 kV and at frequencies of 15 kHz and 26 kHz. APPJ has been produced with flow rate of argon gas from 1 litter/min - 10 litters/min. The electric current has been taken with variation of voltage and each interval argon gas flow rate of 1 litter/min. The results show that electric current increase linearly and then it trends to saturation condition by the increasing of applied voltage. We found also that the length of the plasma jet increase by augmenting of applied voltage both for frequencies of 15 kHz and 26 kHz. Furthermore, our results show that length of plasma jet optimum for flow rate of argon gas of 2 litters/minute. In addition, we obtained that the larger applied voltage, the greater the temperature of the plasma jet.

  10. Prediction of the thermophysical properties of pure neon, pure argon, and the binary mixtures neon-argon and argon-krypton by Monte Carlo simulation using ab initio potentials. (United States)

    Nasrabad, A E; Laghaei, R; Deiters, U K


    Gibbs ensemble Monte Carlo simulations were used to test the ability of intermolecular pair potentials derived ab initio from quantum mechanical principles, enhanced by Axilrod-Teller triple-dipole interactions, to predict the vapor-liquid phase equilibria of pure neon, pure argon, and the binary mixtures neon-argon and argon-krypton. The interaction potentials for Ne-Ne, Ar-Ar, Kr-Kr, and Ne-Ar were taken from literature; for Ar-Kr a different potential has been developed. In all cases the quantum mechanical calculations had been carried out with the coupled-cluster approach [CCSD(T) level of theory] and with correlation consistent basis sets; furthermore an extrapolation scheme had been applied to obtain the basis set limit of the interaction energies. The ab initio pair potentials as well as the thermodynamic data based on them are found to be in excellent agreement with experimental data; the only exception is neon. It is shown, however, that in this case the deviations can be quantitatively explained by quantum effects. The interaction potentials that have been developed permit quantitative predictions of high-pressure phase equilibria of noble-gas mixtures.

  11. [The effect of long-term external ionizing radiation on the functional activity of rat thyroid under enhanced potassium iodide consumption]. (United States)

    Lupachik, S V; Nadol'nik, L I


    The study was devoted to the effect of long-term (20 days) external ionizing radiation at a dose of 0.5 Gy on the iodide metabolism in the rat thyroid under supplementation of high iodine doses (10 daily KI doses). It was found that the potassium iodide administration partially prevented the effects of a post radiation decrease of serum thyroid hormone levels (the level of T4 was normal and that of T3 was 77.4% of the controls). After the supplementation of 10 daily iodide doses, the rat thyroid tissue showed the most pronounced increase in the levels of total, free and protein-bound iodide compared to the groups of animals consuming normal and elevated KI doses. Pronounced inhibition of thyroid peroxidase activity (3.1-fold) was noted in the same group. The data obtained indicate a radiation-induced activation of iodide uptake during its enhanced supplementation and disturbed iodide enzymatic oxidation and organification.

  12. Argon: Systematic Review on Neuro- and Organoprotective Properties of an “Inert” Gas

    Directory of Open Access Journals (Sweden)

    Anke Höllig


    Full Text Available Argon belongs to the group of noble gases, which are regarded as chemically inert. Astonishingly some of these gases exert biological properties and during the last decades more and more reports demonstrated neuroprotective and organoprotective effects. Recent studies predominately use in vivo or in vitro models for ischemic pathologies to investigate the effect of argon treatment. Promising data has been published concerning pathologies like cerebral ischemia, traumatic brain injury and hypoxic ischemic encephalopathy. However, models applied and administration of the therapeutic gas vary. Here we provide a systematic review to summarize the available data on argon’s neuro- and organoprotective effects and discuss its possible mechanism of action. We aim to provide a summary to allow further studies with a more homogeneous setting to investigate possible clinical applications of argon.

  13. Surface modification of poly (vinyl chloride) by long-distance and direct argon RF plasma

    Institute of Scientific and Technical Information of China (English)


    This paper reports the effects of long- distance and direct argon radio frequency (RF) plasma surface treatment on polyvinyl chloride (PVC) films in terms of changes in surface wettability and surface chemistry. The surface properties are characterized by the water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The mechanism is further analyzed and the role of all kinds of active species, e.g. electrons, ions and free radicals involved in plasma surface modification is further evaluated. Results show that the long-distance and direct RF plasma treatments modify the PVC surface in morphology and composition, and both modifications cause surface oxidation of PVC films, in the forming of functional groups enhancing polymer wettability. The effect of the long-distance argon RF plasma is more notable. This suggests that long-distance argon RF plasma could restrain the ion and electron eroding effect and enhance free radical reaction.

  14. The WArP Experiment: A Double-Phase Argon Detector for Dark Matter Searches

    Directory of Open Access Journals (Sweden)

    Andrea Zani


    Full Text Available Cryogenic noble liquids emerged in the previous decade as one of the best media to perform WIMP dark matter searches, in particular due to the possibility to scale detector volumes to multiton sizes. The WArP experiment was then developed as one of the first to implement the idea of coupling Argon in liquid and gas phase, in order to discriminate β/γ-interactions from nuclear recoils and then achieve reliable background rejection. Since its construction, other projects spawned, employing Argon and Xenon and following its steps. The WArP 100l detector was assembled in 2008 at the Gran Sasso National Laboratories (LNGS, as the final step of a years-long R&D programme, aimed at characterising the technology of Argon in double phase for dark matter detection. Though it never actually performed a physics run, a technical run was taken in 2011, to characterise the detector response.

  15. Coherent and incoherent Thomson scattering on an argon/hydrogen microwave plasma torch with transient behaviour (United States)

    Obrusník, A.; Synek, P.; Hübner, S.; van der Mullen, J. J. A. M.; Zajíčková, L.; Nijdam, S.


    A new method of processing time-integrated coherent Thomson scattering spectra is presented, which provides not only the electron density and temperature but also information about the transient behaviour of the plasma. Therefore, it is an alternative to single-shot Thomson scattering measurements as long as the scattering is coherent. The method is applied to a microwave plasma torch operating in argon or a mixture of argon with hydrogen at atmospheric pressure. Electron densities up to 8\\cdot {{10}21} m-3 (ionization degree above 10-3) were observed, which is more than two times higher than presented in earlier works on comparable discharges. Additionally, a parametric study with respect to the argon/hydrogen ratio and the input power was carried out and the results are discussed together with earlier Stark broadening measurements on the same plasma.

  16. First measurement of surface nuclear recoil background for argon dark matter searches

    CERN Document Server

    Xu, Jingke; Westerdale, Shawn; Calaprice, Frank; Wright, Alexander; Shi, Zhiming


    One major background in direct searches for weakly interacting massive particles (WIMPs) comes from the deposition of radon progeny on detector surfaces. The most dangerous surface background is the $^{206}$Pb recoils produced by $^{210}$Po decays. In this letter, we report the first characterization of this background in liquid argon. The scintillation signal of low energy Pb recoils is measured to be highly quenched in argon, and we estimate that the 103keV $^{206}$Pb recoil background will produce a signal equal to that of a ~5keV (30keV) electron recoil ($^{40}$Ar recoil). In addition, we demonstrate that this dangerous $^{210}$Po surface background can be suppressed by a factor of ~100 or higher using pulse shape discrimination methods, which can make argon dark matter detectors near background-free and enhance their potential for discovery of medium- and high-mass WIMPs. We also discuss the impact on other low background experiments.

  17. Producing 30 Tons of Underground Argon for the Next Generation Dark Matter Detector (United States)

    Alexander, Thomas; DarkSide Collaboration Collaboration


    The DarkSide-20k experiment seeks to collect and purify 10s of tons of argon gas derived from the Doe Canyon CO2 well in southwestern Colorado, which has been shown to have a 39 Ar concentration of 0.73% of that found in argon collected from the atmosphere. Building upon the work of the DarkSide-50 collaboration, the DarkSide-20k experiment is building and installing a plant capable of producing 100 kg/day of 99.9% pure argon from the same underground source. To achieve this rate, the next generation plant (named Urania) will need to be able to mitigate minor contaminants in the well gas that hampered the previous generation plant. In this talk we will describe the new extraction plant, the identification of the minor contaminates, and how these contaminates are being mitigated.

  18. Time Passes - Argon Isotopes as Tracers of Fluids in the Earth's Crust (United States)

    Kelley, Simon P.


    Recent experimental measurements of noble gas solubility in silicate minerals (e.g. Jackson et al. 2013, 2015) means that we can begin to explore the use of noble gas partition between minerals and fluids to understand their residence and transport in the Earth's crust. One starting point for this exploration is the distribution of noble gases and halogens in crustal fluids which was reviewed by Kendrick and Burnard (2013). In particular, K&B (2013) noted that time is a key parameter in understanding noble gas tracers in crustal processes; yielding information such as the residence time of water in a reservoir based on 4He acquired from aquifer rocks, and the 40Ar/39Ar age of fluid inclusions based on trapped fluid and minerals in quartz. Argon isotope variations in natural systems have been measured during studies of 40Ar/39Ar ages to quantify the rates and timescales of crustal processes. There are also studies of fluids in similar rocks, notably in fluid inclusions, providing the opportunity to quantify the variations in the crust. Partition of argon between mineral phases under conditions of varying fluid availability can be compared in systems where 40Ar/39Ar measurements indicate the preservation of non-radiogenic argon (both excess and atmospheric) in the minerals. Rather than a simple picture of radiogenic argon contents increasing with crustal age, and gradual depletion of atmospheric argon in deeper fluids, what emerges is a sometimes dynamic and sometimes static system in different zones of the crust. While it can be shown that the hydrous fluid in sandstone reservoirs contained excess argon, analyses of authigenic minerals rarely exhibit 40Ar/39Ar ages in excess of the growth age. In this scenario, the incompatible nature of argon means that the fluid acts as an effective infinite reservoir and radiogenic argon dominates the potassium rich authigenic minerals. The controls on noble gas distribution are also well illustrated by deep crustal rocks such as

  19. Atomistic-Continuum Hybrid Simulation of Heat Transfer between Argon Flow and Copper Plates

    CERN Document Server

    Mao, Yijin; Chen, C L


    A simulation work aiming to study heat transfer coefficient between argon fluid flow and copper plate is carried out based on atomistic-continuum hybrid method. Navier-Stokes equations for continuum domain are solved through the Pressure Implicit with Splitting of Operators (PISO) algorithm, and the atom evolution in molecular domain is solved through the Verlet algorithm. The solver is validated by solving Couette flow and heat conduction problems. With both momentum and energy coupling method applied, simulations on convection of argon flows between two parallel plates are performed. The top plate is kept as a constant velocity and has higher temperature, while the lower one, which is modeled with FCC copper lattices, is also fixed but has lower temperature. It is found that, heat transfer between argon fluid flow and copper plate in this situation is much higher than that at macroscopic when the flow is fully developed.

  20. Ionic Wind Phenomenon and Charge Carrier Mobility in Very High Density Argon Corona Discharge Plasma (United States)

    Nur, M.; Bonifaci, N.; Denat, A.


    Wind ions phenomenon has been observed in the high density argon corona discharge plasma. Corona discharge plasma was produced by point to plane electrodes and high voltage DC. Light emission from the recombination process was observed visually. The light emission proper follow the electric field lines that occur between point and plane electrodes. By using saturation current, the mobilities of non-thermal electrons and ions have been obtained in argon gas and liquid with variation of density from 2,5 1021 to 2 1022 cm-3. In the case of ions, we found that the behaviour of the apparent mobility inversely proportional to the density or follow the Langevin variation law. For non-thermal electron, mobility decreases and approximately follows a variation of Langevin type until the density <= 0,25 the critical density of argon.

  1. Melting of "non-magic" argon clusters and extrapolation to the bulk limit (United States)

    Senn, Florian; Wiebke, Jonas; Schumann, Ole; Gohr, Sebastian; Schwerdtfeger, Peter; Pahl, Elke


    The melting of argon clusters ArN is investigated by applying a parallel-tempering Monte Carlo algorithm for all cluster sizes in the range from 55 to 309 atoms. Extrapolation to the bulk gives a melting temperature of 85.9 K in good agreement with the previous value of 88.9 K using only Mackay icosahedral clusters for the extrapolation [E. Pahl, F. Calvo, L. Koči, and P. Schwerdtfeger, "Accurate melting temperatures for neon and argon from ab initio Monte Carlo simulations," Angew. Chem., Int. Ed. 47, 8207 (2008)]. Our results for argon demonstrate that for the extrapolation to the bulk one does not have to restrict to magic number cluster sizes in order to obtain good estimates for the bulk melting temperature. However, the extrapolation to the bulk remains a problem, especially for the systematic selection of suitable cluster sizes.

  2. Drift time measurement in the ATLAS liquid argon electromagnetic calorimeter using cosmic muons

    DEFF Research Database (Denmark)

    Aad..[], G.; Dam, Mogens; Hansen, Jørgen Beck


    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the co......The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact...

  3. Influence the loading effect on modification of PET film and fiber by Argon Plasma (United States)

    Vasilkin, D. P.; Shikova, T. G.; Titov, V. A.; Smirnov, S. A.; Kuzmicheva, L. A.


    Poly(ethylene terepthalate) films and fabrics were modified by low-pressure argon plasma at different area of samples been treated. Contact angles for water and glycerol were measured and surface energy was calculated for film surface characterization. Height of water capillary rise was measured for fabric. The changes in chemical structure of surface layer were analyzed by ATR-FTIR method. Influence of sample area on non-homogeneity of plasma modification was shown. Some experiments were performed with polypropylene treatment in flowing plasma afterglow to confirm the reactions of oxygen active species originated from gas products of poly(ethylene terepthalate) etching in argon plasma.

  4. Research of On-line Analytical Method of Trace Oxygen and Water in Argon

    Institute of Scientific and Technical Information of China (English)


    Metal sodium has an active chemical quality. When it is used as a coolant in a fast neutron reactor, it must be protected by a cover gas argon for safety operation of the reactor. But oxygen and water in argon can produce chemical reaction with sodium. Then sodium hydroxide, sodium oxide and hydrogen can be produced. This will be harmful to the safety operation of reactor. The purpose of controlling a level of impurity in the cover gas is for controlling a level of impurity in sodium. The research is to find an on-line determining method and a sampling system to monitor

  5. Pulse Compression by Filamentation in Argon with an Acoustic Optical Programmable Dispersive Filter for Predispersion Compensation

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-Wei; JIANG Yong-Liang; LENG Yu-Xin; LIU Jun; GE Xiao-Chun; LI Ru-Xin; XU Zhi-Zhan


    @@ We have experimentally demonstrated pulses 0.4 mJ in duration smaller than 12 fs with an excellent spatial beam profile by self-guided propagation in argon. The original 52fs pulses from the chirped pulsed amplification laser system are first precompressed to 32 fs by inserting an acoustic optical programmable dispersive filter instrument into the laser system for spectrum reshaping and dispersion compensation, and the pulse spectrum is subsequently broadened by filamentation in an argon cell. By using chirped mirrors for post-dispersion compensation, the pulses are successfully compressed to smaller than 12fs.

  6. Experimental Measurement for Shock Velocity-Mass Velocity Relationship of Liquid Argon Up to 46 GPa

    Institute of Scientific and Technical Information of China (English)

    孟川民; 施尚春; 董石; 杨向东; 谭华; 经福谦


    Shock properties of liquid argon were measured in the shock pressure up to 46 GPa by employing the two-stage light gas gun. Liquid nitrogen was used as coolant liquid. The cryogenic target system has been improved to compare with the previous work. Shock velocities were measured with self-shorting electrical probes. Impactor velocities were measured with an electrical-magnetic induction system. Mass velocities were obtained by mean of shock impedance matching method. The experimental data shows that the slope of experimental Hugoniot curve of liquid argon begins to decrease above 30 GPa.

