WorldWideScience

Sample records for argon 34

  1. Optical Emission Analysis of a Si(CH3)4-Argon Radio Frequency Plasma for SiC Films Deposition

    OpenAIRE

    Andrieux, M.; Badie, J.; Bisch, C.; Ducarroir, M.; Teyssandier, F.

    1995-01-01

    RF glow discharges from tetramethylsilane diluted in an argon flow have been investigated in a cold wall R.F. (2MHz) P.E.C.V.D. reactor. This reactor is used for fast deposition of adherent amorphous silicon carbide films (with Si/C≈1.2) on steel. Optical emission from the plasma was sampled using a high resolution double monochromator (2m focal length, 1800 grooves/mm) coupled with a multichannel CCD detector. Only the lines corresponding to neutral or ionised Argon (Ar, Ar+), the broadened ...

  2. Argon plasma coagulation

    Directory of Open Access Journals (Sweden)

    Zenker, Matthias

    2008-03-01

    Full Text Available Argon Plasma Coagulation (APC is an application of gas discharges in argon in electrosurgery, which is increasingly used especially in endoscopy. The major application fields are haemostasis, tissue devitalization and tissue reduction.This review describes the physics and technology of electrosurgery and APC. Some characteristics of the argon discharge are shown and discussed, and thermal effects in biological tissue are described. Subsequently, examples of medical applications are given.

  3. Lunar exospheric argon modeling

    Science.gov (United States)

    Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.

    2015-07-01

    Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap

  4. Depleted Argon from Underground Sources

    International Nuclear Information System (INIS)

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however 39Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in 39Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO2 well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO2. We first concentrate the argon locally to 3% in an Ar, N2, and He mixture, from the CO2 through chromatographic gas separation, and then the N2 and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO2 facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  5. Argon in action

    CERN Multimedia

    Corinne Pralavorio

    2015-01-01

    Over the past few days, the SPS has been accelerating argon ions, which have started to be sent to the NA61/SHINE experiment. This operating mode, using a new type of ion, required a number of modifications to the accelerator.   Picture 1: a “super-cycle” of the SPS, featuring a proton cycle for the LHC, followed by an argon ion cycle for the North Area. Today, the accelerators are once again juggling particles and even performing completely new tricks. The SPS is supplying beams of argon ions for the first time, at energies never before achieved for this type of beam. They are destined for the NA61/SHINE experiment (see box) located in the North Area, which began receiving the beams on 11 February. Argon ions have a relatively large mass, as they consist of 40 nucleons, so they can be used in a similar way to lead ions. The main difficulty in accelerating them lies in the SPS, where the variation in acceleration frequency is limited. “The SPS was designed for a...

  6. Thermophysical properties of argon

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, A.

    1988-02-01

    The entire report consists of tables of thermodynamic properties (including sound velocity, thermal conductivity and diffusivity, Prandtl number, density) of argon at 86 to 400/degree/K, in the form of isobars over 0.9 to 100 bars. (DLC)

  7. Flow Parameters of Argon plasma Discharge

    International Nuclear Information System (INIS)

    Owing to the viscosity, the plasma will be adhering to the inner surface of the outer electrode and outer surface of the inner one. As result that the discharge will be eroding the walls of coaxial system. The thickness of the boundary layer near the walls has been estimated at different positions from the breech of coaxial plasma gun. It is found that the thickness of layer 0.008 cm at the end of inner electrode (17 cm). A coaxial plasma gun device is operated in argon gas at ambient pressure 0.6 Torr and discharge voltage about 10 KV. The electron temperature of argon discharge has been determined by using spectroscopic technique. It is found that kTe=3.4 eV. By knowing the thickness of the boundary layer, the density can be determined. The Reynolds number R=105 and Mach number M=5 i.e. the flow is compressible and hypersonic

  8. The Argon Geochronology Experiment (AGE)

    Science.gov (United States)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  9. Liquid argon neutrino detectors

    CERN Document Server

    Battistoni, G

    2001-01-01

    The liquid argon imaging technique, as proposed for the ICARUS detector, offers the possibility to perform complementary and simultaneous measurements of neutrinos, as those of CERN to Gran Sasso beam (CNGS) and those from cosmic ray events. For the currently allowed values of the Super-Kamiokande results, the combination of both CNGS and atmospheric data will provide a precise determination of the oscillation parameters. Since one can observe and unambiguously identify nu /sub e/, nu /sub mu / and nu /sub tau / components, this technology allows to explore the full (3*3) mixing matrix. The same class of detector can be proposed for high precision measurements at a neutrino factory. (3 refs).

  10. Argon Welding Inside A Workpiece

    Science.gov (United States)

    Morgan, Gene E.

    1988-01-01

    Canopies convert large hollow workpiece into inert-gas welding chamber. Large manifold serves welding chamber for attachment of liner parts in argon atmosphere. Every crevice, opening and passageway provided with argon-rich environment. Weld defects and oxidation dramatically reduced; also welding time reduced.

  11. Microwave Argon Plasma Torch

    Science.gov (United States)

    Felizardo, Edgar; Pencheva, Mariana; Benova, Evgenia; Dias, Fransisco; Tatarova, Elena

    2009-10-01

    A theoretical and experimental investigation of a microwave (2.45 GHz) Argon plasma torch driven by a surface wave is presented. The theoretical model couples in a self-consistent way the wave electrodynamics and the electron and heavy particle kinetics. The set of coupled equations includes: Maxwell's equations, the electron Boltzmann equation, including electron-electron collisions, and the particle balance equations for electrons, excited atoms (4s, 4p, 3d, 5s, 5p, 4d, 6s), and atomic (Ar^+) and molecular ions (Ar2^+). The input parameters of the model are: gas pressure (760 Torr), plasma radius (R = 0.75 cm), dielectric permittivity (ɛd = 4.0) and tube thickness (d = 0.15 cm) as well as the measured axial profile of the gas temperature (3500 K - 1500 K). The latter was determined from measurements of the rotational temperature of the OH molecular band in the range 306 - 315 nm. Phase and amplitude sensitive recording provides the data for the axial wavenumber and wave attenuation coefficient. The wavenumber decreases along the generated plasma torch. The electron density (Ne) axial profile as determined from measurements of Hβ Stark broadening is in agreement with the theoretical one.

  12. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  13. Electrical conductivity of compressed argon

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, R. [Univ. Regensburg (Germany); Windl, W.; Collins, L.; Kress, J.; Kwon, I. [Los Alamos National Lab., NM (United States)

    1997-10-01

    The authors report calculations of the electrical conductivity of solid argon as a function of compression within the density functional local density approximation formulation for a norm-conserving pseudopotential using both electron-phonon coupling and molecular dynamics techniques.

  14. Testing a liquid Argon calorimeter

    CERN Multimedia

    1976-01-01

    Physicists from Karlsruhe test a liquid argon calorimeter in the neutral beam b16 at the PS. The calorimeter was meant to supply some neutral particles identification at the Split-Field Magnet Facility for R416.

  15. The Liquid Argon Purity Demonstrator

    CERN Document Server

    Adamowski, M; Dvorak, E; Hahn, A; Jaskierny, W; Johnson, C; Jostlein, H; Kendziora, C; Lockwitz, S; Pahlka, B; Plunkett, R; Pordes, S; Rebel, B; Schmitt, R; Stancari, M; Tope, T; Voirin, E; Yang, T

    2014-01-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  16. Fano factor in pure argon

    International Nuclear Information System (INIS)

    The Fano factor for 5.3 MeV alpha particles in pure argon has been measured with a gridded ionization chamber and estimated to be 0.20 (+0.01-0.02). The obtained value is consistent with the theoretical value if the contribution of elastic nuclear collisions to the Fano factor is taken into the consideration. There is no appreciable difference between the values for pure argon and for a gas mixture of Ar (10%)CH4 obtained in the previous measurement. (orig.)

  17. Binocular indirect argon laser photocoagulator.

    OpenAIRE

    Mizuno, K

    1981-01-01

    The binocular indirect argon laser photocoagulator was newly designed to enable visualisation of the entire fundus during panretinal laser photocoagulation and to treat retinal tears immediately after buckling procedures of the sclera. The lamp housing of the binocular ophthalmoscope was remodelled and adjusted so that the laser beam and illuminating light are coaxial after leaving the ophthalmoscope. The blocking filter was permanently fixed in the eye-pieces to lighten the weight of the oph...

  18. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  19. The scintillation of liquid argon

    CERN Document Server

    Heindl, T; Hofmann, M; Krücken, R; Oberauer, L; Potzel, W; Wieser, J; Ulrich, A

    2015-01-01

    A spectroscopic study of liquid argon from the vacuum ultraviolet at 110 nm to 1000 nm is presented. Excitation was performed using continuous and pulsed 12 keV electron beams. The emission is dominated by the analogue of the so called 2nd excimer continuum. Various additional emission features were found. The time structure of the light emission has been measured for a set of well defined wavelength positions. The results help to interpret literature data in the context of liquid rare gas detectors in which the wavelength information is lost due to the use of wavelength shifters.

  20. Transition probabilities for argon I

    International Nuclear Information System (INIS)

    Transition probabilities for ArI lines have been calculated on the basis of the (j,k)-coupling scheme for more than 16000 spectral lines belonging to the transition arrays 4s-np (n=4 to n=9), 5s-np (n=5 to n=9), 6s-np (n=6 to n=9), 7s-np (n=8 to n=9), 4p-ns (n=5 to n=10), 5p-ns (n=6 to n=9), 6p-ns (n=7 to n=8), 4p-nd (n=3 to n=9), 5p-nd (n=4 to n=9), 3d-np (n=5 to n=9), 4d-np (n=6 to n=9), 5d-np (n=7 to n=9), 3d-nf (n=4 to n=9), 4d-nf (n=4 to n=9), 5d-nf (n=5 to n=9), 4f-nd (n=5 to n=9) 5f-nd (n=6 to n=9), 4f-ng (n=5 to n=9), 5f-ng (n=6 to n=9). Inso far as values by other authors exist, comparison is made with these values. It turns out that the results obtained in (j,k)-coupling are close to those obtained in intermediate coupling except for intercombination lines. For high principal and/or orbital quantum numbers the transition probabilities for a multiplet approach those of the corresponding transitions in atomic hydrogen. The calculated values are applied to construct a simplified argon-atom model, which reflects the real transition properties and which allows simplified but realistic non-equilibrium calculations for argon plasmas which deviate from local thermodynamic equilibrium (LTE)

  1. Argon-39 Background in DUNE Photon Detectors

    Science.gov (United States)

    Sinev, Gleb; DUNE Collaboration

    2016-03-01

    The Deep Underground Neutrino Experiment (DUNE) is a 40-kt liquid argon detector that will be constructed 5000 ft underground in the Sanford Underground Research Facility in order to study neutrino and proton decay physics. Instrumenting liquid argon with photon detectors to record scintillation in addition to the ionization signal can significantly improve time and energy resolution of the experiment. Argon produces light with wavelength of 128 nm. The reference design for the photon detectors includes acrylic bars covered in wavelength shifter, where the scintillation light can be captured and reemitted with longer wavelengths, then detected using silicon photomultipliers. Radiological backgrounds may noticeably deteriorate the photon detection system performance, especially for low-energy interactions. A particularly important background comes from argon-39 decays, because argon-39 is present in natural argon that will be used in DUNE and the background rate increases with the size of the experiment. The effect of the argon-39 background has been studied and is presented in this talk.

  2. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  3. Argon plasma irradiation of polypropylene

    International Nuclear Information System (INIS)

    Polypropylene samples were exposed to argon plasma discharge and the changes of the PP surface properties were studied by different methods. Surface wettability was derived from contact angle measured by standard goniometry and chemical structure of the plasma modified PP was studied using X-ray photoelectron spectroscopy (XPS) and by Rutherford backscattering spectroscopy (RBS), surface morphology and roughness of samples using AFM. Zeta potential of pristine and modified PP was determined with the SurPASS. The presence of incorporated oxygen in the PP surface layer, about 60 nm thick, was observed in RBS spectra. Oxygen concentration is a decreasing function of the depth. With progressing aging time the oxygen concentration on the PP surface decreases. Plasma treatment results in a rapid decrease of the contact angle, which increases again with increasing aging time. In XPS measurement the oxygen containing structures, created by the plasma treatment, were found on the very surface of the modified PP and the zeta potential being changed too. The significant difference in zeta potential between pristine and plasma treated PP clearly indicates that the plasma treatment leads to a more hydrophilic PP surface.

  4. Status and perspecitves of liquid argon calorimeters

    International Nuclear Information System (INIS)

    The status of liquid argon calorimeters is reviewed, and experience obtained with these devices is described. Future perspectives of the liquid ionization chamber technique in calorimetry are also discussed. (orig.)

  5. Clinical periodontics with the argon laser

    Science.gov (United States)

    Finkbeiner, R. L.

    1995-04-01

    The argon laser has proven to be a valuable tool for the thermodynamic debridement of the periodontal lesion, incisions and tissue fusion. Illustrations of clinical applications and discussion of laser parameters will be provided.

  6. Liquid argon neutrals detector (LAND) for PEP

    International Nuclear Information System (INIS)

    The physical effects limiting the gamma energy resolution of a liquid argon calorimeter without passive converter plates is discussed. An example of such a detector based on the General User's Magnet designed at this Summer Study is given

  7. Opacity of Shock-Generated Argon Plasmas

    Institute of Scientific and Technical Information of China (English)

    王藩侯; 陈敬平; 周显明; 李西军; 经福谦; 孟续军; 孙永盛

    2001-01-01

    Argon plasmas with uniform density and temperature are generated by a planar shock wave through argon gas. The opacities of argon plasma, covering the thermodynamic states at temperatures of 1.4-2.2eV and in densities of 0.0083- 0.015 g/cm3, are investigated by measuring the emitted radiance versus time at several visible wavelengths. Comparison of the measured opacities with those calculated demonstrates that the average atom model can be used well to describe the essential transport behaviour of photons in argon plasma under the abovementioned thermodynamic condition. A simplified and self-consistent method to deduce the reflectivity R(λ) at the baseplate surface is applied. It demonstrates that the values of R(λ) are all around 0.4 in the experiments, which are basically in agreement with those given by Erskine previously (1994 J. Quant. Spectrosc. Radiat.Transfer 51 97).

  8. 21 CFR 868.1075 - Argon gas analyzer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  9. Negative corona current pulses in argon and in mixture argon with SF6

    International Nuclear Information System (INIS)

    Waveforms of the first negative current pulses in a short negative point-to plane gap in pure argon and argon with SF6 admixture have been investigated with a nanosecond time resolution at a gas pressure 50 kPa as a function of applied gap voltage and content of SF6 in the mixture. We have made an attempt to explain the differences in the discharge development in pure argon and in argon with admixture of SF6 based on the observed changes of the pulse shape. The experimental results obtained will be discussed in context with existing computer simulation models (Authors)

  10. Measurements on scintillation light from liquid argon

    International Nuclear Information System (INIS)

    It is shown that an argon calorimeter can operate as a scintillation detector, provided that xenon is added. With the addition of 170 ppm xenon a light yield of 70% has been obtained. In addition the light yield is determined under influence of an electric field, from differently ionising particles and by the use of aluminium mirrors acting as light guides. Finally first measurements with a photomultiplier working at liquid argon temperatures are reported. (orig.)

  11. Potassium-argon/argon-40-argon-39 geochronology of Cenozoic alkali basalts from the South China Sea

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa; YANG Yaomin; WANG Kunshan

    2008-01-01

    Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea,the characteristics of volcanic activi-ty of the South China Sea after spreading were studied.The potassium - argon ages of eight alkali basalt samples from the South China Sea,and the argon - argon ages of two samples among them are reported.Apparent ages of the whole rock are 3.80 to 7.91 Ma with an average value of 5.43 Ma (potassium- argon,whole rock),and there is little difference among samples at the same location,e.g.,4.76~5.78 Ma for location S04-12.The argon - argon ages for the two samples are 6.06 and 4.71 Ma,which lie within the age scope of potassium - argon method.The dating results indicate that rock-forming age is from late Miocene to Pli-ocene,which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea.Volcanic activities occur after the cessation of spreading of the South China Sea,which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea.These dating results,combined with geochemical characteristics of these basalts,the published chronological data for the South China Sea and its adjacent regions,and the updated geophysical data near Hainan Island,suggest that after the cessation of spreading of the South China Sea,there occur widely distributing magmatic activities which primarily is alkali basalt,and the volcanic activity continues to Quaternary.The activity may be relative to Hainan mantle plume originated from core/mantle boundary.

  12. Argon Collection And Purification For Proliferation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-09

    In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event was a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.

  13. Kinetic and experimental study of argon and argon--nitrogen mixtures excited by fission fragments

    International Nuclear Information System (INIS)

    Optical emission from argon and argon-nitrogen mixtures excited by fission fragments are studied in an effort to better understand the fission fragment energy deposition into the gas. A model of the energy flow in the gas is developed and compared with the experimental results

  14. Argon activation analysis, application to dating by the potassium-argon method

    International Nuclear Information System (INIS)

    Activation analysis using radiogenic argon-40 has been applied to rock-dating by the K-Ar method. The argon is extracted from the sample, purified, activated to saturation in a flux of 2 X 1013 neutrons/cm2 sec-1 and measured by gamma spectroscopy. The sensitivity obtained is such that it is possible to measure amounts of argon corresponding to age of a few thousand years only. However since it has not been possible to measure the amount of pollution of radiogenic argon by atmospheric argon with any accuracy, the measurable age limit is in fact of the order of MY. The method has been applied to basalts from the Mont-Dore region. The results obtained are in fairly good agreement with geological, stratigraphic and paleomagnetic data. (author)

  15. Attenuation of vacuum ultraviolet light in liquid argon

    CERN Document Server

    Neumeier, A; Oberauer, L; Potzel, W; Schönert, S; Dandl, T; Heindl, T; Ulrich, A; Wieser, J

    2015-01-01

    The transmission of liquid argon has been measured, wavelength resolved, for a wavelength interval from 118 to 250 nm. The wavelength dependent attenuation length is presented for pure argon. It is shown that no universal wavelength independent attenuation length can be assigned to liquid argon for its own fluorescence light due to the interplay between the wavelength dependent emission and absorption. A decreasing transmission is observed below 130 nm in both chemically cleaned and distilled liquid argon and assigned to absorption by the analogue of the first argon excimer continuum. For not perfectly cleaned argon a strong influence of impurities on the transmission is observed. Two strong absorption bands at 126.5 and 141.0 nm with approximately 2 and 4 nm width, respectively, are assigned to traces of xenon in argon. A broad absorption region below 180 nm is found for unpurified argon and tentatively attributed to the presence of water in the argon sample.

  16. A measurement of E/. pi. for a fast lead liquid argon calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Makowiecki, D.; Gordon, H.A.; Ma, H.; Murtagh, M.; Radeka, V.; Rahm, D.; Rescia, S. (Brookhaven National Lab., Upton, NY (United States)); Abrams, G.S.; Groom, D.E.; Kirsten, F.; Levi, M.; Siegrist, J. (Lawrence Berkeley Lab., CA (United States)); Amako, K.; Inaba, O.; Kondo, T. (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)); Baden, A.R.; Fong, D.; Hadley, N.; Kunori, S.; Skuja, A. (Maryland U

    1990-01-01

    The NA34 (HELIOS) calorimeter has measured e/{pi} {congruent} 1.1 in a uranium/liquid argon calorimeter with a shaping time of 135 nsec. Lead may be a viable alternative, but e/{pi} must first be measured at fast shaping times in lead. We re preparing to measure e/{pi} at momenta ranging from 0.5 to 20 GeV/c and with shaping times of 50, 100 and 150 nsec.

  17. A measurement of E/{pi} for a fast lead liquid argon calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Makowiecki, D.; Gordon, H.A.; Ma, H.; Murtagh, M.; Radeka, V.; Rahm, D.; Rescia, S. [Brookhaven National Lab., Upton, NY (United States); Abrams, G.S.; Groom, D.E.; Kirsten, F.; Levi, M.; Siegrist, J. [Lawrence Berkeley Lab., CA (United States); Amako, K.; Inaba, O.; Kondo, T. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Baden, A.R.; Fong, D.; Hadley, N.; Kunori, S.; Skuja, A. [Maryland Univ., College Park, MD (United States); Bowen, T.; Forden, G.; Jenkins, E.; Johns, K.; Rutherfoord, J.; Shupe, M. [Arizona Univ., Tucson, AZ (United States); Burnett, T.; Cook, V.; Davisson, R.; Mockett, P.; Rothberg, J.; Williams, R.W. [Washington Univ., Seattle, WA (United States); Cremaldi, L.; Reidy, J.; Summers, D. [Mississippi Univ., University, MS (United States); DiGiacomo, N. [Martin Marietta Aerospace, Denver, CO (United States). Astronautics Group; Draper, P.; Ferbel, T.; Lobkowicz, F. [Rochester Univ., NY (United States); Faust, J.; Hauptman, J.; Pang, M. [Iowa State Univ. of Science and Technology, Ames, IA (United States); Gabriel, T.A. [Oak Ridge National Lab., TN (United States); Hagopian, V.; Womersley, J. [Florida State Univ., Tallahassee, FL (United States); Handler, T. [Tennessee Univ., Knoxville, TN (United States); Hitlin, D. [California Inst. of Tech., Pasadena, CA (United States); Mulholland, G.T. [Fermi National Accelerator Lab., Batavia, IL (United States); Watanabe, Y. [Tokyo Inst. of Tech. (Japan); Weerts, H. [Michigan State Univ., East Lansing, MI (United States)

    1990-12-31

    The NA34 (HELIOS) calorimeter has measured e/{pi} {congruent} 1.1 in a uranium/liquid argon calorimeter with a shaping time of 135 nsec. Lead may be a viable alternative, but e/{pi} must first be measured at fast shaping times in lead. We re preparing to measure e/{pi} at momenta ranging from 0.5 to 20 GeV/c and with shaping times of 50, 100 and 150 nsec.

  18. Scintillation efficiency of liquid argon in low energy neutron-argon scattering

    International Nuclear Information System (INIS)

    Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field

  19. Contraction ionization waves in the argon contracted discharge

    International Nuclear Information System (INIS)

    An investigation of ionization waves in the argon contracted discharge and a definition of their arising propagation mechanism accounting for the specificity of elementary pocesses characteristic of argon are presented. (author)

  20. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  1. Antiapoptotic activity of argon and xenon.

    Science.gov (United States)

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-08-15

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115

  2. Argon-ion contamination of the plasmasphere

    International Nuclear Information System (INIS)

    This paper applies present observational and analytic knowledge on effects of plasma beam interaction wth the magnetosphere to the plasmasphere contamination problem of the argon ion engine exhaust expected to be deposited in the magnetosphere during the construction phase of the Satellite Power System. Effects of plasmasphere, ionosphere, and radiation belt modifications are discussed

  3. Near-infrared scintillation of liquid argon

    Science.gov (United States)

    Alexander, T.; Escobar, C. O.; Lippincott, W. H.; Rubinov, P.

    2016-03-01

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 μm motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  4. Silicon compounds of neon and argon

    Czech Academy of Sciences Publication Activity Database

    Roithová, J.; Schröder, Detlef

    -, č. 46 (2009), s. 8788-8790. ISSN 1433-7851 R&D Projects: GA ČR GA203/09/1223 Grant ostatní: ERC(XE) Adg HORIZOMS Institutional research plan: CEZ:AV0Z40550506 Keywords : argon * bond formation * dications * neon Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.829, year: 2009

  5. Argon Laser Treatment of Strawberry Hemangioma in Infancy

    OpenAIRE

    Achauer, Bruce M.; Vander Kam, Victoria M.

    1985-01-01

    Argon laser therapy is effective for removing port-wine stains and for reducing cutaneous vascular and pigmented lesions. Strawberry hemangiomas, being much thicker lesions than port-wine stains, were considered not appropriate for argon laser treatment. Using argon laser therapy in 13 cases of strawberry hemangioma, we achieved poor to dramatic results.

  6. Argon laser irradiation of the otolithic organ

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, T.; Nomura, Y.; Young, Y.H.; Hara, M. (Univ. of Tokyo (Japan))

    1990-12-01

    An argon laser was used to irradiate the otolithic organs of guinea pigs and cynomolgus monkeys. After stapedectomy, the argon laser (1.5 W x 0.5 sec/shot) irradiated the utricle or saccule without touching the sensory organs. The stapes was replaced over the oval window after irradiation. The animals used for acute observation were killed immediately for morphologic studies; those used for long-term observation were kept alive for 2, 4, or 10 weeks. Acute observation revealed that sensory and supporting cells were elevated from the basement membrane only in the irradiated area. No rupture of the membranous labyrinth was observed. Long-term observation revealed that the otolith of the macula utriculi had disappeared in 2-week specimens. The entire macula utricili had disappeared in 10-week specimens. No morphologic changes were observed in cochlea, semicircular canals, or membranous labyrinth. The saccule showed similar changes.

  7. Explanation of the memory effect in argon

    Directory of Open Access Journals (Sweden)

    Marković Vidosav

    2005-01-01

    Full Text Available Memory effect - the long time variation of the electrical breakdown time delay on the relaxation time td (τ was observed in argon 24 hours after relaxation times and explained by the long-lived metastable states remaining from the preceding glow. However, the quenching processes reducing the effective lifetime of metastable states several orders of magnitude below that relevant for the time scale of observation were neglected. By applying approximate gas phase models it was found that the early afterglow kinetics up to hundreds of milliseconds is dominated by the decay of molecular argon ions Ar2+ and the approximate value of their ambipolar diffusion coefficient is determined. After that, nitrogen atoms present as impurities and recombined on the cathode surface and/or field emission determine the breakdown time delay down to the cosmic rays and natural radioactivity level.

  8. ATLAS liquid argon calorimeter back end electronics

    CERN Document Server

    Bán, J; Bellachia, F; Blondel, A; Böttcher, S; Clark, A; Colas, Jacques; Díaz-Gómez, M; Dinkespiler, B; Efthymiopoulos, I; Escalier, M; Fayard, Lo; Gara, A; He, Y; Henry-Coüannier, F; Hubaut, F; Ionescu, G; Karev, A; Kurchaninov, L; Lafaye, R; Laforge, B; La Marra, D; Laplace, S; Le Dortz, O; Léger, A; Liu, T; Martin, D; Matricon, P; Moneta, L; Monnier, E; Oberlack, H; Parsons, J A; Pernecker, S; Perrot, G; Poggioli, L; Prast, J; Przysiezniak, H; Repetti, B; Rosselet, L; Riu, I; Schwemling, P; Simion, S; Sippach, W; Strässner, A; Stroynowski, R; Tisserant, S; Unal, G; Wilkens, H; Wingerter-Seez, I; Xiang, A; Yang, J; Ye, J

    2007-01-01

    The Liquid Argon calorimeters play a central role in the ATLAS (A Toroidal LHC Apparatus) experiment. The environment at the Large Hadron Collider (LHC) imposes strong constraints on the detectors readout systems. In order to achieve very high precision measurements, the detector signals are processed at various stages before reaching the Data Acquisition system (DAQ). Signals from the calorimeter cells are received by on-detector Front End Boards (FEB), which sample the incoming pulse every 25ns and digitize it at a trigger rate of up to 75~kHz. Off-detector Read Out Driver (ROD) boards further process the data and send reconstructed quantities to the DAQ while also monitoring the data quality. In this paper, the ATLAS Liquid Argon electronics chain is described first, followed by a detailed description of the off-detector readout system. Finally, the tests performed on the system are summarized.

  9. Current and future liquid argon neutrino experiments

    International Nuclear Information System (INIS)

    The liquid argon time projection chamber (LArTPC) detector technology provides an opportunity for precision neutrino oscillation measurements, neutrino cross section measurements, and searches for rare processes, such as SuperNova neutrino detection. These proceedings review current and future LArTPC neutrino experiments. Particular focus is paid to the ICARUS, MicroBooNE, LAr1, 2-LArTPC at CERN-SPS, LBNE, and 100 kton at Okinoshima experiments

  10. Liquid argon imaging a novel detection technology

    CERN Document Server

    Rubbia, Carlo

    2002-01-01

    Ionisation electrons may drift over large distances (meters) in a volume of highly purified liquid argon (O2 equivalent less than 0.1 ppb!) under the action of an electric field. With an appropriate readout system (i.e. a set of fine pitch wire grids) we have realised a massive, continuously sensitive 'bubble chamber' with multiple readouts of the same, small charge (a minimum ionising track segment, 2 mm long, yields • 10000 electrons). We have developed this technology since 1987, initially with small laboratory devices and later with progressively larger and more sophisticated detectors, the latest being the T600 module (740 ton of liquid Argon), which has been operated in Pavia, as a step toward the ICARUS programme in the Gran Sasso Laboratory (LNGS). With cloning of T600 we aim at a 3000 ton detector by 2005. Argon is a medium with density 1.4 g/cm3, similar in characteristics to the heavy freon used in the famous Gargamelle. With wire pitches of 2-3 mm, it provides an extremely high spatial re...

  11. Distribution and Abundance of Mars' Atmospheric Argon

    Science.gov (United States)

    Sprague, A. L.; Boynton, W. V.; Kerry, K. E.; Nelli, Steven; Murphy, Jim; Reedy, R. C.; Metzger, A. E.; Hunten, D. M.; Janes, K. D.; Crombie, M. K.

    2005-01-01

    One and one half Mars years (MY 26 and 27) of atmospheric Argon measurements are described and studied in the context of understanding how Argon, a minor constituent of Mars atmosphere that does not condense at Mars temperatures, can be used to study martian circulation and dynamics. Argon data are from the 2001 Mars Odyssey Gamma Subsystem (GS) of the suite of three instruments comprising the Gamma Ray Spectrometer (GRS). A comprehensive data analysis including gamma-ray production and attenuation by the atmosphere is included. Of particular interest is the enhanced abundance of Ar over the observed Ar abundance at lower latitudes at south (up to a factor of 10) and north (up to a factor of 4) polar regions during winter. Calibration of the measurements to actual Ar abundance is possible because GS measurements cover the same latitude and season as measurements made by the gas chromatograph mass spectrometer (GCMS) on Viking Landers 1 and 2 (VL1 and VL2). [2].

  12. Development of a low-cost inductively coupled argon plasma

    International Nuclear Information System (INIS)

    The aim of this investigation is to drastically reduce running costs of an inductively coupled plasma. This is done by reducing the argon consumption from 20 l/min to about 1 l/min. First, a sample introduction system operating on 0.1 l/min of carrier argon is described. This system ensures a high ratio of plasma argon and carrier argon even at the low total argon consumptions intended. Next, the developed low consumption plasma is presented. In the proposed design, air is blown perpendicularly against the outside of the torch. A different coil has been developed to make air-cooling efficient. Preliminary data on coupling efficiency for the air-cooled plasma are presented. A similarly low argon consumption has been achieved with water as an external coolant medium. It is concluded that a cheaper alternative to the current ICP has become available. (Auth.)

  13. Direct WIMP Detection Using Scintillation Time Discrimination in Liquid Argon

    OpenAIRE

    Boulay, M. G.; Hime, A.

    2004-01-01

    Discrimination between electron and nuclear recoil events in a liquid argon scintillation detector has been demonstrated with simulations by using the differences in the scintillation photon time distribution between these classes of events. A discrimination power greater than 10^{8} is predicted for a liquid argon experiment with a 10 keV threshold, which would mitigate electron and gamma-ray backgrounds, including beta decays of 39-Ar and 42-Ar in atmospheric argon. A dark matter search usi...

  14. Effects of Nitrogen contamination in liquid Argon

    Science.gov (United States)

    Acciarri, R.; Antonello, M.; Baibussinov, B.; Baldo-Ceolin, M.; Benetti, P.; Calaprice, F.; Calligarich, E.; Cambiaghi, M.; Canci, N.; Carbonara, F.; Cavanna, F.; Centro, S.; Cocco, A. G.; Di Pompeo, F.; Fiorillo, G.; Galbiati, C.; Gallo, V.; Grandi, L.; Meng, G.; Modena, I.; Montanari, C.; Palamara, O.; Pandola, L.; Piano Mortari, G. B.; Pietropaolo, F.; Raselli, G. L.; Roncadelli, M.; Rossella, M.; Rubbia, C.; Segreto, E.; Szelc, A. M.; Ventura, S.; Vignoli, C.

    2010-06-01

    A dedicated test of the effects of Nitrogen contamination in liquid Argon has been performed at the INFN-Gran Sasso Laboratory (LNGS, Italy) within the WArP R&D program. A detector has been designed and assembled for this specific task and connected to a system for the injection of controlled amounts of gaseous Nitrogen into the liquid Argon. The purpose of the test is to detect the reduction of the Ar scintillation light emission as a function of the amount of the Nitrogen contaminant injected in the Argon volume. A wide concentration range, spanning from ~ 10-1 ppm up to ~ 103 ppm, has been explored. Measurements have been done with electrons in the energy range of minimum ionizing particles (γ-conversion from radioactive sources). Source spectra at different Nitrogen contaminations are analyzed, showing sensitive reduction of the scintillation yield at increasing concentrations. Direct PMT signal acquisition exploiting high time resolution by fast waveform recording allowed high precision extraction of the main characteristics of the scintillation light emission in contaminated LAr. In particular, the decreasing behavior in lifetime and relative amplitude of the slow component is found to be appreciable starting from Script O(1 ppm) of Nitrogen concentrations. The rate constant of the quenching process induced by Nitrogen in liquid Ar has been found to be kQ(N2) = 0.11 ± 0.01 μs-1ppm-1, consistent with a previous measurement of this quantity but with significant improvement in precision. On the other hand, no evidence for absorption by N2 impurities has been found up to the higher concentrations here explored.

  15. HARP: high pressure argon readout for calorimeters

    International Nuclear Information System (INIS)

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx.200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described

  16. Argon isotope fractionation induced by stepwise heating

    Science.gov (United States)

    Trieloff, Mario; Falter, Martina; Buikin, Alexei I.; Korochantseva, Ekaterina V.; Jessberger, Elmar K.; Altherr, Rainer

    2005-03-01

    Noble gas isotopes are widely used to elucidate the history of the rocks in which they have been trapped, either from distinct reservoirs or by accumulation following radioactive decay. To extract noble gases from their host rocks, stepwise heating is the most commonly used technique to deconvolve isotopically different components, e.g., atmospheric, in situ radiogenic, or excess radiogenic from mantle or crustal reservoirs. The accurate determination of the isotopic composition of these different components is of crucial importance, e.g., for ages obtained by 40Ar- 39Ar stepheating plateaus. However, diffusion theory-based model calculations predict that the stepwise thermal extraction process from mineral phases induces isotope fractionation and, hence, adulterates the original composition. Such effects are largely unconsidered, as they are small and a compelling experimental observation is lacking. We report the first unequivocal evidence for significant mass fractionation of argon isotopes during thermal extraction, observed on shungite, a carbon-rich Precambrian sedimentary rock. The degree of fractionation, as monitored by 38Ar/ 36Ar and 40Ar/ 36Ar ratios, very well agrees with theoretical predictions assuming an inverse square root dependence of diffusion coefficient and atomic mass, resulting in easier extraction of lighter isotopes. Hence, subatmospheric 40Ar/ 36Ar ratios obtained for argon extracted at low temperatures may not represent paleoatmospheric argon. Shungite argon resembles modern atmospheric composition, but constraints on the timing of trapping appear difficult to obtain, as shungites are multicomponent systems. In 40Ar- 39Ar stepwise heating, the isotope fractionation effect could cause systematic underestimations of plateau ages, between 0.15 and 0.4% depending on age, or considerably higher if samples contain appreciable atmospheric Ar. The magnitude of this effect is similar to the presently achieved uncertainties of this increasingly

  17. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  18. Near-infrared scintillation of liquid argon

    CERN Document Server

    Alexander, T; Lippincott, W H; Rubinov, P

    2016-01-01

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  19. Attosecond Time-Resolved Autoionization of Argon

    International Nuclear Information System (INIS)

    Autoionization of argon atoms was studied experimentally by transient absorption spectroscopy with isolated attosecond pulses. The peak position, intensity, linewidth, and shape of the 3s3p6np 1P Fano resonance series (26.6-29.2 eV) were modified by intense few-cycle near infrared laser pulses, while the delay between the attosecond pulse and the laser pulse was changed by a few femtoseconds. Numerical simulations revealed that the experimentally observed splitting of the 3s3p64p 1P line is caused by the coupling between two short-lived highly excited states in the strong laser field.

  20. Argon Purification Studies and a Novel Liquid Argon Re-circulation System

    CERN Document Server

    Mavrokoridis, K; Coleman, J; Lightfoot, P K; McCauley, N; McCormick, K J; Touramanis, C

    2011-01-01

    Future giant liquid argon (LAr) time projection chambers (TPCs) require a purity of better than 0.1 parts per billion (ppb) to allow the ionised electrons to drift without significant capture by any electronegative impurities. We present a comprehensive study of the effects of electronegative impurity on gaseous and liquid argon scintillation light, an analysis of the efficacy of various purification chemicals, as well as the Liverpool LAr setup, which utilises a novel re-circulation purification system. Of the impurities tested - Air, O_2, H_2O, N_2 and CO_2 in the range of between 0.01 ppm to 1000 ppm - H_2O was found to have the most profound effect on gaseous argon scintillation light, and N_2 was found to have the least. Additionally, a correlation between the slow component decay time and the total energy deposited with 0.01 ppm - 100 ppm O_2 contamination levels in liquid argon has been established. The superiority of molecular sieves over anhydrous complexes at absorbing Ar gas, N_2 gas and H_2O vapou...

  1. ARGON RECOIL ION ELECTRON CAPTURE FROM NEUTRAL ARGON AND HELIUM STUDIED BY TIME RESOLVED V.U.V. SPECTROSCOPY

    OpenAIRE

    Lesteven-Vaisse, I.; Chantepie, M.; Folkmann, F.; Lecler, D.; Ben Sitel, A.

    1989-01-01

    Electron capture phenomena in recoil ion V.U.V. spectroscopy are tested through the evolution of the observed argon spectrum by introduction of helium in addition to argon in the collision chamber. Taking into account these mixed gas data by the time-differential method and using decay time analysis, an improved analysis of argon recoil ion V.U.V. radiation is presented.

  2. Argon laser-welded arteriovenous anastomoses.

    Science.gov (United States)

    White, R A; Kopchok, G; Donayre, C; White, G; Lyons, R; Fujitani, R; Klein, S R; Uitto, J

    1987-11-01

    This study compared the healing of laser-welded and sutured canine femoral arteriovenous anastomoses. Arteriovenous fistulas 2 cm in length were created bilaterally in the femoral vessels of 10 dogs and were studied at 1 (n = 2), 2 (n = 2), 4 (n = 3), and 8 (n = 3) weeks. In each animal, one anastomosis (control) was closed with running 6-0 polypropylene sutures, and the contralateral anastomosis (experimental) was sealed with an argon laser (0.5 watt, 4 minutes of exposure, 1830 J/cm2/1 cm length of anastomosis). At removal all experimental anastomoses were patent without hematomas, aneurysms, or luminal narrowing. Histologic examination at 4 weeks revealed that laser-welded anastomoses had less inflammatory response and almost normal collagen and elastin reorientation. At 8 weeks sutured anastomoses had significant intimal hyperplasia whereas laser repairs had normal luminal architecture. Tensile strength and collagen production, measured by the synthesis of hydroxyproline and the steady-state levels of type I and type III procollagen messenger ribonucleic acids, at the anastomoses and in adjacent vein and artery specimens were similar in sutured and laser-welded repairs at 2, 4, and 8 weeks. We conclude that argon laser welding of anastomoses is an acceptable alternative to suture techniques, with the advantage of improved healing without foreign body response and possible diminished intimal hyperplasia at the anastomotic line. PMID:3312648

  3. Electron scattering and transport in liquid argon

    International Nuclear Information System (INIS)

    The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann’s equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a non-local treatment of exchange, while the accuracy of the electron-argon potential is validated through comparison of the calculated gas phase cross-sections with experiment. The results presented highlight the inadequacy of local treatments of exchange that are commonly used in liquid and cluster phase cross-section calculations. The multi-term Boltzmann equation framework accounting for coherent scattering enables the inclusion of the full anisotropy in the differential cross-section arising from the interaction and the structure factor, without an a priori assumption of quasi-isotropy in the velocity distribution function. The model, which contains no free parameters and accounts for both coherent scattering and liquid phase screening effects, was found to reproduce well the experimental drift velocities and characteristic energies

  4. Pollution of liquid argon after neutron irradiation

    CERN Document Server

    Andrieux, M L; Collot, J; de Saintignon, P; Ferrari, A; Hostachy, J Y; Hoummada, A; Martin, P; Merkel, B; Puzo, P; Sauvage, D; Wielers, M

    2001-01-01

    The purpose of the neutron facility installed at SARA is to investigate the behavior of various materials to be used in the ATLAS liquid argon calorimeter, when submitted to fast neutron radiation. The samples are placed in a liquid argon cryostat a few cm away from the neutron source. Various pieces of the electromagnetic calorimeter have been tested in order to evaluate the rate of pollution of the liquid and consequently the possible signal loss in energy measurements. The average fluence was equivalent to the maximum expected in the calorimeter in about 10 years. The most striking feature of the results is that the pollution is not due to oxygen, at least for most of it. Using a particular value of the absorption length derived from these data, a simulation was carried out and the energy signal loss in the calorimeter could be predicted. Within the limits of our present knowledge, the conclusion is that damages due to this pollution will not be a problem. (17 refs).

  5. Pollution of liquid argon after neutron irradiation

    International Nuclear Information System (INIS)

    The purpose of the neutron facility installed at SARA is to investigate the behavior of various materials to be used in the ATLAS liquid argon calorimeter, when submitted to fast neutron radiation. The samples are placed in a liquid argon cryostat a few cm away from the neutron source. Various pieces of the electromagnetic calorimeter have been tested in order to evaluate the rate of pollution of the liquid and consequently the possible signal loss in energy measurements. The average fluence was equivalent to the maximum expected in the calorimeter in about 10 years. The most striking feature of the results is that the pollution is not due to oxygen, at least for most of it. Using a particular value of the absorption length derived from these data, a simulation was carried out and the energy signal loss in the calorimeter could be predicted. Within the limits of our present knowledge, the conclusion is that damages due to this pollution will not be a problem

  6. Ion-beam excitation of liquid argon

    CERN Document Server

    Hofmann, M; Heindl, T; Neumeier, A; Oberauer, L; Potzel, W; Roth, S; Schönert, S; Wieser, J; Ulrich, A

    2015-01-01

    The scintillation light of liquid argon has been recorded wavelength and time resolved with very good statistics in a wavelength interval ranging from 118 nm through 970 nm. Three different ion beams, protons, sulfur ions and gold ions, were used to excite liquid argon. Only minor differences were observed in the wavelength-spectra obtained with the different incident particles. Light emission in the wavelength range of the third excimer continuum was found to be strongly suppressed in the liquid phase. In time-resolved measurements, the time structure of the scintillation light can be directly attributed to wavelength in our studies, as no wavelength shifter has been used. These measurements confirm that the singlet-to-triplet intensity ratio in the second excimer continuum range is a useful parameter for particle discrimination, which can also be employed in wavelength-integrated measurements as long as the sensitivity of the detector system does not rise steeply for wavelengths longer than 190 nm. Using ou...

  7. Nitrogen Removal from Molten Steel under Argon DC Glow Plasma

    Institute of Scientific and Technical Information of China (English)

    SUN Ming-shan; DING Wei-zhong; LU Xiong-gang

    2005-01-01

    Under argon DC glow plasma, the nitrogen removal from molten steel was studied. The experimental result showed that nitrogen mass percent could be reduced to 0.000 8%. The change of polarity had no impact on nitrogen removal when the nitrogen mass percent was low. The mechanism of denitrogenation of molten steel under argon DC glow plasma was discussed.

  8. WARP: a double phase argon programme for dark matter detection

    International Nuclear Information System (INIS)

    WARP (Wimp ARgon Programme) is a double phase Argon detector for Dark Matter search under construction at Laboratori Nazionali del Gran Sasso. We present recent results obtained operating a prototype with a sensitive mass of 2.3 litres deep underground

  9. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.;

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...

  10. Commissioning of the ATLAS liquid argon calorimeters

    CERN Document Server

    Rezaie, Erfan

    ATLAS, a multi-purpose detector built at the LHC at CERN, requires an extensive commissioning campaign to be ready for proton-proton collisions. In this work, we focus on the commissioning of the liquid Argon (LAr) calorimeters, with emphasis on commissioning with cosmic rays. First we outline one phase of the commissioning work, which involves testing of the front-end electronics of the two endcap calorimeters. We then describe two cosmic ray generators as input to a Monte-Carlo simulation of cosmic rays in ATLAS, and compare their results. Finally, we explain a technique developed for this work which uses information from the Tile calorimeters to predict the timing of cosmic rays within the LAr calorimeters, because cosmic rays occur randomly in time whereas the electronics are clocked at [Special characters omitted.] . The results from this analysis tool are compared to default tools, using both simulated and real cosmic ray data in the calorimeters.

