WorldWideScience

Sample records for argon 39 beams

  1. Argon-39 Background in DUNE Photon Detectors

    Science.gov (United States)

    Sinev, Gleb; DUNE Collaboration

    2016-03-01

    The Deep Underground Neutrino Experiment (DUNE) is a 40-kt liquid argon detector that will be constructed 5000 ft underground in the Sanford Underground Research Facility in order to study neutrino and proton decay physics. Instrumenting liquid argon with photon detectors to record scintillation in addition to the ionization signal can significantly improve time and energy resolution of the experiment. Argon produces light with wavelength of 128 nm. The reference design for the photon detectors includes acrylic bars covered in wavelength shifter, where the scintillation light can be captured and reemitted with longer wavelengths, then detected using silicon photomultipliers. Radiological backgrounds may noticeably deteriorate the photon detection system performance, especially for low-energy interactions. A particularly important background comes from argon-39 decays, because argon-39 is present in natural argon that will be used in DUNE and the background rate increases with the size of the experiment. The effect of the argon-39 background has been studied and is presented in this talk.

  2. Ion-beam excitation of liquid argon

    CERN Document Server

    Hofmann, M; Heindl, T; Neumeier, A; Oberauer, L; Potzel, W; Roth, S; Schönert, S; Wieser, J; Ulrich, A

    2015-01-01

    The scintillation light of liquid argon has been recorded wavelength and time resolved with very good statistics in a wavelength interval ranging from 118 nm through 970 nm. Three different ion beams, protons, sulfur ions and gold ions, were used to excite liquid argon. Only minor differences were observed in the wavelength-spectra obtained with the different incident particles. Light emission in the wavelength range of the third excimer continuum was found to be strongly suppressed in the liquid phase. In time-resolved measurements, the time structure of the scintillation light can be directly attributed to wavelength in our studies, as no wavelength shifter has been used. These measurements confirm that the singlet-to-triplet intensity ratio in the second excimer continuum range is a useful parameter for particle discrimination, which can also be employed in wavelength-integrated measurements as long as the sensitivity of the detector system does not rise steeply for wavelengths longer than 190 nm. Using ou...

  3. MeV Argon ion beam generation with narrow energy spread

    CERN Document Server

    Xu, Jiancai; Shen, Baifei; Zhang, Hui; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-01-01

    Laser driven particle acceleration has shown remarkable progresses in generating multi-GeV electron bunches and 10s of MeV ion beams based on high-power laser facilities. Intense laser pulse offers the acceleration field of 1012 Volt per meter, several orders of magnitude larger than that in conventional accelerators, enabling compact devices. Here we report that a highly-collimated argon ion beam with narrow energy spread is produced by irradiating a 45-fs fully-relativistic laser pulse onto an argon cluster target. The highly-charged (Argon ion with charge state of 16+) heavy ion beam has a minimum absolute energy spread of 0.19 MeV per nucleon at the energy peak of 0.39 MeV per nucleon. we identify a novel scheme from particle-in-cell simulations that greatly reduces the beam energy spread. The laser-driven intense plasma wakefield has a strong modulation on the ion beam in a way that the low energy part is cut off. The pre-accelerated argon ion beam from Coulomb explosion thus becomes more mono-energetic ...

  4. Potassium-argon/argon-40-argon-39 geochronology of Cenozoic alkali basalts from the South China Sea

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa; YANG Yaomin; WANG Kunshan

    2008-01-01

    Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea,the characteristics of volcanic activi-ty of the South China Sea after spreading were studied.The potassium - argon ages of eight alkali basalt samples from the South China Sea,and the argon - argon ages of two samples among them are reported.Apparent ages of the whole rock are 3.80 to 7.91 Ma with an average value of 5.43 Ma (potassium- argon,whole rock),and there is little difference among samples at the same location,e.g.,4.76~5.78 Ma for location S04-12.The argon - argon ages for the two samples are 6.06 and 4.71 Ma,which lie within the age scope of potassium - argon method.The dating results indicate that rock-forming age is from late Miocene to Pli-ocene,which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea.Volcanic activities occur after the cessation of spreading of the South China Sea,which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea.These dating results,combined with geochemical characteristics of these basalts,the published chronological data for the South China Sea and its adjacent regions,and the updated geophysical data near Hainan Island,suggest that after the cessation of spreading of the South China Sea,there occur widely distributing magmatic activities which primarily is alkali basalt,and the volcanic activity continues to Quaternary.The activity may be relative to Hainan mantle plume originated from core/mantle boundary.

  5. Metastable argon beam source using a surface wave sustained plasma

    International Nuclear Information System (INIS)

    A new source of metastable argon atoms in the thermal energy range is reported. The source is based on expanding a plasma sustained by electromagnetic surface waves in a quartz tube through a converging nozzle and extracting a beam from the supersonic free-expansion jet. The beam was characterized by time-of-flight measurements which yielded the absolute intensity and velocity distribution of the argon metastables. The source produced a maximum intensity of 6.2x1014 metastables per second per steradian, the highest time-averaged intensity of thermal argon metastables of any source reported to date. A simple picture of an expanding plasma in a recombination regime is used to explain the dependence of the metastable intensity on absorbed power

  6. Experimental and numerical study of high intensity argon cluster beams

    International Nuclear Information System (INIS)

    Experimental and numerical investigations of expansion of argon with homogeneous condensation in supersonic conical nozzle and in free jet behind it were carried out. Optimal parameters (stagnation pressure, nozzle-skimmer distance) for the formation of cluster beam with maximum intensity were determined. Two available models for nonequilibrium nucleation were tested. The numerical results are in satisfactory agreement with the measured data

  7. Activation of copper by nitrogen and argon beams

    Energy Technology Data Exchange (ETDEWEB)

    Chetvertkova, Vera [IAP, Goethe-University, Frankfurt am Main (Germany); GSI Darmstadt (Germany); Mustafin, Edil; Strasik, Ivan [GSI Darmstadt (Germany); Belousov, Anton [TU Darmstadt (Germany); Latysheva, Ludmila; Sobolevsky, Nikolai [INR RAS, Moscow (Russian Federation); Ratzinger, Ulrich [IAP, Goethe-University, Frankfurt am Main (Germany)

    2012-07-01

    Monte Carlo transport codes are widely used for various purposes in nuclear physics, radiation protection, medical applications, accelerator design etc. Code verification by experiments is needed to be sure that the codes give accurate results. New data on the activation of copper by a nitrogen beam of 500 MeV/u is presented and compared with FLUKA and SHIELD simulation results. The activation of copper by a nitrogen beam is compared to activation by an argon beam and respective simulations. This gives a chance to see the accuracy of the codes at different projectile masses. Correspondences and discrepancies of calculations and experiments are discussed.

  8. Spectroscopy of Argon Excited in an Electron Beam Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E

    2005-04-18

    Argon is one of the gases best investigated and most widely used in plasma discharge devices for a multitude of applications that range from wavelength reference standards to controlled fusion experiments. Reviewing atomic physics and spectroscopic problems in various ionization stages of Ar, the past use and future options of employing an electron beam ion trap (EBIT) for better and more complete Ar data in the x-ray, EUV and visible spectral ranges are discussed.

  9. Argon 40-argon 39 chronology of lithic clasts from the Kapoeta howardite

    International Nuclear Information System (INIS)

    40Ar-39Ar age spectra has been measured on plagioclase separates from three basaltic clasts (A, B, C), a pyroxene separate from clast B, and a total sample of a fourth basaltic clast (rho) from the Kapoeta achondritic meteorite. The Ar data show that three of the four clasts crystallized >= 4.5 AE ago. Xe measurements indicate all four formed within a 0.1 AE period. Three clasts have suffered various degrees of 40Ar loss since that time. The times of 40Ar degassing do not cluster about a single time analogous to the lunar cataclysm. The survival of >= 4.5 AE ages contrasts with the general absence of ages >= 4.0 AE on the moon. The Ar retention age of clast B of >= 4.57 AE is atypically older than the RB-Sr age of 3.6 AE. The 3.5 AE Ar age of clast A is distinctly younger than the Rb-Sr age of 3.9 AE. The K-Ar and Rb-Sr systems are clearly not equivalent dating techniques in these instances. The combined evidence of Ar, Xe and Rb-Sr studies suggests the period of volcanism on the Kapoeta parent planet was restricted to the first approximately 0.2 AE of solar system history. The subsequent thermal metamorphic histories recorded in each of the four clasts after formation are distinctly different. The clasts must have existed as independent fragments at least as recently as 3.5 AE ago. The cosmic ray exposure ages of all the four clasts are similar (approximately 3 Myr), and are not significantly different from that of the bulk meteorite. The clasts spent essentially all of the time prior to the formation of Kapoeta at depths greater than a few meters. (author)

  10. Pulsed electron beam propagation in argon and nitrogen gas mixture

    International Nuclear Information System (INIS)

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N2). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively

  11. Lead Pipe Scale Analysis Using Broad-Beam Argon Ion Milling to Elucidate Drinking Water Corrosion

    Science.gov (United States)

    Herein, we compared the characterization of lead pipe scale removed from a drinking water distribution system using two different cross section methods (conventional polishing and argon ion beam etching). The pipe scale solids were analyzed using scanning electron microscopy (SEM...

  12. Characterisation of an RF excited argon plasma cathode electron beam gun

    OpenAIRE

    Del Pozo, S.; Ribton, C; Smith, DR

    2014-01-01

    This work describes the experimental set up used for carrying out spectroscopic measurements in a plasma cathode electron beam (EB) gun. Advantages of plasma cathode guns over thermionic guns are described. The factors affecting electron beam power such as plasma pressure, excitation power and plasma chamber geometry are discussed. The maximum beam current extracted was 53 mA from a 0.5 mm diameter aperture in the plasma chamber. In this work, the electron source is an argon plasma excited at...

  13. Proton beam micromachining on PMMA, Foturan and CR-39 materials

    International Nuclear Information System (INIS)

    In this paper we investigate further the potential of proton beam micromachining (PBM) on three different materials: the polymers PMMA and CR-39, and the photowritable glass Foturan. A focused beam of 2 MeV protons delivered by the nuclear microprobe of ATOMKI was used to pattern these materials. The parameters of PBM and the obtained structures are presented

  14. Proton beam micromachining on PMMA, Foturan and CR-39 materials

    Energy Technology Data Exchange (ETDEWEB)

    Rajta, I.; Gomez-Morilla, I.; Abraham, M.H.; Kiss, A.Z. E-mail: azkiss@atomki.hu

    2003-09-01

    In this paper we investigate further the potential of proton beam micromachining (PBM) on three different materials: the polymers PMMA and CR-39, and the photowritable glass Foturan. A focused beam of 2 MeV protons delivered by the nuclear microprobe of ATOMKI was used to pattern these materials. The parameters of PBM and the obtained structures are presented.

  15. Linac3 LEBT beam measurements during the 2014-2015 Argon ion run

    CERN Document Server

    Bellodi, Giulia; Maintrot, Marc; Toivanen, Ville Aleksi; CERN. Geneva. ATS Department

    2016-01-01

    Between Spring 2014 and Spring 2015, LINAC3 delivered a beam of Argon ions. A campaign of beam studies was launched with the aim of better understanding the present limitations in the machine performance in the framework of the requested intensity goals as defined by the LHC Injectors Upgrade project. Measurements were mostly focused on beam characterization in the low energy part of Linac3 (LEBT), where performance in operation is mostly limited (in terms of beam transmission). Systematic quadrupole scans provided indirect measurement of the beam transverse emittance and were used as input to improve and refine the accelerator and beam description parameters used in simulations. IBSimu studies of beam formation and extraction at the source were interfaced with particle tracking with the 3D code PATH, and the resulting predictions found good validation in the beam measurements taken during this campaign.

  16. Plasma waves generated during an artificial argon-ion beam experiments in the ionosphere

    International Nuclear Information System (INIS)

    An active ion experiment was performed in the nighttime polar cap ionosphere. The active ion-beam experiment, Auroral Rocket for Controlled Studies ARC 3, was designed to perturb the ionosphere in a controlled manner. The plasma perturbations were observed by instruments on board the main payload (MPL) and subpayload (SPL). The ARCS 3 experiment was different from previous experiments in that two plasma generators, located on the SPL, were oriented so as to inject a beam approximately perpendicular and anti-parallel to the magnetic field. The ARCS 3 experiment included 9 perpendicular and 8 parallel ion beam injections. During the experiment electrostatic ion waves near the harmonics of the hydrogen, oxygen, and possibly argon gyrofrequency were excited by the perpendicular argon ion beam. An absorption feature of the vlf hiss band at the hydrogen gyrofrequency harmonics was also observed during the fourth perpendicular event. During parallel events, the sixth, and seventh perpendicular events electric field fluctuations were recorded near the lower hybrid (LH) frequency. It is suggested that the unexpected perpendicular ion flux observed during parallel events and the perpendicular ion flux observed during parallel events and the perpendicular argon ion beam generates the waves near the LH frequency. Electric-field fluctuations were observed up to and including the seventh perpendicular and parallel events

  17. New argon-argon (40Ar/39Ar) radiometric age dates from selected subsurface basalt flows at the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Hodges, Mary K.; Turrin, Brent D.; Champion, Duane E.; Swisher, Carl C., III

    2015-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected samples for 12 new argon-argon radiometric ages from eastern Snake River Plain olivine tholeiite basalt flows in the subsurface at the Idaho National Laboratory. The core samples were collected from flows that had previously published paleomagnetic data. Samples were sent to Rutgers University for argon-argon radiometric dating analyses.

  18. Electron-beam-sustained discharge revisited - light emission from combined electron beam and microwave excited argon at atmospheric pressure

    CERN Document Server

    Dandl, T; Neumeier, A; Wieser, J; Ulrich, A

    2015-01-01

    A novel kind of electron beam sustained discharge is presented in which a 12keV electron beam is combined with a 2.45GHz microwave power to excite argon gas at atmospheric pressure in a continuous mode of operation. Optical emission spectroscopy is performed over a wide wavelength range from the vacuum ultraviolet (VUV) to the near infrared (NIR). Several effects which modify the emission spectra compared to sole electron beam excitation are observed and interpreted by the changing plasma parameters such as electron density, electron temperature and gas temperature.

  19. Proton beam micromachining on PMMA, Foturan and CR-39 materials

    CERN Document Server

    Rajta, I; Kiss, A Z; Gomez-Morilla, I; Abraham, M H

    2003-01-01

    Proton Beam Micromachining was demonstrated at the Institute of Nuclear Research of the Hungarian Academy of Sciences using three different types of resists: PMMA, Foturan and CR-39 type Solid State Nuclear Track Detector material. Irradiations have been performed on the nuclear microprobe facility at ATOMKI. The beam scanning was done using a National Instruments (NI) card (model 6711), and the new C++ version of the program IonScan, developed specifically for PBM applications called IonScan 2.0. (R.P.)

  20. Proton beam micromachining on PMMA, Foturan and CR-39 materials

    International Nuclear Information System (INIS)

    Proton Beam Micromachining was demonstrated at the Institute of Nuclear Research of the Hungarian Academy of Sciences using three different types of resists: PMMA, Foturan and CR-39 type Solid State Nuclear Track Detector material. Irradiations have been performed on the nuclear microprobe facility at ATOMKI. The beam scanning was done using a National Instruments (NI) card (model 6711), and the new C++ version of the program IonScan, developed specifically for PBM applications called IonScan 2.0. (R.P.)

  1. Argon in hornblende, biotite and muscovite in geologic cooling - Ar-40/Ar-39-investigations

    International Nuclear Information System (INIS)

    The results of the Ar-40/Ar-39 studies are discussed under the aspect of whether the age data of the minerals indicate a cooling process. The author hopes that isotope dating of minerals with different closing temperatures will describe the temperature/time history of an area in the temperature range of 600 to 2000C. The findings are analyzed under three aspects: How much do they contribute to the initial methodological question, what do they contribute to the regional geology of the areas investigated, and in what respects do they extent the present knowledge of the geochronological analysis, i.e. its techniques and interpretation. (orig.)

  2. CAPTAIN-Minerνa. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Mauger, Christopher M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-29

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NOνA, MINERνA and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINERνA detector in the NuMI beamline and combining the data from the CAPTAIN, MINERνA and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINERνA’s scintillator (CH) target, a new level of precision can be achieved in the measurements of the effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINERνA experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.

  3. CAPTAIN-Miner@@a. Neutrino-Argon Scattering in a Medium-Energy Neutrino Beam

    International Nuclear Information System (INIS)

    The NuMI facility at Fermilab is currently providing an extremely intense beam of neutrinos for the NO@@A, MINER@@A and MINOS+ experiments. By installing the 5-ton CAPTAIN liquid argon TPC in front of the MINER@@A detector in the NuMI beamline and combining the data from the CAPTAIN, MINER@@A and MINOS+ detectors, a broad program of few-GeV neutrino cross section measurements on argon can be pursued. These measurements will be extremely helpful for future oscillation experiments. By directly comparing the cross sections on argon to MINER@@A@@@s scintillator (CH) target, a new level of precision can be achieved in the measurements of the effects of the nucleus on neutrino interactions. These effects are of interest to not only the particle physics but also the nuclear physics community. This document describes in detail the physics goals of the CAPTAIN-MINER@@A experiment, in addition to a first estimate of the technical resources required to install, commission and operate the CAPTAIN detector in front of the MINERVA detector.

  4. 40Ar/39Ar impact ages and time-temperature argon diffusion history of the Bunburra Rockhole anomalous basaltic achondrite

    Science.gov (United States)

    Jourdan, Fred; Benedix, Gretchen; Eroglu, Ela.; Bland, Phil. A.; Bouvier, Audrey.

    2014-09-01

    The Bunburra Rockhole meteorite is a brecciated anomalous basaltic achondrite containing coarse-, medium- and fine-grained lithologies. Petrographic observations constrain the limited shock pressure to between ca. 10 GPa and 20 GPa. In this study, we carried out nine 40Ar/39Ar step-heating experiments on distinct single-grain fragments extracted from the coarse and fine lithologies. We obtained six plateau ages and three mini-plateau ages. These ages fall into two internally concordant populations with mean ages of 3640 ± 21 Ma (n = 7; P = 0.53) and 3544 ± 26 Ma (n = 2; P = 0.54), respectively. Based on these results, additional 40Ar/39Ar data of fusion crust fragments, argon diffusion modelling, and petrographic observations, we conclude that the principal components of the Bunburra Rockhole basaltic achondrite are from a melt rock formed at ∼3.64 Ga by a medium to large impact event. The data imply that this impact generated high enough energy to completely melt the basaltic target rock and reset the Ar systematics, but only partially reset the Pb-Pb age. We also conclude that a complete 40Ar∗ resetting of pyroxene and plagioclase at this time could not have been achieved at solid-state conditions. Comparison with a terrestrial analog (Lonar crater) shows that the time-temperature conditions required to melt basaltic target rocks upon impact are relatively easy to achieve. Ar data also suggest that a second medium-size impact event occurred on a neighbouring part of the same target rock at ∼3.54 Ga. Concordant low-temperature step ages of the nine aliquots suggest that, at ∼3.42 Ga, a third smaller impact excavated parts of the ∼3.64 Ga and ∼3.54 Ga melt rocks and brought the fragments together. The lack of significant impact activity after 3.5 Ga, as recorded by the Bunburra Rockhole suggests that (1) either the meteorite was ejected in a small secondary parent body where it resided untouched by large impacts, or (2) it was covered by a porous heat

  5. Scanning-probe-microscopy of polyethylene terephthalate surface treatment by argon ion beam

    Science.gov (United States)

    Espinoza-Beltran, Francisco; Sanchez, Isaac C.; España-Sánchez, Beatriz L.; Mota-Morales, Josué D.; Carrillo, Salvador; Enríquez-Flores, C. I.; Poncin-Epaillard, Fabienne; Luna-Barcenas, Gabriel

    2015-11-01

    The effect of argon (Ar+) ion beam treatment on the surface of polyethylene terephthalate (PET) samples was studied by scanning probe microscopy (SPM) and the changes in surface topography were assessed by atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) sheds light of adhesion force between treated polymer films and a Pt/Cr probe under dry conditions, obtaining the contact potential difference of material. As a result of Ar+ ion bombardment, important surface chemical changes were detected by X-ray photoelectron spectroscopy (XPS) measurements such as chains scission and incorporation of nitrogen species. Ion beam treatment increases the surface roughness from 0.49 ± 0.1 nm to 7.2 ± 0.1 nm and modify the surface potential of PET samples, decreasing the adhesive forces from 12.041 ± 2.1 nN to 5.782 ± 0.06 nN, and producing a slight increase in the electronic work function (Φe) from 5.1 V (untreated) to 5.2 V (treated). Ar+ ion beam treatment allows to potentially changing the surface properties of PET, modifying surface adhesion, improving surface chemical changes, wetting properties and surface potential of polymers.

  6. Relation between electrical resistivity and argon concentration of copper thin films prepared by ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Particle Induced X-ray Emission (PIXE) measurements were applied to the evaluation of the argon concentration in the copper thin films prepared by Ion-Beam-Assisted Deposition (IBAD) technique. The relation between electrical resistivity and argon concentration in the films were investigated. The crystallinity and the atomic density were also examined with x-ray diffraction and Rutherford Backscattering Spectrometry (RBS). The obtained results indicated that although the grain size of the films becomes larger with the ion irradiation, electrical resistivity increases with an increase in the ion quantity. (author)

  7. Irradiation effect on PET surface using low energy argon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, Barakat A. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy, P.O. Box 13759, Inchas, Atomic Energy (Egypt); Abdelrahman, Moustafa M., E-mail: moustafa82003@yahoo.com [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy, P.O. Box 13759, Inchas, Atomic Energy (Egypt); Abdelsalam, Fatama W. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy, P.O. Box 13759, Inchas, Atomic Energy (Egypt); Aly, Kamal A. [Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy, P.O. Box 13759, Inchas, Atomic Energy (Egypt); Physics Department, Faculty of Science, Al-Azhar University, Assiut Branch, Assiut (Egypt); Physics Department, Faculty of Science and Arts, Khulais, King Abdulaziz University (KAU) (Saudi Arabia)

    2013-01-15

    A study of various physical properties of a PET film irradiated with an Ar beam is reported. SEM images and UV-VIS and FTIR spectra were obtained for a number of ionic fluxes and three irradiation times. Small changes in the energy gap of degradated samples were found, and the SEM images indicate that the optimum homogeneity and roughness are reached after 30 min of irradiation. These results may well be of practical interest. A modified saddle field ion source was used as a preparation tool of the surface of polyethylene terephthalate PET polymer substrate to be ready for coating or thin film deposition. Argon ion beam was used for this purpose, where the scanning electron microscope (SEM) shows that, the best sample is the one which was irradiated to 30 min, where this sample is more homogenous and roughness than other irradiated samples. Also the (UV-VIS) spectrum tells us that, there is small change on energy gap and this is meaning that, the change on electric properties is small also. In this case the sample is more homogenous and of higher roughness than other irradiated samples.

  8. Extreme ultraviolet beam-foil spectroscopy of highly ionized neon and argon

    International Nuclear Information System (INIS)

    A study of the euv radiation emitted by ion beams of highly ionized Ne and Ar after passage through thin foils was conducted at the variable energy cyclotron at Texas A and M University. A grazing incidence spectrometer was equipped with a position sensitive microchannel plate (MCP) detector, which improved the detection efficiency by two orders of magnitude. The position information of the MCP was determined to be linear over 90% of the 50 mm wide detector. Spectra spanning regions of over 100 A were accumulated at a resolution of less than 1 A. A wavelength calibration based on a second order equation of spectrometer position was found to result in an accuracy of +/-0.1 A. Over 40 transitions of Ne VIII, Ne IX, and Ne X were observed in the wavelength region from 350 to 30 A from n = 2-3, 4, 5; n = 3-4, 5, 6, 7, 8; n = 4-6, 7; and n = 5-9. An intensity calibration of the detection system allowed the determination of the relative populations of n = 3 states of Ne VIII and Ne IX. The argon beam-foil data confirmed the wavelength predictions of 30 previously unobserved transitions in the wavelength region from 355 to 25 A from n = 2-2; n = 3-4; n = 4-5, 6, 7; n = 5-6, 7; and n = 6-8

  9. Beam profile measurement with CR-39 track detector for low-energy ions

    CERN Document Server

    Sato, F; Tanaka, T; Iida, T; Yamauchi, T; Oda, K

    1999-01-01

    A CR-39 track detector was successfully used to measure the outline of thin low-energy ion beams. After the etching, the surface of the detector was examined with an observation system composed of a Normarski microscope, a CCD camera and a digital image processing computer. Beam images obtained with the system were in good agreement on the outline of the beam formed with a beam aperture. Also, the resolving power in the beam outline measurement was roughly explained from the consideration of the ion range and the etch-pit growth in the chemical etching for the CR-39 detector.

  10. Performance of a liquid argon time projection chamber exposed to the CERN West Area Neutrino Facility neutrino beam

    International Nuclear Information System (INIS)

    We present the results of the first exposure of a Liquid Argon TPC to a multi-GeV neutrino beam. The data have been collected with a 50 liters ICARUS-like chamber located between the CHORUS and NOMAD experiments at the CERN West Area Neutrino Facility (WANF). We discuss both the instrumental performance of the detector and its capability to identify and reconstruct low-multiplicity neutrino interactions

  11. Argon-40/Argon-39 Age Spectra of Apollo 17 Highlands Breccia Samples by Laser Step Heating and the Age of the Serenitatis Basin

    Science.gov (United States)

    Dalrymple, G. Brent; Ryder, Graham

    1996-01-01

    We have obtained high-resolution (21-63 steps) Ar-40/Ar-39 age spectra using a continuous laser system on 19 submilligram samples of melt rocks and clasts from Apollo 17 samples collected from the pre-Imbrian highlands in the easternmost part of the Serenitatis basin. The samples include poikilitic melt rocks inferred to have been formed in the Serenitatis basin-forming impact, aphanitic melt rock whose compositions vary and whose provenance is uncertain, and granulite, gabbro, and melt clasts. Three of the poikilitic melts have similar age spectrum plateau ages (72395,96, 3893 +/- 16 Ma (2sigma); 72535,7, 3887 +/- 16 Ma; 76315,150, 3900 +/- 16 Ma) with a weighted mean age of 3893 +/- 9 Ma, which we interpret as the best age for the Serenitatis basin- forming impact. Published Ar-40/Ar-39 age spectrum ages of Apollo 17 poikilitic melts are consistent with our new age but are much less precise. Two poikilitic melts did not give plateaus and the maxima in their age spectra indicate ages of greater than or equal to 3869 Ma (72558,7) and greater than or equal to 3743 Ma (77135,178). Plateau ages of two poikilitic melts and two gabbro clasts from 73155 range from 3854 +/- 16 Ma to 3937 +/- 16 Ma and have probably been affected by the ubiquitous (older?) clasts and by post- formation heating (impact) events. Plateau ages from two of the aphanitic melt 'blobs' and two granulites in sample 72255 fall in the narrow range of 3850 q 16 Ma to 3869 q 16 Ma with a weighted mean of 3862 +/- 8 Ma. Two of the aphanitic melt blobs from 72255 have ages of 3883 +/- 16 Ma and greater than or equal to 3894 Ma, whereas a poikilitic melt clast (of different composition from the 'Serenitatis' melts) has an age of 3835 +/- 16 Ma, which is the upper limit for the accretion of 72255. These data suggest that either the aphanitic melts vary in age, as is also suggested by their varying chemical compositions, or they formed in the 72255 accretionary event about 3.84-3.85 Ga and older relict

  12. The change in optical and electrical characteristics of tin oxide films under the action of argon ion beam

    Science.gov (United States)

    Asainov, O.; Umnov, S.; Temenkov, V.

    2016-01-01

    Thin films of tin oxide (TO) were deposited on the glass substrates at room temperature using reactive magnetron sputtering at various oxygen partial pressures. After the deposition the filmswere irradiated with argon ions beam. The change of the optical and electrical properties of the films depending on the irradiation time was studied. Films optical properties in the range of 300-1100 nm were investigated by photometry as well as their structural properties were studied using X-ray diffraction. Diffractometric research showed that the films, deposited on a substrate, have a crystal structure, and after argon ions irradiation they become quasi-crystalline (amorphous). It was found that the transmission increases proportionally with the irradiation time, but the surface resistance -disproportionally.

  13. Crossed-beam time-of-flight study of metastable helium in collisions with helium, neon, and argon

    International Nuclear Information System (INIS)

    Absolute total integral velocity-resolved cross sections have been measured for collisions of helium singlet (21S0) and triplet (23S1) metastables with ground-state helium, neon, and argon in the thermal velocity range of 1.0 to 3.5 x 105 cm/sec. Additional measurements on the He+-Ne system with a large input acceptance angle at the detector failed to show previously predicted sharply-rising velocity structure in the inelastic transfer cross sections. The measurements were taken with a crossed-beam time-of-flight apparatus

  14. Depleted Argon from Underground Sources

    International Nuclear Information System (INIS)

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however 39Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in 39Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO2 well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO2. We first concentrate the argon locally to 3% in an Ar, N2, and He mixture, from the CO2 through chromatographic gas separation, and then the N2 and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO2 facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  15. Test beam results of a stereo preshower integrated in the liquid argon accordion calorimeter

    CERN Document Server

    Davis, R; Greenious, G; Kitching, P; Olsen, B; Pinfold, James L; Rodning, N L; Boos, E; Zhautykov, B O; Aubert, Bernard; Bazan, A; Beaugiraud, B; Boniface, J; Colas, Jacques; Eynard, G; Jézéquel, S; Le Flour, T; Linossier, O; Nicoleau, S; Sauvage, G; Thion, J; Van den Plas, D; Wingerter-Seez, I; Zitoun, R; Zolnierowski, Y; Chmeissani, M; Fernández, E; Garrido, L; Martínez, M; Padilla, C; Citterio, M; Gordon, H A; Lissauer, D; Ma, H; Makowiecki, D S; Radeka, V; Rahm, David Charles; Rescia, S; Stephani, D; Takai, H; Baisin, L; Berset, J C; Chevalley, J L; Gianotti, F; Gildemeister, O; Marin, C P; Nessi, Marzio; Poggioli, Luc; Richter, W; Vuillemin, V; Baze, J M; Delagnes, E; Gosset, L G; Lavocat, P; Lottin, J P; Mansoulié, B; Meyer, J P; Renardy, J F; Schwindling, J; Simion, S; Taguet, J P; Teiger, J; Walter, C; Collot, J; de Saintignon, P; Hostachy, J Y; Mahout, G; Barreiro, F; Del Peso, J; García, J; Hervás, L; Labarga, L; Romero, P; Scheel, C V; Chekhtman, A; Cousinou, M C; Dargent, P; Dinkespiler, B; Etienne, F; Fassnacht, P; Fouchez, D; Martin, L; Miotto, A; Monnier, E; Nagy, E; Olivetto, C; Tisserant, S; Battistoni, G; Camin, D V; Cavalli, D; Costa, G; Cozzi, L; Fedyakin, N N; Ferrari, A; Mandelli, L; Mazzanti, M; Perini, L; Resconi, S; Sala, P R; Beaudoin, G; Depommier, P; León-Florián, E; Leroy, C; Roy, P; Augé, E; Breton, D; Chase, Robert L; Chollet, J C; de La Taille, C; Fayard, Louis; Fournier, D; González, J; Hrisoho, A T; Jacquier, Y; Merkel, B; Nikolic, I A; Noppe, J M; Parrour, G; Pétroff, P; Puzo, P; Richer, J P; Schaffer, A C; Seguin-Moreau, N; Serin, L; Tisserand, V; Veillet, J J; Vichou, I; Canton, B; David, J; Genat, J F; Imbault, D; Le Dortz, O; Savoy-Navarro, Aurore; Schwemling, P; Eek, L O; Lund-Jensen, B; Söderqvist, J; Astbury, Alan; Keeler, Richard K; Lefebvre, M; Robertson, S; White, J

    1998-01-01

    This paper describes the construction of an integrated preshower within the RD3 liquid argon accordion calorimeter. It has a stereo view which enables the measurement of two transverse coordinates. The prototype was tested at CERN with electrons, photons and muons to validate its capability to work at LHC ( Energy resolution, impact point resolution, angular resolution, $\\pi^o$/$\\gamma$ rejection ).

  16. On the formation of narrow bubble tracks by laser beam in argon, nitrogen and hydrogen bubble chambers

    International Nuclear Information System (INIS)

    Long bubble tracks, < 1 mm in diameter, have been produced in liquid argon and nitrogen with a nitrogen laser beam (lambda = 337 mm), offering subnanosecond pulses with small beam divergence. Bubble formation was observed over a wide range of operating conditions, including those for ordinary bubble chamber operation, with a laser pulse of 10 μJ. Typical bubble densities obtained were 4-8 bubbles/cm, with maximum densities of 20 bubbles/cm. In liquid hydrogen, tracks of 3 m visible length were observed with track diameters from 1.5 to 6 mm and bubble densities from 2 to 25 bubbles/cm. Results and applications will be discussed. (orig.)

  17. FAST TRACK COMMUNICATION: Study of low-energy resonant metastability exchange in argon by a pulsed merging beam technique

    Science.gov (United States)

    Grucker, J.; Baudon, J.; Perales, F.; Dutier, G.; Vassilev, G.; Bocvarski, V.; Ducloy, M.

    2008-01-01

    The resonant metastability exchange process in low-energy collinear collisions between metastable argon atoms (Ar* 3P2) polarized in spin (M = +2) and ground-state Ar atoms from a nozzle beam is studied by means of a time-of-flight technique. A wide range of metastable atom velocities in the laboratory frame (275 m s-1 down to 50 m s-1) is obtained by use of a Zeeman slower, the counter-propagating laser beam of which is locked in frequency onto the 3P2-3D3 closed transition (λ = 811.5 nm). The accessible centre-of-mass energy range (8-27 meV) has not been explored so far, to our knowledge. Calculations based upon existing interatomic potentials of 2g and 2u symmetries are in reasonable agreement with experiment.

  18. Production of nitrogen, oxygen, neon, and argon nuclei in the KRION-2 electron-beam ion source

    International Nuclear Information System (INIS)

    The KRION-2 electron-beam ion source was designed for bench experiments to investigate the use of dense electron beams (over 100 A/cm2) for ionization purposes. The production of nitrogen and neon nuclei in this source has been reported previously. An ionization factor of approx. 1020 cm-2 for an ionizing electron energy of approx. 5 keV was achieved. A number of experiments aimed at investigating the evolution of the charge state spectrum of nitrogen, oxygen, neon, and argon ions as a function of the ionization factor and electron energy have been carried out. A brief description of the experimental setup and of the recent experiments conducted with the KRION-2 source is presented. A primary analysis of the results of these experiments is made

  19. Ventilation of the deep Greenland and Norwegian seas: evidence from krypton-85, tritium, carbon-14 and argon-39

    International Nuclear Information System (INIS)

    On leg 5 of the TTO expedition, the distributions of 85Kr, tritium, 14C, 39Ar, temperature, salinity, oxygen, carbon dioxide and nutrients were measured in the Greenland and Norwegian seas. These observations support previous observations that Greenland Sea Deep Water is formed by a deep convective process within the Greenland gyre. They also support AAGAARD et al.'s (1985, Journal of Geophysical Research, 90, 4833-4846) new hypothesis that Norwegian Sea Deep Water forms from a mixture of Greenland Sea Deep Water and Eurasian Basin Deep Water. Volume transports estimated from the distributions of 85Kr, tritium, 14C and 39Ar range from 0.53 to 0.74 Sv for exchange between the surface and deep Greenland Sea and from 0.9 to 1.47 Sv for exchange between the deep Greenland and deep Norwegian Seas. The residence time of water and the deep Greenland Sea with respect to exchange with surface water ranges from 24 to 34 years reported by PETERSON and ROOTH (1976, Deep-Sea Research, 23, 273-283) and 35-42 years reported by BULLISTER and WEISS (1983, Science, 221, 265-268). The residence time of water in the deep Norwegian Sea with respect to exchange with the deep Greenland Sea ranges from 19 to 30 years compared to 97-107 years reported by PETERSON and ROOTH (1976) and 10-28 years reported by BULLISTER and WEISS (1983). The oxygen consumption rate was estimated to be at most 1.04 μM kg-1 y-1 for the deep Greenland Sea and to be between 0.47 and 0.79 μM kg-1 y-1 for the deep Norwegian Sea. (author)

  20. Hydrothermal fluids, argon isotopes and mineralization ages of the Fankou Pb-Zn deposit in south China: Insights from sphalerite 40Ar/39Ar progressive crushing

    Science.gov (United States)

    Jiang, Ying-De; Qiu, Hua-Ning; Xu, Yi-Gang

    2012-05-01

    Hydrothermal fluid geochemistry and mineralization timing are two important factors in the genesis of a hydrothermal deposit. 40Ar/39Ar analyses of fluid inclusions not only provide time constraints for the mineralization but also help to clarify the K-Ca-Cl-Ar characteristics for the ore-forming fluids. In this study, six sphalerite samples collected from the Fankou lead-zinc sulfide deposit are investigated by 40Ar/39Ar in vacuo crushing. Gases liberated from the early and late crushing steps exhibit distinct Ar isotopic compositions and 40Ar/39Ar apparent ages. Argon released in the early steps has much higher 40Ar and 38ArCl and lower 37ArCa contents than those in the late steps. The significant excess Ar (40ArE) extracted in the early crushing steps shows a strong correlation with 38ArCl with very high 40ArE/38ArCl ratios. In contrast, those of the late steps mainly consist of atmospheric Ar and K-correlated radiogenic Ar with a constant 40ArR/39ArK ratio and the atmospheric initial 40Ar/36Ar ratio. As a result, all samples yield similar declining age spectra: the fore segments with anomalously old apparent ages decline quickly in the early crushing steps and the rear ones are flat with concordant apparent ages in the late crushing steps. The data points of the early steps define linear correlations in plots of 40ArNA/39ArK vs. 38ArCl/39ArK and 38ArCl/40ArNA vs. 39ArK/40ArNA (NA for non-atmospheric) and most yield ages of 240-230 Ma. On the other hand, the data of the late steps always construct well-defined isochrons in the plots of 36ArA/40ArNA vs. 39ArK/40ArNA with consistent ages of ˜300 Ma. We interpret that gases released in the early steps were from the secondary fluid inclusions (SFIs) due to their distribution characteristics along cracks leading to be easily extracted, and those released in the later steps represented the contribution of the primary fluid inclusions (PFIs). The initial 40Ar/36Ar ratios of SFIs, much higher than the modern

  1. Characterization of CdZnTe after argon ion beam bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Bensalah, H., E-mail: hakima.bensalah@uam.es [Departamento de Fisica de Materiales, Laboratorio de Crecimiento de Cristales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Hortelano, V. [GdS-Optronlab Group, Departamento Fisica Materia Condensada, Universidad de Valladolid, Edificio I-D, Paseo de Belen 1, 47011 Valladolid (Spain); Plaza, J.L. [Departamento de Fisica de Materiales, Laboratorio de Crecimiento de Cristales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Martinez, O. [GdS-Optronlab Group, Departamento Fisica Materia Condensada, Universidad de Valladolid, Edificio I-D, Paseo de Belen 1, 47011 Valladolid (Spain); Crocco, J.; Zheng, Q.; Carcelen, V.; Dieguez, E. [Departamento de Fisica de Materiales, Laboratorio de Crecimiento de Cristales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer After argon irradiation using low fluence, the defects on surface were removed. Black-Right-Pointing-Pointer The PL intensity increases after irradiation. This increase should be related to the improved quality of the CdZnTe surfaces. Black-Right-Pointing-Pointer Irradiation process lead to an elimination of Te precipitates from the surfaces of the CdZnTe samples. - Abstract: The objective of this work is to analyze the effects of argon ion irradiation process on the structure and distribution of Te inclusions in Cd{sub 1-x}Zn{sub x}Te crystals. The samples were treated with different ion fluences ranging from 2 to 8 Multiplication-Sign 10{sup 17} cm{sup -2}. The state of the samples before and after irradiation were studied by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cathodoluminescence, Photoluminescence, and micro-Raman spectroscopy. The effect of the irradiation on the surface of the samples was clearly observed by SEM or AFM. Even for small fluences a removal of polishing scratches on the sample surfaces was observed. Likely correlated to this effect, an important enhancement in the luminescence intensity of the irradiated samples was observed. An aggregation effect of the Te inclusions seems to occur due to the Ar bombardment, which are also eliminated from the surfaces for the highest ion fluences used.

  2. Theoretical and experimental study of the CR-39 behavior under electron beam

    CERN Document Server

    Isabey, R; Darraud-Taupiac, C; Binsangou, V; Makovicka, L; Decossas, J L; Vareille, J C

    1999-01-01

    This work concerns the action of an electron beam on some physical properties of the poly(diethylene bis(allyl carbonate)) CR39 manufactured in Bristol and Limoges laboratories. The material undergoes structural, physical and chemical modifications induced by the incident electrons energy transfer in the substrate. This is similar to the processes generated by the secondary electrons created during ion beam-polymers interactions. An experimental study of the topographic modifications on the CR39 under electron beam is presented. In parallel, a theoretical study using Monte-Carlo simulations and concerning the 3D energy transfer for one diameter of the spot is developed in order to evaluate the radio induced process.

  3. Theoretical and experimental study of the CR-39 behavior under electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Isabey, R.; Duverger, E.; Darraud-Taupiac, C.; Binsangou, V.; Makovicka, L.; Decossas, J.L.; Vareille, J.C

    1999-06-01

    This work concerns the action of an electron beam on some physical properties of the poly(diethylene bis(allyl carbonate)) CR39 manufactured in Bristol and Limoges laboratories. The material undergoes structural, physical and chemical modifications induced by the incident electrons energy transfer in the substrate. This is similar to the processes generated by the secondary electrons created during ion beam-polymers interactions. An experimental study of the topographic modifications on the CR39 under electron beam is presented. In parallel, a theoretical study using Monte-Carlo simulations and concerning the 3D energy transfer for one diameter of the spot is developed in order to evaluate the radio induced process.

  4. Theoretical and experimental study of the CR-39 behavior under electron beam

    International Nuclear Information System (INIS)

    This work concerns the action of an electron beam on some physical properties of the poly(diethylene bis(allyl carbonate)) CR39 manufactured in Bristol and Limoges laboratories. The material undergoes structural, physical and chemical modifications induced by the incident electrons energy transfer in the substrate. This is similar to the processes generated by the secondary electrons created during ion beam-polymers interactions. An experimental study of the topographic modifications on the CR39 under electron beam is presented. In parallel, a theoretical study using Monte-Carlo simulations and concerning the 3D energy transfer for one diameter of the spot is developed in order to evaluate the radio induced process

  5. Stern Gerlach interferometry with metastable argon atoms: an immaterial mask modulating the profile of a supersonic beam

    CERN Document Server

    Viaris De Lesegno, B; Perales, F; Mainos, C; Reinhardt, J; Baudon, J; Grancharova, D; Durt, T; Robert, J; Boustimi, M; Bocvarski, V; Dos Santos, F P; Durt, T; Haberland, H

    2003-01-01

    A new Stern Gerlach interferometer operating with a nozzle beam of metastable argon atoms Ar* (3p sup 5 4s, sup 3 P sub 2) is described. The selection of incoming (polarisation) and outgoing (analysis) Zeeman sublevels is achieved by use of laser induced transitions at two wavelengths, 811.5 nm (closed J 2 -> J = 3 transition) and 801.5 nm (open J = 2 -> J = 2 transition). Linear superpositions of Zeeman sublevels, just beyond the polarizer and just before the analyser, are prepared by means of two zones where Majorana transitions take place. In between, a controlled magnetic field configuration (the phase object) is produced within a triple mu-metal shielding. Standard interference patterns are obtained by scanning the field and detecting the atoms by secondary electron emission from a Faraday cup. When a static radial magnetic gradient is used, the beam profile is modulated by interference. The transverse pattern. which can be translated at will by adding a homogeneous field, is observed for the first time ...

  6. Stern Gerlach interferometry with metastable argon atoms: an immaterial mask modulating the profile of a supersonic beam

    Energy Technology Data Exchange (ETDEWEB)

    Viaris de Lesegno, B. [Toulouse-3 Univ., LCAR-IRSAMC, 31 (France); Karam, J.C.; Perales, F.; Mainos, C.; Reinhardt, J.; Baudon, J.; Grancharova, D.; Durt, T.; Robert, J. [Paris-13 Univ., Lab. de Physique des Lasers, 93 - Villetaneuse (France); Boustimi, M. [ENSSAT, Lab. d' Optronique, 22 - Lannion (France); Bocvarski, V. [Institute of Physics, Zumun (Yugoslavia); Dos Santos, F.P. [Laboratoire Kastler-Brossel, 75 - Paris (France); Durt, T. [Brussel Vrije Universiteit, Tena-Tona, Brussel (Belgium); Haberland, H. [Freiburg Univ. (Germany)

    2003-04-01

    A new Stern Gerlach interferometer operating with a nozzle beam of metastable argon atoms Ar* (3p{sup 5} 4s, {sup 3}P{sub 2}) is described. The selection of incoming (polarisation) and outgoing (analysis) Zeeman sublevels is achieved by use of laser induced transitions at two wavelengths, 811.5 nm (closed J 2 {yields} J = 3 transition) and 801.5 nm (open J = 2 {yields} J = 2 transition). Linear superpositions of Zeeman sublevels, just beyond the polarizer and just before the analyser, are prepared by means of two zones where Majorana transitions take place. In between, a controlled magnetic field configuration (the phase object) is produced within a triple {mu}-metal shielding. Standard interference patterns are obtained by scanning the field and detecting the atoms by secondary electron emission from a Faraday cup. When a static radial magnetic gradient is used, the beam profile is modulated by interference. The transverse pattern. which can be translated at will by adding a homogeneous field, is observed for the first time using a multi-channel electron multiplier followed by a phosphor screen and a CCD camera. The results satisfactorily agree with all theoretical predictions. (authors)

  7. Stern Gerlach interferometry with metastable argon atoms: an immaterial mask modulating the profile of a supersonic beam

    International Nuclear Information System (INIS)

    A new Stern Gerlach interferometer operating with a nozzle beam of metastable argon atoms Ar* (3p5 4s, 3P2) is described. The selection of incoming (polarisation) and outgoing (analysis) Zeeman sublevels is achieved by use of laser induced transitions at two wavelengths, 811.5 nm (closed J 2 → J = 3 transition) and 801.5 nm (open J = 2 → J = 2 transition). Linear superpositions of Zeeman sublevels, just beyond the polarizer and just before the analyser, are prepared by means of two zones where Majorana transitions take place. In between, a controlled magnetic field configuration (the phase object) is produced within a triple μ-metal shielding. Standard interference patterns are obtained by scanning the field and detecting the atoms by secondary electron emission from a Faraday cup. When a static radial magnetic gradient is used, the beam profile is modulated by interference. The transverse pattern. which can be translated at will by adding a homogeneous field, is observed for the first time using a multi-channel electron multiplier followed by a phosphor screen and a CCD camera. The results satisfactorily agree with all theoretical predictions. (authors)

  8. Stern Gerlach interferometry with metastable argon atoms: an immaterial mask modulating the profile of a supersonic beam

    Science.gov (United States)

    Viaris de Lesegno, B.; Karam, J. C.; Boustimi, M.; Perales, F.; Mainos, C.; Reinhardt, J.; Baudon, J.; Bocvarski, V.; Grancharova, D.; Pereira Dos Santos, F.; Durt, T.; Haberland, H.; Robert, J.

    2003-04-01

    A new Stern Gerlach interferometer operating with a nozzle beam of metastable argon atoms Ar* (3p5 4s, 3P2) is described. The selection of incoming (polarisation) and outgoing (analysis) Zeeman sublevels is achieved by use of laser induced transitions at two wavelengths, 811.5 nm (closed J = 2 --> J = 3 transition) and 801.5 nm (open J = 2 --> J = 2 transition). Linear superpositions of Zeeman sublevels, just beyond the polariser and just before the analyser, are prepared by means of two zones where Majorana transitions take place. In between, a controlled magnetic field configuration (the phase object) is produced within a triple μ-metal shielding. Standard interference patterns are obtained by scanning the field and detecting the atoms by secondary electron emission from a Faraday cup. When a static radial magnetic gradient is used, the beam profile is modulated by interference. The transverse pattern, which can be translated at will by adding a homogeneous field, is observed for the first time using a multi-channel electron multiplier followed by a phosphor screen and a CCD camera. The results satisfactorily agree with all theoretical predictions.

  9. Argon-dominated plasma beam generated by filtered vacuum arc and its substrate etching

    International Nuclear Information System (INIS)

    A new technique to etch a substrate as a pre-treatment prior to functional film deposition was developed using a filtered vacuum arc plasma. An Ar-dominated plasma beam was generated from filtered carbon arc plasma by introducing appropriate flow rate of Ar gas in a T-shape filtered arc deposition (T-FAD) system. The radiation spectra emitted from the filtered plasma beam in front of a substrate table were measured. The substrate was etched by the Ar-dominated plasma beam. The principal results are summarized as follows. At a high flow rate of Ar gas (50 ml/min), when the bias was applied to the substrate, the plasma was attracted toward the substrate table and the substrate was well etched without film formation on the substrate. Super hard alloy (WC), bearing steel (SUJ2), and Si wafer were etched by the Ar-dominated plasma beam. The etching rate was dependent on the kind of substrate. The roughness of the substrate increased, when the etching rate was high. A pulse bias etched the substrate without roughening the substrate surface excessively.

  10. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams.