  7. Inner-shell Annihilation of Positrons in Argon, Iron and Copper Atoms

    CERN Document Server

    Abdel-Raouf, M A; El-Bakry, S Y


    The annihilation parameters of positrons with electrons in different shells of Argon, Iron and Copper atoms are calculated below the positronium (Ps) formation thresholds. Quite accurate ab initio calculations of the bound state wavefunctions of Argon, Iron and Copper orbitals are obtained from Cowan computer code. A least-squares variational method (LSVM) is used for determining the wavefunction of the positrons. The program is employed for calculating the s-wave partial cross sections of positrons scattered by Iron and Copper atoms. Our results of the effective charge are compared with available experimental and theoretical ones. --

  8. Evolution of precipitate in nickel-base alloy 718 irradiated with argon ions at elevated temperature (United States)

    Jin, Shuoxue; Luo, Fengfeng; Ma, Shuli; Chen, Jihong; Li, Tiecheng; Tang, Rui; Guo, Liping


    Alloy 718 is a nickel-base superalloy whose strength derives from γ'(Ni3(Al,Ti)) and γ″(Ni3Nb) precipitates. The evolution of the precipitates in alloy 718 irradiated with argon ions at elevated temperature were examined via transmission electron microscopy. Selected-area electron diffraction indicated superlattice spots disappeared after argon ion irradiation, which showing that the ordered structure of the γ' and γ″ precipitates became disordered. The size of the precipitates became smaller with the irradiation dose increasing at 290 °C.

  9. Intermolecular interaction potentials of methane-argon complex calculated using LDA approaches

    Institute of Scientific and Technical Information of China (English)

    Bai Yu-Lin; Chen Xiang-Rong; Zhou Xiao-Lin; Yang Xiang-Dong; Wang Hai-Yan


    The intermolecular interaction potential for methane-argon complex is calculated by local density approximation (LDA) approaches. The calculated potential has a minimum when the intermolecular distance of methane-argon complex is 6.75 a.u.; the corresponding depth of the potential is 0.0163eV which has good agreement with experimental data. We also have made a nonlinear fitting of our results for the Lennard-Jones (12-6) potential function and obtain that V(R) = 143794365.332/R12 - 3032.093/R6 (R in a.u. and V(R) in eV).

  10. Compact cryogenic source of periodic hydrogen and argon droplet beams for relativistic laser-plasma generation

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, R. A. Costa; Kalinin, A.; Kuehnel, M.; Schottelius, A. [Institut fuer Kernphysik, J. W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Hochhaus, D. C.; Neumayer, P. [EMMI Extreme Matter Institute and Research Division, GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); FIAS Frankfurt Institute for Advanced Studies, J. W. Goethe-Universitaet, Ruth-Moufang-Str. 1, 60438 Frankfurt am Main (Germany); Polz, J. [Institut fuer Optik und Quantenelektronik, Max-Wien-Platz 1, 07743 Jena (Germany); Kaluza, M. C. [Institut fuer Optik und Quantenelektronik, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz-Institut Jena, Froebelstieg 3, 07743 Jena (Germany); Grisenti, R. E. [Institut fuer Kernphysik, J. W. Goethe-Universitaet, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)


    We present a cryogenic source of periodic streams of micrometer-sized hydrogen and argon droplets as ideal mass-limited target systems for fundamental intense laser-driven plasma applications. The highly compact design combined with a high temporal and spatial droplet stability makes our injector ideally suited for experiments using state-of-the-art high-power lasers in which a precise synchronization between the laser pulses and the droplets is mandatory. We show this by irradiating argon droplets with multi-terawatt pulses.

  11. Performance of the Electronic Readout of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Abreu, H; Aleksa, M; Aperio Bella, L; Archambault, JP; Arfaoui, S; Arnaez, O; Auge, E; Aurousseau, M; Bahinipati, S; Ban, J; Banfi, D; Barajas, A; Barillari, T; Bazan, A; Bellachia, F; Beloborodova, O; Benchekroun, D; Benslama, K; Berger, N; Berghaus, F; Bernat, P; Bernier, R; Besson, N; Binet, S; Blanchard, JB; Blondel, A; Bobrovnikov, V; Bohner, O; Boonekamp, M; Bordoni, S; Bouchel, M; Bourdarios, C; Bozzone, A; Braun, HM; Breton, D; Brettel, H; Brooijmans, G; Caputo, R; Carli, T; Carminati, L; Caughron, S; Cavalleri, P; Cavalli, D; Chareyre, E; Chase, RL; Chekulaev, SV; Chen, H; Cheplakov, A; Chiche, R; Citterio, M; Cojocaru, C; Colas, J; Collard, C; Collot, J; Consonni, M; Cooke, M; Copic, K; Costa, GC; Courneyea, L; Cuisy, D; Cwienk, WD; Damazio, D; Dannheim, D; De Cecco, S; De La Broise, X; De La Taille, C; de Vivie, JB; Debennerot, B; Delagnes, E; Delmastro, M; Derue, F; Dhaliwal, S; Di Ciaccio, L; Doan, O; Dudziak, F; Duflot, L; Dumont-Dayot, N; Dzahini, D; Elles, S; Ertel, E; Escalier, M; Etienvre, AI; Falleau, I; Fanti, M; Farooque, T; Favre, P; Fayard, Louis; Fent, J; Ferencei, J; Fischer, A; Fournier, D; Fournier, L; Fras, M; Froeschl, R; Gadfort, T; Gallin-Martel, ML; Gibson, A; Gillberg, D; Gingrich, DM; Göpfert, T; Goodson, J; Gouighri, M; Goy, C; Grassi, V; Gray, J; Guillemin, T; Guo, B; Habring, J; Handel, C; Heelan, L; Heintz, H; Helary, L; Henrot-Versille, S; Hervas, L; Hobbs, J; Hoffman, J; Hostachy, JY; Hoummada, A; Hrivnac, J; Hrynova, T; Hubaut, F; Huber, J; Iconomidou-Fayard, L; Iengo, P; Imbert, P; Ishmukhametov, R; Jantsch, A; Javadov, N; Jezequel, S; Jimenez Belenguer, M; Ju, XY; Kado, M; Kalinowski, A; Kar, D; Karev, A; Katsanos, I; Kazarinov, M; Kerschen, N; Kierstead, J; Kim, MS; Kiryunin, A; Kladiva, E; Knecht, N; Kobel, M; Koletsou, I; König, S; Krieger, P; Kukhtin, V; Kuna, M; Kurchaninov, L; Labbe, J; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lamarra, D; Lampl, W; Lanni, F; Laplace, S; Laskus, H; Le Coguie, A; Le Dortz, O; Le Maner, C; Lechowski, M; Lee, SC; Lefebvre, M; Leonhardt, K; Lethiec, L; Leveque, J; Liang, Z; Liu, C; Liu, T; Liu, Y; Loch, P; Lu, J; Ma, H; Mader, W; Majewski, S; Makovec, N; Makowiecki, D; Mandelli, L; Mangeard, PS; Mansoulie, B; Marchand, JF; Marchiori, G; Martin, D; Martin-Chassard, G; Martin dit Latour, B; Marzin, A; Maslennikov, A; Massol, N; Matricon, P; Maximov, D; Mazzanti, M; McCarthy, T; McPherson, R; Menke, S; Meyer, JP; Ming, Y; Monnier, E; Mooshofer, P; Neganov, A; Niedercorn, F; Nikolic-Audit, I; Nugent, IM; Oakham, G; Oberlack, H; Ocariz, J; Odier, J; Oram, CJ; Orlov, I; Orr, R; Parsons, JA; Peleganchuk, S; Penson, A; Perini, L; Perrodo, P; Perrot, G; Perus, A; Petit, E; Pisarev, I; Plamondon, M; Poffenberger, P; Poggioli, L; Pospelov, G; Pralavorio, P; Prast, J; Prudent, X; Przysiezniak, H; Puzo, P; Quentin, M; Radeka, V; Rajagopalan, S; Rauter, E; Reimann, O; Rescia, S; Resende, B; Richer, JP; Ridel, M; Rios, R; Roos, L; Rosenbaum, G; Rosenzweig, H; Rossetto, O; Roudil, W; Rousseau, D; Ruan, X; Rudert, A; Rusakovich, N; Rusquart, P; Rutherfoord, J; Sauvage, G; Savine, A; Schaarschmidt, J; Schacht, P; Schaffer, A; Schram, M; Schwemling, P; Seguin Moreau, N; Seifert, F; Serin, L; Seuster, R; Shalyugin, A; Shupe, M; Simion, S; Sinervo, P; Sippach, W; Skovpen, K; Sliwa, R; Soukharev, A; Spano, F; Stavina, P; Straessner, A; Strizenec, P; Stroynowski, R; Talyshev, A; Tapprogge, S; Tarrade, F; Tartarelli, GF; Teuscher, R; Tikhonov, Yu; Tocut, V; Tompkins, D; Thompson, P; Tisserant, S; Todorov, T; Tomasz, F; Trincaz-Duvoid, S; Trinh, Thi N; Trochet, S; Trocme, B; Tschann-Grimm, K; Tsionou, D; Ueno, R; Unal, G; Urbaniec, D; Usov, Y; Voss, K; Veillet, JJ; Vincter, M; Vogt, S; Weng, Z; Whalen, K; Wicek, F; Wilkens, H; Wingerter-Seez, I; Wulf, E; Yang, Z; Ye, J; Yuan, L; Yurkewicz, A; Zarzhitsky, P; Zerwas, D; Zhang, H; Zhang, L; Zhou, N; Zimmer, J; Zitoun, R; Zivkovic, L


    The ATLAS detector has been designed for operation at the Large Hadron Collider at CERN. ATLAS includes electromagnetic and hadronic liquid argon calorimeters, with almost 200,000 channels of data that must be sampled at the LHC bunch crossing frequency of 40 MHz. The calorimeter electronics calibration and readout are performed by custom electronics developed specifically for these purposes. This paper describes the system performance of the ATLAS liquid argon calibration and readout electronics, including noise, energy and time resolution, and long term stability, with data taken mainly from full-system calibration runs performed after installation of the system in the ATLAS detector hall at CERN.

  12. Attosecond time delay in valence photoionization and photorecombination of argon: a TDLDA study

    CERN Document Server

    Magrakvelidze, Maia; Dixit, Gopal; Ivanov, Misha; Chakraborty, Himadri S


    We determine and analyze the quantum phases and time delays in photoionization and photorecombination of valence 3p and 3s electrons of argon using the Kohn-Sham local density functional approach. The time-dependent local density approximation (TDLDA) is used to account for the electron correlation. Resulting attosecond Wigner-Smith time delays show excellent agreements with two recent independent experiments on argon that measured the relative 3s-3p time delay in photoionization [Physical Review Letters {\\bf 106}, 143002 (2011)] and the delay in 3p photorecombination [Physical Review Letters {\\bf 112}, 153002 (2014)

  13. Heat Transfer During Evaporation of Cesium From Graphite Surface in an Argon Environment

    Directory of Open Access Journals (Sweden)

    Bespala Evgeny


    Full Text Available The article focuses on discussion of problem of graphite radioactive waste formation and accumulation. It is shown that irradiated nuclear graphite being inalienable part of uranium-graphite reactor may contain fission and activation products. Much attention is given to the process of formation of radioactive cesium on the graphite element surface. It is described a process of plasma decontamination of irradiated graphite in inert argon atmosphere. Quasi-one mathematical model is offered, it describes heat transfer process in graphite-cesium-argon system. Article shows results of calculation of temperature field inside the unit cell. Authors determined the factors which influence on temperature change.

  14. Ablation of Barrett’s esophagus using the second-generation argon plasma coagulation

    Institute of Scientific and Technical Information of China (English)


    Objective To investigate the efficacy and safety of the second-generation argon plasma coagulation (VIO APC) in ablation of Barrett’s esophagus. Methods Eighteen patients with Barrett’s esophagus (12 males, median age of 55 years, median length of 2.1 cm,1 low-grade dysplasia, 13 cases of short segment Barrett’s esophagus) received VIO APC, which was performed at a power setting of 40W and argon gas flow at 1.5-2.0 L/min, "forced" mode, in 1-3 sessions (mean 1.3). All the patients received treatment with hi...

  15. A 20-Liter Test Stand with Gas Purification for Liquid Argon Research

    CERN Document Server

    Li, Yichen; Tang, Wei; Joshi, Jyoti; Qian, Xin; Diwan, Milind; Kettell, Steve; Morse, William; Rao, Triveni; Stewart, James; Tsang, Thomas; Zhang, Lige


    We describe the design of a 20-liter test stand constructed to study fundamental properties of liquid argon (LAr). This system utilizes a simple, cost-effective gas argon (GAr) purification to achieve ultra-high purity, which is necessary to study electron transport properties in LAr. An electron drift stack with up to 25 cm length is constructed to study electron drift, diffusion, and attachment at various electric fields. A gold photocathode and a pulsed laser are used as a bright electron source. The operational performance of this system is reported.

  16. Episodic growth of Mt. Shasta, CA, documented by argon geochronology (United States)

    Calvert, A. T.; Christiansen, R. L.


    eruptive focus shifted 1.5 km north (Misery Hill) between 50-35 ka, erupting silicic andesite and mafic dacite onto all sectors of the volcano. Flank vents directly south and north erupted domes and lavas 20-15 ka. At ~11 ka a voluminous episode began with the subplinian Red Banks pumice followed shortly by Shastina andesite/dacite lavas, domes, and pyroclastic flows, and soon after by Black Butte flank dacites. Existing 14C geochronology, and stratigraphic studies of the deposits show no eruptive breaks and constrain the episode to have lasted less than a few hundred years. Subsequent Holocene eruptions all issued from the modern summit (Hotlum cone), producing at least 10 large lava flows directed toward the NE sector, along with pyroclastic and debris flows, and a summit dome. Preliminary argon geochronology in progress dates summit lavas at 8.8, 5.8 and 4.7 ka.

  17. ArgonCube: a novel, fully-modular approach for the realization of large-mass liquid argon TPC neutrino detectors

    CERN Document Server

    Amsler, C; Asaadi, J; Auger, M; Barbato, F; Bay, F; Bishai, M; Bleiner, D; Borgschulte, A; Bremer, J; Cavus, E; Chen, H; De Geronimo, G; Ereditato, A; Fleming, B; Goldi, D; Hanni, R; Kose, U; Kreslo, I; La Mattina, F; Lanni, F; Lissauer, D; Luthi, M; Lutz, P; Marchionni, A; Mladenov, D; Nessi, M; Noto, F; Palamara, O; Raaf, J L; Radeka, V; Rudolph Von Rohr, Ch; Smargianaki, D; Soderberg, M; Strauss, Th; Weber, M; Yu, B; Zeller, G P; Zeyrek, M; CERN. Geneva. SPS and PS Experiments Committee; SPSC


    The Liquid Argon Time Projection Chamber is a prime candidate detector for future neutrino oscillation physics experiments, underground neutrino observatories and proton decay searches. A large international project based on this technology is currently being considered at the future LBNF facility in the United States on the very large mass scale of 40 kton. In this document, following the long standing R&D work conducted over the last years in several laboratories in Europe and in the United States, we intend to propose a novel Liquid Argon TPC approach based on a fully-modular, innovative design, the ArgonCube. The related R&D work will proceed along two main directions; one aimed at on the assessment of the proposed modular detector design, the other on the exploitation of new signal readout methods. Such a strategy will provide high performance while being cost-effective and robust at the same time. According to our plans, we will firstly realize a detector prototype hosted in a cryostat that is a...

  18. Numerical Simulation of the Thermal Conductivity of Thermal Insulation Pipe by Vacuum and High Pressure Argon Pre-filled

    Institute of Scientific and Technical Information of China (English)


    [Abstract]By analyzing the insulation effect of argon-filled tubing and vacuum-insulated tubing before and after hydrogen permeation respectively, a conclusion can be drawn that the insulated tubing filled with high pressure argon is better than the vacuum insulated tubing considering the lifetime and heat insulation effect.