  11. Neutron Inelastic Scattering Study of Liquid Argon

    International Nuclear Information System (INIS)

    The inelastic scattering functions for liquid argon have been measured at 85.2 K. The coherent scattering function was obtained from a measurement on pure A-36 and the incoherent function was derived from the result obtained from the A-36 sample and the result obtained from a mixture of A-36 and A-40 for which the scattering is predominantly incoherent. The data, which are presented as smooth scattering functions at constant values of the wave vector transfer in the range 10 - 44/nm, are corrected for multiple scattering contributions and for resolution effects. Such corrections are shown to be essential in the derivation of reliable scattering functions from neutron scattering data. The incoherent data are compared to recent molecular dynamics results and the mean square displacement as a function of time is derived. The coherent data are compared to molecular dynamics results and also, briefly, to some recent theoretical models

  12. Large vessel sealing with the argon laser.

    Science.gov (United States)

    White, R A; Kopchok, G; Donayre, C; Lyons, R; White, G; Klein, S R; Pizzurro, D; Abergel, R P; Dwyer, R M; Uitto, J

    1987-01-01

    This study compared the histology, biochemistry, and tensile strength of laser-welded and sutured canine venotomies, arteriotomies, and arteriovenous fistulas. Twelve animals had bilateral femoral vessels studied, with one repair (control) closed with interrupted 6-0 polypropylene sutures, and the contralateral repair (experimental) welded with the argon laser. Specimens were examined at weekly intervals from 1 to 4 weeks (four animals for each type of repair), and were evaluated histologically by hematoxylin and eosin, elastin, and trichrome stains; biochemically by the formation of [3H]hydroxyproline as an index of collagen synthesis; and mechanically by tensile strength determinations. At removal, all experimental closures were patent without hematomas, aneurysms, or luminal dilatation. Histologic and biochemical examination and tensile strength determinations suggest that laser welding may be an alternative to sutures for repair of large-diameter venotomies, arteriotomies, and arteriovenous fistulas, as healing is comparable to that seen with suture repairs up to 4 weeks postoperatively. PMID:3306233

  13. Vascular Welding Using The Argon Laser

    Science.gov (United States)

    White, Rodney A.; Donayre, Carlos; Kopchok, George; White, Geoffrey; Abergel, R. Patrick; Lyons, Richard; Klein, Stanley; Dwyer, Richard; Uitto, Jouni

    1987-03-01

    This study compared the histology, biochemistry, and tensile strength of laser welded and sutured canine venotomies, arteriotomies and arteriovenous fistulas. Bilateral femoral, carotid or jugular vessels were studied with one repair (control) closed with interrupted 6-0 polypropylene sutures, and the contralatral repair (experimental) welded with the argon laser. Specimens were examined at weekly intervals from 1 to 4 weeks for each type of repair and evaluated histologically by hematoxylineosin, elastin and trichrome stains, biochemically by the formation of [3H] hyaroxyproline as an index of collagen synthesis, ana mechanically by tensile strength determinations. At removal, all experimental closures were patent without hematomas, aneurysms or luminal dilatation. Histologic and biochemical examination and tensile strength determinations suggest that laser welaing may be an alternative to sutures for repair of large diameter venotomies, arteriotomies and arteriovenous fistulas, as they heal comparable to suture repairs up to 4 weeks postoperatively.

  14. Ideas for future liquid Argon detectors

    International Nuclear Information System (INIS)

    We outline a strategy for future experiments on neutrino and astroparticle physics based on the use, at different detector mass scales (100 ton and 100 kton), of the liquid Argon Time Projection Chamber (LAr TPC) technique. The LAr TPC technology has great potentials for both cases with large degree of interplay between the two applications and a strong synergy. The ICARUS R and D programme has demonstrated that the technology is mature and that one can built a large (∼ 1 kton) LAr TPC. We believe that one can conceive and design a very large mass LAr TPC with a mass of 100 kton by employing a monolithic technology based on the use of industrial, large volume cryogenic tankers developed by the petro-chemical industry. We show a potential implementation of a large LAr TPC detector. Such a detector would be an ideal match for a Superbeam[New J. Phys. 4 (2002) 88 [arXiv:hep-ph/0208047

  15. Liquid-argon cylindrical pulsed ionization chamber

    International Nuclear Information System (INIS)

    A liquid-argon cylindrical ionization chamber with a working volume of 200 cm2 is described. The chamber anode is made of stainless steel in the form of a hollow cylinder 30 mm in diameter and 140 mm in length. A beryllium bronze wire in diameter of 0.1 mm and at a spacing of 1 mm is used for winding the chamber screen grid. The chamber cathode is a brass thin-walled cylinder having an internal diameter of 56 mm and a height of 156 mm. The cathode-grid gap is 10 mm, the cathode-case gap is 2 mm. A 0.5 l cooling bath filled with liquid nitrogen is used to refrigirate the chamber. The chamber is evacuated to about 10-5 mm Hg. The total concentration of electronegative impurities in argon does not exceed 6x10-9. Dependences of the chamber counting and amplitude responses, on the cathode voltage under irradiation with γ-quanta at energies of 0.898 MeV and 1.836 MeV are given. The value of the energy resolution was evaluated by differentiating the high-energy edge of the Compton spectrum. The total width at a peak half-height constitutes 5% for an electron energy of 1.612 MeV. To achieve better resolution of the chamber it is necessary to reduce preamplifier noises by three times, to increase the working gap of the chamber and decrease the grid-anode gap

  16. Formation of argon-boron bonds in the reactions of BFn+/2+ cations with neutral argon

    Czech Academy of Sciences Publication Activity Database

    Levee, L.; Calogero, C.; Barbieri, E.; Byrne, S.; Donahue, C.; Eisenberg, M.; Hattenbach, S.; Le, J.; Capitani, J. F.; Roithová, J.; Schröder, Detlef

    2012-01-01

    Roč. 323, 1 Jun (2012), s. 2-7. ISSN 1387-3806 R&D Projects: GA ČR GA203/09/1223 Grant ostatní: European Research Council(XE) AdG HORIZOMS Institutional support: RVO:61388963 Keywords : argon compound * boron fluoride * dication * gas phase reactivity * mass spectrometry * neon compound Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.142, year: 2012

  17. Upgrade of the Trigger Readout System of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Marino, CP; The ATLAS collaboration

    2013-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^34 cm^-2 s^-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |eta|<3.2, and for hadronic calorimetry in the region from |eta|=1.5 to |eta|=4.9. The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitizedand processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sums analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. In 2018, an instantaneous luminosity of 2-3 x 10^34 cm^-2 s^-1 is expected, far beyond the nominal one for which the detector was designed. In order to cope with this increased trigger rate, an improved spatial granularity of the trigger primi...

  18. Upgrade of the Trigger Readout System of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Marino, CP; The ATLAS collaboration

    2014-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} \\rm{cm}^{-2} \\rm{s}^{-1}$. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region $|\\eta|$ < 3.2, and for hadronic calorimetry in the region from $|\\eta|=$1.5 to $|\\eta|=$4.9. The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sums analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. In 2018, an instantaneous luminosity of 2-3 $\\times 10^{34} \\rm{cm}^{-2} \\rm{s}^{-1}$ is expected, far beyond the nominal one for which the detector was designed. In order to cope with this increased trigger rate,...

  19. Argon laser induced changes to the carbonate content of enamel

    Energy Technology Data Exchange (ETDEWEB)

    Ziglo, M.J. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta, Private Practice, Regina, Saskatchewan (Canada); Nelson, A.E., E-mail: aenelson@dow.com [Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta (Canada); Heo, G.; Major, P.W. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada)

    2009-05-15

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm{sup -2}) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  20. Argon laser induced changes to the carbonate content of enamel

    International Nuclear Information System (INIS)

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm-2) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  1. LArGe - A liquid argon scintillation veto for GERDA

    OpenAIRE

    Heisel, M.(Max-Planck-Institut für Kernphysik, Heidelberg, Germany)

    2011-01-01

    LArGe is a Gerda low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the Gerda experiment. Gerda searches for the neutrinoless double-beta decay in 76Ge, by operating naked germanium detectors submersed into 65 m3 of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m3 (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used...

  2. Practical reactor production of {sup 41}Ar from argon clathrate

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.R. E-mail: jmercer@pharmacy.ualberta.ca; Duke, M.J.M.; McQuarrie, S.A

    2000-06-01

    The radionuclide {sup 41}Ar has many ideal properties as a gas flow tracer. However, the modest cross-section of {sup 40}Ar for thermal neutron activation makes preparation of suitable activities of {sup 41}Ar technically difficult particularly for low flux reactors. Argon can however be trapped in a molecular complex called a clathrate that can then be irradiated. We prepared argon clathrate and explored its irradiation and stability characteristics. Argon clathrate can be used to provide gigabecquerel quantities of {sup 41}Ar even with low power reactors.

  3. Membrane separation processes for argon plasma gas recovery

    OpenAIRE

    Harlacher, Thomas

    2014-01-01

    A mixture of argon and hydrogen is used as plasma gas in a thermal plasma synthesis for the production of silicon carbide. Next to argon and hydrogen, the exhaust gas of the ceramic synthesis contains carbon monoxide. Since argon is an expensive gas, the plasma gas needs to be recycled. For this purpose, the carbon monoxide has to be removed from the exhaust gas. The applicability of a membrane based gas separation process for this separation task was investigated in this study. A process rou...

  4. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.; Hansen, Jens Leonhart; Sørensen, H.

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...... studied. This proves that the gas/solid difference for argon predicted in recent stopping-power tabulations is significantly overestimated. With high-order Z1 correction terms included in the theoretical description, calculated shell corrections based on the Lindhard-Scharff model are in good agreement...

  5. Argon laser treatment of urethral stricture and vesical neck contracture.

    Science.gov (United States)

    Adkins, W C

    1988-01-01

    The physical characteristics of the argon laser wavelength allow a precise incision with excellent hemostasis and negligible heating of adjacent tissues resulting in less scarring. These qualities are used to advantage in the treatment of strictures. The argon laser was used to perform 13 internal urethrotomies and ten vesical neck incisions. The operative method used is similar to optical internal urethrotomy. The argon probe incises hemostatically, reducing the need for extensive fulguration of tissues at the operative site and thereby reducing the tendency for more scar tissue to form and compromise the operation. The same hemostasis reduces the need for postoperative indwelling urethral catheterization. Utility of the argon device in most instances allows treatment to be conducted on an outpatient basis without general anesthesia and without use of postoperative urethral catheters, yielding an effective, cost-saving therapy. PMID:3210887

  6. Evidence of electric breakdown induced by bubbles in liquid argon

    CERN Document Server

    Bay, F; Murphy, S; Resnati, F; Rubbia, A; Sergiampietri, F; Wu, S

    2014-01-01

    We report on the results of a high voltage test in liquid argon in order to measure its dielectric rigidity. Under stable conditions and below the boiling point, liquid argon was found to sustain a uniform electric field of 100 kV/cm, applied in a region of 20 cm$^2$ area across 1 cm thick gap. When the liquid is boiling, breakdowns may occur at electric fields as low as 40 kV/cm. This test is one of the R&D efforts towards the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER) as proposed Liquid Argon Time Projection Chamber (LAr TPC) for the LBNO observatory for neutrino physics, astrophysics and nucleon decay searches.

  7. Excitation temperatures of atmospheric argon in dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu; Wen Xiaohui; Yang Weihong [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2007-08-15

    A method for the determination of excitation temperatures based on optical emission spectroscopy and Fermi-Dirac distribution was set up and experiments were performed on atmospheric argon dielectric barrier discharges. Local thermodynamic equilibrium was proved to exist in the discharge and the validity of Boltzmann distribution is discussed. The main aim of this paper is to obtain the temperatures of atmospheric Ar II as a function of the discharge voltage, discharge frequency, argon flow rate and the argon fraction. It was found that the excitation temperatures are in the range 3800-4950 K. Besides, an increase in the argon flow rate resulting in a slight growth of the temperature and the add-in of air leading to the decrease in temperature was observed.

  8. The Effects of Dissolved Methane upon Liquid Argon Scintillation Light

    CERN Document Server

    Jones, B J P; Back, H O; Collin, G; Conrad, J M; Greene, A; Katori, T; Pordes, S; Toups, M

    2013-01-01

    In this paper we report on measurements of the effects of dissolved methane upon argon scintillation light. We monitor the light yield from an alpha source held 20 cm from a cryogenic photomultiplier tube (PMT) assembly as methane is injected into a high-purity liquid argon volume. We observe significant suppression of the scintillation light yield by dissolved methane at the 10 part per billion (ppb) level. By examining the late scintillation light time constant, we determine that this loss is caused by an absorption process and also see some evidence of methane-induced scintillation quenching at higher concentrations (50-100 ppb). Using a second PMT assembly we look for visible re-emission features from the dissolved methane which have been reported in gas-phase argon methane mixtures, and we find no evidence of visible re-emission from liquid-phase argon methane mixtures at concentrations between 10 ppb and 0.1%.

  9. The ATLAS Liquid Argon Calorimeter Construction, Integration, Commissioning

    CERN Document Server

    Aleksa, Martin

    2006-01-01

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps. The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read...

  10. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures.

    Science.gov (United States)

    Aleksandrov, N L; Bodrov, S B; Tsarev, M V; Murzanev, A A; Sergeev, Yu A; Malkov, Yu A; Stepanov, A N

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ∼3% O_{2}), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures. PMID:27575227

  11. Size Determination of Argon Clusters from a Rayleigh Scattering Experiment

    Institute of Scientific and Technical Information of China (English)

    LEI An-Le; ZHAI Hua-Jin; LIU Bing-Chen; LI Zhong; NI Guo-Yuan; XU Zhi-Zhan

    2000-01-01

    Argon clusters are produced in the process of adiabatic expansion of a high backing pressure gas into vacuum through a nozzle. The cluster size is determined by a Rayleigh scattering measurement. The scattered signal measured is proportional to the 2.78th power of gas stagnation pressure. The average cluster sizes vary from 100 to more than 12000 atoms/cluster with the argon gas backing pressures ranging between 3 to 45 atm.

  12. A purity monitoring system for liquid argon calorimeters

    International Nuclear Information System (INIS)

    For liquid argon calorimeters electronegative impurities dissolved in the medium degrade the detector response and deteriorate the energy resolution, especially at high energies. A concept for a purity monitoring system for liquid argon calorimeters has been developed and is presented here. Special combined monitors of 241Am- and 207Bi-cells are used to monitor the concentration of impurities. The working principle as well as results from test measurements are discussed

  13. Studies of Electron Avalanche Behavior in Liquid Argon

    OpenAIRE

    Kim, J.G.; Dardin, S. M.; Jackson, K.H.; Kadel, R. W.(Lawrence Berkeley National Laboratory and University of California, 94720, Berkeley, California, USA); Kadyk, J. A.; Peskov, V.; Wenzel, W. A.

    2002-01-01

    Electron avalanching in liquid argon is being studied as a function of voltage, pressure, radiation intensity, and the concentrations of certain additives, especially xenon. The avalanches produced in an intense electric field at the tip of a tungsten needle are initiated by ionization from a moveable americium (241Am) gamma ray source. Photons from xenon excimers are detected as photomultiplier signals in coincidence with the current pulse from the needle. In pure liquid argon the avalanche ...

  14. Pulse shape discrimination studies in a liquid Argon scintillation detector

    OpenAIRE

    Pollmann, T.

    2007-01-01

    Liquid rare gases have been gaining popularity as detector media in rare event searches, especially dark matter experiments, and one factor driving their adoption is the possibility to recognise different types of ionizing radiation by the pulse shapes they evoke. This work on pulse shape discrimination in a liquid argon scintillation detector was done in the framework of the GERDA experiment, where liquid argon scintillation signals may be used for background suppression purposes. Liquid arg...

  15. RF-ARGON PLASMA INDUCED SURFACE MODIFICATION OF PAPER

    OpenAIRE

    HALIL TURGUT SAHIN

    2008-01-01

    The radio frequency (RF) argon plasma induced surface modification of paper revealed novel surface characteristics and substantially changed surface topography. It was found that RF-argon glow discharge affects surface properties resulting in photo-degradation and chain-scission mechanism on paper network structure. High-power and extended treatment time caused increasing elemental carbon, while decreasing the oxygen concentration on paper surface. However, increased hydroxyls and the creatio...

  16. Energy resolution for α-particles in doped liquid argon

    International Nuclear Information System (INIS)

    The report describes experiments on the effect of allene doped in liquid argon. In the case of doped argon, a large amount of charge is obtained even at low electric fields and the measured charge increases with the field gradually. This can be explained as follows; part of deposited energy which does not form charge in pure argon contributes to charge signal in doped argon through scintillation photons which ionize allene molecules. The main factors determining the energy resolution for α-particles are considered to be (1) fluctuation in the number of produced ion-electron pairs as expressed by the Fano factor, (2) fluctuation in recombination process, (3) fluctuation in photoionization, (4) fluctuation due to the condition of radioactive source and surface of electrodes, (5) fluctuation in geometrical efficiency due to the range and emission angle of α-particles in liquid argon, and (6) electronic noise of amplifier. The factors (1) and (3) can be neglected because of a large number of associated electrons or photons. In pure liquid argon, the factor (2) may be a cause of bad resolution since the fraction of the produced ion-electron paris which do not recombine is small and the photoionization process never occurs for photons emitted through recombination. (N.K.)

  17. Power Consideration for Pulsed Discharges in Potassium Seeded Argon

    Institute of Scientific and Technical Information of China (English)

    XIA Sheng-Guo; HE Jun-Jia; LIU Ke-Fu

    2007-01-01

    Minimization of energy consumed in plasma generation is critical for applications, in which a large volume of plasmas is needed. We suggest that a high electron density atmospheric pressure plasmas can be generated by pulsed discharges in potassium seeded argon at an elevated temperature with a very small power input. The ionization efficiency and power budget of pulsed discharges in such plasmas are analytically studied. The results show that ionization efficiency of argon, especially at small reduced electric field E/N (the ratio of the electric field to the gas number density), is improved effectively in the presence of small amount of potassium additives. Power input of pulsed discharge to sustain a prescribed average level of ionization in potassium seeded argon is three orders of magnitude lower than that in pure argon. Further, unlike in pure argon, it is found that very short high-voltage pulses with very high repetition rates are unnecessary in potassium seeded argon. A pulse with 100ns of pulse duration, 5kHz of repetition rate, and 2Td (1 Td = 1 ×10-21 Vm2) of E/N is enough to sustain an electron density of 10l9m-3 in 1 atm 1500 K Ar+0.1% K mixture, with a very small power input of about 0.08 × 104 W/m3.

  18. Electron densities and energies of a guided argon streamer in argon and air environments

    International Nuclear Information System (INIS)

    In this study we report the temporally and spatially resolved electron densities and mean energies of a guided argon streamer in ambient argon and air obtained by Thomson laser scattering. The plasma is driven by a positive monopolar 3.5 kV pulse, with a pulse width of 500 ns and a frequency of 5 kHz which is synchronized with the high repetition rate laser system. This configuration enables us to use the spatial and temporal stability of the guided streamer to accumulate a multitude of laser/plasma shots by a triple grating spectrometer equipped with an ICCD camera and to determine the electron parameters. We found a strong initial ne-overshoot with a maximum of 7 × 1019 m−3 and a mean electron energy of 4.5 eV. This maximum is followed by a fast decay toward the streamer channel. Moreover, a 2D distribution of the electron density is obtained which exhibits a peculiar mushroom-like shape of the streamer head with a diameter significantly larger than that of the emission profile. A correlation of the width of the streamer head with the expected pre-ionization channel is found. (paper)

  19. 34 CFR 34.22 - Employer responsibilities.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Employer responsibilities. 34.22 Section 34.22 Education Office of the Secretary, Department of Education ADMINISTRATIVE WAGE GARNISHMENT § 34.22 Employer responsibilities. (a)(1) Our garnishment order indicates a reasonable period of time within which an employer...

  20. 34 CFR 34.21 - Employer certification.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Employer certification. 34.21 Section 34.21 Education Office of the Secretary, Department of Education ADMINISTRATIVE WAGE GARNISHMENT § 34.21 Employer certification. (a) Along with a garnishment order, we send to an employer a certification in a form...

  1. 34 CFR 104.34 - Educational setting.

    Science.gov (United States)

    2010-07-01

    ... Preschool, Elementary, and Secondary Education § 104.34 Educational setting. (a) Academic setting. A... 34 Education 1 2010-07-01 2010-07-01 false Educational setting. 104.34 Section 104.34 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF...

  2. 34 CFR 33.34 - Evidence.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Evidence. 33.34 Section 33.34 Education Office of the Secretary, Department of Education PROGRAM FRAUD CIVIL REMEDIES ACT § 33.34 Evidence. (a) The ALJ shall determine the admissibility of evidence. (b) Except as provided in this part, the ALJ is not bound by...

  3. New argon-argon (40Ar/39Ar) radiometric age dates from selected subsurface basalt flows at the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Hodges, Mary K.; Turrin, Brent D.; Champion, Duane E.; Swisher, Carl C., III

    2015-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected samples for 12 new argon-argon radiometric ages from eastern Snake River Plain olivine tholeiite basalt flows in the subsurface at the Idaho National Laboratory. The core samples were collected from flows that had previously published paleomagnetic data. Samples were sent to Rutgers University for argon-argon radiometric dating analyses.

  4. Evolution of Martian atmospheric argon: Implications for sources of volatiles

    Science.gov (United States)

    Hutchins, Kevin S.; Jakosky, Bruce M.

    We have examined processes affecting isotopes of argon (36Ar, 38Ar, 40Ar) in order to determine important atmospheric sources and sinks. Our simple model for argon evolution incorporates production of radiogenic argon in the mantle, outgassing of all argon species by extrusive and intrusive volcanism, and loss to space by knock-on sputtering above the exobase. Sputtering has been shown previously to be an important loss process for atmospheric species, especially isotopes of noble gases, which have few other mechanisms of escape. The integrated evolution of argon (36Ar, 38Ar, and 40Ar, respectively) is modeled in terms of these variables: (1) the planetary concentration of potassium, (2) the fraction of juvenile argon released catastrophically during the first 600 Myr., (3) potential variation in the time-history of sputtering loss from that suggested by Luhmann et al. [1992], and (4) the volume of total outgassing to the surface as compared to outgassing contributed by volcanic release. Our results indicate that Mars has lost between 85-95% of 36Ar and 70-88% of outgassed 40Ar. Due to this substantial loss, the planet must have outgassed the equivalent of between 10 and 100 times the total volume of gases released by extrusive and intrusive volcanics. This indicates that volcanic outgassing, alone, is insufficient to explain the present-day abundances of 36Ar and 40Ar in the Martian atmosphere. Similar calculations for 20Ne suggest outgassed volumes of between 100 and 1800 times in excess of that due to volcanism. This results in a distinct Ne/Ar elemental fractionation, with a preference for outgassing argon, of the order of 10 to 17. Although the results must be evaluated within the model uncertainties, the results are compelling in that they unequivocally show the existence of additional sources of atmospheric volatiles and helps define a means to identify them.

  5. ATLAS Liquid Argon Calorimeter Performance in Run 1 and Run 2

    CERN Document Server

    Kuwertz, Emma Sian; The ATLAS collaboration

    2016-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34}$ cm$^{−2}$ s$^{−1}$ . Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudo-rapidity region $\\eta < 3.2$, and for hadronic calorimetry in the region from $\\eta = 1.5$ to $\\eta = 4.9$. In the first LHC run a total luminosity of $27$ fb$^{−1}$ has been collected at center-of-mass energies of 7-8 TeV. Following a period of detector consolidation during a long shutdown, Run-2 started in 2015 with approximately $3.9$ fb$^{-1}$ of data at a center-of-mass energy of 13 TeV recorded in this year. The well calibrated and highly granular Liquid Argon Calorimeter achieved its design values both in energy measurement as well as in direction resolution, which was a main ingredient for the successful discovery of a Higgs boson in the di-photon decay channel. This contribution will give ...

  6. Characterisation of GERDA Phase-I detectors in liquid argon

    International Nuclear Information System (INIS)

    GERDA will search for neutrinoless double beta decay in 76Ge by submerging bare enriched HPGe detectors in liquid argon. In GERDA Phase-I, reprocessed enriched-Ge detectors, which were previously operated by the Heidelberg-Moscow and IGEX collaborations, and reprocessed natural-Ge detectors from Genius-TF, will be redeployed. We have tested the operation and performance of bare HPGe detectors in liquid nitrogen and in liquid argon over more than three years with three non-enriched p-type prototype detectors. The detector handling and mounting procedures have been defined and the Phase-I detector technology, the low-mass assembly and the long-term stability in liquid argon have been tested successfully. The Phase-I detectors were reprocessed by Canberra Semiconductor NV, Olen, according to their standard technology but without the evaporation of a passivation layer. After their reprocessing, the detectors have been mounted in their low-mass holders and their characterisation in liquid argon performed. The leakage current, the counting characteristics and the efficiency of the detectors have been measured. The testing of the detectors was carried out in the liquid argon test stand of the GERDA underground Detector Laboratory (GDL) at LNGS. The detectors are now stored underground under vacuum until their operation in GERDA.

  7. Precision Mass Measurement of Argon Isotopes

    CERN Multimedia

    Lunney, D

    2002-01-01

    % IS388\\\\ \\\\ A precision mass measurement of the neutron-deficient isotopes $^{32,33,34}$Ar is proposed. Mass values of these isotopes are of importance for: a) a stringent test of the Isobaric-Multiplet- Mass-Equation, b) a verification of the correctness of calculated charge-dependent corrections as used in super-allowed $\\beta$- decay studies aiming at a test of the CVC hypothesis, and c) the determination of the kinematics in electron-neutrino correlation experiments searching for scalar currents in weak interaction. The measurements will be carried out with the ISOLTRAP Penning trap mass spectrometer.

  8. Argon-40: Excess in submarine pillow basalts from Kilauea Volcano, Hawaii

    Science.gov (United States)

    Brent, Dalrymple G.; Moore, J.G.

    1968-01-01

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon-40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  9. Metastable argon beam source using a surface wave sustained plasma

    International Nuclear Information System (INIS)

    A new source of metastable argon atoms in the thermal energy range is reported. The source is based on expanding a plasma sustained by electromagnetic surface waves in a quartz tube through a converging nozzle and extracting a beam from the supersonic free-expansion jet. The beam was characterized by time-of-flight measurements which yielded the absolute intensity and velocity distribution of the argon metastables. The source produced a maximum intensity of 6.2x1014 metastables per second per steradian, the highest time-averaged intensity of thermal argon metastables of any source reported to date. A simple picture of an expanding plasma in a recombination regime is used to explain the dependence of the metastable intensity on absorbed power

  10. On the electric breakdown in liquid argon at centimeter scale

    Science.gov (United States)

    Auger, M.; Blatter, A.; Ereditato, A.; Goeldi, D.; Janos, S.; Kreslo, I.; Luethi, M.; von Rohr, C. Rudolf; Strauss, T.; Weber, M. S.

    2016-03-01

    We present a study on the dependence of electric breakdown discharge properties on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

  11. Pressure regulation in the dry-boxes. Argon purification

    International Nuclear Information System (INIS)

    Each dry-box is equipped with an autonomous installation for circulation and purification of argon and for pressure regulation. This installation consists essentially of a ballast tank, a compressor and two valves electromagnetically controlled by a contact manometer. The compressor and the valves are enclosed in the tank to form a system as compact as possible. The argon is purified by passing it over a furnace filled with titanium-zirconium turnings brought to about 800 deg. C, branching off the main system. With this set-up as well as the automatic maintenance of a constant depression in the box, a quality of argon is obtained whose oxygen contact is undetectable by the manganous hydroxide method. (author)

  12. Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon

    International Nuclear Information System (INIS)

    A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-like discharge was achieved. Two kinds of typical bacteria, i.e., the Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil), were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma. The killing log value (KLV) of S. aureus reached up to 5.38 with a treatment time of 90 s and that of E. coil up to 5.36 with 60 s, respectively. According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment, it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation, while the heat, electric field and UV photons had little effect. (plasma technology)

  13. Energy resolution studies of liquid argon ionization detectors

    International Nuclear Information System (INIS)

    A gridded ionization chamber was used to study the energy resolution in liquid argon with electrons from a 207Bi radioactive source. Argon was purified in the gas phase with a simple and reliable system, capable of reducing the impurity level below 1 ppb O2 equivalent, as inferred by a pulse shape analysis of the ionization signals. The electron spectrum was measured at different drift fields, up to 10.9 KV/cm. At this maximum field, a total energy resolution of 32 keV (fwhm), corresponding to a noise-subtracted energy resolution of 26 keV (fwhm), was obtained for the 976 keV conversion electron line. This value is the best reported so far in liquid argon but is still a factor of seven worse than the theoretical limit set by the Fano factor. The reasons for this discrepancy are discussed. (orig.)

  14. Attenuation measurements of vacuum ultraviolet light in liquid argon revisited

    CERN Document Server

    Neumeier, A; Himpsl, A; Hofmann, M; Oberauer, L; Potzel, W; Schönert, S; Ulrich, A

    2015-01-01

    The attenuation of vacuum ultraviolet light in liquid argon in the context of its application in large liquid noble gas detectors has been studied. Compared to a previous publication several technical issues concerning transmission measurements in general are addressed and several systematic effects were quantitatively measured. Wavelength-resolved transmission measurements have been performed from the vacuum ultraviolet to the near-infrared region. On the current level of sensitivity with a length of the optical path of 11.6 cm, no xenon-related absorption effects could be observed, and pure liquid argon is fully transparent down to the short wavelength cut-off of the experimental setup at 118 nm. A lower limit for the attenuation length of pure liquid argon for its own scintillation light has been estimated to be 1.10 m based on a very conservative approach.

  15. On the Electric Breakdown in Liquid Argon at Centimeter Scale

    CERN Document Server

    Auger, M; Ereditato, A; Goeldi, D; Janos, S; Kreslo, I; Luethi, M; von Rohr, C Rudolf; Strauss, T; Weber, M S

    2015-01-01

    We present a study on the dependence of electric breakdown discharge parameters on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

  16. Liquid Argon Calorimetry with LHC-Performance Specifications

    CERN Multimedia

    2002-01-01

    % RD-3 Liquid Argon Calorimetry with LHC-Performance Specifications \\\\ \\\\Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. Among the techniques used so far, or under development, the liquid argon sampling calorimetry offers high radiation resistence, good energy resolution (electromagnetic and hadronic), excellent calibration stability and response uniformity. Its rate capabilities, however, do not yet match the requirements for LHC. \\\\ \\\\The aim of this proposal is to improve the technique in such a way that high granularity, good hermiticity and adequate rate capabilities are obtained, without compromising the above mentioned properties. To reach this goal, we propose to use a novel structure, the $^{\\prime\\prime}$accordion$^{\\prime\\prime}$, coupled to fast preamplifiers working at liquid argon temperature. Converter and readout electrodes are no longer planar and perpendicular to particles, as usual, but instead they are wiggled around a plane containing particles. ...

  17. 34 CFR 74.34 - Equipment.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Equipment. 74.34 Section 74.34 Education Office of the... Equipment. (a) Title to equipment acquired by a recipient with Federal funds shall vest in the recipient, subject to conditions of this section. (b) The recipient may not use equipment acquired with Federal...

  18. Laser propagation and energy absorption by an argon spark

    OpenAIRE

    Bindhu, C V; Harilal, S S; Tillack, M. S.; Najmabadi, F; Gaeris, A C

    2003-01-01

    The laser propagation and energy absorption of an argon spark induced by a laser at different pressures is investigated. 8 ns pulses from a frequency-doubled Q-switched Nd:YAG laser are used to create the spark. The pressure of the argon is varied from 1 atm to 10 Torr. Significant energy absorption by the plasma is observed at high pressures (>100 Torr) while there is negligible absorption when the pressure is lower than 50 Torr. The plasma kernel showed distinct behavior with respect to las...

  19. Modelling of a supersonic ICP argon-hydrogen expansion

    International Nuclear Information System (INIS)

    An expanding argon-hydrogen plasma is investigated by means of simulations. The model is a hydrodynamical model specific for plasma expansions, taking into account the conservation laws of mass, momentum and energy. The code includes the Rankine-Hugoniot relations to calculate shock jump conditions. Results are shown for the expansion from an inductively coupled plasma (ICP) with a separated Laval nozzle. The expansion discussed here is a 'weakly' under-expanding argon-hydrogen plasma. The results from the ICP expansion are verified with probe measurements

  20. Oxygen removal from tantalum and niobium in an argon atmosphere

    International Nuclear Information System (INIS)

    The rate of oxygen removal from tantalum and niobium has been determined as a function of argon pressure (0-760 Torr) at temperatures from 1900 to 24000C. The reduction of the reaction rate v depends only on the argon pressure and can be given by a factor α = v/v0. The following formulae are obtained for α: Ta: α = (1 + 0.15psub(Ar)sup(0.9))-1, Nb: α = (1 + 0.5psub(Ar)sup(0.9))-1.

  1. Photoionization in liquid argon doped with trimethylamine or triethylamine

    International Nuclear Information System (INIS)

    Ionization yields for alpha particles and 1 MeV electrons in liquid argon doped with trimethylamine and with triethylamine have been measured. In both liquids, a collected charge larger than Anderson's results is observed for alpha particles although that for electrons is similar to Anderson's value. By using a new equation for the collected charge, the photoionization quantum efficiencies for scintillation light in liquid argon are estimated to be 0.35+-0.05 for trimethylamine and greater than 0.23+-0.03 for triethylamine. (orig.)

  2. Superconductivity of compressed solid argon from first principles

    Science.gov (United States)

    Ishikawa, Takahiro; Asano, Masamichi; Suzuki, Naoshi; Shimizu, Katsuya

    2015-02-01

    We present first-principles calculations on the superconductivity of solid argon under high pressure. Solid argon is found to take the double hexagonal close-packed structure in pressure range from 420 to 690 GPa, where an insulator-to-metal transition occurs at around 590 GPa. The crystal structure transforms into the hexagonal close-packed structure at 690 GPa and into the face-centered cubic structure at 2300 GPa. The superconducting critical temperature is gradually increased with the successive phase transitions and reaches the maximum value of 12 K at 2600 GPa due to the enhancement of the Fermi surface nesting.

  3. Attosecond-correlated dynamics of two electrons in argon

    Indian Academy of Sciences (India)

    V Sharma; N Camus; B Fischer; M Kremer; A Rudenko; B Bergues; M Kuebel; N G Johnson; M F Kling; T Pfeifer; J Ullrich; R Moshammer

    2014-01-01

    In this work we explored strong field-induced decay of doubly excited transient Coulomb complex Ar** → Ar2++2. We measured the correlated two-electron emission as a function of carrier envelop phase (CEP) of 6 fs pulses in the non-sequential double ionization (NSDI) of argon. Classical model calculations suggest that the intermediate doubly excited Coulomb complex loses memory of its formation dynamics. We estimated the ionization time difference between the two electrons from NSDI of argon and it is 200 ± 100 as (N Camus et al, Phys. Rev. Lett. 108, 073003 (2012)).

  4. The ATLAS liquid argon electromagnetic calorimeter construction status

    CERN Document Server

    Jérémie, A

    2004-01-01

    The construction and assembly of the ATLAS liquid argon electromagnetic calorimeter was described. The calorimeter was built with accordion geometry composed of lead absorbers, liquid argon as ionizing medium and highly granular readout electrodes. The calorimeter was composed of the Barrel and the End-cap, both preceded by presampler sectors to ensure complete recovery of the energy resolution. The detection of cabling errors and testing of the whole calibration chain was done by sending a pulse through the calibration circuit with single readout. (Edited abstract) 3 Refs.

  5. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.; Hansen, Jens Leonhart; Sørensen, H.

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...

  6. Measurement of Longitudinal Electron Diffusion in Liquid Argon

    CERN Document Server

    Li, Yichen; Thorn, Craig; Qian, Xin; Diwan, Milind; Joshi, Jyoti; Kettell, Steve; Morse, William; Rao, Triveni; Stewart, Jim; Tang, Wei; Viren, Brett

    2015-01-01

    We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. Our results, which are consistent with previous measurements in the region between 100 to 350 V/cm [1] , are systematically higher than the prediction of Atrazhev-Timoshkin[2], and represent the world's best measurement in the region between 350 to 2000 V/cm. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

  7. Uranium-liquid argon calorimetry: preliminary results from the DO tests

    International Nuclear Information System (INIS)

    The motivations for using uranium and liquid argon in sampling calorimetry are reviewed and the pros and cons of the technique are discussed. Preliminary results of the DO uranium-liquid argon test program are presented. 9 refs., 7 figs

  8. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    Science.gov (United States)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  9. High-frequency electrodeless lamps in argon-mercury mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, N [Institute of Theoretical and Applied Mechanics, Novosibirsk (Russian Federation); Revalde, G [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga (Latvia); Skudra, A [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga (Latvia); Zissis, G [CPAT, University Toulouse 3, 118 rte de Narbonne, 31062 Toulouse (France); Zorina, N [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga (Latvia)

    2005-09-07

    In this paper, numerical and experimental investigations of high-frequency (HF) electrodeless lamps in argon-mercury mixtures are performed. The intensities of the mercury spectral lines having wavelengths {lambda} = 404.66, 435.83, 546.07 nm (7{sup 3}S{sub 1}-6{sup 3}P{sub 0,1,2}) and the resonance line {lambda} = 253.7 nm (6{sup 3} P{sub 1}-6{sup 1}S{sub 0}) are measured at a wide range of mercury pressures, varying the HF generator current and argon filling pressure. A stationary self-consistent model of HF electrodeless discharge lamp is developed including kinetics of the excited mercury and argon atomic states. Based on the developed model, the radiation characteristics of the discharge plasma are calculated. Numerical simulation of the line intensities behaviour in dependence on the mercury pressure, HF generator current and argon filling pressure is performed. The model results are in qualitative agreement with the experimental data. The calculations of the relative intensities of the visible triplet lines 7{sup 3}S{sub 1}-6{sup 3}P{sub 0,1,2} are presented for the first time in this paper.

  10. Measurement of the argon plasma temperature by use of pyrometer

    International Nuclear Information System (INIS)

    The author describes in detail how to use pyrometer to measure the plasma temperature. The temperatures of shock-generated argon plasmas are given in the present work. Measured results of temperature-pressure curve are compared with calculated results using Saha-Debye-Huckel model, which are in good agreement

  11. LArGe. A liquid argon scintillation veto for GERDA

    International Nuclear Information System (INIS)

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in 76Ge, by operating naked germanium detectors submersed into 65 m3 of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m3 (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 103 have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10-2 cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural 42Ar abundance (in parallel to Gerda), and have indication for the 2νββ-decay in natural germanium. (orig.)

  12. Study of Liquid Argon Dopants for LHC Hadron Calorimetry

    CERN Multimedia

    2002-01-01

    Hadron calorimetry based on the Liquid Argon Ionisation Chamber technique is one of the choice techniques for LHC-experimentation. A systematic study of the effect of selected dopants on Liquid Argon (LAr) will be carried out with the aim to achieve an improvement on: \\item (i)~``Fast Liquid Argon'' search and study of dopants to increase the drift velocity. It has been already shown that CH&sub4. added at a fraction of one percent increases the drift velocity by a factor of two or more. \\item (ii)~``Compensated Liquid Argon'' search and study of dopants to increase the response to densely ionising particles, resulting in improved compensation, such as photosensitive dopants. \\end{enumerate}\\\\ \\\\ Monitoring of the parameters involved in understanding the response of a calorimeter is essential. In case of doped LAr, the charge yield, the non-saturated drift velocity and the electron lifetime in the liquid should be precisely and simultaneously monitored as they all vary with the level of dopant concentrati...

  13. Aging tests of ethylene contaminated argon/ethane

    International Nuclear Information System (INIS)

    We report on aging tests of argon/ethane gas with a minor (1800 ppM) component of ethylene. The measurements were first conducted with the addition of alcohol to test the suppression of aging by this additive, with exposure up to ∼1.5 C/cm. Tests have included: a proportional tube with ethanol, another with isopropyl alcohol, and for comparison a tube has also been run with ethanol and argon/ethane from CDF's old (ethylene-free) ethane supply. The aging test with ethanol showed no difference between the ethylene-free and the ethylene tube. Furthermore, raw aging rates of argon/ethane and argon/ethane/ethylene were measured by exposing tubes without the addition of alcohol to about 0.1 C/cm. Again, no significant difference was observed. In conclusion, we see no evidence that ethylene contamination up to 1800 ppM has any adverse effect on wire aging. However, this level of ethylene does seem to significantly suppress the gas gain

  14. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    International Nuclear Information System (INIS)

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors

  15. Investigation of non-equilibrium argon and hydrogen plasmas

    International Nuclear Information System (INIS)

    Theoretical and experimental investigations are made into non-equilibrium argon and hydrogen partially-ionized plasmas characteristic of glow-discharge devices such as thyratrons and discharge tubes. For an argon plasma, the development and use of a collisional-radiative, steady-state, three-energy-level model is presented, and experimental measurements on pulsed argon plasmas are briefly mentioned. Two different theoretical argon plasma models are discussed; the first is numerically solved using a non-Maxwellian electron distribution function, while the second is solved analytically, including atom-atom inelastic collisions, assuming Maxwellian electron and atom distribution functions. For a hydrogen plasma, experimental measurements using fluorescence and laser-induced fluorescence have been made in a modified hydrogen thyratron over a wide current density range (from 100 to 8000 A/cm2) for the atomic hydrogen population densities n = 2,3,4. A pronounced rise in the atomic hydrogen excited state populations is observed after the end of the current pulse. A new method to measure the time-resolved electron density was developed and results are presented

  16. X ray diagnostics of the argon filled dense plasma focus

    International Nuclear Information System (INIS)

    An experimental investigation has been conducted to use a Dense Plasma Focus Machine as a prospected high intensity pulsed x ray source. The argon was chosen for the plasma discharge. An effort to reach the highest x ray intensity emission has been made. Although it has not yet been possible to operate with as high energy in argon as in hydrogen, the argon focus provides an intensified ''point source'' of x ray. Based on the diagnostic data and the characteristic difference between argon and hydrogen, a theoretical model of the shock wave was proposed. The x ray energy spectrum of the focus was determined by a crystal spectrometer. Analyzing this spectrum, one can obtain a combined radiation from a 3 keV thermal plasma and a 48 keV electron beam bombarding the center electrode. The polarization of the x ray was measured at a direction perpendicular to the DPF axis. The change of the polarization with time indicated that the plasma impinged radially and then followed by an axial flow. The correlation of the x ray signal with the voltage signal showed that the plasma resistance was rising after the density reached its maximum, and associated the increase of the resistivity as a result of ion-acoustic instability

  17. Scattering of Slow Metastable Argon Atoms by Dielectric Nanospheres

    Science.gov (United States)

    Baudon, J.; Hamamda, M.; Grucker, J.; Perales, F.; Dutier, G.; Ducloy, M.; Bocvarski, V.

    2009-11-01

    The elastic scattering at low energy of metastable argon atoms with internal angular momentum J = 0 and 2 by dielectric nanospheres is investigated. The differential cross sections are calculated for both isotropic and anisotropic interactions. A polarization effect is clearly evidenced. The possible use of a metastable atom beam as a probe of an ensemble of nanospheres deposited on a passive substrate is examined.

  18. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark

    2011-04-13

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  19. Design of capsules capable of argon-filling

    International Nuclear Information System (INIS)

    The possibility of the use of polycarbosilane capsules as fuel container in inertial confinement fusion experiments was analyzed in the paper. Primary study indicates that the polycarbosilane capsules can be filled with argon by means of diffusion and possess reasonable retention time for deuterium. (author)

  20. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  1. Experimental and numerical study of high intensity argon cluster beams

    International Nuclear Information System (INIS)

    Experimental and numerical investigations of expansion of argon with homogeneous condensation in supersonic conical nozzle and in free jet behind it were carried out. Optimal parameters (stagnation pressure, nozzle-skimmer distance) for the formation of cluster beam with maximum intensity were determined. Two available models for nonequilibrium nucleation were tested. The numerical results are in satisfactory agreement with the measured data

  2. Thermal decomposition of yttrium(III) valerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao; Pallewatta, Pallewatta G A P; Watenphul, A.; Zimmermann, M. v.

    2014-01-01

    The thermal decomposition of yttrium(III) valerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction, in-situ synchrotron diffraction and hot-stage microscopy as well as room temperature optical microscopy. Melting...

  3. Turbulence and transport in a magnetized argon plasma

    International Nuclear Information System (INIS)

    An experimental study on turbulence and transport in the highly ionized argon plasma of a hollow cathode discharge is described. In order to determine the plasma parameters three standard diagnostics have been used, whilst two diagnostics have been developed to study the plasma turbulence. (Auth.)

  4. Study of a microwave discharge in argon/helium mixtures

    International Nuclear Information System (INIS)

    A discharge created by a surface wave in Argon-Helium mixture is studied. First, the helium influence on plasma parameters has been studied (electron density, electric field, effective collision frequency, etc...), then, on excitation processes in the discharge. Relations between plasma lines, electron density and electric field have been established

  5. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models. PMID:24559345

  6. Thermal decomposition of yttrium(III) hexanoate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Suarez Guevara, Maria Josefina; Attique, Fahmida;

    2015-01-01

    The thermal decomposition of yttrium(III) hexanoate (Y(C5H11CO2)3)·xH2O in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction at a laboratory Cu-tube source and in-situ experiments at a synchrotron radiation source as well as hot...

  7. The role of metastable atoms in argon-diluted silane radiofrequency plasmas

    OpenAIRE

    Sansonnens, L.; Howling, A.A.; Hollenstein, C.; Dorier, J. L.; Kroll, U.

    2008-01-01

    The evolution of the argon metastable states density has been studied by absorption spectroscopy in power-modulated plasmas of argon and a mixture of 4% silane in argon. A small concentration of silane suppresses the argon metastable states density by molecular quenching. This molecular quenching adds to the electronic collisional dissociation to increase the silane dissociation rate as compared with pure silane plasmas. Using time-resolved emission spectroscopy, the role of metastable states...

  8. Potassium-Argon ages on mesozoic tholeutic dike Swarm in Rio Grande do Norte, Brazil

    International Nuclear Information System (INIS)

    Potassium-argon ages are reported for samples from four localities which represent three laterally separated Mesozoic tholeitic dikes in Precambrian oF Rio Grande do Norte, Brazil. The ages for the dikes are between 167 Ma and 130 Ma. It is shown that most of the ages determined are minimum ages due to argon losses. The methodological approach to identify argon losses is described. Ecess argon cannot be of significant influence on the ages found. (author)

  9. Conversion of an atomic to a molecular argon ion and low pressure argon relaxation

    Science.gov (United States)

    M, N. Stankov; A, P. Jovanović; V, Lj Marković; S, N. Stamenković

    2016-01-01

    The dominant process in relaxation of DC glow discharge between two plane parallel electrodes in argon at pressure 200 Pa is analyzed by measuring the breakdown time delay and by analytical and numerical models. By using the approximate analytical model it is found that the relaxation in a range from 20 to 60 ms in afterglow is dominated by ions, produced by atomic-to-molecular conversion of Ar+ ions in the first several milliseconds after the cessation of the discharge. This conversion is confirmed by the presence of double-Gaussian distribution for the formative time delay, as well as conversion maxima in a set of memory curves measured in different conditions. Finally, the numerical one-dimensional (1D) model for determining the number densities of dominant particles in stationary DC glow discharge and two-dimensional (2D) model for the relaxation are used to confirm the previous assumptions and to determine the corresponding collision and transport coefficients of dominant species and processes. Project supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ON171025).