    Science.gov (United States)

    Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol

    2016-06-01

    The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration. PMID:26861497

  11. Anomalous argon excitation in pulse supersonic flows of Ar + CH sub 4 , Ar + SiH sub 4 and Ar + CH sub 4 + SiH sub 4 mixtures, activated with an electron beam

    CERN Document Server

    Madirbaev, V Z; Korobejshchikov, N G; Sharafutdinov, R G

    2001-01-01

    The processes of energy exchange in the supersonic flows of the argon mixtures with methane and silane, activated by the electron beam, are studied. It is shown, that at the initial stage of condensation in the flux there takes place selective excitation of the argon atoms energy levels. The boundary parameters, whereby the effect of the anomalous radiation excitation is observed, are determined

  12. Production of highly charged argon ions from a room temperature electron beam ion trap

    Institute of Scientific and Technical Information of China (English)

    WANG Tie-Shan; PENG Hai-Bo; Ovsyannikov V P; Kentsch U; Ullmann F; CHENG Rui; Zschornack G

    2008-01-01

    In this work.highly charged ions have been extracted from the advanced Electron Beam Ion Source (EBIS-A) developed in a scientific cooperation between the Dresden University of Technology and the DREEBIT GmbH Dresden.The charge state distributions of ions extracted from the EBIS-A are measured in and extracted in the leaky mode.3×105 Ar18+ ions per pulse are extracted in the pulse mode.The ion charge state distribution is a function of the ionization time.

  13. HOM electronics and code to probe beam centring on 3.9 GHz cavities

    CERN Document Server

    Zhang, P

    2014-01-01

    The work within sub-task 10.5.1 was aimed at developing electronics for beam position monitoring (BPM) based on Higher-Order Modes (HOM) excited by electron beams in 3.9 GHz cavities in the FLASH linac at DESY, Hamburg, defining realistic specifications and proving that these signals can be used for beam centering. A series of measurements with devices like a fast oscilloscopes and a real-time spectrum analyzer, as well as with specially designed test electronics. These measurements in conjunction with the simulations made by the other 2 sub-tasks have enabled us to find two spectra regions suitable for use as BPM: modes with strong coupling to the beam around 5.4 GHz, enabling precise monitoring (resolution of ca 20 μm rms) within the whole 4-cavity module, and localized modes at ca.9 GHz for localized measurements in each cavity (resolution of ca 50 mm rms). Various data analysis approaches have been studied. Based on the EuCARD work the HOMBPM electronics has been designed and is now being built at FNAL. ...

  14. The measurements of laser beam transmission through exposed/etched CR-39 and CN-85 detectors

    Energy Technology Data Exchange (ETDEWEB)

    Salman, Thaer M.; Subber, Abdul R.H. [Department of Physics, College of Education, University of Basrah, Basrah (Iraq); AL-Ahmad, Alaa Y., E-mail: alaa_ta2005@yahoo.com [Department of Physics, College of Education, University of Basrah, Basrah (Iraq)

    2012-12-01

    In the present trackology work, CR-39 and CN-85, solid state nuclear track detectors (SSNTDs) were irradiated with alpha particles and gamma rays for different irradiation times. These detector foils were chemically etched by NaOH solution with specified normality. The intensity of transmitted laser light ({lambda}=650 nm) through irradiated and etched detectors was measured using a photodiode. The method appeared as a good technique for dose measuring but it is extremely dependent on the etching time, the type of incident particles and the type of the detector. It is found that the response of CN-85 detector looks faster and better than CR-39 detector. -- Highlights: Black-Right-Pointing-Pointer This work is on investigation of the laser beam transmission through etched SSNTDs. Black-Right-Pointing-Pointer Samples of SSNTDs were irradiated with different doses from alpha or gamma rays. Black-Right-Pointing-Pointer It is a good technique for relative dose reading. Black-Right-Pointing-Pointer Response of CN-85 is measured to be faster than CR-39 detector.

  15. Exposure of CR39 Stacks to Oxygen and Sulphur Beams at the CERN-SPS

    CERN Multimedia

    2002-01-01

    We plan to expose 8 stacks of CR39 sheets to oxygen and sulphur ions of 60 and 200~GeV at the CERN-SPS.\\\\ \\\\ The main purpose of the exposures is the calibration of the CR39 sheets used for a large area experimental search for magnetic monopoles at the Gran Sasso Laboratory (experiment MACRO). \\\\ \\\\ The stacks have 20~layers of CR39, each layer 13~cm~x~7~cm and 1.4~mm thick. A copper absorber is located after the first 6 layers. \\\\ \\\\ We require exposures of about 2000 tracks per cm$^2$ over the entire area of the stack with a uniform illumination. The standard beam used for the emulsion experiments is normally adequate for this purpose.\\\\ \\\\ We have performed one exposure to sulphur ions. The etched tracks have been measured automatically with the Elbeck image analyser system. We measured the incoming sulphur ions as well as the nuclear fragments produced in the copper absorber. Clean separation among the peaks due to the various fragments is obtained (there is no indication of nuclei with fractional electri...

  16. In situ absolute air, O3 and NO densities in the effluent of a cold RF argon atmospheric pressure plasma jet obtained by molecular beam mass spectrometry

    International Nuclear Information System (INIS)

    A molecular beam mass spectrometer has been calibrated and used to measure the air entrainment, nitric oxide and ozone concentrations in the effluent of a cold atmospheric pressure argon RF driven plasma jet. The approaches for calibrating the mass spectrometer for different species are described in detail. Gas phase densities of ozone and nitric oxide up to 7.5 ppm and 4 ppm, respectively, have been measured in the far effluent of the argon plasma jet. The difference in air entrainment when the plasma is undisturbed or is close to a well, which is the case for e.g. in vitro plasma–cell interaction studies, is shown. In addition, an exponential decay of the positive ion flux as a function of distance in the effluent is obtained. Furthermore, the effect of plasma power, duty cycle and air and O2 admixtures introduced into the argon flow on the NO and O3 production is presented, including the possibility of independent control of the NO and O3 flux from the jet. (paper)

  17. In situ absolute air, O3 and NO densities in the effluent of a cold RF argon atmospheric pressure plasma jet obtained by molecular beam mass spectrometry

    Science.gov (United States)

    van Ham, B. T. J.; Hofmann, S.; Brandenburg, R.; Bruggeman, P. J.

    2014-06-01

    A molecular beam mass spectrometer has been calibrated and used to measure the air entrainment, nitric oxide and ozone concentrations in the effluent of a cold atmospheric pressure argon RF driven plasma jet. The approaches for calibrating the mass spectrometer for different species are described in detail. Gas phase densities of ozone and nitric oxide up to 7.5 ppm and 4 ppm, respectively, have been measured in the far effluent of the argon plasma jet. The difference in air entrainment when the plasma is undisturbed or is close to a well, which is the case for e.g. in vitro plasma-cell interaction studies, is shown. In addition, an exponential decay of the positive ion flux as a function of distance in the effluent is obtained. Furthermore, the effect of plasma power, duty cycle and air and O2 admixtures introduced into the argon flow on the NO and O3 production is presented, including the possibility of independent control of the NO and O3 flux from the jet.

  18. Testing a liquid Argon calorimeter

    CERN Multimedia

    1976-01-01

    Physicists from Karlsruhe test a liquid argon calorimeter in the neutral beam b16 at the PS. The calorimeter was meant to supply some neutral particles identification at the Split-Field Magnet Facility for R416.

  19. Disturbed 40Ar 39Ar systematics in hydrothermal biotite and hornblende at the Scotia gold mine, Western Australia: Evidence for argon loss associated with post-mineralisation fluid movement

    Science.gov (United States)

    Kent, Adam J. R.; Campbell McCuaig, T.

    1997-11-01

    Homblende and biotite that formed during gold mineralisation at the Scotia mine, Western Australia, have erratic 40Ar 39Ar release spectra and total gas ages that are ˜200-900 million year younger than the ca. 2600-2620 Ma minimum age of gold mineralisation, as given by 40Ar 39Ar plateau (muscovite) ages of crosscutting pegmatite dykes. Analysed hornblendes are dominated by magnesio hornblende but also contain small domains of ferro-actinolitic hornblende, actinolitic hornblende, and actinolite. Biotite also appears to be substantially altered to chlorite along cleavage planes. Relatively young apparent ages and high K/Ca ratios of argon released from hornblendes at temperatures less than ˜1000°C are interpreted to be the result of degassing of contaminant biotite. However, this cannot totally explain the young ages of hornblendes. Gas fractions released at furnace temperatures above 1000 C, where the effect of biotite degassing is demonstrably negligible, still have apparent ages that are ˜200-900 million years younger than the age of muscovite from post-gold pegmatite dykes. The close proximity of disturbed hydrothermal hornblende samples to apparently undisturbed pegmatite muscovite samples (less than a few metres in some cases) is difficult to reconcile with argon loss in hydrothermal hornblende being the product of thermally-driven volume diffusion. Given a suitable thermal history, argon loss could occur preferentially in hornblendes if (1) the closure (for slow cooling) and blocking (for reheating) temperatures of hydrothermal hornblendes were lower than published estimates, as has been observed in structurally complex metamorphic hornblendes and/or (2) the closure and blocking temperature of pegmatite muscovite were higher than commonly estimated. However, neither of these interpretations can easily explain the large variation in hornblende ages. It is instead suggested that argon loss occurred during mineral-fluid interaction during movement of a

  20. Argon in action

    CERN Multimedia

    Corinne Pralavorio

    2015-01-01

    Over the past few days, the SPS has been accelerating argon ions, which have started to be sent to the NA61/SHINE experiment. This operating mode, using a new type of ion, required a number of modifications to the accelerator.   Picture 1: a “super-cycle” of the SPS, featuring a proton cycle for the LHC, followed by an argon ion cycle for the North Area. Today, the accelerators are once again juggling particles and even performing completely new tricks. The SPS is supplying beams of argon ions for the first time, at energies never before achieved for this type of beam. They are destined for the NA61/SHINE experiment (see box) located in the North Area, which began receiving the beams on 11 February. Argon ions have a relatively large mass, as they consist of 40 nucleons, so they can be used in a similar way to lead ions. The main difficulty in accelerating them lies in the SPS, where the variation in acceleration frequency is limited. “The SPS was designed for a...

  1. ToF-SIMS and laser-SNMS analysis of Madin-Darby canine kidney II cells with silver nanoparticles using an argon cluster ion beam.

    Science.gov (United States)

    Nees, Ricarda; Pelster, Andreas; Körsgen, Martin; Jungnickel, Harald; Luch, Andreas; Galla, Hans-Joachim; Arlinghaus, Heinrich F

    2016-06-01

    The use of nanoparticles is one of the fastest expanding fields in industrial as well as in medical applications, owing to their remarkable characteristics. Silver nanoparticles (AgNPs) are among the most-commercialized nanoparticles because of their antibacterial effects. Laser postionization secondary neutral mass spectrometry (laser-SNMS) and time-of-flight secondary ion mass spectrometry in combination with argon cluster ion sputtering was used for the first time to investigate the effects of AgNPs on Madin-Darby canine kidney (MDCK) II cells. Depth profiles and high-resolution three dimensional (3D) images of nanoparticles and organic compounds from cells were obtained using an Ar cluster ion beam for sputtering and Bi3 (+) primary ions for the analysis. The 3D distribution of AgNPs and other organic compounds in MDCK II cells could be readily detected with very high efficiency, sensitivity, and submicron lateral resolution. The argon cluster ion beam is well suited for the sputtering of biological samples. It enables a high sample removal rate along with low molecular degradation. The outer membrane, the cytoplasm, and the nuclei of the cells could be clearly visualized using the signals PO(+) and C3H8N(+) or CN(+) and C3H8N(+). The laser-SNMS images showed unambiguously that AgNPs are incorporated by MDCK II cells and often form silver aggregates with a diameter of a few micrometers, mainly close to the outside of the cell nuclei. PMID:26671480

  2. A large liquid argon time projection chamber for long-baseline, off-axis neutrino oscillation physics with the NuMI beam

    International Nuclear Information System (INIS)

    Results from neutrino oscillation experiments in the last ten years have revolutionized the field of neutrino physics. While the overall oscillation picture for three neutrinos is now well established and precision measurements of the oscillation parameters are underway, crucial issues remain. In particular, the hierarchy of the neutrino masses, the structure of the neutrino mixing matrix, and, above all, CP violation in the neutrino sector are the primary experimental challenges in upcoming years. A program that utilizes the newly commissioned NuMI neutrino beamline, and its planned upgrades, together with a high-performance, large-mass detector will be in an excellent position to provide decisive answers to these key neutrino physics questions. A Liquid Argon time projection chamber (LArTPC), which combines fine-grained tracking, total absorption calorimetry, and scalability, is well matched for this physics program. The few-millimeter-scale spatial granularity of a LArTPC combined with dE/dx measurements make it a powerful detector for neutrino oscillation physics. Scans of simulated event samples, both directed and blind, have shown that electron identification in νe charged current interactions can be maintained at an efficiency of 80%. Backgrounds for νe appearance searches from neutral current events with a π0 are reduced well below the ∼ 0.5-1.0% νe contamination of the νμ beam. While the ICARUS collaboration has pioneered this technology and shown its feasibility with successful operation of the T600 (600-ton) LArTPC, a detector for off-axis, long-baseline neutrino physics must be many times more massive to compensate for the low event rates. We have a baseline concept based on the ICARUS wire plane structure and commercial methods of argon purification and housed in an industrial liquefied-natural-gas tank. Fifteen to fifty kton liquid argon capacity tanks have been considered. A very preliminary cost estimate for a 50-kton detector is $100M

  3. Protective Sliding Carbon-Based Nanolayers Prepared by Argon or Nitrogen Ion-Beam Assisted Deposition on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Petr Vlcak

    2016-01-01

    Full Text Available The microstructure and the surface properties of samples coated by carbon-based nanolayer were investigated in an effort to increase the surface hardness and reduce the coefficient of friction of the Ti6Al4V alloy. Protective carbon-based nanolayers were fabricated by argon or nitrogen ion-beam assisted deposition at ion energy of 700 eV on Ti6Al4V substrates. The Raman spectra indicated that nanolayers had a diamond-like carbon character with sp2 rich bonds. The TiC and TiN compounds formed in the surface area were detected by X-ray diffraction. Nanoscratch tests showed increased adhesion of a carbon-based nanolayer deposited with ion assistance in comparison with a carbon nanolayer deposited without ion assistance. The results showed that argon ion assistance leads to greater nanohardness than a sample coated by a carbon-based nanolayer with nitrogen ion assistance. A more than twofold increase in nanohardness and a more than fivefold decrease in the coefficient of friction were obtained for samples coated by a carbon-based nanolayer with ion assistance, in comparison with the reference sample.

  4. Simulation of the CERN GTS-LHC ECR ion source extraction system with lead and argon ion beams

    CERN Document Server

    Toivanen, V; Küchler, D; Lombardi, A; Scrivens, R; Stafford-Haworth, J

    2014-01-01

    A comprehensive study of beam formation and beam transport has been initiated in order to improve the performance of the CERN heavy ion injector, Linac3. As part of this study, the ion beam extraction system of the CERN GTS-LHC 14.5 GHz Electron Cyclotron Resonance Ion Source (ECRIS) has been modelled with the ion optical code IBSimu. The simulations predict self-consistently the triangular and hollow beam structures which are often observed experimentally with ECRIS ion beams. The model is used to investigate the performance of the current extraction system and provides a basis for possible future improvements. In addition, the extraction simulation provides a more realistic representation of the initial beam properties for the beam transport simulations, which aim to identify the performance bottle necks along the Linac3 low energy beam transport. The results of beam extraction simulations with Pb and Ar ion beams from the GTS-LHC will be presented and compared with experimental observations.

  5. Hemostatic efficacy of TachoSil in liver resection compared with argon beam coagulator treatment: An open, randomized, prospective, multicenter, parallel-group trial

    DEFF Research Database (Denmark)

    Fischer, Lars; Seiler, Christoph M.; Broelsch, Christoph E.; Hemptinne, Bernard de; Klempnauer, Jürgen; Mischinger, Hans -Jörg; Gassel, Heinz-Jochen; Rokkjær, Mogens; Schauer, Rolf; Larsen, Peter N.; Tetens, Vilhelm; Büchler, Markus W.

    2011-01-01

    points were drainage duration, volume, and content. Adverse events were collected to evaluate the safety of treatments. The trial was registered internationally (Eudract number 2008-006407-23). Results: Among 119 patients (60 TachoSil and 59 ABC) randomized in 10 tertiary care centers in Europe, the mean......Background: The aim of this trial was to confirm previous results demonstrating the efficacy and safety of a fixed combination tissue sealant versus argon beam coagulation (ABC) treatment in liver resection. Methods: This trial was designed as an international, multicenter, randomized, controlled...... surgical trial with 2 parallel groups. Patients were eligible for intra-operative randomization after elective resection of ≥1 liver segment and primary hemostasis. The primary end point was the time to hemostasis after starting the randomized intervention to obtain secondaty hemostasis. Secondary end...

  6. Hemostatic efficacy of TachoSil in liver resection compared with argon beam coagulator treatment: an open, randomized, prospective, multicenter, parallel-group trial

    DEFF Research Database (Denmark)

    Fischer, Lars; Seiler, Christoph M; Broelsch, Christoph E; de Hemptinne, Bernard; Klempnauer, Jürgen; Mischinger, Hans-Jörg; Gassel, Heinz-Jochen; Rokkjaer, Mogens; Schauer, Rolf; Larsen, Peter N; Tetens, Vilhelm; Büchler, Markus W

    2011-01-01

    points were drainage duration, volume, and content. Adverse events were collected to evaluate the safety of treatments. The trial was registered internationally (Eudract number 2008-006407-23). RESULTS: Among 119 patients (60 TachoSil and 59 ABC) randomized in 10 tertiary care centers in Europe, the mean......BACKGROUND: The aim of this trial was to confirm previous results demonstrating the efficacy and safety of a fixed combination tissue sealant versus argon beam coagulation (ABC) treatment in liver resection. METHODS: This trial was designed as an international, multicenter, randomized, controlled...... surgical trial with 2 parallel groups. Patients were eligible for intra-operative randomization after elective resection of = 1 liver segment and primary hemostasis. The primary end point was the time to hemostasis after starting the randomized intervention to obtain secondary hemostasis. Secondary end...

  7. Optical and chemical behaviors of CR-39 and Makrofol plastics under low-energy electron beam irradiation

    Science.gov (United States)

    El-Saftawy, Ashraf Ali; Abd El Aal, Saad Ahmed; Hassan, Nabil Mohamed; Abdelrahman, Moustafa Mohamed

    2016-07-01

    In this study, CR-39 and Makrofol plastic nuclear track detectors were irradiated with low-energy electron beams to study the effect of the induced changes on their optical and chemical properties. Surface chemical changes were recorded by Fourier transform infrared (FTIR) spectroscopy, which showed successive degradation and crosslinking for CR-39 and decomposition for Makrofol. The optical band gap was determined by UV–vis spectroscopy. Also, the parameters of carbon cluster formation and disordering (Urbach’s energy) occurring on plastic surfaces were examined. The intrinsic viscosity changes were investigated as well. As a result, low-energy electron beams were found to be useful for the control of many properties of the surfaces of the investigated detectors.

  8. Status of higher order mode beam position monitors in 3.9 GHz superconducting accelerating cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M; Flisgen, T; Van Rienen, U; Shinton, I R R

    2013-01-01

    Higher order mode (HOM) beam position monitors (BPM) are being developed for the 3.9 GHz third harmonic superconducting accelerating cavities at FLASH. The transverse beam position in a cavity can be determined utilizing beam-excited HOMs based on dipole components. The existing couplers used for HOM suppression provide necessary signals. The diagnostics principle is similar to a cavity BPM, but requires no additional vacuum instruments on the linac. The challenges of HOM-BPM for 3.9 GHz cavities lie in the dense HOM spectrum arising from the coupling of the majority HOMs amongst the four cavities in the cryo-module ACC39. HOMs with particularly promising diagnostics features were evaluated using a spectrum analyzer and custom-built test electronics with various data analysis techniques, data reduction was focused on. After careful theoretical and experimental assessment of the HOM spectrum, multi-cavity modes in the region of 5 GHz were chosen to provide a global position over the complete module with superi...

  9. Status of Higher Order Mode Beam Position Monitors in 3.9 GHz Superconducting Accelerating Cavities at FLASH

    CERN Document Server

    Zhang, P; Flisgen, T; van Rienen, U; Jones, R M; Shinton, I R R

    2013-01-01

    Higher order mode (HOM) beam position monitors (BPM) are being developed for the 3.9 GHz third harmonic superconducting accelerating cavities at FLASH. The transverse beam position in a cavity can be determined utilizing beam-excited HOMs based on dipole components. The existing couplers used for HOM suppression provide necessary signals. The diagnostics principle is similar to a cavity BPM, but requires no additional vacuum instruments on the linac. The challenges of HOM-BPM for 3.9 GHz cavities lie in the dense HOM spectrum arising from the coupling of the majority HOMs amongst the four cavities in the cryo-module ACC39. HOMs with particularly promising diagnostics features were evaluated using a spectrum analyzer and custom-built test electronics with various data analysis techniques, data reduction was focused on. After careful theoretical and experimental assessment of the HOM spectrum, multi-cavity modes in the region of 5 GHz were chosen to provide a global position over the complete module with superi...

  10. Argon behaviour in an inverted Barrovian sequence, Sikkim Himalaya: The consequences of temperature and timescale on 40Ar/39Ar mica geochronology

    Science.gov (United States)

    Mottram, Catherine M.; Warren, Clare J.; Halton, Alison M.; Kelley, Simon P.; Harris, Nigel B. W.

    2015-12-01

    40Ar/39Ar dating of metamorphic rocks sometimes yields complicated datasets which are difficult to interpret in terms of timescales of the metamorphic cycle. Single-grain fusion and step-heating data were obtained for rocks sampled through a major thrust-sense shear zone (the Main Central Thrust) and the associated inverted metamorphic zone in the Sikkim region of the eastern Himalaya. This transect provides a natural laboratory to explore factors influencing apparent 40Ar/39Ar ages in similar lithologies at a variety of metamorphic pressure and temperature (P-T) conditions. The 40Ar/39Ar dataset records progressively younger apparent age populations and a decrease in within-sample dispersion with increasing temperature through the sequence. The white mica populations span ~ 2-9 Ma within each sample in the structurally lower levels (garnet grade) but only ~ 0-3 Ma at structurally higher levels (kyanite-sillimanite grade). Mean white mica single-grain fusion population ages vary from 16.2 ± 3.9 Ma (2σ) to 13.2 ± 1.3 Ma (2σ) from lowest to highest levels. White mica step-heating data from the same samples yields plateau ages from 14.27 ± 0.13 Ma to 12.96 ± 0.05 Ma. Biotite yield older apparent age populations with mean single-grain fusion dates varying from 74.7 ± 11.8 Ma (2σ) at the lowest structural levels to 18.6 ± 4.7 Ma (2σ) at the highest structural levels; the step-heating plateaux are commonly disturbed. Temperatures > 600 °C at pressures of 0.4-0.8 GPa sustained over > 5 Ma, appear to be required for white mica and biotite ages to be consistent with diffusive, open-system cooling. At lower temperatures, and/or over shorter metamorphic timescales, more 40Ar is retained than results from simple diffusion models suggest. Diffusion modelling of Ar in white mica from the highest structural levels suggests that the high-temperature rocks cooled at a rate of ~ 50-80 °C Ma- 1, consistent with rapid thrusting, extrusion and exhumation along the Main

  11. ESCA [electron spectroscopy for chemical analysis] examination of metal oxides and electronic ceramic materials: The effect of a low-energy argon-ion beam

    International Nuclear Information System (INIS)

    Electronic ceramic materials are increasingly of interest to chemists because there is a growing interest in preparing high purity ceramics by chemical means and because the properties of the ceramics often depend on the chemical state of the elements in the ceramic. The chemical species, e.g. the oxidation state, of a metal in a ceramic can be identified by the analytical technique known as ESCA (electron spectroscopy for chemical analysis). In this work, the application of ESCA to ceramic materials begins with studies of metal oxide powders and examines the effect of a low energy argon ion beam. Two problems that occur with oxide powders and ceramics are surface charging and the formation of carbonates on the surface. Surface charging is generally compensated for by referencing to the carbon contaminant or by flooding the surface with electrons. Referencing to the contaminant peak meets with limited success when compared to the literature. Flooding the surface of oxide powders and ceramics causes peak distortion. Surface carbonates are identified in the carbon region by their separation of -4.5 eV from the contaminant carbon. To examine the effect of a low energy ion beam on metal oxide powders and ceramic powders, both the X-ray photoelectron (XPS) and X-ray induced Auger electron spectra (XAES) of SC2O3, V2O5, Cu2 O, ZnO and SnO2 are examined before and after ion beam exposure. Limited reduction of the metal is noted in the XPS spectra of V2O5. XAES indicates the Sc2O3, Cu2O and SnO2 are also reduced. XAES is especially useful for determining that reduction by the ion beam has occurred. A comparison of ion beam exposed oxide powders and heavily oxidized metal foils (Ti, Zr and Nb) shows that while the powders undergo limited reduction, the oxidized foils are reduced much more significantly with the same sputtering parameters

  12. Neutrino Oscillations With A Next Generation Liquid Argon TPC Detector in Kamioka or Korea Along The J-PARC Neutrino Beam

    CERN Document Server

    Meregaglia, A

    2008-01-01

    The ``baseline setup'' for a possible, beyond T2K, next generation long baseline experiment along the J-PARC neutrino beam produced at Tokai, assumes two very large deep-underground Water Cerenkov imaging detectors of about 300 kton fiducial each, located one in Korea and the other in Kamioka but at the same off-axis angle. In this paper, we consider the physics performance of a similar setup but with a single and smaller, far detector, possibly at shallow depth, composed of a 100 kton next generation liquid Argon Time Projection Chamber. The potential location of the detector could be in the Kamioka area ($L\\sim 295$ km) or on the Eastern Korean coast ($L\\sim 1025$ km), depending on the results of the T2K experiment. In Korea the off-axis angle could be either $2.5^{o} \\sim 3^{o}$ as in SuperKamiokande, or $\\sim 1^{o}$ as to offer pseudo-wide-band beam conditions.

  13. Ambient air particle transport into the effluent of a cold atmospheric-pressure argon plasma jet investigated by molecular beam mass spectrometry

    International Nuclear Information System (INIS)

    Ambient air species, which are transported into the active effluent of an atmospheric-pressure plasma jet result in highly reactive oxygen and nitrogen species (RONS). Especially for the envisaged application field of plasma medicine, these RONS are responsible for strong biological responses. In this work, the effect of ambient air transport into the effluent of an atmospheric-pressure plasma argon jet on the on-axis densities of nitrogen, oxygen and argon was investigated by means of absolutely calibrated molecular beam mass spectrometry (MBMS). According to biomedical experiments a (bottomless) Petri dish was installed in front of the MBMS. In the following, the near flow field is referring to the region close to the nozzle exit and the far flow field is referring to the region beyond that. The absolute on-axis densities were obtained by three different methods, for the near flow field with VUV-absorption technique, for the far flow field with the MBMS and the total flow field was calculated with a computational fluid dynamics (CFD) simulation. The results of the ambient air particle densities of all independent methods were compared and showed an excellent agreement. Therefore the transport processes of ambient air species can be measured for the whole effluent of an atmospheric-pressure plasma jet. Additionally, with the validation of the simulation it is possible in future to calculate the ambient species transport for various gas fluxes in the same turbulent flow regime. Comparing the on-axis densities obtained with an ignited and with a non-ignited plasma jet shows that for the investigated parameters, the main influence on the ambient air species transport is due to the increased temperature in the case when the jet is switched on. Moreover, the presence of positive ions (e.g. ArN2+) formed due to the interaction of plasma-produced particles and ambient air species, which are transported into the effluent, is shown. (paper)

  14. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    International Nuclear Information System (INIS)

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  15. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    CERN Document Server

    Abat, E; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T.P A; Aleksa, M; Alexa, C; Anderson, K; Andreazza, A; Anghinolfi, F; Antonaki, A; Arabidze, G; Arik, E; Atkinson, T; Baines, J; Baker, O K; Banfi, D; Baron, S; Barr, A J; Beccherle, R; Beck, H P; Belhorma, B; Bell, P J; Benchekroun, D; Benjamin, D P; Benslama, K; Bergeaas Kuutmann, E; Bernabeu, J; Bertelsen, H; Binet, S; Biscarat, C; Boldea, V; Bondarenko, V G; Boonekamp, M; Bosman, M; Bourdarios, C; Broklova, Z; Burckhart-Chromek, D; Bychkov, V; Callahan, J; Calvet, D; Canneri, M; Capeans Garrido, M; Caprini, M; Cardiel Sas, L; Carli, T; Carminati, L; Carvalho, J; Cascella, M; Castillo, M V; Catinaccio, A; Cauz, D; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Cetin, S A; Chen, H; Cherkaoui, R; Chevalier, L; Chevallier, F; Chouridou, S; Ciobotaru, M; Citterio, M; Clark, A; Cleland, B; Cobal, M; Cogneras, E; Conde Muino, P; Consonni, M; Constantinescu, S; Cornelissen, T; Correard, S; Corso-Radu, A; Costa, G; Costa, M J; Costanzo, D; Cuneo, S; Cwetanski, P; Da Silva, D; Dam, M; Dameri, M; Danielsson, H O; Dannheim, D; Darbo, G; Davidek, T; De, K; Defay, P O; Dekhissi, B; Del Peso, J; Del Prete, T; Delmastro, M; Derue, F; Di Ciaccio, L; Di Girolamo, B; Dita, S; Dittus, F; Djama, F; Djobava, T; Dobos, D; Dobson, M; Dolgoshein, B A; Dotti, A; Drake, G; Drasal, Z; Dressnandt, N; Driouchi, C; Drohan, J; Ebenstein, W L; Eerola, P; Efthymiopoulos, I; Egorov, K; Eifert, T F; Einsweiler, K; El Kacimi, M; Elsing, M; Emelyanov, D; Escobar, C; Etienvre, A I; Fabich, A; Facius, K; Idrissi Fakhr-Eddine, A; Fanti, M; Farbin, A; Farthouat, P; Fassouliotis, D; Fayard, L; Febbraro, R; Fedin, O L; Fenyuk, A; Fergusson, D; Ferrari, P; Ferrari, R; Ferreira, B C; Ferrer, A; Ferrere, D; Filippini, G; Flick, T; Fournier, D; Francavilla, P; Francis, D; Froeschl, R; Froidevaux, D; Fullana, E; Gadomski, S; Gagliardi, G; Gagnon, P; Gallas, M; Gallop, B J; Gameiro, S; Gan, K K; Garcia, R; Garcia, C; Gavrilenko, I L; Gemme, C; Gerlach, P; Ghodbane, N; Giakoumopoulou, V; Giangiobbe, V; Giokaris, N; Glonti, G; Gottfert, T.; Golling, T; Gollub, N; Gomes, A; Gomez, M D; Gonzalez-Sevilla, S; Goodrick, M J; Gorfine, G; Gorini, B; Goujdami, D; Grahn, K J; Grenier, P; Grigalashvili, N; Grishkevich, Y; Grosse-Knetter, J; Gruwe, M; Guicheney, C; Gupta, A; Haeberli, C; Hartel, R.; Hajduk, Z; Hakobyan, H; Hance, M; Hansen, J D; Hansen, P H; Hara, K; Harvey, A., Jr; Hawkings, R J; Heinemann, F.E W; Henriques Correia, A; Henss, T; Hervas, L; Higon, E; Hill, J C; Hoffman, J; Hostachy, J Y; Hruska, I; Hubaut, F; Huegging, F; Hulsbergen, W; Hurwitz, M; Iconomidou-Fayard, L; Jansen, E; Jen-La Plante, I; Johansson, P.D C; Jon-And, K; Joos, M; Jorgensen, S; Joseph, J; Kaczmarska, A; Kado, M; Karyukhin, A; Kataoka, M; Kayumov, F; Kazarov, A; Keener, P T; Kekelidze, G D; Kerschen, N; Kersten, S; Khomich, A; Khoriauli, G; Khramov, E; Khristachev, A; Khubua, J; Kittelmann, T H; Klingenberg, R; Klinkby, E B; Kodys, P; Koffas, T; Kolos, S; Konovalov, S P; Konstantinidis, N; Kopikov, S; Korolkov, I; Kostyukhin, V; Kovalenko, S; Kowalski, T Z; Kruger, K.; Kramarenko, V; Kudin, L G; Kulchitsky, Y; Lacasta, C; Lafaye, R; Laforge, B; Lampl, W; Lanni, F; Laplace, S; Lari, T; Le Bihan, A C; Lechowski, M; Ledroit-Guillon, F; Lehmann, G; Leitner, R; Lelas, D; Lester, C G; Liang, Z; Lichard, P; Liebig, W; Lipniacka, A; Lokajicek, M; Louchard, L; Loureiro, K F; Lucotte, A; Luehring, F; Lund-Jensen, B; Lundberg, B; Ma, H; Mackeprang, R; Maio, A; Maleev, V P; Malek, F; Mandelli, L; Maneira, J; Mangin-Brinet, M; Manousakis, A; Mapelli, L; Marques, C; Marti i Garcia, S; Martin, F; Mathes, M; Mazzanti, M; McFarlane, K W; McPherson, R; Mchedlidze, G; Mehlhase, S; Meirosu, C; Meng, Z; Meroni, C; Mialkovski, V; Mikulec, B; Milstead, D; Minashvili, I; Mindur, B; Mitsou, V A; Moed, S; Monnier, E; Moorhead, G; Morettini, P; Morozov, S V; Mosidze, M; Mouraviev, S V; Moyse, E.W J; Munar, A; Myagkov, A; Nadtochi, A V; Nakamura, K; Nechaeva, P; Negri, A; Nemecek, S; Nessi, M; Nesterov, S Y; Newcomer, F M; Nikitine, I; Nikolaev, K; Nikolic-Audit, I; Ogren, H; Oh, S H; Oleshko, S B; Olszowska, J; Onofre, A; Padilla Aranda, C; Paganis, S; Pallin, D; Pantea, D; Paolone, V; Parodi, F; Parsons, J; Parzhitski, S; Pasqualucci, E; Passmore, S M; Pater, J; Patrichev, S; Peez, M; Perez Reale, V; Perini, L; Peshekhonov, V D; Petersen, J; Petersen, T C; Petti, R; Phillips, P W; Pilcher, J; Pina, J; Pinto, B; Podlyski, F; Poggioli, L; Poppleton, A; Poveda, J; Pralavorio, P; Pribyl, L; Price, M J; Prieur, D; Puigdengoles, C; Puzo, P; Ragusa, F; Rajagopalan, S; Reeves, K; Reisinger, I; Rembser, C; Bruckman de Renstrom, P.A.; Reznicek, P; Ridel, M; Risso, P; Riu, I; Robinson, D; Roda, C; Roe, S; Rohne, O.; Romaniouk, A; Rousseau, D; Rozanov, A; Ruiz, A; Rusakovich, N; Rust, D; Ryabov, Y F; Ryjov, V; Salto, O; Salvachua, B; Salzburger, A; Sandaker, H; Santamarina Rios, C.Santamarina; Santi, L; Santoni, C; Saraiva, J G; Sarri, F; Sauvage, G; Says, L P; Schaefer, M; Schegelsky, V A; Schiavi, C; Schieck, J; Schlager, G; Schlereth, J; Schmitt, C; Schultes, J; Schwemling, P; Schwindling, J; Seixas, J M; Seliverstov, D M; Serin, L; Sfyrla, A; Shalanda, N; Shaw, C; Shin, T; Shmeleva, A; Silva, J; Simion, S; Simonyan, M; Sloper, J E; Smirnov, S.Yu; Smirnova, L; Solans, C; Solodkov, A; Solovianov, O; Soloviev, I; Sosnovtsev, V V; Spano, F; Speckmayer, P; Stancu, S; Stanek, R; Starchenko, E; Straessner, A; Suchkov, S I; Suk, M; Szczygiel, R; Tarrade, F; Tartarelli, F; Tas, P; Tayalati, Y; Tegenfeldt, F; Teuscher, R; Thioye, M; Tikhomirov, V O; Timmermans, C.J.W P; Tisserant, S; Toczek, B; Tremblet, L; Troncon, C; Tsiareshka, P; Tyndel, M; Karagoz Unel, M.; Unal, G; Unel, G; Usai, G; Van Berg, R; Valero, A; Valkar, S; Valls, J A; Vandelli, W; Vannucci, F; Vartapetian, A; Vassilakopoulos, V I; Vasilyeva, L; Vazeille, F; Vernocchi, F; Vetter-Cole, Y; Vichou, I; Vinogradov, V; Virzi, J; Vivarelli, I; de Vivie, J B; Volpi, M; Vu Anh, T; Wang, C; Warren, M; Weber, J; Weber, M; Weidberg, A R; Weingarten, J; Wells, P S; Werner, P; Wheeler, S; Wiesmann, M; Wilkens, H; Williams, H H; Wingerter-Seez, I; Yasu, Y; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zhang, H; Zhelezko, A; Zhou, N

    2011-01-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  16. 40Ar-39Ar and U-Pb ages of metadiorite from the East Kunlun Orogenic Belt: Evidence for Early-Paleozoic magmatic zone and excess argon in amphibole minerals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Single-grain zircon U-Pb and amphibole 40Ar-39Ar dating have beenconducted on a deformed and metamorphosed diorite in the East Kunlun Orogenic Belt, which intruded into the middle Proterozoic Kuhai Group exposed in the south of Xiangride region, Dulan County, NW Qinghai Province. The zircon gives a concordant U-Pb age of (446.5±9.1) Ma. The amphibole yields Ar plateau age of (488.0±1.2) Ma and an isochronal age of (488.9±5.6) Ma. Age results of both stepwise released Ar and conventional K-Ar analysis are remarkably higher than that of zircon U-Pb, suggesting that the amphibole contains excess argon and the amphibole plateau age cannot be taken as the timing of metamorphism or deformation. The zircon age is interpreted to be crystallization age of the diorite pluton, which suggests that an Early-Paleozoic magmatic zone indeed existed in the East Kunlun Orogenic Belt stretching along the region south to the Golmud, Normuhong and Xiangride.

  17. Modification of the cylindrical products outer surface influenced by radial beam of argon ions at automatic mode

    Science.gov (United States)

    Valikov, R. A.; Yashin, A. S.; Yakutkina, T. V.; Kalin, B. A.; Volkov, N. V.; Krivobokov, V. P.; Yanin, S. N.; Asainov, O. Kh; Yurev, Yu N.

    2015-11-01

    Obtaining surface with high purity and good roughness is important for increasing the corrosion resistance and wear resistance of products working in corrosion-active environment. Installation ILUR-03 with the coaxial ion beam wide energy spectrum source for cleaning, polishing and surface doping of long cylindrical items has been developed. Upgraded installation ILUR-03 provides effective technological defects cleaning (abrasives after mechanical polishing, acid residues after chemical etching, adsorbed gases), surface polishing, film deposition by using magnetrons and surface doping by ion mixing method in one technological cycle.

  18. Liquid argon neutrino detectors

    CERN Document Server

    Battistoni, G

    2001-01-01

    The liquid argon imaging technique, as proposed for the ICARUS detector, offers the possibility to perform complementary and simultaneous measurements of neutrinos, as those of CERN to Gran Sasso beam (CNGS) and those from cosmic ray events. For the currently allowed values of the Super-Kamiokande results, the combination of both CNGS and atmospheric data will provide a precise determination of the oscillation parameters. Since one can observe and unambiguously identify nu /sub e/, nu /sub mu / and nu /sub tau / components, this technology allows to explore the full (3*3) mixing matrix. The same class of detector can be proposed for high precision measurements at a neutrino factory. (3 refs).

  19. Proposal for a Full-Scale Prototype Single-Phase Liquid Argon Time Projection Chamber and Detector Beam Test at CERN

    CERN Document Server

    Kutter, T

    2015-01-01

    The Deep Underground Neutrino Experiment (DUNE) will use a large liquid argon (LAr) detector to measure the CP violating phase, determine the neutrino mass hier- archy and perform precision tests of the three-flavor paradigm in long-baseline neutrino oscillations. The detector will consist of four modules each with a fiducial mass of 10 kt of LAr and due to its unprecedented size will allow sensitive searches for proton decay and the detection and measurement of electron neutrinos from core collapse supernovae [1]. The first 10 kt module will use single-phase LAr detection technique and be itself modular in design. The successful manufacturing, installation and operation of several full-scale detector components in a suitable configuration represents a critical engineering milestone prior to the construction and operation of the first full 10 kt DUNE detector module at the SURF underground site. A charged particle beam test of a prototype detector will provide critical calibration measurements as well as inva...

  20. Fabrication and characterization of tunnel barriers in a multi-walled carbon nanotube formed by argon atom beam irradiation

    International Nuclear Information System (INIS)

    We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots with serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed

  1. Binocular indirect argon laser photocoagulator.

    OpenAIRE

    Mizuno, K

    1981-01-01

    The binocular indirect argon laser photocoagulator was newly designed to enable visualisation of the entire fundus during panretinal laser photocoagulation and to treat retinal tears immediately after buckling procedures of the sclera. The lamp housing of the binocular ophthalmoscope was remodelled and adjusted so that the laser beam and illuminating light are coaxial after leaving the ophthalmoscope. The blocking filter was permanently fixed in the eye-pieces to lighten the weight of the oph...

  2. Diode Down-mixing of HOM Coupler Signals for Beam Position Determination in 1.3-GHz- and 3.9-GHz-Cavities at FLASH

    CERN Document Server

    Glock, H W; Flisgen, T; Baboi, N; Zhang, P

    2011-01-01

    Beam excited signals available at the HOM coupler ports of superconducting accelerating cavities cover a wide frequency range and carry information about (amongst others) the transverse beam position. Down-mixing these signals using detector diodes is a mean to measure the time dependence of the power leaving the HOM coupler with standard and non-specific oscilloscope technology. Experiments undertaken at the accelerator modules ACC1 and ACC39 at FLASH demonstrated the possibility to extract beam position data out of low frequency signals sampled with such a setup. These experiments as part of an ongoing study are described together with mathematical details of the evaluation scheme.

  3. Charge resolution of a Hungarian brand CR-39(MA-ND) detector exposed to a 84Kr beam of energy 0.45A GeV

    International Nuclear Information System (INIS)

    The Hungarian brand CR-39(MA-ND) plastic has been irradiated with a 84Kr ion beam of energy 0.45A GeV and etched for four different etching times, viz. 4, 6, 8 and 12 h. The estimated charge resolution of a CR-39(MA-ND) detector for registering the nuclei 32 ≤ Z ≤ 36 was found to be 0.18e which is close to our previous observation of the response with a CR-39(DOP) Pershore made plate exposed to a 1.88A GeV 56Fe beam at the Lawrence Berkeley Laboratory's Bevalac. It was found that the estimated etch rate ratio VT/VG is independent of etching time. The cone length and minor axis of the etch pits has been found to increase with etching time. (orig.)

  4. Response of CR39 track etch detector to 10 A GeV Fe 26+ ion beam and total charge changing cross section measurement

    Science.gov (United States)

    Kumar, A.; Gupta, R.; Jalota, S.; Giacomelli, G.; Patrizii, L.; Togo, V.

    2012-01-01

    Total charge changing cross-section of 10 A GeV Fe 26+ ion beam on polyethylene and CR39 targets was measured. Charge of the fragments of projectiles was detected using CR39 nuclear track detectors by a new technique of one-side etching using an automated optical microscope with an image analysing software. The calculated value of total charge changing cross-section is σ tot = (2694 ± 142)mb and is in good agreement with the experimental values by other methods within error. The restricted energy loss ( REL) at energy 10 A GeV for all the fragments was theoretically calculated by using Bethe-Bloch equation and then obtained a calibration curve of reduced etch-rate ratio ( p) versus REL showing the response of CR39 track detectors to 10 A GeV Fe 26+ beam. The curve was fitted by a polynomial showing the relation between p and REL.

  5. Direct WIMP Detection Using Scintillation Time Discrimination in Liquid Argon

    OpenAIRE

    Boulay, M. G.; Hime, A.

    2004-01-01

    Discrimination between electron and nuclear recoil events in a liquid argon scintillation detector has been demonstrated with simulations by using the differences in the scintillation photon time distribution between these classes of events. A discrimination power greater than 10^{8} is predicted for a liquid argon experiment with a 10 keV threshold, which would mitigate electron and gamma-ray backgrounds, including beta decays of 39-Ar and 42-Ar in atmospheric argon. A dark matter search usi...

  6. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    International Nuclear Information System (INIS)

    Beam-excited higher order modes (HOMs) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 μm can be achieved by DLR and SVD, while k-means clustering suggests 70 μm

  7. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M

    2014-01-01

    Beam-excited higher order modes (HOM) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 micron can be achieved by DLR and SVD, while k-means clustering suggests 70 micron.

  8. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei, E-mail: pei.zhang@desy.de [School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg (Germany); Cockcroft Institute of Science and Technology, Daresbury WA4 4AD (United Kingdom); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg (Germany); Jones, Roger M. [School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Cockcroft Institute of Science and Technology, Daresbury WA4 4AD (United Kingdom)

    2014-01-11

    Beam-excited higher order modes (HOMs) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 μm can be achieved by DLR and SVD, while k-means clustering suggests 70 μm.

  9. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    Science.gov (United States)

    Zhang, Pei; Baboi, Nicoleta; Jones, Roger M.

    2014-01-01

    Beam-excited higher order modes (HOMs) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 μm can be achieved by DLR and SVD, while k-means clustering suggests 70 μm.

  10. Atom trap trace analysis of {sup 39}Ar

    Energy Technology Data Exchange (ETDEWEB)

    Welte, Joachim

    2011-12-14

    Detection of {sup 39}Ar in natural water samples can be employed for radiometric dating on a timescale of 50 to 1000 years before present. This experimental work comprises the setup of an atomic beam and trap apparatus that captures and detects {sup 39}Ar atoms by the laser-cooling technique ''Atom Trap Trace Analysis''. With this approach, the limitations of low-level counting, regarding sample size and measurement time, could be overcome. In the course of this work, the hyperfine structure spectrum of the cooling transition 1s{sub 5}-2p{sub 9} has been experimentally determined. A high intensity, optically collimated beam of slow metastable argon atoms has been set up and fluorescence detection of individual {sup 39}Ar atoms in a magneto-optical trap is realized. {sup 39}Ar count rates of 1 atom in about 4 hours have been achieved for atmospheric argon. Recent improvements further suggest that even higher count rates of 1 atom/hour are within reach.

  11. Measurements of Dose-Averaged Linear Energy Transfer Distributions in Water Using CR-39 Plastic Nuclear Track Detector for Therapeutic Carbon Ion Beams

    Science.gov (United States)

    Kohno, Ryosuke; Yasuda, Nakahiro; Takeshi, Himukai; Kase, Yuki; Ochiai, Keiko; Komori, Masataka; Matsufuji, Naruhiro; Kanai, Tatsuaki

    2005-12-01

    A CR-39 plastic nuclear track detector was used as a linear energy transfer (LET) detector for carbon ion radiotherapy. We compared dose-averaged LET distributions in water obtained using the CR-39 detector for a monoenergetic beam and spread-out Bragg peak beam by calculations using the one-dimensional heavy-ion transport code used in the current heavy-ion treatment planning. We confirmed that the CR-39 detector could measure the high LET particles that are dominant contributors to dose-averaged LET. On the other hand, the CR-39 result was overestimated in the tail region of the distal edge in depth-dose distributions, due to its detection limit for lower LET particles. However, physical dose in the region is quite small. Namely, the effect of this difference on the biological dose distribution is also small. These results demonstrate that the CR-39 detector is a useful detector for measuring the LET distribution in carbon ion radiotherapy.

  12. Argon plasma coagulation

    Directory of Open Access Journals (Sweden)

    Zenker, Matthias

    2008-03-01

    Full Text Available Argon Plasma Coagulation (APC is an application of gas discharges in argon in electrosurgery, which is increasingly used especially in endoscopy. The major application fields are haemostasis, tissue devitalization and tissue reduction.This review describes the physics and technology of electrosurgery and APC. Some characteristics of the argon discharge are shown and discussed, and thermal effects in biological tissue are described. Subsequently, examples of medical applications are given.

  13. Scintillation efficiency of liquid argon in low energy neutron-argon scattering

    International Nuclear Information System (INIS)

    Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field

  14. The effect of the dc bias voltage on the x-ray bremsstrahlung and beam intensities of medium and highly charged ions of argon.

    Science.gov (United States)

    Rodrigues, G; Lakshmy, P S; Baskaran, R; Kanjilal, D; Roy, A

    2010-02-01

    X-ray bremsstrahlung measurements from the 18 GHz High Temperature Superconducting Electron Cyclotron Resonance Ion Source, Pantechnik-Delhi Ion Source were measured as a function of negative dc bias voltage, keeping all other source operating parameters fixed and the extraction voltage in the off condition. The optimization of medium and highly charged ions of argon with similar source operating parameters is described. It is observed that the high temperature component of the electron is altered significantly with the help of bias voltage, and the electron population has to be maximized for obtaining higher current. PMID:20192344

  15. The effect of the dc bias voltage on the x-ray bremsstrahlung and beam intensities of medium and highly charged ions of argon

    International Nuclear Information System (INIS)

    X-ray bremsstrahlung measurements from the 18 GHz High Temperature Superconducting Electron Cyclotron Resonance Ion Source, Pantechnik-Delhi Ion Source were measured as a function of negative dc bias voltage, keeping all other source operating parameters fixed and the extraction voltage in the off condition. The optimization of medium and highly charged ions of argon with similar source operating parameters is described. It is observed that the high temperature component of the electron is altered significantly with the help of bias voltage, and the electron population has to be maximized for obtaining higher current.

  16. The scintillation of liquid argon

    CERN Document Server

    Heindl, T; Hofmann, M; Krücken, R; Oberauer, L; Potzel, W; Wieser, J; Ulrich, A

    2015-01-01

    A spectroscopic study of liquid argon from the vacuum ultraviolet at 110 nm to 1000 nm is presented. Excitation was performed using continuous and pulsed 12 keV electron beams. The emission is dominated by the analogue of the so called 2nd excimer continuum. Various additional emission features were found. The time structure of the light emission has been measured for a set of well defined wavelength positions. The results help to interpret literature data in the context of liquid rare gas detectors in which the wavelength information is lost due to the use of wavelength shifters.