  19. [The analysis for silver iodide fine particles of TLC/FTIR matrix]. (United States)

    Zhu, Qing; Su, Xiao; Wu, Hai-Jun; Zhai, Yan-Jun; Xia, Jin-Ming; Buhebate; Xu, Yi-Zhuang; Wu, Jin-Guang


    In situ TLC/FTIR technique has tremendous potential in the analysis of complex mixtures. However, the progress in this technique was quite slow. The reason is that conventional stationary phase has strong absorption in FTIR spectrum and thus brings about severe interference in the detection of samples. To solve the problem, the authors propose to use AgI fine particles as stationary phase of TLC plate. The reasons are as follows: Silver iodide fine particles have no absorbance in an IR region between 4 000 and 800 cm(-1), therefore, the interference caused by IR absorption of stationary phase can be removed. Moreover, silver iodide is stable and insolvable in water and organic solvents and thus it will not be destroyed by mobile phase or react with samples during the TLC separation. To improve TLC separation efficiency and quality of FTIR spectra during the TLC/FTIR analysis, the size of AgI particles should be below 500 nm. We used orthogonal design approach to optimize the experimental condition to AgI particles so that the average size of AgI particles is around 100 nm. No absorption of impurity or adsorbed water were observed in FTIR spectrum of the AgI particles the authors used "settlement volatilization method" to prepare TLC plate without using polymeric adhesive that may bring about significant interference in FTIR analysis. Preliminary TLC experiments proved that the TLC plate using AgI fine particles as stationary phase can separate mixtures of rhodamine B and bromophenol blue successfully. Applications of silver iodide fine particles as stationary phase have bright perspective in the development of in-situ TLC/FTIR analysis techniques.

  20. Titrimetric and spectrophotometric assay of diethylcarbamazine citrate in formulations using iodate and iodide mixture as reagents

    Directory of Open Access Journals (Sweden)

    Nagaraju Swamy


    Full Text Available One titrimetric and two spectrophotometric methods are proposed for the determination of diethylcarbamazine citrate (DEC in bulk drug and in formulations using potassium iodate and potassium iodide as reagent. The methods employ the well-known analytical reaction between iodate and iodide in the presence of acid. In titrimetry (method A, the drug was treated with a measured excess of thiosulfate in the presence of unmeasured excess of iodate-iodide mixture and after a standing time of 10 min, the surplus thiosulfate was determined by back titration with iodine towards starch end point. Titrimetric assay is based on a 1:3 reaction stoichiometry between DEC and iodine and the method is applicable over 2.0-10.0 mg range. The liberated iodine is measured spectrophotometrically at 370 nm (method B or the iodine-starch complex measured at 570 nm (method C. In both methods, the absorbance is found to be linearly dependent on the concentration of iodine, which in turn is related to DEC concentration. The calibration curves are linear over 2.5-50 and 2.5-30 µg mL-1 DEC for method B and method C, respectively. The calculated molar absorptivity and Sandell sensitivity values were 6.48×103 L mol-1 cm-1 and 0.0604 µg cm-2, respectively, for method B, and their respective values for method C are 9.96×103 L mol-1 cm-1 and 0.0393 µg cm-2. The intra-day and inter-day accuracy and precision studies were carried out according to the ICH guidelines. The methods were successfully applied to the analysis of DEC formulations.

  1. Equations of state for crystalline zirconium iodide: The role of dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Matthew L., E-mail: [Materials Science and Technology, MST-6, Los Alamos National Lab, Los Alamos, NM (United States); Taylor, Christopher D. [Materials Science and Technology, MST-6, Los Alamos National Lab, Los Alamos, NM (United States)


    We present the first-principle equations of state of several zirconium iodides, ZrI{sub 2}, ZrI{sub 3}, and ZrI{sub 4}, computed using density functional theory methods that apply various methods for introducing the dispersion correction. Iodides formed due to reaction of molecular or atomic iodine with zirconium and zircaloys are of particular interest due to their application to the cladding material used in the fabrication of nuclear fuel rods. Stress corrosion cracking (SCC), associated with fission product chemistry with the clad material, is a major concern in the life cycle of nuclear fuels, as many of the observed rod failures have occurred due to pellet–cladding chemical interactions (PCCI) [A. Atrens, G. Dannhäuser, G. Bäro, Stress-corrosion-cracking of zircaloy-4 cladding tubes, Journal of Nuclear Materials 126 (1984) 91–102; P. Rudling, R. Adamson, B. Cox, F. Garzarolli, A. Strasser, High burn-up fuel issues, Nuclear Engineering and Technology 40 (2008) 1–8]. A proper understanding of the physical properties of the corrosion products is, therefore, required for the development of a comprehensive SCC model. In this particular work, we emphasize that, while existing modeling techniques include methods to compute crystal structures and associated properties, it is important to capture intermolecular forces not traditionally included, such as van der Waals (dispersion) correction. Furthermore, crystal structures with stoichiometries favoring a high I:Zr ratio are found to be particularly sensitive, such that traditional density functional theory approaches that do not incorporate dispersion incorrectly predict significantly larger volumes of the lattice. This latter point is related to the diffuse nature of the iodide electron cloud.

  2. The sphingosine 1-phosphate receptor modulator FTY720 prevents iodide-induced autoimmune thyroiditis in non-obese diabetic mice. (United States)

    Morohoshi, Kazuki; Osone, Michiko; Yoshida, Katsumi; Nakagawa, Yoshinori; Hoshikawa, Saeko; Ozaki, Hiroshi; Takahashi, Yurie; Ito, Sadayoshi; Mori, Kouki


    FTY720 is an immunomodulator that alters migration and homing of lymphocytes via sphingosine 1-phosphate receptors. This compound has been shown to be effective in suppressing autoimmune diseases in experimental and clinical settings. In the present study, we tested whether FTY720 prevented autoimmune thyroiditis in iodide-treated non-obese diabetic (NOD) mice, a model of Hashimoto's thyroiditis (HT) in humans. Mice were given 0.05% iodide water for 8 weeks, and this treatment effectively induced thyroiditis. Iodide-treated mice were injected intraperitoneally with either saline or FTY720 during the iodide treatment. FTY720 clearly suppressed the development of thyroiditis and reduced serum anti-thyroglobulin antibody levels. The number of circulating lymphocytes and spleen cells including CD4(+) T cells, CD8(+) T cells, and CD4(+)Foxp3(+) T cells was decreased in FTY720-treated mice. Our results indicate that FTY720 has immunomodulatory effects on iodide-induced autoimmune thyroiditis in NOD mice and may be a potential candidate for use in the prevention of HT.

  3. Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation between Morphology Evolution and Photovoltaic Performance. (United States)

    Hsieh, Tsung-Yu; Huang, Chi-Kai; Su, Tzu-Sen; Hong, Cheng-You; Wei, Tzu-Chien


    Crystal morphology and structure are important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electronic, and photovoltaic devices. In particular, crystal growth and dissolution are two major phenomena in determining the morphology of methylammonium lead iodide perovskite in the sequential deposition method for fabricating a perovskite solar cell. In this report, the effect of immersion time in the second step, i.e., methlyammonium iodide immersion in the morphological, structural, optical, and photovoltaic evolution, is extensively investigated. Supported by experimental evidence, a five-staged, time-dependent evolution of the morphology of methylammonium lead iodide perovskite crystals is established and is well connected to the photovoltaic performance. This result is beneficial for engineering optimal time for methylammonium iodide immersion and converging the solar cell performance in the sequential deposition route. Meanwhile, our result suggests that large, well-faceted methylammonium lead iodide perovskite single crystal may be incubated by solution process. This offers a low cost route for synthesizing perovskite single crystal.

  4. Electrical properties of solid iodo mercurates resulting from the reaction of HgI2 with alcaline iodides (United States)

    Ponpon, J. P.; Amann, M.


    Potassium iodide solutions are currently used during the fabrication process of mercuric iodide based nuclear radiation detectors. However, KI treatment leaves the HgI2 surface covered with a residual compound (namely the potassium tri-iodo mercurate) which has a significant influence on the surface properties and stability of mercuric iodide devices and therefore on the detectors characteristics. Looking for other solutions to etch mercuric iodide, we found it interesting to investigate the electrical properties of the compounds which may form when etching HgI2 in NH4I, NaI, and RbI. For this purpose, solid iodo mercurates with the cations ammonium, sodium, and rubidium, have been prepared by reacting HgI2 with the solutions of interest. Study of the electrical properties of these samples and comparison with those of potassium tri-iodo mercurate ones, especially with respect to humidity, indicates noticeable stability differences in presence of water vapour. This could have interesting consequences on the surface cleaning of mercuric iodide.

  5. A novel vortex-assisted liquid-liquid microextraction approach using auxiliary solvent: Determination of iodide in mineral water samples. (United States)

    Zaruba, Serhii; Vishnikin, Andriy B; Andruch, Vasil


    A novel vortex-assisted liquid-liquid microextraction (VA-LLME) for determination of iodide was developed. The method includes the oxidation of iodide with iodate in the presence of hydrochloric acid followed by VA-LLME of the ion-pair formed between ICl2(-) and Astra Phloxine reagent (AP) and subsequent absorbance measurement at 555nm. The appropriate experimental conditions were investigated and found to be: 5mL of sample, 0.27molL(-)(1) HCl, 0.027mmolL(-1) KIO3 as the oxidation agent, 250μL of extraction mixture containing amyl acetate as the extraction solvent and carbon tetrachloride as the auxiliary solvent (1:1, v/v), 0.04mmolL(-1) AP reagent, vortex time: 20s at 3000rpm, centrifugation: 4min at 3000rpm. The calibration plot was linear in the range 16.9-169μg L(-1) of iodide, with a correlation coefficient (R(2)) of 0.996, and the relative standard deviation ranged from 1.9 to 5.7%. The limit of detection (LOD) and limit of quantification (LOQ) were 1.75 and 6.01μgL(-)(1) of iodide, respectively. The suggested procedure was applied for determination of iodide in real mineral water samples.

  6. An iodine supplementation of tomato fruits coated with an edible film of the iodide-doped chitosan. (United States)

    Limchoowong, Nunticha; Sricharoen, Phitchan; Techawongstien, Suchila; Chanthai, Saksit


    In general, the risk of numerous thyroid cancers inevitably increases among people with iodine deficiencies. An iodide-doped chitosan (CT-I) solution was prepared for dipping tomatoes to coat the fresh surface with an edible film (1.5 μm), thereby providing iodine-rich fruits for daily intake. Characterisation of the thin film was conducted by FTIR and SEM. Stability of the CT-I film was studied via water immersion at various time intervals, and no residual iodide leached out due to intrinsic interactions between the cationic amino group of chitosan and iodide ions. Moreover, the iodide supplement exhibited no effect on the antioxidant activity of tomatoes. The iodine content in the film-coated tomato was determined by ICP-OES. The tomato coating with 1.5% (w/v) CT-I contained approximately 0.4 μg iodide per gram fresh weight. In addition, the freshness and storability of iodine-doped tomatoes were also maintained for shelf-life concerns.

  7. Microwave Spectra and Molecular Structures of 2-CHLORO-1,1-DIFLUOROETHYLENE and its Complex with Argon (United States)

    Messinger, Joseph P.; Knowlton, Gregory S.; Sundheim, Kathryn M.; Leung, Helen O.; Marshall, Mark D.


    Chirped-pulse and Balle-Flygare spectrometers are used to obtain Fourier transform microwave spectra of 2-chloro-1,1-difluoroethylene and its complex with argon from 5.5 to 21.0 GHz, allowing for the geometries of both species to be determined. A total of six isotopologues are observed each for the monomer and dimer, including the most abundant species, the singly-substituted ^{37}Cl and two singly-substituted ^{13}C isotopologues in natural abundance, and deuterated versions of both the ^{35}Cl and ^{37}Cl species using an isotopically enriched sample. Similar to the previously studied argon-haloethylene complexes, the argon shows a preference for close contact with heavier atoms. Tunneling of the argon between two equivalent non-planar structures, similar to that in argon-cis-1,2-difluoroethylene, is not observed in this complex.

  8. Towards Renewable Iodide Sources for Electrolytes in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Iryna Sagaidak


    Full Text Available A novel family of iodide salts and ionic liquids based on different carbohydrate core units is herein described for application in dye-sensitized solar cell (DSC. The influence of the molecular skeleton and the cationic structure on the electrolyte properties, device performance and on interfacial charge transfer has been investigated. In combination with the C106 polypyridyl ruthenium sensitizer, power conversion efficiencies lying between 5.0% and 7.3% under standard Air Mass (A.M. 1.5G conditions were obtained in association with a low volatile methoxypropionitrile (MPN-based electrolyte.

  9. Performance of neutron activation analysis in the evaluation of bismuth iodide purification methodology

    Energy Technology Data Exchange (ETDEWEB)

    Armelin, Maria Jose A.; Ferraz, Caue de Mello; Hamada, Margarida M., E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica


    Bismuth tri-iodide (BrI{sub 3}) is an attractive material for using as a semiconductor. In this paper, BiI{sub 3} crystals have been grown by the vertical Bridgman technique using commercially available powder. The impurities were evaluated by instrumental neutron activation analysis (INAA). The results show that INAA is an analytical method appropriate for monitoring the impurities of: Ag, As, Br, Cr, K, Mo, Na and Sb in the various stages of the BiI{sub 3} purification methodology. (author)

  10. Introduction to fifth international workshop on mercuric iodide nuclear radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M.


    Mercuric iodide is a wide bandgap semiconductor, with Eg approx. = 2.14 eV at room temperature. Therefore, HgI/sub 2/ is totally different from the well-studied, narrower gap, elemental semiconductors such as Si and Ge, and also different in its physical and chemical properties from the known semiconductor binary zinc-blend compounds such as GaAs or InP. The purpose of studies in the last decade was to further our understanding of HgI/sub 2/; recent progress is reported. (WHK)

  11. Effects of Aromatic Ammoniums on Methyl Ammonium Lead Iodide Hybrid Perovskite Materials

    Directory of Open Access Journals (Sweden)

    Jianli Yang


    Full Text Available The introduction of bulky ammoniums into methyl ammonium lead iodide hybrid perovskites (MAPbI3 has emerged as a promising strategy to improve the properties of these materials. In the present work, we studied the effects of several aromatic ammoniums onto the structural, electronic, and optical properties of MAPbI3. Although powder XRD data suggest that the bulky cations are not involved in the bulk phase of the MAPbI3, a surprisingly large effect of the bulky cations onto the photoluminescence properties was observed.

  12. Nucleophilic addition to the ethynyl group in ethynylestradiol catalyzed by crown ether-copper (1) iodide. (United States)

    Chen, S H; Luo, G R; Chang, X Z; Zhao, H M


    A new and convenient synthetic route to acetylation of estrogens is described. Benzo-15-crown-5 and cuprous iodide-mixed catalyst catalyzed the nucleophilic addition of 2,4-dibromoethynylestradiol, resulting in the formation of a new compound, 2,4-dibromo-17 alpha-acetylestradiol, of which the structure was characterized by infrared, UV, 1H nuclear magnetic resonance, mass spectra, and elemental analysis. It was found that the yield of this approach is much higher than that obtained in the hydration of usual acetylenic compounds.

  13. Subcutaneous Zygomycosis: A Report of One Case Responding Excellently to Potassium Iodide. (United States)

    Mondal, Ashim Kr; Saha, Abhijit; Seth, Joly; Mukherjee, Soumya


    Subcutaneous Zygomycosis is a rare opportunistic fungal infection caused by Basidiobolus ranarum. Though this entity is endemic in South India, limited numbers of cases have been reported from this part of the country. We report a case of subcutaneous zygomycosis in a 25 year old lady who presented with a nontender, firm to hard swelling over the upper-left arm. Finger was easily inserted below the indurated edge. Histopathology revealed suppurative granuloma with aseptate hyphae. Patient responded excellently to saturated solution of potassium iodide in subsequent visits.

  14. Spectroscopy of stop bands in artificial opals filled with an alcohol solution of potassium iodide (United States)

    Gorelik, V. S.; Filatov, V. V.


    The spectral position of the stop bands in photonic crystals based on artificial opals filled with an alcohol solution of potassium iodide is investigated. The energy-band structure of samples with quartz globules 230 nm in diameter is modeled based on the dispersion equation. The spectral position of the stop bands in the [111] direction at different solution concentrations is determined. The conditions for forbidden-band "collapse" are established. The possibility of applying artificial opals in optical cavities of lasers of different types is analyzed.