  10. Argon metastable dynamics and lifetimes in a direct current microdischarge

    Science.gov (United States)

    Stefanović, Ilija; Kuschel, Thomas; Schröter, Sandra; Böke, Marc

    2014-09-01

    In this paper we study the properties of a pulsed dc microdischarge with the continuous flow of argon. Argon metastable lifetimes are measured by tunable diode laser absorption spectroscopy (TDLAS) and are compared with calculated values which yield information about excitation and de-excitation processes. By increasing the gas flow-rate about 5 times from 10 to 50 sccm, the Arm lifetime increases from 1 to 5 μs due to the reduction of metastable quenching with gas impurities. Optical emission spectroscopy reveals nitrogen and water molecules as the main gas impurities. The estimated N2 density [N2] = 0.1% is too low to explain the measured metastable lifetimes. Water impurity was found to be the main de-excitation source of argon metastable atoms due to high quenching coefficients. The water impurity level of [H2O] = 0.15% to 1% is sufficient to bring calculated metastable lifetimes in line with experiments. The maximum value of water content in the discharge compared to the argon atoms is estimated to approximately 6%, due to the large surface to volume ratio of the microdischarge. The current pulse releases the water molecules from the electrode surface and they are either re-adsorbed in the time between 0.4 ms for [H2O] = 1% and 2.6 ms for [H2O] = 0.15% or pumped out of the discharge with the speed equal to the gas flow-rate. Depending on its partial pressure, the water impurity re-adsorption time is of the order of magnitude or less then the argon gas residence time.

  11. Observations of acoustic-wave-induced superluminescence in an argon plasma

    International Nuclear Information System (INIS)

    It is shown that in an argon discharge plasma it is possible to obtain overpopulation of certain electronic levels of atomic argon under the influence of acoustic waves. When the specified threshold is exceeded, then a superluminescence (in the form of light flashes) from the overpopulated electronic levels of atomic argon is observed

  12. 21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for...

  13. Method to determine argon metastable number density and plasma electron temperature from spectral emission originating from four 4p argon levels

    CERN Document Server

    Mariotti, Davide; Sasaki, Takeshi; Koshizaki, Naoto; 10.1063/1.2390631

    2010-01-01

    A simple model and method is proposed here to determine argon metastable number densities and electron temperature with the assumption of a Maxwell-Boltzmann electron energy distribution. This method is based on the availability of experimental relative emission intensities of only four argon lines that originate from any of the 4p argon levels. The proposed model has a relatively wide range of validity for laboratory plasmas that contain argon gas and can be a valuable tool for the emerging field of atmospheric microplasmas, for which diagnostics is still limited.

  14. Extreme ultraviolet beam-foil spectroscopy of highly ionized neon and argon

    International Nuclear Information System (INIS)

    A study of the euv radiation emitted by ion beams of highly ionized Ne and Ar after passage through thin foils was conducted at the variable energy cyclotron at Texas A and M University. A grazing incidence spectrometer was equipped with a position sensitive microchannel plate (MCP) detector, which improved the detection efficiency by two orders of magnitude. The position information of the MCP was determined to be linear over 90% of the 50 mm wide detector. Spectra spanning regions of over 100 A were accumulated at a resolution of less than 1 A. A wavelength calibration based on a second order equation of spectrometer position was found to result in an accuracy of +/-0.1 A. Over 40 transitions of Ne VIII, Ne IX, and Ne X were observed in the wavelength region from 350 to 30 A from n = 2-3, 4, 5; n = 3-4, 5, 6, 7, 8; n = 4-6, 7; and n = 5-9. An intensity calibration of the detection system allowed the determination of the relative populations of n = 3 states of Ne VIII and Ne IX. The argon beam-foil data confirmed the wavelength predictions of 30 previously unobserved transitions in the wavelength region from 355 to 25 A from n = 2-2; n = 3-4; n = 4-5, 6, 7; n = 5-6, 7; and n = 6-8

  15. EFFECTS OF ARGON ON THE PROPERTIES OF RF SPUTTERED AMORPHOUS SILICON

    OpenAIRE

    Shao-Qi, Peng; Qai, Yu; Xian, Zhang; Jing, Ye

    1981-01-01

    The Effects of argon on the properties of rf sputtered amorphous silicon film have been investigated. As the sputtering argon pressure is increased from 2 to 20 mTorr, the content of argon in the amorphous silicon film increases apparently (Argon/Silicon : from 10-2 to 5 x 10-2). The other properties measured as a function of argon pressure PAr show that as the PAr is increased, the photoconductivity, resistivity (300K), conductivity activation energy and optical gap increase also, while the ...

  16. Mass Spectrometric Observation of Doubly Charged Alkaline-Earth Argon Ions.

    Science.gov (United States)

    Hattendorf, Bodo; Gusmini, Bianca; Dorta, Ladina; Houk, Robert S; Günther, Detlef

    2016-09-01

    Doubly charged diatomic ions MAr(2+) where M=Mg, Ca, Sr or Ba have been observed by mass spectrometry with an inductively coupled plasma ion source. Abundance ratios are quite high, 0.1 % for MgAr(2+) , 0.4 % for CaAr(2+) , 0.2 % for SrAr(2+) and 0.1 % for BaAr(2+) relative to the corresponding doubly charged atomic ions M(2+) . It is assumed that these molecular ions are formed through reactions of the doubly charged metal ions with neutral argon atoms within the ion source. Bond dissociation energies (D0 ) were calculated and agree well with previously published values. The abundance ratios MAr(+) /M(+) and MAr(2+) /M(2+) generally follow the predicted bond dissociation energies with the exception of MgAr(2+) . Mg(2+) should form the strongest bond with Ar [D0 (MgAr(2+) )=124 to 130 kJ mol(-1) ] but its relative abundance is similar to that of the weakest bound BaAr(2+) (D0 =34 to 42 kJ mol(-1) ). The relative abundances of the various MAr(2+) ions are higher than those expected from an argon plasma at T=6000 K, indicating that collisions during ion extraction reduce the abundance of the MAr(2+) ions relative to the composition in the source. The corresponding singly charged MAr(+) ions are also observed but occur at about three orders of magnitude lower intensity than MAr(2+) . PMID:27252087

  17. First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon

    CERN Document Server

    Back, Henning O; Alton, Andrew; Condon, Christopher; de Haas, Ernst; Galbiati, Cristiano; Goretti, Augusto; Hohmann, Tristan; Ianni, Andrea; Kendziora, Cary; Loer, Ben; Montanari, David; Mosteiro, Pablo; Pordes, Stephen

    2012-01-01

    We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9% pure. After running in a batch mode, the argon purity was increased to 99.95%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixture was between 70% and 81%, at an argon production rate of 0.84-0.98 kg/day.

  18. [Experience with argon laser in urological diseases (author's transl)].

    Science.gov (United States)

    Rothauge, C F; Nöske, H D; Kraushaar, J

    1981-09-01

    The application of the Argon laser in urology has proved to be effective in resecting recurrent, exophytic urothelial tumors of the bladder up to the size of a raspberry. In cases of wide spread bladder tumors we only perform a radiation of the resected area as local recurrence prophylaxis following transurethral resection. The urethroscopic Argon laser irradiation makes laser urethrotomy and evaporisation of urethral strictures possible. Furthermore, a curative and conservative treatment of urethral tumors is possible in combination with chemotherapy. The same applies for the penis carcinoma. Urethral ruptures are also successfully treated by urethroscopic laser recanalization. A determination of the ureteral submucosal course, which may allow a prognosis about the probable maturation, is possible in cases of cystoureteral reflux with the help of laser diaphanoscopy. PMID:7197839

  19. Development of cryogenic installations for large liquid argon neutrino detectors

    CERN Document Server

    Adamowski, M; Geynisman, M; Hentschel, S; Montanari, D; Nessi, M; Norris, B

    2015-01-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these...

  20. Measurement of longitudinal electron diffusion in liquid argon

    Science.gov (United States)

    Li, Yichen; Tsang, Thomas; Thorn, Craig; Qian, Xin; Diwan, Milind; Joshi, Jyoti; Kettell, Steve; Morse, William; Rao, Triveni; Stewart, James; Tang, Wei; Viren, Brett

    2016-04-01

    We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. In the region between 100 and 350 V/cm, our results show a discrepancy with the previous measurement [1]. In the region between 350 and 2000 V/cm, our results represent the world's best measurement. Over the entire measured electric field range, our results are systematically higher than the calculation of Atrazhev-Timoshkin [2]. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

  1. Evaporation and condensation at a liquid surface. I. Argon

    Science.gov (United States)

    Yasuoka, Kenji; Matsumoto, Mitsuhiro; Kataoka, Yosuke

    1994-11-01

    Molecular dynamics computer simulations were carried out to investigate the dynamics of evaporation and condensation for argon at the temperature of 80 and 100 K. From the decrease of the survival probability of vapor molecules, the ratio of self reflection to collision is estimated to be 12%-15%, only weakly dependent on the temperature. This suggests that argon vapor molecules are in the condition of almost complete capture, and the condensation is considered to be a barrierless process. The total ratio of reflection which is evaluated with the flux correlation of condensation and evaporation is 20% at both temperature. The difference between these two ratios of reflection is ascribed to a phenomenon that vapor molecules colliding with the surface drive out other liquid molecules. This molecule exchange at the surface is as important as the self-reflection, and the conventional picture of condensation as a unimolecular chemical reaction is not appropriate.

  2. Trimming a Metallic Biliary Stent Using an Argon Plasma Coagulator

    International Nuclear Information System (INIS)

    Background. Distal migration is one of the common complications after insertion of a covered metallic stent. Stent repositioning or removal is not always possible in every patient. Therefore, trimming using an argon plasma coagulator (APC) may be a good alternative method to solve this problem. Methods. Metallic stent trimming by APC was performed in 2 patients with biliary Wallstent migration and in another patient with esophageal Ultraflex stent migration. The power setting was 60-100 watts with an argon flow of 0.8 l/min. Observations. The procedure was successfully performed and all distal parts of the stents were removed. No significant collateral damage to the nearby mucosa was observed. Conclusions. In a patient with a distally migrated metallic stent, trimming of the stent is possible by means of an APC. This new method may be applicable to other sites of metallic stent migration

  3. Narrow spectral width laser diode for metastable argon atoms pumping

    Science.gov (United States)

    Gao, Jun; Li, Bin; Wang, Xinbing; Zuo, Duluo

    2016-03-01

    Diode laser pump source with narrow emitting spectrum for optically pumped metastable rare gas laser (OPRGL) of argon was achieved by employing a complex external cavity coupled with volume Bragg grating (VBG). A commercially available c-mount laser diode with rated power of 6 W was used and studied in both the free running mode and VBG external cavity. The maximum output power of 3.9 W with FWHM less than 25 pm and peak wavelength locked around 811.53 nm was obtained from the VBG external cavity laser diode. Precise control of VBG temperature enabled fine tuning of the emission wavelength over a range of 450 pm. Future researches on OPRGL of argon will benefit from it.

  4. Scintillation time dependence and pulse shape discrimination in liquid argon

    International Nuclear Information System (INIS)

    Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background- and statistics-limited level of electronic recoil contamination to be 7.6x10-7 between 52 and 110 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 62 keVr. Finally, we develop a maximum likelihood method of pulse shape discrimination based on the measured scintillation time dependence

  5. Demonstration of a Lightguide Detector for Liquid Argon TPCs

    CERN Document Server

    Bugel, L; Ignarra, C; Jones, B J P; Katori, T; Smidt, T; Tanaka, H -K

    2011-01-01

    We report demonstration of light detection in liquid argon using an acrylic lightguide detector system. This opens the opportunity for development of an inexpensive, large-area light collection system for large liquid argon time projection chambers. The guides are constructed of acrylic, with TPB embedded in a surface coating with a matching index of refraction. We study the response to early scintillation light produced by a 5.3 MeV alpha. We measure coating responses from 7 to 8 PE on average, compared to an ideal expectation of 10 PE on average. We estimate the attenuation length of light along the lightguide bar to be greater than 0.5 m. The coating response and the attenuation length can be improved; we show, however, that these results are already sufficient for triggering in a large detector.

  6. Opacity measurements in shock-generated argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.

    1993-07-01

    Dense plasmas having uniform and constant density and temperature are generated by passage of a planar shock wave through gas. The opacity of the plasma is accurately measured versus wavelength by recording the risetime of emitted light. This technique is applicable to a wide variety of species and plasma conditions. Initial experiments in argon have produced plasmas with 2 eV temperatures, 0.004--0.04 g/cm{sup 3} densities, and coupling parameters {Gamma} {approximately}0.3--0.7. Measurements in visible light are compared with calculations using the HOPE code. An interesting peak in the capacity at 400 nm is observed for the first time and is identified with the 4s-5p transition in excited neutral argon atoms.

  7. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.;

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...... unequivocally associated with electronic processes generated by the bombarding particle. In the present energy region, it is found that Y scales approximately as the electronic stopping power squared, depends on the charge state of the incoming helium ions, and perhaps more important, is independent of the...

  8. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baron, S; Baroncelli, A; Barr, A J; Barreiro, F; BarreiroGuimarães da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Bathe, S; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Bedajanek, I; Beddall, A J; Beddall, A; Bednár, P; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Booth, J R A; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Bosteels, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Brett, N D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camarri, P; Cambiaghi, M; Cameron, D; Campabadal-Segura, F; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans-Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  9. Electron Neutrino Classification in Liquid Argon Time Projection Chamber Detector

    OpenAIRE

    Płoński, Piotr; Stefan, Dorota; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    Neutrinos are one of the least known elementary particles. The detection of neutrinos is an extremely difficult task since they are affected only by weak sub-atomic force or gravity. Therefore large detectors are constructed to reveal neutrino's properties. Among them the Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. The computerized methods for automatic reconstruction and identification of parti...

  10. Unified set of atomic transition probabilities for neutral argon

    OpenAIRE

    Wiese, W.; Brault, J.; Danzmann, K.; Helbig, V.; de Kock, M

    1989-01-01

    The atomic transition probabilities and radiative lifetimes of neutral argon have been the subject of numerous experiments and calculations, but the results exhibit many discrepancies and inconsistencies. We present a unified set of atomic transition probabilities, which is consistent with essentially all recent results, albeit sometimes only after critical reanalysis. The data consistency and scale confirmation has been achieved in two ways. (i) We have carried out some lifetime–branching-ra...

  11. Operational performance of a large liquid argon photon calorimeter

    International Nuclear Information System (INIS)

    We describe the performance of a large (0.9x1.4 m2) liquid argon photon calorimeter in high energy experiments at Fermilab. Resolutions for π0 and electron showers, obtained under data-taking conditions, are compared with electron-beam calibration results. Exceptional spatial and time resolutions have been achieved for isolated showers (sigmasub(x,y)0 data up to 180 GeV are presented. (orig.)

  12. Changes in colour contrast sensitivity associated with operating argon lasers.

    OpenAIRE

    Gündüz, K; Arden, G B

    1989-01-01

    A new test of colour vision using computer graphics has been used to obtain quantitative estimates of colour contrast sensitivity in ophthalmologists before and after they have treated patients by argon laser retinal photocoagulation. The colour vision of all subjects is normal when tested with the 100-hue test and HRR (Hardy, Rittler, Rand) plates, but colour contrast sensitivity measured along a tritan colour confusion line is selectively impaired after a treatment session. No such change o...

  13. Influence of argon pollution on the weld surface morphology

    OpenAIRE

    Krolczyk, G.M.; Nieslony, P.; Krolczyk, J.B.; I. Samardzic; Legutko, S.; S. Hloch; Barrans, Simon; Maruda, R.W.

    2015-01-01

    In this paper the surfaces of butt welded joints in steel tubes were analyzed using an optical 3D measurement system to determine the morphology and topographic parameters. It was established that pollution of the argon shield gas with oxygen did not influence the width of the heat-affected zone. However, the composition of the shield gas significantly influenced the surface asymmetry, Ssk, and its inclination Sku. The measurement of these parameters enabled the selection of a ...

  14. Experimental Investigation of Low Pressure Audio Frequency Discharge in Argon

    International Nuclear Information System (INIS)

    Experimental data obtained on audio frequency (100–10000 Hz) discharge in argon at four pressures 50, 60, 70, and 80 mTorr are presented. The data show significant changes of the discharge current waveform with frequency. These changes seem to be associated with the glow discharge profile and colour. An empirical model based on the assumption of a frequency-dependent breakdown voltage is used to describe the experimental data

  15. STATUS OF THE ATLAS LIQUID ARGON CALORIMETER AND ITS PERFORMANCE

    CERN Document Server

    Berillari, T; The ATLAS collaboration

    2011-01-01

    The liquid argon (LAr) calorimeters are used in ATLAS for all electromagnetic and for hadron calorimetry. The LAr calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic, hadronic and forward calorimeters. The latest status of the detector as well as problems and solutions addressed during the last years will be presented. Aspects of operation of a large detector over a long time period will be summarized and selected topics showing the performance of the detector will be shown.

  16. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Xiao, Tang;

    2013-01-01

    The thermal decomposition of La(C3H7CO2)3·xH2O (x≈0.82) was studied in argon during heating at 5K/min. After the loss of bound H2O, the anhydrous butyrate presents at 135°C a phase transition to a mesophase, which turns to an isotropic liquid at 180°C. The decomposition of the anhydrous butyrate ...

  17. Argon laser photocoagulation of cyclodialysis clefts after cataract surgery

    International Nuclear Information System (INIS)

    Three patients with cyclodialysis clefts, hypotony and hypotonic retinopathy subsequent to cataract surgery were treated with argon laser photocoagulation. The hypotony was reversed in each patient and their visual acuity was normalized. Laser photocoagulation is a noninvasive treatment that can be repeated easily and safely. The complications of the treatment are minor. A hypertensive episode commonly occurs in the early postoperative period. (au) 8 refs

  18. Spectroscopy of Argon Excited in an Electron Beam Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E

    2005-04-18

    Argon is one of the gases best investigated and most widely used in plasma discharge devices for a multitude of applications that range from wavelength reference standards to controlled fusion experiments. Reviewing atomic physics and spectroscopic problems in various ionization stages of Ar, the past use and future options of employing an electron beam ion trap (EBIT) for better and more complete Ar data in the x-ray, EUV and visible spectral ranges are discussed.

  19. Spectroscopic Investigations of Air Entrainment into an Argon Plasma Jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Něnička, Václav; Šlechta, Jiří; Krejčí, Luděk; Dolínek, Vladimír; Sopuch, Pavel

    Vol. 3. Orléans : GREMI, CNRS/University of Orléans, 2001 - (Bouchoule, A.; Pouvesle, J.), s. 1107-1110 [INTERNATIONAL SYMPOSIUM ON PLASMA CHEMISTRY /15./. Orléans (FR), 09.07.2001-13.07.2001] R&D Projects: GA AV ČR IAA1057001; GA ČR GA202/99/0389 Keywords : nitrogen molecular bands * dependence of nitrogen radiations on the argon flow rate Subject RIV: BL - Plasma and Gas Discharge Physics

  20. Two dimensional condensation of argon adsorbed on lamellar halides

    International Nuclear Information System (INIS)

    Lamellar halides such as NiCl2, FeCl2, NiBr2, MnBr2, MgBr2, CdBr2, CoI2, FeI2, MnI2, CaI2 and PbI2 were sublimed in a rapid stream of dry nitrogen. The adsorption of argon on such materials shows stepped isotherms which reveal two dimensional condensations. From sets of isotherms the Helmholtz free energy, the internal energy and the entropy of the successive layers are determined. From the entropy of the first layer the role of the potential relief of the adsorbent surface on the structure of the adsorbed layer may be determined while the Helmholtz free energy reveals how the ionic character of the adsorbent governs the attractive force of adsorption. The study of the second third and fourth layers shows that their growth follows quite a different behaviour depending on whether the Van der Waals diameter of argon is greater or smaller than the distance between adjacent anions on the crystal surface. A proposition is made to account for the difference in the critical temperatures of the first and second dense layers in terms of the vibrationnal state of their respective substrate. The occurence for the maximum critical temperature observed of corresponding to a triangular layer 3% more expanded than the (111) plane of solid argon is discussed

  1. A liquid argon scintillation veto for the Gerda experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wegmann, Anne [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay of {sup 76}Ge. Bare germanium detectors are operated in a cryostat with 65 m{sup 3} of liquid argon (LAr). To reach the aspired background index of ≤10{sup -3} cts/(keV.kg.yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). A light instrumentation of LAr installed in the LArGe test facility has demonstrated that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. Based on these results, Gerda pursues several options for the light instrumentation, which have to be compatible with the stringent radiopurity requirements of the experiment and should provide a significant suppression of the background in the region of interest around Q{sub ββ} at 2039 keV. This talk gives an account of the competing design options under investigation in the Gerda collaboration. The design options using photomultiplier tubes (PMT) and silicon photomultipliers (SiPM) are discussed, together with their expected performance from Monte Carlo simulations. In addition, the progress of development is reported, along with the design criteria for light instrumentation in Gerda.

  2. A liquid argon scintillation veto for the Gerda experiment

    International Nuclear Information System (INIS)

    Gerda is an experiment to search for the neutrinoless double beta decay of 76Ge. Bare germanium detectors are operated in a cryostat with 65 m3 of liquid argon (LAr). To reach the aspired background index of ≤10-3 cts/(keV.kg.yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). A light instrumentation of LAr installed in the LArGe test facility has demonstrated that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. Based on these results, Gerda pursues several options for the light instrumentation, which have to be compatible with the stringent radiopurity requirements of the experiment and should provide a significant suppression of the background in the region of interest around Qββ at 2039 keV. This talk gives an account of the competing design options under investigation in the Gerda collaboration. The design options using photomultiplier tubes (PMT) and silicon photomultipliers (SiPM) are discussed, together with their expected performance from Monte Carlo simulations. In addition, the progress of development is reported, along with the design criteria for light instrumentation in Gerda.

  3. Demonstration and comparison of photomultiplier tubes at liquid Argon temperature

    International Nuclear Information System (INIS)

    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photomultiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics K.K. Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R and D program of the WArP Collaboration. During these tests the Hamamatsu PMTs showed excellent performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments.

  4. Electron density measurements of high pressure argon surface wave plasmas

    International Nuclear Information System (INIS)

    The electron density of an argon standing surface wave plasma has been measured from Stark broadening of the hydrogen H/sub beta/ (4861A) line. The experimental setup, consisting of two coaxial cavities, was similar to that reported by Rogers and Asmussen. The plasma was generated by 45 watts per cavity of CW, 2.54 GHz microwave power in a 6 mm O.D. (4 mm I.D.) quartz tube. Experimental argon gas pressure varied from 50 torr to over one atmosphere. Small amounts (1-5%) of hydrogen added to the argon plasma were found to shorten the plasma by as much as 80%. Thus, the Stark measurements were made using trace amounts of hydrogen. The line width of H/sub beta/ was measured with a 1 meter Czerny-Turner grating spectrometer. The Stark broadening measurements revealed that the electron density is between 1013 and 1014 electrons/cc for a pressure range of 50 to 1000 torr. These measurements agree very well with the electron density determined from the wavelength of standing surface waves. The volume of the plasma was also measured photographically and average plasma power densities (absorbed power in the plasma divided by the plasma volume) was calculated

  5. MARLEY: Model of Argon Reaction Low Energy Yields

    Science.gov (United States)

    Gardiner, Steven; Bilton, Kyle; Grant, Christopher; Pantic, Emilija; Svoboda, Robert

    2015-10-01

    Core-collapse supernovae are sources of tremendous numbers of neutrinos with energies of up to about 50 MeV. In recent years, there has been growing interest in building detectors that are sensitive to supernova neutrinos. Such detectors can provide information about the initial stages of stellar collapse, early warning signals for light emission from supernovae, and opportunities to study neutrino oscillation physics over astronomical distances. In an effort to enable supernova neutrino detection in next-generation experiments like DUNE, the CAPTAIN collaboration plans to make the first direct measurement of cross sections for neutrino interactions on argon in the supernova energy regime. To help predict neutrino event signatures in the CAPTAIN liquid argon time projection chamber (LArTPC), we have developed a first-of-its-kind Monte Carlo event generator called MARLEY (Model of Argon Reaction Low Energy Yields). This generator attempts to model the complicated nuclear structure dependence of low-energy neutrino-nucleus reactions in sufficient detail for use in LArTPC simulations. In this talk we present some preliminary results calculated using MARLEY and discuss how the current version of the generator may be improved and expanded.

  6. Isotopic fractionation of argon during stepwise release from shungite

    International Nuclear Information System (INIS)

    In previous attempts to determine the 40Ar/36Ar ratio in the ancient atmosphere, the only direct measurement yielding a value below the atmospheric value of today is for argon released at low temperatures from a pre-Cambrian shungite, an amorphous carbon mineral The present work confirms a low value for 40Ar/36Ar in gas released from a type I shungite at low temperatures. But quantitative scrutiny of the accompanying 38AR/36Ar ratios and the enhanced ratio of 40Ar/36Ar for the fractions released at high temperatures shows convincingly that the effect seen here is an artifact of the stepwise heating and the argon diffusion mobilized thereby. The low 40Ar/36Ar previously obtained is very likely from the same cause rather than reflecting the isotopic composition of the pre-Cambrian atmosphere. The vitreous character of and the sharp, conchoidal fractures seen in the specimens of type I shungite suggest that the substance may exhibit simple volume diffusion over macroscopic dimensions as glasses do. If so, the diffusion parameters (D infinitely = 3 x 10-4 cm2/s and E = 11 kcal/mole) obtained from the data imply rapid exchange with the atmosphere for any argon initially trapped in centimenter-thick veins of the material. (orig.)

  7. Isotopic fractionation of argon during stepwise release from shungite

    Science.gov (United States)

    Rison, W.

    1980-05-01

    It is noted that in previous attempts to determine the Ar-40/Ar-36 ratio in the ancient atmosphere, the only direct measurement yielding a value below the atmospheric value of today is for argon released at low temperatures from a pre-Cambrian shungite. In the present work, a low value for Ar-40/Ar-36 in gas released from a type I shungite at low temperatures is confirmed. Attention is given to a study of the accompanying Ar-38/Ar-36 ratios and the enhanced ratio of Ar-40/Ar-36 for the fractions released at high temperatures which shows that the effect observed is a result of the stepwise heating and the argon diffusion mobilized thereby. It is suggested that the low Ar-40/Ar-36 obtained in the past is from the same source rather than reflecting the isotropic composition of the pre-Cambrian atmosphere, and that the type I shungite may exhibit simple volume diffusion over macroscopic dimensions as glasses do. It is concluded that if this is so, the diffusion parameters obtained from the data would imply rapid exchange with the atmosphere for any argon initially trapped in the veins of the material.

  8. ARAPUCA a new device for liquid argon scintillation light detection

    International Nuclear Information System (INIS)

    We present a totally innovative device for the detection of liquid argon scintillation light, that has been named ARAPUCA (Argon R and D Advanced Program at UniCAmp). It is composed of a passive light collector and of active devices. The latters are standard SiPMs that operate at liquid argon temperature, while the passive collector is based on a new technology, never explored in this field before. It is a photon trap, that allows to collect light with extremely high efficiency. The total detection efficiency of the device can be tuned by modifying the ratio between the area of the active devices (SiPM) and the area of the optical window. For example, it will allow to reach a detection efficiency at the level of 1% on a surface of 50 × 50 cm2 with an active coverage of 2 × 2 cm2 (two/three large area SiPM). It is also a cheap device, since the major part of its cost is represented by the active devices. For these reason this appears to be the ideal device for scintillation light detection in large Time Projection Chambers. With appropriate modifications it can be used also in next generation Dark Matter detectors

  9. Demonstration and comparison of photomultiplier tubes at liquid Argon temperature

    Science.gov (United States)

    Acciarri, R.; Antonello, M.; Boffelli, F.; Cambiaghi, M.; Canci, N.; Cavanna, F.; Cocco, A. G.; Deniskina, N.; Di Pompeo, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Kryczynski, P.; Meng, G.; Montanari, C.; Palamara, O.; Pandola, L.; Perfetto, F.; Piano Mortari, G. B.; Pietropaolo, F.; Raselli, G. L.; Rubbia, C.; Segreto, E.; Szelc, A. M.; Triossi, A.; Ventura, S.; Vignoli, C.; Zani, A.

    2012-01-01

    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photomultiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics K.K. Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these tests the Hamamatsu PMTs showed excellent performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments.

  10. Metal clusters on supported argon layers; Metallcluster auf dielektrischen Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Bernhard

    2011-10-21

    The deposition of small sodium clusters on supported Ar(001)-surfaces is simulated. Theoretical description is achieved by a hierarchical model consisting of time-dependent DFT and molecular dynamics. The valence electrons of the sodium atoms are considered by Kohn-Sham-Scheme with self interaction correction. The interaction of argon atoms and sodium ions is described by atom-atom potentials whereas the coupling to the QM electrons is done by local pseudo-potentials. A decisive part of the model is the dynamical polarizability of the rare-gas atoms. The optional metal support is considered by the method of image charges. The influence of the forces caused by image charges and the influence of the number of argon monolayers on structure, optical response and deposition dynamics of Na{sub 6} and Na{sub 8} is investigated. There is very little influence on cluster structure and only a small shift of the cluster perpendicular to the surface. Concerning optical response the position of the Mie plasmon peak stays robust whereas the details of spectral fragmentation react very sensitively to changes. The forces caused by image charges of the metal support play only a little role with the dynamics of deposition while the thickness of the argon surface strongly influences the dissipation. (orig.)

  11. Status of the ATLAS Liquid Argon Calorimeter and its Performance

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region |eta|<3.2, as well as for hadronic calorimetry from |eta|=1.4 to |eta|=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes ...

  12. ARAPUCA a new device for liquid argon scintillation light detection

    Science.gov (United States)

    Machado, A. A.; Segreto, E.

    2016-02-01

    We present a totally innovative device for the detection of liquid argon scintillation light, that has been named ARAPUCA (Argon R&D Advanced Program at UniCAmp). It is composed of a passive light collector and of active devices. The latters are standard SiPMs that operate at liquid argon temperature, while the passive collector is based on a new technology, never explored in this field before. It is a photon trap, that allows to collect light with extremely high efficiency. The total detection efficiency of the device can be tuned by modifying the ratio between the area of the active devices (SiPM) and the area of the optical window. For example, it will allow to reach a detection efficiency at the level of 1% on a surface of 50 × 50 cm2 with an active coverage of 2 × 2 cm2 (two/three large area SiPM). It is also a cheap device, since the major part of its cost is represented by the active devices. For these reason this appears to be the ideal device for scintillation light detection in large Time Projection Chambers. With appropriate modifications it can be used also in next generation Dark Matter detectors.

  13. Roles of argon seeding in energy confinement and pedestal structure in JT-60U

    International Nuclear Information System (INIS)

    The mechanism of improving energy confinement with argon seeding at high density has been investigated in JT-60U. Better confinement is sustained at high density by argon seeding accompanied by higher core and pedestal temperatures. The electron density profiles become flatter with increasing density in conventional H-mode plasmas, whereas peaked density profiles are maintained with argon seeding. Density peaking and dilution effects lower the pedestal density at a given averaged density. The pedestal density in the argon seeded plasmas, which is lower than that in plasmas with deuterium puff, enables the pedestal temperature to be higher, whereas the increase in the pedestal pressure with argon seeding is small. High pedestal temperature is a boundary condition for high core temperature through profile stiffness, which leads to better confinement with argon seeding. The density peaking is a key factor of sustaining better confinement in argon seeded H-mode plasmas. The radiative loss power density is predominantly enhanced in the edge region by argon puff. The role of argon seeding in the pedestal characteristics has also been examined. The pedestal width becomes larger continuously with edge collisionality, but is nearly independent of the presence of argon seeding. (paper)

  14. Argon-41 production and evolution at the Oregon State University TRIGA Reactor (OSTR)

    International Nuclear Information System (INIS)

    In this study, argon-41 concentrations were measured at various locations within the reactor facility to assess the accuracy of models used to predict argon-41 evolution from the reactor tank, and to determine the relationship between argon gas evolution from the tank and subsequent argon-41 concentrations throughout the reactor room. In particular, argon-41 was measured directly above the reactor tank with the reactor tank lids closed, at other accessible locations on the reactor top with the tank lids both closed and open, and at several locations on the first floor of the reactor room. These measured concentrations were then compared to values calculated using a modified argon-41 production and evolution model for TRIGA reactor tanks and ventilation values applicable to the OSTR facility. The modified model was based in part on earlier TRIGA models for argon-41 production and release, but added features which improved the agreement between predicted and measured values. The approximate dose equivalent rate due to the presence of argon-41 in reactor room air was calculated for several different locations inside the OSTR facility. These dose rates were determined using the argon-41 concentration measured at each specific location, and were subsequently converted to a predicted quarterly dose equivalent for each location based on the reactor's operating history. The predicted quarterly dose equivalent values were then compared to quarterly doses measured by film badges deployed as dose-integrating area radiation monitors at the locations of interest. The results indicate that the modified production and evolution model is able to predict argon-41 concentrations to within a factor of ten when compared to the measured data. Quarterly dose equivalents calculated from the measured argon-41 concentrations and the reactor's operating history seemed consistent with results obtained from the integrating area radiation monitors. Given the argon-41 concentrations measured

  15. Nitrogen and argon in Sung Valley and Ambadongar carbonatite complexes: Evidence of incomplete homogenization of mantle and recycled components

    Science.gov (United States)

    Basu, S.; Murty, S. V. S.

    2015-08-01

    Nitrogen and argon concentrations and isotopic ratios have been measured in mineral separates (carbonates, apatites and magnetites) of two temporally and spatially different Indian carbonatites from Sung Valley (107 Ma) and Ambadongar (65 Ma). Gases were extracted by vacuum crushing (carbonates, apatites and magnetites) and stepwise pyrolysis (only apatite) to look for the trapped gases and resolve the different components. δ15N varies from +1.4‰ to +13.6‰ (with accompanying 40Ar/36Ar varying from 900 to 4956) in Sung Valley, and from -3.4 to +14.2 (with accompanying 40Ar/36Ar varying from 353 to 5301) in Ambadongar. This clearly shows the presence of more than one component in these carbonatites. We identify primary and recycled nitrogen and argon in these carbonatites. Additionally, N may be present in other speciation, like solid inorganic form with elevated δ15N ratios up to 16.9‰. Unlike the well-studied carbonatites from Kola, these Indian carbonatites do not show complete homogenization of the different components that can be hosted in different populations of inclusions and, as a result, can be identified. Preservation of such heterogeneity indicates that carbonatite magmatism originated from a small-scale heterogeneous subcontinental mantle initiated during lithospheric rifting.

  16. Comparative effects of argon green and krypton red laser photocoagulation for patients with diabetic exudative maculopathy.

    OpenAIRE

    Khairallah, M; Brahim, R; Allagui, M.; Chachia, N

    1996-01-01

    AIMS/BACKGROUND: Focal treatment of diabetic macular oedema is usually done using a haemoglobin absorbing wave-length, such as argon green laser. This study aimed to compare photocoagulation with argon green (514 nm) and krypton red (647 nm), which is poorly absorbed by haemoglobin, in the focal treatment of patients with diabetic exudative maculopathy. METHODS: A total of 151 eyes of 78 outpatients were assigned randomly to receive either argon green (n = 79) or krypton red (n = 72) laser tr...

  17. Emission properties of an atmospheric pressure argon plasma jet excited by barrier discharge

    International Nuclear Information System (INIS)

    An atmospheric-pressure argon plasma jet is initiated by the barrier discharge in a capillary, through which argon was flown. The spectral composition of radiation emitted by the jet in the atmosphere and its variation in the space are analyzed in detail. The jet radiation spectrum is shown to be predominantly formed by spectral transitions of argon and oxygen atoms, by electron-vibrational transitions of the first positive system of nitrogen molecules N2, and by transitions of hydroxyl radical OH

  18. The effects of argon in the bioenergetics of the hamster and the rat

    Science.gov (United States)

    Tempel, G. E.; Musacchia, X. J.

    1974-01-01

    Oxygen consumption was examined in hamsters and rats exposed to normoxic mixtures of argon at 1 atm. In fasted and nonfasted animals, no marked change in O2 utilization was detectable at 22 C. However, at 7 C a significant decrease in oxygen consumption was observed where the animals were exposed in argon. The data are interpreted in terms of the greater thermal conductivity of nitrogen. The study was prompted by conflicting reports on the metabolic effects of argon and helium.

  19. Argon Laser Photoablation for Treating Benign Pigmented Conjunctival Nevi

    Science.gov (United States)

    Alsharif, Abdulrahman M.; Al-Gehedan, Saeed M.; Alasbali, Tariq; Alkuraya, Hisham S.; Lotfy, Nancy M.; Khandekar, Rajiv

    2016-01-01

    Purpose: To evaluate the outcomes of argon laser photoablation of benign conjunctival pigmented nevi with different clinical presentations. Patients and Methods: This interventional case series was conducted between July 2014 and January 2015. Patients presenting with benign conjunctival nevi were included. Data were collected on the clinical features at presentation, argon laser photoablation, and follow-up at 8 and 24 weeks. Postoperative photography allowed recording of the success of each case and the overall success rate. Complete removal of conjunctival pigments was considered an absolute success. Partial pigmentation requiring repeat laser treatment was considered a qualified success. Results: There were 14 eyes (four right eyes and ten left eyes) with benign pigmented conjunctival nevi. There were three males and eight females in the study sample. The median age was 36 (25% percentile: 26 years). Three patients had bilateral lesions. The nevi were located temporally in nine eyes, nasally in three eyes, and on the inferior bulbar conjunctiva in two eyes. The mean horizontal and vertical diameters of nevi were 5 ± 2 mm and 4 ± 2.7 mm, respectively. The mean follow-up period was 5 months. Following laser treatment, no eyes had subconjunctival hemorrhage, infection, scarring, neovascularization, recurrence, or corneal damage. The absolute success rate of laser ablation was 79%. Three eyes with elevated nevi had one to three sessions of laser ablation resulting in a qualified success rate of 100%. Conclusions: Argon laser ablation was a safe and effective treatment for the treatment of selective benign pigmented conjunctival nevi in Arab patients. PMID:27555708

  20. Sodium aerosol formation in an argon flow over hot sodium

    International Nuclear Information System (INIS)

    Vapour evaporation, which partly forms aerosol, occurs when a cold gas flows over a hot liquid. A previous well-mixed model is extended to predict the final vapour plus aerosol content of such a flow in terms of its initial and final temperatures. The predictions are compared to results of the Copacabana II experiment in which argon passed over a sodium pool. Agreement is obtained for the final sodium density at moderate flow rates, and physical reasons are given as to why deviations occur at low and high flow rates. (author)

  1. Performance of the TGT liquid argon calorimeter and trigger system

    International Nuclear Information System (INIS)

    A novel concept of a liquid argon calorimeter, the 'Thin Gap Turbine' (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a 'circular data store' and standalone readout and playback capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given. 12 refs., 21 figs., 6 tabs

  2. Optical fiber read-out for liquid argon scintillation light

    CERN Document Server

    Csáthy, J Janicskó; Kratz, J; Schönert, S; Wiesinger, Ch

    2016-01-01

    In this paper we describe the performance of a light detector for Ar scintillation light made of wavelength-shifting (WLS) fibers connected to Silicon-Photomultipliers (SiPM). The setup was conceived to be used as anti-Compton veto for high purity germanium (HPGe) detectors operated directly in liquid Argon (LAr). Background suppression efficiencies for different radioactive sources were measured in a test cryostat with about 800 kg LAr. This work was part of the R\\&D effort for the GERDA experiment.

  3. HARP: high-pressure argon readout for calorimeters

    International Nuclear Information System (INIS)

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx. 200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described

  4. Modeling of an argon cascaded arc plasma by ANSYS FLUENT

    International Nuclear Information System (INIS)

    In this work, an argon cascaded arc plasma is simulated by the business software ANSYS FLUENT. In fact, thus plasma is a high temperature arc (plasma window) with an average temperature of 12000 °C, which can be used as a medium between high pressure and vacuum mainly due to its characteristics of high temperature. According to the simulating results, the temperature can reach as high as 11500 °C which is in great agreement with that of other reports about plasma window.

  5. Diffusion coefficient of metal vapours into rare gases. Mercury - argon

    International Nuclear Information System (INIS)

    The source information is present as well as the results of analysis and integration of data on mutual diffusion coefficient (MDC) of mercury - argon mixture at Hg concentration → 0 in 300-2500 K temperature range. Reference data on MDC for metal - inert gas binary mixtures obtained on the base of complex analysis of various information, as it exemplified by Hg-Ar pair, can be used as a part of metrological support at calibration of devices for determination MDC of gas - metal vapors

  6. Searching for dark matter with single phase liquid argon

    Science.gov (United States)

    Caldwell, Thomas S., Jr.

    The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will

  7. Penning transfer in argon-based gas mixtures

    CERN Document Server

    Sahin, O; Tapan, I; Ozmutlu, E N

    2010-01-01

    Penning transfers, a group of processes by which excitation energy is used to ionise the gas, increase the gas gain in some detectors. Both the probability that such transfers occur and the mechanism by which the transfer takes place, vary with the gas composition and pressure. With a view to developing a microscopic electron transport model that takes Penning transfers into account, we use this dependence to identify the transfer mechanisms at play. We do this for a number of argon-based gas mixtures, using gain curves from the literature.

  8. The main properties of microwave argon plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  9. Study of a Novel Concept for a Liquid Argon Calorimeter \

    CERN Multimedia

    2002-01-01

    % RD33 \\\\ \\\\ The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter prototype is proposed as a generic R\\&D project for a novel concept of calorimetry in proton-proton and electron-positron collider detectors: the $^{\\prime$Thin Gap Turbine$^{\\prime}$ (TGT). The TGT calorimeter has a modular construction, is flexible in its longitudinal and transverse granularity, and offers a uniform energy response and resolution, independent of the production angle of incident particles. An important aspect of the project is the development of fast, radiation-hard front-end electronics which is operating in the cold.

  10. Intracavity frequency doubling in a wide-aperture argon laser

    International Nuclear Information System (INIS)

    The four-mirror cavity with a BBO crystal for frequency doubling in a wide-aperture argon laser is optimised. The dependences of the second-harmonic power on the displacement of a focusing mirror, the displacement of the crystal, and the discharge current are measured. These dependences are in good agreement with calculations. After optimisation, ∼1 W of UV laser radiation at 244 nm was obtained with the conversion efficiency twice as large as that for the known similar lasers. It is shown that the increase in the efficiency was achieved mainly due to the increase in the discharge-tube aperture. (nonlinear optical phenomena)

  11. High intensity, argon ion laser-jet photochemistry

    Science.gov (United States)

    Wilson, R. Marshall; Schnapp, Karlyn A.; Hannemann, Klaus; Ho, Douglas M.; Memarian, Hamid R.; Azadnia, Ardeshir; Pinhas, Allan R.; Figley, Timothy M.

    A new technique for the study of high intensity solution photochemistry has been developed. With this laser-jet technique, a high velocity microjet is irradiated with the focussed output of an argon ion laser. Under these extremely high intensity conditions, photochemically generated transient species with suitable absorption properties are excited further and produce relatively large amounts of photoproducts which are not observed under low intensity conditions. The application of this laser-jet technique in the study of the photochemistry of radicals, biradicals, photoenols and the higher excited states of carbonyl and polycyclic aromatic compounds is described.

  12. The main properties of microwave argon plasma at atmospheric pressure

    Science.gov (United States)

    Benova, E.; Pencheva, M.

    2010-01-01

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  13. The main properties of microwave argon plasma at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Benova, E; Pencheva, M, E-mail: benova_phys@deo.uni-sofia.b [Department for Language Teaching and International Students, University of Sofia, 27 Kosta Loulchev Street, BG-1111 Sofia (Bulgaria)

    2010-01-01

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  14. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    1997-01-01

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...... bond-breaking in the molecule should be possible following the same laser control scheme as suggested in the gas phase. (C) 1997 Elsevier Science B.V....

  15. Electron transport in argon in crossed electric and magnetic fields

    Science.gov (United States)

    Ness; Makabe

    2000-09-01

    An investigation of electron transport in argon in the presence of crossed electric and magnetic fields is carried out over a wide range of values of electric and magnetic field strengths. Values of mean energy, ionization rate, drift velocity, and diffusion tensor are reported here. Two unexpected phenomena arise; for certain values of electric and magnetic field we find regions where the swarm mean energy decreases with increasing electric fields for a fixed magnetic field and regions where swarm mean energy increases with increasing magnetic field for a fixed electric field. PMID:11088933

  16. Ionization coefficients for argon in a micro-discharge

    International Nuclear Information System (INIS)

    Ionization coefficients are measured for electrons in a dc micro-discharge in argon from optical emission profiles. The micro-discharge is operated in the Townsend regime between two parallel-plate electrodes. Axial profiles of emission are obtained with sufficient resolution to provide spatial ionization coefficients. The measured coefficients agree very well with the data obtained from other sources, indicating the operation of the discharge in the Townsend regime and also that Townsend mechanisms do not need extension to describe such discharges. (paper)

  17. Kinetic modeling of the Townsend breakdown in argon

    Science.gov (United States)

    Macheret, S. O.; Shneider, M. N.

    2013-10-01

    Kinetic modeling of the Townsend breakdown in argon was performed in the "forward-back" approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  18. Ionization coefficients for argon in a micro-discharge

    Science.gov (United States)

    Kuschel, Thomas; Stefanović, Ilija; Malović, Gordana; Marić, Dragana; Petrović, Zoran Lj

    2013-08-01

    Ionization coefficients are measured for electrons in a dc micro-discharge in argon from optical emission profiles. The micro-discharge is operated in the Townsend regime between two parallel-plate electrodes. Axial profiles of emission are obtained with sufficient resolution to provide spatial ionization coefficients. The measured coefficients agree very well with the data obtained from other sources, indicating the operation of the discharge in the Townsend regime and also that Townsend mechanisms do not need extension to describe such discharges.

  19. Argon Analyses of Lherzolic Shergottites Y984028 and Y000097

    Science.gov (United States)

    Park, J.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Shih, C.-Y.; Mikouchi, T.; Misawa, K.