  17. Argon-ion contamination of the plasmasphere

    International Nuclear Information System (INIS)

    This paper applies present observational and analytic knowledge on effects of plasma beam interaction wth the magnetosphere to the plasmasphere contamination problem of the argon ion engine exhaust expected to be deposited in the magnetosphere during the construction phase of the Satellite Power System. Effects of plasmasphere, ionosphere, and radiation belt modifications are discussed

  18. A study of beam position diagnostics with beam-excited dipole higher order modes using a downconverter test electronics in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P. [Manchester Univ. (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, N.; Lorbeer, B.; Wamsat, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Eddy, N.; Fellenz, B.; Wendt, M. [Fermi National Accelerator Lab., Batavia, IL (United States); Jones, R.M. [Manchester Univ. (United Kingdom); The Cockcroft Institute, Daresbury (United Kingdom)

    2012-08-15

    Beam-excited higher order modes (HOM) in accelerating cavities contain transverse beam position information. Previous studies have narrowed down three modal options for beam position diagnostics in the third harmonic 3.9 GHz cavities at FLASH. Localized modes in the beam pipes at approximately 4.1 GHz and in the fifth cavity dipole band at approximately 9 GHz were found, that can provide a local measurement of the beam position. In contrast, propagating modes in the first and second dipole bands between 4.2 and 5.5 GHz can reach a better resolution. All the options were assessed with a specially designed test electronics built by Fermilab. The aim is to de ne a mode or spectral region suitable for the HOM electronics. Two data analysis techniques are used and compared in extracting beam position information from the dipole HOMs: direct linear regression and singular value decomposition. Current experiments suggest a resolution of 50 m accuracy in predicting local beam position using modes in the fifth dipole band, and a global resolution of 20 m over the complete module. Based on these results we decided to build a HOM electronics for the second dipole band and the fifth dipole band, so that we will have both high resolution measurements for the whole module, and localized measurements for individual cavity. The prototype electronics is being built by Fermilab and planned to be tested in FLASH by the end of 2012.

  19. SU-E-P-39: Characterization of Dose Impact On Different Beam Fields Size Attenuation for Elekta IGRT Couch

    International Nuclear Information System (INIS)

    Purpose: Quantification of the dosimetric impact of the Elekta IGRT treatment couch in different beam field sizes. Established the relationship of relative dose versus beam angle at different beam field sizes. Methods: Measurements of couch attenuation were performed at gantry angles from 180° to 120°, using a 0.125cc semiflex ionization chamber, isocentrically placed in the center of a homogeneous cylindric sliced RW3 phantom for 6 photon beams. Measurements were performed at six different field sizes (3×3, 5×5, 7×7,10×10, 12×12 and 15×15 cm2). The phantom were positioned at the center of the couche,100 MU were delivered at every gantry angle. The dose difference to the ion chamber was determined. Results: For oblique fields with 6 MV photons at the same gantry angle the attenuation coefficient value from the lagest to the smallest the order is field size 7 cm2,5 cm2,10 cm2,12 cm2,15 cm2 and 3 cm2. The biggest couch attenuation by up to 4.15% at the gantry angle of 140°for the field size of 7 cm2, while for the field size of 3 cm2 the couch attenuated value only 3.5%. The other field size couch attenuation values are between the couch attenuated value of field size of 7 cm2 and 3 cm2 Conclusion: The recommended treatment couch attenuation measured beam field size is 10×10 or 12×12 cm2. When measured using the beam field size 3×3 cm2 the tested value will be lower, while measuerd using the beam field size 7×7 cm2 the tested value will be higer than the recommended beam field size. This should be noted when modeling the treatment couch in the treatment planning system

  20. Lunar exospheric argon modeling

    Science.gov (United States)

    Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.

    2015-07-01

    Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap

  1. Argon broad ion beam tomography in a cryogenic scanning electron microscope: a novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid.

    Science.gov (United States)

    Desbois, G; Urai, J L; Pérez-Willard, F; Radi, Z; Offern, S; Burkart, I; Kukla, P A; Wollenberg, U

    2013-03-01

    The contribution describes the implementation of a broad ion beam (BIB) polisher into a scanning electron microscope (SEM) functioning at cryogenic temperature (cryo). The whole system (BIB-cryo-SEM) provides a first generation of a novel multibeam electron microscope that combines broad ion beam with cryogenic facilities in a conventional SEM to produce large, high-quality cross-sections (up to 2 mm(2)) at cryogenic temperature to be imaged at the state-of-the-art SEM resolution. Cryogenic method allows detecting fluids in their natural environment and preserves samples against desiccation and dehydration, which may damage natural microstructures. The investigation of microstructures in the third dimension is enabled by serial cross-sectioning, providing broad ion beam tomography with slices down to 350 nm thick. The functionalities of the BIB-cryo-SEM are demonstrated by the investigation of rock salts (synthetic coarse-grained sodium chloride synthesized from halite-brine mush cold pressed at 150 MPa and 4.5 GPa, and natural rock salt mylonite from a salt glacier at Qom Kuh, central Iran). In addition, results from BIB-cryo-SEM on a gas shale and Boom Clay are also presented to show that the instrument is suitable for a large range of sedimentary rocks. For the first time, pore and grain fabrics of preserved host and reservoir rocks can be investigated at nm-scale range over a representative elementary area. In comparison with the complementary and overlapping performances of the BIB-SEM method with focused ion beam-SEM and X-ray tomography methods, the BIB cross-sectioning enables detailed insights about morphologies of pores at greater resolution than X-ray tomography and allows the production of large representative surfaces suitable for FIB-SEM investigations of a specific representative site within the BIB cross-section. PMID:23323728

  2. Molecular-beam sampling of a hollow-cathode discharge in argon as a plasma diagnostic and a source for fast neutrals

    International Nuclear Information System (INIS)

    Velocity analysis of the molecular beam is done with a time-of-flight method. The measured velocity distribution of the fast neutral atoms is described by the sum of two Maxwell-Boltzmann distributions with temperatures on the order of 0.25 and 1 eV, respectively. This bimodal distribution is attributed to an overpopulation of the high-energy tail of the ion velocity distribution. The measured intensities of the fast neutrals vary between 5 x 1014 and 7 x 1015

  3. Thermophysical properties of argon

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, A.

    1988-02-01

    The entire report consists of tables of thermodynamic properties (including sound velocity, thermal conductivity and diffusivity, Prandtl number, density) of argon at 86 to 400/degree/K, in the form of isobars over 0.9 to 100 bars. (DLC)

  4. Potassium-argon (argon-argon), structural fabrics

    Science.gov (United States)

    Cosca, Michael A.

    2014-01-01

    Definition: 40Ar/39Ar geochronology of structural fabrics: The application of 40Ar/39Ar methods to date development of structural fabrics in geologic samples. Introduction: Structural fabrics develop during rock deformation at variable pressures (P), temperatures (T), fluid compositions (X), and time (t). Structural fabrics are represented in rocks by features such as foliations and shear zones developed at the mm to km scale. In ideal cases, the P-T-X history of a given structural fabric can be constrained using stable isotope, cation exchange, and/or mineral equilibria thermobarometry (Essene 1989). The timing of structural fabric development can be assessed qualitatively using geologic field observations or quantitatively using isotope-based geochronology. High-precision geochronology of the thermal and fluid flow histories associated with structural fabric development can answer fundamental geologic questions including (1) when hydrothermal fluids transported and deposited ore minerals, ...

  5. 39Ar/Ar measurements using ultra-low background proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Jeter C.; Aalseth, Craig E.; Bonicalzi, Ricco; Brandenberger, Jill M.; Day, Anthony R.; Humble, Paul H.; Mace, Emily K.; Panisko, Mark E.; Seifert, Allen

    2016-01-08

    Age dating groundwater and seawater using 39Ar/Ar ratios is an important tool to understand water mass flow rates and mean residence time. For modern or contemporary argon, the 39Ar activity is 1.8 mBq per liter of argon. Radiation measurements at these activity levels require ultra low-background detectors. Low-background proportional counters have been developed at Pacific Northwest National Laboratory. These detectors use traditional mixtures of argon and methane as counting gas, and the residual 39Ar from commercial argon has become a predominant source of background activity in these detectors. We demonstrated sensitivity to 39Ar by using geological or ancient argon from gas wells in place of commercial argon. The low level counting performance of these proportional counters is then demonstrated for sensitivities to 39Ar/Ar ratios sufficient to date water masses as old as 1000 years.

  6. The Argon Geochronology Experiment (AGE)

    Science.gov (United States)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  7. Beam characteristics of CAPEX XUV argon laser

    Czech Academy of Sciences Publication Activity Database

    Schmidt, Jiří; Koláček, Karel; Frolov, Oleksandr; Prukner, Václav; Štraus, Jaroslav; Kaufman, J.

    Vol. 8849. San Diego : The Society of Photo-Optical Instrumentation Engineers (SPIE), 2013 - (Klisnick, A.; Menoni, C.), s. 884917-884917 ISBN 978-0-8194-9699-7. ISSN 0277-786X. - (SPIE. 8849). [X-Ray Lasers and Coherent X-Ray Sources: Development and Applications X Conference. San Diego (US), 27.08.2013-29.08.2013] R&D Projects: GA MŠk(CZ) LG13029 Institutional support: RVO:61389021 Keywords : Capillary discharge * XUV laser * laser energy and divergence Subject RIV: BL - Plasma and Gas Discharge Physics

  8. Argon Welding Inside A Workpiece

    Science.gov (United States)

    Morgan, Gene E.

    1988-01-01

    Canopies convert large hollow workpiece into inert-gas welding chamber. Large manifold serves welding chamber for attachment of liner parts in argon atmosphere. Every crevice, opening and passageway provided with argon-rich environment. Weld defects and oxidation dramatically reduced; also welding time reduced.

  9. Scattering of Slow Metastable Argon Atoms by Dielectric Nanospheres

    Science.gov (United States)

    Baudon, J.; Hamamda, M.; Grucker, J.; Perales, F.; Dutier, G.; Ducloy, M.; Bocvarski, V.

    2009-11-01

    The elastic scattering at low energy of metastable argon atoms with internal angular momentum J = 0 and 2 by dielectric nanospheres is investigated. The differential cross sections are calculated for both isotropic and anisotropic interactions. A polarization effect is clearly evidenced. The possible use of a metastable atom beam as a probe of an ensemble of nanospheres deposited on a passive substrate is examined.

  10. Biostimulation of human carcinoma cells with the argon laser: a previously unreported potential iatrogenic effect of lasers

    Energy Technology Data Exchange (ETDEWEB)

    Castro, D.J.; Saxton, R.E.; Fetterman, H.R.; Castro, D.J.; Ward, P.H.

    1988-01-01

    The human squamous carcinoma cell line P3 was subjected to treatment with a single mode argon laser at 514.5 nm. The temperature and energy levels delivered to the target cells were determined by a reproducible method of dosimetry. At energy levels between 860 to 990 J/cm2 and a corresponding temperature of 39 +/- 1 degrees C, a significant delayed stimulation in DNA synthesis was noted after 24 hours, but the cells remained viable. However, at energy levels and temperatures higher or equal to 1100 J/cm2 (41 degrees C), an immediate suppression of DNA synthesis was accompanied by nonviability of the P3 carcinoma cells. These results indicate that the argon laser has potential for selective biostimulation on carcinoma cell duplication at the specific non-thermal range of 39 +/- 1 degrees C. Similar effects were not observed when the P3 carcinoma cells were heated to this same temperature using a standard heat bath. This phenomenon appears to represent a previously undescribed potential iatrogenic effect of the monochromatic laser beam in the treatment of cancer.

  11. Argon isotope fractionation induced by stepwise heating

    Science.gov (United States)

    Trieloff, Mario; Falter, Martina; Buikin, Alexei I.; Korochantseva, Ekaterina V.; Jessberger, Elmar K.; Altherr, Rainer

    2005-03-01

    Noble gas isotopes are widely used to elucidate the history of the rocks in which they have been trapped, either from distinct reservoirs or by accumulation following radioactive decay. To extract noble gases from their host rocks, stepwise heating is the most commonly used technique to deconvolve isotopically different components, e.g., atmospheric, in situ radiogenic, or excess radiogenic from mantle or crustal reservoirs. The accurate determination of the isotopic composition of these different components is of crucial importance, e.g., for ages obtained by 40Ar- 39Ar stepheating plateaus. However, diffusion theory-based model calculations predict that the stepwise thermal extraction process from mineral phases induces isotope fractionation and, hence, adulterates the original composition. Such effects are largely unconsidered, as they are small and a compelling experimental observation is lacking. We report the first unequivocal evidence for significant mass fractionation of argon isotopes during thermal extraction, observed on shungite, a carbon-rich Precambrian sedimentary rock. The degree of fractionation, as monitored by 38Ar/ 36Ar and 40Ar/ 36Ar ratios, very well agrees with theoretical predictions assuming an inverse square root dependence of diffusion coefficient and atomic mass, resulting in easier extraction of lighter isotopes. Hence, subatmospheric 40Ar/ 36Ar ratios obtained for argon extracted at low temperatures may not represent paleoatmospheric argon. Shungite argon resembles modern atmospheric composition, but constraints on the timing of trapping appear difficult to obtain, as shungites are multicomponent systems. In 40Ar- 39Ar stepwise heating, the isotope fractionation effect could cause systematic underestimations of plateau ages, between 0.15 and 0.4% depending on age, or considerably higher if samples contain appreciable atmospheric Ar. The magnitude of this effect is similar to the presently achieved uncertainties of this increasingly

  12. Microwave Argon Plasma Torch

    Science.gov (United States)

    Felizardo, Edgar; Pencheva, Mariana; Benova, Evgenia; Dias, Fransisco; Tatarova, Elena

    2009-10-01

    A theoretical and experimental investigation of a microwave (2.45 GHz) Argon plasma torch driven by a surface wave is presented. The theoretical model couples in a self-consistent way the wave electrodynamics and the electron and heavy particle kinetics. The set of coupled equations includes: Maxwell's equations, the electron Boltzmann equation, including electron-electron collisions, and the particle balance equations for electrons, excited atoms (4s, 4p, 3d, 5s, 5p, 4d, 6s), and atomic (Ar^+) and molecular ions (Ar2^+). The input parameters of the model are: gas pressure (760 Torr), plasma radius (R = 0.75 cm), dielectric permittivity (ɛd = 4.0) and tube thickness (d = 0.15 cm) as well as the measured axial profile of the gas temperature (3500 K - 1500 K). The latter was determined from measurements of the rotational temperature of the OH molecular band in the range 306 - 315 nm. Phase and amplitude sensitive recording provides the data for the axial wavenumber and wave attenuation coefficient. The wavenumber decreases along the generated plasma torch. The electron density (Ne) axial profile as determined from measurements of Hβ Stark broadening is in agreement with the theoretical one.

  13. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  14. Electrical conductivity of compressed argon

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, R. [Univ. Regensburg (Germany); Windl, W.; Collins, L.; Kress, J.; Kwon, I. [Los Alamos National Lab., NM (United States)

    1997-10-01

    The authors report calculations of the electrical conductivity of solid argon as a function of compression within the density functional local density approximation formulation for a norm-conserving pseudopotential using both electron-phonon coupling and molecular dynamics techniques.

  15. The Liquid Argon Purity Demonstrator

    CERN Document Server

    Adamowski, M; Dvorak, E; Hahn, A; Jaskierny, W; Johnson, C; Jostlein, H; Kendziora, C; Lockwitz, S; Pahlka, B; Plunkett, R; Pordes, S; Rebel, B; Schmitt, R; Stancari, M; Tope, T; Voirin, E; Yang, T

    2014-01-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  16. SEM investigation of surface blistering for argon ion bombarded amorphous alloys

    International Nuclear Information System (INIS)

    Surface blistering of the amorphous alloys Co70.2Fe3.9Nb3.9Si14B8 and Co66Fe4.5V2.25Ni2.25Si10B15 due to argon ion bombardment at energies of 150, 195 and 300 keV has been observed with a scanning electron microscope (SEM). The critical dose for onset of blistering and the blister diameter are determined and found to increase with increasing projectile energy. Above about 195 keV, blisters and rupture of blisters are the predominant surface damage phenomena. However, at 150 keV, there is no evidence of cracked blisters. The effects are interpreted in terms of argon agglomeration, building-up of the critical argon pressure, and argon releasing from near-surface regions

  17. Resolution study of higher-order-mode-based beam position diagnostics using custom-built electronics in strongly coupled 3.9-GHz multi-cavity accelerating module

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, P.; Baboi, N.; Jones, R.M.; Eddy, N.

    2012-11-01

    Beam-excited higher order modes (HOMs) can provide remote diagnostics information of the beam position and cavity misalignment. In this paper we report on recent studies on the resolution with specially selected series of modes with custom-built electronics. This constitutes the first report of measurements of these cavities in which we obtained a resolution of 20 micron in beam offset. Details of the setup of the electronics and HOM measurements are provided.

  18. Fano factor in pure argon

    International Nuclear Information System (INIS)

    The Fano factor for 5.3 MeV alpha particles in pure argon has been measured with a gridded ionization chamber and estimated to be 0.20 (+0.01-0.02). The obtained value is consistent with the theoretical value if the contribution of elastic nuclear collisions to the Fano factor is taken into the consideration. There is no appreciable difference between the values for pure argon and for a gas mixture of Ar (10%)CH4 obtained in the previous measurement. (orig.)

  19. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baron, S; Baroncelli, A; Barr, A J; Barreiro, F; BarreiroGuimarães da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Bathe, S; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Bedajanek, I; Beddall, A J; Beddall, A; Bednár, P; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Booth, J R A; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Bosteels, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Brett, N D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camarri, P; Cambiaghi, M; Cameron, D; Campabadal-Segura, F; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans-Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  20. Operational performance of a large liquid argon photon calorimeter

    International Nuclear Information System (INIS)

    We describe the performance of a large (0.9x1.4 m2) liquid argon photon calorimeter in high energy experiments at Fermilab. Resolutions for π0 and electron showers, obtained under data-taking conditions, are compared with electron-beam calibration results. Exceptional spatial and time resolutions have been achieved for isolated showers (sigmasub(x,y)0 data up to 180 GeV are presented. (orig.)

  1. Dating of mineral samples through activation analysis of argon

    International Nuclear Information System (INIS)

    Mass Spectrometry has been the usual method to determine Ar concentrations in mineral samples for dating them through the 40Ar/40K ratio. This technique has been replaced since 1966 by measurement of 40Ar/39Ar ratio, after artificial production of 39Ar from the 39K(n,p)39Ar reaction produced in the fast neutron flux of a nuclear reactor. This method requires the fusion of the sample by incremental heating until reaching a temperature of 1000 deg C in order to get the total release of both argon isotopes. In principle, it should be possible to determine the 40Ar/40K ratio by activation analysis in an easier, non-destructive way, but it presents the following drawbacks: manufacture of argon standards; usual low ratio peak/Compton distribution for both peaks: 1.29 Mev and 1.52 Mev (41Ar and 42K respectively), since potassium minerals are usually very rich in sodium, manganese and chlorine; reaction 41K(n,p)41Ar induced by fast neutrons present in the thermal flux; and possible contamination of the samples and standards with atmospheric 40Ar(99.6% of elementary Ar, whose proportion in the atmosphere at sea level is 0.93%). This paper describes how these problems may be solved, also determining the limits of Ar and K concentration related to Compton distribution, in our experimental conditions. (author) 5 refs.; 1 tab

  2. Measurement of target fragments produced by 160 MeV proton beam in aluminum and polyethylene with CR-39 plastic nuclear track detectors

    Czech Academy of Sciences Publication Activity Database

    Ambrožová, Iva; Yasuda, N.; Kodaira, S.; Sihver, L.

    2014-01-01

    Roč. 64, MAY (2014), s. 29-34. ISSN 1350-4487 R&D Projects: GA AV ČR KJB100480901; GA AV ČR IAA100480902; GA MŠk LG14004 Institutional support: RVO:61389005 Keywords : target fragments * high-energy protons * Aluminium * Polyethylene * plastic nuclear track detectors * CR-39 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.213, year: 2014

  3. Changes in a surface of polycrystalline aluminum upon bombardment with argon ions

    Science.gov (United States)

    Ashkhotov, O. G.; Ashkhotova, I. B.; Bliev, A. P.; Magkoev, T. T.; Krymshokalova, D. A.

    2014-10-01

    The interaction between argon ions and a natural oxide layer of polycrystalline aluminum is studied via Auger electron (AE) and electron energy loss (EEL) spectroscopy. It is found that bombardment with argon ions whose energy is lower than the Al2O3 sputtering threshold results in the accumulation of bombarding ions in interstitial surface voids, thus forming a supersaturated solid solution of target atoms and bombarding ions of argon and nitrogen entrapped by the ion beam from the residual gas of the working chamber of the spectrometer.

  4. Investigation of the impact of the $^{39}$Ar(n , $\\alpha)^{36}$S reaction on the nucleosynthesis of the rare isotope $^{36}$S

    CERN Multimedia

    Geltenbort, P

    2002-01-01

    The origin of the rare, neutron rich isotope $^{36}$S remains a debated question. One of the key reactions in the s-process nucleosynthesis network leading to $^{36}$S is $^{39}$Ar(n , $\\alpha) ^{36}\\!$S. This reaction has never been studied so far, which is due to the fact that $^{39}$Ar is a radioactive (T$_{1/2}$ = 269 y) gas, which is not commercially available. During a three days experimental campaign, an optimized $^{39}$Ar sample was prepared at ISOLDE. A dedicated titaniumoxide target (8 g/cm$^{2}$) was bombarded with 1 GeV protons from the PS Booster. In order to obtain a pure argon beam, a water-cooled transfer line was used to freeze-out less volatile isobars before they can reach the ion source. Adding stable argon with a calibrated leak to the ion source enabled to determine the ionization efficiency (3.5%). For the isotope separation, the low-mass side (GLM) of the General Purpose Separator was used. After magnetic separation, $^{39}$Ar ions (1+) were implanted at 60 keV in a 12 mm thick alumin...

  5. Narrow spectral width laser diode for metastable argon atoms pumping

    Science.gov (United States)

    Gao, Jun; Li, Bin; Wang, Xinbing; Zuo, Duluo

    2016-03-01

    Diode laser pump source with narrow emitting spectrum for optically pumped metastable rare gas laser (OPRGL) of argon was achieved by employing a complex external cavity coupled with volume Bragg grating (VBG). A commercially available c-mount laser diode with rated power of 6 W was used and studied in both the free running mode and VBG external cavity. The maximum output power of 3.9 W with FWHM less than 25 pm and peak wavelength locked around 811.53 nm was obtained from the VBG external cavity laser diode. Precise control of VBG temperature enabled fine tuning of the emission wavelength over a range of 450 pm. Future researches on OPRGL of argon will benefit from it.

  6. X ray diagnostics of the argon filled dense plasma focus

    International Nuclear Information System (INIS)

    An experimental investigation has been conducted to use a Dense Plasma Focus Machine as a prospected high intensity pulsed x ray source. The argon was chosen for the plasma discharge. An effort to reach the highest x ray intensity emission has been made. Although it has not yet been possible to operate with as high energy in argon as in hydrogen, the argon focus provides an intensified ''point source'' of x ray. Based on the diagnostic data and the characteristic difference between argon and hydrogen, a theoretical model of the shock wave was proposed. The x ray energy spectrum of the focus was determined by a crystal spectrometer. Analyzing this spectrum, one can obtain a combined radiation from a 3 keV thermal plasma and a 48 keV electron beam bombarding the center electrode. The polarization of the x ray was measured at a direction perpendicular to the DPF axis. The change of the polarization with time indicated that the plasma impinged radially and then followed by an axial flow. The correlation of the x ray signal with the voltage signal showed that the plasma resistance was rising after the density reached its maximum, and associated the increase of the resistivity as a result of ion-acoustic instability

  7. 39 CFR 3001.39 - Intermediate decisions.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Intermediate decisions. 3001.39 Section 3001.39... Applicability § 3001.39 Intermediate decisions. (a) Initial decision by presiding officer. In any proceedings in... certify and file with the Secretary, a copy of the record of the hearing and his/her initial decision...

  8. The effects of accelerated heavy nuclei of neon and argon on mammalian cells in culture

    International Nuclear Information System (INIS)

    The survival of human T-1 kidney cells in high-energy neon (400MeV/nucleon) and argon (500MeV/nucleon) beams has been studied at the Berkeley Bevalac. Cells were plated in monolayers on glass and studied at different residual-range values. The survival curves depend on LET and on particle velocity. The effectiveness of the beams increases as the range decreases, except for argon beams with very low range values, where the effectiveness decreases again. The 'oxygen effect' is high at high particle energies (2.6 for neon and 2.4 for argon); it decreases to values between 1.1 and 1.3 near the Bragg peak. (author)

  9. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  10. Numerical study of breakdown pattern induced by an intense microwave under nitrogen and argon gases

    Science.gov (United States)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-07-01

    Filamentary plasma induced by microwave beam irradiation was reproduced in nitrogen and argon by combining fluid or particle plasma models with electromagnetic wave propagation. Transport coefficients used in the fluid model are estimated from particle simulation to maintain consistency of the breakdown structure between the fluid and particle models. A discrete structure was obtained using the one-dimensional (1D) fluid model, because a standing wave is generated in front of the plasma when the incident microwave beam is reflected by the overcritical plasma, which agrees with the breakdown structure obtained using the 1D particle model. A 2D plasma filament was also reproduced using the fluid model in nitrogen and argon. Reflection of the incident microwave in argon becomes stronger than that in nitrogen because of the denser argon plasma. Change in filament shape is induced in argon because the electric field is deformed at the plasma tip owing to stronger wave reflection from the neighboring filament. The propagation speed of the plasma front becomes larger in argon breakdown because of the larger ionization frequency and the larger diffusion coefficient.

  11. Performance of the ATLAS Liquid Argon Calorimeters in LHC Run-1 and Run-2

    CERN Document Server

    Benitez, Jose; The ATLAS collaboration

    2016-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34}$ cm$^{-2}$ s${^-1}$. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region $|\\eta|<3.2$, and for hadronic calorimetry in the region from $|\\eta|=1.5$ to $|\\eta|=4.9$. The calibration and performance of the LAr calorimetry system was established during beam tests, cosmic ray muon measurements and in particular the first three years of pp collision data-taking. During this period, referred to as Run-1, approximately 27~fb$^{-1}$ of data have been collected at the center-of-mass energies of 7 and 8~TeV. Following a period of detector consolidation during a long shutdown, Run-2 started in 2015 with approximately 3.9~fb$^{-1}$ of data at a center-of-mass energy of 13~TeV recorded in this year. Results on the LAr calorimeter operation, monitoring and data quality, as we...

  12. Low radioactivity argon dark matter search results from the DarkSide-50 experiment

    CERN Document Server

    Agnes, P; Albuquerque, I F M; Alexander, T; Alton, A K; Arisaka, K; Back, H O; Baldin, B; Biery, K; Bonfini, G; Bossa, M; Bottino, B; Brigatti, A; Brodsky, J; Budano, F; Bussino, S; Cadeddu, M; Cadonati, L; Cadoni, M; Calaprice, F; Canci, N; Candela, A; Cao, H; Cariello, M; Carlini, M; Catalanotti, S; Cavalcante, P; Chepurnov, A; Cocco, A G; Covone, G; Crippa, L; D'Angelo, D; D'Incecco, M; Davini, S; De Cecco, S; De Deo, M; De Vincenzi, M; Derbin, A; Devoto, 25 A; Di Eusanio, F; Di Pietro, G; Edkins, E; Empl, A; Fan, A; Fiorillo, G; Fomenko, K; Forster, G; Franco, D; Gabriele, F; Galbiati, C; Giganti, C; Goretti, A M; Granato, F; Grandi, L; Gromov, M; Guan, M; Guardincerri, Y; Hackett, B R; Herner, K; Hungerford, E V; Ianni, Al; Ianni, An; James, I; Jollet, C; Keeter, K; Kendziora, C L; Kobychev, V; Koh, G; Korablev, D; Korga, G; Kubankin, A; Li, X; Lissia, M; Lombardi, P; Luitz, S; Ma, Y; Machulin, I N; Mandarano, A; Mari, S M; Maricic, J; Marini, L; Martoff, C J; Meregaglia, A; Meyers, P D; Miletic, T; Milincic, R; Montanari, D; Monte, A; Montuschi, M; Monzani, M; Mosteiro, P; Mount, B J; Muratova, V N; Musico, P; Napolitano, J; Nelson, A; Odrowski, S; Orsini, M; Ortica, F; Pagani, L; Pallavicini, M; Pantic, E; Parmeggiano, S; Pelczar, K; Pelliccia, N; Perasso, S; Pocar, A; Pordes, S; Pugachev, D A; Qian, H; Randle, K; Ranucci, G; Razeto, A; Reinhold, B; Renshaw, A L; Romani, A; Rossi, B; Rossi, N; Rountree, D; Sablone, D; Saggese, P; Saldanha, R; Sands, W; Sangiorgio, S; Savarese, C; Segreto, E; Semenov, D A; Shields, E; Singh, P N; Skorokhvatov, M D; Smallcomb, M; Smirnov, O; Sotnikov, A; Stanford, C; Suvorov, Y; Tartaglia, R; Tatarowicz, J; Testera, G; Tonazzo, A; Trinchese, P; Unzhakov, E V; Vishneva, A; Vogelaar, B; Wada, M; Walker, S; Wang, H; Wang, Y; Watson, A W; Westerdale, S; Wilhelmi, J; Wojcik, M M; Xiang, X; Xu, J; Yang, C; Yoo, J; Zavatarelli, S; Zec, A; Zhong, W; Zhu, C; Zuzel, G

    2015-01-01

    The DarkSide-50 dark matter search reports the first results obtained using a target of low-radioactivity argon extracted from underground sources. The experiment is located at the Laboratori Nazionali del Gran Sasso and uses a two-phase time projection chamber as a detector. A total of 155 kg of low radioactivity argon has been obtained, and we have determined that underground argon is depleted in Ar-39 by a factor (1.4 +- 0.2) x 10^3 relative to atmospheric argon. The underground argon was also found to contain (2.05 +- 0.13) mBq/kg of Kr-85. We found no evidence for dark matter in the form of WIMPs in 70.9 live-days of data with a fiducial mass of (36.9 +- 0.6) kg. When combined with our preceding search with an atmospheric argon target, we set a 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section of 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43 cm^2 ) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2 ).

  13. Results from the first use of low radioactivity argon in a dark matter search

    Science.gov (United States)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2016-04-01

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).

  14. Results from the first use of low radioactivity argon in a dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P. [Universite Paris Diderot (France). et al.

    2016-04-08

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 103 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10-44 cm2 (8.6 x 10-44 cm2, 8.0 x 10-43 cm2) for a WIMP mass of 100 GeV/c2 (1 TeV/c2 , 10 TeV/c2).

  15. Argon Analyses of Lherzolic Shergottites Y984028 and Y000097

    Science.gov (United States)

    Park, J.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Shih, C.-Y.; Mikouchi, T.; Misawa, K.

    2010-01-01

    Antarctic Martian meteorites Yamato (Y) 984028 and Y000027/47/97 have similar textures, mineralogy, chemistry, and isotopic composition and are possibly paired. We analyzed the argon isotopic composition of Y984028 whole rock (WR) and pyroxene mineral separates (Px) in order to evaluate their trapped Ar components and compare with Y000097 Ar data. WR and Px yield an apparent Ar-39-Ar-40 age spectra of roughly 2 Ga, much older than the crystallization age determined by other isotopic techniques. Sm-Nd and Rb-Sr ages for Y984028 are approximately 170 Ma. This discrepancy is likely the byproduct of several coexisting Ar components, such as radiogenic 40Ar*, cosmogenic Ar, and trapped Ar from the multiple minerals, as well as multiple source origins. Similarly, the reported Ar-39-Ar-40 age of Y000097 is approximately 260 Ma with a Rb-Sr age of 147+/- 28 Ma and a Sm-Nd age of 152 +/- 13 Ma [4]. Apparently Ar-Ar ages of both Y984028 and Y000097 show trapped Ar components. Stepwise temperature extractions of Ar from Y984028 Px show several Arcomponents released at different temperatures. For example, intermediate temperature data (800-1100 C) are nominally consistent with the Sm-Nd and Rb-Sr radiometric ages (approximately 170 Ma) with an approximately Martian atmosphere trapped Ar composition with a Ar-40-Ar-36 ratio of approximately 1800. Based on K/Ca distribution, we know that Ar-39 at both lower and intermediate temperatures is primarily derived from plagioclase and olivine. Argon released during higher temperature extractions (1200-1500 C), however, differs significantly. The thermal profile of argon released from Martian meteorites is complicated by multiple sources, such as Martian atmosphere, Martian mantle, inherited Ar, terrestrial atmosphere, cosmogenic Ar. Obviously, Ar release at higher temperatures from Px should contain little terrestrial atmospheric component. Likewise, Xe-129/Xe-132 from high temperature extractions (1200-1800 C) gives a value above that

  16. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    Energy Technology Data Exchange (ETDEWEB)

    Chan, L. S., E-mail: lschan1982@yahoo.com; Tan, D., E-mail: lschan1982@yahoo.com; Saboohi, S., E-mail: lschan1982@yahoo.com; Yap, S. L., E-mail: lschan1982@yahoo.com; Wong, C. S., E-mail: lschan1982@yahoo.com [Plasma Technology Research Centre, Physics Department, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup −5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup −4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  17. Performance of the TGT liquid argon calorimeter and trigger system

    International Nuclear Information System (INIS)

    A novel concept of a liquid argon calorimeter, the 'Thin Gap Turbine' (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a 'circular data store' and standalone readout and playback capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given. 12 refs., 21 figs., 6 tabs

  18. Kinetic modeling of the Townsend breakdown in argon

    Science.gov (United States)

    Macheret, S. O.; Shneider, M. N.

    2013-10-01

    Kinetic modeling of the Townsend breakdown in argon was performed in the "forward-back" approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  19. Study of a novel electromagnetic liquid argon calorimeter TGT

    International Nuclear Information System (INIS)

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a test beam exposure. 15 refs., 16 figs., 2 tabs

  20. Internal excitation of UF-6 and MoF-6 ions in collisions with argon atoms

    International Nuclear Information System (INIS)

    Beams of UF-6 and MoF-6 of controlled average internal energy from 0.7 to 2.4 eV have been collided with argon at 200 eV laboratory kinetic energy. Analysis of the outgoing kinetic energy distributions shows that increased internal excitation prior to collision enhances the conversion of kinetic to internal energy. (orig.)

  1. Transition probabilities for argon I

    International Nuclear Information System (INIS)

    Transition probabilities for ArI lines have been calculated on the basis of the (j,k)-coupling scheme for more than 16000 spectral lines belonging to the transition arrays 4s-np (n=4 to n=9), 5s-np (n=5 to n=9), 6s-np (n=6 to n=9), 7s-np (n=8 to n=9), 4p-ns (n=5 to n=10), 5p-ns (n=6 to n=9), 6p-ns (n=7 to n=8), 4p-nd (n=3 to n=9), 5p-nd (n=4 to n=9), 3d-np (n=5 to n=9), 4d-np (n=6 to n=9), 5d-np (n=7 to n=9), 3d-nf (n=4 to n=9), 4d-nf (n=4 to n=9), 5d-nf (n=5 to n=9), 4f-nd (n=5 to n=9) 5f-nd (n=6 to n=9), 4f-ng (n=5 to n=9), 5f-ng (n=6 to n=9). Inso far as values by other authors exist, comparison is made with these values. It turns out that the results obtained in (j,k)-coupling are close to those obtained in intermediate coupling except for intercombination lines. For high principal and/or orbital quantum numbers the transition probabilities for a multiplet approach those of the corresponding transitions in atomic hydrogen. The calculated values are applied to construct a simplified argon-atom model, which reflects the real transition properties and which allows simplified but realistic non-equilibrium calculations for argon plasmas which deviate from local thermodynamic equilibrium (LTE)

  2. Alternating-Gradient Focusing of the Benzonitrile-Argon Van der Waals Complex

    OpenAIRE

    Putzke, S.; Filsinger, F.; Küpper, J.; Meijer, G.

    2012-01-01

    We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C$_6$H$_5$CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided beam is non-thermal, because the transmission efficiency depends on the state-dependent effective dipole moment in the applied electric fields. At a specific ac frequency, however, the excitation spectrum can be described by a thermal distribution ...

  3. Geological Dating by 40 Ar - 39 Ar method

    International Nuclear Information System (INIS)

    The isotope 40 K is radioactive, it decays to 40 Ar stable. The number of 40 Ar atoms produced from 40 K, permits to calculate the date of rocks and minerals. This dating technique is named 'Conventional K-Ar Dating Method'. The 40 Ar - 39 Ar dating method permits to calculate the age of rocks and minerals eliminating the limitation of the K-Ar method by calculating potassium and argon concentrations in a single measurement of the ratio of argon isotopes. In this work, the irradiation of the sample with fast neutrons in the nuclear reactor was established. 39 Ar is obtained from the induced reaction 39 K (n,p) 39 Ar. Thus the ration of 40 Ar -39 Ar allows to obtain the date of rocks and minerals. This ratio was measured in a mass spectrometer. If the measurement of argon concentration in the sample is carried out at different increasing temperature values, it is possible to get information of paleotemperatures. The number of atoms 39 Ar is a function of the number 39 K atoms, irradiation time, neutrons flux, its energy E and the capture cross section σ of 39 K. These parameters are calculate indirectly by obtaining the so called 'J value ' by using a standard mineral with known age (HD-BI y Biot-133), this mineral is irradiated together with the unknown age sample. The values of 'J' obtained are in the interval of 2.85 a 3.03 (x 10-3)J/h. Rocks from 'Tres Virgenes' were dated by the method described in this work, showing an agreement with previous values of different authors. The age of this rocks are from Cenozoico era, mainly in the miocene period. (Author)

  4. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  5. Enhancement of negative capacitance effect in (CoFeZr)x(CaF2)(100−x) nanocomposite films deposited by ion beam sputtering in argon and oxygen atmosphere

    International Nuclear Information System (INIS)

    Highlights: • (FeCoZr)x(CaF2)(100−x) nanomaterals deposited in oxygen-containing atmosphere (Ar + O2). • FeCoZr “cores” covered with FeCo-oxide “shells” embedded into nonoxygen dielectric matrix. • On σ(Tp) are two minima related to the crossing zero line values of Θ1 = 90° and of Θ2 = −90°. - Abstract: The paper presents frequency f and temperature Tp dependences of phase shift angle Θ, admittance σ and capacitance Cp for the as-deposited and annealed (CoFeZr)x(CaF2)(100−x) nanocomposite films deposited by ion-beam sputtering of a compound target in a mixed argon–oxygen gas atmosphere in vacuum chamber. The studied films presented metallic FeCoZr “cores” covered with FeCo-based oxide “shells” embedded into oxygen-free dielectric matrix (fluorite). It was found for the metallic phase content within the range of 52.2 at.% ⩽ x ⩽ 84.3 at.% in low-f region that Θ values were negative, while in the high-f region we observed the Θ < 0o. It was obtained that the f-dependences of capacitance module displayed minimum at the corresponding frequency when the Θ(f) crossed its zero line Θ = 0o. It was also observed that the σ(Tp) dependence displayed the occurrence of two minima that were related to the values of Θ1 = 90° (the first minimum) and of Θ2 = −90° (the second one). Some possible reasons of such behavior of (CoFeZr)x(CaF2)(100−x) nanocomposite films are discussed

  6. Pulse Compression by Filamentation in Argon with an Acoustic Optical Programmable Dispersive Filter for Predispersion Compensation

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-Wei; JIANG Yong-Liang; LENG Yu-Xin; LIU Jun; GE Xiao-Chun; LI Ru-Xin; XU Zhi-Zhan

    2006-01-01

    @@ We have experimentally demonstrated pulses 0.4 mJ in duration smaller than 12 fs with an excellent spatial beam profile by self-guided propagation in argon. The original 52fs pulses from the chirped pulsed amplification laser system are first precompressed to 32 fs by inserting an acoustic optical programmable dispersive filter instrument into the laser system for spectrum reshaping and dispersion compensation, and the pulse spectrum is subsequently broadened by filamentation in an argon cell. By using chirped mirrors for post-dispersion compensation, the pulses are successfully compressed to smaller than 12fs.

  7. Pilot study about dose-effect relationship of ocular injury in argon laser photocoagulation

    Science.gov (United States)

    Chen, P.; Zhang, C. P.; Fu, X. B.; Zhang, T. M.; Wang, C. Z.; Qian, H. W.; San, Q.

    2011-03-01

    The aim of this article was to study the injury effect of either convergent or parallel argon laser beam on rabbit retina, get the dose-effect relationship for the two types of laser beams, and calculate the damage threshold of argon laser for human retinas. An argon laser therapeutic instrument for ophthalmology was used in this study. A total of 80 rabbit eyes were irradiated for 600 lesions, half of which were treated by convergent laser and the other half were done with parallel laser beam. After irradiation, slit lamp microscope and fundus photography were used to observe the lesions, change and the incidence of injury was processed statistically to get the damage threshold of rabbit retina. Based on results from the experiments on animals and the data from clinical cases of laser treatment, the photocoagulation damage thresholds of human retinas for convergent and parallel argon laser were calculated to be 0.464 and 0.285 mJ respectively. These data provided biological reference for safely operation when employing laser photocoagulation in clinical practice and other fields.

  8. Enhancement of negative capacitance effect in (CoFeZr){sub x}(CaF{sub 2}){sub (100−x)} nanocomposite films deposited by ion beam sputtering in argon and oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Koltunowicz, T.N., E-mail: t.koltunowicz@pollub.pl [Lublin University of Technology, 20-618 Lublin (Poland); Zhukowski, P., E-mail: p.zhukowski@pollub.pl [Lublin University of Technology, 20-618 Lublin (Poland); Bondariev, V. [Lublin University of Technology, 20-618 Lublin (Poland); Saad, A. [Al Balqa Applied University, Physics Department, P.O. Box 4545, Amman 11953 (Jordan); Fedotova, J.A. [National Center for Particles and High Energy Physics of Belarusian State University, 220040 Minsk (Belarus); Fedotov, A.K. [Belarusian State University, 220030 Minsk (Belarus); Milosavljević, M. [VINČA Institute of Nuclear Sciences, Belgrade University, P.O. Box 522, 11001 Belgrade (Serbia); Kasiuk, J.V. [National Center for Particles and High Energy Physics of Belarusian State University, 220040 Minsk (Belarus)

    2014-12-05

    Highlights: • (FeCoZr){sub x}(CaF{sub 2}){sub (100−x)} nanomaterals deposited in oxygen-containing atmosphere (Ar + O{sub 2}). • FeCoZr “cores” covered with FeCo-oxide “shells” embedded into nonoxygen dielectric matrix. • On σ(T{sub p}) are two minima related to the crossing zero line values of Θ{sub 1} = 90° and of Θ{sub 2} = −90°. - Abstract: The paper presents frequency f and temperature T{sub p} dependences of phase shift angle Θ, admittance σ and capacitance C{sub p} for the as-deposited and annealed (CoFeZr){sub x}(CaF{sub 2}){sub (100−x)} nanocomposite films deposited by ion-beam sputtering of a compound target in a mixed argon–oxygen gas atmosphere in vacuum chamber. The studied films presented metallic FeCoZr “cores” covered with FeCo-based oxide “shells” embedded into oxygen-free dielectric matrix (fluorite). It was found for the metallic phase content within the range of 52.2 at.% ⩽ x ⩽ 84.3 at.% in low-f region that Θ values were negative, while in the high-f region we observed the Θ < 0{sup o}. It was obtained that the f-dependences of capacitance module displayed minimum at the corresponding frequency when the Θ(f) crossed its zero line Θ = 0{sup o}. It was also observed that the σ(T{sub p}) dependence displayed the occurrence of two minima that were related to the values of Θ{sub 1} = 90° (the first minimum) and of Θ{sub 2} = −90° (the second one). Some possible reasons of such behavior of (CoFeZr){sub x}(CaF{sub 2}){sub (100−x)} nanocomposite films are discussed.

  9. Argon plasma irradiation of polypropylene

    International Nuclear Information System (INIS)

    Polypropylene samples were exposed to argon plasma discharge and the changes of the PP surface properties were studied by different methods. Surface wettability was derived from contact angle measured by standard goniometry and chemical structure of the plasma modified PP was studied using X-ray photoelectron spectroscopy (XPS) and by Rutherford backscattering spectroscopy (RBS), surface morphology and roughness of samples using AFM. Zeta potential of pristine and modified PP was determined with the SurPASS. The presence of incorporated oxygen in the PP surface layer, about 60 nm thick, was observed in RBS spectra. Oxygen concentration is a decreasing function of the depth. With progressing aging time the oxygen concentration on the PP surface decreases. Plasma treatment results in a rapid decrease of the contact angle, which increases again with increasing aging time. In XPS measurement the oxygen containing structures, created by the plasma treatment, were found on the very surface of the modified PP and the zeta potential being changed too. The significant difference in zeta potential between pristine and plasma treated PP clearly indicates that the plasma treatment leads to a more hydrophilic PP surface.

  10. Status and perspecitves of liquid argon calorimeters

    International Nuclear Information System (INIS)

    The status of liquid argon calorimeters is reviewed, and experience obtained with these devices is described. Future perspectives of the liquid ionization chamber technique in calorimetry are also discussed. (orig.)

  11. Clinical periodontics with the argon laser

    Science.gov (United States)

    Finkbeiner, R. L.

    1995-04-01

    The argon laser has proven to be a valuable tool for the thermodynamic debridement of the periodontal lesion, incisions and tissue fusion. Illustrations of clinical applications and discussion of laser parameters will be provided.

  12. Liquid argon neutrals detector (LAND) for PEP

    International Nuclear Information System (INIS)

    The physical effects limiting the gamma energy resolution of a liquid argon calorimeter without passive converter plates is discussed. An example of such a detector based on the General User's Magnet designed at this Summer Study is given

  13. Opacity of Shock-Generated Argon Plasmas

    Institute of Scientific and Technical Information of China (English)

    王藩侯; 陈敬平; 周显明; 李西军; 经福谦; 孟续军; 孙永盛

    2001-01-01

    Argon plasmas with uniform density and temperature are generated by a planar shock wave through argon gas. The opacities of argon plasma, covering the thermodynamic states at temperatures of 1.4-2.2eV and in densities of 0.0083- 0.015 g/cm3, are investigated by measuring the emitted radiance versus time at several visible wavelengths. Comparison of the measured opacities with those calculated demonstrates that the average atom model can be used well to describe the essential transport behaviour of photons in argon plasma under the abovementioned thermodynamic condition. A simplified and self-consistent method to deduce the reflectivity R(λ) at the baseplate surface is applied. It demonstrates that the values of R(λ) are all around 0.4 in the experiments, which are basically in agreement with those given by Erskine previously (1994 J. Quant. Spectrosc. Radiat.Transfer 51 97).

  14. 21 CFR 868.1075 - Argon gas analyzer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  15. Negative corona current pulses in argon and in mixture argon with SF6

    International Nuclear Information System (INIS)

    Waveforms of the first negative current pulses in a short negative point-to plane gap in pure argon and argon with SF6 admixture have been investigated with a nanosecond time resolution at a gas pressure 50 kPa as a function of applied gap voltage and content of SF6 in the mixture. We have made an attempt to explain the differences in the discharge development in pure argon and in argon with admixture of SF6 based on the observed changes of the pulse shape. The experimental results obtained will be discussed in context with existing computer simulation models (Authors)

  16. Measurements on scintillation light from liquid argon

    International Nuclear Information System (INIS)

    It is shown that an argon calorimeter can operate as a scintillation detector, provided that xenon is added. With the addition of 170 ppm xenon a light yield of 70% has been obtained. In addition the light yield is determined under influence of an electric field, from differently ionising particles and by the use of aluminium mirrors acting as light guides. Finally first measurements with a photomultiplier working at liquid argon temperatures are reported. (orig.)

  17. At Least 39 Weeks

    Medline Plus

    Full Text Available ... Ovulation calendar 39 weeks is best Order bereavement materials News Moms Need Blog News & Media News Videos ... Ovulation calendar 39 weeks is best Order bereavement materials News Moms Need Blog Stories & Media News & Media ...

  18. Studies with a liquid argon time projection chamber. Addressing technological challenges of large-scale detectors

    International Nuclear Information System (INIS)

    Michael Schenk evaluates new technologies and methods, such as cryogenic read-out electronics and a UV laser system, developed to optimise the performance of large liquid argon time projection chambers (LArTPC). Amongst others, the author studies the uniformity of the electric field produced by a Greinacher high-voltage generator operating at cryogenic temperatures, measures the linear energy transfer (LET) of muons and the longitudinal diffusion coefficient of electrons in liquid argon. The results are obtained by analysing events induced by cosmic-ray muons and UV laser beams. The studies are carried out with ARGONTUBE, a prototype LArTPC in operation at the University of Bern, Switzerland, designed to investigate the feasibility of drift distances of up to five metres for electrons in liquid argon.

  19. Liquid Argon Calorimeters Operation and Data Quality During the 2015 Proton Run

    CERN Document Server

    Camincher, Clement; The ATLAS collaboration

    2016-01-01

    In 2015 ATLAS operated with an excellent efficiency, recording an integrated luminosity of 3.9fb^{-1} at \\sqrt{s} = 13 TeV. The Liquid Argon (LAr) Calorimeter contributed to this effort by operating with a good data quality efficiency of 99.4% . This poster highlights the overall status, performances and data quality of the LAr Calorimeters during the first year of Run-2 operations.