  15. Subcutaneous zygomycosis: A report of one case responding excellently to potassium iodide

    Directory of Open Access Journals (Sweden)

    Ashim Kr Mondal


    Full Text Available Subcutaneous Zygomycosis is a rare opportunistic fungal infection caused by Basidiobolus ranarum. Though this entity is endemic in South India, limited numbers of cases have been reported from this part of the country. We report a case of subcutaneous zygomycosis in a 25 year old lady who presented with a nontender, firm to hard swelling over the upper-left arm. Finger was easily inserted below the indurated edge. Histopathology revealed suppurative granuloma with aseptate hyphae. Patient responded excellently to saturated solution of potassium iodide in subsequent visits.

  16. Atypical Cutaneous Sporotrichosis in an Immunocompetent Adult: Response to Potassium Iodide. (United States)

    Gandhi, Nikita; Chander, Ram; Jain, Arpita; Sanke, Sarita; Garg, Taru


    Cutaneous sporotrichosis, also known as "Rose Gardener's disease," caused by dimorphic fungus Sporothrix schenkii, is usually characterized by indolent nodular or nodulo-ulcerative lesions arranged in a linear pattern. We report bizarre nonlinear presentation of Sporotrichosis, in an immunocompetent adult occurring after a visit to Amazon rain forest, speculating infection with more virulent species of Sporothrix. The diagnosis was reached with the help of periodic acid-Schiff positive yeast cells and cigar shaped bodies seen in skin biopsy along with the therapeutic response to potassium iodide.

  17. Successful Therapy of Refractory Erythema Nodosum Associated with Crohn's Disease Using Potassium Iodide

    Directory of Open Access Journals (Sweden)

    John K Marshall


    Full Text Available Erythema nodosum is a common extraintestinal manifestation of Crohn's disease. While mild skin involvement often responds to conservative management, severe or refractory cases may require systemic corticosteroid or immunosuppressive therapy. This report describes successful treatment of severe, refractory erythema nodosum associated with Crohn's colitis using oral potassium iodide. While the mechanism of action of this agent is poorly understood, it appears to be an effective and nontoxic therapy for Crohn's-related erythema nodosum and warrants further evaluation in a placebo controlled trial.

  18. Growth and characterization of NLO crystal: L-leucine phthalic acid potassium iodide


    Jagadeesh M.R.; Kumar H .M. Suresh; Kumari R. Ananda


    A new semi-organic non linear optical crystal, L-leucine phthalic acid potassium iodide (LLPPI) has been grown from an aqueous solution by slow evaporation method. The grown crystals were subjected to different characterizations, such as single crystal XRD, FT-IR, UV-Vis, TGA, SEM, EDAX, micro hardness, dielectric and powder SHG. Single crystal structure was determined from X-ray diffraction data and it revealed that the crystal belongs to triclinic system with the space group P1. The vibrati...

  19. Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites



    This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see The introduction of a mobile and polarized organic moiety as a cation in 3D lead-iodide perovskites brings fascinating optoelectronic properties to t...

  20. Atypical cutaneous sporotrichosis in an immunocompetent adult: Response to potassium iodide

    Directory of Open Access Journals (Sweden)

    Nikita Gandhi


    Full Text Available Cutaneous sporotrichosis, also known as “Rose Gardener's disease,” caused by dimorphic fungus Sporothrix schenkii, is usually characterized by indolent nodular or nodulo-ulcerative lesions arranged in a linear pattern. We report bizarre nonlinear presentation of Sporotrichosis, in an immunocompetent adult occurring after a visit to Amazon rain forest, speculating infection with more virulent species of Sporothrix. The diagnosis was reached with the help of periodic acid-Schiff positive yeast cells and cigar shaped bodies seen in skin biopsy along with the therapeutic response to potassium iodide.

  1. Ex vivo and in vivo neuroprotection induced by argon when given after an excitotoxic or ischemic insult.

    Directory of Open Access Journals (Sweden)

    Hélène N David

    Full Text Available In vitro studies have well established the neuroprotective action of the noble gas argon. However, only limited data from in vivo models are available, and particularly whether postexcitotoxic or postischemic argon can provide neuroprotection in vivo still remains to be demonstrated. Here, we investigated the possible neuroprotective effect of postexcitotoxic-postischemic argon both ex vivo in acute brain slices subjected to ischemia in the form of oxygen and glucose deprivation (OGD, and in vivo in rats subjected to an intrastriatal injection of N-methyl-D-aspartate (NMDA or to the occlusion of middle-cerebral artery (MCAO. We show that postexcitotoxic-postischemic argon reduces OGD-induced cell injury in brain slices, and further reduces NMDA-induced brain damage and MCAO-induced cortical brain damage in rats. Contrasting with its beneficial effect at the cortical level, we show that postischemic argon increases MCAO-induced subcortical brain damage and provides no improvement of neurologic outcome as compared to control animals. These results extend previous data on the neuroprotective action of argon. Particularly, taken together with previous in vivo data that have shown that intraischemic argon has neuroprotective action at both the cortical and subcortical level, our findings on postischemic argon suggest that this noble gas could be administered during but not after ischemia, i.e. before but not after reperfusion has occurred, in order to provide cortical neuroprotection and to avoid increasing subcortical brain damage. Also, the effects of argon are discussed as regards to the oxygen-like chemical, pharmacological, and physical properties of argon.

  2. Liquid argon dielectric breakdown studies with the MicroBooNE purification system

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; Carls, B.; James, C.; Johnson, B.; Jostlein, H.; Lockwitz, S.; Lundberg, B.; Raaf, J. L.; Rameika, R.; Rebel, B.; Zeller, G. P.; Zuckerbrot, M.


    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per-trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  3. Test beam results of a stereo preshower integrated in the liquid argon accordion calorimeter

    CERN Document Server

    Davis, R; Greenious, G; Kitching, P; Olsen, B; Pinfold, James L; Rodning, N L; Boos, E; Zhautykov, B O; Aubert, Bernard; Bazan, A; Beaugiraud, B; Boniface, J; Colas, Jacques; Eynard, G; Jézéquel, S; Le Flour, T; Linossier, O; Nicoleau, S; Sauvage, G; Thion, J; Van den Plas, D; Wingerter-Seez, I; Zitoun, R; Zolnierowski, Y; Chmeissani, M; Fernández, E; Garrido, L; Martínez, M; Padilla, C; Citterio, M; Gordon, H A; Lissauer, D; Ma, H; Makowiecki, D S; Radeka, V; Rahm, David Charles; Rescia, S; Stephani, D; Takai, H; Baisin, L; Berset, J C; Chevalley, J L; Gianotti, F; Gildemeister, O; Marin, C P; Nessi, Marzio; Poggioli, Luc; Richter, W; Vuillemin, V; Baze, J M; Delagnes, E; Gosset, L G; Lavocat, P; Lottin, J P; Mansoulié, B; Meyer, J P; Renardy, J F; Schwindling, J; Simion, S; Taguet, J P; Teiger, J; Walter, C; Collot, J; de Saintignon, P; Hostachy, J Y; Mahout, G; Barreiro, F; Del Peso, J; García, J; Hervás, L; Labarga, L; Romero, P; Scheel, C V; Chekhtman, A; Cousinou, M C; Dargent, P; Dinkespiler, B; Etienne, F; Fassnacht, P; Fouchez, D; Martin, L; Miotto, A; Monnier, E; Nagy, E; Olivetto, C; Tisserant, S; Battistoni, G; Camin, D V; Cavalli, D; Costa, G; Cozzi, L; Fedyakin, N N; Ferrari, A; Mandelli, L; Mazzanti, M; Perini, L; Resconi, S; Sala, P R; Beaudoin, G; Depommier, P; León-Florián, E; Leroy, C; Roy, P; Augé, E; Breton, D; Chase, Robert L; Chollet, J C; de La Taille, C; Fayard, Louis; Fournier, D; González, J; Hrisoho, A T; Jacquier, Y; Merkel, B; Nikolic, I A; Noppe, J M; Parrour, G; Pétroff, P; Puzo, P; Richer, J P; Schaffer, A C; Seguin-Moreau, N; Serin, L; Tisserand, V; Veillet, J J; Vichou, I; Canton, B; David, J; Genat, J F; Imbault, D; Le Dortz, O; Savoy-Navarro, Aurore; Schwemling, P; Eek, L O; Lund-Jensen, B; Söderqvist, J; Astbury, Alan; Keeler, Richard K; Lefebvre, M; Robertson, S; White, J


    This paper describes the construction of an integrated preshower within the RD3 liquid argon accordion calorimeter. It has a stereo view which enables the measurement of two transverse coordinates. The prototype was tested at CERN with electrons, photons and muons to validate its capability to work at LHC ( Energy resolution, impact point resolution, angular resolution, $\\pi^o$/$\\gamma$ rejection ).

  4. Low energy (e,2e) ionization of Argon in the equal energy sharing geometry

    CERN Document Server

    Mazevet, S; Langlois, J M; Tweed, R J; Robaux, O; Tannous, C; Fakhreddine, K


    Quantum Defect theory is a well established theoretical concept in modern spectroscopy. We show that this approach is useful in electron impact ionization problems where state of the art theoretical methods are presently restricted mostly to simple atomic targets. For the well documented Argon ionization case in equal energy sharing geometry the approach suggested leads to significant improvements compared to previous calculations.

  5. Removal of Pendant Groups of Vinyl Polymers by Argon Plasma Treatment

    NARCIS (Netherlands)

    Groenewoud, L.M.H.; Terlingen, J.G.A.; Engbers, G.H.M.; Feijen, J.


    Poly(acrylic acid) (PAAc) and poly(vinyl chloride) (PVC) were treated with an argon plasma to create unsaturated bonds at the surface. By use of X-ray photoelectron spectroscopy and Fourier transform infrared measurements, it was shown that the pendant groups of these polymers are removed by the arg

  6. Effect of Low Electric Fields on Alpha Scintillation Light Yield in Liquid Argon

    CERN Document Server

    Agnes, P; Alexander, T; Alton, A K; Asner, D M; Back, H O; Baldin, B; Biery, K; Bocci, V; Bonfini, G; Bonivento, W; Bossa, M; Bottino, B; Brigatti, A; Brodsky, J; Budano, F; Bussino, S; Cadeddu, M; Cadoni, M; Calaprice, F; Canci, N; Candela, A; Caravati, M; Cariello, M; Carlini, M; Catalanotti, S; Cavalcante, P; Chepurnov, A; Cicalò, C; Cocco, A G; Covone, G; D'Angelo, D; D'Incecco, M; Davini, S; De Cecco, S; De Deo, M; De Vincenzi, M; Derbin, A; Devoto, A; Di Eusanio, F; Di Pietro, G; Dionisi, C; Edkins, E; Empl, A; Fan, A; Fiorillo, G; Fomenko, K; Forster, G; Franco, D; Gabriele, F; Galbiati, C; Giagu, S; Giganti, C; Giovanetti, G K; Goretti, A M; Granato, F; Gromov, M; Guan, M; Guardincerri, Y; Hackett, B R; Herner, K; Hughes, D; Humble, P; Hungerford, E V; Ianni, A; James, I; Johnson, T N; Jollet, C; Keeter, K; Kendziora, C L; Koh, G; Korablev, D; Korga, G; Kubankin, A; Li, X; Lissia, M; Loer, B; Lombardi, P; Longo, G; Ma, Y; Machulin, I N; Mandarano, A; Mari, S M; Maricic, J; Marini, L; Martoff, C J; Meregaglia, A; Meyers, P D; Milincic, R; Miller, J D; Montanari, D; Monte, A; Mount, B J; Muratova, V N; Musico, P; Napolitano, J; Agasson, A Navrer; Odrowski, S; Oleinik, A; Orsini, M; Ortica, F; Pagani, L; Pallavicini, M; Pantic, E; Parmeggiano, S; Pelczar, K; Pelliccia, N; Pocar, A; Pordes, S; Pugachev, D A; Qian, H; Randle, K; Ranucci, G; Razeti, M; Razeto, A; Reinhold, B; Renshaw, A L; Rescigno, M; Riffard, Q; Romani, A; Rossi, B; Rossi, N; Rountree, D; Sablone, D; Saggese, P; Sands, W; Savarese, C; Schlitzer, B; Segreto, E; Semenov, D A; Shields, E; Singh, P N; Skorokhvatov, M D; Smirnov, O; Sotnikov, A; Stanford, C; Suvorov, Y; Tartaglia, R; Tatarowicz, J; Testera, G; Tonazzo, A; Trinchese, P; Unzhakov, E V; Verducci, M; Vishneva, A; Vogelaar, B; Wada, M; Walker, S; Wang, H; Wang, Y; Watson, A W; Westerdale, S; Wilhelmi, J; Wojcik, M M; Xiang, X; Xiao, X; Xu, J; Yang, C; Zhong, W; Zhu, C; Zuzel, G


    Measurements were made of scintillation light yield of alpha particles from the $^{222}$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a $\\sim$2% increase in light yield compared to alphas in no field.

  7. Arc Root Motions in an Argon-Hydrogen Direct-Current Plasma Torch at Reduced Pressure

    Institute of Scientific and Technical Information of China (English)

    HUANG He-Ji; PAN Wen-Xia; WU Cheng-Kang


    Arc root motions in generating dc argon hydrogen plasma at reduced pressure are optically observed using a high-speed video camera. The time resolved angular position of the arc root attachment point is measured and analysed. The arc root movement is characterized as a chaotic and jumping motion along the circular direction on the anode surface.

  8. Liquid Argon Dielectric Breakdown Studies with the MicroBooNE Purification System

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R. [Fermilab; Carls, B. [Fermilab; James, C. [Fermilab; Johnson, B. [Fermilab; Jostlein, H. [Fermilab; Lockwitz, S. [Fermilab; Lundberg, B. [Fermilab; Raaf, J. L. [Fermilab; Rameika, R. [Fermilab; Rebel, B. [Fermilab; Zeller, G. P. [Fermilab; Zuckerbrot, M. [Fermilab


    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per-trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  9. CT assessment of liver hemodynamics in patients with hepatocellular carcinoma after argon-helium cryoablation

    Institute of Scientific and Technical Information of China (English)

    Xue-Jia Hao; Jin-Ping Li; Hui-Jie Jiang; Da-Qing Li; Zai-Sheng Ling


    BACKGROUND: Assessment  of  tumor  response  after  argon-helium  cryoablation  is  critical  in  guiding  future  therapy  for unresectable  hepatocellular  carcinoma.  This  study  aimed  to evaluate  liver  hemodynamics  in  hepatocellular  carcinoma after  argon-helium  cryoablation  with  computed  tomography perfusion. METHODS: The  control  group  comprised  40  volunteers without liver disease.  The  experimental  group  was  composed of  15  patients  with  hepatocellular  carcinoma  treated  with argon-helium  cryoablation.  Computed  tomography  perfusion parameters were measured: hepatic blood flow, hepatic blood volume,  mean  transit  time,  permeability  of  capillary  vessel surface, hepatic arterial fraction, hepatic arterial perfusion, and hepatic portal perfusion. RESULTS: After  treatment,  in  the  tumor  foci,  permeability of  capillary  vessel  surface  was  higher,  and  hepatic  blood flow,  hepatic  blood  volume,  hepatic  arterial  fraction,  and hepatic  arterial  perfusion  values  were  lower  (P0.05). CONCLUSION: Computed tomography perfusion can evaluate tumor response after argon-helium cryoablation.

  10. First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R.; et al.


    Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino ($\

  11. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian


    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set ...

  12. Liquid Argon Dielectric Breakdown Studies with the MicroBooNE Purification System

    CERN Document Server

    Acciarri, R; James, C; Johnson, B; Jostlein, H; Lockwitz, S; Lundberg, B; Raaf, J L; Rameika, R; Rebel, B; Zeller, G P; Zuckerbrot, M


    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per- trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  13. A liquid argon calorimeter prototype for forward region at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Artamonov, A. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation); Epstein, V. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation); Gorbunov, P. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation); Jemanov, V. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation); Khovansky, V. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation); Kuchenkov, A. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation); Kruchinin, S. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation); Maslennikov, A. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation); Rjabinin, M. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation); Shatalov, P. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation); Vinogradov, V. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation); Zaitsev, V. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation); Zeldovich, S. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation); Zuckerman, I. [Institut Teoreticheskoj i Ehksperimental`noj Fiziki, Moscow (Russian Federation)


    We report on the design and on beam test results of a liquid argon calorimeter prototype. This technology was proposed as an option for the forward region of an experiment at the future Large Hadron Collider (LHC) at CERN. The measurements were performed using electrons from the ITEP PS with an energy range of 1 to 5 GeV. (orig.).