    2010-01-01

    Antarctic Martian meteorites Yamato (Y) 984028 and Y000027/47/97 have similar textures, mineralogy, chemistry, and isotopic composition and are possibly paired. We analyzed the argon isotopic composition of Y984028 whole rock (WR) and pyroxene mineral separates (Px) in order to evaluate their trapped Ar components and compare with Y000097 Ar data. WR and Px yield an apparent Ar-39-Ar-40 age spectra of roughly 2 Ga, much older than the crystallization age determined by other isotopic techniques. Sm-Nd and Rb-Sr ages for Y984028 are approximately 170 Ma. This discrepancy is likely the byproduct of several coexisting Ar components, such as radiogenic 40Ar*, cosmogenic Ar, and trapped Ar from the multiple minerals, as well as multiple source origins. Similarly, the reported Ar-39-Ar-40 age of Y000097 is approximately 260 Ma with a Rb-Sr age of 147+/- 28 Ma and a Sm-Nd age of 152 +/- 13 Ma [4]. Apparently Ar-Ar ages of both Y984028 and Y000097 show trapped Ar components. Stepwise temperature extractions of Ar from Y984028 Px show several Arcomponents released at different temperatures. For example, intermediate temperature data (800-1100 C) are nominally consistent with the Sm-Nd and Rb-Sr radiometric ages (approximately 170 Ma) with an approximately Martian atmosphere trapped Ar composition with a Ar-40-Ar-36 ratio of approximately 1800. Based on K/Ca distribution, we know that Ar-39 at both lower and intermediate temperatures is primarily derived from plagioclase and olivine. Argon released during higher temperature extractions (1200-1500 C), however, differs significantly. The thermal profile of argon released from Martian meteorites is complicated by multiple sources, such as Martian atmosphere, Martian mantle, inherited Ar, terrestrial atmosphere, cosmogenic Ar. Obviously, Ar release at higher temperatures from Px should contain little terrestrial atmospheric component. Likewise, Xe-129/Xe-132 from high temperature extractions (1200-1800 C) gives a value above that

  20. Above threshold ionization of Argon atoms by multicolor XUV radiation

    International Nuclear Information System (INIS)

    We analyse theoretically the Argon photoelectron spectra produced by strong and extreme ultraviolet radiation of six colors: from the 11th to the 16th harmonics of ω0 (800nm). In particular we concentrate in the range of the spectra where absorption of two photons occurs. The combination of photons of different frequencies results in eleven peaks that are separated by ω0. We point out that their relative intensities are very sensitive to the laser pulse parameters and target description. We also compare the theoretical description with experimental results finding good qualitative agreement

  1. Charges recombination in α particle tracks in argon

    International Nuclear Information System (INIS)

    The creation and evolution of (neutral) excited states and ionized states in α particle tracks in high pressure argon are studied. The main features of recently published experimental results on the recombination luminescence can be explained and a track model is proposed. Details are given on the track radius, on the electrons thermallization, and on collisions between electrons and triplet excited states. The most important result is that at high pressure and high electron and ion densities a collective electron-ion recombination is possible, that is more efficient that the well known dissociative recombination

  2. Activation of copper by nitrogen and argon beams

    Energy Technology Data Exchange (ETDEWEB)

    Chetvertkova, Vera [IAP, Goethe-University, Frankfurt am Main (Germany); GSI Darmstadt (Germany); Mustafin, Edil; Strasik, Ivan [GSI Darmstadt (Germany); Belousov, Anton [TU Darmstadt (Germany); Latysheva, Ludmila; Sobolevsky, Nikolai [INR RAS, Moscow (Russian Federation); Ratzinger, Ulrich [IAP, Goethe-University, Frankfurt am Main (Germany)

    2012-07-01

    Monte Carlo transport codes are widely used for various purposes in nuclear physics, radiation protection, medical applications, accelerator design etc. Code verification by experiments is needed to be sure that the codes give accurate results. New data on the activation of copper by a nitrogen beam of 500 MeV/u is presented and compared with FLUKA and SHIELD simulation results. The activation of copper by a nitrogen beam is compared to activation by an argon beam and respective simulations. This gives a chance to see the accuracy of the codes at different projectile masses. Correspondences and discrepancies of calculations and experiments are discussed.

  3. Electron drift velocity in argon-methane mixture

    International Nuclear Information System (INIS)

    Described are the results of a series of measurements of electron drift velocity taken with samples of chemically pure grade gas mixture of Ar-10% CH4 (N2222O<2 ppm). The measured drift velocity is plotted as a function of the ratio of electric field to pressure in the range from 0.05 to 0.8 V/cmxtorr. The measurements are reproducible only to within 4%. The results of numerical calculations employing the well-established argon elastic and methane elastic and inelastic cross sections are also included. The disagreement from the present experimental results, and from those obtained elsewhere, is rather puzzling

  4. Study of a novel electromagnetic liquid argon calorimeter TGT

    International Nuclear Information System (INIS)

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a test beam exposure. 15 refs., 16 figs., 2 tabs

  5. Upgrade readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  6. Upgraded readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  7. Upgraded readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Ma, Hong; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics for every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34/cm^2/s. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger chan...

  8. Performance of the ATLAS Liquid Argon Calorimeters in LHC Run-1 and Run-2

    CERN Document Server

    Benitez, Jose; The ATLAS collaboration

    2016-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34}$ cm$^{-2}$ s${^-1}$. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region $|\\eta|<3.2$, and for hadronic calorimetry in the region from $|\\eta|=1.5$ to $|\\eta|=4.9$. The calibration and performance of the LAr calorimetry system was established during beam tests, cosmic ray muon measurements and in particular the first three years of pp collision data-taking. During this period, referred to as Run-1, approximately 27~fb$^{-1}$ of data have been collected at the center-of-mass energies of 7 and 8~TeV. Following a period of detector consolidation during a long shutdown, Run-2 started in 2015 with approximately 3.9~fb$^{-1}$ of data at a center-of-mass energy of 13~TeV recorded in this year. Results on the LAr calorimeter operation, monitoring and data quality, as we...

  9. Measurements of the ratio between the transverse diffusion coefficient and the mobility for argon ions in argon

    International Nuclear Information System (INIS)

    The ratio DT/μ between the transverse diffusion coefficient and the mobility for 40Ar+ ions in argon has been determined from directly measured transverse current density distribution profiles of mass-analysed ions, as a function of the ratio E/n0 between the electric field and the gas number density in the interval 50≤E/n0≤4000 Td, at gas temperature T=294 K using a variable-length drift tube mass spectrometer. The error (two standard deviations) in the results is believed to be less than ±4% for E/n0o-values. (author)

  10. A liquid argon scintillation veto for the GERDA experiment

    International Nuclear Information System (INIS)

    Gerda is an experiment to search for the neutrinoless double beta decay of 76Ge. Results of Phase I have been published in summer 2013. Currently Gerda is being upgraded to a second phase. To reach the aspired background index of ≤ 10-3 cts/(keV . kg . yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). It has been demonstrated by the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. This talk focusses on the light instrumentation which is being installed in GERDA. Photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon photomultipliers (SiPM) are combined to maximize the photoelectron-yield with respect to various background sources. Monte Carlo simulations have been performed to optimize the design for background suppression and low self-induced background. First results of the prototypes and the progress of installation are reported.

  11. A liquid argon scintillation veto for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wegmann, Anne [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay of {sup 76}Ge. Results of Phase I have been published in summer 2013. Currently Gerda is being upgraded to a second phase. To reach the aspired background index of ≤ 10{sup -3} cts/(keV . kg . yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). It has been demonstrated by the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. This talk focusses on the light instrumentation which is being installed in GERDA. Photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon photomultipliers (SiPM) are combined to maximize the photoelectron-yield with respect to various background sources. Monte Carlo simulations have been performed to optimize the design for background suppression and low self-induced background. First results of the prototypes and the progress of installation are reported.

  12. Compilation of electron collision excitation cross sections for neutro argon

    International Nuclear Information System (INIS)

    The present work presents a compilation and critical analysis of the available data on electron collision excitation cross sections for neutral Argon levels. This study includes: 1.- A detailed description in intermediate coupling for all the levels belonging the 20 configurations 3p''5 ns(n=4 to 12), np(n=4 to 8) and nd(n=3 to 8) of neutral Argon. 2.- Calculation of the electron collision excitation cross sections in Born and Born-Oppenheimer-Ochkur approximations for all the levels in the 14 configurations 3p''5 ns(n=4 to 7), np(n=4 to 7) and nd(n=3 to 8). 3.- Comparison and discussion of the compiled data. These are the experimental and theoretical values available from the literature, and those from this work. 4.- Analysis of the regularities and systematic behaviors in order to determine which values can be considered more reliable. It is show that the concept of one electron cross section results quite useful for this purpose. In some cases it has been possible to obtain in this way approximate analytical expressions interpolating the experimental data. 5.- All the experimental and theoretical values studied are graphically presented and compared. 6.- The last part of the work includes a listing of several general purpose programs for Atomic Physics calculations developed for this work. (Author)

  13. Model of a stationary microwave argon discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≅ 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number

  14. Analysis of microdischarges in asymmetric dielectric barrier discharges in argon

    International Nuclear Information System (INIS)

    Theoretical and experimental studies of two different discharge modes in asymmetric dielectric barrier discharges in argon at atmospheric pressure have been performed. The first mode appears to be the well-known filamentary microdischarge with non-striated positive column whereas the second mode is characterized by discharge instabilities and the appearance of striations. Both experiment and model calculations predict a transition from the first mode to the second mode when the applied voltage amplitude is increased above approximately 2 kV. The reliability of the employed fluid model is confirmed by comparison of the current–voltage characteristics obtained by model calculations and measurements for different applied voltage amplitudes. The results of the model calculations point out that in the second discharge mode the ionization of excited argon atoms prevents the total recombination of charge carriers between two subsequent discharge events. This leads to the occurrence of the memory from one discharge to the following one, which plays an important role in mode transition. (paper)

  15. Model of a stationary microwave argon discharge at atmospheric pressure

    Science.gov (United States)

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-01

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron—ion pair, electron—neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≈ 14 cm, sustained by wave power of 110 W—the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  16. Liquid argon scintillation read-out with silicon devices

    International Nuclear Information System (INIS)

    Silicon photosensors represent a viable alternative to standard photomultipliers in fields such as communications and medical imaging. We explored the interesting possibility of using these sensors in combination with liquid argon (LAr) for astroparticle physics applications such as neutrino, dark matter and double beta decay experiments. In fact, silicon photosensors have detection efficiencies comparable with those of the highest performance PMTs and can be manufactured with high level of radiopurity. In particular within the on-going R and D activity of the SILENT project (Low background and low noise techniques for double beta decay physics funded by ASPERA) a large area SiPM (Silicon PhotoMultiplier - Hamamatsu S11828-3344M - 1.7 cm2 area) has been installed in a LAr scintillation chamber of 0.5 liters volume together with a cryogenic photomultiplier tube (Hamamatsu R11065) used as a reference. The liquid argon chamber has been exposed to many gamma sources of different energies and single photoelectron response and light yield for the SiPM and PMT have been measured and compared. In this contribution the results of the tests, and the ongoing R and D to optimize the SiPM for cryogenic and for ultralow background applications, are reported, as well as the possible application in the GERDA experiment on Double Beta Decay Searches of 76Ge

  17. Elastic properties of liquid and solid argon in nanopores.

    Science.gov (United States)

    Schappert, Klaus; Pelster, Rolf

    2013-10-16

    We have measured sorption isotherms and determined the intrinsic longitudinal elastic modulus β(Ar,ads) of nanoconfined material via ultrasonic measurements combined with a special effective medium analysis. In the liquid regime the adsorbate only contributes to the measured effective properties when the pores are completely filled and the modulus is bulklike. At partial fillings its contribution is cancelled out by the high compressibility of the vapour phase. In contrast, at lower temperatures frozen argon as well as underlying liquid surface layers cause a linear increase of the effective longitudinal modulus upon filling. During sorption the contribution of the liquid surface layers near the pore wall β(Ar,surf) increases with the thickness of the solid layers reaching the bulk value β(Ar,liquid) only in the limit of complete pore filling. We interpret this effect as due to the gradual stiffening of the solid argon membrane. The measurements and their analysis show that longitudinal ultrasonic waves are well suited to the study of the elastic properties and liquid-solid phase transitions in porous systems. This method should also help to detect the influence of nanoconfinement on elastic properties in further research. PMID:24057946

  18. Liquid argon scintillation read-out with silicon devices

    Science.gov (United States)

    Canci, N.; Cattadori, C.; D'Incecco, M.; Lehnert, B.; Machado, A. A.; Riboldi, S.; Sablone, D.; Segreto, E.; Vignoli, C.

    2013-10-01

    Silicon photosensors represent a viable alternative to standard photomultipliers in fields such as communications and medical imaging. We explored the interesting possibility of using these sensors in combination with liquid argon (LAr) for astroparticle physics applications such as neutrino, dark matter and double beta decay experiments. In fact, silicon photosensors have detection efficiencies comparable with those of the highest performance PMTs and can be manufactured with high level of radiopurity. In particular within the on-going R&D activity of the SILENT project (Low background and low noise techniques for double beta decay physics funded by ASPERA) a large area SiPM (Silicon PhotoMultiplier - Hamamatsu S11828-3344M - 1.7 cm2 area) has been installed in a LAr scintillation chamber of 0.5 liters volume together with a cryogenic photomultiplier tube (Hamamatsu R11065) used as a reference. The liquid argon chamber has been exposed to many gamma sources of different energies and single photoelectron response and light yield for the SiPM and PMT have been measured and compared. In this contribution the results of the tests, and the ongoing R&D to optimize the SiPM for cryogenic and for ultralow background applications, are reported, as well as the possible application in the GERDA experiment on Double Beta Decay Searches of 76Ge.

  19. Investigation of a Mercury-Argon Hot Cathode Discharge

    Science.gov (United States)

    Wamsley, Robert Charles

    Classical absorption and laser induced fluorescence (LIF) experiments are used to investigate processes in the cathode region of a Hg-Ar hot cathode discharge. The absorption and LIF measurements are used to test the qualitative understanding and develop a quantitative model of a hot cathode discharge. The main contribution of this thesis is a model of the negative glow region that demonstrates the importance of Penning ionization to the ionization balance in the negative glow. We modeled the excited argon balance equation using a Monte Carlo simulation. In this simulation we used the trapped radiative decay rate of the resonance levels and the Penning ionization rate as the dominant loss terms in the balance equation. The simulated data is compared to and found to agree with absolute excited argon densities measured in a classical absorption experiment. We found the primary production rate per unit volume of excited Ar atoms in the simulation is sharply peaked near the cathode hot spot. We used the ion production rate from this simulation and a Green's function solution to the ambipolar diffusion equation to calculate the contribution of Penning ionization to the total ion density. We compared the results of this calculation to our experimental values of the Hg ^+ densities in the negative glow. We found that Penning ionization is an important and possibly the dominant ionization process in the negative glow.

  20. Argon laser trabeculoplasty as primary therapy in open angle glaucoma

    International Nuclear Information System (INIS)

    To determine the effect of Argon Laser Trabeculoplasty (ALT) as a primary mode of therapy in reducing the intraocular Pressure (IOP) of patients diagnosed with Primary Open Angle Glaucoma (POAG). A total of 35 eyes of 35 patients with the gender distribution of 27 men and 8 women who were newly diagnosed with POAG, were included in this study. Mean age of the patients was 55.2 years with the range of 32 to 76 years. All of them were treated with argon laser trabeculoplasty as a primary mode of therapy. Intra ocular pressure was measured objectively using Goldman applanation tonometer, pre-and-post laser therapy. The pre-laser mean IOP was 27.63 mmHg (range 21-40 mmHg). The post-laser mean IOP measured at 6 months follow up was 15.5 mmHg (range 11 - 33 mmHg) with mean decrease of 12.1 mmHg. The decrease in IOP was seen in 32 eyes (95%) with no change observed in 3 (5%) eyes. The result shows a marked decline in IOP in patients with POAG who underwent ALT as a primary mode of treatment. Further studies with large sample size and longer follow-up will help in making future recommendations. (author)

  1. Dating of mineral samples through activation analysis of argon

    International Nuclear Information System (INIS)

    Mass Spectrometry has been the usual method to determine Ar concentrations in mineral samples for dating them through the 40Ar/40K ratio. This technique has been replaced since 1966 by measurement of 40Ar/39Ar ratio, after artificial production of 39Ar from the 39K(n,p)39Ar reaction produced in the fast neutron flux of a nuclear reactor. This method requires the fusion of the sample by incremental heating until reaching a temperature of 1000 deg C in order to get the total release of both argon isotopes. In principle, it should be possible to determine the 40Ar/40K ratio by activation analysis in an easier, non-destructive way, but it presents the following drawbacks: manufacture of argon standards; usual low ratio peak/Compton distribution for both peaks: 1.29 Mev and 1.52 Mev (41Ar and 42K respectively), since potassium minerals are usually very rich in sodium, manganese and chlorine; reaction 41K(n,p)41Ar induced by fast neutrons present in the thermal flux; and possible contamination of the samples and standards with atmospheric 40Ar(99.6% of elementary Ar, whose proportion in the atmosphere at sea level is 0.93%). This paper describes how these problems may be solved, also determining the limits of Ar and K concentration related to Compton distribution, in our experimental conditions. (author) 5 refs.; 1 tab

  2. Some transport properties in plasmas containing argon and fluorine

    Directory of Open Access Journals (Sweden)

    Novaković R.N.V.

    2003-01-01

    Full Text Available In this paper some results of numerical evaluation of transport coefficients in plasmas in the mixtures of argon and fluorine are presented. These transport characteristics are given in the function of the temperature for low pressures ranging from 0,1 kPa to 1,0 kPa and for low temperatures between 500 K and 5 000 K in argon plasmas with 20% and 30% of the fluorine added. It is assumed that the system is kept under constant pressure and that a corresponding state of local thermodynamical equilibrium (LTE is attained in it. The equilibrium plasma composition, necessary for the evaluations, was determined on the ground of the Saha equations for ionization processes and the law of mass action for the thermal dissociation of F2, combined with the charge conservation relation and the assumption that the pressure remained constant in the course of temperature variations. The ionization energy lowering, required in conjunction with the Saha equations, was obtained with the aid of a modified expression for the plasma Debye radius proposed previously. A previously derived expression for the modified Debye radius, offering the possibility to treat the plasmas considered as weakly non-ideal in the whole temperature range, is used. The cut-off at the Landau length rather than of the smallest of ionic radii is introduced. This alteration in the evaluation procedure brings different considerable changes in the final numerical results for the all relevant quantities.

  3. Clinical Observation on the Combined Treatment of 57 Cases of Non-small Cell Lung Cancer Using Argon-Helium Cryosurgery and Chinese Herbal Medicine

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To observe the clinical effect of the combined therapy using argon-helium cryosurgery (Ar-He knife) and Chinese herbal medicine in treating non-small cell lung cancer (NSCLC).Methods: Fifty-seven patients of NSCLC were treated with the combined therapy and observed. Results:The treatment was successfully completed in all patients with mild adverse reactions. The effective rate was 83.8% 3 months after the operation, 79.6% 6 months after the operation, and 77.3% 12 months after the operation, with median survival of 9 months. The survival rate after 12 months was 46.67%(21/45), 34.62% (9/26) after 18 months, and 36.36% (4/11) after 24 months. Conclusion: Argon-helium cryosurgery therapy is superior in its assured orientation, quick tumor load deprivation and less postoperational reaction. Combined with Chinese herbal medication, Argon-helium cryosurgery therapy can prolong survival time, relieve clinical symptoms, and elevate the quality of life in NSCLC patients, and is thus worthy of promotion.

  4. Local effects of ECRH on argon transport at ASDEX upgrade

    International Nuclear Information System (INIS)

    Future deuterium-tritium magnetically confined fusion power plants will most probably rely an high-Z Plasma Facing Components (PFCs) such as tungsten. This choice is determined by the necessity of low erosion of the first wall materials (to guarantee a long lifetime of the wall components) and by the need to avoid the too high tritium wall retention of typical carbon based PFCs. The experience gathered at the ASDEX Upgrade (AUG) tokamak has demonstrated the possibility of reliable and high performance plasma operation with a full tungsten-coated first wall. The observed accumulation of tungsten which can lead to excessive radiation losses is mitigated with the use of Electron Cyclotron Resonance Heating (ECRH). Although this impurity control method is routinely performed at AUG, the underlying physics principles are still not clear. This thesis aims an providing further knowledge an the effects of ECRH an the transport of impurities inside the core plasma. The transport of argon has been therefore investigated in-depth in purely ECR heated L-mode (low-confinement) discharges. Studies an impurity transport in centrally ECR heated nitrogen-seeded H-mode (high-confinement) discharges have also been performed. To this scope, a new crystal X-ray spectrometer of the Johann type has been installed an AUG for argon concentration and ion temperature measurements. New methods for the experimental determination of the total argon density through the integrated use of this diagnostic and of the Soft X-Ray (SXR) diode arrays have been developed. This gives the possibility of evaluating the full profiles of the argon transport coefficients from the linear flux-gradient dependency of local argon density. In comparison to classical χ2-minimization methods, the approach proposed here delivers transport coefficients intrinsically independent of the modelling of periodic relaxation mechanisms such as those Lied to sawtooth MHD (Magneto-Hydro-Dynamic) activity. Moreover, the good

  5. Study of electron recombination in liquid argon with the ICARUS TPC

    International Nuclear Information System (INIS)

    Electron recombination in liquid argon (LAr) is studied by means of charged particle tracks collected in various ICARUS liquid argon TPC prototypes. The dependence of the recombination on the particle stopping power has been fitted with a Birks functional dependence. The simulation of the process of electron recombination in Monte Carlo calculations is discussed. A quantitative comparison with previously published data is carried out

  6. 34 CFR 34.10 - Conditions for a paper hearing.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Conditions for a paper hearing. 34.10 Section 34.10 Education Office of the Secretary, Department of Education ADMINISTRATIVE WAGE GARNISHMENT § 34.10... fail to appear for a scheduled oral hearing, as provided in § 34.15; or (d) If we deny a request for...

  7. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    International Nuclear Information System (INIS)

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images

  8. First measurement of the ionization yield of nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, T. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sangiorgio, Samuele [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Foxe, Michael P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Hagmann, Chris [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jovanovic, Igor [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Kazkaz, K. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pereverzev, S. V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rebassoo, Finn O. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sorensen, Peter F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  9. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    International Nuclear Information System (INIS)

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  10. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    Science.gov (United States)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  11. First measurements with ARGONTUBE, a 5 m long drift Liquid Argon TPC

    International Nuclear Information System (INIS)

    The Liquid Argon Time Projection Chamber (LAr TPC) technique is a promising technology for future neutrino detectors. At LHEP of the University of Bern (Switzerland), an R and D program towards large detectors are on-going. The main goal is to show the feasibility of long drift paths over many meters. Therefore, a liquid Argon TPC with 5 m of drift distance was constructed. Many other aspects of the liquid Argon TPC technology are also investigated, such as a new device to generate high voltage in liquid Argon (Greinacher circuit), a recirculation filtering system and the multi-photon ionization of liquid Argon with a UV laser. Two detectors are built: a medium size prototype for specific detector technology studies, and ARGONTUBE, a 5 m long device

  12. Influence of longitudinal argon flow on DC glow discharge at atmospheric pressure

    Science.gov (United States)

    Zhu, Sha; Jiang, Weiman; Tang, Jie; Xu, Yonggang; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2016-05-01

    A one-dimensional self-consistent fluid model was employed to investigate the influence of longitudinal argon flow on the DC glow discharge at atmospheric pressure. It is found that the charges exhibit distinct dynamic behaviors at different argon flow velocities, accompanied by a considerable change in the discharge structure. The positive argon flow allows for the reduction of charge densities in the positive column and negative glow regions, and even leads to the disappearance of negative glow. The negative argon flow gives rise to the enhancement of charge densities in the positive column and negative glow regions. These observations are attributed to the fact that the gas flow convection influences the transport of charges through different manners by comparing the argon flow velocity with the ion drift velocity. The findings are important for improving the chemical activity and work efficiency of the plasma source by controlling the gas flow in practical applications.

  13. Extension of the nuclear mass surface for neutron-rich isotopes of argon through iron

    Science.gov (United States)

    Meisel, Zachary Paul

    Nuclear mass measurement has maintained an important position in the field of nuclear physics for a little over a century. Nuclear masses provide key evidence of the structural transformation of nuclei away from the valley of beta-stability and are essential input for many simulations of extreme astrophysical environments. However, obtaining these masses is often a challenging endeavor due to the low production cross sections and short half-lives of the exotic nuclei which are of particular interest. To this end, the time-of-flight mass measurement technique has been developed to obtain the masses of several nuclei at once to precisions of 1 part in 105 with virtually no half-life limitation. This dissertation contains a description of the experiment, analysis, and results of the second implementation of the time-of-flight nuclear mass measurement technique at the National Superconducting Cyclotron Laboratory. 18 masses were obtained for neutron-rich isotopes of argon through iron, where the masses of 48Ar, 49Ar, 56Sc, 57Sc, 64Cr, 67Mn, and 69Fe were measured for the first time. These newly obtained masses were applied to outstanding problems in nuclear structure and nuclear astrophysics, resulting in significant scientific advances. The measurement results for 48Ar and 49Ar, which were found to have atomic mass excesses of -22.28(31) MeV and -17.8(1.1) MeV, respectively, provide strong evidence for the closed shell nature of neutron number N = 28 in argon. It follows that argon is therefore the lowest even-Z element exhibiting the N = 28 closed shell. The masses of 64Cr, 67 Mn, and 69Fe, which were found to have atomic mass excesses of -33.48(44) MeV, -34.09(62) MeV, and -39.35(60) MeV, respectively, show signs of nuclear deformation occurring around the N = 40 subshell. In addition, we found 64Cr is substantially less bound than predicted by global mass models that are commonly used in nuclear astrophysics simulations, resulting in a significant reduction in the

  14. Electron Neutrino Classification in Liquid Argon Time Projection Chamber Detector

    CERN Document Server

    Płoński, Piotr; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    Neutrinos are one of the least known elementary particles. The detection of neutrinos is an extremely difficult task since they are affected only by weak sub-atomic force or gravity. Therefore large detectors are constructed to reveal neutrino's properties. Among them the Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. The computerized methods for automatic reconstruction and identification of particles are needed to fully exploit the potential of the LAr-TPC technique. Herein, the novel method for electron neutrino classification is presented. The method constructs a feature descriptor from images of observed event. It characterizes the signal distribution propagated from vertex of interest, where the particle interacts with the detector medium. The classifier is learned with a constructed feature descriptor to decide whether the images represent the electron neutrino or cascade produced by photons. The proposed ap...

  15. Image Segmentation in Liquid Argon Time Projection Chamber Detector

    CERN Document Server

    Płoński, Piotr; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    The Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. An efficient and automatic reconstruction procedures are required to exploit potential of this imaging technology. Herein, a novel method for segmentation of images from LAr-TPC detectors is presented. The proposed approach computes a feature descriptor for each pixel in the image, which characterizes amplitude distribution in pixel and its neighbourhood. The supervised classifier is employed to distinguish between pixels representing particle's track and noise. The classifier is trained and evaluated on the hand-labeled dataset. The proposed approach can be a preprocessing step for reconstructing algorithms working directly on detector images.

  16. A Thermodynamic Model for Argon Plasma Kernel Formation

    Directory of Open Access Journals (Sweden)

    James Keck

    2010-11-01

    Full Text Available Plasma kernel formation of argon is studied experimentally and theoretically. The experiments have been performed in a constant volume cylindrical vessel located in a shadowgraph system. The experiments have been done in constant pressure. The energy of plasma is supplied by an ignition system through two electrodes located in the vessel. The experiments have been done with two different spark energies to study the effect of input energy on kernel growth and its properties. A thermodynamic model employing mass and energy balance was developed to predict the experimental data. The agreement between experiments and model prediction is very good. The effect of various parameters such as initial temperature, initial radius of the kernel, and the radiation energy loss have been investigated and it has been concluded that initial condition is very important on formation and expansion of the kernel.

  17. The readout driver (ROD) for the ATLAS liquid argon calorimeters

    Science.gov (United States)

    Efthymiopoulos, Ilias

    2001-04-01

    The Readout Driver (ROD) for the Liquid Argon calorimeter of the ATLAS detector is described. Each ROD module receives triggered data from 256 calorimeter cells via two fiber-optics 1.28 Gbit/s links with a 100 kHz event rate (25 kbit/event). Its principal function is to determine the precise energy and timing of the signal from discrete samples of the waveform, taken each period of the LHC clock (25 ns). In addition, it checks, histograms, and formats the digital data stream. A demonstrator system, consisting of a motherboard and several daughter-board processing units (PUs) was constructed and is currently used for tests in the lab. The design of this prototype board is presented here. The board offers maximum modularity and allows the development and testing of different PU designs based on today's leading integer and floating point DSPs.

  18. Fluorescence Spectrum of SiO in an Argon Matrix

    Science.gov (United States)

    Scullman, R.; Hormes, J.; Schroeder, W.; Wiggenhauser, H.

    1987-04-01

    Fluorescence from SiO matrix isolated in argon has been investigated in the wavelength region 120-300 nm. Fluorescence emission spectra from the valence states, A1Π, E1Σ+ and G1Π, revealed that nearly all radiation comes from one channel at 305 nm, which was analysed as originating from the b3Π-X1Σ+ transition. Contrary to the A1Π and G1Π states, the E1Σ+ state also decays radiatively, although weakly, through two other channels situated in the vicinity of 305 nm. These two channels were believed to originate from the a3Σ+-X1Σ+ and e3Σ--X1Σ+ transitions.

  19. The ATLAS liquid Argon calorimeters read-out system

    CERN Document Server

    Blondel, A; Fayard, L; La Marra, D; Léger, A; Matricon, P; Perrot, G; Poggioli, L; Prast, J; Riu, I; Simion, S

    2004-01-01

    The calorimetry of the ATLAS experiment takes advantage of different detectors based on the liquid Argon (LAr) technology. Signals from the LAr calorimeters are processed by various stages before being delivered to the Data Acquisition system. The calorimeter cell signals are received by the front-end boards, which digitize a predetermined number of samples of the bipolar waveform and sends them to the Read-Out Driver (ROD) boards. The ROD board receives triggered data from 1028 calorimeter cells, and determines the precise energy and timing of the signals by processing the discrete samplings of the pulse. In addition, it formats the digital stream for the following elements of the DAQ chain, and performs monitoring. The architecture and functionality of the ATLAS LAr ROD board are discussed, along with the final design of the Processing Unit boards housing the Digital Signal Processors (DSP). (9 refs).

  20. The readout driver (ROD) for the ATLAS liquid argon calorimeters

    CERN Document Server

    Efthymiopoulos, I

    2001-01-01

    The Readout Driver (ROD) for the Liquid Argon calorimeter of the ATLAS detector is described. Each ROD module receives triggered data from 256 calorimeter cells via two fiber-optics 1.28 Gbit/s links with a 100 kHz event rate (25 kbit/event). Its principal function is to determine the precise energy and timing of the signal from discrete samples of the waveform, taken each period of the LHC clock (25 ns). In addition, it checks, histograms, and formats the digital data stream. A demonstrator system, consisting of a motherboard and several daughter-board processing units (PUs) was constructed and is currently used for tests in the lab. The design of this prototype board is presented here. The board offers maximum modularity and allows the development and testing of different PU designs based on today's leading integer and floating point DSPs. (3 refs).

  1. Photodegradation Mechanisms of Tetraphenyl Butadiene Coatings for Liquid Argon Detectors

    CERN Document Server

    Jones, B J P; Conrad, J M; Pla-Dalmau, A

    2013-01-01

    We report on studies of degradation mechanisms of tetraphenyl butadiene (TPB) coatings of the type used in neutrino and dark matter liquid argon experiments. Using gas chromatography coupled to mass spectrometry we have detected the ultraviolet-blocking impurity benzophenone (BP). We monitored the drop in performance and increase of benzophenone concentration in TPB plates with exposure to ultraviolet (UV) light, and demonstrate the correlation between these two variables. Based on the presence and initially exponential increase in the concentration of benzophenone observed, we propose that TPB degradation is a free radical-mediated photooxidation reaction, which is subsequently confirmed by displaying delayed degradation using a free radical inhibitor. Finally we show that the performance of wavelength-shifting coatings of the type envisioned for the LBNE experiment can be improved by 10-20%, with significantly delayed UV degradation, by using a 20% admixture of 4-tert-Butylcatechol.

  2. Photodegradation mechanisms of tetraphenyl butadiene coatings for liquid argon detectors

    Science.gov (United States)

    Jones, B. J. P.; VanGemert, J. K.; Conrad, J. M.; Pla-Dalmau, A.

    2013-01-01

    We report on studies of degradation mechanisms of tetraphenyl butadiene (TPB) coatings of the type used in neutrino and dark matter liquid argon experiments. Using gas chromatography coupled to mass spectrometry we have detected the ultraviolet-blocking impurity benzophenone. We monitored the drop in performance and increase of benzophenone concentration in TPB plates with exposure to ultraviolet (UV) light, and demonstrate the correlation between these two variables. Based on the presence and initially exponential increase in the concentration of benzophenone observed, we propose that TPB degradation is a free radical-mediated photooxidation reaction, which is subsequently confirmed by displaying delayed degradation using a free radical inhibitor. Finally we show that the performance of wavelength-shifting coatings of the type envisioned for the LBNE experiment can be improved by 10-20%, with significantly delayed UV degradation, by using a 20% admixture of 4-tert-Butylcatechol.

  3. Liquid Argon Cryogenic Detector Calibration by Inelastic Scattering of Neutrons

    CERN Document Server

    Polosatkin, Sergey; Dolgov, Alexander

    2014-01-01

    A method for calibration of cryogenic liquid argon detector response to recoils with certain energy -8.2 keV - is proposed. The method utilizes a process of inelastic scattering of monoenergetic neutrons produced by fusion DD neutron generator. Features of kinematics of inelastic scattering cause sufficient (forty times) increase in count rate of useful events relative to traditional scheme exploited elastic scattering with the same recoil energy and compatible energy resolution. The benefits of the proposed scheme of calibration most well implemented with the use of tagged neutron generator as a neutron source that allows to eliminate background originated from casual coincidence of signals on cryogenic detector and additional detector of scattered neutrons.

  4. Characterization of SF6/Argon Plasmas for Microelectronics Applications; TOPICAL

    International Nuclear Information System (INIS)

    This report documents measurements in inductively driven plasmas containing SF(sub 6)/Argon gas mixtures. The data in this report is presented in a series of appendices with a minimum of interpretation. During the course of this work we investigated: the electron and negative ion density using microwave interferometry and laser photodetachment; the optical emission; plasma species using mass spectrometry, and the ion energy distributions at the surface of the rf biased electrode in several configurations. The goal of this work was to assemble a consistent set of data to understand the important chemical mechanisms in SF(sub 6) based processing of materials and to validate models of the gas and surface processes

  5. Argon luminescence bands between 1600 A and 2900 A

    International Nuclear Information System (INIS)

    It is proposed that the luminescence bands observed in high pressure argon between 1600A and 2900A are due to transitions involving excited states, Ar2+, of the molecular ion, Ar2+: the initial state is a bound state having a 2S-2S0 ion-atom asymptote and the final states two of the first set of molecular ion states which dissociate to the ion-atom pair 2P-1S0. This assumption accounts for most known experimental data on this emission bands. The competition between the radiative transitions and the quenching collisions between the excited-ions and electrons in α particle tracks has been studied experimentally and is discussed in terms of the present hypothesis. A comparison is also made between the neutralisation of excited and ground state molecular ions

  6. Low energy scattering in an argon and methane system

    International Nuclear Information System (INIS)

    The theory for an argon-methane scattering system and several calculations in both the close coupling and coupled states schemes are presented. The problem is reduced to the irreducible A, E, and T representations and calculations in all these symmetries are performed and combined. Methane is treated as a rigid rotor. Two interaction potentials are employed and both contain an angle dependent term. Compound state resonances in this system are studied extensively and characterized. Close coupling and coupled states cross sections are compared in calculations with both interaction potentials and in the A and E representations. Coupled states cross sections in all three representations are presented over a range of energies from 25 to 90 MeV

  7. Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching

    Directory of Open Access Journals (Sweden)

    Jolie M. Nokes

    2016-03-01

    Full Text Available We present a rapid, simple, and scalable approach to achieve superhydrophobic (SH substrates directly in commodity shrink wrap film utilizing Argon (Ar plasma. Ar plasma treatment creates a stiff skin layer on the surface of the shrink film. When the film shrinks, the mismatch in stiffness between the stiff skin layer and bulk shrink film causes the formation of multiscale hierarchical wrinkles with nano-textured features. Scanning electron microscopy (SEM images confirm the presence of these biomimetic structures. Contact angle (CA and contact angle hysteresis (CAH measurements, respectively, defined as values greater than 150° and less than 10°, verified the SH nature of the substrates. Furthermore, we demonstrate the ability to reliably pattern hydrophilic regions onto the SH substrates, allowing precise capture and detection of proteins in urine. Finally, we achieved self-driven microfluidics via patterning contrasting superhydrophilic microchannels on the SH Ar substrates to induce flow for biosensing.

  8. Attosecond Coherent Control of Single and Double Photoionization in Argon.

    Science.gov (United States)

    Hogle, C W; Tong, X M; Martin, L; Murnane, M M; Kapteyn, H C; Ranitovic, P

    2015-10-23

    Ultrafast high harmonic beams provide new opportunities for coherently controlling excitation and ionization processes in atoms, molecules, and materials on attosecond time scales by employing multiphoton two-pathway electron-wave-packet quantum interferences. Here we use spectrally tailored and frequency tuned vacuum and extreme ultraviolet harmonic combs, together with two phase-locked infrared laser fields, to show how the total single and double photoionization yields of argon can be coherently modulated by controlling the relative phases of both optical and electronic-wave-packet quantum interferences. This Letter is the first to apply quantum control techniques to double photoionization, which is a fundamental process where a single, high-energy photon ionizes two electrons simultaneously from an atom. PMID:26551112

  9. Dynamic resonances and tunnelling in the multiphoton ionization of argon

    International Nuclear Information System (INIS)

    We present results of wavepacket simulations for multiphoton ionization in argon. A single active electron model is applied to estimate the single-electron ionization rates and photoelectron energy distributions for λ = 390 nm light with intensities up to I = 2 x 1014 W cm-2. The multiphoton ionization rates are compared with R-matrix Floquet calculations and found to be in very good agreement. The photoelectron energy distribution is used to study the nature of ionization at the higher intensities. Our results are consistent with recent calculations and experiments which show the imprint of the tunnelling process in the multiphoton regime. For few-cycle intense pulses, we find that the strong modulation of intensity and increased bandwidth leads to dynamic mixing of the 3d and 5s resonances.

  10. The liquid argon TPC for the ICARUS experiment

    CERN Document Server

    Arneodo, F

    1997-01-01

    The ICARUS project aims at the realisation of a large liquid argon TPC to be run at the Underground Laboratories of Gran Sasso in Italy. An intense R&D; activity has put on firm grounds this new detector technology and experimentally confirmed its feasibility on a few ton scale. Based on these solid achievements, the collaboration is now confident of being able to build and safely operate a multi-kton detector. The reseach program of the experiment involves the systematic study of a wide spectrum of physical phenomena covering many orders of magnitude in the energy deposited in the detector: from the few MeV of solar neutrino interactions, to the about one GeV of the proton decay and atmospheric neutrinos, up to the higher energies of neutrinos from accelerators.

  11. Large area liquid argon detectors for interrogation systems

    International Nuclear Information System (INIS)

    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  12. Response Uniformity of the ATLAS Liquid Argon Electromagnetic Calorimeter

    CERN Document Server

    Aharrouche, M; Di Ciaccio, L; El Kacimi, M; Gaumer, O; Gouanère, M; Goujdami, D; Lafaye, R; Laplace, S; Le Maner, C; Neukermans, L; Perrodo, P; Poggioli, L; Prieur, D; Przysiezniak, H; Sauvage, G; Wingerter-Seez, I; Zitoun, R; Lanni, F; Lü, L; Ma, H; Rajagopalan, S; Takai, H; Belymam, A; Benchekroun, D; Hakimi, M; Hoummada, A; Gao, Y; Stroynowsk, R; Aleksa, M; Carli, T; Fassnacht, P; Gianotti, F; Hervás, L; Lampl, W; Collot, J; Hostachy, J Y; Ledroit-Guillon, F; Malek, F; Martin, P; Viret, S; Leltchouk, M; Parsons, J A; Simion, S; Barreiro, F; Del Peso, J; Labarga, L; Oliver, C; Rodier, S; Barrillon, P; Benchouk, C; Djama, F; Hubaut, F; Monnier, E; Pralavorio, P; Sauvage, D; Serfon, C; Tisserant, S; Tóth, J; Banfi, D; Carminati, L; Cavalli, D; Costa, G; Delmastro, M; Fanti, M; Mandell, L; Mazzanti, M; Tartarelli, F; Kotov, K; Maslennikov, A; Pospelov, G; Tikhonov, Yu; Bourdarios, C; Fayard, L; Fournier, D; Iconomidou-Fayard, L; Kado, M; Parrour, G; Puzo, P; Rousseau, D; Sacco, R; Serin, L; Unal, G; Zerwas, D; Dekhissi, B; Derkaoui, J; EL Kharrim, A; Maaroufi, F; Cleland, W; Lacour, D; Laforge, B; Nikolic-Audit, I; Schwemling, Ph; Ghazlane, H; Cherkaoui El Moursli, R; Idrissi Fakhr-Eddine, A; Boonekamp, M; Kerschen, N; Mansoulié, B; Meyer, P; Schwindlingy, J; Lund-Jensen, B

    2007-01-01

    The construction of the ATLAS electromagnetic liquid argon calorimeter modules is completed and all the modules are assembled and inserted in the cryostats. During the production period four barrel and three endcap modules were exposed to test beams in order to assess their performance, ascertain the production quality and reproducibility, and to scrutinize the complete energy reconstruction chain from the readout and calibration electronics to the signal and energy reconstruction. It was also possible to check the full Monte Carlo simulation of the calorimeter. The analysis of the uniformity, resolution and extraction of constant term is presented. Typical non-uniformities of 0.5% and typical global constant terms of 0.6% are measured for the barrel and end-cap modules.

  13. Kinetic modeling of the Townsend breakdown in argon

    Energy Technology Data Exchange (ETDEWEB)

    Macheret, S. O.; Shneider, M. N. [Department of Mechanical and Aerospace Engineering, Princeton University, D-414 Engineering Quadrangle, Princeton, New Jersey 08544 (United States)

    2013-10-15

    Kinetic modeling of the Townsend breakdown in argon was performed in the “forward-back” approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  14. Pulsed electron beam propagation in argon and nitrogen gas mixture

    International Nuclear Information System (INIS)

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N2). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively

  15. Low-energy ion implantation: Large mass fractionation of argon

    Science.gov (United States)

    Ponganis, K. V.; Graf, TH.; Marti, K.

    1993-01-01

    The isotropic signatures of noble gases in the atmospheres of the Earth and other planets are considerably evolved when compared to signatures observed in the solar wind. The mechanisms driving the evolution of planetary volatiles from original compositions in the solar accretion disk are currently poorly understood. Modeling of noble-gas compositional histories requires knowledge of fractionating processes that may have operated through the evolutionary stages. Since these gases are chemically inert, information on noble-gas fractionation processes can be used as probes. The importance of understanding these processes extends well beyond 'noble-gas planetology.' Trapped argon acquired by low-energy implantation (approximately less than 100 eV) into solids is strongly mass fractionated (approximately greater than or equal to 3 percent/amu). This has potential implications for the origin and evolution of terrestrial planet atmospheres.

  16. Primary argon laser trabeculoplasty in the treatment of glaucoma

    International Nuclear Information System (INIS)

    During the last ten years, argon laser trabeculoplasty has been shown to be a very useful tool in the treatment of glaucoma when medical therapy has failed. In the present study laser was used as primary therapy in 27 patients with newly detected glaucoma. Pretreatment with topical timolol gave an immediate pressure drop in all eyes, and the dreaded actue pressure rise after laser treatment was avoided. Upon follow-up examination after two years, more than half the patients had an intraocular pressure below 21 mm Hg without additional therapy. Primary laser trabeculoplasty was found to be a safe and time-saving procedure. Expenses and complications associated with medical therapy are reduced. Many patients may avoid lifelong daily instillation of eye drops. 11 refs., 2 tabs

  17. Development of membrane cryostats for large liquid argon neutrino detectors

    CERN Document Server

    Montanari, D; Gendotti, A; Geynisman, M; Hentschel, S; Loew, T; Mladenov, D; Montanari, C; Murphy, S; Nessi, M; Norris, B; Noto, F; Rubbia, A; Sharma, R; Smargianaki, D; Stewart, J; Vignoli, C; Wilson, P; Wu, S

    2015-01-01

    A new collaboration is being formed to develop a multi-kiloton Long-Baseline neutrino experiment that will be located at the Surf Underground Research Facility (SURF) in Lead, SD. In the present design, the detector will be located inside cryostats filled with 68,400 ton of ultrapure liquid argon (less than 100 parts per trillion of oxygen equivalent contamination). To qualify the membrane technology for future very large-scale and underground implementations, a strong prototyping effort is ongoing: several smaller detectors of growing size with associated cryostats and cryogenic systems will be designed and built at Fermilab and CERN. They will take physics data and test different detector elements, filtration systems, design options and installation procedures. In addition, a 35 ton prototype is already operational at Fermilab and will take data with single-phase detector in early 2016. After the prototyping phase, the multi-kton detector will be constructed. After commissioning, it will detect and study ne...