  20. Dosimetry and microdosimetry of 10–220 MeV proton beams with CR-39 and their verifications by calculation of reaction cross sections using ALICE, TALYS and GEANT4 codes

    International Nuclear Information System (INIS)

    High- and intermediate-energy protons are not able to directly form a track in a CR-39 etch detector (TED). Such detectors, however, can be used for the detection and dosimetry of the beams of these particles through the registration of secondary charged particles with sufficiently high values of linear energy transfer (LET). High-energy protons (72–220 MeV) and Intermediate-energy protons (10–30 MeV) with low LET values ranging from 1.1 down to 0.4 keV/μm and 5.87 down to 2.40 keV/μm, respectively are considered in this study. It seems to be sufficient to create secondary particles, although the LET values are low. This phenomenon can modify the characteristics of the energy transfer process due to these particles, which should be taken into account when such particles are used for radiobiology studies or for radiotherapy. The importance of these secondary particles was investigated experimentally by means of an LET spectrometer based on a chemically etched track detector in which the tracks of the primary protons are not revealed. Experiments were performed with proton beams available at the Nuclear Research Center for Agriculture and Medicine (NRCAM) in Karaj, Iran and at the National Cancer Center (NCC) in Seoul, Korea with protons of primary energies of about 10–30 MeV and 72–220 MeV respectively. The contribution of the secondary particle dose increases as the proton energy decreases. The origin of the secondary particles in interactions with protons having high and intermediate energies due to various nuclear reactions was calculated by the both ALICE and TALYS computer codes. The secondary microdosimetry doses were also calculated by GEANT4 code. There is large discrepancy between experimental and calculated results in low proton energies. It has been verified that there is a good correlation between the experimentally obtained results and the reaction cross sections predicted by ALICE and TALYS codes.

  1. Argon plasma irradiation of polypropylene

    Czech Academy of Sciences Publication Activity Database

    Vasina, A.; Malinský, Petr; Slepička, P.; Macková, Anna; Švorčík, V.

    Cambridge: IOP, Institute of physics, 2009. s. 83-83. [19th International conference on Ion beam analysis . 07.09.2009-11.09.2009, Cambridge] R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : polypropylene * plasma treatment * RBS * XPS * zeta potential Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  2. Argon Collection And Purification For Proliferation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-09

    In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event was a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.

  3. Kinetic and experimental study of argon and argon--nitrogen mixtures excited by fission fragments

    International Nuclear Information System (INIS)

    Optical emission from argon and argon-nitrogen mixtures excited by fission fragments are studied in an effort to better understand the fission fragment energy deposition into the gas. A model of the energy flow in the gas is developed and compared with the experimental results

  4. Development of a Laser Probe for Argon Isotope Studies.

    Science.gov (United States)

    McConville, Paul

    Available from UMI in association with The British Library. The first objective of this study was to develop a laser outgassing facility for argon isotope studies. Apart from the laser and construction of the laser sample port, existing vacuum and mass spectrometer systems were used. Laser performance and optimum operating conditions were investigated. The second objective was test and evaluate the laser extraction technique by studies of simple geological samples. Previous laser ^{40} Ar-^{39}Ar dating studies by other workers had not systematically established the basis or characteristics of the method. Results from laser and complementary stepped heating studies of the ^{40}Ar-^ {39}Ar dating standard hornblende, hb3gr; a phlogopite sample from the Palabora (Phalaborwa) Complex; and biotites in a thin section of the Hamlet Bjerg granite from East Greenland, verified that: (1) Laser extraction reproduced within experimental error the stepped heating ^{40}Ar-^ {39}Ar and K-Ar ages of simple samples. (2) The precision of the technique i.e. the amount of sample required to give reliable ages, was limited in the present experiments largely by the level of the blanks and backgrounds to 10-100 ug samples. (3) Sample outgassing appeared to be limited to the order of 10 um outside the physical size of the laser pit, consistent with other estimates of the spatial definition in the literature. This could be understood by thermal diffusion and the length of the laser pulse. (4) The efficiency of the laser pulse in melting and outgassing mineral samples was shown to be dependent on silicate latent heats and mineral absorption at the laser wavelength. In addition, the ^{40} Ar-^{39}Ar age of the geologically significant Palabora Complex was determined as (2053 +/- 5) Ma. Excess argon led to a discrepancy between the laser and stepped heating ages of biotite and muscovite, (405 +/- 5) Ma, and laser ages of feldspars (510 +/- 20) Ma in the Hamlet Bjerg granite. This illustrated

  5. Argon activation analysis, application to dating by the potassium-argon method

    International Nuclear Information System (INIS)

    Activation analysis using radiogenic argon-40 has been applied to rock-dating by the K-Ar method. The argon is extracted from the sample, purified, activated to saturation in a flux of 2 X 1013 neutrons/cm2 sec-1 and measured by gamma spectroscopy. The sensitivity obtained is such that it is possible to measure amounts of argon corresponding to age of a few thousand years only. However since it has not been possible to measure the amount of pollution of radiogenic argon by atmospheric argon with any accuracy, the measurable age limit is in fact of the order of MY. The method has been applied to basalts from the Mont-Dore region. The results obtained are in fairly good agreement with geological, stratigraphic and paleomagnetic data. (author)

  6. Attenuation of vacuum ultraviolet light in liquid argon

    CERN Document Server

    Neumeier, A; Oberauer, L; Potzel, W; Schönert, S; Dandl, T; Heindl, T; Ulrich, A; Wieser, J

    2015-01-01

    The transmission of liquid argon has been measured, wavelength resolved, for a wavelength interval from 118 to 250 nm. The wavelength dependent attenuation length is presented for pure argon. It is shown that no universal wavelength independent attenuation length can be assigned to liquid argon for its own fluorescence light due to the interplay between the wavelength dependent emission and absorption. A decreasing transmission is observed below 130 nm in both chemically cleaned and distilled liquid argon and assigned to absorption by the analogue of the first argon excimer continuum. For not perfectly cleaned argon a strong influence of impurities on the transmission is observed. Two strong absorption bands at 126.5 and 141.0 nm with approximately 2 and 4 nm width, respectively, are assigned to traces of xenon in argon. A broad absorption region below 180 nm is found for unpurified argon and tentatively attributed to the presence of water in the argon sample.

  7. Argon ion beam induced surface pattern formation on Si

    Energy Technology Data Exchange (ETDEWEB)

    Hofsäss, H.; Bobes, O.; Zhang, K. [2nd Institute of Physics, Faculty of Physics, University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2016-01-21

    The development of self-organized surface patterns on Si due to noble gas ion irradiation has been studied extensively in the past. In particular, Ar ions are commonly used and the pattern formation was analyzed as function of ion incidence angle, ion fluence, and ion energies between 250 eV and 140 keV. Very few results exist for the energy regime between 1.5 keV and 10 keV and it appears that pattern formation is completely absent for these ion energies. In this work, we present experimental data on pattern formation for Ar ion irradiation between 1 keV and 10 keV and ion incidence angles between 50° and 75°. We confirm the absence of patterns at least for ion fluences up to 10{sup 18} ions/cm{sup 2}. Using the crater function formalism and Monte Carlo simulations, we calculate curvature coefficients of linear continuum models of pattern formation, taking into account contribution due to ion erosion and recoil redistribution. The calculations consider the recently introduced curvature dependence of the erosion crater function as well as the dynamic behavior of the thickness of the ion irradiated layer. Only when taking into account these additional contributions to the linear theory, our simulations clearly show that that pattern formation is strongly suppressed between about 1.5 keV and 10 keV, most pronounced at 3 keV. Furthermore, our simulations are now able to predict whether or not parallel oriented ripple patterns are formed, and in case of ripple formation the corresponding critical angles for the whole experimentally studied energies range between 250 eV and 140 keV.

  8. Argon ion beam induced surface pattern formation on Si

    Science.gov (United States)

    Hofsäss, H.; Bobes, O.; Zhang, K.

    2016-01-01

    The development of self-organized surface patterns on Si due to noble gas ion irradiation has been studied extensively in the past. In particular, Ar ions are commonly used and the pattern formation was analyzed as function of ion incidence angle, ion fluence, and ion energies between 250 eV and 140 keV. Very few results exist for the energy regime between 1.5 keV and 10 keV and it appears that pattern formation is completely absent for these ion energies. In this work, we present experimental data on pattern formation for Ar ion irradiation between 1 keV and 10 keV and ion incidence angles between 50° and 75°. We confirm the absence of patterns at least for ion fluences up to 1018 ions/cm2. Using the crater function formalism and Monte Carlo simulations, we calculate curvature coefficients of linear continuum models of pattern formation, taking into account contribution due to ion erosion and recoil redistribution. The calculations consider the recently introduced curvature dependence of the erosion crater function as well as the dynamic behavior of the thickness of the ion irradiated layer. Only when taking into account these additional contributions to the linear theory, our simulations clearly show that that pattern formation is strongly suppressed between about 1.5 keV and 10 keV, most pronounced at 3 keV. Furthermore, our simulations are now able to predict whether or not parallel oriented ripple patterns are formed, and in case of ripple formation the corresponding critical angles for the whole experimentally studied energies range between 250 eV and 140 keV.

  9. Argon ion beam induced surface pattern formation on Si

    International Nuclear Information System (INIS)

    The development of self-organized surface patterns on Si due to noble gas ion irradiation has been studied extensively in the past. In particular, Ar ions are commonly used and the pattern formation was analyzed as function of ion incidence angle, ion fluence, and ion energies between 250 eV and 140 keV. Very few results exist for the energy regime between 1.5 keV and 10 keV and it appears that pattern formation is completely absent for these ion energies. In this work, we present experimental data on pattern formation for Ar ion irradiation between 1 keV and 10 keV and ion incidence angles between 50° and 75°. We confirm the absence of patterns at least for ion fluences up to 1018 ions/cm2. Using the crater function formalism and Monte Carlo simulations, we calculate curvature coefficients of linear continuum models of pattern formation, taking into account contribution due to ion erosion and recoil redistribution. The calculations consider the recently introduced curvature dependence of the erosion crater function as well as the dynamic behavior of the thickness of the ion irradiated layer. Only when taking into account these additional contributions to the linear theory, our simulations clearly show that that pattern formation is strongly suppressed between about 1.5 keV and 10 keV, most pronounced at 3 keV. Furthermore, our simulations are now able to predict whether or not parallel oriented ripple patterns are formed, and in case of ripple formation the corresponding critical angles for the whole experimentally studied energies range between 250 eV and 140 keV

  10. Argon plasma irradiation of polypropylene

    Czech Academy of Sciences Publication Activity Database

    Slepička, P.; Vasina, A.; Kolská, Z.; Luxbacher, T.; Malinský, Petr; Macková, Anna; Švorčík, V.

    2010-01-01

    Roč. 268, 11-12 (2010), s. 2111-2114. ISSN 0168-583X. [19th International conference on Ion beam analysis. Cambridge, 07.09.2009-11.09.2009] R&D Projects: GA ČR GA106/09/0125; GA MŠk(CZ) LC06041; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : Polypropylene * Plasma treatment * RBS Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.042, year: 2010

  11. Simultaneous operation of a test apparatus filled with liquid argon as bubble chamber, calorimeter and scintillation detector

    International Nuclear Information System (INIS)

    Physics motivations for the use of argon as a new bubble chamber liquid are discussed. Results, obtained from a 2.7 1 argon detector in SPS and SC beams at CERN, comprise its track sensitivity to ionizing particles and to a laser beam in the bubble chamber mode, its use as a calorimeter through the collection of free charges in an electric field and the recording of the scintillation light produced by ionizing particles. Various interference phenomena during the simultaneous use of the hybrid properties, as well as purity requirements on the liquid are discussed. Furthermore, nitrogen and argon/nitrogen mixtures were investigated. Applications of our technique for neutrino experiments at TeV accelerators and as vertex detectors are briefly outlined. In-line holography, successfully tested in BEBC, could simplify the optical track recording and improve the resolution in very large detectors. (orig.)

  12. Attosecond Coherent Control of Single and Double Photoionization in Argon.

    Science.gov (United States)

    Hogle, C W; Tong, X M; Martin, L; Murnane, M M; Kapteyn, H C; Ranitovic, P

    2015-10-23

    Ultrafast high harmonic beams provide new opportunities for coherently controlling excitation and ionization processes in atoms, molecules, and materials on attosecond time scales by employing multiphoton two-pathway electron-wave-packet quantum interferences. Here we use spectrally tailored and frequency tuned vacuum and extreme ultraviolet harmonic combs, together with two phase-locked infrared laser fields, to show how the total single and double photoionization yields of argon can be coherently modulated by controlling the relative phases of both optical and electronic-wave-packet quantum interferences. This Letter is the first to apply quantum control techniques to double photoionization, which is a fundamental process where a single, high-energy photon ionizes two electrons simultaneously from an atom. PMID:26551112

  13. Response Uniformity of the ATLAS Liquid Argon Electromagnetic Calorimeter

    CERN Document Server

    Aharrouche, M; Di Ciaccio, L; El Kacimi, M; Gaumer, O; Gouanère, M; Goujdami, D; Lafaye, R; Laplace, S; Le Maner, C; Neukermans, L; Perrodo, P; Poggioli, L; Prieur, D; Przysiezniak, H; Sauvage, G; Wingerter-Seez, I; Zitoun, R; Lanni, F; Lü, L; Ma, H; Rajagopalan, S; Takai, H; Belymam, A; Benchekroun, D; Hakimi, M; Hoummada, A; Gao, Y; Stroynowsk, R; Aleksa, M; Carli, T; Fassnacht, P; Gianotti, F; Hervás, L; Lampl, W; Collot, J; Hostachy, J Y; Ledroit-Guillon, F; Malek, F; Martin, P; Viret, S; Leltchouk, M; Parsons, J A; Simion, S; Barreiro, F; Del Peso, J; Labarga, L; Oliver, C; Rodier, S; Barrillon, P; Benchouk, C; Djama, F; Hubaut, F; Monnier, E; Pralavorio, P; Sauvage, D; Serfon, C; Tisserant, S; Tóth, J; Banfi, D; Carminati, L; Cavalli, D; Costa, G; Delmastro, M; Fanti, M; Mandell, L; Mazzanti, M; Tartarelli, F; Kotov, K; Maslennikov, A; Pospelov, G; Tikhonov, Yu; Bourdarios, C; Fayard, L; Fournier, D; Iconomidou-Fayard, L; Kado, M; Parrour, G; Puzo, P; Rousseau, D; Sacco, R; Serin, L; Unal, G; Zerwas, D; Dekhissi, B; Derkaoui, J; EL Kharrim, A; Maaroufi, F; Cleland, W; Lacour, D; Laforge, B; Nikolic-Audit, I; Schwemling, Ph; Ghazlane, H; Cherkaoui El Moursli, R; Idrissi Fakhr-Eddine, A; Boonekamp, M; Kerschen, N; Mansoulié, B; Meyer, P; Schwindlingy, J; Lund-Jensen, B

    2007-01-01

    The construction of the ATLAS electromagnetic liquid argon calorimeter modules is completed and all the modules are assembled and inserted in the cryostats. During the production period four barrel and three endcap modules were exposed to test beams in order to assess their performance, ascertain the production quality and reproducibility, and to scrutinize the complete energy reconstruction chain from the readout and calibration electronics to the signal and energy reconstruction. It was also possible to check the full Monte Carlo simulation of the calorimeter. The analysis of the uniformity, resolution and extraction of constant term is presented. Typical non-uniformities of 0.5% and typical global constant terms of 0.6% are measured for the barrel and end-cap modules.

  14. Kinetic modeling of the Townsend breakdown in argon

    Energy Technology Data Exchange (ETDEWEB)

    Macheret, S. O.; Shneider, M. N. [Department of Mechanical and Aerospace Engineering, Princeton University, D-414 Engineering Quadrangle, Princeton, New Jersey 08544 (United States)

    2013-10-15

    Kinetic modeling of the Townsend breakdown in argon was performed in the “forward-back” approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  15. Table-top setup for investigating the scintillation properties of liquid argon

    CERN Document Server

    Heindl, T; Fedenev, A; Hofmann, M; Krücken, R; Oberauer, L; Potzel, W; Wieser, J; Ulrich, A

    2015-01-01

    The spectral and temporal light emission properties of liquid argon have been studied in the context of its use in large liquid rare-gas detectors for detecting Dark Matter particles in astronomy. A table-top setup has been developed. Continuous and pulsed low energy electron beam excitation is used to stimulate light emission. A spectral range from 110 to 1000 nm in wavelength is covered by the detection system with a time resolution on the order of 1 ns.

  16. A simple velocity-tunable pulsed atomic source of slow metastable argon

    Science.gov (United States)

    Taillandier-Loize, T.; Aljunid, S. A.; Correia, F.; Fabre, N.; Perales, F.; Tualle, J. M.; Baudon, J.; Ducloy, M.; Dutier, G.

    2016-04-01

    A pulsed beam of metastable argon atoms having a low tunable velocity (10 to 150 m s-1) is produced with a very substantial brightness (9  ×  108Ar* s-1 sr-1). The present original experimental configuration leads to a variable velocity dispersion that can be smaller than the standard Brownian one. This behaviour, analysed using Monte Carlo simulations, exhibits momentum stretching (heating) or narrowing (cooling) entirely due to a subtle combination of Doppler and Zeeman effects.

  17. Giant Liquid Argon Observatory for Proton Decay, Neutrino Astrophysics and CP-violation in the Lepton Sector (GLACIER)

    CERN Document Server

    Badertscher, A; Degunda, U; Epprecht, L; Horikawa, S; Knecht, L; Lazzaro, C; Lussi, D; Marchionni, A; Natterer, G; Otiougova, P; Resnati, F; Rubbia, A; Strabel, C; Ulbricht, J; Viant, T

    2010-01-01

    GLACIER (Giant Liquid Argon Charge Imaging ExpeRiment) is a large underground observatory for proton decay search, neutrino astrophysics and CP-violation studies in the lepton sector. Possible underground sites are studied within the FP7 LAGUNA project (Europe) and along the JPARC neutrino beam in collaboration with KEK (Japan). The concept is scalable to very large masses.

  18. Contraction ionization waves in the argon contracted discharge

    International Nuclear Information System (INIS)

    An investigation of ionization waves in the argon contracted discharge and a definition of their arising propagation mechanism accounting for the specificity of elementary pocesses characteristic of argon are presented. (author)

  19. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  20. Antiapoptotic activity of argon and xenon.

    Science.gov (United States)

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-08-15

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115

  1. Near-infrared scintillation of liquid argon

    Science.gov (United States)

    Alexander, T.; Escobar, C. O.; Lippincott, W. H.; Rubinov, P.

    2016-03-01

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 μm motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  2. Silicon compounds of neon and argon

    Czech Academy of Sciences Publication Activity Database

    Roithová, J.; Schröder, Detlef

    -, č. 46 (2009), s. 8788-8790. ISSN 1433-7851 R&D Projects: GA ČR GA203/09/1223 Grant ostatní: ERC(XE) Adg HORIZOMS Institutional research plan: CEZ:AV0Z40550506 Keywords : argon * bond formation * dications * neon Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.829, year: 2009

  3. Subterranean production of neutrons, $^{39}$Ar and $^{21}$Ne: Rates and uncertainties

    OpenAIRE

    Šrámek, Ondřej; Stevens, Lauren; William F. McDonough; Mukhopadhyay, Sujoy; Peterson, R. J.

    2015-01-01

    Accurate understanding of the subsurface production of radionuclide $^{39}$Ar rate is necessary for argon dating techniques and noble gas geochemistry of the shallow and the deep Earth, and is also of interest to the WIMP dark matter experimental particle physics community. Our new calculations of subsurface production of neutrons, $^{21}$Ne, and $^{39}$Ar take advantage of the best available tools of nuclear physics to obtain reaction cross sections and spectra (TALYS) and to evaluate neutro...

  4. Argon Laser Treatment of Strawberry Hemangioma in Infancy

    OpenAIRE

    Achauer, Bruce M.; Vander Kam, Victoria M.

    1985-01-01

    Argon laser therapy is effective for removing port-wine stains and for reducing cutaneous vascular and pigmented lesions. Strawberry hemangiomas, being much thicker lesions than port-wine stains, were considered not appropriate for argon laser treatment. Using argon laser therapy in 13 cases of strawberry hemangioma, we achieved poor to dramatic results.

  5. Argon thermochronology of mineral deposits; a review of analytical methods, formulations, and selected applications

    Science.gov (United States)

    Snee, Lawrence W.

    2002-01-01

    40Ar/39Ar geochronology is an experimentally robust and versatile method for constraining time and temperature in geologic processes. The argon method is the most broadly applied in mineral-deposit studies. Standard analytical methods and formulations exist, making the fundamentals of the method well defined. A variety of graphical representations exist for evaluating argon data. A broad range of minerals found in mineral deposits, alteration zones, and host rocks commonly is analyzed to provide age, temporal duration, and thermal conditions for mineralization events and processes. All are discussed in this report. The usefulness of and evolution of the applicability of the method are demonstrated in studies of the Panasqueira, Portugal, tin-tungsten deposit; the Cornubian batholith and associated mineral deposits, southwest England; the Red Mountain intrusive system and associated Urad-Henderson molybdenum deposits; and the Eastern Goldfields Province, Western Australia.

  6. At Least 39 Weeks

    Medline Plus

    Full Text Available ... Collaboratives Launch Prematurity research centers What is team science? More than 75 years of solving problems March ... questions Ask our health experts Calculating your due date Ovulation calendar 39 weeks is best Order bereavement ...

  7. At Least 39 Weeks

    Medline Plus

    Full Text Available ... Your e-mail was sent. Save to my dashboard Sign in or Sign up to save this ... saved this page It's been added to your dashboard . At least 39 weeks 3:36 Stanford Prematurity ...

  8. At Least 39 Weeks

    Medline Plus

    Full Text Available ... 39 weeks Description | Related videos | Most played video E-mail to a friend Please fill in all fields. Please enter a valid e-mail address. Your information: Your recipient's information: Your ...

  9. At Least 39 Weeks

    Medline Plus

    Full Text Available ... 39 weeks is best Order bereavement materials News Moms Need Blog News & Media News Videos Mission stories ... Tools & Resources Frequently asked media questions Blog: News Moms Need Share Your Story community Join us on ...

  10. Thermal degradation of CR-39 polymer in an inert atmosphere

    International Nuclear Information System (INIS)

    The thermal degradation of CR-39 (allyl diglycol carbonate), a polymer widely used in nuclear science and technology, in an inert atmosphere has been studied using thermogravimetric analysis (TGA) and differential thermal analysis (DTA) techniques. The results are compared with the thermal degradation data of the polymer in an air atmosphere. The present studies showed that the thermal degradation of the polymer proceeds in two steps in an argon atmosphere as compared to three steps in air atmosphere. The mass losses in air are higher than that in argon due to the oxidative decomposition of the residue. The kinetics of the different stages of degradation were also evaluated from the TG curves. (author). 7 refs., 1 tab

  11. Hydrogenated amorphous silicon deposited by ion-beam sputtering

    Science.gov (United States)

    Lowe, V. E.; Henin, N.; Tu, C.-W.; Tavakolian, H.; Sites, J. R.

    1981-01-01

    Hydrogenated amorphous silicon films 1/2 to 1 micron thick were deposited on metal and glass substrates using ion-beam sputtering techniques. The 800 eV, 2 mA/sq cm beam was a mixture of argon and hydrogen ions. The argon sputtered silicon from a pure (7.6 cm) single crystal wafer, while the hydrogen combined with the sputtered material during the deposition. Hydrogen to argon pressure ratios and substrate temperatures were varied to minimize the defect state density in the amorphous silicon. Characterization was done by electrical resistivity, index of refraction and optical absorption of the films.

  12. Argon laser irradiation of the otolithic organ

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, T.; Nomura, Y.; Young, Y.H.; Hara, M. (Univ. of Tokyo (Japan))

    1990-12-01

    An argon laser was used to irradiate the otolithic organs of guinea pigs and cynomolgus monkeys. After stapedectomy, the argon laser (1.5 W x 0.5 sec/shot) irradiated the utricle or saccule without touching the sensory organs. The stapes was replaced over the oval window after irradiation. The animals used for acute observation were killed immediately for morphologic studies; those used for long-term observation were kept alive for 2, 4, or 10 weeks. Acute observation revealed that sensory and supporting cells were elevated from the basement membrane only in the irradiated area. No rupture of the membranous labyrinth was observed. Long-term observation revealed that the otolith of the macula utriculi had disappeared in 2-week specimens. The entire macula utricili had disappeared in 10-week specimens. No morphologic changes were observed in cochlea, semicircular canals, or membranous labyrinth. The saccule showed similar changes.

  13. Explanation of the memory effect in argon

    Directory of Open Access Journals (Sweden)

    Marković Vidosav

    2005-01-01

    Full Text Available Memory effect - the long time variation of the electrical breakdown time delay on the relaxation time td (τ was observed in argon 24 hours after relaxation times and explained by the long-lived metastable states remaining from the preceding glow. However, the quenching processes reducing the effective lifetime of metastable states several orders of magnitude below that relevant for the time scale of observation were neglected. By applying approximate gas phase models it was found that the early afterglow kinetics up to hundreds of milliseconds is dominated by the decay of molecular argon ions Ar2+ and the approximate value of their ambipolar diffusion coefficient is determined. After that, nitrogen atoms present as impurities and recombined on the cathode surface and/or field emission determine the breakdown time delay down to the cosmic rays and natural radioactivity level.

  14. Flow Parameters of Argon plasma Discharge

    International Nuclear Information System (INIS)

    Owing to the viscosity, the plasma will be adhering to the inner surface of the outer electrode and outer surface of the inner one. As result that the discharge will be eroding the walls of coaxial system. The thickness of the boundary layer near the walls has been estimated at different positions from the breech of coaxial plasma gun. It is found that the thickness of layer 0.008 cm at the end of inner electrode (17 cm). A coaxial plasma gun device is operated in argon gas at ambient pressure 0.6 Torr and discharge voltage about 10 KV. The electron temperature of argon discharge has been determined by using spectroscopic technique. It is found that kTe=3.4 eV. By knowing the thickness of the boundary layer, the density can be determined. The Reynolds number R=105 and Mach number M=5 i.e. the flow is compressible and hypersonic

  15. ATLAS liquid argon calorimeter back end electronics

    CERN Document Server

    Bán, J; Bellachia, F; Blondel, A; Böttcher, S; Clark, A; Colas, Jacques; Díaz-Gómez, M; Dinkespiler, B; Efthymiopoulos, I; Escalier, M; Fayard, Lo; Gara, A; He, Y; Henry-Coüannier, F; Hubaut, F; Ionescu, G; Karev, A; Kurchaninov, L; Lafaye, R; Laforge, B; La Marra, D; Laplace, S; Le Dortz, O; Léger, A; Liu, T; Martin, D; Matricon, P; Moneta, L; Monnier, E; Oberlack, H; Parsons, J A; Pernecker, S; Perrot, G; Poggioli, L; Prast, J; Przysiezniak, H; Repetti, B; Rosselet, L; Riu, I; Schwemling, P; Simion, S; Sippach, W; Strässner, A; Stroynowski, R; Tisserant, S; Unal, G; Wilkens, H; Wingerter-Seez, I; Xiang, A; Yang, J; Ye, J

    2007-01-01

    The Liquid Argon calorimeters play a central role in the ATLAS (A Toroidal LHC Apparatus) experiment. The environment at the Large Hadron Collider (LHC) imposes strong constraints on the detectors readout systems. In order to achieve very high precision measurements, the detector signals are processed at various stages before reaching the Data Acquisition system (DAQ). Signals from the calorimeter cells are received by on-detector Front End Boards (FEB), which sample the incoming pulse every 25ns and digitize it at a trigger rate of up to 75~kHz. Off-detector Read Out Driver (ROD) boards further process the data and send reconstructed quantities to the DAQ while also monitoring the data quality. In this paper, the ATLAS Liquid Argon electronics chain is described first, followed by a detailed description of the off-detector readout system. Finally, the tests performed on the system are summarized.

  16. Beam-Beam Effects

    OpenAIRE

    Herr, W; Pieloni, T.

    2016-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  17. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  18. Production of a 'natural' metastable nozzle beam: Van der Waals Zeeman atomic levels near a metal surface

    Science.gov (United States)

    Karam, J.-C.; Grucker, J.; Boustimi, M.; Bocvarski, V.; Vassilev, G.; Reinhardt, J.; Mainos, C.; Perales, F.; Baudon, J.; Robert, J.; Ducloy, Martial

    2005-01-01

    A method for obtaining a metastable atom beam with properties near to those of a ground state supersonic beam is demonstrated. Calculations on m sublevels of metastable argon near a metal surface are then presented.

  19. Current and future liquid argon neutrino experiments

    International Nuclear Information System (INIS)

    The liquid argon time projection chamber (LArTPC) detector technology provides an opportunity for precision neutrino oscillation measurements, neutrino cross section measurements, and searches for rare processes, such as SuperNova neutrino detection. These proceedings review current and future LArTPC neutrino experiments. Particular focus is paid to the ICARUS, MicroBooNE, LAr1, 2-LArTPC at CERN-SPS, LBNE, and 100 kton at Okinoshima experiments

  20. Liquid argon imaging a novel detection technology

    CERN Document Server

    Rubbia, Carlo

    2002-01-01

    Ionisation electrons may drift over large distances (meters) in a volume of highly purified liquid argon (O2 equivalent less than 0.1 ppb!) under the action of an electric field. With an appropriate readout system (i.e. a set of fine pitch wire grids) we have realised a massive, continuously sensitive 'bubble chamber' with multiple readouts of the same, small charge (a minimum ionising track segment, 2 mm long, yields • 10000 electrons). We have developed this technology since 1987, initially with small laboratory devices and later with progressively larger and more sophisticated detectors, the latest being the T600 module (740 ton of liquid Argon), which has been operated in Pavia, as a step toward the ICARUS programme in the Gran Sasso Laboratory (LNGS). With cloning of T600 we aim at a 3000 ton detector by 2005. Argon is a medium with density 1.4 g/cm3, similar in characteristics to the heavy freon used in the famous Gargamelle. With wire pitches of 2-3 mm, it provides an extremely high spatial re...

  1. Distribution and Abundance of Mars' Atmospheric Argon

    Science.gov (United States)

    Sprague, A. L.; Boynton, W. V.; Kerry, K. E.; Nelli, Steven; Murphy, Jim; Reedy, R. C.; Metzger, A. E.; Hunten, D. M.; Janes, K. D.; Crombie, M. K.

    2005-01-01

    One and one half Mars years (MY 26 and 27) of atmospheric Argon measurements are described and studied in the context of understanding how Argon, a minor constituent of Mars atmosphere that does not condense at Mars temperatures, can be used to study martian circulation and dynamics. Argon data are from the 2001 Mars Odyssey Gamma Subsystem (GS) of the suite of three instruments comprising the Gamma Ray Spectrometer (GRS). A comprehensive data analysis including gamma-ray production and attenuation by the atmosphere is included. Of particular interest is the enhanced abundance of Ar over the observed Ar abundance at lower latitudes at south (up to a factor of 10) and north (up to a factor of 4) polar regions during winter. Calibration of the measurements to actual Ar abundance is possible because GS measurements cover the same latitude and season as measurements made by the gas chromatograph mass spectrometer (GCMS) on Viking Landers 1 and 2 (VL1 and VL2). [2].

  2. Liquid Argon Time Projection Chamber research and development in the United States

    International Nuclear Information System (INIS)

    A workshop was held at Fermilab on March 20-21, 2013 to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in seven topical plenary sessions: i) Argon Purity, ii) Cryogenics, iii) TPC and High Voltage, iv) Electronics, Data Acquisition and Triggering, v) Scintillation Light Detection, vi) Calibration and Test Beams, and vii) Software. This document summarizes the current efforts in each of these areas. It also highlights areas in LArTPC research and development that are common between neutrino experiments and dark matter experiments

  3. Liquid Argon Time Projection Chamber research and development in the United States

    Science.gov (United States)

    Baller, B.; Bromberg, C.; Buchanan, N.; Cavanna, F.; Chen, H.; Church, E.; Gehman, V.; Greenlee, H.; Guardincerri, E.; Jones, B.; Junk, T.; Katori, T.; Kirby, M.; Lang, K.; Loer, B.; Marchionni, A.; Maruyama, T.; Mauger, C.; Menegolli, A.; Montanari, D.; Mufson, S.; Norris, B.; Pordes, S.; Raaf, J.; Rebel, B.; Sanders, R.; Soderberg, M.; St. John, J.; Strauss, T.; Szelc, A.; Tope, T.; Touramanis, C.; Thorn, C.; Urheim, J.; Van de Water, R.; Wang, H.; Yu, B.; Zuckerbrot, M.

    2014-05-01

    A workshop was held at Fermilab on March 20-21, 2013 to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in seven topical plenary sessions: i) Argon Purity, ii) Cryogenics, iii) TPC and High Voltage, iv) Electronics, Data Acquisition and Triggering, v) Scintillation Light Detection, vi) Calibration and Test Beams, and vii) Software. This document summarizes the current efforts in each of these areas. It also highlights areas in LArTPC research and development that are common between neutrino experiments and dark matter experiments.

  4. Liquid Argon Time Projection Chamber Research and Development in the United States

    CERN Document Server

    Bromberg, C; Junk, T; Katori, T; Lang, K; Marchionni, A; Mauger, C; Mufson, S; Pordes, S; Raaf, J; Rebel, B; Soderberg, M; Thorn, C; Urheim, J

    2013-01-01

    A workshop was held at Fermilab on March 20-21, 2013 to discuss the development of liquid argon time projection chambers (LArTPC) in the United States. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in plenary sessions organized into seven topical categories: $i)$ Argon Purity, $ii)$ Cryogenics, $iii)$ TPC and High Voltage, $iv)$ Electronics, Data Acquisition and Triggering, $v)$ Scintillation Light Detection, $vi)$ Calibration and Test Beams, and $vii)$ Software. This document summarizes the current efforts in each of these topical categories. It also highlights areas in LArTPC research and development that are common between neutrino experiments and dark matter experiments.

  5. Effects of argon ion irradiation on nucleation and growth of silver nanoparticles in a soda-glass matrix

    Directory of Open Access Journals (Sweden)

    P. Gangopadhyay

    2011-09-01

    Full Text Available The present article explores an experimental study for nucleation and non-equilibrium growth of silver nanoparticles in a soda-glass matrix. Ion-irradiation induced recoiling of silver atoms with argon ions (at energy 100 keV facilitates nucleation as well as growth of the silver nanoparticles in the soda-glass matrix. Small growth of the silver nanoparticles in the soda-glass matrix has been experimentally observed after the irradiation with higher fluences of the argon ions. Role of the argon ions for the evolution of the silver nanoparticles in the soda-glass matrix has been elucidated in the present report. With increase of the argon-ion fluences, while slight athermal growth of the silver nanoparticles has been estimated, drastic increase in the optical responses and Rutherford backscattering (RBS yields of the silver nanoparticles have been observed in the sample with the maximum fluences. Possible correlations of increase of argon-ion fluences and the observed experimental results (optical and RBS, in particular have been explained in this article. Although it has been demonstrated using the silver metal film on a soda-glass substrate as a model example, the non-equilibrium approach of nucleation and ion-beam controlled growth of metal nanoparticles in a matrix should be applicable to other immiscible systems as well.

  6. At Least 39 Weeks

    Medline Plus

    Full Text Available ... premature birth The newborn intensive care unit (NICU) Birth defects & other health conditions Loss & grief Tools & Resources Frequently asked health questions Ask our health experts Calculating your due date Ovulation calendar 39 weeks is best Order bereavement materials News Moms Need Blog News & Media ...

  7. Scintillation Light from Cosmic-Ray Muons in Liquid Argon

    CERN Document Server

    Whittington, Denver

    2014-01-01

    This paper reports the results of the first experiment to directly measure the properties of the scintillation light generated by minimum ionizing cosmic-ray muons in liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches, as well as for particle identification. The experiment was carried out at the TallBo facility at Fermilab using prototype light guides and electronics developed for the Long-Baseline Neutrino Experiment. Analysis of the time-resolved structure of the scintillation light from cosmic-ray muons gives $\\langle \\tau_{\\text{T}}\\rangle = 1.43 \\pm 0.04~\\text{(stat.)} \\pm 0.007~\\text{(sys.)}~\\mu$s for the triplet light decay time constant. The ratio of singlet to triplet light measured using surface-coated light guides is $R = 0.39 \\pm 0.01~\\text{(stat.)} \\pm 0.008~\\text{(sys.)}$. There is some evidence that this value is not consistent with $R$ for minimum ionizing electrons. However, the value for $...

  8. Development of a low-cost inductively coupled argon plasma

    International Nuclear Information System (INIS)

    The aim of this investigation is to drastically reduce running costs of an inductively coupled plasma. This is done by reducing the argon consumption from 20 l/min to about 1 l/min. First, a sample introduction system operating on 0.1 l/min of carrier argon is described. This system ensures a high ratio of plasma argon and carrier argon even at the low total argon consumptions intended. Next, the developed low consumption plasma is presented. In the proposed design, air is blown perpendicularly against the outside of the torch. A different coil has been developed to make air-cooling efficient. Preliminary data on coupling efficiency for the air-cooled plasma are presented. A similarly low argon consumption has been achieved with water as an external coolant medium. It is concluded that a cheaper alternative to the current ICP has become available. (Auth.)

  9. Effects of Nitrogen contamination in liquid Argon

    Science.gov (United States)

    Acciarri, R.; Antonello, M.; Baibussinov, B.; Baldo-Ceolin, M.; Benetti, P.; Calaprice, F.; Calligarich, E.; Cambiaghi, M.; Canci, N.; Carbonara, F.; Cavanna, F.; Centro, S.; Cocco, A. G.; Di Pompeo, F.; Fiorillo, G.; Galbiati, C.; Gallo, V.; Grandi, L.; Meng, G.; Modena, I.; Montanari, C.; Palamara, O.; Pandola, L.; Piano Mortari, G. B.; Pietropaolo, F.; Raselli, G. L.; Roncadelli, M.; Rossella, M.; Rubbia, C.; Segreto, E.; Szelc, A. M.; Ventura, S.; Vignoli, C.

    2010-06-01

    A dedicated test of the effects of Nitrogen contamination in liquid Argon has been performed at the INFN-Gran Sasso Laboratory (LNGS, Italy) within the WArP R&D program. A detector has been designed and assembled for this specific task and connected to a system for the injection of controlled amounts of gaseous Nitrogen into the liquid Argon. The purpose of the test is to detect the reduction of the Ar scintillation light emission as a function of the amount of the Nitrogen contaminant injected in the Argon volume. A wide concentration range, spanning from ~ 10-1 ppm up to ~ 103 ppm, has been explored. Measurements have been done with electrons in the energy range of minimum ionizing particles (γ-conversion from radioactive sources). Source spectra at different Nitrogen contaminations are analyzed, showing sensitive reduction of the scintillation yield at increasing concentrations. Direct PMT signal acquisition exploiting high time resolution by fast waveform recording allowed high precision extraction of the main characteristics of the scintillation light emission in contaminated LAr. In particular, the decreasing behavior in lifetime and relative amplitude of the slow component is found to be appreciable starting from Script O(1 ppm) of Nitrogen concentrations. The rate constant of the quenching process induced by Nitrogen in liquid Ar has been found to be kQ(N2) = 0.11 ± 0.01 μs-1ppm-1, consistent with a previous measurement of this quantity but with significant improvement in precision. On the other hand, no evidence for absorption by N2 impurities has been found up to the higher concentrations here explored.

  10. HARP: high pressure argon readout for calorimeters

    International Nuclear Information System (INIS)

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx.200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described

  11. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  12. Near-infrared scintillation of liquid argon

    CERN Document Server

    Alexander, T; Lippincott, W H; Rubinov, P

    2016-01-01

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  13. Attosecond Time-Resolved Autoionization of Argon

    International Nuclear Information System (INIS)

    Autoionization of argon atoms was studied experimentally by transient absorption spectroscopy with isolated attosecond pulses. The peak position, intensity, linewidth, and shape of the 3s3p6np 1P Fano resonance series (26.6-29.2 eV) were modified by intense few-cycle near infrared laser pulses, while the delay between the attosecond pulse and the laser pulse was changed by a few femtoseconds. Numerical simulations revealed that the experimentally observed splitting of the 3s3p64p 1P line is caused by the coupling between two short-lived highly excited states in the strong laser field.

  14. Argon Purification Studies and a Novel Liquid Argon Re-circulation System

    CERN Document Server

    Mavrokoridis, K; Coleman, J; Lightfoot, P K; McCauley, N; McCormick, K J; Touramanis, C

    2011-01-01

    Future giant liquid argon (LAr) time projection chambers (TPCs) require a purity of better than 0.1 parts per billion (ppb) to allow the ionised electrons to drift without significant capture by any electronegative impurities. We present a comprehensive study of the effects of electronegative impurity on gaseous and liquid argon scintillation light, an analysis of the efficacy of various purification chemicals, as well as the Liverpool LAr setup, which utilises a novel re-circulation purification system. Of the impurities tested - Air, O_2, H_2O, N_2 and CO_2 in the range of between 0.01 ppm to 1000 ppm - H_2O was found to have the most profound effect on gaseous argon scintillation light, and N_2 was found to have the least. Additionally, a correlation between the slow component decay time and the total energy deposited with 0.01 ppm - 100 ppm O_2 contamination levels in liquid argon has been established. The superiority of molecular sieves over anhydrous complexes at absorbing Ar gas, N_2 gas and H_2O vapou...

  15. ARGON RECOIL ION ELECTRON CAPTURE FROM NEUTRAL ARGON AND HELIUM STUDIED BY TIME RESOLVED V.U.V. SPECTROSCOPY

    OpenAIRE

    Lesteven-Vaisse, I.; Chantepie, M.; Folkmann, F.; Lecler, D.; Ben Sitel, A.

    1989-01-01

    Electron capture phenomena in recoil ion V.U.V. spectroscopy are tested through the evolution of the observed argon spectrum by introduction of helium in addition to argon in the collision chamber. Taking into account these mixed gas data by the time-differential method and using decay time analysis, an improved analysis of argon recoil ion V.U.V. radiation is presented.

  16. High Current Density Beamlets from an RF Argon Source for Heavy Ion Fusion Applications

    International Nuclear Information System (INIS)

    In a new approach to develop high current beams for heavy ion fusion, beam current at about 0.5 ampere per channel can be obtained by merging an array of high current density beamlets of 5 mA each. We have done computer simulations to study the transport of high current density beamlets and the emittance growth due to this merging process. In our RF multicusp source experiment, we have produced a cluster of 61 beamlets using minimum gas flow. The current density from a 0.25 cm diameter aperture reached 100 mA/cm2. The normalized emittance of 0.02 π-mm-mrad corresponds to an equivalent ion temperature of 2.4 eV. These results showed that the RF argon plasma source is suitable for producing high current density beamlets that can be merged to form a high current high brightness beam for HIF application

  17. Gas Gain Measurement Of GEM-Foil In Argon-Carbon Dioxide Mixture

    International Nuclear Information System (INIS)

    Nuclear reaction measurement with radioactive beam at low energy plays an important role in nuclear astrophysics and nuclear structure. The trajectory of particle beams can be obtained by using an active gas target, multiple-sampling and tracking proportional chamber (MSTPC), as a proportional counter. Because of intensity of low energy radioactive beam, in the stellar reaction such as (α, p), (p, α), it is necessary to increase the gain for the counter. In this case, a gas electrons multiplier (GEM) foil will be used, so the proportional counter is called GEM-MSTPC. The efficient gas gain of GEM foils which relates to foil thickness and operating pressure was investigated with two type of the foils, 400 μm and 200 μm, in Argon (70%) + Carbon dioxide (30%) mixture. (author)

  18. Argon laser-welded arteriovenous anastomoses.

    Science.gov (United States)

    White, R A; Kopchok, G; Donayre, C; White, G; Lyons, R; Fujitani, R; Klein, S R; Uitto, J

    1987-11-01

    This study compared the healing of laser-welded and sutured canine femoral arteriovenous anastomoses. Arteriovenous fistulas 2 cm in length were created bilaterally in the femoral vessels of 10 dogs and were studied at 1 (n = 2), 2 (n = 2), 4 (n = 3), and 8 (n = 3) weeks. In each animal, one anastomosis (control) was closed with running 6-0 polypropylene sutures, and the contralateral anastomosis (experimental) was sealed with an argon laser (0.5 watt, 4 minutes of exposure, 1830 J/cm2/1 cm length of anastomosis). At removal all experimental anastomoses were patent without hematomas, aneurysms, or luminal narrowing. Histologic examination at 4 weeks revealed that laser-welded anastomoses had less inflammatory response and almost normal collagen and elastin reorientation. At 8 weeks sutured anastomoses had significant intimal hyperplasia whereas laser repairs had normal luminal architecture. Tensile strength and collagen production, measured by the synthesis of hydroxyproline and the steady-state levels of type I and type III procollagen messenger ribonucleic acids, at the anastomoses and in adjacent vein and artery specimens were similar in sutured and laser-welded repairs at 2, 4, and 8 weeks. We conclude that argon laser welding of anastomoses is an acceptable alternative to suture techniques, with the advantage of improved healing without foreign body response and possible diminished intimal hyperplasia at the anastomotic line. PMID:3312648

  19. Electron scattering and transport in liquid argon

    International Nuclear Information System (INIS)

    The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann’s equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a non-local treatment of exchange, while the accuracy of the electron-argon potential is validated through comparison of the calculated gas phase cross-sections with experiment. The results presented highlight the inadequacy of local treatments of exchange that are commonly used in liquid and cluster phase cross-section calculations. The multi-term Boltzmann equation framework accounting for coherent scattering enables the inclusion of the full anisotropy in the differential cross-section arising from the interaction and the structure factor, without an a priori assumption of quasi-isotropy in the velocity distribution function. The model, which contains no free parameters and accounts for both coherent scattering and liquid phase screening effects, was found to reproduce well the experimental drift velocities and characteristic energies

  20. Pollution of liquid argon after neutron irradiation

    CERN Document Server

    Andrieux, M L; Collot, J; de Saintignon, P; Ferrari, A; Hostachy, J Y; Hoummada, A; Martin, P; Merkel, B; Puzo, P; Sauvage, D; Wielers, M

    2001-01-01

    The purpose of the neutron facility installed at SARA is to investigate the behavior of various materials to be used in the ATLAS liquid argon calorimeter, when submitted to fast neutron radiation. The samples are placed in a liquid argon cryostat a few cm away from the neutron source. Various pieces of the electromagnetic calorimeter have been tested in order to evaluate the rate of pollution of the liquid and consequently the possible signal loss in energy measurements. The average fluence was equivalent to the maximum expected in the calorimeter in about 10 years. The most striking feature of the results is that the pollution is not due to oxygen, at least for most of it. Using a particular value of the absorption length derived from these data, a simulation was carried out and the energy signal loss in the calorimeter could be predicted. Within the limits of our present knowledge, the conclusion is that damages due to this pollution will not be a problem. (17 refs).

  1. Pollution of liquid argon after neutron irradiation

    International Nuclear Information System (INIS)

    The purpose of the neutron facility installed at SARA is to investigate the behavior of various materials to be used in the ATLAS liquid argon calorimeter, when submitted to fast neutron radiation. The samples are placed in a liquid argon cryostat a few cm away from the neutron source. Various pieces of the electromagnetic calorimeter have been tested in order to evaluate the rate of pollution of the liquid and consequently the possible signal loss in energy measurements. The average fluence was equivalent to the maximum expected in the calorimeter in about 10 years. The most striking feature of the results is that the pollution is not due to oxygen, at least for most of it. Using a particular value of the absorption length derived from these data, a simulation was carried out and the energy signal loss in the calorimeter could be predicted. Within the limits of our present knowledge, the conclusion is that damages due to this pollution will not be a problem

  2. Nitrogen and argon radiopurity investigations for the Borexino and GERDA experiments

    International Nuclear Information System (INIS)

    Borexino will look for low energy solar neutrinos while GERDA is designed to search for neutrinoless double beta decay of 76Ge. Radioactive noble gases of atmospheric origin present as traces in nitrogen or argon can significantly contribute to the background in these experiments. The most important are 39Ar, 85Kr and 222Rn. Nitrogen is used in Borexino for scintillator purification and blanketing, LAr will serve in GERDA as a passive/active shield and as a cooling medium for the Ge crystals. Concentrations of 39Ar, 85Kr and 222Rn in nitrogen must be below 0.5, 0.2 and 7 μBq/m3 (STP), respectively. Rn concentration in the argon used in GERDA should be below 0.5 μBq/m3 (STP). We found such extremely pure nitrogen on the market and simulated experimentally the supply chain between a supplier and a customer in order to prove that it is possible to keep the purity under control. We discuss the obtained results and applied measurement techniques. Results of Ar purification tests from 222Rn, its oncentration measurements in a gas of different quality are also shown and compared with those obtained for nitrogen. Rn emanation from storage tanks is also discussed. (orig.)

  3. WA105: a large-scale demonstrator of the Liquid Argon double phase TPC

    Science.gov (United States)

    Tonazzo, A.; WA105 Collaboration

    2016-05-01

    The physics case for a large underground detector devoted to neutrino oscillation measurements, nucleon decay and astrophysics is compelling. A time projection chamber based on the dual-phase liquid Argon technique is an extremely attractive option, allowing for long drift distances, low energy threshold and high readout granularity. It has been extensively studied in the LAGUNA-LBNO Design Study and is one of the two designs foreseen for the modules of the DUNE detector in the US. The WA105 experiment envisages the construction of a large scale prototype at CERN, to validate technical solutions and perform physics studies with charged particle beams.

  4. First measurements of inclusive muon neutrino charged current differential cross sections on argon.

    Science.gov (United States)

    Anderson, C; Antonello, M; Baller, B; Bolton, T; Bromberg, C; Cavanna, F; Church, E; Edmunds, D; Ereditato, A; Farooq, S; Fleming, B; Greenlee, H; Guenette, R; Haug, S; Horton-Smith, G; James, C; Klein, E; Lang, K; Laurens, P; Linden, S; McKee, D; Mehdiyev, R; Page, B; Palamara, O; Partyka, K; Patch, A; Rameika, G; Rebel, B; Rossi, B; Soderberg, M; Spitz, J; Szelc, A M; Weber, M; Yang, T; Zeller, G

    2012-04-20

    The ArgoNeuT Collaboration presents the first measurements of inclusive muon neutrino charged current differential cross sections on argon. Obtained in the NuMI neutrino beam line at Fermilab, the flux-integrated results are reported in terms of outgoing muon angle and momentum. The data are consistent with the Monte Carlo expectation across the full range of kinematics sampled, 0°energy neutrino scattering models important for interpreting results from long baseline neutrino oscillation experiments designed to investigate CP violation and the orientation of the neutrino mass hierarchy. PMID:22680709

  5. R&D Argon Detector at Ash River (RADAR) - Letter of Intent

    CERN Document Server

    Adamson, P; Guzowski, P; Habig, A; Holin, A; Huang, J; Kordosky, M; Kreymer, A E; Lang, K; Marshak, M; Mehdiyev, R; Miller, W H; Naples, D; Nichol, R J; Patterson, R B; Sousa, A; Thomas, J; Whitehead, L H

    2013-01-01

    The RADAR project proposes to deploy a 6 kton liquid argon TPC at the NOvA Far Detector building in Ash River, Minnesota, and expose it to the NuMI beam during NOvA running. It will significantly add to the physics capabilities of the NOvA program while providing LBNE with an R&D program based on full-scale TPC module assemblies. RADAR offers an excellent opportunity to improve the full Homestake LBNE project in physics reach, timeline, costs, and fostering international partnership. The anticipated duration of the project's construction is 5 years, with running happening between 2018 and 2023.