  14. First Observation of Low Energy Electron Neutrinos in a Liquid Argon Time Projection Chamber

    CERN Document Server

    Acciarri, R; Asaadi, J; Baller, B; Bolton, T; Bromberg, C; Cavanna, F; Church, E; Edmunds, D; Ereditato, A; Farooq, S; Fitzpatrick, R S; Fleming, B; Hackenburg, A; Horton-Smith, G; James, C; Lang, K; Luo, X; Mehdiyev, R; Page, B; Palamara, O; Rebel, B; Schukraft, A; Scanavini, G; Soderberg, M; Spitz, J; Szelc, A M; Weber, M; Yang, T; Zeller, G P


    Liquid argon time projection chambers (LArTPCs) produce remarkable fidelity in the observation of neutrino interactions. The superior capabilities of such detectors to reconstruct the spatial and calorimetric information of neutrino events have made them the detectors of choice in a number of experiments, specifically those looking to observe electron neutrino ($\

  15. Characterization of an atmospheric double arc argon-nitrogen plasma source (United States)

    Tu, X.; Chéron, B. G.; Yan, J. H.; Yu, L.; Cen, K. F.


    In the framework of studies devoted to hazardous waste destruction, an original dc double anode plasma torch has been designed and tested, which produces an elongated, weak fluctuation and reproducible plasma jet at atmospheric pressure. The arc instabilities and dynamic behavior of the double arc argon-nitrogen plasma jet are investigated through the oscillations of electrical signals by combined means of fast Fourier transform and Wigner distribution. In our experiment, the restrike mode is identified as the typical fluctuation behavior in an argon-nitrogen plasma jet. The Fourier spectra and Wigner distributions exhibit two characteristic frequencies of 150 Hz and 4.1 kHz, which reveals that the nature of fluctuations in the double arc argon-nitrogen plasma can be ascribed to the undulation of the power supply and both arc roots motion on the anode channels. In addition, the microscopic properties of the plasma jet inside and outside the arc chamber are investigated by means of optical emission spectroscopy, which yields excitation, electronic, rotational, and vibrational temperatures, as well as the electron number density. The results allow us to examine the validity criteria of a local thermodynamic equilibrium (LTE) state in the plasma arc. The measured electron densities are in good agreement with those calculated from the LTE model, which indicates that the atmospheric double arc argon-nitrogen plasma in the core region is close to the LTE state under our experimental conditions.

  16. Collisional-Radiative Modeling of Free-Burning Arc Plasma in Argon (United States)


    COLLISIONAL-RADIATIVE MODELING OF FREE-BURNING ARC PLASMA IN ARGON M. Baeva  , D. Uhrlandt, S. Gorchakov Leibniz Institute for Plasma...S) AND ADDRESS(ES) Leibniz Institute for Plasma Science and Technology, Felix-Hausdorff-Strasse 2, 17489 Greifswald, Germany 8. PERFORMING

  17. MeV Argon ion beam generation with narrow energy spread

    CERN Document Server

    Xu, Jiancai; Shen, Baifei; Zhang, Hui; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan


    Laser driven particle acceleration has shown remarkable progresses in generating multi-GeV electron bunches and 10s of MeV ion beams based on high-power laser facilities. Intense laser pulse offers the acceleration field of 1012 Volt per meter, several orders of magnitude larger than that in conventional accelerators, enabling compact devices. Here we report that a highly-collimated argon ion beam with narrow energy spread is produced by irradiating a 45-fs fully-relativistic laser pulse onto an argon cluster target. The highly-charged (Argon ion with charge state of 16+) heavy ion beam has a minimum absolute energy spread of 0.19 MeV per nucleon at the energy peak of 0.39 MeV per nucleon. we identify a novel scheme from particle-in-cell simulations that greatly reduces the beam energy spread. The laser-driven intense plasma wakefield has a strong modulation on the ion beam in a way that the low energy part is cut off. The pre-accelerated argon ion beam from Coulomb explosion thus becomes more mono-energetic ...

  18. Effect of low electric fields on alpha scintillation light yield in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Back, H. O.; Baldin, B.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Caravati, M.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cicalò, C.; Cocco, A. G.; Covone, G.; D' Angelo, D.; D' Incecco, M.; Davini, S.; Cecco, S. De; Deo, M. De; Vincenzi, M. De; Derbin, A.; Devoto, A.; Eusanio, F. Di; Pietro, G. Di; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, A.; James, I.; Johnson, T. N.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Loer, B.; Lombardi, P.; Longo, G.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Milincic, R.; Miller, J. D.; Montanari, D.; Monte, A.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Agasson, A. Navrer; Odrowski, S.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeti, M.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Sands, W.; Savarese, C.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Xu, J.; Yang, C.; Zhong, W.; Zhu, C.; Zuzel, G.


    Measurements were made of scintillation light yield of alpha particles from the $^{222}$Rn decay chain within the DarkSide-50 liquid argon time projection chamber. The light yield was found to increase as the applied electric field increased, with alphas in a 200 V/cm electric field exhibiting a 2% increase in light yield compared to alphas in no field.

  19. Low-Temperature Positive Secondary Ion Mass Spectrometry of Neat and Argon-Diluted Organic Solids

    NARCIS (Netherlands)

    Jonkman, Harry T.; Michl, Josef; King, Robert N.; Andrade, Joseph D.


    Secondary ion mass spectrometry of neat solid propane, n-pentane, benzene, toluene, and of propane imbedded in an argon matrix were observed at temperatures varying from 10 to 110 K and show fragmentation patterns similar to those known from ordinary electron impact mass spectrometry. The effects of

  20. Application of the Benedict-Webb-Rubin equation of state to argon

    Energy Technology Data Exchange (ETDEWEB)

    Zudkevitch, David; Kaufmann, Thomas G.


    The coefficients of the Benedict-Webb-Rubin equation of state have been developed for argon. Employing these coefficients, the volumetric behavior of argon has been predicted with an average deviation of 0.241% for 597 smoothed and experimental data points in the superheated region. At temperatures below the critical two sets of C0 's, one for the liquid and one for the vapor, were needed to relate the vapor pressure to the densities of saturated argon. Using the experimental data of Holst(l8) and Wilson(28), the reliability of the BWR coefficients were demonstrated by predicting the phase behavior of the argon-nitrogen system down to -326°F, Further improvement of the results was obtained when another set of C0 's were developed by equating the pure component vapor and liquid fugacities along the vapor pressure curves. In calculating enthalpy deviations from the ideal state the original BWR expression was modified to include explicitly the temperature dependence of the coefficient C0 . Predicted values of enthalpy deviations obtained with this expression showed good agreement with values from Din's compilation.

  1. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul


    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  2. Modified morphology of graphene sheets by Argon-atom bombardment: molecular dynamics simulations. (United States)

    Wei, Xiao-Lin; Zhang, Kai-Wang; Wang, Ru-Zhi; Liu, Wen-Liang; Zhong, Jian-Xin


    By a molecular dynamics method, we simulated the process of Argon-atom bombardment on a graphene sheet with 2720 carbon atoms. The results show that, the damage of the bombardment on the graphene sheet depends not only on the incident energy but also on the particle flux density of Argon atoms. To compare and analyze the effect of the incident energy and the particle flux density in the Argon-atom bombardment, we defined the impact factor on graphene sheet by calculating the broken-hole area. The results indicate that, there is an exponential accumulated-damage for the impact of both the incident energy and the particle flux density and there is a critical incident energy ranging from 20-30 eV/atom in Argon-atom bombardment. Different configurations, such as sieve-like and circle-like graphene can be formed by controlling of different particle flux density as the incident energy is more than the critical value. Our results supply a feasible method on fabrication of porous graphene-based materials for gas-storages and molecular sieves, and it also helps to understand the damage mechanism of graphene-based electronic devices under high particle radiation.

  3. Zinc iodide-osmium staining of membrane-coating granules in keratinized and non-keratinized mammalian oral epithelium. (United States)

    Squier, C A


    Specimens of keratinized and non-keratinized oral epithelium were examined in the electron microscope after being stained with zinc iodide-osmium. In both types of tissue, reaction was seen in unmyelinated nerves, in the specific granules of epithelial Langerhans cells and within lysosome-like organelles and small vesicles associated with Golgi systems. In keratinized epithelia, the reaction was also present in the membrane-coating granules and between the deepest cells of the keratinized layer. In contrast, the membrane-coating granules of non-keratinized epithelia lacked Zn iodide-osmium staining despite the presence of reaction in adjacent Golgi systems. It is suggested that Zn iodide-osmium stains glycolipid or glycoprotein material in the cell. This material is elaborated in the Golgi systems from which lysosomes and the membrane-coating granules of keratinized tissues are probably derived.

  4. Colorimetric Solid Phase Extraction for the Measurement of Total I (Iodine, Iodide, and Triiodide) in Spacecraft Drinking Water (United States)

    Lipert, Robert J.; Porter, Marc D.; Siperko, Lorraine M.; Gazda, Daniel B.; Rutz, Jeff A.; Schultz, John R.; Carrizales, Stephanie M.; McCoy, J. Torin


    An experimental drinking water monitoring kit for the measurement of iodine and silver(I) was recently delivered to the International Space Station (ISS). The kit is based on Colorimetric Solid Phase Extraction (CSPE) technology, which measures the change in diffuse reflectance of indicator disks following exposure to a water sample. To satisfy additional spacecraft water monitoring requirements, CSPE has now been extended to encompass the measurement of total I (iodine, iodide, and triiodide) through the introduction of an oxidizing agent, which converts iodide and triiodide to iodine, for measurement using the same indicator disks currently being tested on ISS. These disks detect iodine, but are insensitive to iodide and triiodide. We report here the operational considerations, design, and ground-based performance of the CSPE method for total I. The results demonstrate that CSPE technology is poised to meet NASA's total I monitoring requirements.

  5. Bio-inspired stabilization of sulfenyl iodide RS-I in a Zr(IV)-based metal-organic framework. (United States)

    Yee, Ka-Kit; Wong, Yan-Lung; Xu, Zhengtao


    A Zr(IV)-based metal-organic framework (MOF) appended with free-standing thiol (-SH) groups was found to react readily with I2 molecules to form sulfenyl iodide (S-I) units. In contrast to its solution chemistry of facile disproportionation into disulfide and I2, the sulfenyl iodide (SI) function, anchored onto the rigid MOF grid and thus prevented from approaching one another to undergo the dismutation reaction, exhibits distinct stability even at elevated temperatures (e.g., 90 °C). On a conceptual plane, this simple and effective solid host also captures the spatial confinement observed for the complex biomacromolecular scaffolds involved in iodine thyroid chemistry, wherein the spatial isolation and consequent stabilization of sulfenyl/selenenyl iodides are exerted by means of the protein scaffolds.

  6. Synthesis of 1-/sup 11/C-labelled ethyl, propyl, butyl and isobutyl iodides and examples of alkylation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Laangstroem, B.; Antoni, G.; Gullberg, P.; Halldin, C.; Naagren, K.; Rimland, A.; Svaerd, H.


    New /sup 11/C-labelled precursors (1-/sup 11/C)ethyl,(1-/sup 11/C)propyl, (1-/sup 11/C)butyl, and (1-/sup 11/C)isobutyl iodides have been prepared by a 3-step reaction route using a one-pot system. The labelled iodides were obtained in 20-55% radiochemical yields and 65-95% radiochemical purities, with a total time for synthesis of the order of 10-14 min. The labelled iodides have been used in alkylation reactions with nitrogen, oxygen and carbon nucleophiles. The nitrogen alkylation reactions are exemplified by the synthesis of the analgetics N-(1-/sup 11/C-ethyl)iodocaine and N-(1-/sup 11/C-butyl) bupivacaine. The synthesis of 3-nitrophenyl(1-/sup 11/C)propyl ether is also presented in this paper as an example of an oxygen alkylation.

  7. Heat capacity and density of potassium iodide solutions in mixed N-methylpyrrolidone-water solvent at 298.15 K (United States)

    Novikov, A. N.


    The heat capacity and density of potassium iodide solutions in a mixed N-methylpyrrolidone (MP)-water solvent with a low content of the organic component are measured via calorimetry and densimetry at 298.15 K. Standard partial molal heat capacities and volumes of potassium iodide in MP-water mixtures are calculated. Standard heat capacities and volumes of potassium and iodide ions are determined. The character of the changes in heat capacity and volume are discussed on the basis of calculating additivity coefficients δ c and δ v upon the mixing of isomolal binary solutions KI-MP and KI-water, depending on the composition of the MP-H2O mixture and the concentration of the electrolyte.

  8. Phase diagram of an iodine-potassium iodide-water-ethanol system at 25°C (United States)

    Varlamova, T. M.; Rubtsova, E. M.; Mushtakova, S. P.


    Phase equilibriums are studied in the isothermal-isobaric sections of the phase diagram of a fourcomponent iodine-potassium iodide-water-ethanol system at 25°C and atmospheric pressure. The compositions of the solvent at which it exhibits the greatest ability to dissolve iodine are established. It is shown that in all the investigated sections, there is three-phase eutonic equilibrium with potassium iodide and crystalline iodine as the solid phases. It is revealed that in the sections containing 30 and 50% of ethanol, potassium iodide serves as the salting in agent for crystalline iodine, due to the formation of polyiodide complexes of various composition in the studied system.

  9. Analysis of heterogeneous water vapor uptake by metal iodide cluster ions via differential mobility analysis-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oberreit, Derek [Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Fluid Measurement Technologies, Inc., Saint Paul, Minnesota 55110 (United States); Rawat, Vivek K.; Larriba-Andaluz, Carlos; Ouyang, Hui; McMurry, Peter H.; Hogan, Christopher J., E-mail: [Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)


    The sorption of vapor molecules onto pre-existing nanometer sized clusters is of importance in understanding particle formation and growth in gas phase environments and devising gas phase separation schemes. Here, we apply a differential mobility analyzer-mass spectrometer based approach to observe directly the sorption of vapor molecules onto iodide cluster ions of the form (MI){sub x}M{sup +} (x = 1-13, M = Na, K, Rb, or Cs) in air at 300 K and with water saturation ratios in the 0.01-0.64 range. The extent of vapor sorption is quantified in measurements by the shift in collision cross section (CCS) for each ion. We find that CCS measurements are sensitive enough to detect the transient binding of several vapor molecules to clusters, which shift CCSs by only several percent. At the same time, for the highest saturation ratios examined, we observed CCS shifts of up to 45%. For x < 4, cesium, rubidium, and potassium iodide cluster ions are found to uptake water to a similar extent, while sodium iodide clusters uptake less water. For x ≥ 4, sodium iodide cluster ions uptake proportionally more water vapor than rubidium and potassium iodide cluster ions, while cesium iodide ions exhibit less uptake. Measured CCS shifts are compared to predictions based upon a Kelvin-Thomson-Raoult (KTR) model as well as a Langmuir adsorption model. We find that the Langmuir adsorption model can be fit well to measurements. Meanwhile, KTR predictions deviate from measurements, which suggests that the earliest stages of vapor uptake by nanometer scale species are not well described by the KTR model.