  18. Electron-ion recombination study in argon at atmospheric pressure

    International Nuclear Information System (INIS)

    This study deals with a wall-stabilized arc burning in argon at atmospheric pressure. A transient mode is obtained using a fast thyristor connected to the electrodes, which short-circuits the discharge. By means of two wavelengths laser interferometry and spectroscopy measurements we have determined the temporal changes of the electron density, ground state atom density and excited atom density. We have shown that, when the electric field is suppressed, the electron temperature rapidly decreases to the gas temperature before changing electron and atom densities. This phenomenon is applied to determine the gas temperature and to evaluate the role played by ionization in electron density balance. The coefficients of ambipolar diffusion, ionization and recombination and an apparent recombination coefficient are determined versus electron temperature and compared with theoretical values

  19. Grid pattern Argon Laser photocoagulation for diabetic diffuse macular edema

    Directory of Open Access Journals (Sweden)

    Karkhane R

    1998-05-01

    Full Text Available Purpose: to determine the effect of Grid pattern laser photocoagulation on diabetic diffuse macular edema with assessment of visual outcome. Patients & Methods: The author reviewed the medical records of 84 eyes of 62 patients with diabetic diffuse macular edema treated with Grid pattern green Argon laser photocoagulation in Farabi Eye Hospital between the years 1992-1995, the follow-up period was 16-48 months (average 24.55±6.42, median 28 mounths. Results: Visual acuity was improved in 11.9%; unchanged in 65.4% and worsened in 22.7% of eyes. Conclusion: In assessing long-term visual outcome, Grid laser photocoagulation is an effective modality in maintaining or improving visual acuity.

  20. Photodegradation mechanisms of tetraphenyl butadiene coatings for liquid argon detectors

    International Nuclear Information System (INIS)

    We report on studies of degradation mechanisms of tetraphenyl butadiene (TPB) coatings of the type used in neutrino and dark matter liquid argon experiments. Using gas chromatography coupled to mass spectrometry we have detected the ultraviolet-blocking impurity benzophenone. We monitored the drop in performance and increase of benzophenone concentration in TPB plates with exposure to ultraviolet (UV) light, and demonstrate the correlation between these two variables. Based on the presence and initially exponential increase in the concentration of benzophenone observed, we propose that TPB degradation is a free radical-mediated photooxidation reaction, which is subsequently confirmed by displaying delayed degradation using a free radical inhibitor. Finally we show that the performance of wavelength-shifting coatings of the type envisioned for the LBNE experiment can be improved by 10-20%, with significantly delayed UV degradation, by using a 20% admixture of 4-tert-Butylcatechol.

  1. Atmospheric dispersion of argon-41 from anuclear research reactor: measurement and modeling of plume geometry and gamma radiation field

    DEFF Research Database (Denmark)

    Lauritzen, Bent; Astrup, Poul; Drews, Martin; Jørgensen, Hans; Mikkelsen, Torben; Thykier-Nielsen, Søren; Aage, Helle Karina; Korsbech, Uffe C C; Bargholz, Kim; Rojas-Palma, Carlos; Van Ammel, Raf

    2003-01-01

    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine release of argon-41 from the BR1 research reactor in Mol, Belgium. Simultaneous measurements of plume geometry and radiation fields for argon-41 decay were performed as well as measurements of the argon...

  2. New Potassium-Argon Ages for Georgiaites and the Upper Eocene Dry Branch Formation (Twiggs Clay Member): Inferences About Tektite Stratigraphic Occurrence

    Science.gov (United States)

    Albin, E. F.; Wampler, J. M.

    1996-03-01

    The tektites of east-central Georgia, called "georgiaites," are a subset of the larger North American tektite strewn field. Previous studies have reported the potassium-argon age of Georgia tektites at 32.0 Ma, 33.7 Ma, and 34.0 Ma, respectively. Glass et al., using the 40Ar-39Ar method, obtained a 34.5 Ma age for a single Muong Nong type georgiaite. Corrected fission track ages given by Storzer et al. have a range between 1.0 and 35.8 Ma with the lower dates accounted for by post-depositional thermal alteration. However, isotopic dating of North American microtektites from Barbados suggests that the strewn field was produced at 35.4 (+/- 0.6) Ma. In addition to the lack of consistently reliable age data for Georgia tektites, their stratigraphic occurrence has yet to be satisfactorily resolved. Although the North American strewn field was deposited in the late Eocene, georgiaites have been found only on formations ranging in age from Oligocene to Pleistocene so are thought to have been transported from their original site of deposition. In this investigation we present new potassium-argon ages for the Georgia tektites and an upper Eocene formation in an effort to resolve tektite stratigraphic location in coastal main deposits of east-central Georgia.

  3. Determination of the number densities of argon metastables in argon-hydrogen plasma by absorption and self-absorption methods

    Energy Technology Data Exchange (ETDEWEB)

    Gavare, Z [Institute of Atomic Physics and Spectroscopy, University of Latvia, Skunu str. 4, Riga LV -1050 (Latvia); Goett, D [Institute for Low Temperature Plasma Physics, 17489 Greifswald (Germany); Pipa, A V [Institute for Low Temperature Plasma Physics, 17489 Greifswald (Germany); Roepcke, J [Institute for Low Temperature Plasma Physics, 17489 Greifswald (Germany); Skudra, A [Institute of Atomic Physics and Spectroscopy, University of Latvia, Skunu str. 4, Riga LV -1050 (Latvia)

    2006-08-15

    The number densities of Ar 3s{sup 2}3p{sup 5}4s levels have been measured by means of two methods: a self-absorption method with a mirror behind the discharge vessel and an absorption method with a high-frequency electrodeless discharge lamp. Concentrations ranging from 6 x 10{sup 7}-4 x 10{sup 9} cm{sup -3} were obtained for the Ar 3s{sup 2}3p{sup 5}4s levels, depending on the argon content (10-100% Ar) in Ar/H{sub 2} microwave plasma. The populations of various sublevels of measured resonant and metastable states coincide within the experimental errors. It was observed that values from measurements of both methods are in good agreement.

  4. A dual type gridded ionization chamber as purity monitor of liquid argon

    International Nuclear Information System (INIS)

    The liquid argon time projection chamber (LATPC) is currently developed for detecting solar neutrons or proton decays. A dual type gripped ionization chamber with different drift distances of liberated electrons is constructed to measure the purity of liquid argon. A purification system of gaseous argon for LATPC with a drift space of about 150 cm is also constructed. The performances of both the dual type gripped ionization chamber and the purifier are tested seeking to develop a large scale LATPC. It is demonstrated that the attenuation length of electrons and also the impurity level in liquid argon can be well determined in the dual type gripped ionization chamber. In the case of the purifier, there still remains unknown low-level impurities in purified liquid argon. The results are compared with UCI data which were obtained with liquid argon mixed with water vapor. the same tendency is found in the attenuation length of their data as in the present results. This seems to suggest the dominant impurity remaining in the purifier is still water. The present apparatus was previously tested with liquid argon purified by other purification system of Ti-Ba getters. The attenuation length obtained by those tests was almost 100 cm. (N.K.)

  5. Argon Kα measurement on DIII endash D by Ross filters technique (abstract)

    International Nuclear Information System (INIS)

    Techniques to reduce the heat flux to the divertor plates in tokamak power plants and the consequent erosion of, and subsequent damage to the divertor target plates include the injection of impurities such as argon, that can dissipate the energy (through radiative or collisional processes) before it reaches the target plates. An important issue with this type of scheme is poisoning of the plasma core by the impurities introduced in the divertor region. Subsequently, there is a desire to measure the profiles of the injected impurities in the core. X-ray Ross filters with an effective narrow band pass centered on the argon Kα line at 3.2 keV, have been installed on two of the existing x-ray arrays on DIII endash D in order to help determine the argon concentration profiles. Emissivity profiles of the Kα lines and the emissivity profiles for the argon enhanced continuum can be inferred from the inverted filtered x-ray brightness signals if Te, ne, and Ar18+ profiles are known. The MIST code is used to couple the filtered x-ray signals to the time dependent measurements of Te and ne. Further, the Ar16+ profiles measured by charge transfer spectroscopy, are used as a constraint on the MIST code runs to calculate Ar18+ profiles and unfold the argon emissivity profiles. A discussion of the Ross filters, the DIII endash D argon data, and the data analysis scheme for inferring argon emissivity profiles will be discussed. Estimates of the total argon concentration in the core determined from this technique in DIII endash D argon puff experiments will be presented. copyright 1999 American Institute of Physics

  6. Radiation Tolerant Electronics and Digital Processing for the Phase-I Trigger Readout Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Milic, Adriana; The ATLAS collaboration

    2015-01-01

    The high luminosities of $\\mathcal{L} > 10^{34} \\mathrm{cm}^{-2} \\mathrm{s}^{-1}$at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The Front End (FE) electronic readout of the ATLAS LAr calorimeter located on the detector itself consists of a combined analog and digital processing system. The FE electronics were qualified for radiation levels corresponding to 10 years of LHC operations. The high luminosity running of the LHC (HL-LHC), with instantaneous luminosities of $5 \\times 10^{34} \\mathrm{cm}^ {-2} \\mathrm{s}^{-1}$ and an integrated luminosity of $3000 \\ \\mathrm{fb}^{-1}$ will exceed these d...

  7. Development of the Trigger Readout System for Phase-I Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Xu, Hao; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and at instantaneous luminosities up to 10^34 cm^-2s^-1. An LHC upgrade is planned to enhance the luminosities to 2-3 x 10^34 cm^-2 s^-1 and to deliver an integrated luminosity of about 300 fb^-1 during Run 3 from 2019 through 2021. In order to improve the identification performance for electrons, photons, taus, jets, missing energy at high background rejection rates, an improved spatial granularity of the trigger primitives has been proposed. Therefore, a new trigger readout system is being designed to digitize and process the signals with higher spatial granularity. A demonstrator system has been developed and installed on the ATLAS detector to evaluate the technical and performance aspects. Analog signal parameters including noise and cross-talk have been analyzed. The performance of the new readout system is...

  8. Design Principles and Operational Results of the Cryogenic System for the ATLAS Liquid Argon Calorimeter

    CERN Document Server

    Fabre, C; Chalifour, M; Gonidec, G; Passardi, Giorgio; Petit, P; Pezzetti, M; Wicek, F

    2009-01-01

    The ATLAS liquid argon calorimeter housed in three independent cryostats containing a total argon volume of about 78 m3 has been installed in the underground cavern. The three detectors have been cooled down following stringent temperature gradient limits and have been filled with liquid argon. The cryostats are now in a stable condition for periods going up to almost two years. The temperature uniformity within each of the three detector volumes is found to be within 70 mK rms, while the temperature stability stays below 5 mK rms.

  9. Changes in a surface of polycrystalline aluminum upon bombardment with argon ions

    Science.gov (United States)

    Ashkhotov, O. G.; Ashkhotova, I. B.; Bliev, A. P.; Magkoev, T. T.; Krymshokalova, D. A.

    2014-10-01

    The interaction between argon ions and a natural oxide layer of polycrystalline aluminum is studied via Auger electron (AE) and electron energy loss (EEL) spectroscopy. It is found that bombardment with argon ions whose energy is lower than the Al2O3 sputtering threshold results in the accumulation of bombarding ions in interstitial surface voids, thus forming a supersaturated solid solution of target atoms and bombarding ions of argon and nitrogen entrapped by the ion beam from the residual gas of the working chamber of the spectrometer.

  10. Effect of secondary emission on the afterglow of argon with negatively charged dust particles

    International Nuclear Information System (INIS)

    A theoretical model for an argon/dusty plasma afterglow in presence of nano-sized dust particles with large density is developed. According to the model, in the plasma afterglow the electrons are generated in metastable collisions and in the secondary emission by collisions of ions with electrodes. By using the model and experimental time-dependencies for metastable density and electrode bias, the time-dependencies for electron density in argon/dusty plasma afterglow are calculated. The effect of secondary emission on electron generation in argon/dusty plasma afterglow is analyzed.

  11. The production of regular pyramids on argon ion bombarded surfaces of copper crystals

    International Nuclear Information System (INIS)

    Argon ion bombardment of poly-crystalline copper is shown to produce pyramid covered surfaces on grains having orientation in particular high index direction. Single crystals cut in similar direction also show pyramid covered surfaces when bombarded with 40 keV argon ions. Evidence is presented to show that the dominant parameter contributing to pyramid production is crystallographic, rather than impurity-induced as proposed in earlier works. The pyramids are of such regular size, shape and spacing that light is selectively absorbed and for 40 keV argon ion bombardment, only light of red colour is reflected from an initially plane surface. (Auth.)

  12. Cryopumping hydrogen isotope mixtures in MFTF-B with and without argon adsorbent

    International Nuclear Information System (INIS)

    Mixtures of hydrogen isotopes, primarily deuterium (D2), protium-deuterium (HD), and protium (H2) must be pumped by the vacuum system in the Mirror Fusion Test Facility at Lawrence Livermore National Laboratory. In this study, we used argon as an adsorbent for cryopumping these isotopes at 4.2 K and found that deuterium will displace already adsorbed protium. Thus, when we pump mixtures of the two, sufficient argon must be supplied to adsorb both species. We also found that without argon, deuterium will cryptrap protium in accord with Raoult's law

  13. 34 CFR 34.13 - Conduct of a hearing.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Conduct of a hearing. 34.13 Section 34.13 Education Office of the Secretary, Department of Education ADMINISTRATIVE WAGE GARNISHMENT § 34.13 Conduct of a...) The hearing official conducts any hearing as an informal proceeding. (2) A witness in an oral...

  14. 34 CFR 3.4 - Use of the seal.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Use of the seal. 3.4 Section 3.4 Education Office of the Secretary, Department of Education OFFICIAL SEAL § 3.4 Use of the seal. (a) Use by any person or...) Requests by any person or organization outside of the Department for permission to use the Seal must...

  15. Development of a Laser Probe for Argon Isotope Studies.

    Science.gov (United States)

    McConville, Paul

    Available from UMI in association with The British Library. The first objective of this study was to develop a laser outgassing facility for argon isotope studies. Apart from the laser and construction of the laser sample port, existing vacuum and mass spectrometer systems were used. Laser performance and optimum operating conditions were investigated. The second objective was test and evaluate the laser extraction technique by studies of simple geological samples. Previous laser ^{40} Ar-^{39}Ar dating studies by other workers had not systematically established the basis or characteristics of the method. Results from laser and complementary stepped heating studies of the ^{40}Ar-^ {39}Ar dating standard hornblende, hb3gr; a phlogopite sample from the Palabora (Phalaborwa) Complex; and biotites in a thin section of the Hamlet Bjerg granite from East Greenland, verified that: (1) Laser extraction reproduced within experimental error the stepped heating ^{40}Ar-^ {39}Ar and K-Ar ages of simple samples. (2) The precision of the technique i.e. the amount of sample required to give reliable ages, was limited in the present experiments largely by the level of the blanks and backgrounds to 10-100 ug samples. (3) Sample outgassing appeared to be limited to the order of 10 um outside the physical size of the laser pit, consistent with other estimates of the spatial definition in the literature. This could be understood by thermal diffusion and the length of the laser pulse. (4) The efficiency of the laser pulse in melting and outgassing mineral samples was shown to be dependent on silicate latent heats and mineral absorption at the laser wavelength. In addition, the ^{40} Ar-^{39}Ar age of the geologically significant Palabora Complex was determined as (2053 +/- 5) Ma. Excess argon led to a discrepancy between the laser and stepped heating ages of biotite and muscovite, (405 +/- 5) Ma, and laser ages of feldspars (510 +/- 20) Ma in the Hamlet Bjerg granite. This illustrated

  16. Dynamic range compression in a liquid argon calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, W.E. [Univ. of Pittsburgh, PA (United States); Lissauer, D.; Radeka, V.; Rescia, S.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Wingerter-Seez, I. [LAPP, Annecy-le-Vieux (France)

    1996-12-31

    The anticipated range of particle energies at the LHC, coupled with the need for precision, low noise calorimetry makes severe demands on the dynamic range of the calorimeter readout. A common approach to this problem is to use shapers with two or more gain scales. In this paper, the authors describe their experience with a new approach in which a preamplifier with dynamic gain compression is used. An unavoidable consequence of dynamic gain adjustment is that the peaking time of the shaper output signal becomes amplitude dependent. The authors have carried out a test of such a readout system in the RD3 calorimeter, a liquid argon device with accordion geometry. The calibration system is used to determine both the gain of the individual channels as well as to map the shape of the waveform as a function of signal amplitude. A new procedure for waveform analysis, in which the fitted parameters describe the impulse response of the system, permits a straightforward translation of the calibration waveform to the waveform generated by a particle crossing the ionization gap. They find that the linearity and resolution of the calorimeter is equivalent to that obtained with linear preamplifiers, up to an energy of 200 GeV.

  17. Interaction of an argon plasma jet with a silicon wafer

    Science.gov (United States)

    Engelhardt, Max; Pothiraja, Ramasamy; Kartaschew, Konstantin; Bibinov, Nikita; Havenith, Martina; Awakowicz, Peter

    2016-04-01

    A filamentary discharge is ignited in an argon plasma jet under atmospheric pressure conditions. The gas discharge is characterized with voltage-current measurements, optical emission spectroscopy and an ICCD-camera with a high temporal resolution down to 10 ns. In the effluent of the plasma jet, filaments come into contact with the surface of a silicon wafer and modify it, namely etching traces are produced and microcrystals are deposited. These traces are studied with optical and electron microscopes. The material of the deposited microcrystals and the surface modifications of the silicon wafer are analyzed with Raman microspectroscopy. Amorphous silicon is found within the etching traces. The largest part of the deposited microcrystals are composed of nitratine (NaNO3) and some of them are calcite (CaCO3). Analyzing the possible reasons for the silicon wafer modifications we come to the conclusion that plasmoids, which are produced near the substrate surface by interaction with ionization waves, are a plausible explanation for the observed surface modifications of the silicon wafer.

  18. State-selective radiative recombination cross sections of argon ions

    International Nuclear Information System (INIS)

    The n-, (n,l)- and fine-structure level state-selective radiative recombinations (RR) cross sections of argon ions Ar18+,Ar13+,Ar7+ and Ar+ are obtained with the semi-classical Kramer formula, the relativistic self-consistent field (RSCF) method and the relativistic configuration interaction (RCI) method. It is found that for the highly charged ions with few electrons, the cross sections calculated with these three methods are in good agreement with each other. But as the number of electrons increases, the Kramer formula deviates from the RSCF and RCI results. For instance, when the energy of the incident electron is larger than 100 eV, the n-state selective cross sections of Ar7+ calculated from the Kramer formula are underestimated for more than 50%. The RSCF results are in general agreement with the RCI results. However, for the low charged ions, a clear distinction appears due to the strong configuration interaction, especially near the Cooper minimum. The n-resolved (n≤10) and total Maxwellian averaged rate coefficients are calculated, and the analytic fitting parameters are also provided. -- Highlights: ► The RR cross sections of Ar18+, Ar13+, Ar7+ and Ar+ are obtained. ► The Kramer formula, the relativistic self-consistent field and RCI methods are used. ► Results from three methods are compared with each other.

  19. Uranium (III) precipitation in molten chloride by wet argon sparging

    Science.gov (United States)

    Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis

    2016-06-01

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl2 (30-70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10-4.0, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl3 precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO2 powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation.

  20. Scintillation Light from Cosmic-Ray Muons in Liquid Argon

    CERN Document Server

    Whittington, Denver

    2014-01-01

    This paper reports the results of the first experiment to directly measure the properties of the scintillation light generated by minimum ionizing cosmic-ray muons in liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches, as well as for particle identification. The experiment was carried out at the TallBo facility at Fermilab using prototype light guides and electronics developed for the Long-Baseline Neutrino Experiment. Analysis of the time-resolved structure of the scintillation light from cosmic-ray muons gives $\\langle \\tau_{\\text{T}}\\rangle = 1.43 \\pm 0.04~\\text{(stat.)} \\pm 0.007~\\text{(sys.)}~\\mu$s for the triplet light decay time constant. The ratio of singlet to triplet light measured using surface-coated light guides is $R = 0.39 \\pm 0.01~\\text{(stat.)} \\pm 0.008~\\text{(sys.)}$. There is some evidence that this value is not consistent with $R$ for minimum ionizing electrons. However, the value for $...

  1. Single nucleon heavy ion transfer reactions on argon isotopes

    International Nuclear Information System (INIS)

    Single nucleon transfer reactions, both pickup and stripping, on all three stable isotopes of argon - 36Ar, 38Ar and 40Ar - have been studied using a 11B projectile at a laboratory energy of 116 MeV. Using a gas target, the forward angle reaction cross-sections were measured with a telescope of silicon surface barrier detectors. The shape of the differential cross-section is discussed in terms of a semiclassical reaction analysis. An exact finite range DWBA code has been used to extract the spectroscopic factors of the strongly populated states and the spectroscopic factors are compared with those obtained using light ion transfer reactions. The excitation energies and spectroscopic factors of levels in nuclei in the mass range A=35-41 are modelled using various effective shell model interactions. Both a complete sd shell space and a space incorporating parts of the sd and fp shells have been used. The results of a phenomenological modified surface delta interaction are compared with those of interactions based on the realistic interaction matrix elements of Kuo. (author)

  2. Methane from benzene in argon dielectric barrier discharge

    International Nuclear Information System (INIS)

    Highlights: ► Efficient on-line conversion of benzene to methane at room temperature. ► Absence of other H-atom donor suggests new type of chemistry. ► For parent loss > 90%, methane yield was ∼40% of limit due to H-atom availability. ► Surface moisture contributed ·OH radical for trace phenolic products’ formation. ► This method may emerge as an exploitable tactic for pollutants’ usable alterations. -- Abstract: A first-time account of direct, on-line, instantaneous and efficient chemical conversion of gas phase benzene to methane in argon Dielectric Barrier Discharge (DBD) is presented. In the absence of another overt hydrogen-donating source, potency of analogous parents toward methane generation is found to follow the order: benzene > toluene > p-xylene. Simultaneous production of trace amounts of phenolic surface deposits suggest (a) prompt decomposition of the parent molecules, including a large fraction yielding atomic transients (H-atom), (b) continuous and appropriate recombination of such parts, and (c) trace moisture in parent contributing ·OH radicals and additional H-atoms, which suitably react with the unreacted fraction of the parent, and also other intermediates. Results highlight Ar DBD to be a simple and exploitable technology for transforming undesirable hazardous aromatics to usable/useful low molecular weight open-chain products following the principles of green chemistry and engineering

  3. Accurate calculations of bound rovibrational states for argon trimer

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, Drew; Poirier, Bill [Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061 (United States)

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  4. Coherent set of electron cross sections for argon

    Science.gov (United States)

    Alves, L. L.; Ferreira, C. M.

    2011-10-01

    This paper presents a coherent set of electron impact cross sections for argon (elastic momentum-transfer, inelastic for the excitation of 37 levels Ar(4s,4p,3d,5p,4d,6s) and ionization), which was recently uploaded onto the LXcat IST-Lisbon database. The cross section set was validated by comparing calculated swarm parameters (electron mobility and characteristic energy) and rate coefficients (Townsend ionization coefficient and direct + cascade excitation coefficients to the 4s and 4p states) with available experimental data, for E / N = 10-4 - 100 Td and Tg = 300, 77 K. The validation procedure involves the solution to the homogeneous two-term electron Boltzmann equation, resorting to three different solvers: (i) IST-Lisbon's (ii) BOLSIG+ (v1.2) with LXcat; (iii) BOLSIG+ (v1.23). The results obtained with these solvers are compared to evidence the importance of certain numerical features related with both the energy-grid (number of points, grid-type and maximum energy value) and the interpolation scheme adopted for the cross sections. In particular, the latter can cause a 6% variation on the values of swarm parameters at intermediate E/Ns.

  5. An update of argon inelastic cross sections for plasma discharges

    International Nuclear Information System (INIS)

    This paper proposes a coherent set of electron impact inelastic cross sections for argon, based on recent experimental measurements. The updated set is validated by comparing calculated swarm parameters and rate coefficients (obtained by solving the two-term approximation electron Boltzmann equation) with available experimental data. This validation procedure is usually adopted when the cross section set is to be later used in plasma discharge modelling. Simulation results for the electron drift velocity and characteristic energy are in very good agreement with experimental values of these quantities. Calculations, using cross section sets proposed by different authors, of the total (direct + cascade) excitation coefficients to the 4s and 4p states, and of the Townsend ionization coefficient, show that the present set ensures the best overall agreement with measured values. The agreement is particularly good for the excitation coefficient to metastable 4s'[1/2]0 and the Townsend ionization coefficient, which are probably the most relevant electron macroscopic coefficients in the modelling of discharge plasmas

  6. Accurate calculations of bound rovibrational states for argon trimer

    International Nuclear Information System (INIS)

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar3), using the ScalIT suite of parallel codes. The Ar3 rovibrational energy levels are computed to a very high level of accuracy (10−3 cm−1 or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar3 are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar3 is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar3 may be found in the current literature—and only for the lowest-lying rotational excitations

  7. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles

    International Nuclear Information System (INIS)

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large ArN and (H2O)N, N¯≈ 102–103, clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX)n clusters on ArN upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H2O)N. The photodissociation on ArN leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on ArN are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H2O)N also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H3O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H3O. The corresponding Cl-cofragment from the photoexcitation of the HCl·(H2O)N is trapped in the ice nanoparticle

  8. Electronics calibration board for the ATLAS liquid argon calorimeters

    International Nuclear Information System (INIS)

    To calibrate the energy response of the ATLAS liquid argon calorimeter, an electronics calibration board has been designed; it delivers a signal whose shape is close to the calorimeter ionization current signal with amplitude up to 100 mA in 50 Ω with 16 bit dynamic range. The amplitude of this signal is designed to be uniform over all calorimeters channels, stable in time and with an integral linearity much better that the electronics readout. The various R and D phases and most of the difficulties met are discussed and illustrated by many measurements. The custom design circuits are described and the layout of the ATLAS calibration board presented. The procedure used to qualify the boards is explained and the performance obtained illustrated: a dynamic range up to 3 TeV in three energy scales with an integral linearity better than 0.1% in each of them, a response uniformity better than 0.2% and a stability better than 0.1%. The performance of the board is well within the ATLAS requirements. Finally, in situ measurements done on the ATLAS calorimeter are shown to validate these performances

  9. Final report on demonstration of movable Argon-37

    International Nuclear Information System (INIS)

    A prototype of Movable Argon-37 Rapid Detection System for the mission of on-site inspection under the CTBT was developed. In order to demonstrate the performance and its feasibility for OSI, the demonstration of MARDS-I was held. In the period of the demonstration, the specification and technical capability of MARDS-I was demonstrated by four experiments: experiment on vehicle transportation in rugged countryside; experiment on rapid separation, purification and measurement of simulating samples; experiment on rapid separation, purification and measurement of underground samples; the effectiveness of sampling process. these experimental results are certified scientifically by gas chromatograph analysis in laboratory. the results show that the MDC of the system is less than 1 Bq/m3 that meet the practical requirements of OSI in field for detecting 1 kt underground nuclear explosion during a period of several months after the explosion. MARDS-I is movable, rapid and in small size. Otherwise, there is still room for further improvement of the system, e.g. reliability enhancement, reduction of the MDC, upgrading automation of system. (authors)

  10. Summary of the liquid argon calorimeter hermeticity working group

    International Nuclear Information System (INIS)

    The cryogenic nature, and hence the need to provide thermal insulation, of liquid argon calorimeters is known to pose serious problems for precise measurements of missing transverse energy, a key signature for new physics at the SSC. This problem is exacerbated by the central detector requirement of access to both sides of the detector. The original DiGiacomo et al. design sought to satisfy this access requirement and still minimize the effect of electromagnetic showers by protruding the end cap calorimeter into the central volume. This design was compared with two design variations by using a parameterization of hadronic and electromagnetic showers assuming no transverse width. These authors concluded that a flat head End Cap design was preferable to the original design for both electromagnetic and hadronic showers. The practical design advantages of this method was further demonstrated by the conclusions that instrumented calorimeter volumes which are not thick enough to absorb most of an electromagnetic shower before a dead volume enhance the resolution degradation. This means, for instance, that calorimeter modules should have their large eta edge on the front face beveled to decrease the effect of the structural washers separating the calorimeter module bays

  11. Argon defect complexes in low energy Ar irradiated molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    van Veen, A.; Buters, W.T.M.; van der Kolk, G.J.; Caspers, L.M. (Interuniversitair Reactor Instituut, Delft (Netherlands)); Armstrong, T.R. (Victoria Univ., Wellington (New Zealand). Dept. of Physics)

    1982-03-15

    Thermal desorption spectrometry has been used to study the defects created in Mo irradiated along the <110> direction with Ar ions ranging in energy from 0.1 to 2 keV. In addition to monitoring the release of the implanted Ar, additional information has been obtained by decoration of the defects with low energy helium and subsequent monitoring of the helium release. The studies show evidence that the Ar can be trapped in both substitutional sites and in a configuration in which the Ar is associated with vacancies (ArVsub(n), n >= 2). Most of the Ar implanted at high energy is released at approx. equal to 1500 K by thermal vacancy assisted diffusion. Argon trapped closer to the surface is released at lower temperatures via at least three different surface related release mechanisms. Additional results are presented on the interaction of self interstitial atoms (introduced by 100 eV Xe bombardment) with the Ar defects. Substitutional Ar is found to convert to interstitial Ar which seems to be mobile at room temperature. The Ar-vacancy complexes are found to be reduced to substitutional Ar. The results of atomistic calculations of the release mechanisms will also be presented.

  12. ECR Plasma Sterilisation, Argon and Nitrogen Treated Plasma

    Science.gov (United States)

    Helhel, Selcuk; Oksuz, Lutfi; Cerezci, Osman; Rad, Abbas Y.

    2004-09-01

    ECR type plasma system was built to produce plasma in axial direction. Plasma was initiated in a specially designed Nickel - Chrome cylindrical vacuum tube which is being driven through dielectric window by 2.45GHz commercial magnetron source. Tube is also surrounded by a coil driving 150ADC to generate approximately 875Gauss magnetic field at the center. Langmuir probe and ICCD for optical spectrometry were used to characterize internal parameters like electron density, electron temperature and different characteristics of the plasma. Bacillus Subtilis var nigar, bacillus Stearothermophilus, bacillus pumilus E601, Escherichia coli and staphylococcus aureus type bacteria were selected as a reference. Each is resistant for different actions while the Bacilus cereus is the most resistant bacteria for microwave interaction. This study presents the effect of system on used bacteria. Those are gram positive and gram negative bacteria that refers to structure of cell wall. The sterilization efficacy of Argon type ECR plasma was found to be over 99, 5% in Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis (vegetative cell), Bacillus cereus (vegetative cell), Bacillus pumilus and Escherichia coli. System response type is less than 2 minutes.

  13. Surface Chemistry of Polymers Physical Adsorption of Nitrogen, Argon, Sulfur Dioxide and Neopentane on Polyvinylidene Fluoride

    OpenAIRE

    Houriet, Jean-Philippe; Ghiste, Patrick; Stoeckli, Fritz

    2007-01-01

    The adsorption of nitrogen, argon, sulfur dioxide and neopentane on polyvinylidene fluoride has been measured by static methods and by gas-solid chromatography. The polymer has a homogeneous surface of low energy, which is not significantly affected by heating.

  14. Photofragmentation and photoabsorption cross sections for mass selected argon cluster ions, n = 3 to 108

    International Nuclear Information System (INIS)

    A tandem time-of-flight mass spectrometer is used to measure photofragmentation mass spectra and optical absorption spectra of mass selected argon cluster ions in the n=3 to 108 atoms per cluster range. (orig.)

  15. Influence of oxygen traces on an atmospheric-pressure radio-frequency capacitive argon plasma discharge

    International Nuclear Information System (INIS)

    An atmospheric-pressure capacitive discharge source driven by radio-frequency power supply at 13.56 MHz has been developed experimentally that is capable of producing a homogeneous and cold glow discharge in O2/Ar. With respect to the influence of oxygen component when diluted into argon plasma discharge on the discharge characteristics, the measurements of the electrical parameters (impedance, phase angle, resistance, and reactance) are made systematically and the densities of the metastable and resonant state of argon are determined by means of optical emission spectroscopy (OES). It is shown that the admixture of oxygen into argon plasma not only changes the electric characteristics but also alters the optical emission spectra greatly due to strong interaction between the oxygen content and the argon in the plasma environment.

  16. Liquid argon pollution tests of ATLAS detector materials at the IBR-2 reactor in Dubna

    CERN Document Server

    Leroy, C; Golubyh, S M; Kukhtin, V; Merkulovm L; Minashkin, V F; Golikov, V V; Kulagin, E N; Luschikov, V; Golovanov, L B; Borzunov, Yu T; Chumakov, V; Tsvinev, A P; Shalyugin, A N

    2002-01-01

    aA cold irradiation test facility operated at the IBR-2 reactor of JINR, Dubna, is used to investigate the behaviour under neutron and gamma irradiations of samples of materials and equipments to be used in the ATLAS forward (FCAL) and the hadronic end cap (HEC) liquid argon calorimeters. The samples under study are immersed in a liquid argon cryostat and exposed to fast neutron (E/sub n/ >or= 100 keV) fluences of about 10/sup 16/ n cm/sup -2/ equivalent to the neutron fluence accumulated in FCAL during ten years of LHC operation. An alpha -cell is used to check for possible outgassing due to irradiation of the samples immersed in liquid argon and to monitor the liquid argon purity. The results of various irradiation tests performed at this facility are reported. (6 refs).

  17. Formation and characterization of magnesium bisozonide and carbonyl complexes in solid argon.

    Science.gov (United States)

    Wang, Guanjun; Gong, Yu; Zhang, Qingqing; Zhou, Mingfei

    2010-10-14

    The reactions of magnesium atoms with dioxygen and dioxygen/carbon monoxide mixture have been investigated by matrix isolation infrared absorption spectroscopy. Magnesium atoms react with dioxygen in solid argon to form the inserted MgO(2) molecules under UV excitation, which were previously characterized. Annealing allows the dioxygen molecules to diffuse and to react with MgO(2) and form the magnesium bisozonide complex, Mg(O(3))(2), which is proposed to be coordinated by two argon atoms in solid argon matrix. The Mg(O(3))(2)(Ar)(2) complex is characterized to have two equivalent side-on bonded ozonide ligands with a D(2h) symmetry. The coordinated argon atoms can be replaced by carbon monoxide to give the magnesium bisozonide dicarbonyl complex, Mg(O(3))(2)(CO)(2), a neutral magnesium carbonyl complex with CO binding to the Mg(2+) center. PMID:20857987

  18. SEM investigation of surface blistering for argon ion bombarded amorphous alloys

    International Nuclear Information System (INIS)

    Surface blistering of the amorphous alloys Co70.2Fe3.9Nb3.9Si14B8 and Co66Fe4.5V2.25Ni2.25Si10B15 due to argon ion bombardment at energies of 150, 195 and 300 keV has been observed with a scanning electron microscope (SEM). The critical dose for onset of blistering and the blister diameter are determined and found to increase with increasing projectile energy. Above about 195 keV, blisters and rupture of blisters are the predominant surface damage phenomena. However, at 150 keV, there is no evidence of cracked blisters. The effects are interpreted in terms of argon agglomeration, building-up of the critical argon pressure, and argon releasing from near-surface regions

  19. Energy resolution for 1 MeV electrons in liquid argon doped with allene

    International Nuclear Information System (INIS)

    The energy spectrum of conversion electrons (976 keV) from 207Bi has been measured by an ionization chamber filled with pure or allene-doped liquid argon. The collected charge in allene-doped liquid argon was increased compared to that in pure liquid argon. The resolution was not improved by doping liquid argon with allene in high electric fields, but it was improved in low fiels. This indicates that the recombination process is not a main cause of the observed resolutions. The best resolution was about 30 keV which is the same as the best value obtained so far. This is several times worse than the theoretical ultimate value based on the Fano factor. (orig.)

  20. Surface modification of polypropylene using argon plasma: Statistical optimization of the process variables

    International Nuclear Information System (INIS)

    Low pressure plasma treatment using radiofrequency (rf) discharge of argon gas was employed to improve the hydrophilicity of polypropylene. The effects of argon plasma on the wettability, surface chemistry and surface morphology of polypropylene were studied using static contact angle measurements, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Increase in surface energy of polypropylene was observed as a result of argon plasma treatment. SEM and AFM images revealed the increased surface roughness. A set of identified process variables (rf power, pressure, argon flow rate and time) were used in this study and were optimized using central composite design (CCD) of response surface methodology (RSM). A statistical model was developed to represent the surface energy in terms of the process variables mentioned above. Accuracy of the model was verified and found to be high.

  1. An Experimental Study of the Electrical Conductivity of an Argon Plasma with an Ionizing Additive

    International Nuclear Information System (INIS)

    The electrical conductivity of a weakly ionized argon plasma in a direct current arc was determined experimentally. The paper describes the experimental rig, which consists of an arc heater giving an argon stream with a temperature of 1000-2000°K and a measuring section. An experimental method is proposed for varying the ratio between the contaminated and neutral components of the plasma over a wide range by introducing an easily ionizable seed. Measurements were carried out at temperatures of 4000-5000°K for contaminated particle concentrations in the range 1013-1015 cm-3. The experimental data were used to study the validity of different approximations of the Chapman-Cowling theory as applied to calculating the electric conductivity of a weakly ionized argon plasma. It is shown that the fourth approximation of the theory is unsatisfactory for calculating the electrical conductivity of an argon plasma in the range of contaminated particle concentrations concerned. (author)

  2. Lead Pipe Scale Analysis Using Broad-Beam Argon Ion Milling to Elucidate Drinking Water Corrosion

    Science.gov (United States)

    Herein, we compared the characterization of lead pipe scale removed from a drinking water distribution system using two different cross section methods (conventional polishing and argon ion beam etching). The pipe scale solids were analyzed using scanning electron microscopy (SEM...

  3. Performance of semiconducting oxide based hydrogen sensor for argon cover gas in engineering scale sodium facility

    International Nuclear Information System (INIS)

    Highlights: • Testing of tin oxide based sensor for trace levels of hydrogen in argon. • These experiments were carried out in engineering scale sodium facilities. • For identification of leak in the steam generator section of fast reactor. • Instantaneous sensing of down to 5 vppm of hydrogen in argon. • Sensing is equivalent to a few tens of milligrams (10−2 g) of water leak into 106 g of sodium. - Abstract: Tin oxide based thin film sensors were tested for low levels of hydrogen in argon cover gas over sodium system in engineering scale facility. The sensor responded to down to 5 volume parts per million (vppm) level of hydrogen in argon and was possible to detect up to 100 vppm reliably. The sensor response was corroborated with the output of thermal conductivity detector (TCD) based system

  4. Spectroscopic characterization of a radio-frequency argon plasma jet discharge in ambient air

    Science.gov (United States)

    Cullen, P. J.; Milosavljević, V.

    2015-06-01

    This study includes a detailed experimental investigation of the spatial and temporal spectroscopic emission of an argon plasma jet discharge. The study is carried out in ambient air and quenching by inflowing air species is considered. The optical emission spectroscopy of neutral atomic spectral lines and molecular bands, over a range of plasma process parameters, is investigated. Wavelength-resolved argon optical emission profiles are used to monitor the electron energy distribution function and the density of argon metastable atoms. The experimental data indicates that the argon flow rate, in a confined open-air plasma discharge, limits the impact of molecular oxygen in the creation of oxygen radicals. The absolute calibrated emission spectra facilitate the possibility of standardization of the so-called plasma dose.

  5. Pose Measurement Performance of the Argon Relative Navigation Sensor Suite in Simulated Flight Conditions

    Science.gov (United States)

    Galante, Joseph M.; Eepoel, John Van; Strube, Matt; Gill, Nat; Gonzalez, Marcelo; Hyslop, Andrew; Patrick, Bryan

    2012-01-01

    Argon is a flight-ready sensor suite with two visual cameras, a flash LIDAR, an on- board flight computer, and associated electronics. Argon was designed to provide sensing capabilities for relative navigation during proximity, rendezvous, and docking operations between spacecraft. A rigorous ground test campaign assessed the performance capability of the Argon navigation suite to measure the relative pose of high-fidelity satellite mock-ups during a variety of simulated rendezvous and proximity maneuvers facilitated by robot manipulators in a variety of lighting conditions representative of the orbital environment. A brief description of the Argon suite and test setup are given as well as an analysis of the performance of the system in simulated proximity and rendezvous operations.

  6. 3.4 Radiotherapy

    Science.gov (United States)

    Kramer, H.-M.; Selbach, H.-J.; Vatnitsky, S.

    This document is part of Subvolume A 'Fundamentals and Data in Radiobiology, Radiation Biophysics, Dosimetry and Medical Radiological Protection' of Volume 7 'Medical Radiological Physics' of Landolt-Börnstein - Group VIII 'Advanced Materials and Technologies'. It contains the Section '3.4 Radiotherapy' of the Chapter '3 Dosimetry in Diagnostic Radiology and Radiotherapy' with the contents:

  7. Preparing for WA34

    CERN Multimedia

    1977-01-01

    Following a proposal by a CERN-Florence-Genova Collaboration to study charmed particles photoproduced in emulsion plates tagged by the Omega apparatus triggers, WA34 was a test exposure to demonstrate the validity of the experimental method. Here (centre) Giordano Diambrini-Palazzi inside the Omega magnet. the validity of the experimental method.

  8. Vacuum ultraviolet argon excimer laser excited by optical-field-induced ionized electrons produced in an argon-filled hollow fiber

    Science.gov (United States)

    Kubodera, Shoichi; Kaku, Masanori; Katto, Masahito

    2011-10-01

    Short-wavelength lasers in the vacuum ultraviolet (VUV) spectral region between 100 and 200 nm have not yet been developed to the same degree as visible and infrared lasers. We have demonstrated the production of argon excimers via an optical-field-induced ionization (OFI) process by using a high-intensity infrared laser. We here report optical amplification of argon excimers at the wavelength of 126 nm by producing an extended OFI plasma inside an argon-filled hollow fiber with an inner diameter of 250 microns with a length of 5.0 cm. A gain-length product of 4.3 through the use of single-pass amplification with VUV optics was observed, indicating a small signal gain coefficient of 0.86 cm-1 with an uncertainty of 0.03. It was found that the hollow fiber served to extend the OFI plasma length and to guide the excitation of the infrared laser and the produced VUV emissions at 126 nm, but did not affect the OFI plasma conditions to produce argon excimer molecules. Short-wavelength lasers in the vacuum ultraviolet (VUV) spectral region between 100 and 200 nm have not yet been developed to the same degree as visible and infrared lasers. We have demonstrated the production of argon excimers via an optical-field-induced ionization (OFI) process by using a high-intensity infrared laser. We here report optical amplification of argon excimers at the wavelength of 126 nm by producing an extended OFI plasma inside an argon-filled hollow fiber with an inner diameter of 250 microns with a length of 5.0 cm. A gain-length product of 4.3 through the use of single-pass amplification with VUV optics was observed, indicating a small signal gain coefficient of 0.86 cm-1 with an uncertainty of 0.03. It was found that the hollow fiber served to extend the OFI plasma length and to guide the excitation of the infrared laser and the produced VUV emissions at 126 nm, but did not affect the OFI plasma conditions to produce argon excimer molecules. Part of this work has been supported by

  9. Results from the Bo Liquid Argon Scintillation Test Stand at Fermilab

    International Nuclear Information System (INIS)

    In these proceedings I discuss results from the Bo test stand at the Proton Assembly Building, Fermilab. This test stand has been used to characterize elements of the MicroBooNE optical system as well as to perform studies of processes affecting argon scintillation light such as scintillation quenching and optical absorption by impurities. I review in detail a recent measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level

  10. Effects of uranium bombardment by 20-40 KeV argon ions, Annex 2

    International Nuclear Information System (INIS)

    This paper shows the results of argon ions interaction with the polycrystal natural uranium. Thin foil of uranium about 200 μ was bombarded by 20-40 KeV argon ions. Coefficients of cathode scattering δ and secondary electrons emission γ were measured, during the process A+ →U. The foil was then studied by transmission method and method of single step replica using an electron microscope

  11. Effect of Ginkgo biloba on the lesions induced by retinal argon laser photocoagulation in rabbits

    International Nuclear Information System (INIS)

    In rabbits, retinal argon laser photocoagulation disrupts the arrangement of cell layers and produces interstitial edema. Photochemical and thermal energy is released with production of free oxygenated radicals that are responsible for destruction of cell membranes. Retinal argon laser photocoagulation in rabbits was used as a pharmacologic model to evaluate the protective effect of EGB 761 against membrane lesions and edema. As a strong free radicals scavengers, EGB 761 confirms its protective action on cells membranes and its anti-edema effect

  12. The clock and control system for the ATLAS Liquid Argon Calorimeter Phase-I upgrade

    International Nuclear Information System (INIS)

    A Liquid-argon Trigger Digitizer Board (LTDB) is being developed to upgrade the ATLAS Liquid Argon Calorimeter Phase-I trigger electronics. The LTDB located at the front end needs to obtain the clock signals and be configured and monitored remotely from the back end. A clock and control system is being developed for the LTDB and the major functions of the system have been evaluated. The design and evaluation of the clock and control system are presented in this paper

  13. Benchmarking TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems

    OpenAIRE

    Baptista, B.; Bugel, L.; Chiu, C; Conrad, J. M.; Ignarra, C. M.; Jones, B. J. P.; Katori, T.; Mufson, S.

    2012-01-01

    Scintillation light from liquid argon is produced at 128 nm and thus must be shifted to visible wavelengths in light detection systems used for Liquid Argon Time Projection Chambers (LArTPCs). To date, designs have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we show that the response of lightguides coated with TPB in a UV Transmitting (UV...

  14. TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems

    CERN Document Server

    Ignarra, C M

    2013-01-01

    Light detection systems in Liquid Argon Time Projection Chambers (LArTPCs) require the detection of the 128 nm light produced during argon scintillation. Most detectors use Tetraphenyl Butadiene (TPB) to shift the wavelength of the light into a range visible to Photomultiplier Tubes (PMTs). These proceedings summarize characterizations of light-guides coated with a matrix of TPB in UV transmitting acrylic which are more compact than existing LArTPC light collection systems.

  15. TPB-coated light guides for liquid argon TPC light detection systems

    Science.gov (United States)

    Ignarra, C. M.

    2013-10-01

    Light detection systems in Liquid Argon Time Projection Chambers (LArTPCs) require the detection of the 128 nm light produced during argon scintillation. Most detectors use Tetraphenyl Butadiene (TPB) to shift the wavelength of the light into a range visible to Photomultiplier Tubes (PMTs). These proceedings summarize characterizations of light-guides coated with a matrix of TPB in UV transmitting acrylic which are more compact than existing LArTPC light collection systems.

  16. Energy resolution for alpha particles in liquid argon doped with allene

    International Nuclear Information System (INIS)

    The charge response of liquid argon doped with small quantities of allene (C3H4) to α-particles has been studied. The addition of allene increased the amount of collected charge through photoionization and greatly improved the energy resolution of the incident α-particles. The noise subtracted resolution was 1.4% FWHM at the best with 4 ppm allene doped liquid argon. (orig.)