  6. Two-photon excitation/ionization of the 1s-shell of the argon atom

    CERN Document Server

    Novikov, S A

    2002-01-01

    The absolute values and the shape of the two-photon excitation/ionization cross section of the 1s-shell of the argon atom are calculated with inclusion of the many-particle effects, i.e., the relaxation of the atomic residue in the field of the vacancies created, and the decay of the vacancies into the channels of Auger and (or) radiative types. The wavefunctions of the one-particle states are calculated in non-relativistic approximation. The calculations are performed for both linear and circular polarization of the laser beam.

  7. Two-photon excitation/ionization of the 1s-shell of the argon atom

    International Nuclear Information System (INIS)

    The absolute values and the shape of the two-photon excitation/ionization cross section of the 1s-shell of the argon atom are calculated with inclusion of the many-particle effects, i.e., the relaxation of the atomic residue in the field of the vacancies created, and the decay of the vacancies into the channels of Auger and (or) radiative types. The wavefunctions of the one-particle states are calculated in non-relativistic approximation. The calculations are performed for both linear and circular polarization of the laser beam.

  8. Effects of argon laser on atheromatous plaques. A preliminary study on post-mortem arterial specimens

    International Nuclear Information System (INIS)

    The effects of argon laser radiation of human atheroma were studied in vitro. Lesions produced were craters from total tissue volatilization surrounded by a thin zone of coagulation. The degree of tissue destruction was related to the energy used and the direction of the laser beam in relation to the atheromatous stenotic lesion. These findings confirm that it is possible to destroy the atheroma under controlled conditions, but a the non-negligeable risk of perforation. By allowing visual control, the angioscope should ensure increased safety in use and provide hope for future applications of this method by the percutaneous route in the treatment of established atheromatous disease

  9. Extreme ultraviolet spectroscopy of highly charged argon ions at the Berlin EBIT

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, C; Radtke, R; Fussmann, G; Allen, F I [Institut fuer Physik der Humboldt-Universitaet zu Berlin, Lehrstuhl Plasmaphysik, Newtonstrass 15, 12489 Berlin and Max-Planck-Institut fuer Plasmaphysik, EURATOM Association (Germany)

    2007-06-15

    Extreme ultraviolet radiation from highly charged argon was investigated at the Berlin Electron Beam Ion Trap with a 2 m grazing incidence spectrometer. Lines in the wavelength range 150 to 660 A originating from C-like Ar{sup 12+}to Li-like Ar{sup 15+}ions have been identified and are compared with database information from solar line lists and predictions. Line ratios for the observed resonance, intercombination and forbidden lines offer important diagnostic capabilities for low density, hot plasmas.

  10. Nitrogen Removal from Molten Steel under Argon DC Glow Plasma

    Institute of Scientific and Technical Information of China (English)

    SUN Ming-shan; DING Wei-zhong; LU Xiong-gang

    2005-01-01

    Under argon DC glow plasma, the nitrogen removal from molten steel was studied. The experimental result showed that nitrogen mass percent could be reduced to 0.000 8%. The change of polarity had no impact on nitrogen removal when the nitrogen mass percent was low. The mechanism of denitrogenation of molten steel under argon DC glow plasma was discussed.

  11. WARP: a double phase argon programme for dark matter detection

    International Nuclear Information System (INIS)

    WARP (Wimp ARgon Programme) is a double phase Argon detector for Dark Matter search under construction at Laboratori Nazionali del Gran Sasso. We present recent results obtained operating a prototype with a sensitive mass of 2.3 litres deep underground

  12. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.;

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...

  13. Commissioning of the ATLAS liquid argon calorimeters

    CERN Document Server

    Rezaie, Erfan

    ATLAS, a multi-purpose detector built at the LHC at CERN, requires an extensive commissioning campaign to be ready for proton-proton collisions. In this work, we focus on the commissioning of the liquid Argon (LAr) calorimeters, with emphasis on commissioning with cosmic rays. First we outline one phase of the commissioning work, which involves testing of the front-end electronics of the two endcap calorimeters. We then describe two cosmic ray generators as input to a Monte-Carlo simulation of cosmic rays in ATLAS, and compare their results. Finally, we explain a technique developed for this work which uses information from the Tile calorimeters to predict the timing of cosmic rays within the LAr calorimeters, because cosmic rays occur randomly in time whereas the electronics are clocked at [Special characters omitted.] . The results from this analysis tool are compared to default tools, using both simulated and real cosmic ray data in the calorimeters.

  14. Neutron Inelastic Scattering Study of Liquid Argon

    International Nuclear Information System (INIS)

    The inelastic scattering functions for liquid argon have been measured at 85.2 K. The coherent scattering function was obtained from a measurement on pure A-36 and the incoherent function was derived from the result obtained from the A-36 sample and the result obtained from a mixture of A-36 and A-40 for which the scattering is predominantly incoherent. The data, which are presented as smooth scattering functions at constant values of the wave vector transfer in the range 10 - 44/nm, are corrected for multiple scattering contributions and for resolution effects. Such corrections are shown to be essential in the derivation of reliable scattering functions from neutron scattering data. The incoherent data are compared to recent molecular dynamics results and the mean square displacement as a function of time is derived. The coherent data are compared to molecular dynamics results and also, briefly, to some recent theoretical models

  15. Large vessel sealing with the argon laser.

    Science.gov (United States)

    White, R A; Kopchok, G; Donayre, C; Lyons, R; White, G; Klein, S R; Pizzurro, D; Abergel, R P; Dwyer, R M; Uitto, J

    1987-01-01

    This study compared the histology, biochemistry, and tensile strength of laser-welded and sutured canine venotomies, arteriotomies, and arteriovenous fistulas. Twelve animals had bilateral femoral vessels studied, with one repair (control) closed with interrupted 6-0 polypropylene sutures, and the contralateral repair (experimental) welded with the argon laser. Specimens were examined at weekly intervals from 1 to 4 weeks (four animals for each type of repair), and were evaluated histologically by hematoxylin and eosin, elastin, and trichrome stains; biochemically by the formation of [3H]hydroxyproline as an index of collagen synthesis; and mechanically by tensile strength determinations. At removal, all experimental closures were patent without hematomas, aneurysms, or luminal dilatation. Histologic and biochemical examination and tensile strength determinations suggest that laser welding may be an alternative to sutures for repair of large-diameter venotomies, arteriotomies, and arteriovenous fistulas, as healing is comparable to that seen with suture repairs up to 4 weeks postoperatively. PMID:3306233

  16. Vascular Welding Using The Argon Laser

    Science.gov (United States)

    White, Rodney A.; Donayre, Carlos; Kopchok, George; White, Geoffrey; Abergel, R. Patrick; Lyons, Richard; Klein, Stanley; Dwyer, Richard; Uitto, Jouni

    1987-03-01

    This study compared the histology, biochemistry, and tensile strength of laser welded and sutured canine venotomies, arteriotomies and arteriovenous fistulas. Bilateral femoral, carotid or jugular vessels were studied with one repair (control) closed with interrupted 6-0 polypropylene sutures, and the contralatral repair (experimental) welded with the argon laser. Specimens were examined at weekly intervals from 1 to 4 weeks for each type of repair and evaluated histologically by hematoxylineosin, elastin and trichrome stains, biochemically by the formation of [3H] hyaroxyproline as an index of collagen synthesis, ana mechanically by tensile strength determinations. At removal, all experimental closures were patent without hematomas, aneurysms or luminal dilatation. Histologic and biochemical examination and tensile strength determinations suggest that laser welaing may be an alternative to sutures for repair of large diameter venotomies, arteriotomies and arteriovenous fistulas, as they heal comparable to suture repairs up to 4 weeks postoperatively.

  17. Ideas for future liquid Argon detectors

    International Nuclear Information System (INIS)

    We outline a strategy for future experiments on neutrino and astroparticle physics based on the use, at different detector mass scales (100 ton and 100 kton), of the liquid Argon Time Projection Chamber (LAr TPC) technique. The LAr TPC technology has great potentials for both cases with large degree of interplay between the two applications and a strong synergy. The ICARUS R and D programme has demonstrated that the technology is mature and that one can built a large (∼ 1 kton) LAr TPC. We believe that one can conceive and design a very large mass LAr TPC with a mass of 100 kton by employing a monolithic technology based on the use of industrial, large volume cryogenic tankers developed by the petro-chemical industry. We show a potential implementation of a large LAr TPC detector. Such a detector would be an ideal match for a Superbeam[New J. Phys. 4 (2002) 88 [arXiv:hep-ph/0208047

  18. Liquid-argon cylindrical pulsed ionization chamber

    International Nuclear Information System (INIS)

    A liquid-argon cylindrical ionization chamber with a working volume of 200 cm2 is described. The chamber anode is made of stainless steel in the form of a hollow cylinder 30 mm in diameter and 140 mm in length. A beryllium bronze wire in diameter of 0.1 mm and at a spacing of 1 mm is used for winding the chamber screen grid. The chamber cathode is a brass thin-walled cylinder having an internal diameter of 56 mm and a height of 156 mm. The cathode-grid gap is 10 mm, the cathode-case gap is 2 mm. A 0.5 l cooling bath filled with liquid nitrogen is used to refrigirate the chamber. The chamber is evacuated to about 10-5 mm Hg. The total concentration of electronegative impurities in argon does not exceed 6x10-9. Dependences of the chamber counting and amplitude responses, on the cathode voltage under irradiation with γ-quanta at energies of 0.898 MeV and 1.836 MeV are given. The value of the energy resolution was evaluated by differentiating the high-energy edge of the Compton spectrum. The total width at a peak half-height constitutes 5% for an electron energy of 1.612 MeV. To achieve better resolution of the chamber it is necessary to reduce preamplifier noises by three times, to increase the working gap of the chamber and decrease the grid-anode gap

  19. Formation of argon-boron bonds in the reactions of BFn+/2+ cations with neutral argon

    Czech Academy of Sciences Publication Activity Database

    Levee, L.; Calogero, C.; Barbieri, E.; Byrne, S.; Donahue, C.; Eisenberg, M.; Hattenbach, S.; Le, J.; Capitani, J. F.; Roithová, J.; Schröder, Detlef

    2012-01-01

    Roč. 323, 1 Jun (2012), s. 2-7. ISSN 1387-3806 R&D Projects: GA ČR GA203/09/1223 Grant ostatní: European Research Council(XE) AdG HORIZOMS Institutional support: RVO:61388963 Keywords : argon compound * boron fluoride * dication * gas phase reactivity * mass spectrometry * neon compound Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.142, year: 2012

  20. Ion beam deposition of calcium hydroxyapatite

    International Nuclear Information System (INIS)

    Calcium hydroxyapatite has been sputtered on glass and Ti-6Al-4V substrates using a 1.5 kV argon ion beam. The films have been examined by X- ray diffraction analysis, energy dispersive spectroscopy, scanning electron microscopy, and adhesion testing. Results of this experimentation are presented

  1. Health screening - men - ages 18 to 39

    Science.gov (United States)

    Health maintenance visit - men - ages 18 to 39; Physical exam - men - ages 18 to 39; Yearly exam - ... 39; Checkup - men - ages 18 to 39; Men's health - ages 18 to 39; Preventive care exam - men - ...

  2. Health screening - women - ages 18 to 39

    Science.gov (United States)

    Health maintenance visit - women - ages 18 to 39; Physical exam - women - ages 18 to 39; Yearly exam - ... 39; Checkup - women - ages 18 to 39; Women's health - ages 18 to 39; Preventive care - women - ages ...

  3. Argon laser induced changes to the carbonate content of enamel

    Energy Technology Data Exchange (ETDEWEB)

    Ziglo, M.J. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta, Private Practice, Regina, Saskatchewan (Canada); Nelson, A.E., E-mail: aenelson@dow.com [Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta (Canada); Heo, G.; Major, P.W. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada)

    2009-05-15

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm{sup -2}) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  4. Argon laser induced changes to the carbonate content of enamel

    International Nuclear Information System (INIS)

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm-2) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  5. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  6. Alternating-gradient focusing of the benzonitrile-argon van der Waals complex.

    Science.gov (United States)

    Putzke, Stephan; Filsinger, Frank; Küpper, Jochen; Meijer, Gerard

    2012-09-14

    We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C(6)H(5)CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided beam is non-thermal, because the transmission efficiency depends on the state-dependent effective dipole moment in the applied electric fields. At a specific ac frequency, however, the excitation spectrum can be described by a thermal distribution at a rotational temperature of 0.8 K. From the observed transmission characteristics and a combination of trajectory and Stark-energy calculations we conclude that the permanent electric dipole moment of benzonitrile remains unchanged upon the attachment of the argon atom to within ±5%. By exploiting the different dipole-moment-to-mass ([micro sign]/m) ratios of the complex and the benzonitrile monomer, transmission can be selectively suppressed for or, in the limit of 0 K rotational temperature, restricted to the complex. PMID:22979862

  7. Alternating-Gradient Focusing of the Benzonitrile-Argon Van der Waals Complex

    CERN Document Server

    Putzke, Stephan; Küpper, Jochen; Meijer, Gerard

    2012-01-01

    We report on the focusing and guiding of the van der Waals complex formed between benzonitrile molecules (C$_6$H$_5$CN) and argon atoms in a cold molecular beam using an ac electric quadrupole guide. The distribution of quantum states in the guided beam is non-thermal, because the transmission efficiency depends on the state-dependent effective dipole moment in the applied electric fields. At a specific ac frequency, however, the excitation spectrum can be described by a thermal distribution at a rotational temperature of 0.8 K. From the observed transmission characteristics and a combination of trajectory and Stark-energy calculations we conclude that the permanent electric dipole moment of benzonitrile remains unchanged upon the attachment of the argon atom to within \\pm5%. By exploiting the different dipole-moment-to-mass (\\mu/m) ratios of the complex and the benzonitrile monomer, transmission can be selectively suppressed for or, in the limit of 0 K rotational temperature, restricted to the complex.

  8. Cryosorption of helium on argon frost TFTR [Tokamak Fusion Test Reactor] neutral beamlines

    International Nuclear Information System (INIS)

    Helium pumping on argon frost has been investigated on TFTR neutral beam injectors and shown to be viable for limited helium beam operation. Maximum pumping speeds are ∼ 25% less than those measured for pumping of deuterium. Helium pumping efficiency is low, > 20 argon atoms are required to pump each helium atom. Adsorption isotherms are exponential and exhibit a two-fold increase in adsorption capacity as the cryopanel temperature is reduced from 4.3 K to 3.7 K. Pumping speed was found to be independent of cryopanel temperature over the temperature range studied. After pumping a total of 2000 torr-l of helium, the beamline base pressure rose to 2x10-5 torr from an initial value of 10-8 torr. Accompanying this three order of magnitude increase in pressure was a modest 40% decrease in pumping speed. The introduction of 168 torr-l of deuterium prior to helium injection reduced the pumping speed by a factor of two with no decrease in adsorption capacity. 29 refs., 7 figs

  9. An investigation of a possible molecular effect in ion atom collision using a gaseous argon target

    International Nuclear Information System (INIS)

    The present work deals with an investigation of the molecular effect, which is defined as the difference in experimental results using isotachic atomic ion and molecular ion beams in ion atom collisions. Previous studies have dealt almost exclusively with total cross section measurements. This thesis explores the idea that the molecular effect may be more pronounced in the differential ionization probability of the target atoms. Also, a gaseous argon target of sufficiently low density was used in order to ensure that the two correlated protons in the H+2 beam did not interact with two adjacent target atoms simultaneously. The author reports that, contrary to the expectations noted above, the molecular effect in the K shell differential ionization probability of argon for scattering angles up to 90 degrees appears to be no more than the molecular effect in the total ionization probability. The uncertainty in the results is statistical in nature and can be improved upon by running the experiment for a longer duration of time

  10. LArGe - A liquid argon scintillation veto for GERDA

    OpenAIRE

    Heisel, M.(Max-Planck-Institut für Kernphysik, Heidelberg, Germany)

    2011-01-01

    LArGe is a Gerda low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the Gerda experiment. Gerda searches for the neutrinoless double-beta decay in 76Ge, by operating naked germanium detectors submersed into 65 m3 of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m3 (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used...

  11. Practical reactor production of {sup 41}Ar from argon clathrate

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.R. E-mail: jmercer@pharmacy.ualberta.ca; Duke, M.J.M.; McQuarrie, S.A

    2000-06-01

    The radionuclide {sup 41}Ar has many ideal properties as a gas flow tracer. However, the modest cross-section of {sup 40}Ar for thermal neutron activation makes preparation of suitable activities of {sup 41}Ar technically difficult particularly for low flux reactors. Argon can however be trapped in a molecular complex called a clathrate that can then be irradiated. We prepared argon clathrate and explored its irradiation and stability characteristics. Argon clathrate can be used to provide gigabecquerel quantities of {sup 41}Ar even with low power reactors.

  12. Membrane separation processes for argon plasma gas recovery

    OpenAIRE

    Harlacher, Thomas

    2014-01-01

    A mixture of argon and hydrogen is used as plasma gas in a thermal plasma synthesis for the production of silicon carbide. Next to argon and hydrogen, the exhaust gas of the ceramic synthesis contains carbon monoxide. Since argon is an expensive gas, the plasma gas needs to be recycled. For this purpose, the carbon monoxide has to be removed from the exhaust gas. The applicability of a membrane based gas separation process for this separation task was investigated in this study. A process rou...

  13. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.; Hansen, Jens Leonhart; Sørensen, H.

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...... studied. This proves that the gas/solid difference for argon predicted in recent stopping-power tabulations is significantly overestimated. With high-order Z1 correction terms included in the theoretical description, calculated shell corrections based on the Lindhard-Scharff model are in good agreement...

  14. Two-dimensional ion velocity distribution functions in inductively coupled argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, David C [Optical Sciences Company, Anaheim, CA 92806 (United States); McWilliams, Roger [Department of Physics and Astronomy, University of California at Irvine, Irvine, CA 92697 (United States); Edrich, David A [Scientific Applications and Research Associates Inc., Cypress, CA 90630 (United States)

    2005-08-01

    Two-dimensional ion velocity distribution functions (IVDFs) of argon plasmas have been measured with optical tomography via laser-induced fluorescence (LIF). An inductive radio-frequency (RF) coil created the plasmas, and IVDFs were measured versus RF frequency, gas pressure and location (bulk plasma or presheath of a plate). Typical gas pressure was 0.3-0.4 mTorr, RF power 25 W and magnetic field 130 G. Effective perpendicular ion temperature decreased with increasing RF frequency, and changed little with pressure. Optical tomography reveals features of the presheath IVDF that cannot be deduced from LIF scans parallel and perpendicular to the plate alone. Progress also has been made toward performing optical tomography on a commercial ion beam source (Veeco/Ion Tech 3 cm RF Ion Source, Model no. 201). In particular, it has been discovered that the beam energy fluctuates in a range of about 20 eV over the timescale of a few minutes.

  15. GLADE Global Liquid Argon Detector Experiment: a letter of intent to FNAL

    International Nuclear Information System (INIS)

    The recent measurements of the θ13 mixing angle, which controls the observable size of any CP violation effects, open a window of opportunity to take advantage of the world's most powerful existing neutrino beam together with recent successes in development of the ultimate detector technology for the detection of electron neutrinos : a liquid argon (LAr) time projection chamber. During this proposed project a 5kt LAr detector (GLADE) will be developed by European groups to be put in a cryostat in the NuMI neutrino beam at Fermi National Accelerator Laboratory in the US and will start taking data in 3-5 years time to address the neutrino mass ordering. The successful fruition of this project, along with nominal exposure at NOνA and T2K, together with information from double beta decay experiments could ascertain that neutrinos are Dirac particles in the next decade.

  16. Dating blueschist metamorphism: a combined 40Ar/39Ar and electron microprobe approach

    International Nuclear Information System (INIS)

    40Ar/39Ar and electron microprobe examination of blueschist samples from the Iceberg Lake schist, southern Alaska suggest that phengite inclusions are the source of 40Ar in crossite. Because such fine-grained inclusions may be susceptible to argon loss, caution should be exercised in interpreting K-Ar ages from this phase, and possibly other low-K amphiboles from blueschist suites. The estimated blocking temperature for phengite in the matrix (3140 to 4500C), however, is close to the estimated peak metamorphic temperatures (3250 +- 500C), suggesting that phengite 40Ar/39Ar plateau dates may coincide closely with the time of blueschist metamorphism. (author)

  17. Beam tests with microstrip gas counters

    International Nuclear Information System (INIS)

    We have measured the efficiency, timing and pulse heights in several types of microstrip Gas Chambers with plastic substrates passivated with a thin Nickel layer. We used as active gas mixtures Argon/Isobutane and CF4/Isobutane. We placed the detectors in a secondary beam at TRIUMF tuned to a momentum of 100 MeV/c of pions, muons and electrons. Preliminary results indicate good efficiency for minimum ionizing particles in Argon/Isobutane mixtures but lesser efficiency in CF4 based gases indicating the importance of high quality preamplifiers to increase the signal to noise ratio. (author). 20 refs., 6 figs

  18. Argon laser treatment of urethral stricture and vesical neck contracture.

    Science.gov (United States)

    Adkins, W C

    1988-01-01

    The physical characteristics of the argon laser wavelength allow a precise incision with excellent hemostasis and negligible heating of adjacent tissues resulting in less scarring. These qualities are used to advantage in the treatment of strictures. The argon laser was used to perform 13 internal urethrotomies and ten vesical neck incisions. The operative method used is similar to optical internal urethrotomy. The argon probe incises hemostatically, reducing the need for extensive fulguration of tissues at the operative site and thereby reducing the tendency for more scar tissue to form and compromise the operation. The same hemostasis reduces the need for postoperative indwelling urethral catheterization. Utility of the argon device in most instances allows treatment to be conducted on an outpatient basis without general anesthesia and without use of postoperative urethral catheters, yielding an effective, cost-saving therapy. PMID:3210887

  19. Evidence of electric breakdown induced by bubbles in liquid argon

    CERN Document Server

    Bay, F; Murphy, S; Resnati, F; Rubbia, A; Sergiampietri, F; Wu, S

    2014-01-01

    We report on the results of a high voltage test in liquid argon in order to measure its dielectric rigidity. Under stable conditions and below the boiling point, liquid argon was found to sustain a uniform electric field of 100 kV/cm, applied in a region of 20 cm$^2$ area across 1 cm thick gap. When the liquid is boiling, breakdowns may occur at electric fields as low as 40 kV/cm. This test is one of the R&D efforts towards the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER) as proposed Liquid Argon Time Projection Chamber (LAr TPC) for the LBNO observatory for neutrino physics, astrophysics and nucleon decay searches.

  20. Excitation temperatures of atmospheric argon in dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu; Wen Xiaohui; Yang Weihong [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2007-08-15

    A method for the determination of excitation temperatures based on optical emission spectroscopy and Fermi-Dirac distribution was set up and experiments were performed on atmospheric argon dielectric barrier discharges. Local thermodynamic equilibrium was proved to exist in the discharge and the validity of Boltzmann distribution is discussed. The main aim of this paper is to obtain the temperatures of atmospheric Ar II as a function of the discharge voltage, discharge frequency, argon flow rate and the argon fraction. It was found that the excitation temperatures are in the range 3800-4950 K. Besides, an increase in the argon flow rate resulting in a slight growth of the temperature and the add-in of air leading to the decrease in temperature was observed.

  1. The Effects of Dissolved Methane upon Liquid Argon Scintillation Light

    CERN Document Server

    Jones, B J P; Back, H O; Collin, G; Conrad, J M; Greene, A; Katori, T; Pordes, S; Toups, M

    2013-01-01

    In this paper we report on measurements of the effects of dissolved methane upon argon scintillation light. We monitor the light yield from an alpha source held 20 cm from a cryogenic photomultiplier tube (PMT) assembly as methane is injected into a high-purity liquid argon volume. We observe significant suppression of the scintillation light yield by dissolved methane at the 10 part per billion (ppb) level. By examining the late scintillation light time constant, we determine that this loss is caused by an absorption process and also see some evidence of methane-induced scintillation quenching at higher concentrations (50-100 ppb). Using a second PMT assembly we look for visible re-emission features from the dissolved methane which have been reported in gas-phase argon methane mixtures, and we find no evidence of visible re-emission from liquid-phase argon methane mixtures at concentrations between 10 ppb and 0.1%.

  2. The ATLAS Liquid Argon Calorimeter Construction, Integration, Commissioning

    CERN Document Server

    Aleksa, Martin

    2006-01-01

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps. The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read...

  3. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    International Nuclear Information System (INIS)

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup

  4. SU-E-J-39: Comparison of PTV Margins Determined by In-Room Stereoscopic Image Guidance and by On-Board Cone Beam Computed Tomography Technique for Brain Radiotherapy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, T; Paul, S; Munshi, A; Sarkar, B; Krishnankutty, S; Sathya, J; George, S; Jassal, K; Roy, S; Mohanti, B [Fortis Memorial Research Institute, Gurgaon (India)

    2014-06-01

    Purpose: Stereoscopic in room kV image guidance is a faster tool in daily monitoring of patient positioning. Our centre, for the first time in the world, has integrated such a solution from BrainLAB (ExacTrac) with Elekta's volumetric cone beam computed tomography (XVI). Using van Herk's formula, we compared the planning target volume (PTV) margins calculated by both these systems for patients treated with brain radiotherapy. Methods: For a total of 24 patients who received partial or whole brain radiotherapy, verification images were acquired for 524 treatment sessions by XVI and for 334 sessions by ExacTrac out of the total 547 sessions. Systematic and random errors were calculated in cranio-caudal, lateral and antero-posterior directions for both techniques. PTV margins were then determined using van Herk formula. Results: In the cranio-caudal direction, systematic error, random error and the calculated PTV margin were found to be 0.13 cm, 0.12 cm and 0.41 cm with XVI and 0.14 cm, 0.13 cm and 0.44 cm with ExacTrac. The corresponding values in lateral direction were 0.13 cm 0.1 cm and 0.4 cm with XVI and 0.13 cm, 0.12 cm and 0.42 cm with ExacTrac imaging. The same parameters for antero-posterior were for 0.1 cm, 0.11 cm and 0.34 cm with XVI and 0.13 cm, 0.16 cm and 0.43 cm with ExacTrac imaging. The margins estimated with the two imaging modalities were comparable within ± 1 mm limit. Conclusion: Verification of setup errors in the major axes by two independent imaging systems showed the results are comparable and within ± 1 mm. This implies that planar imaging based ExacTrac can yield equal accuracy in setup error determination as the time consuming volumetric imaging which is considered as the gold standard. Accordingly PTV margins estimated by this faster imaging technique can be confidently used in clinical setup.

  5. Size Determination of Argon Clusters from a Rayleigh Scattering Experiment

    Institute of Scientific and Technical Information of China (English)

    LEI An-Le; ZHAI Hua-Jin; LIU Bing-Chen; LI Zhong; NI Guo-Yuan; XU Zhi-Zhan

    2000-01-01

    Argon clusters are produced in the process of adiabatic expansion of a high backing pressure gas into vacuum through a nozzle. The cluster size is determined by a Rayleigh scattering measurement. The scattered signal measured is proportional to the 2.78th power of gas stagnation pressure. The average cluster sizes vary from 100 to more than 12000 atoms/cluster with the argon gas backing pressures ranging between 3 to 45 atm.

  6. A purity monitoring system for liquid argon calorimeters

    International Nuclear Information System (INIS)

    For liquid argon calorimeters electronegative impurities dissolved in the medium degrade the detector response and deteriorate the energy resolution, especially at high energies. A concept for a purity monitoring system for liquid argon calorimeters has been developed and is presented here. Special combined monitors of 241Am- and 207Bi-cells are used to monitor the concentration of impurities. The working principle as well as results from test measurements are discussed

  7. Studies of Electron Avalanche Behavior in Liquid Argon

    OpenAIRE

    Kim, J.G.; Dardin, S. M.; Jackson, K.H.; Kadel, R. W.(Lawrence Berkeley National Laboratory and University of California, 94720, Berkeley, California, USA); Kadyk, J. A.; Peskov, V.; Wenzel, W. A.

    2002-01-01

    Electron avalanching in liquid argon is being studied as a function of voltage, pressure, radiation intensity, and the concentrations of certain additives, especially xenon. The avalanches produced in an intense electric field at the tip of a tungsten needle are initiated by ionization from a moveable americium (241Am) gamma ray source. Photons from xenon excimers are detected as photomultiplier signals in coincidence with the current pulse from the needle. In pure liquid argon the avalanche ...

  8. Pulse shape discrimination studies in a liquid Argon scintillation detector

    OpenAIRE

    Pollmann, T.

    2007-01-01

    Liquid rare gases have been gaining popularity as detector media in rare event searches, especially dark matter experiments, and one factor driving their adoption is the possibility to recognise different types of ionizing radiation by the pulse shapes they evoke. This work on pulse shape discrimination in a liquid argon scintillation detector was done in the framework of the GERDA experiment, where liquid argon scintillation signals may be used for background suppression purposes. Liquid arg...

  9. RF-ARGON PLASMA INDUCED SURFACE MODIFICATION OF PAPER

    OpenAIRE

    HALIL TURGUT SAHIN

    2008-01-01

    The radio frequency (RF) argon plasma induced surface modification of paper revealed novel surface characteristics and substantially changed surface topography. It was found that RF-argon glow discharge affects surface properties resulting in photo-degradation and chain-scission mechanism on paper network structure. High-power and extended treatment time caused increasing elemental carbon, while decreasing the oxygen concentration on paper surface. However, increased hydroxyls and the creatio...

  10. SSDL Newsletter. No. 39

    International Nuclear Information System (INIS)

    This issue of the Newsletter opens with the note on ''x-ray calibration qualities''. The IAEA Technical Report Series No.374 ''Calibration of Dosimeters Used in Radiotherapy'' (IAEA, Vienna, 1994) is intended for hospitals and SSDLs that carry out calibration of therapy level dosimeters. The second article is a report from the First Research Co-ordination Meeting (RCM) for the Coordinated Research Projects on ''the Development of a Quality Assurance Programme for Radiation Therapy Dosimetry in Developing Countries'', held at the IAEA Headquarters from 6 to 10 October 1997. The third article is also a report from the Second Research Co-ordination Meeting (RCM) for the Co-ordinated Research Projects (CRP E2 40 06) on ''Characterization and Evaluation of High-Dose Dosimetry Techniques for Quality Assurance in Radiation Processing'' which was held at the IAEA Headquarters in Vienna, from 6 through 10 October 1997. This CRP investigates the influence of various external parameters on the performance of several routine dosimeters presently in use, and a possible transfer dosimetry system for electron beams of energy less than 4 MeV

  11. Energy resolution for α-particles in doped liquid argon

    International Nuclear Information System (INIS)

    The report describes experiments on the effect of allene doped in liquid argon. In the case of doped argon, a large amount of charge is obtained even at low electric fields and the measured charge increases with the field gradually. This can be explained as follows; part of deposited energy which does not form charge in pure argon contributes to charge signal in doped argon through scintillation photons which ionize allene molecules. The main factors determining the energy resolution for α-particles are considered to be (1) fluctuation in the number of produced ion-electron pairs as expressed by the Fano factor, (2) fluctuation in recombination process, (3) fluctuation in photoionization, (4) fluctuation due to the condition of radioactive source and surface of electrodes, (5) fluctuation in geometrical efficiency due to the range and emission angle of α-particles in liquid argon, and (6) electronic noise of amplifier. The factors (1) and (3) can be neglected because of a large number of associated electrons or photons. In pure liquid argon, the factor (2) may be a cause of bad resolution since the fraction of the produced ion-electron paris which do not recombine is small and the photoionization process never occurs for photons emitted through recombination. (N.K.)

  12. Power Consideration for Pulsed Discharges in Potassium Seeded Argon

    Institute of Scientific and Technical Information of China (English)

    XIA Sheng-Guo; HE Jun-Jia; LIU Ke-Fu

    2007-01-01

    Minimization of energy consumed in plasma generation is critical for applications, in which a large volume of plasmas is needed. We suggest that a high electron density atmospheric pressure plasmas can be generated by pulsed discharges in potassium seeded argon at an elevated temperature with a very small power input. The ionization efficiency and power budget of pulsed discharges in such plasmas are analytically studied. The results show that ionization efficiency of argon, especially at small reduced electric field E/N (the ratio of the electric field to the gas number density), is improved effectively in the presence of small amount of potassium additives. Power input of pulsed discharge to sustain a prescribed average level of ionization in potassium seeded argon is three orders of magnitude lower than that in pure argon. Further, unlike in pure argon, it is found that very short high-voltage pulses with very high repetition rates are unnecessary in potassium seeded argon. A pulse with 100ns of pulse duration, 5kHz of repetition rate, and 2Td (1 Td = 1 ×10-21 Vm2) of E/N is enough to sustain an electron density of 10l9m-3 in 1 atm 1500 K Ar+0.1% K mixture, with a very small power input of about 0.08 × 104 W/m3.

  13. ATLAS Liquid Argon Calorimeter Performance in Run 1 and Run 2

    CERN Document Server

    Kuwertz, Emma Sian; The ATLAS collaboration

    2016-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34}$ cm$^{−2}$ s$^{−1}$ . Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudo-rapidity region $\\eta < 3.2$, and for hadronic calorimetry in the region from $\\eta = 1.5$ to $\\eta = 4.9$. In the first LHC run a total luminosity of $27$ fb$^{−1}$ has been collected at center-of-mass energies of 7-8 TeV. Following a period of detector consolidation during a long shutdown, Run-2 started in 2015 with approximately $3.9$ fb$^{-1}$ of data at a center-of-mass energy of 13 TeV recorded in this year. The well calibrated and highly granular Liquid Argon Calorimeter achieved its design values both in energy measurement as well as in direction resolution, which was a main ingredient for the successful discovery of a Higgs boson in the di-photon decay channel. This contribution will give ...

  14. Electron densities and energies of a guided argon streamer in argon and air environments

    International Nuclear Information System (INIS)

    In this study we report the temporally and spatially resolved electron densities and mean energies of a guided argon streamer in ambient argon and air obtained by Thomson laser scattering. The plasma is driven by a positive monopolar 3.5 kV pulse, with a pulse width of 500 ns and a frequency of 5 kHz which is synchronized with the high repetition rate laser system. This configuration enables us to use the spatial and temporal stability of the guided streamer to accumulate a multitude of laser/plasma shots by a triple grating spectrometer equipped with an ICCD camera and to determine the electron parameters. We found a strong initial ne-overshoot with a maximum of 7 × 1019 m−3 and a mean electron energy of 4.5 eV. This maximum is followed by a fast decay toward the streamer channel. Moreover, a 2D distribution of the electron density is obtained which exhibits a peculiar mushroom-like shape of the streamer head with a diameter significantly larger than that of the emission profile. A correlation of the width of the streamer head with the expected pre-ionization channel is found. (paper)

  15. Summary of the second workshop on liquid argon time projection chamber research and development in the United States

    Science.gov (United States)

    Acciarri, R.; Adamowski, M.; Artrip, D.; Baller, B.; Bromberg, C.; Cavanna, F.; Carls, B.; Chen, H.; Deptuch, G.; Epprecht, L.; Dharmapalan, R.; Foreman, W.; Hahn, A.; Johnson, M.; Jones, B. J. P.; Junk, T.; Lang, K.; Lockwitz, S.; Marchionni, A.; Mauger, C.; Montanari, C.; Mufson, S.; Nessi, M.; Olling Back, H.; Petrillo, G.; Pordes, S.; Raaf, J.; Rebel, B.; Sinins, G.; Soderberg, M.; Spooner, N. J. C.; Stancari, M.; Strauss, T.; Terao, K.; Thorn, C.; Tope, T.; Toups, M.; Urheim, J.; Van de Water, R.; Wang, H.; Wasserman, R.; Weber, M.; Whittington, D.; Yang, T.

    2015-07-01

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.

  16. Summary of the second workshop on liquid argon time projection chamber research and development in the United States

    International Nuclear Information System (INIS)

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world

  17. Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States

    CERN Document Server

    Acciarri, R; Artrip, D; Baller, B; Bromberg, C; Cavanna, F; Carls, B; Chen, H; Deptuch, G; Epprecht, L; Dharmapalan, R; Foreman, W; Hahn, A; Johnson, M; Jones, B J P; Junk, T; Lang, K; Lockwitz, S; Marchionni, A; Mauger, C; Montanari, C; Mufson, S; Nessi, M; Back, H Olling; Petrillo, G; Pordes, S; Raaf, J; Rebel, B; Sinins, G; Soderberg, M; Spooner, N J C; Stancari, M; Strauss, T; Terao, K; Thorn, C; Tope, T; Toups, M; Urheim, J; Van de Water, R; Wang, H; Wasserman, R; Weber, M; Whittington, D; Yang, T

    2015-01-01

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: $i)$ Argon Purity and Cryogenics, $ii)$ TPC and High Voltage, $iii)$ Electronics, Data Acquisition and Triggering, $iv)$ Scintillation Light Detection, $v)$ Calibration and Test Beams, and $vi)$ Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.

  18. Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments

    Science.gov (United States)

    Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.

    2015-10-01

    Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.

  19. Summary of the Second Workshop on Liquid Argon Time Projection Chamber Research and Development in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); et al.

    2015-04-21

    The second workshop to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States was held at Fermilab on July 8-9, 2014. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in six topical plenary sessions: i) Argon Purity and Cryogenics, ii) TPC and High Voltage, iii) Electronics, Data Acquisition and Triggering, iv) Scintillation Light Detection, v) Calibration and Test Beams, and vi) Software. This document summarizes the current efforts in each of these areas. It primarily focuses on the work in the US, but also highlights work done elsewhere in the world.

  20. Potassium-argon and iodine-xenon gas retention ages of enstatite chondrite meteorites

    International Nuclear Information System (INIS)

    Chondritic meteorites are generally considered to represent the most chemically primitive solar system material presently available for analysis. Within this group, based upon differences in the relative abundances of major elements, three types have been identified: Type I, Intermediate Type, and Type II. Radiometric ages of meteoritic material accordingly the evaluation of early solar system history by establishing a time scale over which various discrete and/or episodic events have occurred. In this work the potassium-argon (40Ar-39Ar) and iodine-xenon (I-Xe) radiometric dating techniques have been applied to a suite of enstatite chondrite meteorites. I-Xe relative gas retention ages were determined for seven enstatite chondrites

  1. Laboratory measurements of the x-ray emission following dielectronic recombination onto highly charged argon ions

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Bulbul, Esra; Hell, Natalie; Foster, Adam; Betancourt-Martinez, Gabriele; Porter, Frederick Scott; Smith, Randall K.

    2016-06-01

    We have used the LLNL EBIT-I electron beam ion trap to measure the X-ray emission following resonant dielectronic recombination (DR) onto helium-like and lithium-like argon as a function of electron energy. These measurements were completed by sweeping the energy of EBIT-I's near mono-energetic electron beam from below threshold for DR resonance to above threshold for direct excitation of K-shell transitions in helium-like argon. The X-ray emission was recorded as a function of electron beam energy using the EBIT Calorimeter Spectrometer, whose energy resolution is ~ 5 eV, and also a relatively low resolution, solid-state X-ray detector. These results will be useful when analyzing and interpreting high resolution spectra from celestial sources measured with the Soft X-ray Spectrometer (SXS) calorimeter instrument recently launched on the Hitomi X-ray Observatory (formerly known as Astro-H), as well as data measured using instruments on the Chandra and XMM-Newton X-ray Observatories. Specifically, these data will help determine if the feature detected at ~ 3.56 keV (Bulbul et al. 2014, Boyarsky et al. 2014) in clusters is the result of the decay of a sterile neutrino, a long sought after dark matter particle candidate. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and Chandra Grant AR5-16012A.

  2. Evolution of Martian atmospheric argon: Implications for sources of volatiles

    Science.gov (United States)

    Hutchins, Kevin S.; Jakosky, Bruce M.

    We have examined processes affecting isotopes of argon (36Ar, 38Ar, 40Ar) in order to determine important atmospheric sources and sinks. Our simple model for argon evolution incorporates production of radiogenic argon in the mantle, outgassing of all argon species by extrusive and intrusive volcanism, and loss to space by knock-on sputtering above the exobase. Sputtering has been shown previously to be an important loss process for atmospheric species, especially isotopes of noble gases, which have few other mechanisms of escape. The integrated evolution of argon (36Ar, 38Ar, and 40Ar, respectively) is modeled in terms of these variables: (1) the planetary concentration of potassium, (2) the fraction of juvenile argon released catastrophically during the first 600 Myr., (3) potential variation in the time-history of sputtering loss from that suggested by Luhmann et al. [1992], and (4) the volume of total outgassing to the surface as compared to outgassing contributed by volcanic release. Our results indicate that Mars has lost between 85-95% of 36Ar and 70-88% of outgassed 40Ar. Due to this substantial loss, the planet must have outgassed the equivalent of between 10 and 100 times the total volume of gases released by extrusive and intrusive volcanics. This indicates that volcanic outgassing, alone, is insufficient to explain the present-day abundances of 36Ar and 40Ar in the Martian atmosphere. Similar calculations for 20Ne suggest outgassed volumes of between 100 and 1800 times in excess of that due to volcanism. This results in a distinct Ne/Ar elemental fractionation, with a preference for outgassing argon, of the order of 10 to 17. Although the results must be evaluated within the model uncertainties, the results are compelling in that they unequivocally show the existence of additional sources of atmospheric volatiles and helps define a means to identify them.

  3. 40Ar-39Ar geochronology and thermochronology: principles and potential

    International Nuclear Information System (INIS)

    Geochronology based on radiogenic isotopes has become an invaluable tool in earth sciences. Several radioactive parent-daughter systems of varying half-lives such as Rb-Sr, Sm-Nd, K-Ar have been traditionally used by researchers for determining the timing of geological and planetary processes. 40Ar-39Ar dating, a variant of the K-Ar system, is a well-established and versatile method of determining the eruptive ages of volcanic rocks and the ∼150-500 deg C thermal histories of a variety of more slowly cooled igneous and metamorphic rocks. This technique has been the most popular tool for dating felsic and intermediate volcanic rocks. Recently several new areas of research have been explored, including total-fusion dating of mineral grains from volcanic and sedimentary samples, mapping of argon isotopic gradients in crystals, and selective dating of fabric-defining minerals in poly deformed specimens

  4. Elastic scattering cross sections of metastable barium on helium and argon

    International Nuclear Information System (INIS)

    Barium atoms in the 1D2, 3D2 and 3D3 metastable excited states have been observed by their low field Zeeman resonances using an Atomic Beam Magnetic Resonance Spectrometer. The 1S0 ground state is also observed. The scattering of Ba atoms in each of these states by helium or argon atoms (in their ground states) was performed by allowing a secondary beam to intersect the Ba beam at 900 (crossed beam geometry). The ratio of the cross sections for scattering from different excited Ba states and the same target atom was measured to a precision of 1 to 2 percent. By a combination of further experiment and calculation the absolute cross sections were also measured. It is argued that the elastic scattering dominates so that the measured cross section is sigma/sub elastic/. Comparison of the scattering of Ba(1S0) and Ba(1,3D2,3) for either target gas shows that the ground state cross section is larger by a factor of 1.8 than for the excited states. This somewhat surprising result is in accord with naive pictures of the ''size'' of the 5d 6s electronic configuration of the excited barium compared with the ground state configuration, 6s2

  5. Ar-Ar_Redux: rigorous error propagation of 40Ar/39Ar data, including covariances

    Science.gov (United States)

    Vermeesch, P.

    2015-12-01

    Rigorous data reduction and error propagation algorithms are needed to realise Earthtime's objective to improve the interlaboratory accuracy of 40Ar/39Ar dating to better than 1% and thereby facilitate the comparison and combination of the K-Ar and U-Pb chronometers. Ar-Ar_Redux is a new data reduction protocol and software program for 40Ar/39Ar geochronology which takes into account two previously underappreciated aspects of the method: 1. 40Ar/39Ar measurements are compositional dataIn its simplest form, the 40Ar/39Ar age equation can be written as: t = log(1+J [40Ar/39Ar-298.5636Ar/39Ar])/λ = log(1 + JR)/λ Where λ is the 40K decay constant and J is the irradiation parameter. The age t does not depend on the absolute abundances of the three argon isotopes but only on their relative ratios. Thus, the 36Ar, 39Ar and 40Ar abundances can be normalised to unity and plotted on a ternary diagram or 'simplex'. Argon isotopic data are therefore subject to the peculiar mathematics of 'compositional data', sensu Aitchison (1986, The Statistical Analysis of Compositional Data, Chapman & Hall). 2. Correlated errors are pervasive throughout the 40Ar/39Ar methodCurrent data reduction protocols for 40Ar/39Ar geochronology propagate the age uncertainty as follows: σ2(t) = [J2 σ2(R) + R2 σ2(J)] / [λ2 (1 + R J)], which implies zero covariance between R and J. In reality, however, significant error correlations are found in every step of the 40Ar/39Ar data acquisition and processing, in both single and multi collector instruments, during blank, interference and decay corrections, age calculation etc. Ar-Ar_Redux revisits every aspect of the 40Ar/39Ar method by casting the raw mass spectrometer data into a contingency table of logratios, which automatically keeps track of all covariances in a compositional context. Application of the method to real data reveals strong correlations (r2 of up to 0.9) between age measurements within a single irradiation batch. Propertly taking

  6. Characterisation of GERDA Phase-I detectors in liquid argon

    International Nuclear Information System (INIS)

    GERDA will search for neutrinoless double beta decay in 76Ge by submerging bare enriched HPGe detectors in liquid argon. In GERDA Phase-I, reprocessed enriched-Ge detectors, which were previously operated by the Heidelberg-Moscow and IGEX collaborations, and reprocessed natural-Ge detectors from Genius-TF, will be redeployed. We have tested the operation and performance of bare HPGe detectors in liquid nitrogen and in liquid argon over more than three years with three non-enriched p-type prototype detectors. The detector handling and mounting procedures have been defined and the Phase-I detector technology, the low-mass assembly and the long-term stability in liquid argon have been tested successfully. The Phase-I detectors were reprocessed by Canberra Semiconductor NV, Olen, according to their standard technology but without the evaporation of a passivation layer. After their reprocessing, the detectors have been mounted in their low-mass holders and their characterisation in liquid argon performed. The leakage current, the counting characteristics and the efficiency of the detectors have been measured. The testing of the detectors was carried out in the liquid argon test stand of the GERDA underground Detector Laboratory (GDL) at LNGS. The detectors are now stored underground under vacuum until their operation in GERDA.

  7. Clustering and photochemistry of freon CF2Cl2 on argon and ice nanoparticles.

    Science.gov (United States)

    Poterya, Viktoriya; Kočišek, Jaroslav; Lengyel, Jozef; Svrčková, Pavla; Pysanenko, Andriy; Hollas, Daniel; Slavíček, Petr; Fárník, Michal

    2014-07-01

    The photochemistry of CF2Cl2 molecules deposited on argon and ice nanoparticles was investigated. The clusters were characterized via electron ionization mass spectrometry, and the photochemistry was revealed by the Cl fragment velocity map imaging after the CF2Cl2 photodissociation at 193 nm. The complex molecular beam experiment was complemented by ab initio calculations. The (CF2Cl2)n clusters were generated in a coexpansion with Ar buffer gas. The photodissociation of molecules in the (CF2Cl2)n clusters yields predominantly Cl fragments with zero kinetic energy: caging. The CF2Cl2 molecules deposited on large argon clusters in a pickup experiment are highly mobile and coagulate to form the (CF2Cl2)n clusters on ArN. The photodissociation of the CF2Cl2 molecules and clusters on ArN leads to the caging of the Cl fragment. On the other hand, the CF2Cl2 molecules adsorbed on the (H2O)N ice nanoparticles do not form clusters, and no Cl fragments are observed from their photodissociation. Since the CF2Cl2 molecule was clearly adsorbed on (H2O)N, the missing Cl signal is interpreted in terms of surface orientation, possibly via the so-called halogen bond and/or embedding of the CF2Cl2 molecule on the disordered surface of the ice nanoparticles. PMID:24911048

  8. Observation of Doubly-Excited States in CALCIUM(17+) and Inner Shell-Photoexcitations in Argon, Potassium and Rubidium

    Science.gov (United States)

    Suleiman, Jamal A.

    High resolution X-ray spectroscopy is used to study (A) simultaneous electron-excitation and electron capture in the collision of calcium ions with argon atoms; these studies are important because of the close relationship to dielectronic recombination (DR) which plays an important role in energy-transfer processes in astrophysical and laboratory plasmas; (B) single and double inner-shell photoexcitations of potassium, rubidium and argon; these measurements can lead to very precise tests of electron correlation effects, such as Breit interaction, and QED effects in many electron systems. In the first case, Ca^{18+ } and Ca^{19+} ions from the ATLAS accelerator at Argonne National Laboratory, at energies near 100 MeV, were directed to an argon gas target. X-ray spectra near 3.9 KeV were collected using a high-resolution X-ray spectrometer. We have resolved transitions from doubly-excited 1s2lnl^ ' states to singly-excited 1s ^2nl^' states in lithium -like calcium. Comparison of the experimental wavelengths and intensities with relativistic Hartree-Fock calculations shows very good agreement. In the second case, we have obtained high spectral resolution absorption spectra of potassium near K-, KN -, and KM-edges, rubidium near K- and KO edges, and argon near K-, KM-, and KL-edges. The measurements were made at the X-24A and X-23A2 beamlines at the National Synchrotron Light Source at Brookhaven National Laboratory. Preliminary identifications of most the peaks are made using Dirac Hartree-Fock calculations. Comparisons of the experimental wavelengths and intensities with relativistic Hartree-Fock calculations show very good agreement.