  10. Analysis of perchlorate, thiocyanate, nitrate and iodide in human amniotic fluid using ion chromatography and electrospray tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Blount, Benjamin C. [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341 (United States)]. E-mail:; Valentin-Blasini, Liza [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341 (United States)


    Because of health concerns surrounding in utero exposure to perchlorate, we developed a sensitive and selective method for quantifying iodide, as well as perchlorate and other sodium-iodide symporter (NIS) inhibitors in human amniotic fluid using ion chromatography coupled with electrospray ionization tandem mass spectrometry. Iodide and NIS inhibitors were quantified using a stable isotope-labeled internal standards (Cl{sup 18}O{sub 4} {sup -}, S{sup 13}CN{sup -} and {sup 15}NO{sub 3} {sup -} with excellent assay accuracy of 100%, 98%, 99%, 95% for perchlorate, thiocyanate, nitrate and iodide, respectively, in triplicate analysis of spiked amniotic fluid sample). Excellent analytical precision (<5.2% RSD for all analytes) was found when amniotic fluid quality control pools were repetitively analyzed for iodide and NIS-inhibitors. Selective chromatography and tandem mass spectrometry reduced the need for sample cleanup, resulting in a rugged and rapid method capable of routinely analyzing 75 samples/day. Analytical response was linear across the physiologically relevant concentration range for the analytes. Analysis of a set of 48 amniotic fluid samples identified the range and median levels for perchlorate (0.057-0.71, 0.18 {mu}g/L), thiocyanate (<10-5860, 89 {mu}g/L), nitrate (650-8900, 1620 {mu}g/L) and iodide (1.7-170, 8.1 {mu}g/L). This selective, sensitive, and rapid method will help assess exposure of the developing fetus to low levels of NIS-inhibitors and their potential to inhibit thyroid function.

  11. Formation of organic iodine supplied as iodide in a soil-water system in Chiba, Japan. (United States)

    Shimamoto, Yoko S; Takahashi, Yoshio; Terada, Yasuko


    Speciation of iodine in a soil-water system was investigated to understand the mechanism of iodine mobility in surface environments. Iodine speciation in soil and pore water was determined by K-edge XANES and HPLC-ICP-MS, respectively, for samples collected at a depth of 0-12 cm in the Yoro area, Chiba, Japan. Pore water collected at a 0-6 cm depth contained 50%-60% of organic iodine bound to dissolved organic matter, with the other portion being I(-). At a 9-12 cm depth, 98% of iodine was in the form of dissolved I(-). In contrast, XANES analysis revealed that iodine in soil exists as organic iodine at all depths. Iodine mapping of soil grains was obtained using micro-XRF analysis, which also indicated that iodine is bound to organic matter. The activity of laccase, which has the ability to oxidize I(-) to I(2), was high at the surface of the soil-water layer, suggesting that iodide oxidizing enzymes can promote iodine organification. The distribution coefficient of organic iodine in the soil-water system was more than 10-fold greater than that of iodide. Transformation of inorganic iodine to organic iodine plays an important role in iodine immobilization, especially in a surface soil-water system.

  12. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution (United States)

    Park, Sunghak; Chang, Woo Je; Lee, Chan Woo; Park, Sangbaek; Ahn, Hyo-Yong; Nam, Ki Tae


    The solar-driven splitting of hydrohalic acids (HX) is an important and fast growing research direction for H2 production. In addition to the hydrogen, the resulting chemicals (X2/X3-) can be used to propagate a continuous process in a closed cycle and are themselves useful products. Here we present a strategy for photocatalytic hydrogen iodide (HI) splitting using methylammonium lead iodide (MAPbI3) in an effort to develop a cost-effective and easily scalable process. Considering that MAPbI3 is a water-soluble ionic compound, we exploit the dynamic equilibrium of the dissolution and precipitation of MAPbI3 in saturated aqueous solutions. The I- and H+ concentrations of the aqueous solution are determined to be the critical parameters for the stabilization of the tetragonal MAPbI3 phase. Stable and efficient H2 production under visible light irradiation was demonstrated. The solar HI splitting efficiency of MAPbI3 was 0.81% when using Pt as a cocatalyst.

  13. Inhibition of acid corrosion of steel by some S-alkylisothiouronium iodides

    Energy Technology Data Exchange (ETDEWEB)

    Arab, S.T.; Noor, E.A. (Girl' s Coll. of Education, Jeddah (Saudi Arabia))


    Five selected S-alkylisothisothiouronium iodides have been studied as acid corrosion inhibitors at 30 C for steel in 0.5 M H[sub 2]SO[sub 4] using gasometry, mass loss, and direct current (DC) polarization techniques. All of the data reveal that the compounds act as inhibitors in the acid environments; furthermore, polarization curves show that the compounds act as mixed-type inhibitors. It was found that the inhibition efficiency increases with the increase of the length of the additive alkyl chain. Langmuir's adsorption isotherms fit the experimental data for the studied compounds. Thermodynamic parameter were obtained from experimental data of the temperature studies of the inhibition process at five temperatures ranging from 30 to 70 C. It was observed that the activation energy is slightly increased with the increase of the additive alkyl chain. On the other hand, the sudden large increase of the inhibition behavior of S-hexylisothiouronium iodide was attributed to a different adsorption process.

  14. Sodium Iodide Symporter for Nuclear Molecular Imaging and Gene Therapy: From Bedside to Bench and Back

    Directory of Open Access Journals (Sweden)

    Byeong-Cheol Ahn


    Full Text Available Molecular imaging, defined as the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms, can be obtained by various imaging technologies, including nuclear imaging methods. Imaging of normal thyroid tissue and differentiated thyroid cancer, and treatment of thyroid cancer with radioiodine rely on the expression of the sodium iodide symporter (NIS in these cells. NIS is an intrinsic membrane protein with 13 transmembrane domains and it takes up iodide into the cytosol from the extracellular fluid. By transferring NIS function to various cells via gene transfer, the cells can be visualized with gamma or positron emitting radioisotopes such as Tc-99m, I-123, I-131, I-124 and F-18 tetrafluoroborate, which are accumulated by NIS. They can also be treated with beta- or alpha-emitting radionuclides, such as I-131, Re-186, Re-188 and At-211, which are also accumulated by NIS. This article demonstrates the diagnostic and therapeutic applications of NIS as a radionuclide-based reporter gene for trafficking cells and a therapeutic gene for treating cancers.

  15. Chitosan finishing nonwoven textiles loaded with silver and iodide for antibacterial wound dressing applications. (United States)

    Aubert-Viard, François; Martin, Adeline; Chai, Feng; Neut, Christel; Tabary, Nicolas; Martel, Bernard; Blanchemain, Nicolas


    Polyethylene terephtalate (PET) and Polypropylene (PP) textiles are widely used in biomedical application such as wound dressings and implants. The aim of this work was to develop an antibacterial chitosan (CHT) coating activated by silver or by iodine. Chitosan was immobilized onto PET and PP supports using citric acid (CTR) as a crosslinking agent through a pad-dry-cure textile finishing process. Interestingly, depending on the CHT/CTR molar ratio, two different systems were obtained: rich in cationic ammonium groups when the CTR concentration was 1%w/v, and rich in anionic carboxylate groups when the CTR concentration was 10%w/v. As a consequence, such samples could be selectively loaded with iodine and silver nitrate, respectively.Both types of coatings were analyzed using SEM and FTIR, their sorption capacities were evaluated toward iodide/iodate anions (I(-)/IO3(-)) and the silver cations (Ag(+)) were evaluated using elemental analysis. Finally, in vitro evaluations were carried out to evaluate the cytocompatibility on the epithelial cell line. The silver loaded textile reported a stronger antibacterial effect against E.coli (5 log10 reduction) than toward S. aureus (3 log10) while the antibacterial effect of the iodide loaded textiles was limited to 1 log10 to 2 log10 on both strains.

  16. The effect of potassium iodide on the production of acid phosphatase by Sporothrix schenckii

    Directory of Open Access Journals (Sweden)

    P. S. Grover


    Full Text Available The present study was undertaken to find out the in vitro effect of potassium iodide (KI on the production of acid phosphatase by fully characterized strain of S.schenckii isolated from a patient of Cutaneous Sporotrichosis. The enzyme acid phosphatase was estimated during the 3 phases of growth of S.schenckii, without and with three concentrations of KI incorporated in the culture medium. In the control and in the test proper, with various concentrations of KI, no adverse effect of KI was observed on the production of acid phosphatase in early and mid log phase of fungal growth. Whereas in the exponential phase in test proper, there was a statistical significant decrease in the enzyme production with 0.8% and 3.2% of KI. The low activity at 0.8% and 3.2% KI indicates that KI has inhibitory effect on the growth of S.schenckii and has led to decrease in the activity of the enzyme. (Med J Indones 2003; 12: 65-8 Keywords: S.schenckii, acid phosphatase, potassium iodide

  17. Serum and tissue iodine concentrations in rats fed diets supplemented with kombu powder or potassium iodide. (United States)

    Yoshida, Munehiro; Mukama, Ayumi; Hosomi, Ryota; Fukunaga, Kenji; Nishiyama, Toshimasa


    Serum and tissue iodine concentration was measured in rats fed a diet supplemented with powdered kombu (Saccharina sculpera) or potassium iodide to evaluate the absorption of iodine from kombu. Eighteen male 5-wk-old Wistar rats were divided into three groups and fed a basal AIN93G diet (iodine content, 0.2 mg/kg) or the basal diet supplemented with iodine (183 mg/kg) either in the form of kombu powder or potassium iodine (KI) for 4 wk. There were no differences in weight gain or serum biochemistry tests (alanine aminotransferase and aspartate aminotransferase activity, and total serum cholesterol and triglyceride concentration) after iodine supplementation. In addition, serum levels of the thyroid hormones thyroxine and triiodothyronine, as well as thyroid-stimulating hormone, were not affected. On the other hand, serum and tissue (thyroid, liver and kidney) iodine concentrations were markedly elevated after iodine supplementation. There was no difference in thyroid iodine concentration between KI and kombu supplementation. However, there was a significant difference observed in the iodine concentrations of serum, liver and kidney between the two iodine sources; rats fed KI had iodine concentrations in these tissues 1.8 to 1.9 times higher than those in rats fed kombu powder. These results suggest that the absorption of iodine from kombu is reduced compared to that from potassium iodide.

  18. Toxicity of tetramethylammonium hydroxide to aquatic organisms and its synergistic action with potassium iodide. (United States)

    Mori, Izumi C; Arias-Barreiro, Carlos R; Koutsaftis, Apostolos; Ogo, Atsushi; Kawano, Tomonori; Yoshizuka, Kazuharu; Inayat-Hussain, Salmaan H; Aoyama, Isao


    The aquatic ecotoxicity of chemicals involved in the manufacturing process of thin film transistor liquid crystal displays was assessed with a battery of four selected acute toxicity bioassays. We focused on tetramethylammonium hydroxide (TMAH, CAS No. 75-59-2), a widely utilized etchant. The toxicity of TMAH was low when tested in the 72 h-algal growth inhibition test (Pseudokirchneriellia subcapitata, EC50=360 mg L(-1)) and the Microtox® test (Vibrio fischeri, IC50=6.4 g L(-1)). In contrast, the 24h-microcrustacean immobilization and the 96 h-fish mortality tests showed relatively higher toxicity (Daphnia magna, EC50=32 mg L(-1) and Oryzias latipes, LC50=154 mg L(-1)). Isobologram and mixture toxicity index analyses revealed apparent synergism of the mixture of TMAH and potassium iodide when examined with the D. magna immobilization test. The synergistic action was unique to iodide over other halide salts i.e. fluoride, chloride and bromide. Quaternary ammonium ions with longer alkyl chains such as tetraethylammonium and tetrabutylammonium were more toxic than TMAH in the D. magna immobilization test.

  19. Iodine in raw and pasteurized milk of dairy cows fed different amounts of potassium iodide. (United States)

    Norouzian, M A


    Relation between iodine (I) intake by lactating Holstein cows and iodine concentrations in raw and pasteurized milk were investigated. Four treatment groups with eight cows assigned to each treatment were fed a basal diet containing 0.534 mg I/kg alone or supplemented with potassium iodide at 2.5, 5 or 7.5 mg/kg in 7-week period. Iodine concentrations in raw milk increased with each increase in dietary I from 162.2 ng/ml for basal diet to 534.5, 559.8 and 607.5 ng/ml when 2.5, 5 and 7.5 mg/kg was fed as potassium iodide (P < 0.05). This trend was found for blood plasma and urine iodine concentration. Iodine supplementation had no significant effect on thyroidal hormones. high-temperature short-time (HTST) pasteurization process reduced I concentration. The mean iodine content found in the milk prior to heating processing was 466.0 ± 205.0 ng/ml, whereas for the processed milk this level was 349.5 ± 172.8 ng/ml. It was concluded that iodine supplementation above of NRC recommendation (0.5 mg/kg diet DM) resulted in significant increases in iodine concentrations in milk, although the effect of heating in HTST pasteurization process on iodine concentration was not negligible.

  20. Characterization of thermally evaporated lead iodide films aimed for the detection of X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira Filho, A.M. [Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo - USP, Avenida Bandeirantes 3900, 14040-901, Ribeirao Preto-SP (Brazil); Mulato, M., E-mail: mmulato@ffclrp.usp.b [Departamento de Fisica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo - USP, Avenida Bandeirantes 3900, 14040-901, Ribeirao Preto-SP (Brazil)


    Some semiconductor materials such as lead iodide (PbI{sub 2}) have applications in the detection of ionizing radiation at room temperature using the direct detection method. In this work we investigate lead iodide films deposited by thermal evaporation. The morphology, structure, and electric properties were investigated as a function of deposition height, i.e. the distance between evaporation-boat and substrates. The results show a morphology of vertical leaves and X-ray diffraction shows just one preferential orientation along the direction 110. Energy dispersive spectroscopy reveals that the films are not stoichiometric, with excess iodine atoms. Electrical resistivity of about 10{sup 8} {Omega} cm was measured. This is smaller than for the bulk due to structural defects. The values of activation energy for electric transport increase from 0.52 up to 1.1 eV with decreasing deposition height, what indicates that the best film is the one deposited at the shortest distance. Exposure under X-ray mammographic energy shows a linear behavior up to 500 mR. No variation in sensibility was observed between 22 and 30 kVp.

  1. Administration of additional inactive iodide during radioiodine therapy for Graves' disease. Who might benefit?

    Energy Technology Data Exchange (ETDEWEB)

    Dietlein, M.; Moka, D.; Reinholz, U.; Schmidt, M.; Schomaecker, K.; Schicha, H.; Wellner, U. [Koeln Univ. (Germany). Dept. of Nuclear Medicine


    Aim: Graves' hyperthyroidism and antithyroid drugs empty the intrathyroid stores of hormones and iodine. The consequence is rapid {sup 131}I turnover and impending failure of radioiodine therapy. Can administration of additional inactive iodide improve 131I kinetics? Patients, methods: Fifteen consecutive patients, in whom the 48 h post-therapeutically calculated thyroid dose was between 150 and 249 Gy due to an unexpectedly short half-life, received 3 x 200 {mu}g inactive potassium-iodide ({sup 127}I) daily for 3 days (Group A), while 17 consecutive patients with a thyroid dose of = 250 Gy (Group B) served as the non-iodide group. 48 hours after {sup 131}I administration (M1) and 4 or 5 days later (M2) the following parameters were compared: effective {sup 131}I half-life, thyroid dose, total T3, total T4, {sup 131}I-activity in the T3- and T4-RIAs. Results: In Group A, the effective {sup 131}I half-life M1 before iodine (3.81 {+-} 0.93 days) was significantly (p <0.01) shorter than the effective {sup 131}I half-life M2 (4.65 {+-} 0.79 days). Effective {sup 131}I half-life M1 correlated with the benefit from inactive {sup 127}I (r = -0.79): Administration of {sup 127}I was beneficial in patients with an effective {sup 131}I half-life M1 of <3 or 4 days. Patients from Group A with high initial specific {sup 131}I activity of T3 and T4 showed lower specific {sup 131}I activity after addition of inactive iodine compared with patients from the same group with a lower initial specific {sup 131}I activity of T3 and T4 and compared with the patient group B who was given no additional inactive iodide. This correlation was mathematically described and reflected in the flatter gradient in Group A (y = 0.5195x + 0.8727 for {sup 131}I T3 and y = 1.0827x - 0.4444 for {sup 131}I T4) and steeper gradient for Group B (y = 0.6998x + 0.5417 for {sup 131}I T3 and y = 1.3191x - 0.2901 for {sup 131}I T4). Radioiodine therapy was successful in all 15 patients from Group A

  2. Replacement of monochromator and proportional gas counter by mercuric iodide detector in X-ray powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Nissenbaum, J.; Levi, A.; Burger, A.; Schieber, M. (Hebrew Univ., Jerusalem (Israel). School of Applied Science and Technology)


    Low resolution and therefore low-cost mercuric iodide detectors have successfully been applied to replace the combination of a graphite monochromator and a proportional gas radiation counter used in X-ray diffractometers. The mercuric iodide detector requires a lower DC bias of only 200 V rather than the 1500 V bias needed for the proportional gas counter. The much better stopping power of HgI/sub 2/ allows higher counting efficiency and therefore a better signal-to-noise ratio. Results are shown for X-ray powder diffractions of polycrystalline cubic silicon and tetragonal HgI/sub 2/.