  17. Effect of Ginkgo biloba on the lesions induced by retinal argon laser photocoagulation in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Clairambault, P.; Pairault, C.; Droy-Lefaix, M.T.; Magnier, B.; Magnier, M.

    1986-01-09

    In rabbits, retinal argon laser photocoagulation disrupts the arrangement of cell layers and produces interstitial edema. Photochemical and thermal energy is released with production of free oxygenated radicals that are responsible for destruction of cell membranes. Retinal argon laser photocoagulation in rabbits was used as a pharmacologic model to evaluate the protective effect of EGB 761 against membrane lesions and edema. As a strong free radicals scavengers, EGB 761 confirms its protective action on cells membranes and its anti-edema effect.

  18. A correction to Birks' Law in liquid argon ionization chamber simulations for highly ionizing particles

    International Nuclear Information System (INIS)

    We present a study of the performance of Birks' Law in liquid argon ionization chamber simulations as applied to highly ionizing particles, such as particles with multiple electric charges or with magnetic charge. We used Birks' Law to model recombination effects in a GEANT4 simulation of heavy ions in a liquid argon calorimeter. We then compared the simulation to published heavy-ion data to extract a highly ionizing particle correction to Birks' Law.

  19. An experimental investigation of the dissociative ionization process of argon cluster ions induced by electron impact

    International Nuclear Information System (INIS)

    Utilizing the Cold Target Recoil Ions Momentum Spectrometer (COLTRIMS), dissociative ionization of argon cluster was experimentally investigated by electron impact. The recoil ions produced both in the pure ionization process and the dissociative ionization channels are measured with collision energies from 100 and 1000 eV. The ratios of the dimer ions from pure ionization (Ar2P+) and the dimer ions from small cluster dissociation (Ar+2D) to the atomic argon ion (Ar+) in different stagnation pressures were obtained.

  20. Configurational Entropy,Diffusivity and Potential Energy Landscape in Liquid Argon

    Institute of Scientific and Technical Information of China (English)

    DUAN Yong-Ping; MA Cong-Xiao; LI Jia-Yun; LI Cong; WANG Dan; LI Mei-Li; SUN Min-Hua

    2009-01-01

    The configurational entropy, diffusion coefficient, dynamics and thermodynamics fragility indices of liquid argon are calculated using molecular dynamics simulations at two densities. The relationship between dynamics and thermodynamics properties is studied. The diffusion coefficient depends linearly on configurational entropy, which is consistent with the hypothesis of Adam-Gibbs. The consistence of dynamics and thermodynamics fragility indices demonstrates that dynamical behaviour is governed by thermodynamics behaviour in glass transition of liquid argon.

  1. Spectroscopic Characterization of a Radio-Frequency Argon Plasma Jet Discharge in Ambient Air

    OpenAIRE

    Cullen, Patrick; Milosavljevic, Vladimir

    2015-01-01

    This study includes a detailed experimental investigation of the spatial and temporal spectroscopic emission of an argon plasma jet discharge. The study is carried out in ambient air and quenching by inflowing air species is considered. The optical emission spectroscopy of neutral atomic spectral lines and molecular bands, over a range of plasma process parameters, is investigated. Wavelength-resolved argon optical emission profiles are used to monitor the electron energy distribution functio...

  2. LArGe: Background suppression using liquid argon (LAr) scintillation for 0$\

    CERN Document Server

    Marco, M D; Schönert, S

    2007-01-01

    Measurements with a bare p-type high purity germanium diode (HPGe) submerged in a 19 kg liquid argon (LAr) scintillation detector at MPIK Heidelberg are reported. The liquid argon--germanium system (LArGe) is operated as a 4$\\pi$ anti-Compton spectrometer to suppress backgrounds in the HPGe. This R&D is carried out in the framework of the GERDA experiment which searches for 0$\

  3. Discovery of photospheric argon in very hot central stars of planetary nebulae and white dwarfs

    CERN Document Server

    Werner, K; Kruk, J W

    2007-01-01

    We report the first discovery of argon in hot evolved stars and white dwarfs. We have identified the ArVII 1063.55A line in some of the hottest known (Teff=95000-110000 K) central stars of planetary nebulae and (pre-) white dwarfs of various spectral type. We determine the argon abundance and compare it to theoretical predictions from stellar evolution theory as well as from diffusion calculations. We analyze high-resolution spectra taken with the Far Ultraviolet Spectroscopic Explorer. We use non-LTE line-blanketed model atmospheres and perform line-formation calculations to compute synthetic argon line profiles. We find a solar argon abundance in the H-rich central star NGC1360 and in the H-deficient PG1159 star PG1424+535. This confirms stellar evolution modeling that predicts that the argon abundance remains almost unaffected by nucleosynthesis. For the DAO-type central star NGC7293 and the hot DA white dwarfs PG0948+534 and REJ1738+669 we find argon abundances that are up to three orders of magnitude sma...

  4. Numerical study of breakdown pattern induced by an intense microwave under nitrogen and argon gases

    Science.gov (United States)

    Takahashi, Masayuki; Ohnishi, Naofumi

    2016-07-01

    Filamentary plasma induced by microwave beam irradiation was reproduced in nitrogen and argon by combining fluid or particle plasma models with electromagnetic wave propagation. Transport coefficients used in the fluid model are estimated from particle simulation to maintain consistency of the breakdown structure between the fluid and particle models. A discrete structure was obtained using the one-dimensional (1D) fluid model, because a standing wave is generated in front of the plasma when the incident microwave beam is reflected by the overcritical plasma, which agrees with the breakdown structure obtained using the 1D particle model. A 2D plasma filament was also reproduced using the fluid model in nitrogen and argon. Reflection of the incident microwave in argon becomes stronger than that in nitrogen because of the denser argon plasma. Change in filament shape is induced in argon because the electric field is deformed at the plasma tip owing to stronger wave reflection from the neighboring filament. The propagation speed of the plasma front becomes larger in argon breakdown because of the larger ionization frequency and the larger diffusion coefficient.

  5. Effect of Argon Laser on Enamel Demineralization around Orthodontic Brackets: An In Vitro Study

    Science.gov (United States)

    Miresmaeili, Amirfarhang; Etrati Khosroshahi, Mohammad; Motahary, Pouya; Rezaei-Soufi, Loghman; Mahjub, Hossein; Dadashi, Maryam; Farhadian, Nasrin

    2014-01-01

    Objective This study was designed to evaluate the effect of argon laser irradiation on development and progress of enamel demineralization around orthodontic brackets. Materials and Methods: Fifty caries-free, intact human premolars were randomly assigned to one of the following five equal groups: Groups 1 (control) and 2: The brackets were bonded using conventional halogen light for 40s and argon laser for 10s, respectively. Teeth in group 3 were lased with argon laser for 10s before bracket bonding with halogen light. Group 4 was the same as group 3 except that brackets were also bonded with argon laser. In group 5 samples were bonded conventionally, immersed in an artificial caries solution for two days and then irradiated for 10s with argon laser. All samples were subjected to demineralization by artificial caries solution for 10 days. After bracket removal, samples were buccolingually sectioned and evaluated by polarized light microscopy. Decalcified lesion depth in each section was measured by a trained examiner in a blind fashion. Data were analyzed in SPSS 14 using one-way ANOVA and Tukey’s HSD post hoc test. Results: The control group showed the greatest mean lesion depth while group 5 revealed the lowest. The laser-treated groups had significantly lower mean lesion depth compared with the control group (P<0.05) except for group 4 (P=0.192). Conclusion: Argon laser irradiation for 10s before or during bracket bonding can increase caries resistance of intact and demineralized enamel. PMID:25584052

  6. Low radioactivity argon dark matter search results from the DarkSide-50 experiment

    CERN Document Server

    Agnes, P; Albuquerque, I F M; Alexander, T; Alton, A K; Arisaka, K; Back, H O; Baldin, B; Biery, K; Bonfini, G; Bossa, M; Bottino, B; Brigatti, A; Brodsky, J; Budano, F; Bussino, S; Cadeddu, M; Cadonati, L; Cadoni, M; Calaprice, F; Canci, N; Candela, A; Cao, H; Cariello, M; Carlini, M; Catalanotti, S; Cavalcante, P; Chepurnov, A; Cocco, A G; Covone, G; Crippa, L; D'Angelo, D; D'Incecco, M; Davini, S; De Cecco, S; De Deo, M; De Vincenzi, M; Derbin, A; Devoto, 25 A; Di Eusanio, F; Di Pietro, G; Edkins, E; Empl, A; Fan, A; Fiorillo, G; Fomenko, K; Forster, G; Franco, D; Gabriele, F; Galbiati, C; Giganti, C; Goretti, A M; Granato, F; Grandi, L; Gromov, M; Guan, M; Guardincerri, Y; Hackett, B R; Herner, K; Hungerford, E V; Ianni, Al; Ianni, An; James, I; Jollet, C; Keeter, K; Kendziora, C L; Kobychev, V; Koh, G; Korablev, D; Korga, G; Kubankin, A; Li, X; Lissia, M; Lombardi, P; Luitz, S; Ma, Y; Machulin, I N; Mandarano, A; Mari, S M; Maricic, J; Marini, L; Martoff, C J; Meregaglia, A; Meyers, P D; Miletic, T; Milincic, R; Montanari, D; Monte, A; Montuschi, M; Monzani, M; Mosteiro, P; Mount, B J; Muratova, V N; Musico, P; Napolitano, J; Nelson, A; Odrowski, S; Orsini, M; Ortica, F; Pagani, L; Pallavicini, M; Pantic, E; Parmeggiano, S; Pelczar, K; Pelliccia, N; Perasso, S; Pocar, A; Pordes, S; Pugachev, D A; Qian, H; Randle, K; Ranucci, G; Razeto, A; Reinhold, B; Renshaw, A L; Romani, A; Rossi, B; Rossi, N; Rountree, D; Sablone, D; Saggese, P; Saldanha, R; Sands, W; Sangiorgio, S; Savarese, C; Segreto, E; Semenov, D A; Shields, E; Singh, P N; Skorokhvatov, M D; Smallcomb, M; Smirnov, O; Sotnikov, A; Stanford, C; Suvorov, Y; Tartaglia, R; Tatarowicz, J; Testera, G; Tonazzo, A; Trinchese, P; Unzhakov, E V; Vishneva, A; Vogelaar, B; Wada, M; Walker, S; Wang, H; Wang, Y; Watson, A W; Westerdale, S; Wilhelmi, J; Wojcik, M M; Xiang, X; Xu, J; Yang, C; Yoo, J; Zavatarelli, S; Zec, A; Zhong, W; Zhu, C; Zuzel, G

    2015-01-01

    The DarkSide-50 dark matter search reports the first results obtained using a target of low-radioactivity argon extracted from underground sources. The experiment is located at the Laboratori Nazionali del Gran Sasso and uses a two-phase time projection chamber as a detector. A total of 155 kg of low radioactivity argon has been obtained, and we have determined that underground argon is depleted in Ar-39 by a factor (1.4 +- 0.2) x 10^3 relative to atmospheric argon. The underground argon was also found to contain (2.05 +- 0.13) mBq/kg of Kr-85. We found no evidence for dark matter in the form of WIMPs in 70.9 live-days of data with a fiducial mass of (36.9 +- 0.6) kg. When combined with our preceding search with an atmospheric argon target, we set a 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section of 2.0 x 10^-44 cm^2 (8.6 x 10^-44 cm^2, 8.0 x 10^-43 cm^2 ) for a WIMP mass of 100 GeV/c^2 (1 TeV/c^2 , 10 TeV/c^2 ).

  7. Surface treatment of para-aramid fiber by argon dielectric barrier discharge plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Highlights: ► We use DBD technique to modify the surface of Kelvar29 fibers. ► The changed parameters include treated power, time and argon flux. ► There exists an optimum experimental condition of plasma treatment. ► Adhesion and wettability properties of fibers are improved through plasma treatment. - Abstract: This paper is focused on influence of argon dielectric barrier discharge (DBD) plasma on the adhesive performance and wettability of para-aramid fibers and three parameters including treated power, exposure time and argon flux were detected. The interfacial shear strength (IFSS) was greatly increased by 28% with 300 W, 60 s, 2 L min−1 argon flux plasma treatment. The content of oxygen atom and oxygen-containing polar functional groups were enhanced after the argon plasma treated, so as the surface roughness, which contributed to the improvement of surface wettability and the decrease of contact angle with water. However, long-time exposure, exorbitant power or overlarge argon flux could partly destroy the prior effects of the treatment and damage the mechanical properties of fibers to some degree.

  8. Results from the first use of low radioactivity argon in a dark matter search

    Science.gov (United States)

    Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; Crippa, L.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Forster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Nelson, A.; Odrowski, S.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration

    2016-04-01

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using a two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain 39Ar at a level reduced by a factor (1.4 ±0.2 )×103 relative to atmospheric argon. We report a background-free null result from (2616 ±43 ) kg d of data, accumulated over 70.9 live days. When combined with our previous search using an atmospheric argon, the 90% C.L. upper limit on the WIMP-nucleon spin-independent cross section, based on zero events found in the WIMP search regions, is 2.0 ×10-44 cm2 (8.6 ×10-44 cm2 , 8.0 ×10-43 cm2 ) for a WIMP mass of 100 GeV /c2 (1 TeV /c2 , 10 TeV /c2 ).

  9. Results from the first use of low radioactivity argon in a dark matter search

    Energy Technology Data Exchange (ETDEWEB)

    Agnes, P. [Universite Paris Diderot (France). et al.

    2016-04-08

    Liquid argon is a bright scintillator with potent particle identification properties, making it an attractive target for direct-detection dark matter searches. The DarkSide-50 dark matter search here reports the first WIMP search results obtained using a target of low-radioactivity argon. DarkSide-50 is a dark matter detector, using two-phase liquid argon time projection chamber, located at the Laboratori Nazionali del Gran Sasso. The underground argon is shown to contain Ar-39 at a level reduced by a factor (1.4 +- 0.2) x 103 relative to atmospheric argon. We report a background-free null result from (2616 +- 43) kg d of data, accumulated over 70.9 live-days. When combined with our previous search using an atmospheric argon, the 90 % C.L. upper limit on the WIMP-nucleon spin-independent cross section based on zero events found in the WIMP search regions, is 2.0 x 10-44 cm2 (8.6 x 10-44 cm2, 8.0 x 10-43 cm2) for a WIMP mass of 100 GeV/c2 (1 TeV/c2 , 10 TeV/c2).

  10. Scintillation light from cosmic-ray muons in liquid argon

    Science.gov (United States)

    Whittington, D.; Mufson, S.; Howard, B.

    2016-05-01

    This paper reports the results of an experiment to directly measure the time-resolved scintillation signal from the passage of cosmic-ray muons through liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches. The experiment was carried out at the TallBo dewar facility at Fermilab using prototype light guide detectors and electronics developed for the Deep Underground Neutrino Experiment. Two models are presented for the time structure of the scintillation light, a phenomenological model and a composite model. Both models find τT = 1.52 μs for the decay time constant of the Ar2* triplet state. These models also show that the identification of the ``early'' light fraction in the phenomenological model, FE ≈ 25% of the signal, with the total light from singlet decays is an underestimate. The total fraction of singlet light is FS ≈ 36%, where the increase over FE is from singlet light emitted by the wavelength shifter through processes with long decay constants. The models were further used to compute the experimental particle identification parameter Fprompt, the fraction of light coming in a short time window after the trigger compared with the light in the total recorded waveform. The models reproduce quite well the typical experimental value ~0.3 found by dark matter and double β-decay experiments, which suggests this parameter provides a robust metric for discriminating electrons and muons from more heavily ionizing particles.

  11. Argon-ion charge distributions following near-threshold ionization

    International Nuclear Information System (INIS)

    When an atom is photoionized in an inner shell, there are two mechanisms by which the remaining electron cortege relaxes to fill the vacancy: x-ray emission and radiationless Auger and Coster-Kronig transitions. In the former, the inner-shell hole moves to a less tightly bound orbital without increasing the number of atomic vacancies. In Auger processes, however, the energy liberated by transfer of a less-tightly-bound electron to the inner-shell vacancy is transferred to another electron which is ejected into the continuum. In this case, the charge on the residual ion increases by one. Through a series of radiative and non-radiative processes, the initial vacancy bubbles up until all vacancies arrive at the outermost shell. Due to the many possible routes by which this may occur, there can be a broad distribution of residual ion charge states characteristic of the decay of a single inner-shell vacancy. Because so many processes can contribute to each charge state, it is difficult to determine the effect of each by examining the total ion charge distribution; the total-ion charge distribution represents an average over many effects. To overcome this limitation, the author has recently measured argon-ion production as a function of both photon energy and Auger decay channel following photoionization of K-shell electrons with highly monochromatic synchrotron radiation. When measured differential in decay channel, the ion charge distributions are greatly simplified. Analysis, in progress, of these simplified distributions will permit extraction of information about relative decay rates and shakeoff effects that is obscured in the single spectra

  12. Scintillation light from cosmic-ray muons in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Whittington, Denver Wade [Indiana Univ., Bloomington, IN (United States). Physics Dept.; Mufson, S. [Indiana Univ., Bloomington, IN (United States). Astronomy Dept.; Howard, B. [Indiana Univ., Bloomington, IN (United States). Physics Dept.

    2016-05-01

    This paper reports the results of an experiment to directly measure the time-resolved scintillation signal from the passage of cosmic-ray muons through liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches. The experiment was carried out at the TallBo dewar facility at Fermilab using prototype light guide detectors and electronics developed for the Deep Underground Neutrino Experiment. Two models are presented for the time structure of the scintillation light, a phenomenological model and a physically-motivated model. Both models find tT = 1:52 ms for the decay time constant of the Ar 2 triplet state. These models also show that the identification of the “early” light fraction in the phenomenological model, FE 25% of the signal, with the total light from singlet decays is an underestimate. The total fraction of singlet light is FS 36%, where the increase over FE is from singlet light emitted by the wavelength shifter through processes with long decay constants. The models were further used to compute the experimental particle identification parameter Fprompt, the fraction of light coming in a short time window after the trigger compared with the light in the total recorded waveform. The models reproduce quite well the typical experimental value 0.3 found by dark matter and double b-decay experiments, which suggests this parameter provides a robust metric for discriminating electrons and muons from more heavily ionizing particles.

  13. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles.

    Science.gov (United States)

    Poterya, V; Lengyel, J; Pysanenko, A; Svrčková, P; Fárník, M

    2014-08-21

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large ArN and (H2O)N, N̄ ≈ 10(2)-10(3), clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX)n clusters on ArN upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H2O)N. The photodissociation on ArN leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on ArN are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H2O)N also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H3O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H3O. The corresponding Cl-cofragment from the photoexcitation of the HCl·(H2O)N is trapped in the ice nanoparticle. PMID:25149788

  14. Modelling steel’s homogenization during argon purging

    Directory of Open Access Journals (Sweden)

    J. Pieprzyca

    2012-12-01

    Full Text Available Purpose: One of the primary tasks that put the steel producers to the test is to reduce production costs while maintaining high quality. This objective is achieved among others through the optimization of conducted technological processes. Commonly used technology of steel homogenization with inert gases is an important stage in the production of steel in which that objective can be accomplished.Design/methodology/approach: Tests of hydrodynamic processes occurring during the steel blowing with inert gases process directly in industrial conditions is very difficult or impossible. Therefore, as the primary research method physical modelling was used. In order to carry out the tests described in the article a physical model of the station for the argon purging was used that is working at the VSB-TU, Department of Metallurgy and Foundry in Ostrava.Findings: As a result the study provided values for the investigated process and determined the appropriate location of the gas-permeable fittings in steelmaking ladle’s bottom plug. This allows to obtain the required conditions for the steel mixing in the entire volume of ladle’s workspace.Research limitations/implications: Tests presented in the article were carried out in the VSB-TU in Ostrava. Due to this fact some research limitations occurs that applies to localization and physical model’s specific construction. Therefore, as a result of cooperation between VSB-TU in Ostrava and the Silesian University of Technology will be carried out the construction of the new research station in Katowice.Practical implications: The results of the research constitute the basis to make changes that will allow the optimization to so far used purge of steel technology.Originality/value: The results presented in the article are addressed to the steel producers and it allows to optimize on-going steel homogenization process that takes place in the ladle

  15. Argon entrainment into liquid sodium in fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: ► In the present work, different types of entrainment mechanisms have been studied. ► Onset of entrainment could be characterized with turbulent intensities. ► For vortex type entrainment, a correlation has been proposed. - Abstract: Gas entrainment in pool type sodium cooled fast breeder reactors has been a subject of great interest for a quite long time now. The issue of entrainment of argon cover gas in LMFBR's is being addressed by fundamental studies. Present work focuses on characterization of onset of shear type entrainment and liquid fall type entrainment based on mean velocity and turbulent kinetic energy at liquid surface. Study also includes characterization of onset of vortex type entrainment based on mean velocities (time averaged) in the outlet pipe. Experiments were carried out to characterize shear type entrainment in stirred tank with different impeller geometries with air–water and xylene–water systems. Onset of liquid fall type entrainment was studied with cylindrical tank with a nozzle whose input angle varied. Mean and r.m.s. velocity profiles near the liquid surface were measured with the help of ultrasonic velocity profiler (UVP). The results are compared with other literature. It is observed that the onset of entrainment can be characterized by the turbulent kinetic energy near the free liquid surface. Re-submergence angle was measured and r.m.s. velocities found to be in the same range as in case of shear type of entrainment. Cylindrical tank with tangential inlet and bottom outlet was used to study onset of vortex formation. Effect of different parameters like outlet diameter, tank diameter and liquid height in the tank on critical velocity was studied and correlation has been proposed.

  16. Inhaled 45–50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia

    Science.gov (United States)

    Broad, Kevin D.; Fierens, Igor; Fleiss, Bobbi; Rocha-Ferreira, Eridan; Ezzati, Mojgan; Hassell, Jane; Alonso-Alconada, Daniel; Bainbridge, Alan; Kawano, Go; Ma, Daqing; Tachtsidis, Ilias; Gressens, Pierre; Golay, Xavier; Sanders, Robert D.; Robertson, Nicola J.

    2016-01-01

    Cooling to 33.5 °C in babies with neonatal encephalopathy significantly reduces death and disability, however additional therapies are needed to maximize brain protection. Following hypoxia–ischemia we assessed whether inhaled 45–50% Argon from 2–26 h augmented hypothermia neuroprotection in a neonatal piglet model, using MRS and aEEG, which predict outcome in babies with neonatal encephalopathy, and immunohistochemistry. Following cerebral hypoxia–ischemia, 20 Newborn male Large White piglets < 40 h were randomized to: (i) Cooling (33 °C) from 2–26 h (n = 10); or (ii) Cooling and inhaled 45–50% Argon (Cooling + Argon) from 2–26 h (n = 8). Whole-brain phosphorus-31 and regional proton MRS were acquired at baseline, 24 and 48 h after hypoxia–ischemia. EEG was monitored. At 48 h after hypoxia–ischemia, cell death (TUNEL) was evaluated over 7 brain regions. There were no differences in body weight, duration of hypoxia–ischemia or insult severity; throughout the study there were no differences in heart rate, arterial blood pressure, blood biochemistry and inotrope support. Two piglets in the Cooling + Argon group were excluded. Comparing Cooling + Argon with Cooling there was preservation of whole-brain MRS ATP and PCr/Pi at 48 h after hypoxia–ischemia (p < 0.001 for both) and lower 1H MRS lactate/N acetyl aspartate in white (p = 0.03 and 0.04) but not gray matter at 24 and 48 h. EEG background recovery was faster (p < 0.01) with Cooling + Argon. An overall difference between average cell-death of Cooling versus Cooling + Argon was observed (p < 0.01); estimated cells per mm2 were 23.9 points lower (95% C.I. 7.3–40.5) for the Cooling + Argon versus Cooling. Inhaled 45–50% Argon from 2–26 h augmented hypothermic protection at 48 h after hypoxia–ischemia shown by improved brain energy metabolism on MRS, faster EEG recovery and reduced cell death on TUNEL. Argon may provide a cheap and practical therapy

  17. 34 CFR 200.34 - Identification for restructuring.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Identification for restructuring. 200.34 Section 200.34... for restructuring. (a) If a school continues to fail to make AYP after one full school year of corrective action under § 200.42, the LEA must prepare a restructuring plan for the school and...

  18. 34 CFR 81.34 - Notice of a disallowance decision.

    Science.gov (United States)

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Notice of a disallowance decision. 81.34 Section 81.34 Education Office of the Secretary, Department of Education GENERAL EDUCATION PROVISIONS ACT-ENFORCEMENT... the failure and identify the access requirement that was violated. (c) The notice must inform...

  19. Broadband Chirped-Pulse Fourier Transform Microwave Spectroscopy and Molecular Structure of the ARGON-{ {(Z)}}-1-CHLORO-2-FLUOROETHYLENE Complex

    Science.gov (United States)

    Marshall, Mark D.; Leung, Helen O.

    2012-06-01

    A chirped-pulse Fourier transform microwave spectrometer is used to obtain the 6--18 GHz rotational spectrum of the gas-phase complex formed between argon and (Z)-1-chloro-2-fluoroethylene. Both the 35Cl and 37Cl isotopologues are observed in natural abundance, and analysis of these spectra provides predictions for both singly-substituted 13C species with sufficient precision to allow their observation with minimal searching using the more sensitive narrow band Balle-Flygare cavity technique. The non-planar structure of the complex is similar to previously observed argon-fluoroethylene complexes with the argon atom closer to the fluorine than to the chlorine. In contrast to the argon-vinyl chloride and argon-cis-1,2-difluoroethylene complexes, tunneling of the argon atom between the two equivalent, non-planar geometries is not observed.

  20. Influence of Additive Gas on Electrical and Optical Characteristics of Non-equilibrium Atmospheric Pressure Argon Plasma Jet

    International Nuclear Information System (INIS)

    Electrical and optical properties of an argon plasma jet were characterized. In particular, effects of an additive gas, namely nitrogen or oxygen, on these properties were studied in detail. The plasma jet was found to be of a glow-like discharge, which scarcely changed upon the injection of an additive gas, either directly or through a glass capillary. Optical emission spectroscopy characterization revealed that excited argon atoms were the predominant active species in this plasma jet. Metastable argon atoms were highly quenched, and N2(C3Πu) became the main energy carrier following nitrogen injection. When oxygen was added to the afterglow zone through a glass capillary, no significant quenching effect was observed and the number of oxygen atoms decreased with the increase in oxygen concentration. Finally, to demonstrate an application of this plasma jet, a high-density polyethylene surface was treated with argon, argon/nitrogen, and argon/oxygen plasmas.

  1. The excitation structure in a micro-hollow cathode discharge in the normal regime at medium argon pressure

    OpenAIRE

    C. Lazzaroni; Chabert, P.; A. Rousseau(MSSL, Surrey, United Kingdom); Sadeghi, N.

    2010-01-01

    Abstract A microplasma is generated in the microhole (400 ?m diameter) of a molybdenum-aluminamolybdenum sandwich (MHCD type) at medium pressure (30-200 Torr) in pure argon. Imaging and emission spectroscopy have been used to study the light emission mechanisms in the microdischarge. We find that emission intensities of both argon atom and argon ion lines present sharp peaks located near the cathode, and that the position of these peaks moves toward the cathode with increasing gas pressure...

  2. The Class of '34

    OpenAIRE

    Cairney, Richard

    1995-01-01

    The Great Depression raged, governments were beleaguered, the unemployment rate stood at 30%, scurvy stalked the poor and no one was immune to contagious diseases such as scarlet fever, polio and measles when the University of Alberta School of Medicine's Class of '34 graduated. For four alumni who recently gathered in Edmonton—Drs. Morley Hodgson, Melvin Gaudin, John McLurg and Edmund Cairns—their 60th-anniversary reunion was a time to recall the changes they have witnessed in medicine, incl...

  3. Argon gas concentration effects on nanostructured molybdenum nitride layer growth using 100 Hz pulsed dc glow discharge

    Science.gov (United States)

    Ikhlaq, U.; Ahmad, R.; Saleem, S.; Shah, M. S.; Umm-i-Kalsoom; Khan, N.; Khalid, N.

    2012-08-01

    The effect of argon concentration (10%-40%) on the surface properties of molybdenum is studied in nitrogen-argon mixture using 100 Hz pulsed dc glow discharge. The analysis is carried out by using X-ray diffractometer (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and Vickers microhardness tester to investigate surface properties of the nitrided samples. XRD results exhibit the formation of molybdenum nitrides. Crystallite size analysis and SEM morphology confirm the growth of nanostructured molybdenum nitride layers. Moreover, significant increase in surface hardness (by a factor of about two times) is found when the sample is treated for 30% argon in nitrogen-argon mixed plasma.

  4. Improved TPB-coated light guides for liquid argon TPC light detection systems

    International Nuclear Information System (INIS)

    Scintillation light produced in liquid argon (LAr) must be shifted from 128 nm to visible wavelengths in light detection systems used for liquid argon time-projection chambers (LArTPCs). To date, LArTPC light collection systems have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we report on light guides with improved attenuation lengths above 100 cm when measured in air. This is an important step in the development of meter-scale light guides for future LArTPCs. Improvements come from using a new acrylic-based coating, diamond-polished cast UV transmitting acrylic bars, and a hand-dipping technique to coat the bars. We discuss a model for connecting bar response in air to response in liquid argon and compare this to data taken in liquid argon. The good agreement between the prediction of the model and the measured response in liquid argon demonstrates that characterization in air is sufficient for quality control of bar production. This model can be used in simulations of light guides for future experiments

  5. Improved TPB-coated light guides for liquid argon TPC light detection systems

    Science.gov (United States)

    Moss, Z.; Bugel, L.; Collin, G.; Conrad, J. M.; Jones, B. J. P.; Moon, J.; Toups, M.; Wongjirad, T.

    2015-08-01

    Scintillation light produced in liquid argon (LAr) must be shifted from 128 nm to visible wavelengths in light detection systems used for liquid argon time-projection chambers (LArTPCs). To date, LArTPC light collection systems have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we report on light guides with improved attenuation lengths above 100 cm when measured in air. This is an important step in the development of meter-scale light guides for future LArTPCs. Improvements come from using a new acrylic-based coating, diamond-polished cast UV transmitting acrylic bars, and a hand-dipping technique to coat the bars. We discuss a model for connecting bar response in air to response in liquid argon and compare this to data taken in liquid argon. The good agreement between the prediction of the model and the measured response in liquid argon demonstrates that characterization in air is sufficient for quality control of bar production. This model can be used in simulations of light guides for future experiments.

  6. Fast-imaging and spectroscopic analysis of atmospheric argon streamers for large gap arc breakdown

    Science.gov (United States)

    Pachuilo, Michael; Stefani, Francis; Bengtson, Roger; Raja, Laxminarayan

    2014-10-01

    A non-equilibrium plasma source has been developed to assist in the low-voltage arc breakdown of large electrode gaps. The source consists of a dielectric embedded wire helically wound around a confining cylindrical quartz chamber. Annular electrodes cap the ends of the quartz chamber. An argon feed gas is used to provide a uniform environment and exhausts to ambient atmospheric conditions. A negative polarity 50 kV trigger pulse is applied to the embedded trigger wire to initiate the arc breakdown. Application of the trigger pulse produces a localized coronal discharges along the inner surface of the quartz tube. The corona provides seed electrons through which streamers propagate from one of the main discharge electrode along the quartz surface until it reaches the opposite electrode to bridge the gap. Once the gap is bridged a spark over occurs and robust arc discharge is formed in the chamber volume. Fast imaging of the streamer propagation establishes its velocity in the range of ~ 100 km/s. Spectroscopy of the streamer discharge in atmospheric argon has been conducted and electron temperature and number density estimated from a collision radiative model. Argon spectrum is dominated by neutral argon lines in the 650--950 nm range, and singly ionized argon lines are observed in the ultra-violet to near UV (300--400 nm). Research was performed in connection with AFOSR Contract FA9550-11-1-0062.

  7. Radiation Tolerant Electronics and Digital Processing for the Phase-1 Readout Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Milic, Adriana; The ATLAS collaboration

    2015-01-01

    The high luminosities of $L > 10^{34} cm^{-2} s^{-1}$ at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The front end (FE) electronic readout of the ATLAS LAr calorimeter located on the detector itself consists of a combined analog and digital processing system. In order to exploit the higher luminosity while keeping the same trigger bandwidth of 100 kHz, higher transverse granularity, higher resolution and longitudinal shower shape information will be provided from the LAr calorimeter to the Level-1 trigger processors. New trigger readout electronics have been designed for this purpose, which wil...

  8. N-(3,4-Dimethylphenylbenzamide

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2008-01-01

    Full Text Available The conformation of the NH bond in the structure of the title compound (N34DMPBA, C15H15NO, is anti to the meta-methyl substituent in the aniline ring, similar to that observed with respect to the meta-chloro substituent in N-(3,4-dichlorophenylbenzamide (N34DCPBA, but in contrast to the syn conformation observed with respect to the meta-methyl substituent in N-(3,4-dimethylphenylacetamide. The bond parameters in N34DMPBA are similar to those in N34DCPBA and other benzanilides. The molecules in N34DMPBA are packed into a column-like structure in the direction of the a axis through N—H...O hydrogen bonds.

  9. Spectroscopic Characterization of Post-Cluster Argon Plasmas During the Blast Wave Expansion

    International Nuclear Information System (INIS)

    In this work we present temperature diagnostics of an expanding laser-produced argon plasma. A short-pulse (35fs) laser with an intensity of I = 1017W/cm2 deposits ∼ 100 mJ of energy into argon clusters. This generates a hot plasma filament that develops into a cylindrically expanding shock. We develop spectral diagnostics for the temperatures of the argon plasma in the shock region and the preionized region ahead of the shock. A collisional-radiative model is applied to explore line intensity ratios derived from Ar II - Ar IV spectra that are sensitive to temperatures in a few eV range. The results of hydrodynamic simulations are employed to derive a time dependent radiative transport calculation that generates the theoretical emission spectra from the expanding plasma

  10. The WArP Experiment: A Double-Phase Argon Detector for Dark Matter Searches

    International Nuclear Information System (INIS)

    Cryogenic noble liquids emerged in the previous decade as one of the best media to perform WIMP dark matter searches, in particular due to the possibility to scale detector volumes to multiton sizes. The WArP experiment was then developed as one of the first to implement the idea of coupling Argon in liquid and gas phase, in order to discriminate β/γ-interactions from nuclear recoils and then achieve reliable background rejection. Since its construction, other projects spawned, employing Argon and Xenon and following its steps. The WArP 100l detector was assembled in 2008 at the Gran Sasso National Laboratories (LNGS), as the final step of a years-long R&D programme, aimed at characterising the technology of Argon in double phase for dark matter detection. Though it never actually performed a physics run, a technical run was taken in 2011, to characterise the detector response

  11. Compatibility of the argon and KTP lasers with middle ear implants.

    Science.gov (United States)

    Wanamaker, H H; Silverstein, H

    1993-06-01

    Visible-spectrum lasers (argon, KTP) are becoming common tools in otology. Concern over transmission of disease by homograft tissue has focused attention on synthetic materials such as Silastic, Polycel, hydroxylapatite, and Teflon. This study sought to determine the effects of argon and KTP lasers on materials used in stapes and chronic ear surgery. Silastic sheeting, hydroxylapatite and polycel total ossicular replacement prostheses (TORPs) and partial ossicular replacement prostheses (PORPs), and platinum wire/Teflon stapes prostheses were exposed to argon and KTP laser energy at clinical power settings. Effects of the two lasers were similar. The presence of pigment (char or blood) was necessary to produce any effect. Silastic transmitted energy to underlying material. Hydroxylapatite cracked and shattered. Polycel vaporized and melted, as did Teflon. Clinical implications of these interactions on primary and revision otologic surgeries will be discussed. PMID:8388975

  12. Negative corona in silane-argon-hydrogen mixtures at low pressures

    International Nuclear Information System (INIS)

    Current pulses have been measured in negative corona discharges in argon-hydrogen and silane-argon-hydrogen mixtures near the Paschen minimum. It was found that the current pulses appear only on the right branch of the Paschen curve and have shapes similar to those of subnormal oscillations in dc discharges between parallel-plane electrodes. The effects of gas temperature and negative ions on the current pulse shape and size are examined. It appears that a small admixture of silane into an argon-hydrogen discharge results in a more pronounced ion-ion phase and doubles the pulse repetition frequency, while an increase in gas temperature acts in exactly the opposite way. The implications of these results on theories of current pulse formation are discussed

  13. Operation of a GERDA phase I prototype detector in liquid argon and nitrogen

    International Nuclear Information System (INIS)

    A GERDA phase I prototype detector, consisting of a bare non-enriched high-purity (HP) p-type germanium diode mounted in a low mass holder has been operated both in liquid nitrogen and liquid argon. Because of its high density, liquid argon has been selected as cryogenic liquid and shield for GERDA experiment. The testing of this detector assembly has been carried out in the underground detector laboratory at LNGS, and at the detector manufacturer. The best resolution achieved is 2.2 keV FWHM at 1.332 MeV, which is the same as the resolution measured in a standard test cryostat. The long-term measurements with the prototype detector are performed in liquid argon. Up to now, 38 thermal cycles have been carried out with this detector. The operations, measurements and results of the prototype detector testing are summarized. (orig.)

  14. A novel diagnostic for time-resolved spectroscopic argon and lithium density measurements

    International Nuclear Information System (INIS)

    A new diagnostic technique for determining neutral gas and metal vapor densities over a wide pressure range with high time resolution is described. A compact, current-stabilized hollow cathode/anode discharge is use to ionize the gas and/or trace impurity to be analyzed. We report proof-of-principle operation of the diagnostic in a well characterized argon discharge in the pressure range 6.7-265 Pa. The intensity ratio of neutral and singly ionized argon lines (I ArI/I ArII) is shown to increase monotonically with the neutral argon density. In a second experiment, absolute neutral lithium vapor densities have been measured using this diagnostic

  15. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    Energy Technology Data Exchange (ETDEWEB)

    Chan, L. S., E-mail: lschan1982@yahoo.com; Tan, D., E-mail: lschan1982@yahoo.com; Saboohi, S., E-mail: lschan1982@yahoo.com; Yap, S. L., E-mail: lschan1982@yahoo.com; Wong, C. S., E-mail: lschan1982@yahoo.com [Plasma Technology Research Centre, Physics Department, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup −5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup −4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  16. The effects of accelerated heavy nuclei of neon and argon on mammalian cells in culture

    International Nuclear Information System (INIS)

    The survival of human T-1 kidney cells in high-energy neon (400MeV/nucleon) and argon (500MeV/nucleon) beams has been studied at the Berkeley Bevalac. Cells were plated in monolayers on glass and studied at different residual-range values. The survival curves depend on LET and on particle velocity. The effectiveness of the beams increases as the range decreases, except for argon beams with very low range values, where the effectiveness decreases again. The 'oxygen effect' is high at high particle energies (2.6 for neon and 2.4 for argon); it decreases to values between 1.1 and 1.3 near the Bragg peak. (author)

  17. Molecular dynamics simulation of an argon cluster filled inside carbon nanotubes

    International Nuclear Information System (INIS)

    The effects of the diameters of single-walled carbon nanotubes (SWCNTs) (7.83 Å to 27.40 Å) and temperature (20 K–45 K) on the equilibrium structure of an argon cluster are systematically studied by molecular dynamics simulation with consideration of the SWCNTs to be fixed. Since the diameters of SWCNTs with different chiralities increase when temperature is fixed at 20 K, the equilibrium structures of the argon cluster transform from monoatomic chains to helical and then to multishell coaxial cylinders. Chirality has almost no noticeable influence on these cylindrosymmetric structures. The effects of temperature and a non-equilibrium sudden heating process on the structures of argon clusters in SWCNTs are also studied by molecular dynamics simulation. (condensed matter: structural, mechanical, and thermal properties)

  18. Synodic and semiannual oscillations of argon-40 in the lunar exosphere

    Science.gov (United States)

    Hodges, R. Richard; Mahaffy, Paul R.

    2016-01-01

    The neutral mass spectrometer on the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft collected a trove of exospheric data, including a set of high-quality measurements of radiogenic 40Ar over a period of 142 days. Data synthesis studies, using well-established exosphere simulation tools, show that the LADEE argon data are consistent with an exosphere-regolith interaction that is dominated by adsorption and that the desorption process generates the Armand distribution of exit velocities. The synthesis work has uncovered an apparent semiannual oscillation of argon that is consistent with temporal sequestration in the seasonal cold traps created at the poles by the obliquity of the Moon. In addition, the LADEE data provide new insight into the pristine nature of lunar regolith, its spatially varying sorption properties, and the influence of sorption processes on the synodic oscillation of the argon exosphere.

  19. Surface modification of poly (vinyl chloride) by long-distance and direct argon RF plasma

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper reports the effects of long- distance and direct argon radio frequency (RF) plasma surface treatment on polyvinyl chloride (PVC) films in terms of changes in surface wettability and surface chemistry. The surface properties are characterized by the water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The mechanism is further analyzed and the role of all kinds of active species, e.g. electrons, ions and free radicals involved in plasma surface modification is further evaluated. Results show that the long-distance and direct RF plasma treatments modify the PVC surface in morphology and composition, and both modifications cause surface oxidation of PVC films, in the forming of functional groups enhancing polymer wettability. The effect of the long-distance argon RF plasma is more notable. This suggests that long-distance argon RF plasma could restrain the ion and electron eroding effect and enhance free radical reaction.

  20. Atomistic Simulation of Properties of Ultra-thin Layer of Liquid Argon Compressed Between Diamond Surfaces

    Directory of Open Access Journals (Sweden)

    A.V. Khomenko

    2016-03-01

    Full Text Available Using the method of classical molecular dynamics we investigate the properties of ultrathin film of liquid argon, which consists of one or two layers of molecules and is confined by two atomically smooth crystalline diamond surfaces. The aim of the research is validating the use of rigid surfaces and one of the available models of the argon molecule. We study the behavior of the equilibrium and dynamic characteristics of the system. It is shown that at increasing external load the transition of film in the solid-like state occurs, which is indicated by the behavior of the velocity autocorrelation function of argon molecules, reduction of the magnitude of the diffusion coefficient and the shear viscosity increase. The organization of molecules in layers and the presence of their in-plane ordering are revealed. The dependences of the kinetic friction force on time and load are obtained. The results are compared with experimental data.

  1. Theoretical and experimental comparisons of Gamble 2 argon gas puff experiments

    International Nuclear Information System (INIS)

    A one-dimensional radiative MHD analysis of an imploding argon gas puff plasma is performed. The calculations are set up to approximate the conditions of a series of argon gas puff experiments that were carried out on the NRL Gamble II generator. Annular gas puffs (2.5 cm diameter) are imploded with a 1.2-MA peak driving current for different initial argon mass loadings. Comparisons are made with the experimental results for implosion times, K, L-shell x-ray emission, and energy coupled from the generator to the plasma load. The purpose of these calculations is to provide a foundation from which a variety of physical phenomena which influence the power and total energy of the x-ray emission can be analyzed. Comparisons with similar experimental and theoretical results for aluminum plasmas are discussed

  2. Atomistic-Continuum Hybrid Simulation of Heat Transfer between Argon Flow and Copper Plates

    CERN Document Server

    Mao, Yijin; Chen, C L

    2016-01-01

    A simulation work aiming to study heat transfer coefficient between argon fluid flow and copper plate is carried out based on atomistic-continuum hybrid method. Navier-Stokes equations for continuum domain are solved through the Pressure Implicit with Splitting of Operators (PISO) algorithm, and the atom evolution in molecular domain is solved through the Verlet algorithm. The solver is validated by solving Couette flow and heat conduction problems. With both momentum and energy coupling method applied, simulations on convection of argon flows between two parallel plates are performed. The top plate is kept as a constant velocity and has higher temperature, while the lower one, which is modeled with FCC copper lattices, is also fixed but has lower temperature. It is found that, heat transfer between argon fluid flow and copper plate in this situation is much higher than that at macroscopic when the flow is fully developed.

  3. Lattice gas model for fragmentation from argon on scandium to gold on gold

    CERN Document Server

    Das-Gupta, S; Gupta, Subal Das; Pan, Jicai

    1995-01-01

    The recent fragmentation data for central collisions of Gold on Gold are even qualitatively different from those for central collisions of Argon on Scandium. The latter can be fitted with a lattice gas model calculation. Effort is made to understand why the model fails for Gold on Gold. The calculation suggests that the large Coulomb interaction which is operative for the larger system is responsible for this discrepancy. This is demonstrated by mapping the lattice gas model to a molecular dynamics calculation for disassembly. This mapping is quite faithful for Argon on Scandium but deviates strongly for Gold on Gold. The molecular dynamics calculation for disassembly reproduces the characteristics of the fragmentation data for both Gold on Gold and Argon on Scandium.

  4. Argon: Systematic Review on Neuro- and Organoprotective Properties of an “Inert” Gas

    Directory of Open Access Journals (Sweden)

    Anke Höllig

    2014-10-01

    Full Text Available Argon belongs to the group of noble gases, which are regarded as chemically inert. Astonishingly some of these gases exert biological properties and during the last decades more and more reports demonstrated neuroprotective and organoprotective effects. Recent studies predominately use in vivo or in vitro models for ischemic pathologies to investigate the effect of argon treatment. Promising data has been published concerning pathologies like cerebral ischemia, traumatic brain injury and hypoxic ischemic encephalopathy. However, models applied and administration of the therapeutic gas vary. Here we provide a systematic review to summarize the available data on argon’s neuro- and organoprotective effects and discuss its possible mechanism of action. We aim to provide a summary to allow further studies with a more homogeneous setting to investigate possible clinical applications of argon.

  5. Studies with a liquid argon time projection chamber. Addressing technological challenges of large-scale detectors

    International Nuclear Information System (INIS)

    Michael Schenk evaluates new technologies and methods, such as cryogenic read-out electronics and a UV laser system, developed to optimise the performance of large liquid argon time projection chambers (LArTPC). Amongst others, the author studies the uniformity of the electric field produced by a Greinacher high-voltage generator operating at cryogenic temperatures, measures the linear energy transfer (LET) of muons and the longitudinal diffusion coefficient of electrons in liquid argon. The results are obtained by analysing events induced by cosmic-ray muons and UV laser beams. The studies are carried out with ARGONTUBE, a prototype LArTPC in operation at the University of Bern, Switzerland, designed to investigate the feasibility of drift distances of up to five metres for electrons in liquid argon.