  9. ISS Expedition 39 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 39 from 11/2013-05/2014. Press kits contain information about each mission overview, crew, mission timeline, benefits, and...

  10. Argon-40: Excess in submarine pillow basalts from Kilauea Volcano, Hawaii

    Science.gov (United States)

    Brent, Dalrymple G.; Moore, J.G.

    1968-01-01

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon-40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  11. On the electric breakdown in liquid argon at centimeter scale

    Science.gov (United States)

    Auger, M.; Blatter, A.; Ereditato, A.; Goeldi, D.; Janos, S.; Kreslo, I.; Luethi, M.; von Rohr, C. Rudolf; Strauss, T.; Weber, M. S.

    2016-03-01

    We present a study on the dependence of electric breakdown discharge properties on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

  12. Pressure regulation in the dry-boxes. Argon purification

    International Nuclear Information System (INIS)

    Each dry-box is equipped with an autonomous installation for circulation and purification of argon and for pressure regulation. This installation consists essentially of a ballast tank, a compressor and two valves electromagnetically controlled by a contact manometer. The compressor and the valves are enclosed in the tank to form a system as compact as possible. The argon is purified by passing it over a furnace filled with titanium-zirconium turnings brought to about 800 deg. C, branching off the main system. With this set-up as well as the automatic maintenance of a constant depression in the box, a quality of argon is obtained whose oxygen contact is undetectable by the manganous hydroxide method. (author)

  13. Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon

    International Nuclear Information System (INIS)

    A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-like discharge was achieved. Two kinds of typical bacteria, i.e., the Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil), were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma. The killing log value (KLV) of S. aureus reached up to 5.38 with a treatment time of 90 s and that of E. coil up to 5.36 with 60 s, respectively. According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment, it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation, while the heat, electric field and UV photons had little effect. (plasma technology)

  14. Energy resolution studies of liquid argon ionization detectors

    International Nuclear Information System (INIS)

    A gridded ionization chamber was used to study the energy resolution in liquid argon with electrons from a 207Bi radioactive source. Argon was purified in the gas phase with a simple and reliable system, capable of reducing the impurity level below 1 ppb O2 equivalent, as inferred by a pulse shape analysis of the ionization signals. The electron spectrum was measured at different drift fields, up to 10.9 KV/cm. At this maximum field, a total energy resolution of 32 keV (fwhm), corresponding to a noise-subtracted energy resolution of 26 keV (fwhm), was obtained for the 976 keV conversion electron line. This value is the best reported so far in liquid argon but is still a factor of seven worse than the theoretical limit set by the Fano factor. The reasons for this discrepancy are discussed. (orig.)

  15. Attenuation measurements of vacuum ultraviolet light in liquid argon revisited

    CERN Document Server

    Neumeier, A; Himpsl, A; Hofmann, M; Oberauer, L; Potzel, W; Schönert, S; Ulrich, A

    2015-01-01

    The attenuation of vacuum ultraviolet light in liquid argon in the context of its application in large liquid noble gas detectors has been studied. Compared to a previous publication several technical issues concerning transmission measurements in general are addressed and several systematic effects were quantitatively measured. Wavelength-resolved transmission measurements have been performed from the vacuum ultraviolet to the near-infrared region. On the current level of sensitivity with a length of the optical path of 11.6 cm, no xenon-related absorption effects could be observed, and pure liquid argon is fully transparent down to the short wavelength cut-off of the experimental setup at 118 nm. A lower limit for the attenuation length of pure liquid argon for its own scintillation light has been estimated to be 1.10 m based on a very conservative approach.

  16. On the Electric Breakdown in Liquid Argon at Centimeter Scale

    CERN Document Server

    Auger, M; Ereditato, A; Goeldi, D; Janos, S; Kreslo, I; Luethi, M; von Rohr, C Rudolf; Strauss, T; Weber, M S

    2015-01-01

    We present a study on the dependence of electric breakdown discharge parameters on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

  17. Liquid Argon Calorimetry with LHC-Performance Specifications

    CERN Multimedia

    2002-01-01

    % RD-3 Liquid Argon Calorimetry with LHC-Performance Specifications \\\\ \\\\Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. Among the techniques used so far, or under development, the liquid argon sampling calorimetry offers high radiation resistence, good energy resolution (electromagnetic and hadronic), excellent calibration stability and response uniformity. Its rate capabilities, however, do not yet match the requirements for LHC. \\\\ \\\\The aim of this proposal is to improve the technique in such a way that high granularity, good hermiticity and adequate rate capabilities are obtained, without compromising the above mentioned properties. To reach this goal, we propose to use a novel structure, the $^{\\prime\\prime}$accordion$^{\\prime\\prime}$, coupled to fast preamplifiers working at liquid argon temperature. Converter and readout electrodes are no longer planar and perpendicular to particles, as usual, but instead they are wiggled around a plane containing particles. ...

  18. Subterranean production of neutrons, $^{39}$Ar and $^{21}$Ne: Rates and uncertainties

    CERN Document Server

    Šrámek, Ondřej; McDonough, William F; Mukhopadhyay, Sujoy; Peterson, R J

    2015-01-01

    Accurate understanding of the subsurface production of radionuclide $^{39}$Ar rate is necessary for argon dating techniques and noble gas geochemistry of the shallow and the deep Earth, and is also of interest to the WIMP dark matter experimental particle physics community. Our new calculations of subsurface production of neutrons, $^{21}$Ne, and $^{39}$Ar take advantage of the best available tools of nuclear physics to obtain reaction cross sections and spectra (TALYS) and to evaluate neutron propagation in rock (MCNP6). We discuss our method and results in relation to previous studies and show the relative importance of various neutron, $^{21}$Ne, and $^{39}$Ar nucleogenic production channels. Uncertainty in nuclear reaction cross sections, which is the major contributor to overall calculation uncertainty, is estimated from variability in existing experimental and library data. Depending on selected rock composition, on the order of $10^7$-$10^{10}$ {\\alpha} particles are produced in one kilogram of rock pe...

  19. Grafting of acrylic acid onto polypropylene films irradiated with argon ions

    International Nuclear Information System (INIS)

    Polypropylene (PP) foils were irradiated with 100 keV energy Argon ions at different fluences ranging from 1012 up to 2 x 1015 cm-2 and then grafted with acrylic acid (AA). The grafting yield was measured by weight difference and the structural changes on the films were analysed using Fourier transform infrared spectroscopy (FTIR). Different parameters that determined the grafting process such us fluence, grafting time and monomer concentration were analysed. The grafting reached an optimum value at 79% in aqueous solution at 30 min grafting time. The grafting yield as a function of the ion fluence plot, presented a maximum value, as previously found in a study of heavy beam on polymers

  20. The status of the construction and the performance of the ATLAS liquid argon electromagnetic calorimeters

    CERN Document Server

    Lund-Jensen, B

    2004-01-01

    The construction of the ATLAS liquid argon electromagnetic calorimeters is about to be completed The barrel calorimeter and the first end cap are inserted in their cryostats. The quality control performed during the production has resulted in only a very small fraction of malfunctioning channels, ~0.1 %o., and a low constant term in the energy resolution. Several modules of the calorimeter and their corresponding presampler sectors have been tested in electron beams and their energy resolution has been shown to be within the ATLAS requirements. The local constant term is better than 0.4% for all measured cells and the global constant term which includes the cell to cell response variation is less than 0.7%. (3 refs).

  1. Collisionless “thermalization” in the sheath of an argon discharge

    Energy Technology Data Exchange (ETDEWEB)

    Coulette, David, E-mail: David.Coulette@ipcms.unistra.fr; Manfredi, Giovanni, E-mail: Giovanni.Manfredi@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS and Université de Strasbourg, BP 43, F-67034 Strasbourg (France)

    2015-04-15

    We performed kinetic Vlasov simulations of the plasma-wall transition for a low-pressure argon discharge without external magnetic fields, using the same plasma parameters as in the experiments of Claire et al. [Phys. Plasmas 13, 062103 (2006)]. Experimentally, it was found that the ion velocity distribution function is highly asymmetric in the presheath, but, surprisingly, becomes again close to Maxwellian inside the sheath. Here, we show that this “thermalization” can be explained by purely collisionless effects that are akin to the velocity bunching phenomenon observed in charged particles beams. Such collisionless thermalization is also observed in the presheath region close to the sheath entrance, although it is much weaker there and in practice probably swamped by collisional processes (standard or enhanced by instabilities)

  2. Collisionless “thermalization” in the sheath of an argon discharge

    International Nuclear Information System (INIS)

    We performed kinetic Vlasov simulations of the plasma-wall transition for a low-pressure argon discharge without external magnetic fields, using the same plasma parameters as in the experiments of Claire et al. [Phys. Plasmas 13, 062103 (2006)]. Experimentally, it was found that the ion velocity distribution function is highly asymmetric in the presheath, but, surprisingly, becomes again close to Maxwellian inside the sheath. Here, we show that this “thermalization” can be explained by purely collisionless effects that are akin to the velocity bunching phenomenon observed in charged particles beams. Such collisionless thermalization is also observed in the presheath region close to the sheath entrance, although it is much weaker there and in practice probably swamped by collisional processes (standard or enhanced by instabilities)

  3. Laser propagation and energy absorption by an argon spark

    OpenAIRE

    Bindhu, C V; Harilal, S S; Tillack, M. S.; Najmabadi, F; Gaeris, A C

    2003-01-01

    The laser propagation and energy absorption of an argon spark induced by a laser at different pressures is investigated. 8 ns pulses from a frequency-doubled Q-switched Nd:YAG laser are used to create the spark. The pressure of the argon is varied from 1 atm to 10 Torr. Significant energy absorption by the plasma is observed at high pressures (>100 Torr) while there is negligible absorption when the pressure is lower than 50 Torr. The plasma kernel showed distinct behavior with respect to las...

  4. Modelling of a supersonic ICP argon-hydrogen expansion

    International Nuclear Information System (INIS)

    An expanding argon-hydrogen plasma is investigated by means of simulations. The model is a hydrodynamical model specific for plasma expansions, taking into account the conservation laws of mass, momentum and energy. The code includes the Rankine-Hugoniot relations to calculate shock jump conditions. Results are shown for the expansion from an inductively coupled plasma (ICP) with a separated Laval nozzle. The expansion discussed here is a 'weakly' under-expanding argon-hydrogen plasma. The results from the ICP expansion are verified with probe measurements

  5. Oxygen removal from tantalum and niobium in an argon atmosphere

    International Nuclear Information System (INIS)

    The rate of oxygen removal from tantalum and niobium has been determined as a function of argon pressure (0-760 Torr) at temperatures from 1900 to 24000C. The reduction of the reaction rate v depends only on the argon pressure and can be given by a factor α = v/v0. The following formulae are obtained for α: Ta: α = (1 + 0.15psub(Ar)sup(0.9))-1, Nb: α = (1 + 0.5psub(Ar)sup(0.9))-1.

  6. Photoionization in liquid argon doped with trimethylamine or triethylamine

    International Nuclear Information System (INIS)

    Ionization yields for alpha particles and 1 MeV electrons in liquid argon doped with trimethylamine and with triethylamine have been measured. In both liquids, a collected charge larger than Anderson's results is observed for alpha particles although that for electrons is similar to Anderson's value. By using a new equation for the collected charge, the photoionization quantum efficiencies for scintillation light in liquid argon are estimated to be 0.35+-0.05 for trimethylamine and greater than 0.23+-0.03 for triethylamine. (orig.)

  7. Superconductivity of compressed solid argon from first principles

    Science.gov (United States)

    Ishikawa, Takahiro; Asano, Masamichi; Suzuki, Naoshi; Shimizu, Katsuya

    2015-02-01

    We present first-principles calculations on the superconductivity of solid argon under high pressure. Solid argon is found to take the double hexagonal close-packed structure in pressure range from 420 to 690 GPa, where an insulator-to-metal transition occurs at around 590 GPa. The crystal structure transforms into the hexagonal close-packed structure at 690 GPa and into the face-centered cubic structure at 2300 GPa. The superconducting critical temperature is gradually increased with the successive phase transitions and reaches the maximum value of 12 K at 2600 GPa due to the enhancement of the Fermi surface nesting.

  8. Attosecond-correlated dynamics of two electrons in argon

    Indian Academy of Sciences (India)

    V Sharma; N Camus; B Fischer; M Kremer; A Rudenko; B Bergues; M Kuebel; N G Johnson; M F Kling; T Pfeifer; J Ullrich; R Moshammer

    2014-01-01

    In this work we explored strong field-induced decay of doubly excited transient Coulomb complex Ar** → Ar2++2. We measured the correlated two-electron emission as a function of carrier envelop phase (CEP) of 6 fs pulses in the non-sequential double ionization (NSDI) of argon. Classical model calculations suggest that the intermediate doubly excited Coulomb complex loses memory of its formation dynamics. We estimated the ionization time difference between the two electrons from NSDI of argon and it is 200 ± 100 as (N Camus et al, Phys. Rev. Lett. 108, 073003 (2012)).

  9. The ATLAS liquid argon electromagnetic calorimeter construction status

    CERN Document Server

    Jérémie, A

    2004-01-01

    The construction and assembly of the ATLAS liquid argon electromagnetic calorimeter was described. The calorimeter was built with accordion geometry composed of lead absorbers, liquid argon as ionizing medium and highly granular readout electrodes. The calorimeter was composed of the Barrel and the End-cap, both preceded by presampler sectors to ensure complete recovery of the energy resolution. The detection of cabling errors and testing of the whole calibration chain was done by sending a pulse through the calibration circuit with single readout. (Edited abstract) 3 Refs.

  10. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.; Hansen, Jens Leonhart; Sørensen, H.

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...

  11. Measurement of Longitudinal Electron Diffusion in Liquid Argon

    CERN Document Server

    Li, Yichen; Thorn, Craig; Qian, Xin; Diwan, Milind; Joshi, Jyoti; Kettell, Steve; Morse, William; Rao, Triveni; Stewart, Jim; Tang, Wei; Viren, Brett

    2015-01-01

    We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. Our results, which are consistent with previous measurements in the region between 100 to 350 V/cm [1] , are systematically higher than the prediction of Atrazhev-Timoshkin[2], and represent the world's best measurement in the region between 350 to 2000 V/cm. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

  12. Formation of nanopore in a suspended graphene sheet with argon cluster bombardment: A molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Formation of a nanopore in a suspended graphene sheet using an argon gas beam was simulated using molecular dynamics (MD) method. The Lennard-Jones (LJ) two-body potential and Tersoff–Brenner empirical potential energy function are applied in the MD simulations for different interactions between particles. The simulation results demonstrated that the incident energy and cluster size played a crucial role in the collisions. Simulation results for the Ar55–graphene collisions show that the Ar55 cluster bounces back when the incident energy is less than 11 eV/atom, the argon cluster penetrates when the incident energy is greater than 14 eV/atom. The two threshold incident energies, i.e., threshold incident energy of defect formation in graphene and threshold energy of penetration argon cluster were observed in the simulation. The threshold energies were found to have relatively weak negative power law dependence on the cluster size. The number of sputtered carbon atoms is obtained as a function of the kinetic energy of the cluster

  13. Measurement of the two-photon absorption cross-section of liquid argon with a time projection chamber

    CERN Document Server

    Badhrees, I; Kreslo, I; Messina, M; Moser, U; Rossi, B; Weber, M S; Zeller, M; Altucci, C; Amoruso, S; Bruzzese, R; Velotta, R

    2010-01-01

    This paper reports on laser-induced multiphoton ionization at 266 nm of liquid argon in a time projection chamber (LAr TPC) detector. The electron signal produced by the laser beam is a formidable tool for the calibration and monitoring of next-generation large-mass LAr TPCs. The detector that we designed and tested allowed us to measure the two-photon absorption cross-section of LAr with unprecedented accuracy and precision: $\\sigma_ex$=(1.24$\\pm$0.10stat $\\pm$0.30syst)$\\times$10^{-56} cm$^4$s{-1}.

  14. Simulation of the upgraded Phase-1 Trigger Readout Electronics of the Liquid-Argon Calorimeter of the ATLAS Detector at the LHC

    OpenAIRE

    Grohs, Johannes Philipp

    2016-01-01

    In the context of an intensive upgrade plan for the Large Hadron Collider (LHC) in order to provide proton beams of increased luminosity, a revision of the data readout electronics of the Liquid-Argon-Calorimeter of the ATLAS detector is scheduled. This is required to retain the efficiency of the trigger at increased event rates despite its fixed bandwidth. The focus lies on the early digitization and finer segmentation of the data provided to the trigger. Furthermore, there is the possibilit...

  15. Argon geochronology of Kilauea's early submarine history

    Science.gov (United States)

    Calvert, A.T.; Lanphere, M.A.

    2006-01-01

    Submarine alkalic and transitional basalts collected by submersible along Kilauea volcano's south flank represent early eruptive products from Earth's most active volcano. Strongly alkalic basalt fragments sampled from volcaniclastic deposits below the mid-slope Hilina Bench yield 40Ar/39Ar ages from 212 ?? 38 to 280 ?? 20 ka. These ages are similar to high-precision 234 ?? 9 and 239 ?? 10 ka phlogopite ages from nephelinite clasts in the same deposits. Above the mid-slope bench, two intact alkalic to transitional pillow lava sequences protrude through the younger sediment apron. Samples collected from a weakly alkalic basalt section yield 138 ?? 30 to 166 ?? 26 ka ages and others from a transitional basalt section yield 138 ?? 115 and 228 ?? 114 ka ages. The ages are incompatible with previous unspiked K-Ar studies from samples in deep drill holes along the east rift of Kilauea. The submarine birth of Kilauea volcano is estimated at <300 ka. If the weakly alkalic sequence we dated is representative of the volcano as a whole, the transition from alkalic to tholeiitic basalt compositions is dated at ??? 150 ka. ?? 2005 Elsevier B.V. All rights reserved.

  16. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters

    International Nuclear Information System (INIS)

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne9+- argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne9+ with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne9+ beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  17. Survey of beam instrumentation used in SLC

    International Nuclear Information System (INIS)

    A survey of beam instruments used at SLAC in the SLC machine is presented. The basic utility and operation of each device is briefly described. The various beam instruments used at the Stanford Linear Collider (SLC), can be classified by the function they perform. Beam intensity, position and size are typical of the parameters of beam which are measured. Each type of parameter is important for adjusting or tuning the machine in order to achieve optimum performance. 39 refs

  18. Electrical, structural, and chemical properties of HfO₂ films formed by electron beam evaporation

    OpenAIRE

    Cherkaoui, K.; Monaghan, S.; Negara, M. A.; Modreanu, M.; Hurley, P. K.; O’Connell, D.; McDonnell, Stephen; Hughes, Greg; Wright, S.; Barklie, R.C.; Bailey, P; Noakes, T. C. Q.

    2008-01-01

    High dielectric constant hafnium oxide films were formed by electron beam (e-beam) evaporation on HF last terminated silicon (100) wafers. We report on the influence of low energy argon plasma ( ∼ 70 eV) and oxygen flow rate on the electrical, chemical, and structural properties of metal-insulator-silicon structures incorporating these e-beam deposited HfO2 films. The use of the film-densifying low energy argon plasma during the deposition results in an increase in the equivalent oxide thickn...

  19. Uranium-liquid argon calorimetry: preliminary results from the DO tests

    International Nuclear Information System (INIS)

    The motivations for using uranium and liquid argon in sampling calorimetry are reviewed and the pros and cons of the technique are discussed. Preliminary results of the DO uranium-liquid argon test program are presented. 9 refs., 7 figs

  20. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    Science.gov (United States)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  1. High-frequency electrodeless lamps in argon-mercury mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, N [Institute of Theoretical and Applied Mechanics, Novosibirsk (Russian Federation); Revalde, G [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga (Latvia); Skudra, A [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga (Latvia); Zissis, G [CPAT, University Toulouse 3, 118 rte de Narbonne, 31062 Toulouse (France); Zorina, N [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga (Latvia)

    2005-09-07

    In this paper, numerical and experimental investigations of high-frequency (HF) electrodeless lamps in argon-mercury mixtures are performed. The intensities of the mercury spectral lines having wavelengths {lambda} = 404.66, 435.83, 546.07 nm (7{sup 3}S{sub 1}-6{sup 3}P{sub 0,1,2}) and the resonance line {lambda} = 253.7 nm (6{sup 3} P{sub 1}-6{sup 1}S{sub 0}) are measured at a wide range of mercury pressures, varying the HF generator current and argon filling pressure. A stationary self-consistent model of HF electrodeless discharge lamp is developed including kinetics of the excited mercury and argon atomic states. Based on the developed model, the radiation characteristics of the discharge plasma are calculated. Numerical simulation of the line intensities behaviour in dependence on the mercury pressure, HF generator current and argon filling pressure is performed. The model results are in qualitative agreement with the experimental data. The calculations of the relative intensities of the visible triplet lines 7{sup 3}S{sub 1}-6{sup 3}P{sub 0,1,2} are presented for the first time in this paper.

  2. Measurement of the argon plasma temperature by use of pyrometer

    International Nuclear Information System (INIS)

    The author describes in detail how to use pyrometer to measure the plasma temperature. The temperatures of shock-generated argon plasmas are given in the present work. Measured results of temperature-pressure curve are compared with calculated results using Saha-Debye-Huckel model, which are in good agreement

  3. LArGe. A liquid argon scintillation veto for GERDA

    International Nuclear Information System (INIS)

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in 76Ge, by operating naked germanium detectors submersed into 65 m3 of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m3 (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 103 have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10-2 cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural 42Ar abundance (in parallel to Gerda), and have indication for the 2νββ-decay in natural germanium. (orig.)

  4. Study of Liquid Argon Dopants for LHC Hadron Calorimetry

    CERN Multimedia

    2002-01-01

    Hadron calorimetry based on the Liquid Argon Ionisation Chamber technique is one of the choice techniques for LHC-experimentation. A systematic study of the effect of selected dopants on Liquid Argon (LAr) will be carried out with the aim to achieve an improvement on: \\item (i)~``Fast Liquid Argon'' search and study of dopants to increase the drift velocity. It has been already shown that CH&sub4. added at a fraction of one percent increases the drift velocity by a factor of two or more. \\item (ii)~``Compensated Liquid Argon'' search and study of dopants to increase the response to densely ionising particles, resulting in improved compensation, such as photosensitive dopants. \\end{enumerate}\\\\ \\\\ Monitoring of the parameters involved in understanding the response of a calorimeter is essential. In case of doped LAr, the charge yield, the non-saturated drift velocity and the electron lifetime in the liquid should be precisely and simultaneously monitored as they all vary with the level of dopant concentrati...

  5. Aging tests of ethylene contaminated argon/ethane

    International Nuclear Information System (INIS)

    We report on aging tests of argon/ethane gas with a minor (1800 ppM) component of ethylene. The measurements were first conducted with the addition of alcohol to test the suppression of aging by this additive, with exposure up to ∼1.5 C/cm. Tests have included: a proportional tube with ethanol, another with isopropyl alcohol, and for comparison a tube has also been run with ethanol and argon/ethane from CDF's old (ethylene-free) ethane supply. The aging test with ethanol showed no difference between the ethylene-free and the ethylene tube. Furthermore, raw aging rates of argon/ethane and argon/ethane/ethylene were measured by exposing tubes without the addition of alcohol to about 0.1 C/cm. Again, no significant difference was observed. In conclusion, we see no evidence that ethylene contamination up to 1800 ppM has any adverse effect on wire aging. However, this level of ethylene does seem to significantly suppress the gas gain

  6. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    International Nuclear Information System (INIS)

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors

  7. Investigation of non-equilibrium argon and hydrogen plasmas

    International Nuclear Information System (INIS)

    Theoretical and experimental investigations are made into non-equilibrium argon and hydrogen partially-ionized plasmas characteristic of glow-discharge devices such as thyratrons and discharge tubes. For an argon plasma, the development and use of a collisional-radiative, steady-state, three-energy-level model is presented, and experimental measurements on pulsed argon plasmas are briefly mentioned. Two different theoretical argon plasma models are discussed; the first is numerically solved using a non-Maxwellian electron distribution function, while the second is solved analytically, including atom-atom inelastic collisions, assuming Maxwellian electron and atom distribution functions. For a hydrogen plasma, experimental measurements using fluorescence and laser-induced fluorescence have been made in a modified hydrogen thyratron over a wide current density range (from 100 to 8000 A/cm2) for the atomic hydrogen population densities n = 2,3,4. A pronounced rise in the atomic hydrogen excited state populations is observed after the end of the current pulse. A new method to measure the time-resolved electron density was developed and results are presented

  8. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark

    2011-04-13

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  9. Design of capsules capable of argon-filling

    International Nuclear Information System (INIS)

    The possibility of the use of polycarbosilane capsules as fuel container in inertial confinement fusion experiments was analyzed in the paper. Primary study indicates that the polycarbosilane capsules can be filled with argon by means of diffusion and possess reasonable retention time for deuterium. (author)

  10. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  11. Thermal decomposition of yttrium(III) valerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao; Pallewatta, Pallewatta G A P; Watenphul, A.; Zimmermann, M. v.

    2014-01-01

    The thermal decomposition of yttrium(III) valerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction, in-situ synchrotron diffraction and hot-stage microscopy as well as room temperature optical microscopy. Melting...

  12. Turbulence and transport in a magnetized argon plasma

    International Nuclear Information System (INIS)

    An experimental study on turbulence and transport in the highly ionized argon plasma of a hollow cathode discharge is described. In order to determine the plasma parameters three standard diagnostics have been used, whilst two diagnostics have been developed to study the plasma turbulence. (Auth.)

  13. Study of a microwave discharge in argon/helium mixtures

    International Nuclear Information System (INIS)

    A discharge created by a surface wave in Argon-Helium mixture is studied. First, the helium influence on plasma parameters has been studied (electron density, electric field, effective collision frequency, etc...), then, on excitation processes in the discharge. Relations between plasma lines, electron density and electric field have been established

  14. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models. PMID:24559345

  15. Thermal decomposition of yttrium(III) hexanoate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Suarez Guevara, Maria Josefina; Attique, Fahmida;

    2015-01-01

    The thermal decomposition of yttrium(III) hexanoate (Y(C5H11CO2)3)·xH2O in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction at a laboratory Cu-tube source and in-situ experiments at a synchrotron radiation source as well as hot...

  16. The role of metastable atoms in argon-diluted silane radiofrequency plasmas

    OpenAIRE

    Sansonnens, L.; Howling, A.A.; Hollenstein, C.; Dorier, J. L.; Kroll, U.

    2008-01-01

    The evolution of the argon metastable states density has been studied by absorption spectroscopy in power-modulated plasmas of argon and a mixture of 4% silane in argon. A small concentration of silane suppresses the argon metastable states density by molecular quenching. This molecular quenching adds to the electronic collisional dissociation to increase the silane dissociation rate as compared with pure silane plasmas. Using time-resolved emission spectroscopy, the role of metastable states...

  17. Potassium-Argon ages on mesozoic tholeutic dike Swarm in Rio Grande do Norte, Brazil

    International Nuclear Information System (INIS)

    Potassium-argon ages are reported for samples from four localities which represent three laterally separated Mesozoic tholeitic dikes in Precambrian oF Rio Grande do Norte, Brazil. The ages for the dikes are between 167 Ma and 130 Ma. It is shown that most of the ages determined are minimum ages due to argon losses. The methodological approach to identify argon losses is described. Ecess argon cannot be of significant influence on the ages found. (author)

  18. Conversion of an atomic to a molecular argon ion and low pressure argon relaxation

    Science.gov (United States)

    M, N. Stankov; A, P. Jovanović; V, Lj Marković; S, N. Stamenković

    2016-01-01

    The dominant process in relaxation of DC glow discharge between two plane parallel electrodes in argon at pressure 200 Pa is analyzed by measuring the breakdown time delay and by analytical and numerical models. By using the approximate analytical model it is found that the relaxation in a range from 20 to 60 ms in afterglow is dominated by ions, produced by atomic-to-molecular conversion of Ar+ ions in the first several milliseconds after the cessation of the discharge. This conversion is confirmed by the presence of double-Gaussian distribution for the formative time delay, as well as conversion maxima in a set of memory curves measured in different conditions. Finally, the numerical one-dimensional (1D) model for determining the number densities of dominant particles in stationary DC glow discharge and two-dimensional (2D) model for the relaxation are used to confirm the previous assumptions and to determine the corresponding collision and transport coefficients of dominant species and processes. Project supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ON171025).

  19. Computer simulation of surface modification with ion beams

    International Nuclear Information System (INIS)

    Niobium surface modification dynamics treated by cluster ion irradiation was studied based on atomistic and mesoscopic simulation methods and the results were compared to experiments. A surface smoothening method was proposed consisting of a treatment of the Nb cavity surfaces by accelerated gas (argon) cluster ion beams (GCIB) that is capable of reducing the surface roughness up to the theoretical limit

  20. Nonlinear beam-beam resonances

    International Nuclear Information System (INIS)

    Head-on collisions of bunched beams are considered, assuming the two colliding beams have opposite charges. A few experimental observations are described. The single resonance analysis is developed that is applicable to the strong-weak case of the beam-beam interaction. In this case, the strong beam is unperturbed by the beam-beam interaction; motions of the weak beam particles are then analyzed in the presence of the nonlinear electromagnetic force produced by the strong beam at the collision points. The coherent motions of the two coupled strong beams are shown to exhibit distinct nonlinear resonance behavior. 16 refs., 22 figs

  1. An Ediacaran–Cambrian thermal imprint in Rajasthan, western India: Evidence from 40Ar-39Ar geochronology of the Sindreth volcanics

    Indian Academy of Sciences (India)

    Archisman Sen; Kanchan Pande; Hetu C Sheth; Kamal Kant Sharma; Shraboni Sarkar; A M Dayal; Harish Mistry

    2013-12-01

    The Sindreth Group exposed near Sirohi in southern Rajasthan, western India, is a volcanosedimentary sequence. Zircons from Sindreth rhyolite lavas and tuffs have yielded U–Pb crystallization ages of ∼768–761 Ma, suggesting that the Sindreth Group is a part of the Malani magmatic event. Earlier 40Ar-39Ar studies of other Malani volcanic and plutonic rocks yielded disturbed argon release spectra, ascribed to a ∼550 Ma thermal event possibly related to the Pan-African orogeny. To test and confirm this possibility, we dated two whole-rock and three feldspar separate samples of the Sindreth volcanics by the 40Ar-39Ar method. All samples yield disturbed argon release spectra suggesting radiogenic argon loss and with plateau segments at 550 Ma or 490 Ma. We interpret these as events of argon loss at 550–490 Ma related to an Ediacaran–Cambrian thermal event, possibly related to the Malagasy orogeny. The combined older and new 40Ar-39Ar results are significant in showing that whereas Ediacaran–Cambrian magmatic and metamorphic events are well known from many parts of India, they left thermal imprints in much of Trans-Aravalli Rajasthan as well. The overall evidence is consistent with a model of multiphase assembly of Gondwanaland from separate continental landmasses.

  2. Argon metastable dynamics and lifetimes in a direct current microdischarge

    Science.gov (United States)

    Stefanović, Ilija; Kuschel, Thomas; Schröter, Sandra; Böke, Marc

    2014-09-01

    In this paper we study the properties of a pulsed dc microdischarge with the continuous flow of argon. Argon metastable lifetimes are measured by tunable diode laser absorption spectroscopy (TDLAS) and are compared with calculated values which yield information about excitation and de-excitation processes. By increasing the gas flow-rate about 5 times from 10 to 50 sccm, the Arm lifetime increases from 1 to 5 μs due to the reduction of metastable quenching with gas impurities. Optical emission spectroscopy reveals nitrogen and water molecules as the main gas impurities. The estimated N2 density [N2] = 0.1% is too low to explain the measured metastable lifetimes. Water impurity was found to be the main de-excitation source of argon metastable atoms due to high quenching coefficients. The water impurity level of [H2O] = 0.15% to 1% is sufficient to bring calculated metastable lifetimes in line with experiments. The maximum value of water content in the discharge compared to the argon atoms is estimated to approximately 6%, due to the large surface to volume ratio of the microdischarge. The current pulse releases the water molecules from the electrode surface and they are either re-adsorbed in the time between 0.4 ms for [H2O] = 1% and 2.6 ms for [H2O] = 0.15% or pumped out of the discharge with the speed equal to the gas flow-rate. Depending on its partial pressure, the water impurity re-adsorption time is of the order of magnitude or less then the argon gas residence time.

  3. Argon-argon age measurements and calculations of temperatures resulting from asteroidal break-up

    International Nuclear Information System (INIS)

    In addition to providing chronological information, (40Ar-39Ar) measurements on meteorites can be used as a geothermometer providing a record of the thermal history of the fragmentation events that have led from asteroidal parent body to museum specimen. A simple method of treating the experimental data is in terms of effective outgassing temperature. This is the temperature required to produce in the laboratory, a fractional release of neutron induced 39Ar equal to the loss of radiogenic 40Ar determined from the 40Ar-39Ar age spectrum. An equation relating effective temperature, Tsub(e), of a meteorite heated during a single parent-body fragmentation or cratering event is given. An attempt has been made to relate the experimentally observed distribution of Tsub(e) for meteorites to the unknown distribution of fragmentation temperatures, by using a Monte Carlo model to predict the distribution of fragment cooling times. It is concluded that for ordinary chondrites the mean temperature rise during at least one such event is of the order of 200 to 400 K, corresponding to a mean energy dissipation of more than 2x105 J kg-1. Two mechanisms are suggested to account for these high values. (U.K.)

  4. Observations of acoustic-wave-induced superluminescence in an argon plasma

    International Nuclear Information System (INIS)

    It is shown that in an argon discharge plasma it is possible to obtain overpopulation of certain electronic levels of atomic argon under the influence of acoustic waves. When the specified threshold is exceeded, then a superluminescence (in the form of light flashes) from the overpopulated electronic levels of atomic argon is observed

  5. 21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for...

  6. Post-Disruptive Runaway Electron Beam in COMPASS Tokamak

    OpenAIRE

    Vlainic, Milos; Mlynar, Jan; Cavalier, Jordan; Weinzettl, Vladimir; Paprok, Richard; Imrisek, Martin; Ficker, Ondrej; Noterdaeme, Jean-Marie; Team, the COMPASS

    2015-01-01

    For ITER-relevant runaway electron studies, such as suppression, mitigation, termination and/or control of runaway beam, obtaining the runaway electrons after the disruption is important. In this paper we report on the first achieved discharges with post-disruptive runaway electron beam, entitled "runaway plateau", in the COMPASS tokamak. The runaway plateau is produced by massive gas injection of argon. Almost all of the disruptions with runaway electron plateaus occurred during the plasma c...

  7. A beam guide system for laser-surgery

    International Nuclear Information System (INIS)

    A beam guide system for medical application is described. Using rotatable dielectric mirrors the transmission of the system is very high and the beam quality is not debased. A special end tube suitable for surgery in the nasal cavity is presented solving the problems of a clean optical end face. The instrument was applied clinically to surgery of the lower human turbinates using an argon ion laser with a power up to 4 W. (Author)

  8. 40Ar/39Ar age and thermal history of the Kirin chondrite

    International Nuclear Information System (INIS)

    The Kirin meteorite, a large (> 2800 kg) H5 chondrite, fell in Kirin Province, China in 1976. A sample from each of the two largest fragments (K-1. K-2) yield 40Ar/39Ar total fusion ages of 3.63 +- 0.02 b.y. and 2.78 +- 0.02 b.y. respectively. 40Ar/40Ar age spectra show typical diffusional argon loss profiles. Maximum apparent ages of 4.36 b.y. (K-1) and approx. 4.0 b.y. (K-2) are interpreted as possible minimum estimates for the age of crystallization of the parent body. (orig./ME)

  9. A compilation of 40Ar-39 and K-Ar ages: report 25

    International Nuclear Information System (INIS)

    Twenty-three 40Ar-39Ar age determinations (including two potassium-argon analyses) carried out by the Geological Survey of Canada are reported. Each age determination is accompanied by a description of the rock and mineral concentrate used; brief interpretative comments regarding the geological significance of each age are also provided where possible. The experimental procedures employed are described in outline. An index of all Geological Survey of Canada K-Ar age determinations published in this format has been prepared using NTS quadrangles as the primary reference. (author). 6 refs., 2 tabs., 1 fig

  10. Study on electron beam in a low energy plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Muhammad Zubair, E-mail: mzubairkhan-um76@yahoo.com [Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur, Malaysia and Department of Physics, Federal Urdu University of Arts, Science and Technology, 45320 Islamabad (Pakistan); Ling, Yap Seong; San, Wong Chiow [Plasma Technology Research Center, Department of Physics, Faculty of Science, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  11. Study on electron beam in a low energy plasma focus

    International Nuclear Information System (INIS)

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device

  12. Attenuation of vacuum ultraviolet light in pure and xenon-doped liquid argon - an approach to an assignment of the near-infrared emission from the mixture

    CERN Document Server

    Neumeier, A; Himpsl, A; Oberauer, L; Potzel, W; Schönert, S; Ulrich, A

    2015-01-01

    Results of transmission experiments of vacuum ultraviolet light through a 11.6 cm long cell filled with pure and xenon-doped liquid argon are described. Pure liquid argon shows no attenuation down to the experimental short-wavelength cut-off at 118nm. Based on a conservative approach, a lower limit of 1.10 m for the attenuation length of its own scintillation light could be derived. Adding xenon to liquid argon at concentrations on the order of parts per million leads to strong xenon-related absorption features which are used for a tentative assignment of the recently found near-infrared emission observed in electron-beam excited liquid argon-xenon mixtures. Two of the three absorption features can be explained by perturbed xenon transitions and the third one by a trapped exciton (Wannier-Mott) impurity state. A calibration curve connecting the equivalent width of the absorption line at 140 nm with xenon concentration is provided.

  13. An Update to the EARTHTIME Argon Intercalibration Pipette System (APIS): Smoking from the Same Pipe

    Science.gov (United States)

    Turrin, B. D.; Swisher, C. C., III; Hemming, S. R.; Renne, P. R.; Deino, A. L.; Hodges, K. V.; Van Soest, M. C.; Heizler, M. T.

    2015-12-01

    Background: An initial 40Ar/39Ar inter-calibration experiment, using two of the most commonly used 40Ar/39Ar mineral standards, Fish Canyon (FC, ~28.2 Ma) and Alder Creek (AC, ~1.2 Ma) sanidines, revealed significant inter-laboratory inconsistencies. The reported ages for the AC sanidines range from 1.173 to 1.200 Ma (FC 28.02) (±~2%), ~4 times greater than the reported precisions. These experiments have motivated the 40Ar/39Ar community to reevaluate procedures and subsequent informal lab intercalibrations experiments are in better agreement, but discrepancies remain that need to be addressed. Experiment: In an effort to isolate the causes of these inconsistencies, an Argon Intercalibration Pipette System (APIS) was designed and constructed. The APIS system consists of three gas canisters; one containing atmospheric Ar and the other two canisters contain 40Ar/39Ar ratios that represent FC and AC. The volumes of the pipettes, bulbs and manifold are determined to within 0.4% and both systems were initially filled to the same pressure with Ar standard gases. Each canister has 4x10-10 moles of 40Ar, is equipped with a 0.1, 0.2 and 0.4 cc pipettes and can deliver increments from 0.1-0.7 cc. APIS-1 was designated as the traveling unit that is brought to participating labs, APIS-2 is the reserve/master standard. Early Results and Impressions: APIS-1 has been to four labs (Rutgers, LDEO, New Mexico Tech, and BGC) and is heading to ASU. Early APIS experimental data indicate that the inter-laboratory 40Ar/39Ar age results can meet or exceed the EARTHTIME goal of ±1‰ precision. The inter-laboratory comparisons are ongoing, and will include additional laboratories of opportunity. Lastly, the development of additional mineral standards that "fill in" the age gaps between the existing mineral standards would significantly improve attempting to achieve interlaboratory agreement at the ±1‰ level

  14. Method to determine argon metastable number density and plasma electron temperature from spectral emission originating from four 4p argon levels

    CERN Document Server

    Mariotti, Davide; Sasaki, Takeshi; Koshizaki, Naoto; 10.1063/1.2390631

    2010-01-01

    A simple model and method is proposed here to determine argon metastable number densities and electron temperature with the assumption of a Maxwell-Boltzmann electron energy distribution. This method is based on the availability of experimental relative emission intensities of only four argon lines that originate from any of the 4p argon levels. The proposed model has a relatively wide range of validity for laboratory plasmas that contain argon gas and can be a valuable tool for the emerging field of atmospheric microplasmas, for which diagnostics is still limited.

  15. On-line experimental results of an argon gas cell-based laser ion source (KEK Isotope Separation System)

    Science.gov (United States)

    Hirayama, Y.; Watanabe, Y. X.; Imai, N.; Ishiyama, H.; Jeong, S. C.; Jung, H. S.; Miyatake, H.; Oyaizu, M.; Kimura, S.; Mukai, M.; Kim, Y. H.; Sonoda, T.; Wada, M.; Huyse, M.; Kudryavtsev, Yu.; Van Duppen, P.

    2016-06-01

    KEK Isotope Separation System (KISS) has been developed at RIKEN to produce neutron rich isotopes with N = 126 to study the β -decay properties for application to astrophysics. The KISS is an element-selective mass-separation system which consists of an argon gas cell-based on laser ion source for atomic number selection and an ISOL mass-separation system. The argon gas cell of KISS is a key component to stop and collect the unstable nuclei produced in a multi-nucleon transfer reaction, where the isotopes of interest will be selectively ionized using laser resonance ionization. We have performed off- and on-line experiments to study the basic properties of the gas cell as well as of the KISS. We successfully extracted the laser-ionized stable 56Fe (direct implantation of a 56Fe beam into the gas cell) atoms and 198Pt (emitted from the 198Pt target by elastic scattering with a 136Xe beam) atoms from the KISS during the commissioning on-line experiments. We furthermore extracted laser-ionized unstable 199Pt atoms and confirmed that the measured half-life was in good agreement with the reported value.

  16. Surface roughening of silicon, thermal silicon dioxide, and low-k dielectric coral films in argon plasma

    International Nuclear Information System (INIS)

    The surface roughness evolutions of single crystal silicon, thermal silicon dioxide (SiO2), and low dielectric constant film coral in argon plasma have been measured by atomic force microscopy as a function of ion bombardment energy, ion impingement angle, and etching time in an inductively coupled plasma beam chamber, in which the plasma chemistry, ion energy, ion flux, and ion incident angle can be adjusted independently. The sputtering yield (or etching rate) scales linearly with the square root of ion energy at normal impingement angle; additionally, the angular dependence of the etching yield of all films in argon plasma followed the typical sputtering yield curve, with a maximum around 60 deg. -70 deg. off-normal angle. All films stayed smooth after etching at normal angle but typically became rougher at grazing angles. In particular, at grazing angles the rms roughness level of all films increased if more material was removed; additionally, the striation structure formed at grazing angles can be either parallel or transverse to the beam impingement direction, which depends on the off-normal angle. More interestingly, the sputtering caused roughness evolution at different off-normal angles can be qualitatively explained by the corresponding angular dependent etching yield curve. In addition, the roughening at grazing angles is a strong function of the type of surface; specifically, coral suffers greater roughening compared to thermal silicon dioxide

  17. EFFECTS OF ARGON ON THE PROPERTIES OF RF SPUTTERED AMORPHOUS SILICON

    OpenAIRE

    Shao-Qi, Peng; Qai, Yu; Xian, Zhang; Jing, Ye

    1981-01-01

    The Effects of argon on the properties of rf sputtered amorphous silicon film have been investigated. As the sputtering argon pressure is increased from 2 to 20 mTorr, the content of argon in the amorphous silicon film increases apparently (Argon/Silicon : from 10-2 to 5 x 10-2). The other properties measured as a function of argon pressure PAr show that as the PAr is increased, the photoconductivity, resistivity (300K), conductivity activation energy and optical gap increase also, while the ...

  18. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters; Diagnostic du plasma de la source d'ions ECR SIMPA par spectroscopie X, Collision d'ions neon hydrogenoides avec des agregats d'argon

    Energy Technology Data Exchange (ETDEWEB)

    Adrouche, N

    2006-09-15

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne{sup 9+-} argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne{sup 9+} with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne{sup 9+} beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  19. First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon

    CERN Document Server

    Back, Henning O; Alton, Andrew; Condon, Christopher; de Haas, Ernst; Galbiati, Cristiano; Goretti, Augusto; Hohmann, Tristan; Ianni, Andrea; Kendziora, Cary; Loer, Ben; Montanari, David; Mosteiro, Pablo; Pordes, Stephen

    2012-01-01

    We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9% pure. After running in a batch mode, the argon purity was increased to 99.95%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixture was between 70% and 81%, at an argon production rate of 0.84-0.98 kg/day.

  20. 39th Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, E. A. (Compiler)

    2008-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA Marshall Space Flight Center (MSFC) and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 39th symposium, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 39th AMS was held in Huntsville, Alabama, May 7-9, 2008. During these 3 days, 34 papers were presented. Topics included gimbals and positioning mechanisms, tribology, actuators, deployment mechanisms, release mechanisms, and sensors. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  1. A concept of the photon collider beam dump

    CERN Document Server

    Shekhtman, L I

    2014-01-01

    Photon beams at photon colliders are very narrow, powerful (10--15 MW) and cannot be spread by fast magnets (because photons are neutral). No material can withstand such energy density. For the ILC-based photon collider, we suggest using a 150 m long, pressurized (P ~ 4 atm) argon gas target in front of a water absorber which solves the overheating and mechanical stress problems. The neutron background at the interaction point is estimated and additionally suppressed using a 20 m long hydrogen gas target in front of the argon.

  2. [Experience with argon laser in urological diseases (author's transl)].

    Science.gov (United States)

    Rothauge, C F; Nöske, H D; Kraushaar, J

    1981-09-01

    The application of the Argon laser in urology has proved to be effective in resecting recurrent, exophytic urothelial tumors of the bladder up to the size of a raspberry. In cases of wide spread bladder tumors we only perform a radiation of the resected area as local recurrence prophylaxis following transurethral resection. The urethroscopic Argon laser irradiation makes laser urethrotomy and evaporisation of urethral strictures possible. Furthermore, a curative and conservative treatment of urethral tumors is possible in combination with chemotherapy. The same applies for the penis carcinoma. Urethral ruptures are also successfully treated by urethroscopic laser recanalization. A determination of the ureteral submucosal course, which may allow a prognosis about the probable maturation, is possible in cases of cystoureteral reflux with the help of laser diaphanoscopy. PMID:7197839

  3. Development of cryogenic installations for large liquid argon neutrino detectors

    CERN Document Server

    Adamowski, M; Geynisman, M; Hentschel, S; Montanari, D; Nessi, M; Norris, B

    2015-01-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these...

  4. Measurement of longitudinal electron diffusion in liquid argon

    Science.gov (United States)

    Li, Yichen; Tsang, Thomas; Thorn, Craig; Qian, Xin; Diwan, Milind; Joshi, Jyoti; Kettell, Steve; Morse, William; Rao, Triveni; Stewart, James; Tang, Wei; Viren, Brett

    2016-04-01

    We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. In the region between 100 and 350 V/cm, our results show a discrepancy with the previous measurement [1]. In the region between 350 and 2000 V/cm, our results represent the world's best measurement. Over the entire measured electric field range, our results are systematically higher than the calculation of Atrazhev-Timoshkin [2]. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

  5. Evaporation and condensation at a liquid surface. I. Argon

    Science.gov (United States)

    Yasuoka, Kenji; Matsumoto, Mitsuhiro; Kataoka, Yosuke

    1994-11-01

    Molecular dynamics computer simulations were carried out to investigate the dynamics of evaporation and condensation for argon at the temperature of 80 and 100 K. From the decrease of the survival probability of vapor molecules, the ratio of self reflection to collision is estimated to be 12%-15%, only weakly dependent on the temperature. This suggests that argon vapor molecules are in the condition of almost complete capture, and the condensation is considered to be a barrierless process. The total ratio of reflection which is evaluated with the flux correlation of condensation and evaporation is 20% at both temperature. The difference between these two ratios of reflection is ascribed to a phenomenon that vapor molecules colliding with the surface drive out other liquid molecules. This molecule exchange at the surface is as important as the self-reflection, and the conventional picture of condensation as a unimolecular chemical reaction is not appropriate.

  6. Trimming a Metallic Biliary Stent Using an Argon Plasma Coagulator

    International Nuclear Information System (INIS)

    Background. Distal migration is one of the common complications after insertion of a covered metallic stent. Stent repositioning or removal is not always possible in every patient. Therefore, trimming using an argon plasma coagulator (APC) may be a good alternative method to solve this problem. Methods. Metallic stent trimming by APC was performed in 2 patients with biliary Wallstent migration and in another patient with esophageal Ultraflex stent migration. The power setting was 60-100 watts with an argon flow of 0.8 l/min. Observations. The procedure was successfully performed and all distal parts of the stents were removed. No significant collateral damage to the nearby mucosa was observed. Conclusions. In a patient with a distally migrated metallic stent, trimming of the stent is possible by means of an APC. This new method may be applicable to other sites of metallic stent migration

  7. Scintillation time dependence and pulse shape discrimination in liquid argon

    International Nuclear Information System (INIS)

    Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background- and statistics-limited level of electronic recoil contamination to be 7.6x10-7 between 52 and 110 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 62 keVr. Finally, we develop a maximum likelihood method of pulse shape discrimination based on the measured scintillation time dependence

  8. Demonstration of a Lightguide Detector for Liquid Argon TPCs

    CERN Document Server

    Bugel, L; Ignarra, C; Jones, B J P; Katori, T; Smidt, T; Tanaka, H -K

    2011-01-01

    We report demonstration of light detection in liquid argon using an acrylic lightguide detector system. This opens the opportunity for development of an inexpensive, large-area light collection system for large liquid argon time projection chambers. The guides are constructed of acrylic, with TPB embedded in a surface coating with a matching index of refraction. We study the response to early scintillation light produced by a 5.3 MeV alpha. We measure coating responses from 7 to 8 PE on average, compared to an ideal expectation of 10 PE on average. We estimate the attenuation length of light along the lightguide bar to be greater than 0.5 m. The coating response and the attenuation length can be improved; we show, however, that these results are already sufficient for triggering in a large detector.