  3. Inner Sphere and Outer Sphere Electron Transfer to Methyl Iodide. Deuterium and 13C Kinetic Isotope Effects

    DEFF Research Database (Denmark)

    Holm, Torkil; Crossland, Ingolf


    Deuterium and 13C kinetic isotope effects (KIEs) have been determined for the conversion of methyl iodide into methyl radical via inner sphere ET (electron transfer) and via outer sphere ET. The alfa-deuterium KIE was found to be very high for in......Deuterium and 13C kinetic isotope effects (KIEs) have been determined for the conversion of methyl iodide into methyl radical via inner sphere ET (electron transfer) and via outer sphere ET. The alfa-deuterium KIE was found to be very high for in...

  4. Constraining the sensitivity of iodide adduct chemical ionization mass spectrometry to multifunctional organic molecules using the collision limit and thermodynamic stability of iodide ion adducts (United States)

    Lopez-Hilfiker, Felipe D.; Iyer, Siddarth; Mohr, Claudia; Lee, Ben H.; D'Ambro, Emma L.; Kurtén, Theo; Thornton, Joel A.


    The sensitivity of a chemical ionization mass spectrometer (ions formed per number density of analytes) is fundamentally limited by the collision frequency between reagent ions and analytes, known as the collision limit, the ion-molecule reaction time, and the transmission efficiency of product ions to the detector. We use the response of a time-of-flight chemical ionization mass spectrometer (ToF-CIMS) to N2O5, known to react with iodide at the collision limit, to constrain the combined effects of ion-molecule reaction time, which is strongly influenced by mixing and ion losses in the ion-molecule reaction drift tube. A mass spectrometric voltage scanning procedure elucidates the relative binding energies of the ion adducts, which influence the transmission efficiency of molecular ions through the electric fields within the vacuum chamber. Together, this information provides a critical constraint on the sensitivity of a ToF-CIMS towards a wide suite of routinely detected multifunctional organic molecules for which no calibration standards exist. We describe the scanning procedure and collision limit determination, and we show results from the application of these constraints to the measurement of organic aerosol composition at two different field locations.

  5. Structural characteristics of copper/hydrogenated amorphous carbon composite films prepared by microwave plasma-assisted deposition processes from methane-argon and acetylene-argon gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Thiery, F.; Pauleau, Y.; Grob, J.J.; Babonneau, D


    Copper/hydrogenated amorphous carbon (Cu/a-C:H) composite films have been deposited on silicon substrates by a hybrid technique combining microwave plasma-assisted chemical vapor deposition and sputter-deposition from methane-argon and acetylene-argon gas mixtures. The major objective of this work was to investigate the effect of the carbon gas precursor on the structural characteristics of Cu/a-C:H composite films deposited at ambient temperature. The major characteristics of CH{sub 4}-argon and C{sub 2}H{sub 2}-argon plasmas were analyzed by Langmuir probe measurements. The composition of films was determined by Rutherford backscattering spectroscopy, energy recoil detection analyses and nuclear reaction analyses. The carbon content in the films was observed to vary in the range 20-77 at.% and 7.5-99 at.% as the CH{sub 4} and C{sub 2}H{sub 2} concentrations in the gas phase increased from 10 to 100%, respectively. The atom number ratio H/C in the films was scattered approximately 0.4 whatever the carbon gas precursor used. The crystallographic structure and the size of copper crystallites incorporated in the a-C were determined by X-ray diffraction techniques. The copper crystallite size decreased from 20 nm in pure copper films to less than 5 nm in Cu/a-C:H films containing more than 40 at.% of carbon. Grazing incidence small angle X-ray scattering measurements were performed to investigate the size distribution and distance of copper crystallites as functions of the deposition parameters. The structural characteristics of copper crystallites were dependent on the hydrocarbon gas precursor used. The crystallite size and the width of the size distribution were homogeneous in films deposited from CH{sub 4}. Copper crystallites with an anisotropic shape were found in films deposited from C{sub 2}H{sub 2}. The major radicals formed in the plasma and condensed on the surface of growing films, namely CH and C{sub 2}H radicals for films produced from CH{sub 4} and C

  6. Iodide Impurities in Hexadecyltrimethylammonium Bromide (CTAB) Products: Lot−Lot Variations and Influence on Gold Nanorod Synthesis

    NARCIS (Netherlands)

    Rayavarapu, Raja Gopal; Ungureanu, Constantin; Krystec, Petra; Leeuwen, van Ton G.; Manohar, Srirang


    Recent reports [Smith and Korgel Langmuir 2008, 24, 644−649 and Smith et al.Langmuir 2009, 25, 9518−9524] have implicated certain hexadecyltrimethylammonium bromide (CTAB) products with iodide impurities, in the failure of a seed-mediated, silver and surfactant-assisted growth protocol, to produce g

  7. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose response (BBDR) Model*** (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (HPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the 1-IPT axis. Model calibrations, carried out by adjusting key model...

  8. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose-response model (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (BPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the HPT axis. Model calibrations, carried out by adjusting key model p...

  9. Congenital Hypothyroidism Caused by a PAX8 Gene Mutation Manifested as Sodium/Iodide Symporter Gene Defect

    Directory of Open Access Journals (Sweden)

    Wakako Jo


    Full Text Available Loss-of-function mutations of the PAX8 gene are considered to mainly cause congenital hypothyroidism (CH due to thyroid hypoplasia. However, some patients with PAX8 mutation have demonstrated a normal-sized thyroid gland. Here we report a CH patient caused by a PAX8 mutation, which manifested as iodide transport defect (ITD. Hypothyroidism was detected by neonatal screening and L-thyroxine replacement was started immediately. Although 123I scintigraphy at 5 years of age showed that the thyroid gland was in the normal position and of small size, his iodide trapping was low. The ratio of the saliva/plasma radioactive iodide was low. He did not have goiter; however laboratory findings suggested that he had partial ITD. Gene analyses showed that the sodium/iodide symporter (NIS gene was normal; instead, a mutation in the PAX8 gene causing R31H substitution was identified. The present report demonstrates that individuals with defective PAX8 can have partial ITD, and thus genetic analysis is useful for differential diagnosis.

  10. N,N-Dimethylbenzimidazolium iodide as a green catalyst for cross-coupling of aromatic aldehydeswith unactivated imines

    Directory of Open Access Journals (Sweden)

    Viwat Hahnvajana wong


    Full Text Available Cross-coupling of aromatic aldehydes with unactivated iminescatalyzed by N,N-dimethylbenzimidazolium iodide in ethanolic sodium hydroxide solution gave α-amino ketonesin satisfactory yields. Benzoin condensation and further oxidation of the resulted aroins also occurred as side reactions.

  11. Efficient Method for the Determination of the Activation Energy of the Iodide-Catalyzed Decomposition of Hydrogen Peroxide (United States)

    Sweeney, William; Lee, James; Abid, Nauman; DeMeo, Stephen


    An experiment is described that determines the activation energy (E[subscript a]) of the iodide-catalyzed decomposition reaction of hydrogen peroxide in a much more efficient manner than previously reported in the literature. Hydrogen peroxide, spontaneously or with a catalyst, decomposes to oxygen and water. Because the decomposition reaction is…

  12. The antimicrobial effect of apical box versus apical cone preparation using iodine potassium iodide as root canal dressing

    DEFF Research Database (Denmark)

    Markvart, Merete; Dahlén, Gunnar; Reit, Claes-Erik


    OCl (12 ml). Lastly, the canals were filled with 17% EDTA (2 × 30 s) and 5% iodine potassium iodide (IKI) for 10 min. The canals were sampled for micro-organisms on four occasions: before instrumentation, after instrumentation, after application of IKI dressing and at the beginning of the second...

  13. Selective copper(II acetate and potassium iodide catalyzed oxidation of aminals to dihydroquinazoline and quinazolinone alkaloids

    Directory of Open Access Journals (Sweden)

    Matthew T. Richers


    Full Text Available Copper(II acetate/acetic acid/O2 and potassium iodide/tert-butylhydroperoxide systems are shown to affect the selective oxidation of ring-fused aminals to dihydroquinazolines and quinazolinones, respectively. These methods enable the facile preparation of a number of quinazoline alkaloid natural products and their analogues.

  14. Potassium iodide catalyzed simultaneous C3-formylation and N-aminomethylation of indoles with 4-substituted-N,N-dimethylanilines. (United States)

    Li, Lan-Tao; Li, Hong-Ying; Xing, Li-Juan; Wen, Li-Juan; Wang, Peng; Wang, Bin


    A one-pot dual functionalization of indoles has been developed. The simultaneous C3-formylation and N-aminomethylation of indoles can be achieved using readily available potassium iodide as a catalyst and tert-butyl peroxybenzoate as a co-oxidant.

  15. The lactoperoxidase system : the influence of iodide and the chemical and antimicrobial stability over the period of about 18 months

    NARCIS (Netherlands)

    Bosch, EH; Van Doorne, H; De Vries, S


    The lactoperoxidase (LP) system is a natural antimicrobial system, the use of which has been suggested as a preservative in foods and pharmaceuticals. The effect of adding iodide to the LP system, the chemical stability and the change in antimicrobial effectiveness during storage was studied. Additi

  16. Compilation of electron collision excitation cross sections for neutral argon; Compilacion de resultados de secciones eficaces de excitacion para niveles del Argon neutro

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, F.


    The present work presents a compilation and critical analysis of the available data on electron collision excitation cross sections for neutral Argon levels. This study includes: 1.- A detailed description in intermediate coupling for all the levels belonging the 20 configurations 3p5 ns (n=4to 12), np(n=4to8) and nd(n=3to8)of neutral Argon. 2.- Calculation of the electron collision excitation cross sections in Born and Born-Oppenheimer-Ochkur approximations for all the levels in the 14 configurations 3p5 ns (n=4 to 7), np (n=4 to 7) and nd (n=3 to 8). 3.- comparison and discussion of the compiled data. These are the experimental and theoretical values available from the literature, and those from this work. 4.- Analysis of the regularities and systematic behaviors in order to determine which values can be considered more reliable. It is show that the concept of one electron cross section results quite useful for this purpose. In some cases it has been possible to obtain in this way approximate analytical expressions interpolating the experimental data. 5.- All the experimental and theoretical values studied are graphically presented and compared. 6.- The last part of the work includes a listing of several general purpose programs for Atomic Physics calculations developed for this work. (Author) 35 refs.

  17. Operating Instructions for the Cryogenics in the Liquid Argon Detector at CIEMAT; Operacion de la Criogenia del Detector de Argon Liquido del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.; Leal, M. D.; Prado, M. del; Ramirez, J. L.


    Ciemat has wide experience in designing and developing gaseous particle detectors. It has taken part in the building of experiments for CERN accelerators, constructing shares of the muon chambers for L3 experiment in LEP and CMS experiment in LHC. Recently, new concepts for particle detectors have been developed, as a natural evolution from the ones built at Ciemat. These new radiation detectors use liquefied noble gases as active media. A testing system for these kind of liquefied argon detectors has been built at Ciemat, and includes a supporting cryogenic system for the liquefaction and maintenance of the liquid argon needed for operating the detector. This document describes the technical features of this cryogenic system. Besides the documentation of the cryogenic system, this technical report can be of help for the management and upgrading of the detector. As well as an introduction, the report includes the following chapters: The second one is a description of the cryogenics and gas systems. The third chapter shows the controlling electronics. The fourth chapter deals with the important topic that is security, its systems and protocols. The fifth describes the cryogenic operations possible in this equipment. The report is completed with diagrams, schemes, pictures and tables for the easier management of the setup. (Author)

  18. Determination of iodide by volumetric titration in support of the oil eletrolabeling with {sup 123}I

    Energy Technology Data Exchange (ETDEWEB)

    Kenup-Cantuaria, Hericka O.H.; Brandao, Luis E.B., E-mail:, E-mail: [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Silva, Ademir X., E-mail: [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear


    The accuracy in measuring flow rate in pipelines is essential task to control various technical parameters in an industrial plant in oil industry and its derivatives. For this reason, it becomes increasingly widespread the uses of organic molecules labeled with radioactive isotopes mainly because of the wide possibility in use of different radioisotopes also due to the new labeling techniques. This paper presents a study to develop an electrochemical technique for oil labeling with iodine -123 and to determine the yield of production by measuring the concentration of iodide (I{sup -}) during this process. The volumetric titration technique was applied as a basis for quantitative and qualitative measures to monitor the labeling process. The results indicate the technical proposal as a viable alternative for monitoring electro labeling process of lubricating oils with iodine -123. (author)

  19. Electron and Hole Drift Mobility Measurements on Methylammonium Lead Iodide Perovskite Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, Brian; Long, Qi; Schiff, Eric A.; Yang, Mengjin; Zhu, Kai; Kottokkaran, Ranjith; Abbas, Hisham; Dalal, Vikram L.


    We report nanosecond domain time-of-flight measurements of electron and hole photocarriers in methylammonium lead iodide perovskite solar cells. The mobilities ranged from 0.06 to 1.4 cm2/Vs at room temperature, but there is little systematic difference between the two carriers. We also find that the drift mobilities are dispersive (time-dependent). The dispersion parameters are in the range of 0.4-0.7, and they imply that terahertz domain mobilities will be much larger than nanosecond domain mobilities. The temperature-dependences of the dispersion parameters are consistent with confinement of electron and hole transport to fractal-like spatial networks within nanoseconds of their photogeneration.

  20. Role of -methyl-8-(alkoxy)quinolinium iodide in suppression of protein-protein interactions

    Indian Academy of Sciences (India)

    Bimlesh Ojha; Cirantan Kar; Gopal Das


    There is a great deal of interest in developing small molecule inhibitors of protein misfolding and aggregation due to a growing number of pathologic states known as amyloid disorders. In searching for alternative ways to reduce protein-protein interactions or to inhibit the amyloid formation, the inhibitory effects of cationic amphiphile viz. -methyl-8-(alkoxy)quinolinium iodide on aggregation behaviour of hen egg white lysozyme (HEWL) at alkaline pH has been studied. Even though the compounds did not protect native HEWL from conformational changes, they were effective in diminishing HEWL amyloid formation, delaying both nucleation and elongation phases. It is likely that strong binding in the HEWL compound complex, raises the activation energy barrier for protein misfolding and subsequent aggregation, thereby retarding the aggregation kinetics substantially.

  1. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. (United States)

    Knutson, Jeremy L; Martin, James D; Mitzi, David B


    Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.

  2. Reactivity of Ozone with Solid Potassium Iodide Investigated by Atomic Force Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mulleregan, Alice; Brown, Matthew A.; Ashby, Paul D.; Ogletree, D. Frank; Salmeron, Miquel; Hemminger, John C.


    The reaction of ozone with the (100) plane of solid potassium iodide (KI) was investigated using atomic force microscopy (AFM). The reaction forming potassium iodate (KIO{sub 3}) initiates at step edges prior to reacting on the flat terraces. Small domains of KIO{sub 3}, initially 3.8 {angstrom} in height are formed on the top of step edges. Following reaction at the step edge, domains of KIO{sub 3} are formed across the terraces. With prolonged exposure to ozone, KIO{sub 3} domains nucleate further growth until the surface is evenly covered with KIO{sub 3} particles that are 4-6 nm in height, at which point the surface is passivated and the reaction terminates.