  6. Ionic Wind Phenomenon and Charge Carrier Mobility in Very High Density Argon Corona Discharge Plasma

    Science.gov (United States)

    Nur, M.; Bonifaci, N.; Denat, A.

    2014-04-01

    Wind ions phenomenon has been observed in the high density argon corona discharge plasma. Corona discharge plasma was produced by point to plane electrodes and high voltage DC. Light emission from the recombination process was observed visually. The light emission proper follow the electric field lines that occur between point and plane electrodes. By using saturation current, the mobilities of non-thermal electrons and ions have been obtained in argon gas and liquid with variation of density from 2,5 1021 to 2 1022 cm-3. In the case of ions, we found that the behaviour of the apparent mobility inversely proportional to the density or follow the Langevin variation law. For non-thermal electron, mobility decreases and approximately follows a variation of Langevin type until the density <= 0,25 the critical density of argon.

  7. Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization of Syringe Needle Electrode

    International Nuclear Information System (INIS)

    An atmospheric pressure nonequilibrium argon/oxygen plasma jet assisted by the preionization of syringe needle electrode discharge is reported. With the syringe needle plasma as its pre-ionization source, the hybrid barrier-jet was shown to generate uniform discharge with a lower breakdown voltage and a relatively low gas temperature varying from 390 K to 440 K, even when the vol.% oxygen in argon was up to 6%. Utilizing the actinometry method, the concentration of atomic oxygen was estimated to be about in an orders of magnitude of 1017 cm-3. The argon/oxygen plasma jet was then employed to clean out heat transfer oil, with a maximum cleaning rate of 0.1 mm/s achieved.

  8. Operation of a high purity germanium crystal in liquid argon as a Compton suppressed radiation spectrometer

    CERN Document Server

    Orrell, J L; Amsbaugh, J F; Doe, P J; Hossbach, T W; Orrell, John L.; Aalseth, Craig E.; Amsbaugh, John F.; Doe, Peter J.; Hossbach, Todd W.

    2007-01-01

    A high purity germanium crystal was operated in liquid argon as a Compton suppressed radiation spectrometer. Spectroscopic quality resolution of less than 1% of the full-width half maximum of full energy deposition peaks was demonstrated. The construction of the small apparatus used to obtain these results is reported. The design concept is to use the liquid argon bath to both cool the germanium crystal to operating temperatures and act as a scintillating veto. The scintillation light from the liquid argon can veto cosmic-rays, external primordial radiation, and gamma radiation that does not fully deposit within the germanium crystal. This technique was investigated for its potential impact on ultra-low background gamma-ray spectroscopy. This work is based on a concept initially developed for future germanium-based neutrinoless double-beta decay experiments.

  9. Performance of the Electronic Readout of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Abreu, H; Aleksa, M; Aperio Bella, L; Archambault, JP; Arfaoui, S; Arnaez, O; Auge, E; Aurousseau, M; Bahinipati, S; Ban, J; Banfi, D; Barajas, A; Barillari, T; Bazan, A; Bellachia, F; Beloborodova, O; Benchekroun, D; Benslama, K; Berger, N; Berghaus, F; Bernat, P; Bernier, R; Besson, N; Binet, S; Blanchard, JB; Blondel, A; Bobrovnikov, V; Bohner, O; Boonekamp, M; Bordoni, S; Bouchel, M; Bourdarios, C; Bozzone, A; Braun, HM; Breton, D; Brettel, H; Brooijmans, G; Caputo, R; Carli, T; Carminati, L; Caughron, S; Cavalleri, P; Cavalli, D; Chareyre, E; Chase, RL; Chekulaev, SV; Chen, H; Cheplakov, A; Chiche, R; Citterio, M; Cojocaru, C; Colas, J; Collard, C; Collot, J; Consonni, M; Cooke, M; Copic, K; Costa, GC; Courneyea, L; Cuisy, D; Cwienk, WD; Damazio, D; Dannheim, D; De Cecco, S; De La Broise, X; De La Taille, C; de Vivie, JB; Debennerot, B; Delagnes, E; Delmastro, M; Derue, F; Dhaliwal, S; Di Ciaccio, L; Doan, O; Dudziak, F; Duflot, L; Dumont-Dayot, N; Dzahini, D; Elles, S; Ertel, E; Escalier, M; Etienvre, AI; Falleau, I; Fanti, M; Farooque, T; Favre, P; Fayard, Louis; Fent, J; Ferencei, J; Fischer, A; Fournier, D; Fournier, L; Fras, M; Froeschl, R; Gadfort, T; Gallin-Martel, ML; Gibson, A; Gillberg, D; Gingrich, DM; Göpfert, T; Goodson, J; Gouighri, M; Goy, C; Grassi, V; Gray, J; Guillemin, T; Guo, B; Habring, J; Handel, C; Heelan, L; Heintz, H; Helary, L; Henrot-Versille, S; Hervas, L; Hobbs, J; Hoffman, J; Hostachy, JY; Hoummada, A; Hrivnac, J; Hrynova, T; Hubaut, F; Huber, J; Iconomidou-Fayard, L; Iengo, P; Imbert, P; Ishmukhametov, R; Jantsch, A; Javadov, N; Jezequel, S; Jimenez Belenguer, M; Ju, XY; Kado, M; Kalinowski, A; Kar, D; Karev, A; Katsanos, I; Kazarinov, M; Kerschen, N; Kierstead, J; Kim, MS; Kiryunin, A; Kladiva, E; Knecht, N; Kobel, M; Koletsou, I; König, S; Krieger, P; Kukhtin, V; Kuna, M; Kurchaninov, L; Labbe, J; Lacour, D; Ladygin, E; Lafaye, R; Laforge, B; Lamarra, D; Lampl, W; Lanni, F; Laplace, S; Laskus, H; Le Coguie, A; Le Dortz, O; Le Maner, C; Lechowski, M; Lee, SC; Lefebvre, M; Leonhardt, K; Lethiec, L; Leveque, J; Liang, Z; Liu, C; Liu, T; Liu, Y; Loch, P; Lu, J; Ma, H; Mader, W; Majewski, S; Makovec, N; Makowiecki, D; Mandelli, L; Mangeard, PS; Mansoulie, B; Marchand, JF; Marchiori, G; Martin, D; Martin-Chassard, G; Martin dit Latour, B; Marzin, A; Maslennikov, A; Massol, N; Matricon, P; Maximov, D; Mazzanti, M; McCarthy, T; McPherson, R; Menke, S; Meyer, JP; Ming, Y; Monnier, E; Mooshofer, P; Neganov, A; Niedercorn, F; Nikolic-Audit, I; Nugent, IM; Oakham, G; Oberlack, H; Ocariz, J; Odier, J; Oram, CJ; Orlov, I; Orr, R; Parsons, JA; Peleganchuk, S; Penson, A; Perini, L; Perrodo, P; Perrot, G; Perus, A; Petit, E; Pisarev, I; Plamondon, M; Poffenberger, P; Poggioli, L; Pospelov, G; Pralavorio, P; Prast, J; Prudent, X; Przysiezniak, H; Puzo, P; Quentin, M; Radeka, V; Rajagopalan, S; Rauter, E; Reimann, O; Rescia, S; Resende, B; Richer, JP; Ridel, M; Rios, R; Roos, L; Rosenbaum, G; Rosenzweig, H; Rossetto, O; Roudil, W; Rousseau, D; Ruan, X; Rudert, A; Rusakovich, N; Rusquart, P; Rutherfoord, J; Sauvage, G; Savine, A; Schaarschmidt, J; Schacht, P; Schaffer, A; Schram, M; Schwemling, P; Seguin Moreau, N; Seifert, F; Serin, L; Seuster, R; Shalyugin, A; Shupe, M; Simion, S; Sinervo, P; Sippach, W; Skovpen, K; Sliwa, R; Soukharev, A; Spano, F; Stavina, P; Straessner, A; Strizenec, P; Stroynowski, R; Talyshev, A; Tapprogge, S; Tarrade, F; Tartarelli, GF; Teuscher, R; Tikhonov, Yu; Tocut, V; Tompkins, D; Thompson, P; Tisserant, S; Todorov, T; Tomasz, F; Trincaz-Duvoid, S; Trinh, Thi N; Trochet, S; Trocme, B; Tschann-Grimm, K; Tsionou, D; Ueno, R; Unal, G; Urbaniec, D; Usov, Y; Voss, K; Veillet, JJ; Vincter, M; Vogt, S; Weng, Z; Whalen, K; Wicek, F; Wilkens, H; Wingerter-Seez, I; Wulf, E; Yang, Z; Ye, J; Yuan, L; Yurkewicz, A; Zarzhitsky, P; Zerwas, D; Zhang, H; Zhang, L; Zhou, N; Zimmer, J; Zitoun, R; Zivkovic, L

    2010-01-01

    The ATLAS detector has been designed for operation at the Large Hadron Collider at CERN. ATLAS includes electromagnetic and hadronic liquid argon calorimeters, with almost 200,000 channels of data that must be sampled at the LHC bunch crossing frequency of 40 MHz. The calorimeter electronics calibration and readout are performed by custom electronics developed specifically for these purposes. This paper describes the system performance of the ATLAS liquid argon calibration and readout electronics, including noise, energy and time resolution, and long term stability, with data taken mainly from full-system calibration runs performed after installation of the system in the ATLAS detector hall at CERN.

  10. Transport coefficients of helium-argon mixture based on ab initio potential.

    Science.gov (United States)

    Sharipov, Felix; Benites, Victor J

    2015-10-21

    The viscosity, thermal conductivity, diffusion coefficient, and thermal diffusion factor of helium-argon mixtures are calculated for a wide range of temperature and for various mole fractions up to the 12th order of the Sonine polynomial expansion with an ab initio intermolecular potential. The calculated values for these transport coefficients are compared with other data available in the open literature. The comparison shows that the obtained transport coefficients of helium-argon mixture have the best accuracy for the moment. PMID:26493894

  11. The ArDM, a ton-scale liquid argon experiment for direct dark matter detection

    International Nuclear Information System (INIS)

    Full text: The ArDM is a 1-ton liquid argon based experiment which aims at the direct detection of Weakly Interacting Massive Particles (WIMPs). The detector is sensitive to the small signals of scintillation light and the ionization charge independently. The sufficient discrimination between nuclear recoils and the background is possible by the ratio of scintillation to ionization and by the different time structure of the scintillation. In the present time the experiment is under construction at CERN. The detector was recently tested being fully filled with Liquid Argon. Promising results on the light yield and on the detector performance were obtained. (author)

  12. Research of On-line Analytical Method of Trace Oxygen and Water in Argon

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Metal sodium has an active chemical quality. When it is used as a coolant in a fast neutron reactor, it must be protected by a cover gas argon for safety operation of the reactor. But oxygen and water in argon can produce chemical reaction with sodium. Then sodium hydroxide, sodium oxide and hydrogen can be produced. This will be harmful to the safety operation of reactor. The purpose of controlling a level of impurity in the cover gas is for controlling a level of impurity in sodium. The research is to find an on-line determining method and a sampling system to monitor

  13. Liquid Argon Pollution Tests of the ATLAS Detector Materials at IBR-2 Reactor in Dubna

    CERN Document Server

    Leroy, C; Cheplakov, A P; Chumakov, V; Golikov, V; Golovanov, L B; Golubyh, S M; Kukhtin, V; Kulagin, E; Luschikov, V; Minashkin, V F; Shalyugin, A N; Tsvinev, A P

    1999-01-01

    A cold test facility has been in operation since October 1998 at the IBR-2 reactor of JINR, Dubna. During four measurement campaigns, various samples of the ATLAS forward (FCAL) and hadronic end cap (HEC) calorimeter materials have been exposed to a fast neutron ($E_n \\geq 100$ keV) fluence of about 10$^{16}$~n~cm$^{-2}$. The samples were immersed in a liquid argon cryostat, and an $\\alpha$-cell has been used as purity monitor. Results of the liquid argon pollution study obtained during these measurement campaigns are presented.

  14. Irradiation tests of ATLAS liquid argon forward calorimeter (FCAL) electronics components

    CERN Document Server

    Leroy, C; Golikov, V; Golubyh, S M; Kukhtin, V; Kulagin, E; Luschikov, V; Merkulov, L; Minashkin, V F; Shalyugin, A N

    2002-01-01

    FCAL resistors, capacitors, and transformers together with capacitors and sintimid disks of the purity monitor have been irradiated in liquid argon to study their possible lead to argon pollution at a maximal neutron fluence of 1016 n cm-2 at the IBR-2 reactor of JINR, Dubna. The results of charge collection measurements before and after irradiation are reported. Electrical measurement on these FCAL capacitors, resistors and transformers were also performed after irradiation. In general, the results of resistance, capacitance, impedance, leakage current and high voltage breakdown measurements after irradiation show minor changes of value only for some parameters from nominal values or values measured before irradiation.

  15. The Discovery of Argon in Comet C/1995 O1 (Hale-Bopp)

    CERN Document Server

    Stern, S A; Festou, M C; Parker, J W; A'Hearn, M F; Wilkinson, E; Gladstone, G R

    2000-01-01

    On 30.14 March 1997 we observed the EUV spectrum of the bright comet C/1995 O1 (Hale-Bopp) at the time of its perihelion, using our EUVS sounding rocket telescope/spectrometer. The spectra reveal the presence H Ly beta, O+, and, most notably, Argon. Modelling of the retrieved Ar production rates indicates that comet Hale-Bopp is enriched in Ar relative to cosmogonic expectations. This in turn indicates that Hale-Bopp's deep interior has never been exposed to the 35-40 K temperatures necessary to deplete the comet's primordial argon supply.

  16. Heat Transfer During Evaporation of Cesium From Graphite Surface in an Argon Environment

    Directory of Open Access Journals (Sweden)

    Bespala Evgeny

    2016-01-01

    Full Text Available The article focuses on discussion of problem of graphite radioactive waste formation and accumulation. It is shown that irradiated nuclear graphite being inalienable part of uranium-graphite reactor may contain fission and activation products. Much attention is given to the process of formation of radioactive cesium on the graphite element surface. It is described a process of plasma decontamination of irradiated graphite in inert argon atmosphere. Quasi-one mathematical model is offered, it describes heat transfer process in graphite-cesium-argon system. Article shows results of calculation of temperature field inside the unit cell. Authors determined the factors which influence on temperature change.

  17. Liquid argon pollution tests of the ATLAS detector materials at IBR-2 reactor in Dubna

    International Nuclear Information System (INIS)

    A cold test facility has been in operation since October 1998 at the IBR-2 reactor of JINR, Dubna. During four measurement campaigns, various samples of the ATLAS forward (FCAL) and hadronic end-cap (HEC) calorimeter materials have been exposed to a fast neutron (En ≥ 100 keV) fluence of about 1016 cm-2. The samples were immersed in a liquid argon cryostat, and an α cell has been used as a purity monitor. Results of the liquid argon pollution study obtained during these measurement campaigns are presented

  18. Physiological responses of Vigna radiata L. to nitrogen and argon+ laser irradiation - Short Communication

    International Nuclear Information System (INIS)

    The effect of nitrogen laser (337.1 nm) and argon+ laser (514.5 nm) irradiation on physiological responses in the green gram seedlings was studied. The shoot and root lengths and fresh and dry weights of the seedlings increased with 30 min exposure to nitrogen laser and 5 min exposure to Argon+ laser. Protein content was maximum with 20 min exposure to N laser and 5 min exposure to Ar+ laser, while DNA and RNA contents were maximum at 5 min exposure with both the laser treatments

  19. The clock distribution system for the ATLAS Liquid Argon Calorimeter Phase-I Upgrade Demonstrator

    International Nuclear Information System (INIS)

    A prototype Liquid-argon Trigger Digitizer Board (LTDB), called the LTDB Demonstrator, has been developed to demonstrate the functions of the ATLAS Liquid Argon Calorimeter Phase-I trigger electronics upgrade. Forty Analog-to-Digital converters and four FPGAs with embedded multi-gigabit-transceivers on each Demonstrator need high quality clocks. A clock distribution system based on commercial components has been developed for the Demonstrator. The design of the clock distribution system is presented. The performance of the clock distribution system has been evaluated. The components used in the clock distribution system have been qualified to meet radiation tolerance requirements of the Demonstrator

  20. Pulse Compression by Filamentation in Argon with an Acoustic Optical Programmable Dispersive Filter for Predispersion Compensation

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-Wei; JIANG Yong-Liang; LENG Yu-Xin; LIU Jun; GE Xiao-Chun; LI Ru-Xin; XU Zhi-Zhan

    2006-01-01

    @@ We have experimentally demonstrated pulses 0.4 mJ in duration smaller than 12 fs with an excellent spatial beam profile by self-guided propagation in argon. The original 52fs pulses from the chirped pulsed amplification laser system are first precompressed to 32 fs by inserting an acoustic optical programmable dispersive filter instrument into the laser system for spectrum reshaping and dispersion compensation, and the pulse spectrum is subsequently broadened by filamentation in an argon cell. By using chirped mirrors for post-dispersion compensation, the pulses are successfully compressed to smaller than 12fs.

  1. Application of argon laser LAK-1 for therapy in selected blood vessel diseases

    Science.gov (United States)

    Szymanczyk, Jacek; Golebiowska, Aleksandra; Michalska, I.; Nowakowski, Wlodzimierz

    1995-03-01

    Argon laser was applied in 172 patients with various vascular disorders and epidermal nevi. The best therapeutical results were obtained in facial telangiectasia and in cavernous hemangiomas, in which there was a complete or almost complete regression. In capillary facial hemangiomas in 49 patients (79%) clearing of 50% to 75% was obtained, and in epidermal nevi the full regression was in 4 (44%) of the cases, and 50% regression in 4 (44%). In telangiectasia of the lower limbs the results were not satisfactory. We stress that cavernous, and capillary hemangiomas, as well as facial telangiectasia are an indication for the argon laser therapy.

  2. A 20-Liter Test Stand with Gas Purification for Liquid Argon Research

    CERN Document Server

    Li, Yichen; Tang, Wei; Joshi, Jyoti; Qian, Xin; Diwan, Milind; Kettell, Steve; Morse, William; Rao, Triveni; Stewart, James; Tsang, Thomas; Zhang, Lige

    2016-01-01

    We describe the design of a 20-liter test stand constructed to study fundamental properties of liquid argon (LAr). This system utilizes a simple, cost-effective gas argon (GAr) purification to achieve ultra-high purity, which is necessary to study electron transport properties in LAr. An electron drift stack with up to 25 cm length is constructed to study electron drift, diffusion, and attachment at various electric fields. A gold photocathode and a pulsed laser are used as a bright electron source. The operational performance of this system is reported.

  3. Argon plasma-assisted PDMS–LTCC bonding technique for microsystem applications

    International Nuclear Information System (INIS)

    A method for transparent polymer (polydimethylosiloxane, PDMS) to glass-covered low-temperature co-fired ceramics (LTCC) using microwave argon plasma is reported in this paper. Changes in the composition of both materials before and after plasma treatment are investigated with x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy-attenuated total reflection and contact angle measurements. The results obtained for PDMS and glass-covered LTCC modified with argon plasma are compared with previously reported results received for oxygen plasma. Moreover, a comparison of adhesion between PDMS and glass-covered LTCC bonded together using Ar and O2 plasma is made using a material testing machine

  4. Experimental Measurement for Shock Velocity-Mass Velocity Relationship of Liquid Argon Up to 46 GPa

    Institute of Scientific and Technical Information of China (English)

    孟川民; 施尚春; 董石; 杨向东; 谭华; 经福谦

    2003-01-01

    Shock properties of liquid argon were measured in the shock pressure up to 46 GPa by employing the two-stage light gas gun. Liquid nitrogen was used as coolant liquid. The cryogenic target system has been improved to compare with the previous work. Shock velocities were measured with self-shorting electrical probes. Impactor velocities were measured with an electrical-magnetic induction system. Mass velocities were obtained by mean of shock impedance matching method. The experimental data shows that the slope of experimental Hugoniot curve of liquid argon begins to decrease above 30 GPa.

  5. Calculation of ion energy distributions of argon excimer ions generated in helicon plasma

    Institute of Scientific and Technical Information of China (English)

    Fang Tong-Zhen; Jiang Nan; Wang Long

    2005-01-01

    A program is developed to calculate the ion energy distributions (IEDs) of Ar2+ making use of a simplified kinetic model with a combination of Monte Carlo method. Several coefficients are used to realize good match between the calculated and measured results. Some important assumptions are confirmed: argon excimer ions have short lifetime,hence they are formed in a short range before the collecting electrode. The excimer ions that encounter collisions will be discarded because they turn to other ion species after they collide with argon atoms. From the calculated results some plasma parameters such as the cross section or neutral density in discharge could be evaluated.

  6. ArgonCube: a novel, fully-modular approach for the realization of large-mass liquid argon TPC neutrino detectors

    CERN Document Server

    Amsler, C; Asaadi, J; Auger, M; Barbato, F; Bay, F; Bishai, M; Bleiner, D; Borgschulte, A; Bremer, J; Cavus, E; Chen, H; De Geronimo, G; Ereditato, A; Fleming, B; Goldi, D; Hanni, R; Kose, U; Kreslo, I; La Mattina, F; Lanni, F; Lissauer, D; Luthi, M; Lutz, P; Marchionni, A; Mladenov, D; Nessi, M; Noto, F; Palamara, O; Raaf, J L; Radeka, V; Rudolph Von Rohr, Ch; Smargianaki, D; Soderberg, M; Strauss, Th; Weber, M; Yu, B; Zeller, G P; Zeyrek, M; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2015-01-01

    The Liquid Argon Time Projection Chamber is a prime candidate detector for future neutrino oscillation physics experiments, underground neutrino observatories and proton decay searches. A large international project based on this technology is currently being considered at the future LBNF facility in the United States on the very large mass scale of 40 kton. In this document, following the long standing R&D work conducted over the last years in several laboratories in Europe and in the United States, we intend to propose a novel Liquid Argon TPC approach based on a fully-modular, innovative design, the ArgonCube. The related R&D work will proceed along two main directions; one aimed at on the assessment of the proposed modular detector design, the other on the exploitation of new signal readout methods. Such a strategy will provide high performance while being cost-effective and robust at the same time. According to our plans, we will firstly realize a detector prototype hosted in a cryostat that is a...

  7. Numerical Simulation of the Thermal Conductivity of Thermal Insulation Pipe by Vacuum and High Pressure Argon Pre-filled

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    [Abstract]By analyzing the insulation effect of argon-filled tubing and vacuum-insulated tubing before and after hydrogen permeation respectively, a conclusion can be drawn that the insulated tubing filled with high pressure argon is better than the vacuum insulated tubing considering the lifetime and heat insulation effect.

  8. Resonance ionization spectroscopy of argon, krypton, and xenon using vacuum ultraviolet light

    International Nuclear Information System (INIS)

    Resonant, single-photon excitation of ground state inert gases requires light in the vacuum ultraviolet spectral region. This paper discusses methods for generating this light. Efficient schemes for ionizing argon, krypton, and xenon using resonant, stepwise single-photon excitation are presented

  9. A dual type gridded ionization chamber as liquid argon purity monitor II

    International Nuclear Information System (INIS)

    The attenuation lengths of electrons in liquid argon purified by molecular sieves, a Ti-Ba getter and an Oxysorb filter was measured by using a dual type gridded ionization chamber. From the electric field dependence of the attenuation length, it is concluded that the type of remaining impurity is not an oxygen type, but N2O type. (author)

  10. Operation of a GERDA phase I prototype detector in liquid argon

    International Nuclear Information System (INIS)

    A non-enriched high-purity (HP) p-type germanium diode has been operated in a low mass holder in liquid nitrogen and liquid argon. Because of the shielding and scintillation properties of liquid argon, GERDA experiment is planned to use it as a cryogenic fluid shield. Therefore, the long-term measurements with the bare detector are performed in liquid argon. The testing of the prototype detector and the preparation of the enriched detectors for GERDA phase I are being carried out in the GERDA underground Detector Laboratory (GDL) at LNGS. The phase I prototype detector assembly is being operated since beginning of 2006 to study detector handling protocols, detector assembly performance and detector assembly stability. 45 warming and cooling cyclings have been carried out. Since February 8 2007, the prototype detector is continuously operated in liquid argon under varying irradiation conditions. The operations, measurements and results of the prototype detector testing as well as the status of the phase I enriched detectors are summarized

  11. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma.

    Science.gov (United States)

    Winter, Theresa; Bernhardt, Jörg; Winter, Jörn; Mäder, Ulrike; Schlüter, Rabea; Weltmann, Klaus-Dieter; Hecker, Michael; Kusch, Harald

    2013-09-01

    The applications of low-temperature plasma are not only confined to decontamination and sterilization but are also found in the medical field in terms of wound and skin treatment. For the improvement of already established and also for new plasma techniques, in-depth knowledge on the interactions between plasma and microorganism is essential. In an initial study, the interaction between growing Bacillus subtilis and argon plasma was investigated by using a growth chamber system suitable for low-temperature gas plasma treatment of bacteria in liquid medium. In this follow-up investigation, a second kind of plasma treatment-namely air plasma-was applied. With combined proteomic and transcriptomic analyses, we were able to investigate the plasma-specific stress response of B. subtilis toward not only argon but also air plasma. Besides an overlap of cellular responses due to both argon and air plasma treatment (DNA damage and oxidative stress), a variety of gas-dependent cellular responses such as growth retardation and morphological changes were observed. Only argon plasma treatments lead to a phosphate starvation response whereas air plasma induced the tryptophan operon implying damage by photooxidation. Biological findings were supported by the detection of reactive plasma species by optical emission spectroscopy and Fourier transformed infrared spectroscopy measurements. PMID:23794223

  12. Fabrication of poly(3-hexylthiophene) self-switching diodes using thermal nanoimprint lithography and argon milling

    Czech Academy of Sciences Publication Activity Database

    Kettle, J.; Whitelegg, S.; Song, M.; Madec, M. B.; Yeates, S.; Turner, M. L.; Kotačka, L.; Kolařík, Vladimír

    2009-01-01

    Roč. 27, č. 6 (2009), s. 2801-2804. ISSN 1071-1023 R&D Projects: GA ČR GA102/05/2325 Institutional research plan: CEZ:AV0Z20650511 Keywords : argon * milling * nanolithography * organic semiconductors * semiconductor diodes Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.460, year: 2009

  13. Luminescence quenching of the triplet excimer state by air traces in gaseous argon

    CERN Document Server

    Amsler, C; Buchler, A; Chandrasekharan, R; Regenfus, C; Rochet, J

    2008-01-01

    While developing a liquid argon detector for dark matter searches we investigate the influence of air contamination on the VUV scintillation yield in gaseous argon at atmospheric pressure. We determine with a radioactive alpha-source the photon yield for various partial air pressures and different reflectors and wavelength shifters. We find for the fast scintillation component a time constant tau1= 11.3 +- 2.8 ns, independent of gas purity. However, the decay time of the slow component depends on gas purity and is a good indicator for the total VUV light yield. This dependence is attributed to impurities destroying the long-lived argon excimer states. The population ratio between the slowly and the fast decaying excimer states is determined for alpha-particles to be 5.5 +-0.6 in argon gas at 1100 mbar and room temperature. The measured mean life of the slow component is tau2 = 3.140 +- 0.067 microsec at a partial air pressure of 2 x 10-6 mbar.

  14. Liquid Argon Dielectric Breakdown Studies with the MicroBooNE Purification System

    Energy Technology Data Exchange (ETDEWEB)

    Acciarri, R. [Fermilab; Carls, B. [Fermilab; James, C. [Fermilab; Johnson, B. [Fermilab; Jostlein, H. [Fermilab; Lockwitz, S. [Fermilab; Lundberg, B. [Fermilab; Raaf, J. L. [Fermilab; Rameika, R. [Fermilab; Rebel, B. [Fermilab; Zeller, G. P. [Fermilab; Zuckerbrot, M. [Fermilab

    2014-11-04

    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per-trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  15. Induced luminescence by charged particles on gaseous, liquid and solid argon

    International Nuclear Information System (INIS)

    A spectral and a kinetic study of the scintillation induced by β and α particles in gaseous, liquid and solid argon have been made in the wavelength region comprised between 1100 and 3000A. The radiative lifetimes and some spectroscopic parameters of the lowest dimer states (1Σ+sub(u) and 3Σ+sub(u)) have been determined: tau0(1Σ+sub(u)) = 4.2ns; tau0(3Σ+sub(u)) = 3.1μs; ΔE(1Σ+sub(u)-3Σ+sub(u)) = 52 meV; hω = 230 cm-1. A non radiative de-excitation rate of the 3Σ+sub(u) state has been measured: approximately 2x10-17cm3s-1. By applying an electric field the contribution of the electron-ion recombination mechanism to the gaseous argon scintillation is studied. For condensed argon, the dependence of the ratio between the fluorescence and the phosphorescence intensities on the ionisation power of the impinging particle is verified. The continuum which extends from 1600 to 2900A and that is present only in the gas phase spectra, is ascribed to the radiative de-excitation of molecular ions. A time resolved study of the luminescence of high pressure (1-15atm) argon excited by a pulsed electric discharge has also been performed and is compared with that of the scintillation induced by nuclear particles

  16. Influence of acoustic waves on Radiation Spectra of Argon Gas-discharge Plasma

    CERN Document Server

    Aramyan, A R

    2002-01-01

    It is shown that under the definite regime of interaction of the acoustic waves with low-temperature, partially ionized plasma it is possible to change the intensity of some spectral lines of atomic argon. It is shown also, that the dependence of the intensities of these spectral lines on the intensity of the acoustic wave has a hysteresis behavior.

  17. Prediction of radiative heat transfer in argon arc plasmas using the method of partial characteristics

    Czech Academy of Sciences Publication Activity Database

    Aubrecht, Vladimír

    Brno : VUT, 2003, s. 13-16 ISBN 80-214-2307-2. [Symposium on Physics of Switching Arc /15./. Brno (CZ), 22.09.2003-26.09.2003] R&D Projects: GA ČR GA102/03/0813 Institutional research plan: CEZ:AV0Z2076919 Keywords : plasma radiation * argon arc Subject RIV: BL - Plasma and Gas Discharge Physics

  18. Evaporation characteristics of thin film liquid argon in nano-scale confinement: A molecular dynamics study

    Science.gov (United States)

    Hasan, Mohammad Nasim; Shavik, Sheikh Mohammad; Rabbi, Kazi Fazle; Haque, Mominul

    2016-07-01

    Molecular dynamics simulation has been carried out to explore the evaporation characteristics of thin liquid argon film in nano-scale confinement. The present study has been conducted to realize the nano-scale physics of simultaneous evaporation and condensation inside a confined space for a three phase system with particular emphasis on the effect of surface wetting conditions. The simulation domain consisted of two parallel platinum plates; one at the top and another at the bottom. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Considering hydrophilic and hydrophobic nature of top and bottom surfaces, two different cases have been investigated: (i) Case A: Both top and bottom surfaces are hydrophilic, (ii) Case B: both top and bottom surfaces are hydrophobic. For all cases, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall was set to four different temperatures such as 110 K, 120 K, 130 K and 140 K to perform non-equilibrium molecular dynamics (NEMD). The variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat fluxes normal to top and bottom walls were estimated and discussed to illuminate the effectiveness of heat transfer in both hydrophilic and hydrophobic confinement at various boundary temperatures of the bottom plate.

  19. Neutral gas temperature estimates and metastable resonance energy transfer for argon-nitrogen discharges

    Energy Technology Data Exchange (ETDEWEB)

    Greig, A., E-mail: amelia.greig@anu.edu.au; Charles, C.; Boswell, R. W. [Space Plasma, Power and Propulsion Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601 (Australia)

    2016-01-15

    Rovibrational spectroscopy band fitting of the nitrogen (N{sub 2}) second positive system is a technique used to estimate the neutral gas temperature of N{sub 2} discharges, or atomic discharges with trace amounts of a N{sub 2} added. For mixtures involving argon and N{sub 2}, resonant energy transfer between argon metastable atoms (Ar*) and N{sub 2} molecules may affect gas temperature estimates made using the second positive system. The effect of Ar* resonance energy transfer is investigated here by analyzing neutral gas temperatures of argon-N{sub 2} mixtures, for N{sub 2} percentages from 1% to 100%. Neutral gas temperature estimates are higher than expected for mixtures involving greater than 5% N{sub 2} addition, but are reasonable for argon with less than 5% N{sub 2} addition when compared with an analytic model for ion-neutral charge exchange collisional heating. Additional spatiotemporal investigations into neutral gas temperature estimates with 10% N{sub 2} addition demonstrate that although absolute temperature values may be affected by Ar* resonant energy transfer, spatiotemporal trends may still be used to accurately diagnose the discharge.

  20. Pollution of liquid argon after neutron irradiation measured at SARA: summary of raw data

    CERN Document Server

    Andrieux, M L; de Saintignon, P; Ferrari, A; Hostachy, J Y; Martin, P; Wielers, M; Belymam, A; Hoummada, A; Merkel, B; Puzo, P M; Sauvage, D

    1998-01-01

    The SARA fast neutron facility has been used to irradiate various pieces of materials due to be used in the ATLAS electromagnetic calorimeter, immersed in a liquid argon cryostat. The subsequent pollution was measured. The raw data have been summarized in this paper.

  1. MeV Argon ion beam generation with narrow energy spread

    CERN Document Server

    Xu, Jiancai; Shen, Baifei; Zhang, Hui; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-01-01

    Laser driven particle acceleration has shown remarkable progresses in generating multi-GeV electron bunches and 10s of MeV ion beams based on high-power laser facilities. Intense laser pulse offers the acceleration field of 1012 Volt per meter, several orders of magnitude larger than that in conventional accelerators, enabling compact devices. Here we report that a highly-collimated argon ion beam with narrow energy spread is produced by irradiating a 45-fs fully-relativistic laser pulse onto an argon cluster target. The highly-charged (Argon ion with charge state of 16+) heavy ion beam has a minimum absolute energy spread of 0.19 MeV per nucleon at the energy peak of 0.39 MeV per nucleon. we identify a novel scheme from particle-in-cell simulations that greatly reduces the beam energy spread. The laser-driven intense plasma wakefield has a strong modulation on the ion beam in a way that the low energy part is cut off. The pre-accelerated argon ion beam from Coulomb explosion thus becomes more mono-energetic ...

  2. Internal excitation of UF-6 and MoF-6 ions in collisions with argon atoms

    International Nuclear Information System (INIS)

    Beams of UF-6 and MoF-6 of controlled average internal energy from 0.7 to 2.4 eV have been collided with argon at 200 eV laboratory kinetic energy. Analysis of the outgoing kinetic energy distributions shows that increased internal excitation prior to collision enhances the conversion of kinetic to internal energy. (orig.)

  3. Ionization EM calorimetry with accordion electrodes and liquid krypton or argon

    Energy Technology Data Exchange (ETDEWEB)

    Radeka, V.

    1993-11-01

    The results of a study and tests of a liquid krypton/argon electromagnetic calorimeter with accordion electrode structure are briefly summarized. This includes the calorimeter response to electrons and muons, energy, pointing and timing resolution, and a measurement by multiple sampling. The electrode layout with fine segmentation is illustrated.

  4. Neutral gas temperature estimates and metastable resonance energy transfer for argon-nitrogen discharges

    International Nuclear Information System (INIS)

    Rovibrational spectroscopy band fitting of the nitrogen (N2) second positive system is a technique used to estimate the neutral gas temperature of N2 discharges, or atomic discharges with trace amounts of a N2 added. For mixtures involving argon and N2, resonant energy transfer between argon metastable atoms (Ar*) and N2 molecules may affect gas temperature estimates made using the second positive system. The effect of Ar* resonance energy transfer is investigated here by analyzing neutral gas temperatures of argon-N2 mixtures, for N2 percentages from 1% to 100%. Neutral gas temperature estimates are higher than expected for mixtures involving greater than 5% N2 addition, but are reasonable for argon with less than 5% N2 addition when compared with an analytic model for ion-neutral charge exchange collisional heating. Additional spatiotemporal investigations into neutral gas temperature estimates with 10% N2 addition demonstrate that although absolute temperature values may be affected by Ar* resonant energy transfer, spatiotemporal trends may still be used to accurately diagnose the discharge

  5. INDUCTIVELY COUPLED ARGON PLASMA AS AN ION SOURCE FOR MASS SPECTROMETRIC DETERMINATION OF TRACE ELEMENTS

    Science.gov (United States)

    Solution aerosols are injected into an inductively coupled argon plasma (ICP) to generate a relatively high number density of positive ions derived from elemental constituents. A small fraction of these ions is extracted through a sampling orifice into a differentially pumped vac...

  6. Implantation of keV-energy argon clusters and radiation damage in diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir; Samela, Juha; Nordlund, Kai; Popov, Vladimir

    2012-01-01

    We show that for impacting argon clusters, both mean projected ranges of the constituents and depths of radiation damage in diamond scale linearly with momentum. The same dependence was earlier found for keV-energy cluster implantation in graphite, thus suggesting the universality of this scaling...

  7. Ab initio ground state phenylacetylene-argon intermolecular potential energy surface and rovibrational spectrum

    DEFF Research Database (Denmark)

    Cybulski, Hubert; Fernandez, Berta; Henriksen, Christian; Felker, Peter M.

    2012-01-01

    We evaluate the phenylacetylene-argon intermolecular potential energy surface by fitting a representative number of ab initio interaction energies to an analytic function. These energies are calculated at a grid of intermolecular geometries, using the CCSD(T) method and the aug-cc-pVDZ basis set...

  8. Purity control system of the liquid argon calorimeter of the ATLAS experiment

    International Nuclear Information System (INIS)

    At the ATLAS detector (LHC at CERN) a Liquid Argon calorimeter is used to precisely measure the energy of the electromagnetic interacting particles. Particles deposit their energy in the calorimeter by creating a particle shower. The ionization of the Liquid-Argon due to the shower particles can be used to determine the energy of the initial particle. Possible electronegative impurities in the calorimeter could reduce the ionization which would lead to a worse energy resolution. In order to monitor the purity of the Liquid-Argon several purity monitors are distributed over the calorimeter. Each monitor consists of a ionization chamber with two radioactive sources (241Am and 207Bi). The decay particles of the probes create a certain, known amount of charge carrier that are collected by applying an electromagnetic field. The measurement of the signal amplitude from these charge carriers can be used to measure the purity of the Liquid Argon. This talk gives an overview of the system with a focus of a new implementation of a OPC-UA server that reads out the monitors and determines the purity values. In addition results on the long term stability of the purity are shown.

  9. Impact of keV-energy argon clusters on diamond and graphite

    DEFF Research Database (Denmark)

    Popok, Vladimir; Samela, Juha; Nordlund, Kai; Popov, Vladimir P.

    2012-01-01

    the graphene planes, significant radiation damage is already introduced by impact of clusters with low kinetic energies (a few tens of eV/atom). However, collisions of the argon clusters cause very elastic response of the graphene planes that leads to efficient closure of the craters which could be...

  10. Drift time measurement in the ATLAS liquid argon electromagnetic calorimeter using cosmic muons

    DEFF Research Database (Denmark)

    Aad..[], G.; Dam, Mogens; Hansen, Jørgen Beck; Hansen, John Renner; Hansen, Jørn Dines; Hansen, Peter Henrik; Xella, Stefania; Klinkby, Esben Bryndt; Nilsson, Björn Stefan

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the...

  11. Pilot study about dose-effect relationship of ocular injury in argon laser photocoagulation

    Science.gov (United States)

    Chen, P.; Zhang, C. P.; Fu, X. B.; Zhang, T. M.; Wang, C. Z.; Qian, H. W.; San, Q.

    2011-03-01

    The aim of this article was to study the injury effect of either convergent or parallel argon laser beam on rabbit retina, get the dose-effect relationship for the two types of laser beams, and calculate the damage threshold of argon laser for human retinas. An argon laser therapeutic instrument for ophthalmology was used in this study. A total of 80 rabbit eyes were irradiated for 600 lesions, half of which were treated by convergent laser and the other half were done with parallel laser beam. After irradiation, slit lamp microscope and fundus photography were used to observe the lesions, change and the incidence of injury was processed statistically to get the damage threshold of rabbit retina. Based on results from the experiments on animals and the data from clinical cases of laser treatment, the photocoagulation damage thresholds of human retinas for convergent and parallel argon laser were calculated to be 0.464 and 0.285 mJ respectively. These data provided biological reference for safely operation when employing laser photocoagulation in clinical practice and other fields.

  12. Test beam results of a stereo preshower integrated in the liquid argon accordion calorimeter

    CERN Document Server

    Davis, R; Greenious, G; Kitching, P; Olsen, B; Pinfold, James L; Rodning, N L; Boos, E; Zhautykov, B O; Aubert, Bernard; Bazan, A; Beaugiraud, B; Boniface, J; Colas, Jacques; Eynard, G; Jézéquel, S; Le Flour, T; Linossier, O; Nicoleau, S; Sauvage, G; Thion, J; Van den Plas, D; Wingerter-Seez, I; Zitoun, R; Zolnierowski, Y; Chmeissani, M; Fernández, E; Garrido, L; Martínez, M; Padilla, C; Citterio, M; Gordon, H A; Lissauer, D; Ma, H; Makowiecki, D S; Radeka, V; Rahm, David Charles; Rescia, S; Stephani, D; Takai, H; Baisin, L; Berset, J C; Chevalley, J L; Gianotti, F; Gildemeister, O; Marin, C P; Nessi, Marzio; Poggioli, Luc; Richter, W; Vuillemin, V; Baze, J M; Delagnes, E; Gosset, L G; Lavocat, P; Lottin, J P; Mansoulié, B; Meyer, J P; Renardy, J F; Schwindling, J; Simion, S; Taguet, J P; Teiger, J; Walter, C; Collot, J; de Saintignon, P; Hostachy, J Y; Mahout, G; Barreiro, F; Del Peso, J; García, J; Hervás, L; Labarga, L; Romero, P; Scheel, C V; Chekhtman, A; Cousinou, M C; Dargent, P; Dinkespiler, B; Etienne, F; Fassnacht, P; Fouchez, D; Martin, L; Miotto, A; Monnier, E; Nagy, E; Olivetto, C; Tisserant, S; Battistoni, G; Camin, D V; Cavalli, D; Costa, G; Cozzi, L; Fedyakin, N N; Ferrari, A; Mandelli, L; Mazzanti, M; Perini, L; Resconi, S; Sala, P R; Beaudoin, G; Depommier, P; León-Florián, E; Leroy, C; Roy, P; Augé, E; Breton, D; Chase, Robert L; Chollet, J C; de La Taille, C; Fayard, Louis; Fournier, D; González, J; Hrisoho, A T; Jacquier, Y; Merkel, B; Nikolic, I A; Noppe, J M; Parrour, G; Pétroff, P; Puzo, P; Richer, J P; Schaffer, A C; Seguin-Moreau, N; Serin, L; Tisserand, V; Veillet, J J; Vichou, I; Canton, B; David, J; Genat, J F; Imbault, D; Le Dortz, O; Savoy-Navarro, Aurore; Schwemling, P; Eek, L O; Lund-Jensen, B; Söderqvist, J; Astbury, Alan; Keeler, Richard K; Lefebvre, M; Robertson, S; White, J

    1998-01-01

    This paper describes the construction of an integrated preshower within the RD3 liquid argon accordion calorimeter. It has a stereo view which enables the measurement of two transverse coordinates. The prototype was tested at CERN with electrons, photons and muons to validate its capability to work at LHC ( Energy resolution, impact point resolution, angular resolution, $\\pi^o$/$\\gamma$ rejection ).

  13. Liquid Argon Dielectric Breakdown Studies with the MicroBooNE Purification System

    CERN Document Server

    Acciarri, R; James, C; Johnson, B; Jostlein, H; Lockwitz, S; Lundberg, B; Raaf, J L; Rameika, R; Rebel, B; Zeller, G P; Zuckerbrot, M

    2014-01-01

    The proliferation of liquid argon time projection chamber detectors makes the characterization of the dielectric properties of liquid argon a critical task. To improve understanding of these properties, a systematic study of the breakdown electric field in liquid argon was conducted using a dedicated cryostat connected to the MicroBooNE cryogenic system at Fermilab. An electrode sphere-plate geometry was implemented using spheres with diameters of 1.3 mm, 5.0 mm, and 76 mm. The MicroBooNE cryogenic system allowed measurements to be taken at a variety of electronegative contamination levels ranging from a few parts-per-million to tens of parts-per- trillion. The cathode-anode distance was varied from 0.1 mm to 2.5 cm. The results demonstrate a geometric dependence of the electric field strength at breakdown. This study is the first time that the dependence of the breakdown field on stressed cathode area has been shown for liquid argon.

  14. Photoionization cross-sections for atoms and ions of aluminum, silicon, and argon.

    Science.gov (United States)

    Chapman, R. D.; Henry, R. J. W.

    1972-01-01

    Photoionization cross sections for all levels belonging to the configurations of atoms and ions of aluminum, silicon, and argon have been calculated using Hartree-Fock bound-electron wave functions and close-coupling approximation free-electron wave functions. The results are presented in the form of a computationally convenient interpolation formula and should find wide astrophysical application.