  9. Opacity measurements in shock-generated argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.

    1993-07-01

    Dense plasmas having uniform and constant density and temperature are generated by passage of a planar shock wave through gas. The opacity of the plasma is accurately measured versus wavelength by recording the risetime of emitted light. This technique is applicable to a wide variety of species and plasma conditions. Initial experiments in argon have produced plasmas with 2 eV temperatures, 0.004--0.04 g/cm{sup 3} densities, and coupling parameters {Gamma} {approximately}0.3--0.7. Measurements in visible light are compared with calculations using the HOPE code. An interesting peak in the capacity at 400 nm is observed for the first time and is identified with the 4s-5p transition in excited neutral argon atoms.

  10. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.;

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...... unequivocally associated with electronic processes generated by the bombarding particle. In the present energy region, it is found that Y scales approximately as the electronic stopping power squared, depends on the charge state of the incoming helium ions, and perhaps more important, is independent of the...

  11. Observed damage during Argon gas cluster depth profiles of compound semiconductors

    International Nuclear Information System (INIS)

    Argon Gas Cluster Ion Beam (GCIB) sources have become very popular in XPS and SIMS in recent years, due to the minimal chemical damage they introduce in the depth-profiling of polymer and other organic materials. These GCIB sources are therefore particularly useful for depth-profiling polymer and organic materials, but also (though more slowly) the surfaces of inorganic materials such as semiconductors, due to the lower roughness expected in cluster ion sputtering compared to that introduced by monatomic ions. We have examined experimentally a set of five compound semiconductors, cadmium telluride (CdTe), gallium arsenide (GaAs), gallium phosphide (GaP), indium arsenide (InAs), and zinc selenide (ZnSe) and a high-κ dielectric material, hafnium oxide (HfO), in their response to argon cluster profiling. An experimentally determined HfO etch rate of 0.025 nm/min (3.95 × 10−2 amu/atom in ion) for 6 keV Ar gas clusters is used in the depth scale conversion for the profiles of the semiconductor materials. The assumption has been that, since the damage introduced into polymer materials is low, even though sputter yields are high, then there is little likelihood of damaging inorganic materials at all with cluster ions. This seems true in most cases; however, in this work, we report for the first time that this damage can in fact be very significant in the case of InAs, causing the formation of metallic indium that is readily visible even to the naked eye

  12. Observed damage during Argon gas cluster depth profiles of compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Anders J., E-mail: anders.barlow@ncl.ac.uk; Portoles, Jose F.; Cumpson, Peter J. [National EPSRC XPS Users' Service (NEXUS), School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2014-08-07

    Argon Gas Cluster Ion Beam (GCIB) sources have become very popular in XPS and SIMS in recent years, due to the minimal chemical damage they introduce in the depth-profiling of polymer and other organic materials. These GCIB sources are therefore particularly useful for depth-profiling polymer and organic materials, but also (though more slowly) the surfaces of inorganic materials such as semiconductors, due to the lower roughness expected in cluster ion sputtering compared to that introduced by monatomic ions. We have examined experimentally a set of five compound semiconductors, cadmium telluride (CdTe), gallium arsenide (GaAs), gallium phosphide (GaP), indium arsenide (InAs), and zinc selenide (ZnSe) and a high-κ dielectric material, hafnium oxide (HfO), in their response to argon cluster profiling. An experimentally determined HfO etch rate of 0.025 nm/min (3.95 × 10{sup −2} amu/atom in ion) for 6 keV Ar gas clusters is used in the depth scale conversion for the profiles of the semiconductor materials. The assumption has been that, since the damage introduced into polymer materials is low, even though sputter yields are high, then there is little likelihood of damaging inorganic materials at all with cluster ions. This seems true in most cases; however, in this work, we report for the first time that this damage can in fact be very significant in the case of InAs, causing the formation of metallic indium that is readily visible even to the naked eye.

  13. MicroBooNE and the Road to Large Liquid Argon Neutrino Detectors

    Science.gov (United States)

    Karagiorgi, G.

    Liquid Argon Time Projection Chambers (LArTPC's) provide a promising technology for multi-kiloton scale detectors aiming to address-among other pressing particle physics questions-the possibility of short and long baseline electron neutrino and antineutrino appearance. MicroBooNE, a 170 ton LArTPC under construction, is the next necessary step in a phased R&D effort toward construction and stable operation of larger-scale LArTPC's. This development effort also leans heavily on the ArgoNeuT and LAr1 LArTPC R&D experiments at Fermilab. In addition to advancing the LArTPC technology, these projects also provide unique physics opportunities. For example, Micro-BooNE will be located in the Booster Neutrino Beamline at Fermilab, at ∼470 m from neutrino production. Thus, in addition to measuring a suite of low energy neutrino cross sections on argon, MicroBooNE will investigate the anomalous low energy excess seen by the MiniBooNE experiment. Furthermore, the neutrino beam energy and relatively short baseline provide MicroBooNE with sensitivity to high-∼m2 neutrino oscillations. These proceedings summarize the role of the MicroBooNE detector in the US LArTPC R&D program, present its physics reach, and briefly discuss the physics potential of a dedicated near-future neutrino oscillation program at the Booster Neutrino Beamline, as a way to maximize the physics output of the Fermilab LArTPC R&D projects.

  14. Electron Neutrino Classification in Liquid Argon Time Projection Chamber Detector

    OpenAIRE

    Płoński, Piotr; Stefan, Dorota; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    Neutrinos are one of the least known elementary particles. The detection of neutrinos is an extremely difficult task since they are affected only by weak sub-atomic force or gravity. Therefore large detectors are constructed to reveal neutrino's properties. Among them the Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. The computerized methods for automatic reconstruction and identification of parti...

  15. Unified set of atomic transition probabilities for neutral argon

    OpenAIRE

    Wiese, W.; Brault, J.; Danzmann, K.; Helbig, V.; de Kock, M

    1989-01-01

    The atomic transition probabilities and radiative lifetimes of neutral argon have been the subject of numerous experiments and calculations, but the results exhibit many discrepancies and inconsistencies. We present a unified set of atomic transition probabilities, which is consistent with essentially all recent results, albeit sometimes only after critical reanalysis. The data consistency and scale confirmation has been achieved in two ways. (i) We have carried out some lifetime–branching-ra...

  16. Changes in colour contrast sensitivity associated with operating argon lasers.

    OpenAIRE

    Gündüz, K; Arden, G B

    1989-01-01

    A new test of colour vision using computer graphics has been used to obtain quantitative estimates of colour contrast sensitivity in ophthalmologists before and after they have treated patients by argon laser retinal photocoagulation. The colour vision of all subjects is normal when tested with the 100-hue test and HRR (Hardy, Rittler, Rand) plates, but colour contrast sensitivity measured along a tritan colour confusion line is selectively impaired after a treatment session. No such change o...

  17. Influence of argon pollution on the weld surface morphology

    OpenAIRE

    Krolczyk, G.M.; Nieslony, P.; Krolczyk, J.B.; I. Samardzic; Legutko, S.; S. Hloch; Barrans, Simon; Maruda, R.W.

    2015-01-01

    In this paper the surfaces of butt welded joints in steel tubes were analyzed using an optical 3D measurement system to determine the morphology and topographic parameters. It was established that pollution of the argon shield gas with oxygen did not influence the width of the heat-affected zone. However, the composition of the shield gas significantly influenced the surface asymmetry, Ssk, and its inclination Sku. The measurement of these parameters enabled the selection of a ...

  18. Experimental Investigation of Low Pressure Audio Frequency Discharge in Argon

    International Nuclear Information System (INIS)

    Experimental data obtained on audio frequency (100–10000 Hz) discharge in argon at four pressures 50, 60, 70, and 80 mTorr are presented. The data show significant changes of the discharge current waveform with frequency. These changes seem to be associated with the glow discharge profile and colour. An empirical model based on the assumption of a frequency-dependent breakdown voltage is used to describe the experimental data

  19. STATUS OF THE ATLAS LIQUID ARGON CALORIMETER AND ITS PERFORMANCE

    CERN Document Server

    Berillari, T; The ATLAS collaboration

    2011-01-01

    The liquid argon (LAr) calorimeters are used in ATLAS for all electromagnetic and for hadron calorimetry. The LAr calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic, hadronic and forward calorimeters. The latest status of the detector as well as problems and solutions addressed during the last years will be presented. Aspects of operation of a large detector over a long time period will be summarized and selected topics showing the performance of the detector will be shown.

  20. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Xiao, Tang;

    2013-01-01

    The thermal decomposition of La(C3H7CO2)3·xH2O (x≈0.82) was studied in argon during heating at 5K/min. After the loss of bound H2O, the anhydrous butyrate presents at 135°C a phase transition to a mesophase, which turns to an isotropic liquid at 180°C. The decomposition of the anhydrous butyrate ...

  1. Argon laser photocoagulation of cyclodialysis clefts after cataract surgery

    International Nuclear Information System (INIS)

    Three patients with cyclodialysis clefts, hypotony and hypotonic retinopathy subsequent to cataract surgery were treated with argon laser photocoagulation. The hypotony was reversed in each patient and their visual acuity was normalized. Laser photocoagulation is a noninvasive treatment that can be repeated easily and safely. The complications of the treatment are minor. A hypertensive episode commonly occurs in the early postoperative period. (au) 8 refs

  2. Spectroscopic Investigations of Air Entrainment into an Argon Plasma Jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Něnička, Václav; Šlechta, Jiří; Krejčí, Luděk; Dolínek, Vladimír; Sopuch, Pavel

    Vol. 3. Orléans : GREMI, CNRS/University of Orléans, 2001 - (Bouchoule, A.; Pouvesle, J.), s. 1107-1110 [INTERNATIONAL SYMPOSIUM ON PLASMA CHEMISTRY /15./. Orléans (FR), 09.07.2001-13.07.2001] R&D Projects: GA AV ČR IAA1057001; GA ČR GA202/99/0389 Keywords : nitrogen molecular bands * dependence of nitrogen radiations on the argon flow rate Subject RIV: BL - Plasma and Gas Discharge Physics

  3. Two dimensional condensation of argon adsorbed on lamellar halides

    International Nuclear Information System (INIS)

    Lamellar halides such as NiCl2, FeCl2, NiBr2, MnBr2, MgBr2, CdBr2, CoI2, FeI2, MnI2, CaI2 and PbI2 were sublimed in a rapid stream of dry nitrogen. The adsorption of argon on such materials shows stepped isotherms which reveal two dimensional condensations. From sets of isotherms the Helmholtz free energy, the internal energy and the entropy of the successive layers are determined. From the entropy of the first layer the role of the potential relief of the adsorbent surface on the structure of the adsorbed layer may be determined while the Helmholtz free energy reveals how the ionic character of the adsorbent governs the attractive force of adsorption. The study of the second third and fourth layers shows that their growth follows quite a different behaviour depending on whether the Van der Waals diameter of argon is greater or smaller than the distance between adjacent anions on the crystal surface. A proposition is made to account for the difference in the critical temperatures of the first and second dense layers in terms of the vibrationnal state of their respective substrate. The occurence for the maximum critical temperature observed of corresponding to a triangular layer 3% more expanded than the (111) plane of solid argon is discussed

  4. A liquid argon scintillation veto for the Gerda experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wegmann, Anne [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay of {sup 76}Ge. Bare germanium detectors are operated in a cryostat with 65 m{sup 3} of liquid argon (LAr). To reach the aspired background index of ≤10{sup -3} cts/(keV.kg.yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). A light instrumentation of LAr installed in the LArGe test facility has demonstrated that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. Based on these results, Gerda pursues several options for the light instrumentation, which have to be compatible with the stringent radiopurity requirements of the experiment and should provide a significant suppression of the background in the region of interest around Q{sub ββ} at 2039 keV. This talk gives an account of the competing design options under investigation in the Gerda collaboration. The design options using photomultiplier tubes (PMT) and silicon photomultipliers (SiPM) are discussed, together with their expected performance from Monte Carlo simulations. In addition, the progress of development is reported, along with the design criteria for light instrumentation in Gerda.

  5. A liquid argon scintillation veto for the Gerda experiment

    International Nuclear Information System (INIS)

    Gerda is an experiment to search for the neutrinoless double beta decay of 76Ge. Bare germanium detectors are operated in a cryostat with 65 m3 of liquid argon (LAr). To reach the aspired background index of ≤10-3 cts/(keV.kg.yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). A light instrumentation of LAr installed in the LArGe test facility has demonstrated that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. Based on these results, Gerda pursues several options for the light instrumentation, which have to be compatible with the stringent radiopurity requirements of the experiment and should provide a significant suppression of the background in the region of interest around Qββ at 2039 keV. This talk gives an account of the competing design options under investigation in the Gerda collaboration. The design options using photomultiplier tubes (PMT) and silicon photomultipliers (SiPM) are discussed, together with their expected performance from Monte Carlo simulations. In addition, the progress of development is reported, along with the design criteria for light instrumentation in Gerda.

  6. Demonstration and comparison of photomultiplier tubes at liquid Argon temperature

    International Nuclear Information System (INIS)

    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photomultiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics K.K. Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R and D program of the WArP Collaboration. During these tests the Hamamatsu PMTs showed excellent performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments.

  7. Electron density measurements of high pressure argon surface wave plasmas

    International Nuclear Information System (INIS)

    The electron density of an argon standing surface wave plasma has been measured from Stark broadening of the hydrogen H/sub beta/ (4861A) line. The experimental setup, consisting of two coaxial cavities, was similar to that reported by Rogers and Asmussen. The plasma was generated by 45 watts per cavity of CW, 2.54 GHz microwave power in a 6 mm O.D. (4 mm I.D.) quartz tube. Experimental argon gas pressure varied from 50 torr to over one atmosphere. Small amounts (1-5%) of hydrogen added to the argon plasma were found to shorten the plasma by as much as 80%. Thus, the Stark measurements were made using trace amounts of hydrogen. The line width of H/sub beta/ was measured with a 1 meter Czerny-Turner grating spectrometer. The Stark broadening measurements revealed that the electron density is between 1013 and 1014 electrons/cc for a pressure range of 50 to 1000 torr. These measurements agree very well with the electron density determined from the wavelength of standing surface waves. The volume of the plasma was also measured photographically and average plasma power densities (absorbed power in the plasma divided by the plasma volume) was calculated

  8. MARLEY: Model of Argon Reaction Low Energy Yields

    Science.gov (United States)

    Gardiner, Steven; Bilton, Kyle; Grant, Christopher; Pantic, Emilija; Svoboda, Robert

    2015-10-01

    Core-collapse supernovae are sources of tremendous numbers of neutrinos with energies of up to about 50 MeV. In recent years, there has been growing interest in building detectors that are sensitive to supernova neutrinos. Such detectors can provide information about the initial stages of stellar collapse, early warning signals for light emission from supernovae, and opportunities to study neutrino oscillation physics over astronomical distances. In an effort to enable supernova neutrino detection in next-generation experiments like DUNE, the CAPTAIN collaboration plans to make the first direct measurement of cross sections for neutrino interactions on argon in the supernova energy regime. To help predict neutrino event signatures in the CAPTAIN liquid argon time projection chamber (LArTPC), we have developed a first-of-its-kind Monte Carlo event generator called MARLEY (Model of Argon Reaction Low Energy Yields). This generator attempts to model the complicated nuclear structure dependence of low-energy neutrino-nucleus reactions in sufficient detail for use in LArTPC simulations. In this talk we present some preliminary results calculated using MARLEY and discuss how the current version of the generator may be improved and expanded.

  9. Isotopic fractionation of argon during stepwise release from shungite

    International Nuclear Information System (INIS)

    In previous attempts to determine the 40Ar/36Ar ratio in the ancient atmosphere, the only direct measurement yielding a value below the atmospheric value of today is for argon released at low temperatures from a pre-Cambrian shungite, an amorphous carbon mineral The present work confirms a low value for 40Ar/36Ar in gas released from a type I shungite at low temperatures. But quantitative scrutiny of the accompanying 38AR/36Ar ratios and the enhanced ratio of 40Ar/36Ar for the fractions released at high temperatures shows convincingly that the effect seen here is an artifact of the stepwise heating and the argon diffusion mobilized thereby. The low 40Ar/36Ar previously obtained is very likely from the same cause rather than reflecting the isotopic composition of the pre-Cambrian atmosphere. The vitreous character of and the sharp, conchoidal fractures seen in the specimens of type I shungite suggest that the substance may exhibit simple volume diffusion over macroscopic dimensions as glasses do. If so, the diffusion parameters (D infinitely = 3 x 10-4 cm2/s and E = 11 kcal/mole) obtained from the data imply rapid exchange with the atmosphere for any argon initially trapped in centimenter-thick veins of the material. (orig.)

  10. Isotopic fractionation of argon during stepwise release from shungite

    Science.gov (United States)

    Rison, W.

    1980-05-01

    It is noted that in previous attempts to determine the Ar-40/Ar-36 ratio in the ancient atmosphere, the only direct measurement yielding a value below the atmospheric value of today is for argon released at low temperatures from a pre-Cambrian shungite. In the present work, a low value for Ar-40/Ar-36 in gas released from a type I shungite at low temperatures is confirmed. Attention is given to a study of the accompanying Ar-38/Ar-36 ratios and the enhanced ratio of Ar-40/Ar-36 for the fractions released at high temperatures which shows that the effect observed is a result of the stepwise heating and the argon diffusion mobilized thereby. It is suggested that the low Ar-40/Ar-36 obtained in the past is from the same source rather than reflecting the isotropic composition of the pre-Cambrian atmosphere, and that the type I shungite may exhibit simple volume diffusion over macroscopic dimensions as glasses do. It is concluded that if this is so, the diffusion parameters obtained from the data would imply rapid exchange with the atmosphere for any argon initially trapped in the veins of the material.

  11. ARAPUCA a new device for liquid argon scintillation light detection

    International Nuclear Information System (INIS)

    We present a totally innovative device for the detection of liquid argon scintillation light, that has been named ARAPUCA (Argon R and D Advanced Program at UniCAmp). It is composed of a passive light collector and of active devices. The latters are standard SiPMs that operate at liquid argon temperature, while the passive collector is based on a new technology, never explored in this field before. It is a photon trap, that allows to collect light with extremely high efficiency. The total detection efficiency of the device can be tuned by modifying the ratio between the area of the active devices (SiPM) and the area of the optical window. For example, it will allow to reach a detection efficiency at the level of 1% on a surface of 50 × 50 cm2 with an active coverage of 2 × 2 cm2 (two/three large area SiPM). It is also a cheap device, since the major part of its cost is represented by the active devices. For these reason this appears to be the ideal device for scintillation light detection in large Time Projection Chambers. With appropriate modifications it can be used also in next generation Dark Matter detectors

  12. Demonstration and comparison of photomultiplier tubes at liquid Argon temperature

    Science.gov (United States)

    Acciarri, R.; Antonello, M.; Boffelli, F.; Cambiaghi, M.; Canci, N.; Cavanna, F.; Cocco, A. G.; Deniskina, N.; Di Pompeo, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Kryczynski, P.; Meng, G.; Montanari, C.; Palamara, O.; Pandola, L.; Perfetto, F.; Piano Mortari, G. B.; Pietropaolo, F.; Raselli, G. L.; Rubbia, C.; Segreto, E.; Szelc, A. M.; Triossi, A.; Ventura, S.; Vignoli, C.; Zani, A.

    2012-01-01

    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photomultiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics K.K. Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these tests the Hamamatsu PMTs showed excellent performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments.

  13. Metal clusters on supported argon layers; Metallcluster auf dielektrischen Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Bernhard

    2011-10-21

    The deposition of small sodium clusters on supported Ar(001)-surfaces is simulated. Theoretical description is achieved by a hierarchical model consisting of time-dependent DFT and molecular dynamics. The valence electrons of the sodium atoms are considered by Kohn-Sham-Scheme with self interaction correction. The interaction of argon atoms and sodium ions is described by atom-atom potentials whereas the coupling to the QM electrons is done by local pseudo-potentials. A decisive part of the model is the dynamical polarizability of the rare-gas atoms. The optional metal support is considered by the method of image charges. The influence of the forces caused by image charges and the influence of the number of argon monolayers on structure, optical response and deposition dynamics of Na{sub 6} and Na{sub 8} is investigated. There is very little influence on cluster structure and only a small shift of the cluster perpendicular to the surface. Concerning optical response the position of the Mie plasmon peak stays robust whereas the details of spectral fragmentation react very sensitively to changes. The forces caused by image charges of the metal support play only a little role with the dynamics of deposition while the thickness of the argon surface strongly influences the dissipation. (orig.)

  14. Status of the ATLAS Liquid Argon Calorimeter and its Performance

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region |eta|<3.2, as well as for hadronic calorimetry from |eta|=1.4 to |eta|=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes ...

  15. ARAPUCA a new device for liquid argon scintillation light detection

    Science.gov (United States)

    Machado, A. A.; Segreto, E.

    2016-02-01

    We present a totally innovative device for the detection of liquid argon scintillation light, that has been named ARAPUCA (Argon R&D Advanced Program at UniCAmp). It is composed of a passive light collector and of active devices. The latters are standard SiPMs that operate at liquid argon temperature, while the passive collector is based on a new technology, never explored in this field before. It is a photon trap, that allows to collect light with extremely high efficiency. The total detection efficiency of the device can be tuned by modifying the ratio between the area of the active devices (SiPM) and the area of the optical window. For example, it will allow to reach a detection efficiency at the level of 1% on a surface of 50 × 50 cm2 with an active coverage of 2 × 2 cm2 (two/three large area SiPM). It is also a cheap device, since the major part of its cost is represented by the active devices. For these reason this appears to be the ideal device for scintillation light detection in large Time Projection Chambers. With appropriate modifications it can be used also in next generation Dark Matter detectors.

  16. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  17. Dating blueschist metamorphism: a combined /sup 40/Ar//sup 39/Ar and electron microprobe approach

    Energy Technology Data Exchange (ETDEWEB)

    Sisson, V.B.; Onstott, T.C.

    1986-09-01

    /sup 40/Ar//sup 39/Ar and electron microprobe examination of blueschist samples from the Iceberg Lake schist, southern Alaska suggest that phengite inclusions are the source of /sup 40/Ar in crossite. Because such fine-grained inclusions may be susceptible to argon loss, caution should be exercised in interpreting K-Ar ages from this phase, and possibly other low-K amphiboles from blueschist suites. The estimated blocking temperature for phengite in the matrix (314/sup 0/ to 450/sup 0/C), however, is close to the estimated peak metamorphic temperatures (325/sup 0/ +- 50/sup 0/C), suggesting that phengite /sup 40/Ar//sup 39/Ar plateau dates may coincide closely with the time of blueschist metamorphism.

  18. Transurethral laser urethrotomy with argon laser: experience with 900 urethrotomies in 450 patients from 1978 to 1993.

    Science.gov (United States)

    Becker, H C; Miller, J; Nöske, H D; Klask, J P; Weidner, W

    1995-01-01

    From April 1978 to September 1993, the Department of Urology of Giessen Medical School used laser urethrotomy as standard endoscopic treatment in benign urethral strictures. In this period, 900 urethrotomies were performed in 450 patients. The majority of strictures treated were iatrogenic (65%), located in the posterior urethra (62.8%) and classified as short (laser urethrotomy was carried out in the 12 degrees position according to the technique of internal optical urethrotomy. An indwelling transurethral catheter was left for 48 h after urethrotomy. Uroflowmetry after argon laser urethrotomy revealed the efficacy of the method. A retrospective analysis of the operations was performed. Analysis showed that recurrence appeared on average after 15.2 months (range 1-39) in up to 70.1%. Nearly 50% of recurrence was evident within 1 year following surgery. Recurrence was independent of location, length and etiology of the stricture. We conclude according to our data that argon laser urethrotomy is technically feasible. Due to the high recurrence rate the method offers no advantage over conventional internal optical urethrotomy. PMID:8540160

  19. Roles of argon seeding in energy confinement and pedestal structure in JT-60U

    International Nuclear Information System (INIS)

    The mechanism of improving energy confinement with argon seeding at high density has been investigated in JT-60U. Better confinement is sustained at high density by argon seeding accompanied by higher core and pedestal temperatures. The electron density profiles become flatter with increasing density in conventional H-mode plasmas, whereas peaked density profiles are maintained with argon seeding. Density peaking and dilution effects lower the pedestal density at a given averaged density. The pedestal density in the argon seeded plasmas, which is lower than that in plasmas with deuterium puff, enables the pedestal temperature to be higher, whereas the increase in the pedestal pressure with argon seeding is small. High pedestal temperature is a boundary condition for high core temperature through profile stiffness, which leads to better confinement with argon seeding. The density peaking is a key factor of sustaining better confinement in argon seeded H-mode plasmas. The radiative loss power density is predominantly enhanced in the edge region by argon puff. The role of argon seeding in the pedestal characteristics has also been examined. The pedestal width becomes larger continuously with edge collisionality, but is nearly independent of the presence of argon seeding. (paper)

  20. Argon-41 production and evolution at the Oregon State University TRIGA Reactor (OSTR)

    International Nuclear Information System (INIS)

    In this study, argon-41 concentrations were measured at various locations within the reactor facility to assess the accuracy of models used to predict argon-41 evolution from the reactor tank, and to determine the relationship between argon gas evolution from the tank and subsequent argon-41 concentrations throughout the reactor room. In particular, argon-41 was measured directly above the reactor tank with the reactor tank lids closed, at other accessible locations on the reactor top with the tank lids both closed and open, and at several locations on the first floor of the reactor room. These measured concentrations were then compared to values calculated using a modified argon-41 production and evolution model for TRIGA reactor tanks and ventilation values applicable to the OSTR facility. The modified model was based in part on earlier TRIGA models for argon-41 production and release, but added features which improved the agreement between predicted and measured values. The approximate dose equivalent rate due to the presence of argon-41 in reactor room air was calculated for several different locations inside the OSTR facility. These dose rates were determined using the argon-41 concentration measured at each specific location, and were subsequently converted to a predicted quarterly dose equivalent for each location based on the reactor's operating history. The predicted quarterly dose equivalent values were then compared to quarterly doses measured by film badges deployed as dose-integrating area radiation monitors at the locations of interest. The results indicate that the modified production and evolution model is able to predict argon-41 concentrations to within a factor of ten when compared to the measured data. Quarterly dose equivalents calculated from the measured argon-41 concentrations and the reactor's operating history seemed consistent with results obtained from the integrating area radiation monitors. Given the argon-41 concentrations measured

  1. Variation in the terrestrial isotopic composition and atomic weight of argon

    Science.gov (United States)

    Böhlke, John Karl

    2014-01-01

    The isotopic composition and atomic weight of argon (Ar) are variable in terrestrial materials. Those variations are a source of uncertainty in the assignment of standard properties for Ar, but they provide useful information in many areas of science. Variations in the stable isotopic composition and atomic weight of Ar are caused by several different processes, including (1) isotope production from other elements by radioactive decay (radiogenic isotopes) or other nuclear transformations (e.g., nucleogenic isotopes), and (2) isotopic fractionation by physical-chemical processes such as diffusion or phase equilibria. Physical-chemical processes cause correlated mass-dependent variations in the Ar isotope-amount ratios (40Ar/36Ar, 38Ar/36Ar), whereas nuclear transformation processes cause non-mass-dependent variations. While atmospheric Ar can serve as an abundant and homogeneous isotopic reference, deviations from the atmospheric isotopic ratios in other Ar occurrences limit the precision with which a standard atomic weight can be given for Ar. Published data indicate variation of Ar atomic weights in normal terrestrial materials between about 39.7931 and 39.9624. The upper bound of this interval is given by the atomic mass of 40Ar, as some samples contain almost pure radiogenic 40Ar. The lower bound is derived from analyses of pitchblende (uranium mineral) containing large amounts of nucleogenic 36Ar and 38Ar. Within this interval, measurements of different isotope ratios (40Ar/36Ar or 38Ar/36Ar) at various levels of precision are widely used for studies in geochronology, water–rock interaction, atmospheric evolution, and other fields.

  2. RFLP Analysis of rice semi dwarf mutation induced by high energy argon ion radiation

    International Nuclear Information System (INIS)

    Two Indica rice varieties, Bianpizhan and Xiangzhan, and their semi dwarf mutants induced by high energy argon ion radiation, Ar 10, and Xiang Ar 1, were examined with restriction fragment length polymorphism(RFLP)analysis by using 97 rice single copy genomic clones mapped on 12 chromosomes of molecular genetic map, combined with 5 restriction enzymes.Among the markers screened, 9 detected polymorphism were between Bianpizhan and Ar 10, and 11 detected polymorphism were between Xiangzhan and Xiang Ar 1.Moreover, two or more restriction enzymes could generate RFLP patterns when screened with a given marker for several polymorphic markers. Based on the polymorphic allelic loci, the mutation frequencies were estimated as 5 15% and 6 39% for Ar 10 and Xiang Ar 1 respectively.These results suggested that the nature of mutation on the DNA level was probably large genetic changes rather than point mutation.Genetic analysis and gene tagging of semi dwarf mutation in one of the mutant line, Ar 10, indicated that this mutation was controlled by a major recessive gene, which was preliminary located on chromosome 4. (author)

  3. Accelerated Thermalisation of 39K atoms in a Magnetic Trap with Superimposed Optical Potential

    CERN Document Server

    Nath, Dipankar; Rajalakshmi, G; Unnikrishnan, C S

    2013-01-01

    We report the rapid accelerated thermalisation of Potassium 39 K atoms loaded in a magnetic trap, in the presence of a single dipole trap beam. More than an order of magnitude reduction in the thermalisation time, to less than a second, is observed with the focused off- resonant beam occupying only 0.01% of the volume of the magnetic trap. The cold atoms are loaded from a Magneto-Optical Trap(MOT) of 39 K that has gone through a compressed MOT and sub-Doppler cooling stage. The atoms are prepared in the magnetically stretched |F = 2, mF = 2> state prior to loading into the hybrid trap. We also report a direct loading of 39 K atoms, prepared in the state |F = 1>, into a single beam dipole trap.

  4. Divergence of optical vortex beams.

    Science.gov (United States)

    Reddy, Salla Gangi; Permangatt, Chithrabhanu; Prabhakar, Shashi; Anwar, Ali; Banerji, J; Singh, R P

    2015-08-01

    We show, both theoretically and experimentally, that the propagation of optical vortices in free space can be analyzed by using the width [w(z)] of the host Gaussian beam and the inner and outer radii of the vortex beam at the source plane (z=0) as defined in [Opt. Lett.39, 4364 (2014)10.1364/OL.39.004364OPLEDP0146-9592]. We also studied the divergence of vortex beams, considered as the rate of change of inner or outer radius with the propagation distance (z), and found that it varies with the order in the same way as that of the inner and outer radii at z=0. These results may be useful in designing optical fibers for orbital angular momentum modes that play a crucial role in quantum communication. PMID:26368081

  5. Ion beam source construction and applications

    International Nuclear Information System (INIS)

    The aim of this thesis is to improve the performance of a new shape cold cathode Penning ion source to be suitable for some applications. In this work, many trials have been made to reach the optimum dimensions of the new shape of cold Molybdenum cathode Penning ion source with radial extraction. The high output ion beam can be extracted in a direction transverse to the discharge region. The new shape cold cathode Penning ion source consists of Copper cylindrical hollow anode of 40 mm length, 12 mm diameter and has two similar cone ends of 15 mm length, 22 mm upper cone diameter and 12 mm bottom cone diameter. The two movable Molybdenum cathodes are fixed in Perspex insulator and placed symmetrically at two ends of the anode. The Copper emission disc of 2 mm thickness and has central aperture of different diameters is placed at the middle of the anode for ion beam exit. The inner surface of the emission disc is isolated from the anode by Perspex insulator except an area of diameter 5 mm to confine the electrical discharge in this area. A movable Faraday cup is placed at different distances from the emission electrode aperture and used to collect the output ion beam from the ion source. The working gases are admitted to the ion source through a hole in the anode via a needle valve which placed between the gas cylinder and the ion source. The optimum anode- cathode distance, the uncovered area diameter of the emission disc, the central aperture diameter of the emission electrode, the distance between emission electrode and Faraday cup have been determined using Argon gas. The optimum distances of the ion source were found to be equal to 6 mm, 5 mm, 2.5 mm, and 3 cm respectively where stable discharge current and maximum output ion beam current at low discharge current can be obtained. The discharge characteristics, ion beam characteristics, and the efficiency of the ion source have been measured at different operating conditions and different gas pressures using

  6. 7 CFR 652.39 - Mitigating factors.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Mitigating factors. 652.39 Section 652.39 Agriculture... AGRICULTURE SUPPORT ACTIVITIES TECHNICAL SERVICE PROVIDER ASSISTANCE Decertification § 652.39 Mitigating..., the deciding official will take into consideration any mitigating factors. Examples of...

  7. 10 CFR 39.71 - Security.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Security. 39.71 Section 39.71 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Security, Records, Notifications § 39.71 Security. (a) A logging supervisor must be physically present at a temporary jobsite...

  8. 34 CFR 300.39 - Special education.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Special education. 300.39 Section 300.39 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND... DISABILITIES General Definitions Used in This Part § 300.39 Special education. (a) General. (1)...

  9. 34 CFR 104.39 - Private education.

    Science.gov (United States)

    2010-07-01

    ... Preschool, Elementary, and Secondary Education § 104.39 Private education. (a) A recipient that provides... 34 Education 1 2010-07-01 2010-07-01 false Private education. 104.39 Section 104.39 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF...

  10. 45 CFR 84.39 - Private education.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 1 2010-10-01 2010-10-01 false Private education. 84.39 Section 84.39 Public... HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Preschool, Elementary, and Secondary Education § 84.39 Private education. (a) A recipient that provides private elementary or...

  11. 45 CFR 605.39 - Private education.

    Science.gov (United States)

    2010-10-01

    ... 45 Public Welfare 3 2010-10-01 2010-10-01 false Private education. 605.39 Section 605.39 Public... ON THE BASIS OF HANDICAP IN PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Preschool, Elementary, and Secondary Education § 605.39 Private education. (a) A recipient that provides...

  12. 31 CFR 8.39 - Fees.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Fees. 8.39 Section 8.39 Money and... AND FIREARMS Duties and Restrictions Relating to Practice § 8.39 Fees. No attorney, certified public accountant, or enrolled practitioner may charge an unconscionable fee for representing a client in any...

  13. 40 CFR 68.39 - Documentation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Documentation. 68.39 Section 68.39... ACCIDENT PREVENTION PROVISIONS Hazard Assessment § 68.39 Documentation. The owner or operator shall... passive mitigation that were assumed to limit the quantity that could be released. Documentation...

  14. 10 CFR 25.39 - Criminal penalties.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Criminal penalties. 25.39 Section 25.39 Energy NUCLEAR REGULATORY COMMISSION ACCESS AUTHORIZATION Violations § 25.39 Criminal penalties. (a) Section 223 of the Atomic Energy Act of 1954, as amended, provides for criminal sanctions for willful violation...

  15. 21 CFR 814.39 - PMA supplements.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false PMA supplements. 814.39 Section 814.39 Food and... PREMARKET APPROVAL OF MEDICAL DEVICES Premarket Approval Application (PMA) § 814.39 PMA supplements. Link to... shall submit a PMA supplement for review and approval by FDA before making a change affecting the...

  16. 46 CFR 151.03-39 - Ocean.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ocean. 151.03-39 Section 151.03-39 Shipping COAST GUARD... HAZARDOUS MATERIAL CARGOES Definitions § 151.03-39 Ocean. A designation for all vessels normally navigating the waters of any ocean or the Gulf of Mexico more than 20 nautical miles offshore....

  17. 14 CFR 141.39 - Aircraft.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft. 141.39 Section 141.39 Aeronautics... CERTIFICATED AGENCIES PILOT SCHOOLS Personnel, Aircraft, and Facilities Requirements § 141.39 Aircraft. (a... certificate or provisional pilot school certificate must show that each aircraft used by the school for...

  18. 14 CFR 63.39 - Skill requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Skill requirements. 63.39 Section 63.39 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: FLIGHT CREWMEMBERS OTHER THAN PILOTS Flight Engineers § 63.39 Skill requirements. (a)...

  19. 14 CFR 35.39 - Endurance test.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Endurance test. 35.39 Section 35.39... STANDARDS: PROPELLERS Tests and Inspections § 35.39 Endurance test. Endurance tests on the propeller system... propellers must be subjected to one of the following tests: (1) A 50-hour flight test in level flight or...

  20. 34 CFR 674.39 - Loan rehabilitation.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false Loan rehabilitation. 674.39 Section 674.39 Education..., DEPARTMENT OF EDUCATION FEDERAL PERKINS LOAN PROGRAM Terms of Loans § 674.39 Loan rehabilitation. (a) Each institution must establish a loan rehabilitation program for all borrowers for the purpose of...

  1. 41 CFR 101-39.003 - Financing.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Financing. 101-39.003... MANAGEMENT SYSTEMS 39.0-General Provisions § 101-39.003 Financing. (a) Section 211(d) of the Federal Property... fleet management system, the financing and accounting methods shall be developed by GSA in...

  2. 28 CFR 39.160 - Communications.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Communications. 39.160 Section 39.160... PROGRAMS OR ACTIVITIES CONDUCTED BY THE DEPARTMENT OF JUSTICE § 39.160 Communications. (a) The agency shall take appropriate steps to ensure effective communication with applicants, participants, personnel...

  3. 39 CFR 3060.21 - Income report.

    Science.gov (United States)

    2010-07-01

    ... (line 3 less line 6). Line (8): Minimum amount of Institutional Cost contribution required under 39 CFR... calculated under 39 CFR 3060.40. Line (11): Line 9 less line 10. ... 39 Postal Service 1 2010-07-01 2010-07-01 false Income report. 3060.21 Section 3060.21...

  4. 14 CFR 437.39 - Flight rules.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight rules. 437.39 Section 437.39 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Documentation § 437.39 Flight rules. An applicant must provide flight rules as required by § 437.71....

  5. 49 CFR 230.39 - Broken staybolts.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Broken staybolts. 230.39 Section 230.39... Staybolts § 230.39 Broken staybolts. (a) Maximum allowable number of broken staybolts. No boiler shall be allowed to remain in service with two broken staybolts located within 24 inches of each other, as...

  6. 21 CFR 17.39 - Evidence.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Evidence. 17.39 Section 17.39 Food and Drugs FOOD... HEARINGS § 17.39 Evidence. (a) The presiding officer shall determine the admissibility of evidence. (b... Evidence.” However, the presiding officer may apply the “Federal Rules of Evidence” when appropriate,...

  7. Comparative effects of argon green and krypton red laser photocoagulation for patients with diabetic exudative maculopathy.

    OpenAIRE

    Khairallah, M; Brahim, R; Allagui, M.; Chachia, N

    1996-01-01

    AIMS/BACKGROUND: Focal treatment of diabetic macular oedema is usually done using a haemoglobin absorbing wave-length, such as argon green laser. This study aimed to compare photocoagulation with argon green (514 nm) and krypton red (647 nm), which is poorly absorbed by haemoglobin, in the focal treatment of patients with diabetic exudative maculopathy. METHODS: A total of 151 eyes of 78 outpatients were assigned randomly to receive either argon green (n = 79) or krypton red (n = 72) laser tr...

  8. Emission properties of an atmospheric pressure argon plasma jet excited by barrier discharge

    International Nuclear Information System (INIS)

    An atmospheric-pressure argon plasma jet is initiated by the barrier discharge in a capillary, through which argon was flown. The spectral composition of radiation emitted by the jet in the atmosphere and its variation in the space are analyzed in detail. The jet radiation spectrum is shown to be predominantly formed by spectral transitions of argon and oxygen atoms, by electron-vibrational transitions of the first positive system of nitrogen molecules N2, and by transitions of hydroxyl radical OH

  9. The effects of argon in the bioenergetics of the hamster and the rat

    Science.gov (United States)

    Tempel, G. E.; Musacchia, X. J.

    1974-01-01

    Oxygen consumption was examined in hamsters and rats exposed to normoxic mixtures of argon at 1 atm. In fasted and nonfasted animals, no marked change in O2 utilization was detectable at 22 C. However, at 7 C a significant decrease in oxygen consumption was observed where the animals were exposed in argon. The data are interpreted in terms of the greater thermal conductivity of nitrogen. The study was prompted by conflicting reports on the metabolic effects of argon and helium.

  10. Argon Laser Photoablation for Treating Benign Pigmented Conjunctival Nevi

    Science.gov (United States)

    Alsharif, Abdulrahman M.; Al-Gehedan, Saeed M.; Alasbali, Tariq; Alkuraya, Hisham S.; Lotfy, Nancy M.; Khandekar, Rajiv

    2016-01-01

    Purpose: To evaluate the outcomes of argon laser photoablation of benign conjunctival pigmented nevi with different clinical presentations. Patients and Methods: This interventional case series was conducted between July 2014 and January 2015. Patients presenting with benign conjunctival nevi were included. Data were collected on the clinical features at presentation, argon laser photoablation, and follow-up at 8 and 24 weeks. Postoperative photography allowed recording of the success of each case and the overall success rate. Complete removal of conjunctival pigments was considered an absolute success. Partial pigmentation requiring repeat laser treatment was considered a qualified success. Results: There were 14 eyes (four right eyes and ten left eyes) with benign pigmented conjunctival nevi. There were three males and eight females in the study sample. The median age was 36 (25% percentile: 26 years). Three patients had bilateral lesions. The nevi were located temporally in nine eyes, nasally in three eyes, and on the inferior bulbar conjunctiva in two eyes. The mean horizontal and vertical diameters of nevi were 5 ± 2 mm and 4 ± 2.7 mm, respectively. The mean follow-up period was 5 months. Following laser treatment, no eyes had subconjunctival hemorrhage, infection, scarring, neovascularization, recurrence, or corneal damage. The absolute success rate of laser ablation was 79%. Three eyes with elevated nevi had one to three sessions of laser ablation resulting in a qualified success rate of 100%. Conclusions: Argon laser ablation was a safe and effective treatment for the treatment of selective benign pigmented conjunctival nevi in Arab patients. PMID:27555708

  11. Neutron dosimeter utilizing CR-39

    International Nuclear Information System (INIS)

    A personnel neutron dosimeter has been developed with discretization in a wide range of energies of real interest, utilizing the CR-39 polymer, to detect recoil protons in the fast range, and alpha particles in the thermal and epithermal ranges, with possibility to be disposed in the IRD/CNEN's conventional film badge suport. They are presented, abstractly, the difficulties and importance of the neutron dosimetry, beyond the general objectives that motivated this work execution. The details of the materials utilized in the dosimeter confection, and the experimental methodology employed to obtain the performance curves are presented. The results about linearity response of the dosimeter with respect to equivalent dose, in a wide range of doses, and about the verified angular dependence are analysed. (author)

  12. Sodium aerosol formation in an argon flow over hot sodium

    International Nuclear Information System (INIS)

    Vapour evaporation, which partly forms aerosol, occurs when a cold gas flows over a hot liquid. A previous well-mixed model is extended to predict the final vapour plus aerosol content of such a flow in terms of its initial and final temperatures. The predictions are compared to results of the Copacabana II experiment in which argon passed over a sodium pool. Agreement is obtained for the final sodium density at moderate flow rates, and physical reasons are given as to why deviations occur at low and high flow rates. (author)

  13. Optical fiber read-out for liquid argon scintillation light

    CERN Document Server

    Csáthy, J Janicskó; Kratz, J; Schönert, S; Wiesinger, Ch

    2016-01-01

    In this paper we describe the performance of a light detector for Ar scintillation light made of wavelength-shifting (WLS) fibers connected to Silicon-Photomultipliers (SiPM). The setup was conceived to be used as anti-Compton veto for high purity germanium (HPGe) detectors operated directly in liquid Argon (LAr). Background suppression efficiencies for different radioactive sources were measured in a test cryostat with about 800 kg LAr. This work was part of the R\\&D effort for the GERDA experiment.

  14. HARP: high-pressure argon readout for calorimeters

    International Nuclear Information System (INIS)

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx. 200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described

  15. Modeling of an argon cascaded arc plasma by ANSYS FLUENT

    International Nuclear Information System (INIS)

    In this work, an argon cascaded arc plasma is simulated by the business software ANSYS FLUENT. In fact, thus plasma is a high temperature arc (plasma window) with an average temperature of 12000 °C, which can be used as a medium between high pressure and vacuum mainly due to its characteristics of high temperature. According to the simulating results, the temperature can reach as high as 11500 °C which is in great agreement with that of other reports about plasma window.

  16. Diffusion coefficient of metal vapours into rare gases. Mercury - argon

    International Nuclear Information System (INIS)

    The source information is present as well as the results of analysis and integration of data on mutual diffusion coefficient (MDC) of mercury - argon mixture at Hg concentration → 0 in 300-2500 K temperature range. Reference data on MDC for metal - inert gas binary mixtures obtained on the base of complex analysis of various information, as it exemplified by Hg-Ar pair, can be used as a part of metrological support at calibration of devices for determination MDC of gas - metal vapors

  17. Searching for dark matter with single phase liquid argon

    Science.gov (United States)

    Caldwell, Thomas S., Jr.

    The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will

  18. Penning transfer in argon-based gas mixtures

    CERN Document Server

    Sahin, O; Tapan, I; Ozmutlu, E N

    2010-01-01

    Penning transfers, a group of processes by which excitation energy is used to ionise the gas, increase the gas gain in some detectors. Both the probability that such transfers occur and the mechanism by which the transfer takes place, vary with the gas composition and pressure. With a view to developing a microscopic electron transport model that takes Penning transfers into account, we use this dependence to identify the transfer mechanisms at play. We do this for a number of argon-based gas mixtures, using gain curves from the literature.

  19. The main properties of microwave argon plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  20. Study of a Novel Concept for a Liquid Argon Calorimeter \

    CERN Multimedia

    2002-01-01

    % RD33 \\\\ \\\\ The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter prototype is proposed as a generic R\\&D project for a novel concept of calorimetry in proton-proton and electron-positron collider detectors: the $^{\\prime$Thin Gap Turbine$^{\\prime}$ (TGT). The TGT calorimeter has a modular construction, is flexible in its longitudinal and transverse granularity, and offers a uniform energy response and resolution, independent of the production angle of incident particles. An important aspect of the project is the development of fast, radiation-hard front-end electronics which is operating in the cold.

  1. Intracavity frequency doubling in a wide-aperture argon laser

    International Nuclear Information System (INIS)

    The four-mirror cavity with a BBO crystal for frequency doubling in a wide-aperture argon laser is optimised. The dependences of the second-harmonic power on the displacement of a focusing mirror, the displacement of the crystal, and the discharge current are measured. These dependences are in good agreement with calculations. After optimisation, ∼1 W of UV laser radiation at 244 nm was obtained with the conversion efficiency twice as large as that for the known similar lasers. It is shown that the increase in the efficiency was achieved mainly due to the increase in the discharge-tube aperture. (nonlinear optical phenomena)

  2. High intensity, argon ion laser-jet photochemistry

    Science.gov (United States)

    Wilson, R. Marshall; Schnapp, Karlyn A.; Hannemann, Klaus; Ho, Douglas M.; Memarian, Hamid R.; Azadnia, Ardeshir; Pinhas, Allan R.; Figley, Timothy M.

    A new technique for the study of high intensity solution photochemistry has been developed. With this laser-jet technique, a high velocity microjet is irradiated with the focussed output of an argon ion laser. Under these extremely high intensity conditions, photochemically generated transient species with suitable absorption properties are excited further and produce relatively large amounts of photoproducts which are not observed under low intensity conditions. The application of this laser-jet technique in the study of the photochemistry of radicals, biradicals, photoenols and the higher excited states of carbonyl and polycyclic aromatic compounds is described.

  3. The main properties of microwave argon plasma at atmospheric pressure

    Science.gov (United States)

    Benova, E.; Pencheva, M.

    2010-01-01

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  4. The main properties of microwave argon plasma at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Benova, E; Pencheva, M, E-mail: benova_phys@deo.uni-sofia.b [Department for Language Teaching and International Students, University of Sofia, 27 Kosta Loulchev Street, BG-1111 Sofia (Bulgaria)

    2010-01-01

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  5. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    1997-01-01

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...... bond-breaking in the molecule should be possible following the same laser control scheme as suggested in the gas phase. (C) 1997 Elsevier Science B.V....

  6. Electron transport in argon in crossed electric and magnetic fields

    Science.gov (United States)

    Ness; Makabe

    2000-09-01

    An investigation of electron transport in argon in the presence of crossed electric and magnetic fields is carried out over a wide range of values of electric and magnetic field strengths. Values of mean energy, ionization rate, drift velocity, and diffusion tensor are reported here. Two unexpected phenomena arise; for certain values of electric and magnetic field we find regions where the swarm mean energy decreases with increasing electric fields for a fixed magnetic field and regions where swarm mean energy increases with increasing magnetic field for a fixed electric field. PMID:11088933

  7. Ionization coefficients for argon in a micro-discharge

    International Nuclear Information System (INIS)

    Ionization coefficients are measured for electrons in a dc micro-discharge in argon from optical emission profiles. The micro-discharge is operated in the Townsend regime between two parallel-plate electrodes. Axial profiles of emission are obtained with sufficient resolution to provide spatial ionization coefficients. The measured coefficients agree very well with the data obtained from other sources, indicating the operation of the discharge in the Townsend regime and also that Townsend mechanisms do not need extension to describe such discharges. (paper)

  8. Ionization coefficients for argon in a micro-discharge

    Science.gov (United States)

    Kuschel, Thomas; Stefanović, Ilija; Malović, Gordana; Marić, Dragana; Petrović, Zoran Lj

    2013-08-01

    Ionization coefficients are measured for electrons in a dc micro-discharge in argon from optical emission profiles. The micro-discharge is operated in the Townsend regime between two parallel-plate electrodes. Axial profiles of emission are obtained with sufficient resolution to provide spatial ionization coefficients. The measured coefficients agree very well with the data obtained from other sources, indicating the operation of the discharge in the Townsend regime and also that Townsend mechanisms do not need extension to describe such discharges.