  3. A review of recent measurements of optical and thermal properties of. alpha. -mercuric iodide

    Energy Technology Data Exchange (ETDEWEB)

    Burger, A.; Morgan, S.H.; Silberman, E. (Fisk Univ., Nashville, TN (United States). Dept. of Physics); Nason, D.; Cheng, A.Y. (EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations)


    The knowledge of the physical properties of a crystal and their relation to the nature and content of defects are essential for both applications and fundamental reasons. Alpha-mercuric iodide ({alpha}-HgI{sub 2}) is a material which was found important applications as room temperature X-ray and gamma ray detectors. Some recent thermal and optical measurements of this material, using the samples of improved crystallinity which are now available, are reviewed below. Heretofore, these properties have received less attention than the mechanical and electrical properties, particularly at elevated temperatures. In the technology of {alpha}-HgI{sub 2} where there is a continuing motivation to obtain larger single crystals without compromising the material quality, a better knowledge of the thermal and optical properties may lead to improvements in the processes of material purification, crystal growth and device fabrication.

  4. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors (United States)

    Senanayak, Satyaprasad P.; Yang, Bingyan; Thomas, Tudor H.; Giesbrecht, Nadja; Huang, Wenchao; Gann, Eliot; Nair, Bhaskaran; Goedel, Karl; Guha, Suchi; Moya, Xavier; McNeill, Christopher R.; Docampo, Pablo; Sadhanala, Aditya; Friend, Richard H.; Sirringhaus, Henning


    Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μFET) of 0.5 cm2/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA+ cations, and thermal vibrations of the lead halide inorganic cages. PMID:28138550

  5. Use of mercuric iodide X-ray detectors with alpha backscattering spectrometers for space applications (United States)

    Iwanczyk, J. S.; Wang, Y. J.; Dorri, N.; Dabrowski, A. J.; Economou, T. E.


    The authors present X-ray fluorescence (XRF) spectra of different extraterrestrial samples taken with a mercuric iodide (HgI2) spectrometer inserted into an alpha backscattering instrument identical to that used in the Soviet Phobos mission. The results obtained with the HgI2 ambient temperature detector are compared with those obtained using an Si(Li) cryogenically cooled detector. Efforts to design an optimized instrument for space application are also described. The results presented indicate that the energy resolution and sensitivity of HgI2 detectors are adequate to meet the performance needs of a number of proposed space applications, particularly those in which cooled silicon X-ray detectors are impractical or even not usable, such as for the target science programs on geoscience opportunities for lunar surface, Mars surface, and other comet and planetary missions being planned by NASA and ESA.

  6. Photoemission and optical constant measurements of Cesium Iodide thin film photocathode

    CERN Document Server

    Triloki,; Gupta, Nikita; Jammal, Nabeel F A; Singh, B K


    Performance of cesium iodide (CsI) as a reflective photocathode is presented. Absolute quantum efficiency (QE) measurement of 500 nm thick CsI film has been carried out in the wavelength range of 150 nm to 200 nm. Optical absorbance of 500 nm thick CsI film in the spectral range of 190 nm to 900 nm is analyzed and optical energy band gap is calculated using Tauc plot. To see the dispersive behavior of CsI film, refractive index has been determined by envelop plot of transmittance data, using Swanepoel method. Additional information on morphological and elemental composition results of CsI film, gained by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), respectively are also reported in present work.

  7. Reentrant Structural and Optical Properties and Large Positive Thermal Expansion in Perovskite Formamidinium Lead Iodide. (United States)

    Fabini, Douglas H; Stoumpos, Constantinos C; Laurita, Geneva; Kaltzoglou, Andreas; Kontos, Athanassios G; Falaras, Polycarpos; Kanatzidis, Mercouri G; Seshadri, Ram


    The structure of the hybrid perovskite HC(NH2 )2 PbI3 (formamidinium lead iodide) reflects competing interactions associated with molecular motion, hydrogen bonding tendencies, thermally activated soft octahedral rotations, and the propensity for the Pb(2+) lone pair to express its stereochemistry. High-resolution synchrotron X-ray powder diffraction reveals a continuous transition from the cubic α-phase (Pm3‾ m, #221) to a tetragonal β-phase (P4/mbm, #127) at around 285 K, followed by a first-order transition to a tetragonal γ-phase (retaining P4/mbm, #127) at 140 K. An unusual reentrant pseudosymmetry in the β-to-γ phase transition is seen that is also reflected in the photoluminescence. Around room temperature, the coefficient of volumetric thermal expansion is among the largest for any extended crystalline solid.

  8. The Inhibition Effect of Potassium Iodide on the Corrosion of Pure Iron in Sulphuric Acid

    Directory of Open Access Journals (Sweden)

    Tarik Attar


    Full Text Available The use of inorganic inhibitors as an alternative to organic compounds is based on the possibility of degradation of organic compounds with time and temperature. The inhibition effect of potassium iodide on the corrosion of pure iron in 0.5 M H2SO4 has been studied by weight loss. It has been observed from the results that the inhibition efficiency (IE% of KI increases from 82.17% to 97.51% with the increase in inhibitor concentration from 1·10−4 to 2·10−3 M. The apparent activation energy (Ea and the equilibrium constant of adsorption (Kads were calculated. The adsorption of the inhibitor on the pure iron surface is in agreement with Langmuir adsorption isotherm.

  9. Grain-Size-Limited Mobility in Methylammonium Lead Iodide Perovskite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Obadiah G.; Yang, Mengjin; Kopidakis, Nikos; Zhu, Kai; Rumbles, Garry


    We report a systematic study of the gigahertz-frequency charge carrier mobility found in methylammonium lead iodide perovskite films as a function of average grain size using time-resolved microwave conductivity and a single processing chemistry. Our measurements are in good agreement with the Kubo formula for the AC mobility of charges confined within finite grains, suggesting (1) that the surface grains imaged via scanning electron microscopy are representative of the true electronic domain size and not substantially subdivided by twinning or other defects not visible by microscopy and (2) that the time scale of diffusive transport across grain boundaries is much slower than the period of the microwave field in this measurement (-100 ps). The intrinsic (infinite grain size) minimum mobility extracted form the model is 29 +/- 6 cm2 V-1 s-1 at the probe frequency (8.9 GHz).

  10. A coupled chemical burster: The chlorine dioxide-iodide reaction in two flow reactors (United States)

    Dolnik, Milos; Epstein, Irving R.


    The dynamical behavior of the chlorine dioxide-iodide reaction has been studied in a system consisting of two continuous flow stirred tank reactors (CSTRs). The reactors are coupled by computer monitoring of the electrochemical potential in each reactor, which is then used to control the input into the other reactor. Two forms of coupling are employed: reciprocally triggered, exponentially decreasing stimulation, and alternating mass exchange. The reaction, which exhibits oscillatory and excitable behavior in a single CSTR, displays neuronlike bursting behavior with both forms of coupling. Reciprocal stimulation yields bursting in both reactors, while with alternating mass exchange, bursting is observed in one reactor and complex oscillation in the other. A simple model of the reaction gives good agreement between the experimental observations and numerical simulations.

  11. Cesium-iodide-based nanocrystal for the detection of ionizing radiation (United States)

    Farzaneh, Azadeh; Abdi, Mohammad Reza; Saraee, Khadijeh Rezaee Ebrahim; Mostajaboddavati, Mojtaba; Quaranta, A.


    We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and optical properties were followed by optical absorption and UV-vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra and decay curve to alpha particles of sample were monitored.

  12. Diphenyleneiodonium, an inhibitor of NOXes and DUOXes, is also an iodide-specific transporter

    Directory of Open Access Journals (Sweden)

    C. Massart


    Full Text Available NADPH oxidases (NOXes and dual oxidases (DUOXes generate O2.− and H2O2. Diphenyleneiodonium (DPI inhibits the activity of these enzymes and is often used as a specific inhibitor. It is shown here that DPI, at concentrations similar to those which inhibit the generation of O2 derivatives, activated the efflux of radioiodide but not of its analog 99mTcO4− nor of the K+ cation mimic 86Rb+ in thyroid cells, in the PCCl3 rat thyroid cell line and in COS cell lines expressing the iodide transporter NIS. Effects obtained with DPI, especially in thyroid cells, should therefore be interpreted with caution.

  13. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers (United States)

    Peng, Ying; Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Vourlias, George; Patsalas, Panos A.; Bradley, Donal D. C.; He, Zhiqun; Anthopoulos, Thomas D.


    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ˜5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  14. Interference of aging media on the assessment of yeast chronological life span by propidium iodide staining. (United States)

    Pereira, Clara; Saraiva, Lucília


    An increasing number of researchers are using the Saccharomyces cerevisiae chronological aging model to gain insight into the post-mitotic cellular aging. Recently, an alternative approach to the traditional cellular viability assay by colony-forming unit (CFU) counts, based on the propidium iodide (PI) staining combined with flow cytometry (PI-FCM), was proposed for the assessment of yeast chronological aging. Since the chronological aging assessment shows variations particularly concerning the aging media, in this work, the influence of the most common aging media (exhausted media or water) on the assessment of chronological aging by PI staining was studied. Our results show that this methodology is highly affected by the aging media. Indeed, a correlation between CFU counts and the percentage of PI-stained cells is only achieved with the exhausted media. As such, the assessment of yeast chronological aging by PI-FCM water should not be used.

  15. Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ye; Yang, Mengjin; Moore, David T.; Yan, Yong; Miller, Elisa M.; Zhu, Kai; Beard, Matthew C.


    Carrier recombination at defects is detrimental to the performance of solar energy conversion systems, including solar cells and photoelectrochemical devices. Point defects are localized within the bulk crystal while extended defects occur at surfaces and grain boundaries. If not properly managed, surfaces can be a large source of carrier recombination. Separating surface carrier dynamics from bulk and/or grain-boundary recombination in thin films is challenging. Here, we employ transient reflection spectroscopy to measure the surface carrier dynamics in methylammonium lead iodide perovskite polycrystalline films. We find that surface recombination limits the total carrier lifetime in perovskite polycrystalline thin films, meaning that recombination inside grains and/or at grain boundaries is less important than top and bottom surface recombination. The surface recombination velocity in polycrystalline films is nearly an order of magnitude smaller than that in single crystals, possibly due to unintended surface passivation of the films during synthesis.

  16. ATLAS endcap liquid argon calorimeters. Description and construction of the cryostats

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Guy; Prat, Serge; Veillet, Jean-Jacques [Laboratoire de l' Accelerateur Lineaire IN2P3-CNRS et Universite de Paris-Sud 11, BP 34, F-91898 Orsay Cedex (France)


    All forward calorimeters of the ATLAS detector use the same detection technique, energy loss in passive plates, followed by ionisation and charge detection in liquid argon. They are therefore all grouped in the same vessel which must basically support and keep in place the heavy plates and the detection electrodes and maintain liquid argon at cold and stable temperature. Taking into account all the constraints as detailed below, and the overall detector size, 5 meter diameter by 3 meter length this was quite a challenge. The design, construction and tests of these two cryostats, up to their delivery at CERN, are described in this document. These two cryostats are a joint 'in kind' contribution to the Atlas experiment of LAL (Orsay), Max Planck Institute (Muenchen) and Wuppertal University (Wuppertal) and have been designed and built under the responsibility of LAL (Orsay) with contributions of the technical groups of the above institutions and of ATLAS-CERN. (authors)

  17. A Novel Cosmic Ray Tagger System for Liquid Argon TPC Neutrino Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M. [Bern U., LHEP; Del Tutto, M. [Oxford U.; Ereditato, A. [Bern U.; Fleming, B. [Yale U.; Goeldi, D. [Bern U., LHEP; Gramellini, E. [Yale U.; Guenette, R. [Oxford U.; Ketchum, W. [Fermilab; Kreslo, I. [U. Bern, AEC; Laube, A. [Oxford U.; Lorca, D. [U. Bern, AEC; Luethi, M. [U. Bern, AEC; Rudolf von Rohr, C. [U. Bern, AEC; Sinclair, J. R. [U. Bern, AEC; Soleti, S. R. [Oxford U.; Weber, M. [U. Bern, AEC


    The Fermilab Short Baseline Neutrino (SBN) program aims to observe and reconstruct thousands of neutrino-argon interactions with its three detectors (SBND, MicroBooNE and ICARUS-T600), using their hundred of tonnes Liquid Argon Time Projection Chambers to perform a rich physics analysis program, in particular focused in the search for sterile neutrinos. Given the relatively shallow depth of the detectors, the continuos flux of cosmic ray particles which crossing their volumes introduces a constant background which can be falsely identified as part of the event of interest. Here we present the Cosmic Ray Tagger (CRT) system, a novel technique to tag and identify these crossing particles using scintillation modules which measure their time and coordinates relative to events internal to the neutrino detector, mitigating therefore their effect in the event tracking reconstruction.

  18. Are the argon metastables important in high power impulse magnetron sputtering discharges?

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, J. T., E-mail: [Department of Space and Plasma Physics, School of Electrical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Lundin, D.; Minea, T. M. [Laboratoire de Physique des Gaz et Plasmas - LPGP, UMR 8578 CNRS, Université Paris-Sud, 91405 Orsay Cedex (France); Stancu, G. D. [CentraleSupélec, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); CNRS, UPR 288 Laboratoire EM2C, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Brenning, N. [Department of Space and Plasma Physics, School of Electrical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Plasma and Coatings Physics Division, IFM-Materials Physics, Linköping University, SE-581 83 Linköping (Sweden)


    We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization is always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work.

  19. Radon backgrounds in the DEAP-1 liquid argon based Dark Matter detector

    CERN Document Server

    Amaudruz, P -A; Beltran, B; Boudjemline, K; Caldwell, M G Boulay B Cai T; Chen, M; Chouinard, R; Cleveland, B T; Contreras, D; Dering, K; Duncan, F; Ford, R; Giuliani, R Gagnon F; Golovko, M Gold V V; Gorel, P; Graham, K; Grant, D R; Hakobyan, R; Hallin, A L; Harvey, P; Hearns, C; Jillings, C J; Kuźniak, M; Lawson, I; Li, O; Lidgard, J; Liimatainen, P; Lippincott, W H; Mathew, R; McDonald, A B; McElroy, T; McFarlane, K; McKinsey, D; Muir, A; Nantais, C; Nicolics, K; Nikkel, J; Noble, T; O'Dwyer, E; Olsen, K S; Ouellet, C; Pasuthip, P; Pollmann, T; Rau, W; Retiere, F; Ronquest, M; Skensved, P; Sonley, T; Vázquez-Jáuregui, E; Veloce, L; Ward, M


    The DEAP-1 \\SI{7}{kg} single phase liquid argon scintillation detector was operated underground at SNOLAB in order to test the techniques and measure the backgrounds inherent to single phase detection, in support of the DEAP-3600 Dark Matter detector. Backgrounds in DEAP are controlled through material selection, construction techniques, pulse shape discrimination and event reconstruction. This report details the analysis of background events observed in three iterations of the DEAP-1 detector, and the measures taken to reduce them. The $^{222}$Rn decay rate in the liquid argon was measured to be between 16 and \\SI{26}{\\micro\\becquerel\\per\\kilogram}. We found that the background spectrum near the region of interest for Dark Matter detection in the final DEAP-1 detector generation is well described considering events from three sources: radon daughters decaying on the surface of the active volume, the expected rate of electromagnetic events misidentified as nuclear recoils due to inefficiencies in the pulse sh...

  20. Nanometer-scale sharpening and surface roughening of ZnO nanorods by argon ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Shyamal, E-mail: [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013 (India); Behera, Akshaya K. [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013 (India); Banerjee, Amarabha; Tribedi, Lokesh C. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Som, Tapobrata [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Ayyub, Pushan, E-mail: [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)


    We report the effects of exposing a hydrothermally grown, single crystalline ZnO nanorod array to a beam of 50 keV argon ions at room temperature. High resolution electron microscopy reveals that the ion bombardment results in a nanometer-scale roughening of the nanorod sidewalls, which were almost atomically flat in the pristine sample. Ion bombardment further causes the flat, Almost-Equal-To 100 nm diameter nanorod tips to get sharpened to ultrafine points less than 10 nm across. While tip sharpening is attributed to preferential sputtering, the formation of crystalline surface protuberances can be ascribed to surface instability due to curvature dependent sputtering and surface diffusion under argon-ion bombardment. Both the nanoscale roughening as well as the tip sharpening are expected to favorably impact a wide variety of applications, such as those involving catalysis, gas sensing, solar cells, field emission and gas discharge.