  9. Above threshold ionization of Argon atoms by multicolor XUV radiation

    International Nuclear Information System (INIS)

    We analyse theoretically the Argon photoelectron spectra produced by strong and extreme ultraviolet radiation of six colors: from the 11th to the 16th harmonics of ω0 (800nm). In particular we concentrate in the range of the spectra where absorption of two photons occurs. The combination of photons of different frequencies results in eleven peaks that are separated by ω0. We point out that their relative intensities are very sensitive to the laser pulse parameters and target description. We also compare the theoretical description with experimental results finding good qualitative agreement

  10. Charges recombination in α particle tracks in argon

    International Nuclear Information System (INIS)

    The creation and evolution of (neutral) excited states and ionized states in α particle tracks in high pressure argon are studied. The main features of recently published experimental results on the recombination luminescence can be explained and a track model is proposed. Details are given on the track radius, on the electrons thermallization, and on collisions between electrons and triplet excited states. The most important result is that at high pressure and high electron and ion densities a collective electron-ion recombination is possible, that is more efficient that the well known dissociative recombination

  11. Electron drift velocity in argon-methane mixture

    International Nuclear Information System (INIS)

    Described are the results of a series of measurements of electron drift velocity taken with samples of chemically pure grade gas mixture of Ar-10% CH4 (N2222O<2 ppm). The measured drift velocity is plotted as a function of the ratio of electric field to pressure in the range from 0.05 to 0.8 V/cmxtorr. The measurements are reproducible only to within 4%. The results of numerical calculations employing the well-established argon elastic and methane elastic and inelastic cross sections are also included. The disagreement from the present experimental results, and from those obtained elsewhere, is rather puzzling

  12. 40Ar/39Ar ages from blueschists of the Jambaló region, Central Cordillera of Colombia : implications on the styles of accretion in the Northern Andes

    OpenAIRE

    Bustamante, A.; Juliani, C.; C. M. Hall; Essene, E. J.

    2011-01-01

    This paper presents the first argon dating of blueschists from the Jambaló area (Cauca Department) in the Central Cordillera of the Colombian Andes. Step-heating 40Ar/39Ar spectra were obtained for mica from several lenses of blueschists including greenschist facies rocks. The blueschists are mainly constituted of preserved lenticular cores in strongly mylonitic rocks, which resulted from retrometamorphic processes that affected the high pressure rocks during their exhumation. The majority of...

  13. Measuring Muon-Neutrino Charged-Current Differential Cross Sections with a Liquid Argon Time Projection Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, Joshua B. [Yale Univ., New Haven, CT (United States)

    2011-01-01

    More than 80 years after its proposed existence, the neutrino remains largely mysterious and elusive. Precision measurements of the neutrino's properties are just now beginning to take place. Such measurements are required in order to determine the mass of the neutrino, how many neutrinos there are, if neutrinos are different than anti-neutrinos, and more. Muon-neutrino charged-current differential cross sections on an argon target in terms of the outgoing muon momentum and angle are presented. The measurements have been taken with the ArgoNeuT Liquid Argon Time Projection Chamber (LArTPC) experiment. ArgoNeuT is the first LArTPC to ever take data in a low energy neutrino beam, having collected thousands of neutrino and anti-neutrino events in the NuMI beamline at Fermilab. The results are relevant for long baseline neutrino oscillation experiments searching for non-zero $\\theta_{13}$, CP-violation in the lepton sector, and the sign of the neutrino mass hierarchy, among other things. Furthermore, the differential cross sections are important for understanding the nature of the neutrino-nucleus interaction in general. These measurements represent a significant step forward for LArTPC technology as they are among the first neutrino physics results with such a device.

  14. Measuring Muon-Neutrino Charged-Current Differential Cross Sections with a Liquid Argon Time Projection Chamber

    Science.gov (United States)

    Spitz, Joshua B.

    More than 80 years after its proposed existence, the neutrino remains largely mysterious and elusive. Precision measurements of the neutrino's properties are just now beginning to take place. Such measurements are required in order to determine the mass of the neutrino, how many neutrinos there are, if neutrinos are different than anti-neutrinos, and more. Muon-neutrino charged-current differential cross sections on an argon target in terms of the outgoing muon momentum and angle are presented. The measurements have been taken with the ArgoNeuT Liquid Argon Time Projection Chamber (LArTPC) experiment. ArgoNeuT is the first LArTPC to ever take data in a low energy neutrino beam, having collected thousands of neutrino and anti-neutrino events in the NuMI beamline at Fermi-lab. The results are relevant for long baseline neutrino oscillation experiments searching for non-zero theta13, CP-violation in the lepton sector, and the sign of the neutrino mass hierarchy, among other things. Furthermore, the differential cross sections are important for understanding the nature of the neutrino-nucleus interaction in general. These measurements represent a significant step forward for LArTPC technology as they are among the first neutrino physics results with such a device.

  15. Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments

    International Nuclear Information System (INIS)

    Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness. - Highlights: • Measurements of wet-ability of liquid drops on a 30 nm Si3N4 film were performed. • Chemical composition was investigated by X-ray Photoelectron Spectroscopy (XPS). • Surface morphology was tested by Atomic Force Microscopy (AFM). • Ar+ bombardment increases the contact angle, oxygen content and surface roughness

  16. Effect of 750 keV Argon ion irradiation on nc ZnO−SiOx thin films

    International Nuclear Information System (INIS)

    Nanocomposite (nc) ZnO−SiOx thin films were grown using rf magnetron sputter deposition technique and post-deposition annealing at 750 °C. These films were irradiated with 750 keV Argon ions at fluences in the range from 1 × 1015 to 1 × 1017 ions/cm2, using Low Energy Ion Beam Facility (LEIBF) at IUAC. X-ray diffraction (XRD) patterns of the as-deposited irradiated films show decrease in intensity of ZnO peaks relative to pristine film. Fourier transform infrared (FT-IR) spectroscopy measurements of the as-deposited irradiated films indicate the breakage of Zn−O, Zn−O−Si and Si−O−Si bonds in them, which is substantiated by FT-IR measurements of 750 °C annealed films that were irradiated at a fluence of 1016 ions/cm2. Photoluminescence (PL) measurements show drastic decrease of visible PL emission from as-deposited irradiated films. Current−Voltage (I–V) measurements show decrease in surface resistance of irradiated films by three orders of magnitude. The results suggest that 750 keV argon ion irradiation of nc ZnO−SiOx films has resulted in the formation of non-radiative defects in ZnO phase and damage in SiOx, and amorphization in Zinc silicate phase. These results are explained on the basis of the dominant energy loss mechanism of low energy ions in materials

  17. Heavy-ion transfer reactions of argon beams on deformed and spherical targets

    International Nuclear Information System (INIS)

    Heavy-ion transfer reactions have proven to be something more than what was first thought to be a trivial extension of the work with light ions. When a complete quantum mechanical analysis of their reactions is done, heavy ions present both experimental and calculational problems which do not arise for light ions. However, because of the increased mass in the heavy-ion reactions, an analysis by classical mechanics may prove quite accurate. Further, the shorter wavelength of the heavy ions may give more detailed information on the nuclear structure of the target they are scattered from. The shape of the target nucleus, specified as the deformation from a sphere, is one kind of information which should be tested in reactions. With a simple classical argument, it is predicted that the effect of nuclear deformation will be a more gradual rise in the excitation functions for heavy-ion reactions. Besides looking for this effect, the differential cross section is compared with various theories. For the Semi-Classical Transfer Theory (SCTT), even though rather large error bars are associated with the data, it is found that this theory is unsatisfactory above the Coulomb barrier because it cannot predict the rather broad distribution of differential cross section with angle which is observed in the data

  18. XPS depth profiling of an ultrathin bioorganic film with an argon gas cluster ion beam.

    Science.gov (United States)

    Dietrich, Paul M; Nietzold, Carolin; Weise, Matthias; Unger, Wolfgang E S; Alnabulsi, Saad; Moulder, John

    2016-01-01

    The growing interest in artificial bioorganic interfaces as a platform for applications in emerging areas as personalized medicine, clinical diagnostics, biosensing, biofilms, prevention of biofouling, and other fields of bioengineering is the origin of a need for in detail multitechnique characterizations of such layers and interfaces. The in-depth analysis of biointerfaces is of special interest as the properties of functional bioorganic coatings can be dramatically affected by in-depth variations of composition. In worst cases, the functionality of a device produced using such coatings can be substantially reduced or even fully lost. PMID:27137780

  19. Imperative function of electron beams in low-energy plasma focus device

    Indian Academy of Sciences (India)

    M Z Khan; L K Lim; S L Yap; C S Wong

    2015-12-01

    A 2.2 kJ plasma focus device was analysed as an electron beam and an X-ray source that operates with argon gas refilled at a specific pressure. Time-resolved X-ray signals were observed using an array of PIN diode detectors, and the electron beam energy was detected using a scintillator-assisted photomultiplier tube. The resultant X-rays were investigated by plasma focus discharge for pressures ranging from 1.5 mbar to 2.0 mbar. This range corresponded to the significant values of X-ray yields and electron beam energies from the argon plasma. The electron temperature of argon plasma at an optimum pressure range was achieved by an indirect method using five-channel BPX65 PIN diodes of aluminum foils with different thicknesses. X-ray yield, electron beam energy, and electron temperature of argon plasma were achieved at 1.5–2.0 mbar because of the strong bombardment of the energetic electron beam.

  20. Terahertz Quantum Cascade Laser at 3.39 THz

    International Nuclear Information System (INIS)

    We demonstrate the growth of terahertz quantum cascade laser (THz QCL) by gas source molecular beam epitaxy. X-ray diffraction and cross-sectional transmission electron microscopic measurements show the high crystalline quality of the THz QCL active region. From the cross-sectional transmission electron microscopy image, sharp interfaces are observed and the deduced cascade period thickness is consistent with the result of x-ray diffraction. The test device is lasing at 3.39THz and operating up to 100K in pulsed mode. At 10K, the maximum output power is greater than 1mW with a threshold current density of 738A/cm2

  1. Measurements of the ratio between the transverse diffusion coefficient and the mobility for argon ions in argon

    International Nuclear Information System (INIS)

    The ratio DT/μ between the transverse diffusion coefficient and the mobility for 40Ar+ ions in argon has been determined from directly measured transverse current density distribution profiles of mass-analysed ions, as a function of the ratio E/n0 between the electric field and the gas number density in the interval 50≤E/n0≤4000 Td, at gas temperature T=294 K using a variable-length drift tube mass spectrometer. The error (two standard deviations) in the results is believed to be less than ±4% for E/n0o-values. (author)

  2. Sulfur X-ray absorption fine structure in porous Li–S cathode films measured under argon atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Matthias, E-mail: matthias.mueller@ptb.de [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Choudhury, Soumyadip [Leibniz-Institut für Polymerforschung, Hohe Strasse 6, 01069 Dresden (Germany); Technische Universität Dresden, Physical Chemistry of Polymeric Materials ,01062 Dresden (Germany); Gruber, Katharina [VARTA Micro Innovation GmbH, Stremayrgasse 9, 8010 Graz (Austria); Cruz, Valene B. [Universität Ulm, Institut für Elektrochemie, 89069 Ulm (Germany); Helmholtz-Institut Ulm (HIU), 89069 Ulm (Germany); Fuchsbichler, Bernd [VARTA Micro Innovation GmbH, Stremayrgasse 9, 8010 Graz (Austria); Jacob, Timo [Universität Ulm, Institut für Elektrochemie, 89069 Ulm (Germany); Helmholtz-Institut Ulm (HIU), 89069 Ulm (Germany); Koller, Stefan [VARTA Micro Innovation GmbH, Stremayrgasse 9, 8010 Graz (Austria); Stamm, Manfred [Leibniz-Institut für Polymerforschung, Hohe Strasse 6, 01069 Dresden (Germany); Technische Universität Dresden, Physical Chemistry of Polymeric Materials ,01062 Dresden (Germany); Ionov, Leonid [Leibniz-Institut für Polymerforschung, Hohe Strasse 6, 01069 Dresden (Germany); Beckhoff, Burkhard [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany)

    2014-04-01

    In this paper we present the first results for the characterization of highly porous cathode materials with pore sizes below 1 μm for Lithium Sulfur (Li–S) batteries by Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. A novel cathode material of porous carbon films fabricated with colloidal array templates has been investigated. In addition, an electrochemical characterization has been performed aiming on an improved correlation of physical and chemical parameters with the electrochemical performance. The performed NEXAFS measurements of cathode materials allowed for a chemical speciation of the sulfur content inside the cathode material. The aim of the presented investigation was to evaluate the potential of the NEXAFS technique to characterize sulfur in novel battery material. The long term goal for the characterization of the battery materials is the sensitive identification of undesired side reactions, such as the polysulfide shuttle, which takes place during charging and discharging of the battery. The main drawback associated with the investigation of these materials is the fact that NEXAFS measurements can usually only be performed ex situ due to the limited in situ instrumentation being available. For Li–S batteries this problem is more pronounced because of the low photon energies needed to study the sulfur K absorption edge at 2472 eV. We employed 1 μm thick Si{sub 3}N{sub 4} windows to construct sealed argon cells for NEXAFS measurements under ultra high vacuum (UHV) conditions as a first step towards in situ measurements. The cells keep the sample under argon atmosphere at any time and the X-ray beam passes mainly through vacuum which enables the detection of the low energy X-ray emission of sulfur. Using these argon cells we found indications for the presence of lithium polysulfides in the cathode films whereas the correlations to the offline electrochemical results remain somewhat ambiguous. As a consequence of these findings one

  3. A liquid argon scintillation veto for the GERDA experiment

    International Nuclear Information System (INIS)

    Gerda is an experiment to search for the neutrinoless double beta decay of 76Ge. Results of Phase I have been published in summer 2013. Currently Gerda is being upgraded to a second phase. To reach the aspired background index of ≤ 10-3 cts/(keV . kg . yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). It has been demonstrated by the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. This talk focusses on the light instrumentation which is being installed in GERDA. Photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon photomultipliers (SiPM) are combined to maximize the photoelectron-yield with respect to various background sources. Monte Carlo simulations have been performed to optimize the design for background suppression and low self-induced background. First results of the prototypes and the progress of installation are reported.

  4. A liquid argon scintillation veto for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wegmann, Anne [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay of {sup 76}Ge. Results of Phase I have been published in summer 2013. Currently Gerda is being upgraded to a second phase. To reach the aspired background index of ≤ 10{sup -3} cts/(keV . kg . yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). It has been demonstrated by the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. This talk focusses on the light instrumentation which is being installed in GERDA. Photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon photomultipliers (SiPM) are combined to maximize the photoelectron-yield with respect to various background sources. Monte Carlo simulations have been performed to optimize the design for background suppression and low self-induced background. First results of the prototypes and the progress of installation are reported.

  5. Compilation of electron collision excitation cross sections for neutro argon

    International Nuclear Information System (INIS)

    The present work presents a compilation and critical analysis of the available data on electron collision excitation cross sections for neutral Argon levels. This study includes: 1.- A detailed description in intermediate coupling for all the levels belonging the 20 configurations 3p''5 ns(n=4 to 12), np(n=4 to 8) and nd(n=3 to 8) of neutral Argon. 2.- Calculation of the electron collision excitation cross sections in Born and Born-Oppenheimer-Ochkur approximations for all the levels in the 14 configurations 3p''5 ns(n=4 to 7), np(n=4 to 7) and nd(n=3 to 8). 3.- Comparison and discussion of the compiled data. These are the experimental and theoretical values available from the literature, and those from this work. 4.- Analysis of the regularities and systematic behaviors in order to determine which values can be considered more reliable. It is show that the concept of one electron cross section results quite useful for this purpose. In some cases it has been possible to obtain in this way approximate analytical expressions interpolating the experimental data. 5.- All the experimental and theoretical values studied are graphically presented and compared. 6.- The last part of the work includes a listing of several general purpose programs for Atomic Physics calculations developed for this work. (Author)

  6. Model of a stationary microwave argon discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≅ 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number

  7. Analysis of microdischarges in asymmetric dielectric barrier discharges in argon

    International Nuclear Information System (INIS)

    Theoretical and experimental studies of two different discharge modes in asymmetric dielectric barrier discharges in argon at atmospheric pressure have been performed. The first mode appears to be the well-known filamentary microdischarge with non-striated positive column whereas the second mode is characterized by discharge instabilities and the appearance of striations. Both experiment and model calculations predict a transition from the first mode to the second mode when the applied voltage amplitude is increased above approximately 2 kV. The reliability of the employed fluid model is confirmed by comparison of the current–voltage characteristics obtained by model calculations and measurements for different applied voltage amplitudes. The results of the model calculations point out that in the second discharge mode the ionization of excited argon atoms prevents the total recombination of charge carriers between two subsequent discharge events. This leads to the occurrence of the memory from one discharge to the following one, which plays an important role in mode transition. (paper)

  8. Model of a stationary microwave argon discharge at atmospheric pressure

    Science.gov (United States)

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-01

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron—ion pair, electron—neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≈ 14 cm, sustained by wave power of 110 W—the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  9. Liquid argon scintillation read-out with silicon devices

    International Nuclear Information System (INIS)

    Silicon photosensors represent a viable alternative to standard photomultipliers in fields such as communications and medical imaging. We explored the interesting possibility of using these sensors in combination with liquid argon (LAr) for astroparticle physics applications such as neutrino, dark matter and double beta decay experiments. In fact, silicon photosensors have detection efficiencies comparable with those of the highest performance PMTs and can be manufactured with high level of radiopurity. In particular within the on-going R and D activity of the SILENT project (Low background and low noise techniques for double beta decay physics funded by ASPERA) a large area SiPM (Silicon PhotoMultiplier - Hamamatsu S11828-3344M - 1.7 cm2 area) has been installed in a LAr scintillation chamber of 0.5 liters volume together with a cryogenic photomultiplier tube (Hamamatsu R11065) used as a reference. The liquid argon chamber has been exposed to many gamma sources of different energies and single photoelectron response and light yield for the SiPM and PMT have been measured and compared. In this contribution the results of the tests, and the ongoing R and D to optimize the SiPM for cryogenic and for ultralow background applications, are reported, as well as the possible application in the GERDA experiment on Double Beta Decay Searches of 76Ge

  10. Elastic properties of liquid and solid argon in nanopores.

    Science.gov (United States)

    Schappert, Klaus; Pelster, Rolf

    2013-10-16

    We have measured sorption isotherms and determined the intrinsic longitudinal elastic modulus β(Ar,ads) of nanoconfined material via ultrasonic measurements combined with a special effective medium analysis. In the liquid regime the adsorbate only contributes to the measured effective properties when the pores are completely filled and the modulus is bulklike. At partial fillings its contribution is cancelled out by the high compressibility of the vapour phase. In contrast, at lower temperatures frozen argon as well as underlying liquid surface layers cause a linear increase of the effective longitudinal modulus upon filling. During sorption the contribution of the liquid surface layers near the pore wall β(Ar,surf) increases with the thickness of the solid layers reaching the bulk value β(Ar,liquid) only in the limit of complete pore filling. We interpret this effect as due to the gradual stiffening of the solid argon membrane. The measurements and their analysis show that longitudinal ultrasonic waves are well suited to the study of the elastic properties and liquid-solid phase transitions in porous systems. This method should also help to detect the influence of nanoconfinement on elastic properties in further research. PMID:24057946

  11. Liquid argon scintillation read-out with silicon devices

    Science.gov (United States)

    Canci, N.; Cattadori, C.; D'Incecco, M.; Lehnert, B.; Machado, A. A.; Riboldi, S.; Sablone, D.; Segreto, E.; Vignoli, C.

    2013-10-01

    Silicon photosensors represent a viable alternative to standard photomultipliers in fields such as communications and medical imaging. We explored the interesting possibility of using these sensors in combination with liquid argon (LAr) for astroparticle physics applications such as neutrino, dark matter and double beta decay experiments. In fact, silicon photosensors have detection efficiencies comparable with those of the highest performance PMTs and can be manufactured with high level of radiopurity. In particular within the on-going R&D activity of the SILENT project (Low background and low noise techniques for double beta decay physics funded by ASPERA) a large area SiPM (Silicon PhotoMultiplier - Hamamatsu S11828-3344M - 1.7 cm2 area) has been installed in a LAr scintillation chamber of 0.5 liters volume together with a cryogenic photomultiplier tube (Hamamatsu R11065) used as a reference. The liquid argon chamber has been exposed to many gamma sources of different energies and single photoelectron response and light yield for the SiPM and PMT have been measured and compared. In this contribution the results of the tests, and the ongoing R&D to optimize the SiPM for cryogenic and for ultralow background applications, are reported, as well as the possible application in the GERDA experiment on Double Beta Decay Searches of 76Ge.

  12. Investigation of a Mercury-Argon Hot Cathode Discharge

    Science.gov (United States)

    Wamsley, Robert Charles

    Classical absorption and laser induced fluorescence (LIF) experiments are used to investigate processes in the cathode region of a Hg-Ar hot cathode discharge. The absorption and LIF measurements are used to test the qualitative understanding and develop a quantitative model of a hot cathode discharge. The main contribution of this thesis is a model of the negative glow region that demonstrates the importance of Penning ionization to the ionization balance in the negative glow. We modeled the excited argon balance equation using a Monte Carlo simulation. In this simulation we used the trapped radiative decay rate of the resonance levels and the Penning ionization rate as the dominant loss terms in the balance equation. The simulated data is compared to and found to agree with absolute excited argon densities measured in a classical absorption experiment. We found the primary production rate per unit volume of excited Ar atoms in the simulation is sharply peaked near the cathode hot spot. We used the ion production rate from this simulation and a Green's function solution to the ambipolar diffusion equation to calculate the contribution of Penning ionization to the total ion density. We compared the results of this calculation to our experimental values of the Hg ^+ densities in the negative glow. We found that Penning ionization is an important and possibly the dominant ionization process in the negative glow.

  13. Argon laser trabeculoplasty as primary therapy in open angle glaucoma

    International Nuclear Information System (INIS)

    To determine the effect of Argon Laser Trabeculoplasty (ALT) as a primary mode of therapy in reducing the intraocular Pressure (IOP) of patients diagnosed with Primary Open Angle Glaucoma (POAG). A total of 35 eyes of 35 patients with the gender distribution of 27 men and 8 women who were newly diagnosed with POAG, were included in this study. Mean age of the patients was 55.2 years with the range of 32 to 76 years. All of them were treated with argon laser trabeculoplasty as a primary mode of therapy. Intra ocular pressure was measured objectively using Goldman applanation tonometer, pre-and-post laser therapy. The pre-laser mean IOP was 27.63 mmHg (range 21-40 mmHg). The post-laser mean IOP measured at 6 months follow up was 15.5 mmHg (range 11 - 33 mmHg) with mean decrease of 12.1 mmHg. The decrease in IOP was seen in 32 eyes (95%) with no change observed in 3 (5%) eyes. The result shows a marked decline in IOP in patients with POAG who underwent ALT as a primary mode of treatment. Further studies with large sample size and longer follow-up will help in making future recommendations. (author)

  14. Some transport properties in plasmas containing argon and fluorine

    Directory of Open Access Journals (Sweden)

    Novaković R.N.V.

    2003-01-01

    Full Text Available In this paper some results of numerical evaluation of transport coefficients in plasmas in the mixtures of argon and fluorine are presented. These transport characteristics are given in the function of the temperature for low pressures ranging from 0,1 kPa to 1,0 kPa and for low temperatures between 500 K and 5 000 K in argon plasmas with 20% and 30% of the fluorine added. It is assumed that the system is kept under constant pressure and that a corresponding state of local thermodynamical equilibrium (LTE is attained in it. The equilibrium plasma composition, necessary for the evaluations, was determined on the ground of the Saha equations for ionization processes and the law of mass action for the thermal dissociation of F2, combined with the charge conservation relation and the assumption that the pressure remained constant in the course of temperature variations. The ionization energy lowering, required in conjunction with the Saha equations, was obtained with the aid of a modified expression for the plasma Debye radius proposed previously. A previously derived expression for the modified Debye radius, offering the possibility to treat the plasmas considered as weakly non-ideal in the whole temperature range, is used. The cut-off at the Landau length rather than of the smallest of ionic radii is introduced. This alteration in the evaluation procedure brings different considerable changes in the final numerical results for the all relevant quantities.

  15. Local effects of ECRH on argon transport at ASDEX upgrade

    International Nuclear Information System (INIS)

    Future deuterium-tritium magnetically confined fusion power plants will most probably rely an high-Z Plasma Facing Components (PFCs) such as tungsten. This choice is determined by the necessity of low erosion of the first wall materials (to guarantee a long lifetime of the wall components) and by the need to avoid the too high tritium wall retention of typical carbon based PFCs. The experience gathered at the ASDEX Upgrade (AUG) tokamak has demonstrated the possibility of reliable and high performance plasma operation with a full tungsten-coated first wall. The observed accumulation of tungsten which can lead to excessive radiation losses is mitigated with the use of Electron Cyclotron Resonance Heating (ECRH). Although this impurity control method is routinely performed at AUG, the underlying physics principles are still not clear. This thesis aims an providing further knowledge an the effects of ECRH an the transport of impurities inside the core plasma. The transport of argon has been therefore investigated in-depth in purely ECR heated L-mode (low-confinement) discharges. Studies an impurity transport in centrally ECR heated nitrogen-seeded H-mode (high-confinement) discharges have also been performed. To this scope, a new crystal X-ray spectrometer of the Johann type has been installed an AUG for argon concentration and ion temperature measurements. New methods for the experimental determination of the total argon density through the integrated use of this diagnostic and of the Soft X-Ray (SXR) diode arrays have been developed. This gives the possibility of evaluating the full profiles of the argon transport coefficients from the linear flux-gradient dependency of local argon density. In comparison to classical χ2-minimization methods, the approach proposed here delivers transport coefficients intrinsically independent of the modelling of periodic relaxation mechanisms such as those Lied to sawtooth MHD (Magneto-Hydro-Dynamic) activity. Moreover, the good

  16. Investigations of laser-induced plasma in argon by Thomson scattering

    International Nuclear Information System (INIS)

    The Thomson scattering method was applied to quantify the electron number density and temperature of a laser spark formed in argon. The laser spark was generated by focusing a 15 mJ beam from the second harmonic (λL = 532 nm) of a nanosecond Nd:YAG laser with an 80 mm focal length lens. Images of the spark emission were obtained for times between 1 ns and 20 μs after the laser pulse in order to characterize its spatial evolution. The electron density and temperature for the core of the plasma plume at different instants of its evolution were determined from the Thomson scattered spectra of another nanosecond Nd:YAG laser (532 nm, 10 to 60 mJ/pulse). In the time interval between 400 ns and 10 μs between the laser induced plasma and Thomson scattering probe pulses, we found ne and Te to decrease from 4.3 × 1023 m−3 to 2.4 × 1022 m−3 and from 50 700 K to 11 100 K, respectively. Special care was paid to the plasma disturbance by the probe laser pulse in Thomson scattering experiments due to absorption of laser photons by electrons through the inverse bremsstrahlung process.

  17. Investigations of laser-induced plasma in argon by Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI - site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France); Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Travaille, G.; Bousquet, B. [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence CEDEX (France)

    2011-09-15

    The Thomson scattering method was applied to quantify the electron number density and temperature of a laser spark formed in argon. The laser spark was generated by focusing a 15 mJ beam from the second harmonic ({lambda}{sub L} = 532 nm) of a nanosecond Nd:YAG laser with an 80 mm focal length lens. Images of the spark emission were obtained for times between 1 ns and 20 {mu}s after the laser pulse in order to characterize its spatial evolution. The electron density and temperature for the core of the plasma plume at different instants of its evolution were determined from the Thomson scattered spectra of another nanosecond Nd:YAG laser (532 nm, 10 to 60 mJ/pulse). In the time interval between 400 ns and 10 {mu}s between the laser induced plasma and Thomson scattering probe pulses, we found n{sub e} and T{sub e} to decrease from 4.3 Multiplication-Sign 10{sup 23} m{sup -3} to 2.4 Multiplication-Sign 10{sup 22} m{sup -3} and from 50 700 K to 11 100 K, respectively. Special care was paid to the plasma disturbance by the probe laser pulse in Thomson scattering experiments due to absorption of laser photons by electrons through the inverse bremsstrahlung process.

  18. Photoionized argon plasmas induced with intense soft x-ray and extreme ultraviolet pulses

    Science.gov (United States)

    Bartnik, A.; Wachulak, P.; Fok, T.; Węgrzyński, Ł.; Fiedorowicz, H.; Skrzeczanowski, W.; Pisarczyk, T.; Chodukowski, T.; Kalinowska, Z.; Dudzak, R.; Dostal, J.; Krousky, E.; Skala, J.; Ullschmied, J.; Hrebicek, J.; Medrik, T.

    2016-01-01

    In this work, photoionized plasmas were created by irradiation of gaseous argon with soft x-ray (SXR) and extreme ultraviolet (EUV) intense radiation pulses. Two different laser-produced plasma sources, employing a low energy Nd:YAG laser and a high energy iodine laser system (PALS), were used for creation of photoionized plasmas. In both cases the EUV or SXR beam irradiated the Ar stream, injected into a vacuum chamber synchronously with the radiation pulse. Emission spectra, measured for the Ar photoionized plasmas indicated strong differences in ionization degree for plasmas produced using low and high energy systems. In case of the the EUV driving pulses, emission lines corresponding to neutral atoms and singly charged ions were observed. In case of the SXR pulses utilized for the photoionized plasma creation, only Ar V-VIII emission lines were recorded. Additionally, electron density measurements were performed by laser interferometry employing a femtosecond laser system synchronized with the irradiating system. Maximum electron density for the Ar photoionized plasma, induced using the high energy system, reached 1.9 · 1018 cm-3. Interferometric measurements performed for the moment of maximum intensity of the main laser pulse (t  =  0) revealed no fringe shift. Detection limit for the interferometric measurements was estimated. It allowed to estimate the upper limit for electron density at t  =  0 as 5 · 1016 cm-3.

  19. Silicon nanoparticle synthesis by short-period thermal anneals at atmospheric pressure in argon

    International Nuclear Information System (INIS)

    Silicon nanoparticles have been studied for a wide variety of applications including nanoelectronic, photovoltaic, and optoelectronic devices. In this work, silicon nanoparticles were synthesized by short-period annealing of silicon-on-insulator substrates to temperatures ranging between 600 and 900 deg. C in argon gas at atmospheric pressure. Two different top silicon layers were deposited by ion-beam sputtering onto oxidized substrates. The thinner 6 nm top layer samples were annealed to temperatures for 30 s periods while thicker 15 nm top layer samples were annealed for 60 s periods. For both sets of samples, nanoparticles were observed to form at all the anneal temperatures through imaging by AFM. One long-period UHV anneal study, with 30-min anneal times, observed nanoparticle formation at temperatures similar to the current work while another similar long-period UHV anneal reported nanoparticle formation only above well-defined formation temperatures that depended upon the starting top layer thickness. In the current work, the average nanoparticle radius was found to increase both with the final anneal temperature and anneal period. For the highest anneal temperatures of the 6 nm top layer samples, a changing surface topography indicated that the thinner Si source layer was becoming depleted and the nanoparticle formation process was nearing completion. No such changes were observed for the thicker 15 nm samples at the same temperatures.

  20. Effect of high power CO2 and Yb:YAG laser radiation on the characteristics of TIG arc in atmospherical pressure argon and helium

    Science.gov (United States)

    Wu, Shikai; Xiao, Rongshi

    2015-04-01

    The effects of laser radiation on the characteristics of the DC tungsten inert gas (TIG) arc were investigated by applying a high power slab CO2 laser and a Yb:YAG disc laser. Experiment results reveal that the arc voltage-current curve shifts downwards, the arc column expands, and the arc temperature rises while the high power CO2 laser beam vertically interacts with the TIG arc in argon. With the increase of the laser power, the voltage-current curve of the arc shifts downwards more significantly, and the closer the laser beam impingement on the arc to the cathode, the more the decrease in arc voltage. Moreover, the arc column expansion and the arc temperature rise occur mainly in the region between the laser beam incident position and the anode. However, the arc characteristics hardly change in the cases of the CO2 laser-helium arc and YAG laser-arc interactions. The reason is that the inverse Bremsstrahlung absorption coefficients are greatly different due to the different electron densities of the argon and helium arcs and the different wave lengths of CO2 and YAG lasers.

  1. Results from a new combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    International Nuclear Information System (INIS)

    A new combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 10 to 300 GeV at an incident angle θ of about 12 deg. is well described by the expression σ/E=((41.9±1.6)%/√E+(1.8±0.1)%)+(1.8±0.1)/E, where E is in GeV. The response to electrons and muons was evaluated. Shower profiles, shower leakage and the angular resolution of hadronic showers were also studied. Results are compared with those from the previous beam test

  2. Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures

    International Nuclear Information System (INIS)

    The emission properties of a volume nanosecond discharge plasma produced in xenon, krypton and argon at high pressures in a discharge gap with a cathode having a small radius of curvature are studied. Spectra in the range 120-850 nm and amplitude-time characteristics of xenon emission at different regimes and excitation techniques are recorded and analysed. It is shown that upon excitation of the volume discharge initiated by a beam of avalanche electrons, at least 90% of the energy in the spectral range 120-850 nm is emitted by xenon dimers. For xenon at a pressure of 1.2 atm, ∼45 mJ of the spontaneous emission energy was obtained in the full solid angle in a pulse with the full width at half-maximum ∼130 ns. (laser applications and other topics in quantum electronics)

  3. Results from a new combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    CERN Document Server

    Akhmadaliev, S Z; Amaral, P; Ambrosini, G; Amorim, A; Anderson, K; Andrieux, M L; Aubert, Bernard; Augé, E; Badaud, F; Baisin, L; Barreiro, F; Battistoni, G; Bazan, A; Bazizi, K; Bee, C P; Belorgey, J; Belymam, A; Benchekroun, D; Berglund, S R; Berset, J C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bonivento, W; Borgeaud, P; Borisov, O N; Bosman, M; Bouhemaid, N; Breton, D; Brette, P; Bromberg, C; Budagov, Yu A; Burdin, S V; Calôba, L P; Camarena, F; Camin, D V; Canton, B; Caprini, M; Carvalho, J; Casado, M P; Cases, R; Castillo, M V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chalifour, M; Chekhtman, A; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Chollet, J C; Citterio, M; Cleland, W E; Clément, C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Coulon, J P; Crouau, M; Dargent, P; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; Delagnes, E; de La Taille, C; Del Peso, J; Del Prete, T; de Saintignon, P; Di Girolamo, B; Dinkespiler, B; Dita, S; Djama, F; Dodd, J; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Etienne, F; Evans, H; Eynard, G; Farida, F; Fassnacht, P; Fedyakin, N N; Fernández de Troconiz, J; Ferrari, A; Ferrer, A; Flaminio, Vincenzo; Fournier, D; Fumagalli, G; Gallas, E J; García, G; Gaspar, M; Gianotti, F; Gildemeister, O; Glagolev, V; Glebov, V Yu; Gómez, A; González, V; González de la Hoz, S; Gordeev, A; Gordon, H A; Grabskii, V; Graugès-Pous, E; Grenier, P; Hakopian, H H; Haney, M; Hébrard, C; Henriques, A; Henry-Coüannier, F; Hervás, L; Higón, E; Holmgren, S O; Hostachy, J Y; Hoummada, A; Huet, M; Huston, J; Imbault, D; Ivanyushenkov, Yu M; Jacquier, Y; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karst, P; Karyukhin, A N; Khokhlov, Yu A; Khubua, J I; Klioukhine, V I; Kolachev, G M; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kozlov, V; Krivkova, P; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Kuzmin, M V; Labarga, L; Laborie, G; Lacour, D; Lami, S; Lapin, V; Le Dortz, O; Lefebvre, M; Le Flour, T; Leitner, R; Leltchouk, M; Le Van-Suu, A; Li, J; Liapis, C; Linossier, O; Lissauer, D; Lobkowicz, F; Lokajícek, M; Lomakin, Yu F; Lomakina, O V; López-Amengual, J M; Lottin, J P; Lund-Jensen, B; Lundqvist, J M; Maio, A; Makowiecki, D S; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marrocchesi, P S; Marroquin, F; Martin, L; Martin, O; Martin, P; Maslennikov, A M; Massol, N; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miralles, L; Mirea, A; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Mosidze, M D; Moynot, M; Muanza, G S; Nagy, E; Nayman, P; Némécek, S; Nessi, Marzio; Nicod, D; Nicoleau, S; Niculescu, M; Noppe, J M; Onofre, A; Pallin, D; Pantea, D; Paoletti, R; Park, I C; Parrour, G; Parsons, J; Pascual, J I; Pereira, A; Perini, L; Perlas, J A; Perrodo, P; Petroff, P; Pilcher, J E; Pinhão, J; Plothow-Besch, Hartmute; Poggioli, Luc; Poirot, S; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Puzo, P; Radeka, V; Rahm, David Charles; Reinmuth, G; Renardy, J F; Renzoni, G; Rescia, S; Resconi, S; Richards, R; Richer, J P; Riu, I; Roda, C; Roldán, J; Romance, J B; Romanov, V; Romero, P; Rusakovitch, N A; Sala, P R; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Sauvage, D; Sauvage, G; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schaffer, A C; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seixas, J M; Selldén, B; Seman, M; Semenov, A A; Senchyshyn, V G; Serin, L; Shaldaev, E; Shchelchkov, A S; Shochet, M J; Sidorov, V; Silva, J; Simaitis, V J; Simion, S; Sissakian, A N; Soloviev, I V; Snopkov, R; Söderqvist, J; Solodkov, A A; Sonderegger, P; Soustruznik, K; Spanó, F; Spiwoks, R; Stanek, R; Starchenko, E A; Stavina, P; Stephens, R; Studenov, S; Suk, M; Surkov, A; Sykora, I; Taguet, J P; Takai, H; Tang, F; Tardell, S; Tas, P; Teiger, J; Teubert, F; Thaler, J J; Thion, J; Tikhonov, Yu A; Tisserand, V; Tisserant, S; Tokar, S; Topilin, N D; Trka, Z; Turcotte, M; Valkár, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vichou, I; Vincent, P; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; Walter, C; White, A; Wielers, M; Wingerter-Seez, I; Wolters, H; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zitoun, R; Zolnierowski, Y

    2000-01-01

    A new combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 10 to 300 GeV at an incident angle theta of about 12 degrees is well described by the expression sigma /E=((41.9+or-1.6)%/ square root E+(1.8+or-0.1)%)(+) (1.8+or-0.1)/E, where E is in GeV. The response to electrons and muons was evaluated. Shower profiles, shower leakage and the angular resolution of hadronic showers were also studied. Results are compared with those from the previous beam test. (22 refs).

  4. Influences of the propyl group on the van der Waals structures of 4-propylaniline complexes with one and two argon atoms studied by electronic and cationic spectroscopy

    International Nuclear Information System (INIS)

    4-propylaniline complexes with one and two argon atoms formed in the molecular beam were studied in the first excited electronic state, S1, using resonance enhanced two-photon ionization spectroscopy and in the cation ground state, D0, using mass analyzed threshold ionization spectroscopy. The combination of electronic and cationic spectra of the clusters allows two conformations to be identified in both aniline-Ar1 and aniline-Ar2, which are assigned to either the gauche configuration or anti-configuration of 4-propylaniline. The gauche isomer exhibits complex bands shifted 29 cm−1 and 89 cm−1 from the S1 origin bands and 83 cm−1 and 148 cm−1 from the ionization potential assigned to the Ar1 and Ar2 complexes, respectively. For the anti-rotamer, the corresponding shifts actually become nearly additive, 53 cm−1 and 109 cm−1 for the S1 origin bands, and 61 cm−1 and 125 cm−1 for the ionization potentials. Ab initio calculations provide insights into the influences of the propyl and amino groups on the positions of the argon atoms within the clusters. In addition, the binding energy of one argon with the gauche isomer of 4-propylaniline has been measured to be 550 ± 5 cm−1 in the D0 state, 496 ± 5 cm−1 in the S1 state, and 467 ± 5 cm−1 in the neutral ground state, S0

  5. Extension of the nuclear mass surface for neutron-rich isotopes of argon through iron

    Science.gov (United States)

    Meisel, Zachary Paul

    Nuclear mass measurement has maintained an important position in the field of nuclear physics for a little over a century. Nuclear masses provide key evidence of the structural transformation of nuclei away from the valley of beta-stability and are essential input for many simulations of extreme astrophysical environments. However, obtaining these masses is often a challenging endeavor due to the low production cross sections and short half-lives of the exotic nuclei which are of particular interest. To this end, the time-of-flight mass measurement technique has been developed to obtain the masses of several nuclei at once to precisions of 1 part in 105 with virtually no half-life limitation. This dissertation contains a description of the experiment, analysis, and results of the second implementation of the time-of-flight nuclear mass measurement technique at the National Superconducting Cyclotron Laboratory. 18 masses were obtained for neutron-rich isotopes of argon through iron, where the masses of 48Ar, 49Ar, 56Sc, 57Sc, 64Cr, 67Mn, and 69Fe were measured for the first time. These newly obtained masses were applied to outstanding problems in nuclear structure and nuclear astrophysics, resulting in significant scientific advances. The measurement results for 48Ar and 49Ar, which were found to have atomic mass excesses of -22.28(31) MeV and -17.8(1.1) MeV, respectively, provide strong evidence for the closed shell nature of neutron number N = 28 in argon. It follows that argon is therefore the lowest even-Z element exhibiting the N = 28 closed shell. The masses of 64Cr, 67 Mn, and 69Fe, which were found to have atomic mass excesses of -33.48(44) MeV, -34.09(62) MeV, and -39.35(60) MeV, respectively, show signs of nuclear deformation occurring around the N = 40 subshell. In addition, we found 64Cr is substantially less bound than predicted by global mass models that are commonly used in nuclear astrophysics simulations, resulting in a significant reduction in the

  6. Beam - cavity interaction beam loading

    International Nuclear Information System (INIS)

    The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)

  7. Study of electron recombination in liquid argon with the ICARUS TPC

    International Nuclear Information System (INIS)

    Electron recombination in liquid argon (LAr) is studied by means of charged particle tracks collected in various ICARUS liquid argon TPC prototypes. The dependence of the recombination on the particle stopping power has been fitted with a Birks functional dependence. The simulation of the process of electron recombination in Monte Carlo calculations is discussed. A quantitative comparison with previously published data is carried out

  8. Verification of high efficient broad beam cold cathode ion source.

    Science.gov (United States)

    Abdel Reheem, A M; Ahmed, M M; Abdelhamid, M M; Ashour, A H

    2016-08-01

    An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperture is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition. PMID:27587108

  9. Plasma Beam Interaction with Negative glow discharge

    International Nuclear Information System (INIS)

    A miniature coaxial gun has been used to study the effect of the energy spectrum of the ejected plasma on the interaction with negative glow region in a normal glow discharge. The peak discharge current flow between the coaxial electrodes was 5.25 K A as a single pulse with pulse duration of 60 MUs. Investigations are carried out with argon gas at pressure 0.4 Torr. The sheath thickness of the ejected plasma from the coaxial discharge was 6 cm with different densities and energies. The spectrum of electron energy varies between 6 eV and 1 eV, while the electron density varies between 5 x 1012 cm -3 and 4x1013 cm -3. The peak velocity of the ejected plasma was 0. 8 x 105 cm sec-1 in the neutral argon atoms. Argon negative glow region used as base plasma has an electron temperature of 2.2 eV and electron density of 6.2 x107 cm-3. It had been found that the velocity of the ejected plasma decreased when it moves in the negative glow region and its mean electron temperature decreased. The results are compared with the theory of beam interaction with cold plasma

  10. 40Ar/39Ar and cosmic ray exposure ages of plagioclase-rich lithic fragments from Apollo 17 regolith, 78461

    Science.gov (United States)

    Das, J. P.; Baldwin, S. L.; Delano, J. W.

    2016-01-01

    Argon isotopic data is used to assess the potential of low-mass samples collected by sample return missions on planetary objects (e.g., Moon, Mars, asteroids), to reveal planetary surface processes. We report the first 40Ar/39Ar ages and 38Ar cosmic ray exposure (CRE) ages, determined for eleven submillimeter-sized (ranging from 0.06 to 1.2 mg) plagioclase-rich lithic fragments from Apollo 17 regolith sample 78461 collected at the base of the Sculptured Hills. Total fusion analysis was used to outgas argon from the lithic fragments. Three different approaches were used to determine 40Ar/39Ar ages and illustrate the sensitivity of age determination to the choice of trapped (40Ar/36Ar)t. 40Ar/39Ar ages range from ~4.0 to 4.4 Ga with one exception (Plag#10). Surface CRE ages, based on 38Ar, range from ~1 to 24 Ma. The relatively young CRE ages suggest recent re-working of the upper few centimeters of the regolith. The CRE ages may result from the effect of downslope movement of materials to the base of the Sculptured Hills from higher elevations. The apparent 40Ar/39Ar age for Plag#10 is >5 Ga and yielded the oldest CRE age (i.e., ~24 Ma). We interpret this data to indicate the presence of parentless 40Ar in Plag#10, originating in the lunar atmosphere and implanted in lunar regolith by solar wind. Based on a chemical mixing model, plagioclase compositions, and 40Ar/39Ar ages, we conclude that lithic fragments originated from Mg-suite of highland rocks, and none were derived from the mare region.

  11. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    International Nuclear Information System (INIS)

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images

  12. First measurement of the ionization yield of nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, T. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sangiorgio, Samuele [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Foxe, Michael P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Hagmann, Chris [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jovanovic, Igor [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Kazkaz, K. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pereverzev, S. V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rebassoo, Finn O. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sorensen, Peter F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  13. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    International Nuclear Information System (INIS)

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  14. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    Science.gov (United States)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  15. First measurements with ARGONTUBE, a 5 m long drift Liquid Argon TPC

    International Nuclear Information System (INIS)

    The Liquid Argon Time Projection Chamber (LAr TPC) technique is a promising technology for future neutrino detectors. At LHEP of the University of Bern (Switzerland), an R and D program towards large detectors are on-going. The main goal is to show the feasibility of long drift paths over many meters. Therefore, a liquid Argon TPC with 5 m of drift distance was constructed. Many other aspects of the liquid Argon TPC technology are also investigated, such as a new device to generate high voltage in liquid Argon (Greinacher circuit), a recirculation filtering system and the multi-photon ionization of liquid Argon with a UV laser. Two detectors are built: a medium size prototype for specific detector technology studies, and ARGONTUBE, a 5 m long device

  16. Influence of longitudinal argon flow on DC glow discharge at atmospheric pressure

    Science.gov (United States)

    Zhu, Sha; Jiang, Weiman; Tang, Jie; Xu, Yonggang; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2016-05-01

    A one-dimensional self-consistent fluid model was employed to investigate the influence of longitudinal argon flow on the DC glow discharge at atmospheric pressure. It is found that the charges exhibit distinct dynamic behaviors at different argon flow velocities, accompanied by a considerable change in the discharge structure. The positive argon flow allows for the reduction of charge densities in the positive column and negative glow regions, and even leads to the disappearance of negative glow. The negative argon flow gives rise to the enhancement of charge densities in the positive column and negative glow regions. These observations are attributed to the fact that the gas flow convection influences the transport of charges through different manners by comparing the argon flow velocity with the ion drift velocity. The findings are important for improving the chemical activity and work efficiency of the plasma source by controlling the gas flow in practical applications.

  17. Frozen Beams

    CERN Document Server

    Okamoto, Hiromi

    2005-01-01

    In general, the temperature of a charged particle beam traveling in an accelerator is very high. Seen from the rest frame of the beam, individual particles randomly oscillate about the reference orbit at high speed. This internal kinetic energy can, however, be removed by introducing dissipative interactions into the system. As a dissipative process advances, the beam becomes denser in phase space or, in other words, the emittance is more diminished. Ideally, it is possible to reach a "zero-emittance" state where the beam is Coulomb crystallized. The space-charge repulsion of a crystalline beam just balances the external restoring force provided by artificial electromagnetic elements. In this talk, general discussion is made of coasting and bunched crystalline beams circulating in a storage ring. Results of molecular dynamics simulations are presented to demonstrate the dynamic nature of various crystalline states. A possible method to approach such an ultimate state of matter is also discussed.

  18. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  19. Electron Neutrino Classification in Liquid Argon Time Projection Chamber Detector

    CERN Document Server

    Płoński, Piotr; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    Neutrinos are one of the least known elementary particles. The detection of neutrinos is an extremely difficult task since they are affected only by weak sub-atomic force or gravity. Therefore large detectors are constructed to reveal neutrino's properties. Among them the Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. The computerized methods for automatic reconstruction and identification of particles are needed to fully exploit the potential of the LAr-TPC technique. Herein, the novel method for electron neutrino classification is presented. The method constructs a feature descriptor from images of observed event. It characterizes the signal distribution propagated from vertex of interest, where the particle interacts with the detector medium. The classifier is learned with a constructed feature descriptor to decide whether the images represent the electron neutrino or cascade produced by photons. The proposed ap...

  20. Image Segmentation in Liquid Argon Time Projection Chamber Detector

    CERN Document Server

    Płoński, Piotr; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    The Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. An efficient and automatic reconstruction procedures are required to exploit potential of this imaging technology. Herein, a novel method for segmentation of images from LAr-TPC detectors is presented. The proposed approach computes a feature descriptor for each pixel in the image, which characterizes amplitude distribution in pixel and its neighbourhood. The supervised classifier is employed to distinguish between pixels representing particle's track and noise. The classifier is trained and evaluated on the hand-labeled dataset. The proposed approach can be a preprocessing step for reconstructing algorithms working directly on detector images.