  15. Simulations of geometrically pinched argon plasmas using an extended one-dimensional model

    NARCIS (Netherlands)

    K.T.A.L. Burm,; W. J. Goedheer,; D.C. Schram,

    2001-01-01

    The subject of this paper is the modelling of a wall-stabilized cylinder symmetric cascaded are which is to be used as a high-density plasma source. To enhance the ion flux emerging from cascaded are argon plasmas the confining wall can be changed into a nozzle geometry. Such pinched geometries incr

  16. The Ashima/MIT Mars GCM and argon in the martian atmosphere

    Science.gov (United States)

    Lian, Yuan; Richardson, Mark I.; Newman, Claire E.; Lee, Christopher; Toigo, Anthony D.; Mischna, Michael A.; Campin, Jean-Michel

    2012-04-01

    We investigate the ability of modern general circulation models (GCMs) to simulate transport in the martian atmosphere using measurements of argon as a proxy for the transport processes. Argon provides the simplest measure of transport as it is a noble gas with no sinks or sources on seasonal timescales. Variations in argon result solely from 'freeze distillation', as the atmosphere condenses at the winter poles, and from atmospheric transport. Comparison of all previously published models when rescaled to a common definition of the argon enhancement factor (EF) suggest that models generally do a poor job in predicting the peak enhancement in southern winter over the winter pole - the time when the capability of the model transport approaches are most severely tested. Despite observed peak EF values of ˜6, previously published model predictions peaked at EF values of only 2-3. We introduce a new GCM that provides a better treatment of mass conservation within the dynamical core, includes more sophisticated tracer transport approaches, and utilizes a cube-sphere grid structure thus avoiding the grid-point convergence problem at the pole that exists for most current Mars GCMs. We describe this model - the Ashima Research/Massachusetts Institute of Technology Mars General Circulation Model (Ashima/MIT Mars GCM) and use it to demonstrate the significant sensitivity of peak EF to the choices of transport approach for both tracers and heat. We obtain a peak EF of 4.75 which, while over 50% higher than any prior model, remains well short of the observed value. We show that the polar EF value in winter is primarily determined by the competition between two processes: (1) mean meridional import of lower-latitude air not enriched in argon and (2) the leakage of enriched argon out of the polar column by eddies in the lowest atmospheric levels. We suggest possibilities for improving GCM representation of the CO2 cycle and the general circulation that may further improve the

  17. Cryogenic separation of oxygen-argon mixture in natural air samples for isotopic and molecular ratios

    Science.gov (United States)

    Habeeb Rahman, Keedakkadan; Abe, Osamu

    2014-05-01

    The discovery of mass independent isotope fractionation in oxygen during the formation of ozone in the stratosphere has initiated a wide application in isotope geochemistry field. Separation of oxygen-argon mixture has become the foundation of high precision analysis of Δ17O and δ(O2/Ar) for geochemical applications. Here we present precise and simplified cryogenic separation of argon oxygen mixture from the atmospheric and dissolved air using 30/60 mesh 5A molecular sieve zeolite. A pioneer study of this method was conducted by Thiemens and Meagher in 1984. The column which is made of glass tube contains about 1.1 grams of molecular sieve zeolite and both ends of column was filled with glass wools. The experimental set up was tested for different combination of molecular sieves and slurry temperatures. We found the most efficient condition for the separation was at a column temperature of -103°C. For complete transfer of O2 and Ar mixture usually takes in 15-20 minutes time. The isotopic ratios of oxygen were analyzed using mass spectrometer (Thermo Fischer Delta Plus) relative to reference oxygen-argon mixture at 3V of m/z 32 for both sample and reference side. The signals of m/z 28, 32, and 40 were measured by dynamically to determine oxygen -argon ratio and to check nitrogen contamination. Repeated measurements of atmospheric air yielded a reproducibility (SE n=80) of 0.006, 0.004 and 0.19‰ for δ17O, δ18O and δO2/Ar respectively. The isotopic and molecular fractionation of argon- oxygen mixture during gas adsorption and desorption while using molecular sieve under liquid nitrogen temperature was studied. We have established a linear relationship governing the effect of 13X and 5A molecular sieves on molecular fractionation. And suggested the use of single 1/8" pellet 13X molecular sieve provided a negligible fractionation.

  18. Structural characteristics of copper/hydrogenated amorphous carbon composite films prepared by microwave plasma-assisted deposition processes from methane-argon and acetylene-argon gas mixtures

    International Nuclear Information System (INIS)

    Copper/hydrogenated amorphous carbon (Cu/a-C:H) composite films have been deposited on silicon substrates by a hybrid technique combining microwave plasma-assisted chemical vapor deposition and sputter-deposition from methane-argon and acetylene-argon gas mixtures. The major objective of this work was to investigate the effect of the carbon gas precursor on the structural characteristics of Cu/a-C:H composite films deposited at ambient temperature. The major characteristics of CH4-argon and C2H2-argon plasmas were analyzed by Langmuir probe measurements. The composition of films was determined by Rutherford backscattering spectroscopy, energy recoil detection analyses and nuclear reaction analyses. The carbon content in the films was observed to vary in the range 20-77 at.% and 7.5-99 at.% as the CH4 and C2H2 concentrations in the gas phase increased from 10 to 100%, respectively. The atom number ratio H/C in the films was scattered approximately 0.4 whatever the carbon gas precursor used. The crystallographic structure and the size of copper crystallites incorporated in the a-C were determined by X-ray diffraction techniques. The copper crystallite size decreased from 20 nm in pure copper films to less than 5 nm in Cu/a-C:H films containing more than 40 at.% of carbon. Grazing incidence small angle X-ray scattering measurements were performed to investigate the size distribution and distance of copper crystallites as functions of the deposition parameters. The structural characteristics of copper crystallites were dependent on the hydrocarbon gas precursor used. The crystallite size and the width of the size distribution were homogeneous in films deposited from CH4. Copper crystallites with an anisotropic shape were found in films deposited from C2H2. The major radicals formed in the plasma and condensed on the surface of growing films, namely CH and C2H radicals for films produced from CH4 and C2H2, respectively, play probably a crucial role in the growth

  19. Thermodynamic diagrams for high temperature plasmas of air, air-carbon, carbon-hydrogen mixtures, and argon

    CERN Document Server

    Kroepelin, H; Hoffmann, K-U

    2013-01-01

    Thermodynamic Diagrams for High Temperature Plasmas of Air, Air-Carbon, Carbon-Hydrogen Mixtures, and Argon provides information relating to the properties of equilibrium gas plasmas formed from hydrocarbons, from air without argon, from pure argon, and from mixtures of air and carbon at various compositions, temperatures and pressures. The data are presented in graphical rather than tabular form to provide a clearer picture of the plasma processes investigated. This book is composed of four chapters, and begins with the introduction to the characteristics of plasmas, with emphasis on their th

  20. On the argon and oxygen incorporation into SiOx through ion implantation during reactive plasma magnetron sputter deposition

    OpenAIRE

    van Hattum, E.D.; Boltje, D. B.; Palmero Acebedo, A.; Arnoldbik, W.M.; Rudolph, H.; Habraken, F.H.P.M.

    2008-01-01

    The incorporation of argon in SiOx (0 x 2) during reactive plasma magnetron sputter deposition using a O2/Ar plasma and a silicon sputter cathode has been investigated and related to the flux of argon ions created in the plasma afterglowregion on the growth surface. The argon concentration in the grown films appears to be mainly a function of the x-value, independent of the extent of ion bombardment on the growing surface, and only slightly dependent on the substrate temperature during the gr...

  1. Formation of silicon hydride using hyperthermal negative hydrogen ions (H-) extracted from an argon-seeded hydrogen sheet plasma source

    International Nuclear Information System (INIS)

    An E x B probe (a modified Wien filter) is constructed to function both as a mass spectrometer and ion implanter. The device, given the acronym EXBII selects negative hydrogen ions (H-) from a premixed 10% argon-seeded hydrogen sheet plasma. With a vacuum background of 1.0 x 10-6 Torr, H- extraction ensues at a total gas feed of 1.8 mTorr, 0.5 A plasma discharge. The EXBII is positioned 3 cm distance from the sheet core as this is the region densely populated by cold electrons (Te ∼ 2 eV, Ne ∼ 3.4 x 1011 cm-3) best suited for H- formation. The extracted H- ions of flux density ∼0.26 A/m2 are segregated, accelerated to hyperthermal range (2, n-type Si (1 0 0) substrate held at the rear end of the EXBII, placed in lieu of its Faraday cup. The palladium membrane plays the role of a catalyst initiating the reaction between Si atoms and H- ions simultaneously capping the sample from oxidation and other undesirable adsorbents. AFM and FTIR characterization tests confirm the formation of SiH2. Absorbance peaks between 900-970 cm-1 (bending modes) and 2050-2260 cm-1 (stretching modes) are observed in the FTIR spectra of the processed samples. It is found that varying hydrogen exposure time results in the shifting of wavenumbers which may be interpreted as changes in the frequencies of vibration for SiH2. These are manifestations of chemical changes accompanying alterations in the force constant of the molecule. The sample with longer exposure time exhibits an additional peak at 2036 cm-1 which are hydrides of nano-crystalline silicon.

  2. Helium and argon isotopes of the Tertiary basic igneous rocks from Shandong Peninsula and implications for the magma origin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Helium (He) and Argon (Ar) isotopic compositions of the Tertiary basic igneous rocks were determined by the high temperature melting extraction method. The selected samples for the studies included al-kaline basalts and diabases from the Jiyang basin,and the surrounding Shanwang and Qixia outcrops in the Shandong Peninsula,eastern China. The results show that the Paleogene basalts and diabases from the Jiyang basin yielded a wide range of P4 PHe abundance of (73.70-804.16)×10 P-8 Pcm P3 P STP·g P-1 P,with P3 PHe/ P4 PHe ratios of 0.374-2.959 Ra,which was lower than the MORB but evidently higher than the con-tinental crust value. The Neogene alkaline basalts from the Jiyang basin,Shanwang and Qixia outcrops have variable P4 PHe abundances ((42.34-286.72)×10-8 Pcm P3 P STP·g-1 P),and "continental crust-like" P3 PHe/ P4 PHe ratios (0.013-0.074 Ra). All of them contain atmospheric-like P40 PAr/ P36 PAr ratio (395.4-1312.7),reflecting the mantle sources with air components. Their low P3 PHe/ P4 PHe ratios are interpreted as the enrichment of the radiogenic P4 PHe mainly inherited from the mantle. He and Ar systematics show the mixing of MORB-type,air and a P4 PHe enriched member in the mantle source,suggesting that these igneous rocks originated from the depleted asthenospheric mantle mixed with an EMI component. Therefore,the present He and Ar isotopes do not support the viewpoints that the Cenozoic igneous rocks of Eastern North China were the products of mantle plume(s) activities.

  3. Size Effect on Transport Properties of Gaseous Argon: A Molecular Dynamics Simulation Study

    International Nuclear Information System (INIS)

    We have carried out a series of equilibrium molecular dynamics (EMD) simulations of gaseous argon at 273.15 K and 1.00 atm for the calculation of transport properties as a function of the number of argon molecules (N). While the diffusion coefficients (D) of gaseous argon approach to the experimental measure with increasing N, the viscosities (η) and thermal conductivities (λ) obtained for N = 432 are unreliable due to the high fluctuation of the time correlation functions and those for N = 1728 are rather acceptable. Increasing further to N = 6912 has improved the MD results a little closer to the experimental measures for η and λ. Both the EMD results for η and λ for N = 6912 underestimate the experimental measures and it is not expected that the more increasing N makes the closer results to the experimental measures. One possible explanation for the large disagreement between MD results and the experimental measures for η and λ may be due to the use of LJ parameters which were used for liquid argon. In a recent study, we have examined the Green-Kubo formula for the calculation of transport properties (diffusion coefficient, viscosity, and thermal conductivity) of noble gases (He, Ne, Ar, Kr, and Xe) by carrying out a series of equilibrium molecular dynamics (EMD) simulations for the system of N=1728 at 273.15 K and 1.00 atm.1 While the diffusion coefficients (D) of noble gases were obtained through the original Green-Kubo formula, the viscosities (η) and thermal conductivities (λ) were obtained by utilizing the revised Green-Kubo formulas. The structural and dynamic properties of gaseous argon are completely different from those of liquid argon at 94.4 K and 1.374 g/cm3. The results for transport properties (D, η, and λ) at 273.15 K and 1.00 atm obtained from our EMD simulations are in general agreement with the experimental data and superior to the rigorous results of the kinetic theory

  4. ISS Expedition 34 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 34 from 12/2012-03/2013. Press kits contain information about each mission overview, crew, mission timeline, benefits, and...

  5. Operating Instructions for the Cryogenics in the Liquid Argon Detector at CIEMAT; Operacion de la Criogenia del Detector de Argon Liquido del CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Romero, L.; Leal, M. D.; Prado, M. del; Ramirez, J. L.

    2009-12-19

    Ciemat has wide experience in designing and developing gaseous particle detectors. It has taken part in the building of experiments for CERN accelerators, constructing shares of the muon chambers for L3 experiment in LEP and CMS experiment in LHC. Recently, new concepts for particle detectors have been developed, as a natural evolution from the ones built at Ciemat. These new radiation detectors use liquefied noble gases as active media. A testing system for these kind of liquefied argon detectors has been built at Ciemat, and includes a supporting cryogenic system for the liquefaction and maintenance of the liquid argon needed for operating the detector. This document describes the technical features of this cryogenic system. Besides the documentation of the cryogenic system, this technical report can be of help for the management and upgrading of the detector. As well as an introduction, the report includes the following chapters: The second one is a description of the cryogenics and gas systems. The third chapter shows the controlling electronics. The fourth chapter deals with the important topic that is security, its systems and protocols. The fifth describes the cryogenic operations possible in this equipment. The report is completed with diagrams, schemes, pictures and tables for the easier management of the setup. (Author)

  6. Compilation of electron collision excitation cross sections for neutral argon; Compilacion de resultados de secciones eficaces de excitacion para niveles del Argon neutro

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, F.

    1993-07-01

    The present work presents a compilation and critical analysis of the available data on electron collision excitation cross sections for neutral Argon levels. This study includes: 1.- A detailed description in intermediate coupling for all the levels belonging the 20 configurations 3p5 ns (n=4to 12), np(n=4to8) and nd(n=3to8)of neutral Argon. 2.- Calculation of the electron collision excitation cross sections in Born and Born-Oppenheimer-Ochkur approximations for all the levels in the 14 configurations 3p5 ns (n=4 to 7), np (n=4 to 7) and nd (n=3 to 8). 3.- comparison and discussion of the compiled data. These are the experimental and theoretical values available from the literature, and those from this work. 4.- Analysis of the regularities and systematic behaviors in order to determine which values can be considered more reliable. It is show that the concept of one electron cross section results quite useful for this purpose. In some cases it has been possible to obtain in this way approximate analytical expressions interpolating the experimental data. 5.- All the experimental and theoretical values studied are graphically presented and compared. 6.- The last part of the work includes a listing of several general purpose programs for Atomic Physics calculations developed for this work. (Author) 35 refs.

  7. Duplication 9q34 syndrome.

    Science.gov (United States)

    Allderdice, P W; Eales, B; Onyett, H; Sprague, W; Henderson, K; Lefeuvre, P A; Pal, G

    1983-09-01

    Phenotypic, karyotypic, and developmental homology between affected children of carriers of an inverted insertion (9) (q22.1q34.3q34.1) led to recognition of a new chromosome syndrome: dup 9q34. Individuals with dup 9q34 have slight psychomotor retardation, understand simple directions, and acquire a limited vocabulary. In childhood, many are hyperactive. Clinical features include low birth weight, normal birth length, and initial poor feeding and thriving. Musculo-skeletal systems are affected: there are joint contractures, long thin limbs, and striking arachnodactyly. There is abnormal implantation of the thumb, increased space between the first and second fingers, and excess digital creases. Marfan syndrome was a provisional diagnosis for several cases prior to cytogenetic analysis. Cardiovascular and ocular systems are minimally affected, erythema and heart murmurs occur, and ptosis and strabismus are frequent, but lens dislocation is not observed. Features at birth include: dolichocephaly, facial asymmetry, narrow horizontal palpebral fissures, microphthalmia, prominent nasal bridge, small mouth, thin upper lip with down-turned corners, and slight retrognathia. In older children, retrognathia is diminished and the nose becomes long and narrow. The new culture and chromosome banding techniques enable sorting of cases with the distal dup 9q phenotype into two groups. The cases with a longer dup 9q are more likely to develop with life-threatening congenital anomalies. The cases with the shorter dup 9q34 have a less severe long-term prognosis and will benefit, together with their parents, from special education. Female carriers of the inv ins(9) (q22.1q34.3q34.1) have about a 31% risk in each pregnancy to conceive a fetus affected by the dup 9q34 syndrome. A comparable figure is not yet available for male carriers. PMID:6613995

  8. Are the argon metastables important in high power impulse magnetron sputtering discharges?

    Energy Technology Data Exchange (ETDEWEB)

    Gudmundsson, J. T., E-mail: tumi@hi.is [Department of Space and Plasma Physics, School of Electrical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Lundin, D.; Minea, T. M. [Laboratoire de Physique des Gaz et Plasmas - LPGP, UMR 8578 CNRS, Université Paris-Sud, 91405 Orsay Cedex (France); Stancu, G. D. [CentraleSupélec, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); CNRS, UPR 288 Laboratoire EM2C, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Brenning, N. [Department of Space and Plasma Physics, School of Electrical Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Plasma and Coatings Physics Division, IFM-Materials Physics, Linköping University, SE-581 83 Linköping (Sweden)

    2015-11-15

    We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization is always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work.

  9. ATLAS endcap liquid argon calorimeters. Description and construction of the cryostats

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Guy; Prat, Serge; Veillet, Jean-Jacques [Laboratoire de l' Accelerateur Lineaire IN2P3-CNRS et Universite de Paris-Sud 11, BP 34, F-91898 Orsay Cedex (France)

    2006-05-15

    All forward calorimeters of the ATLAS detector use the same detection technique, energy loss in passive plates, followed by ionisation and charge detection in liquid argon. They are therefore all grouped in the same vessel which must basically support and keep in place the heavy plates and the detection electrodes and maintain liquid argon at cold and stable temperature. Taking into account all the constraints as detailed below, and the overall detector size, 5 meter diameter by 3 meter length this was quite a challenge. The design, construction and tests of these two cryostats, up to their delivery at CERN, are described in this document. These two cryostats are a joint 'in kind' contribution to the Atlas experiment of LAL (Orsay), Max Planck Institute (Muenchen) and Wuppertal University (Wuppertal) and have been designed and built under the responsibility of LAL (Orsay) with contributions of the technical groups of the above institutions and of ATLAS-CERN. (authors)

  10. Infrared Spectroscopy of Naphthalene Aggregation and Cluster Formation in Argon Matrices

    Science.gov (United States)

    Roser, J. E.; Allamondola, L. J.

    2011-01-01

    Fourier-transform mid-infrared absorption spectra of mixed argon/naphthalene matrices at 5 K are shown with ratios of argon-to-naphthalene that vary from 1000 to 0. These spectra show the changes as naphthalene clustering and aggregation occurs, with moderate spectral shifts affecting the C-H vibrational modes and relatively small or no shifts to the C-C and C-C-C vibrational modes. The possible contribution of homogeneous naphthalene clusters to the interstellar unidentified infrared bands is discussed. The contribution of polycyclic aromatic hydrocarbon (PAH) clusters to the 7.7 micron emission plateau and the blue shading of the 12.7 micron emission band are identified as promising candidates for future research. In addition, since PAH clusters are model components of Jupiter and Titan's atmospheres, the information presented here may also be applicable to the spectroscopy of these objects.

  11. Radon backgrounds in the DEAP-1 liquid argon based Dark Matter detector

    CERN Document Server

    Amaudruz, P -A; Beltran, B; Boudjemline, K; Caldwell, M G Boulay B Cai T; Chen, M; Chouinard, R; Cleveland, B T; Contreras, D; Dering, K; Duncan, F; Ford, R; Giuliani, R Gagnon F; Golovko, M Gold V V; Gorel, P; Graham, K; Grant, D R; Hakobyan, R; Hallin, A L; Harvey, P; Hearns, C; Jillings, C J; Kuźniak, M; Lawson, I; Li, O; Lidgard, J; Liimatainen, P; Lippincott, W H; Mathew, R; McDonald, A B; McElroy, T; McFarlane, K; McKinsey, D; Muir, A; Nantais, C; Nicolics, K; Nikkel, J; Noble, T; O'Dwyer, E; Olsen, K S; Ouellet, C; Pasuthip, P; Pollmann, T; Rau, W; Retiere, F; Ronquest, M; Skensved, P; Sonley, T; Vázquez-Jáuregui, E; Veloce, L; Ward, M

    2012-01-01

    The DEAP-1 \\SI{7}{kg} single phase liquid argon scintillation detector was operated underground at SNOLAB in order to test the techniques and measure the backgrounds inherent to single phase detection, in support of the DEAP-3600 Dark Matter detector. Backgrounds in DEAP are controlled through material selection, construction techniques, pulse shape discrimination and event reconstruction. This report details the analysis of background events observed in three iterations of the DEAP-1 detector, and the measures taken to reduce them. The $^{222}$Rn decay rate in the liquid argon was measured to be between 16 and \\SI{26}{\\micro\\becquerel\\per\\kilogram}. We found that the background spectrum near the region of interest for Dark Matter detection in the final DEAP-1 detector generation is well described considering events from three sources: radon daughters decaying on the surface of the active volume, the expected rate of electromagnetic events misidentified as nuclear recoils due to inefficiencies in the pulse sh...

  12. The population distribution of argon atoms in Paschen 1s levels in an inductively coupled plasma

    International Nuclear Information System (INIS)

    The population distribution of argon atoms in Paschen 1s levels in inductively coupled plasmas is investigated using a collisional-radiative model and the optical emission spectroscopy method. The modelling results of population densities are in good agreement with the experimental ones. According to this model, the population distribution of 1s levels is affected mainly by the electron impact transfer and the resonance radiation processes. As a result, a simple relationship on the population ratio of 1s4 and 1s5 is obtained. From this relationship, three kinetic regimes with different electron densities and discharge pressures are identified, which can be used to characterize the population distribution of argon 1s levels in inductively coupled plasmas.

  13. Reparative processes of the iris after irradiation with the argon-ion laser

    International Nuclear Information System (INIS)

    The reparative processes of the pigmented iris of the rabbit were analysed with ultrastructural methods. Clearing of the damaged area by macrophages is the first step in the reparative processes. Clump cells are macrophages which are observed from the first day of the injury until the ninth week. Repair of the anterior surface of the iris is largely finished after 32 days. The repair of collagenous fibres reaches its maximum activity 32 days after irradiation. The pigment epithelium has only an insignificant regeneration potential. Irradiation of the iris by the argon-ion laser results in an atropic, hyperpigmented scar. The rapid regeneration of a lesion induced by the argon-ion laser in the rabbit iris casts doubt as to whether this method could be applied to the human eye with equal success. (orig.) 891 AJ/orig. 892 MB

  14. Experimental study of electric breakdowns in liquid argon at centimeter scale

    CERN Document Server

    Blatter, A; Hsu, C -C; Janos, S; Kreslo, I; Luethi, M; von Rohr, C Rudolf; Schenk, M; Strauss, T; Weber, M S; Zeller, M

    2014-01-01

    In this paper we present results on measurements of the dielectric strength of liquid argon near its boiling point and cathode-anode distances in the range of 0.1 mm to 40 mm with spherical cathode and plane anode. We show that at such distances the applied electric field at which breakdowns occur is as low as 40 kV/cm. Flash-overs across the ribbed dielectric of the high voltage feed-through are observed for a length of 300 mm starting from a voltage of 55 kV. These results contribute to set reference for the breakdown-free design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

  15. Investigation of capacitively coupled argon plasma driven at various frequencies and validation of surface waves excitation

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, E., E-mail: essam29@hotmail.com [Physics Department, Faculty of Science, Zagazig University, Zagazig 44519 (Egypt); Physics Department, College of Science, Salman bin AbdulAziz University, Al-Kharj, P.O. 83, Al-Kharj 11942 (Saudi Arabia)

    2013-01-03

    The influence of excitation frequency (13.56–96 MHz) on the characteristics of capacitively coupled argon plasma is investigated by means of Langmuir probe and a high-voltage probe. Measurements are performed in argon pressure of 40 and 60 mTorr at a fixed discharge voltage V{sub pp}=200 V. The measured electron energy distribution function EEPFs are a bi-Maxwellian type irrespective of the driving frequency and gas pressure. The electron density and temperatures show peak over frequency range of 54–72 MHz, beyond which it decreases. The non-monotonic dependences of plasma parameters with driving frequency were interpreted in terms of excited surface wave excited at the powered electrode.

  16. Shock tube study of ionization rates of NaCl-contaminated argon

    Science.gov (United States)

    Schneider, K.-P.; Park, C.

    1975-01-01

    Electron density, electron temperature, and concentration of excited sodium atoms are measured in the weakly ionized regime behind a shock wave in impure argon in a shock tube using microwave techniques and spectrally resolved radiometry. Evidence is presented to show that an apparent increase in the rate of ionization is due to electron detachment of negative chlorine ions produced from sodium chloride vapor contained as an impurity. To be consistent with this chemical model, rate coefficients are found in the temperature range between 5500 and 8600 K for the dissociation of NaCl into an ion pair, dissociation of NaCl into a neutral pair, and electron detachment of a negative chlorine ion. Electron temperature is lower than heavy-particle temperature by roughly 1000 K. The electron-argon impact-ionization rate coefficient is a weak function of electron temperature in contradiction to expectation.

  17. Polycystic ovarian disease treated by laparoscopic argon laser capsule drilling: comparison of vaporization versus perforation technique.

    Science.gov (United States)

    Heylen, S M; Puttemans, P J; Brosens, I A

    1994-06-01

    Forty-four anovulatory women with polycystic ovarian disease (PCOD) were laparoscopically treated with the argon laser. Eighty percent of them were previously resistant to clomiphene citrate therapy. After surgery spontaneous ovulation occurred in 80% of the women. Spontaneous conception occurred in 55% of patients, and another 18% of the women who were previously resistant to clomiphene citrate conceived post-operatively after clomiphene citrate therapy. This gives an overall conception rate of 73% after 18 months (using life table analysis). Two different drilling techniques were used: classical vaporization of the ovarian capsule (22 women), and simple perforation of the ovarian capsule with subcapsular destruction of the ovarian stroma (22 women). No different ovulation or pregnancy rates were observed post-operatively between the two techniques. These results suggest that patients with PCOD can be induced to ovulate, and subsequently conceive, by laparoscopic argon laser treatment. The technique with minimal trauma to the ovarian capsule seems preferable. PMID:7962372

  18. Liquid Argon Time Projection Chamber research and development in the United States

    International Nuclear Information System (INIS)

    A workshop was held at Fermilab on March 20-21, 2013 to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in seven topical plenary sessions: i) Argon Purity, ii) Cryogenics, iii) TPC and High Voltage, iv) Electronics, Data Acquisition and Triggering, v) Scintillation Light Detection, vi) Calibration and Test Beams, and vii) Software. This document summarizes the current efforts in each of these areas. It also highlights areas in LArTPC research and development that are common between neutrino experiments and dark matter experiments

  19. Two-phase Cryogenic Avalanche Detector with electroluminescence gap operated in argon doped with nitrogen

    CERN Document Server

    Bondar, A; Dolgov, A; Nosov, V; Shekhtman, L; Shemyakina, E; Sokolov, A

    2016-01-01

    A two-phase Cryogenic Avalanche Detector (CRAD) with electroluminescence (EL) gap, operated in argon doped with a minor (49$\\pm$7 ppm) admixture of nitrogen, has been studied. The EL gap was optically read out using cryogenic PMTs located on the perimeter of the gap. We present the results of the measurements of the N$_2$ content, detector sensitivity to X-ray-induced signals, EL gap yield and electron lifetime in the liquid. The detector sensitivity, at a drift field in liquid Ar of 0.6 kV/cm, was measured to be 9 and 16 photoelectrons recorded at the PMTs per keV of deposited energy at 23 and 88 keV respectively. Such two-phase detectors, with enhanced sensitivity to the S2 (ionization-induced) signal, are relevant in the field of argon detectors for dark matter search and low energy neutrino detection.

  20. First results obtained from the Cello liquid argon end cap calorimeters

    International Nuclear Information System (INIS)

    The Cello liquid argon calorimeter is presented in the first part of this thesis. The cryogenic system has to supply three cryostats filled with liquid argon: one cylindrical cryostat of 25 m3 volume contains 2x8 separate modules; each of the two symmetric end cap cryostats contains two half cylindrical modules. Each module in the end cap part consists of 42 layers of lead strips interleaved with 43 full plates. The strips are alternatively vertical, horizontal and circular. In front of the lead calorimeter are 4 planes of copper foils glued on epoxy for dE/dx measurement. The electronics, signal processing and data acquisition system are described. In the second part, the performance and analysis of data measured by the end cap calorimeters are reported: study of Bhabha scattering e+e- → e+e-; preliminary results obtained in two photon physics e+e- → e+e-γγ → e+e-X

  1. Period-two discharge characteristics in argon atmospheric dielectric-barrier discharges

    International Nuclear Information System (INIS)

    Period multiplication and chaos behaviors in atmospheric glow discharges are important to understand atmospheric glow plasma stability and to optimize its applications. In this paper, we study the period-two discharge characteristics in argon atmospheric dielectric-barrier discharges using a one-dimension fluid model. Under certain conditions, period-two discharges can occur at different excitation frequencies and exhibit different current and voltage behaviors. When the discharge current becomes highly symmetrical the period-two discharge can reach to a steady state, which sustains over a broad frequency range. At the sufficiently high excitation frequency, the period-two discharge in atmospheric argon shows noticeably different behaviors from the discharges generated at kilohertz frequency. The spatial characteristics of period-two discharge as well as the influence of driving frequency on period-two discharge behaviors are also investigated.

  2. Pressure-Induced Argon Insertion into an Auxetic Small Pore Zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.; Hriljac, J; Vogt, T

    2010-01-01

    We report that natrolite, Na{sub 16}Al{sub 16}Si{sub 24}O{sub 48} {center_dot} 16H{sub 2}O, a small pore auxetic zeolite can incorporate significant amounts of Argon under moderate pressure- and temperature conditions resulting in Na{sub 16}Al{sub 16}Si{sub 24}O{sub 80} {center_dot} 16H{sub 2}O {center_dot} 6Ar. This material has a {approx}6.5% larger unit cell than natrolite at ambient conditions and its structure is related to Na{sub 16}Al{sub 16}Si{sub 24}O{sub 80} {center_dot} 24H{sub 2}O, an intermediate superhydrated natrolite referred to as para-natrolite. Argon insertion under pressure into auxetic frameworks such as natrolites is an important and overlooked confinement mechanism with potential applications and implications.

  3. Liquid Argon Time Projection Chamber research and development in the United States

    Science.gov (United States)

    Baller, B.; Bromberg, C.; Buchanan, N.; Cavanna, F.; Chen, H.; Church, E.; Gehman, V.; Greenlee, H.; Guardincerri, E.; Jones, B.; Junk, T.; Katori, T.; Kirby, M.; Lang, K.; Loer, B.; Marchionni, A.; Maruyama, T.; Mauger, C.; Menegolli, A.; Montanari, D.; Mufson, S.; Norris, B.; Pordes, S.; Raaf, J.; Rebel, B.; Sanders, R.; Soderberg, M.; St. John, J.; Strauss, T.; Szelc, A.; Tope, T.; Touramanis, C.; Thorn, C.; Urheim, J.; Van de Water, R.; Wang, H.; Yu, B.; Zuckerbrot, M.

    2014-05-01

    A workshop was held at Fermilab on March 20-21, 2013 to discuss the development of liquid argon time projection chambers (LArTPCs) in the United States. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in seven topical plenary sessions: i) Argon Purity, ii) Cryogenics, iii) TPC and High Voltage, iv) Electronics, Data Acquisition and Triggering, v) Scintillation Light Detection, vi) Calibration and Test Beams, and vii) Software. This document summarizes the current efforts in each of these areas. It also highlights areas in LArTPC research and development that are common between neutrino experiments and dark matter experiments.

  4. First-Principles Investigation to Ionization of Argon Under Conditions Close to Typical Sonoluminescence Experiments

    Science.gov (United States)

    Kang, Wei; Zhao, Shijun; Zhang, Shen; Zhang, Ping; Chen, Q. F.; He, Xian-Tu

    2016-02-01

    Mott effect, featured by a sharp increase of ionization, is one of the unique properties of partially ionized plasmas, and thus of great interest to astrophysics and inertial confinement fusion. Recent experiments of single bubble sonoluminescence (SBSL) revealed that strong ionization took place at a density two orders lower than usual theoretical expectation. We show from the perspective of electronic structures that the strong ionization is unlikely the result of Mott effect in a pure argon plasma. Instead, first-principles calculations suggest that other ion species from aqueous environments can energetically fit in the gap between the continuum and the top of occupied states of argon, making the Mott effect possible. These results would help to clarify the relationship between SBSL and Mott effect, and further to gain an better understanding of partially ionized plasmas.

  5. CFD Simulation of a Hydrogen/Argon Plasma Jet Reactor for Coal Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    CHEN H. G.; XIE K. C.

    2004-01-01

    A Computational Fluid Dynamics (CFD) model was formulated for DC arc hydrogen/argon plasma jet reactors used in the process of the thermal H2/Ar plasma pyrolysis of coal to acetylene. In this model, fluid flow, convective heat transfer and conjugate heat conductivity are considered simultaneously. The error caused by estimating the inner-wall temperature of a reactor is avoided. The thermodynamic and transport properties of the hydrogen/argon mixture plasma system, which are usually expressed by a set of discrete dats, are fitted into expressions that can be easily implemented in the program. The effects of the turbulence are modeled by two standard k-s equations. The temperature field and velocity field in the plasma jet reactor were calculated by employing SIMPLEST algorithm. The knowledge and insight obtained are useful for the design improvement and scale-up of plasma reactors.

  6. Benchmarking TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems

    CERN Document Server

    Baptista, B; Chiu, C; Conrad, J M; Ignarra, C M; Jones, B J P; Katori, T; Mufson, S

    2012-01-01

    Scintillation light from liquid argon is produced at 128 nm and thus must be shifted to visible wavelengths in light detection systems used for Liquid Argon Time Projection Chambers (LArTPCs). To date, designs have employed tetraphenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we show that the response of lightguides coated with TPB in a UV Transmitting (UVT) acrylic matrix is very similar to that of a coating using a polystyrene (PS) matrix. We obtain a factor of three higher light yield than has been previously reported from lightguides. This paper provides information on the response of the lightguides so that these can be modeled in simulations for future LArTPCs. This paper also identifies areas of R&D for potential improvements in the lightguide response

  7. Development of wavelength shifter coated reflectors for the ArDM argon dark matter detector

    CERN Document Server

    Boccone, V; Mavrokoridis, K; Regenfus, C; Amsler, C; Badertscher, A; Bueno, A; Cabrera, H; Carmona-Benitez, M C; Daniel, M; Daw, E J; Degunda, U; Dell'Antone, A; Gendotti, A; Epprecht, L; Horikawa, S; Kaufmann, L; Knecht, L; Laffranchi, M; Lazzaro, C; Lussi, D; Lozano, J; Marchionni, A; Melgarejo, A; Mijakowski, P; Natterer, G; Navas-Concha, S; Otyugova, P; de Prado, M; Przewlocki, P; Resnati, F; Robinson, M; Rochet, J; Romero, L; Rondio, E; Rubbia, A; Spooner, N J C; Strauss, T; Ulbricht, J; Viant, T

    2009-01-01

    To optimise the design of the light readout in the ArDM 1-ton liquid argon dark matter detector, a range of reflector and WLS coating combinations were investigated in several small setups, where argon scintillation light was generated by radioactive sources in gas at normal temperature and pressure and shifted into the blue region by tetraphenyl butadiene (TPB). Various thicknesses of TPB were deposited by spraying and vacuum evaporation onto specular 3M{\\small\\texttrademark}-foil and diffuse Tetratex{\\small\\textregistered} (TTX) substrates. Light yields of each reflector and TPB coating combination were compared. Reflection coefficients of TPB coated reflectors were independently measured using a spectroradiometer in a wavelength range between 200 and 650~nm. WLS coating on the PMT window was also studied. These measurements were used to define the parameters of the light reflectors of the ArDM experiment. Fifteen large $120\\times 25$~cm$^2$ TTX sheets were coated and assembled in the detector. Measurements...

  8. Tetraphenyl-butadiene films: VUV-Vis optical characterization from room to liquid argon temperature

    Science.gov (United States)

    Francini, R.; Montereali, R. M.; Nichelatti, E.; Vincenti, M. A.; Canci, N.; Segreto, E.; Cavanna, F.; Di Pompeo, F.; Carbonara, F.; Fiorillo, G.; Perfetto, F.

    2013-09-01

    A thin film of Tetraphenyl-butadiene (TPB) deposited onto the surface delimiting the active volume of the detector and/or onto the photosensor's optical window is the most common solution to down convert argon VUV scintillation light in current and planned liquid argon based experiments for dark matter searches and neutrino physics. Characterization of the main features of TPB coatings on different, commonly used substrates is reported, as a result of measurements at the specialized optical metrology labs of ENEA and University of Tor Vergata. Measured features include TPB emission spectra with lineshape and relative intensity variation recorded as a function of the film thickness and for the first time down to LAr temperature, as well as optical reflectance and transmittance spectra of the TPB coated substrates in the wavelength range of the TPB emission.

  9. Improved TPB-coated Light Guides for Liquid Argon TPC Light Detection Systems

    CERN Document Server

    Moss, Z; Collin, G; Conrad, J M; Jones, B J P; Moon, J; Toups, M; Wongjirad, T

    2014-01-01

    Scintillation light produced in liquid argon (LAr) must be shifted from 128 nm to visible wavelengths in light detection systems used for liquid argon time-projection chambers (LArTPCs). To date, LArTPC light collection systems have employed tetra phenyl butadiene (TPB) coatings on photomultiplier tubes (PMTs) or plates placed in front of the PMTs. Recently, a new approach using TPB-coated light guides was proposed. In this paper, we report on light guides with improved attenuation lengths above 100 cm when measured in air. This is an important step in the development of meter-scale light guides for future LArTPCs. Improvements come from using a new acrylic-based coating, diamond-polished cast UV transmitting acrylic bars, and a hand-dipping technique to coat the bars.

  10. Some effects of argon and helium upon explosions of carbon monoxide and oxygen

    Science.gov (United States)

    Fiock, Ernst F; Roeder, Carl H

    1937-01-01

    Report presents the results of an investigation conducted to study the effects of the inert gases, argon and helium, upon flame speed and expansion ratio in exploding mixtures of carbon monoxide, oxygen and water.For the particular gas mixtures investigated the results show that: (1) With the possible exception of helium in small amounts the addition of inert gas always produces decreased flame speed and expansion ratio; (2) like volumes of argon and helium have very different effects upon flame speed but practically the same effect upon expansion ratio; and (3) the difference in the effect of these two gases upon speed is independent of the ratio of carbon monoxide to oxygen. A discussion of some possible modes by which inert gases may produce the observed effects is included.

  11. Ionization and electron emission of heavy ion-atom collisions: The argon-krypton collision system

    International Nuclear Information System (INIS)

    The Ar-Kr collision system has been studied by examining the charge states of the scattered ions together with the energies of the emitted electrons. The charge state data show that there are increases in the average scattered charge state at distances of closest approach that correspond well with internuclear distances for which the molecular orbital model1 predicts electron promotions of krypton and argon electrons to occur. The electron data show a well resolved Auger peak between 150-200 eV superimposed on an exponentially decreasing background of continuum electrons. Doppler shifts identify the Auger peak as originating from the argon collision partner. Ion-electron coincidence experiments exhibit the same peak and link it to a specific distance of closest approach. The threshold for this L-Auger electron production falls between 0.2 and 0.3 a.u., agreeing well with molecular orbital predictions

  12. Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates

    Science.gov (United States)

    Glad, X.; de Poucques, L.; Bougdira, J.

    2015-12-01

    A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.

  13. Liquid Argon Time Projection Chamber Research and Development in the United States

    CERN Document Server

    Bromberg, C; Junk, T; Katori, T; Lang, K; Marchionni, A; Mauger, C; Mufson, S; Pordes, S; Raaf, J; Rebel, B; Soderberg, M; Thorn, C; Urheim, J

    2013-01-01

    A workshop was held at Fermilab on March 20-21, 2013 to discuss the development of liquid argon time projection chambers (LArTPC) in the United States. The workshop was organized under the auspices of the Coordinating Panel for Advanced Detectors, a body that was initiated by the American Physical Society Division of Particles and Fields. All presentations at the workshop were made in plenary sessions organized into seven topical categories: $i)$ Argon Purity, $ii)$ Cryogenics, $iii)$ TPC and High Voltage, $iv)$ Electronics, Data Acquisition and Triggering, $v)$ Scintillation Light Detection, $vi)$ Calibration and Test Beams, and $vii)$ Software. This document summarizes the current efforts in each of these topical categories. It also highlights areas in LArTPC research and development that are common between neutrino experiments and dark matter experiments.

  14. Hydrogen-bonded complexes of 2-aminopyrimidine-parabenzoquinone in an argon matrix

    Science.gov (United States)

    Plokhotnichenko, A. M.; Stepanian, S. G.; Karachevtsev, V. A.; Adamowicz, L.

    2006-02-01

    The H-bonded complexes of 2-aminopyrimidine (NH2Py) with parabenzoquinone (Qu) in a low-temperature argon matrix are investigated by the method of IR spectroscopy. The IR absorption spectra in the spectral range 400-3600cm-1 are obtained for different concentration ratios of these compounds at a temperature of 11K. The molar integrated absorption coefficients in the bands of the stretching modes of the free and H-bonded NH2 group are determined. Quantum-mechanical calculations of the IR spectra of the NH2Py and Qu molecules and their dimers are carried out. A comparison of the experimental and calculated results permits the conclusion that NH2Py-Qu dimers in an argon matrix have a planar structure with two weak hydrogen bonds, NH ⋯O and CH ⋯N.

  15. Parametric scaling of neutral and ion excited state densities in an argon helicon source

    Science.gov (United States)

    McCarren, D.; Scime, E.

    2016-04-01

    We report measurements of the absolute density and temperature of ion and neutral excited states in an argon helicon source. The excited ion state density, which depends on ion density, electron density, and electron temperature, increases sharply with increasing magnetic field in the source. The neutral argon metastable density measurements are consistent with an increasing ionization fraction with increasing magnetic field strength. The ion temperature shows no evidence of increased heating with increasing magnetic field strength (which has only been observed in helicon sources operating at driving frequencies close to the lower hybrid frequency). The measurements were obtained through cavity ring down spectroscopy, a measurement technique that does not require the target excited state to be metastable or part of a fluorescence scheme; and is therefore applicable to any laser accessible atomic or ionic transition in a plasma.

  16. Low-pressure argon adsorption assessment of micropore connectivities in activated carbons.

    Science.gov (United States)

    Zimny, T; Villieras, F; Finqueneisel, G; Cossarutto, L; Weber, J V

    2006-01-01

    Low-pressure argon adsorption has been used to study the energetic distribution of microporous activated carbons differing by their burn-off. The collected isotherms were analyzed using the derivative isotherm summation method. Some oscillations on the experimental curves for very low partial pressures were detected. The results are analyzed and discussed according to the literature and could be attributed to local overheating caused by spontaneous mass transfer of argon through constrictions between former pores and the new opening pore or deadend pores. We used the dynamic character of the experimental method and mainly the discrepancy of the quasi-equilibrium state to deduce key parameters related to the porosity topology. PMID:16112680

  17. Measurements and models of transient and stationary regimes of glow discharge in argon

    International Nuclear Information System (INIS)

    The experimental and theoretical analyses of different regimes of argon DC glow discharge are reported. The experiments were carried out on the argon gas tube with a plane- parallel electrode system made from OFHC (oxygen-free high thermal conductivity) copper. Modelling of the static breakdown voltages was performed by simple fluid model. The applicability of fluid models for modelling of I - U (current-voltage) characteristics at different values of pd (pressure times inter-electrode distance) is tested. The formative time delays are determined from experiment and compared to modeled values obtained by [1D] and [2D] fluid models. The memory curve t-bar d (τ) (the dependence of the mean value of breakdown time delay on the relaxation time) is presented and the main processes responsible for the memory effect were determined by applying the analytical and numerical models

  18. Argon thermochronology of mineral deposits; a review of analytical methods, formulations, and selected applications

    Science.gov (United States)

    Snee, Lawrence W.

    2002-01-01

    40Ar/39Ar geochronology is an experimentally robust and versatile method for constraining time and temperature in geologic processes. The argon method is the most broadly applied in mineral-deposit studies. Standard analytical methods and formulations exist, making the fundamentals of the method well defined. A variety of graphical representations exist for evaluating argon data. A broad range of minerals found in mineral deposits, alteration zones, and host rocks commonly is analyzed to provide age, temporal duration, and thermal conditions for mineralization events and processes. All are discussed in this report. The usefulness of and evolution of the applicability of the method are demonstrated in studies of the Panasqueira, Portugal, tin-tungsten deposit; the Cornubian batholith and associated mineral deposits, southwest England; the Red Mountain intrusive system and associated Urad-Henderson molybdenum deposits; and the Eastern Goldfields Province, Western Australia.

  19. Reduction of a collisional-radiative mechanism for argon plasma based on principal component analysis

    International Nuclear Information System (INIS)

    This article considers the development of reduced chemistry models for argon plasmas using Principal Component Analysis (PCA) based methods. Starting from an electronic specific Collisional-Radiative model, a reduction of the variable set (i.e., mass fractions and temperatures) is proposed by projecting the full set on a reduced basis made up of its principal components. Thus, the flow governing equations are only solved for the principal components. The proposed approach originates from the combustion community, where Manifold Generated Principal Component Analysis (MG-PCA) has been developed as a successful reduction technique. Applications consider ionizing shock waves in argon. The results obtained show that the use of the MG-PCA technique enables for a substantial reduction of the computational time

  20. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas

    International Nuclear Information System (INIS)

    The total energy lost per electron-ion pair lost εT is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost εT is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured εT from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated εT from the depleted EEDFs has a value that is similar to the measured εT

  1. Effects of argon gas pressure on its metastable-state density in high-density plasmas

    International Nuclear Information System (INIS)

    The effect of argon gas pressure on its metastable density in inductively coupled plasmas (ICPs) is investigated by using the laser-induced fluorescence method. Our results show that the metastable-state density of argon varies with the gas pressure depending on the measurement position; the density decreases with the pressure at a position far from the ICP antenna, whereas it increases with the pressure at a position near the antenna. This contrast in the metastable-state density trend with the pressure is explained by considering the electron temperature variations at the two measurement positions. The theoretical interpretation and calculation using a global model are also addressed in detail in this paper

  2. Characteristics of a DC discharge with a water cathode in argon

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, S. A.; Shutov, D. A.; Bobkova, E. S.; Rybkin, V. V., E-mail: rybkin@isuct.ru [Ivanovo State University of Chemistry and Technology (Russian Federation)

    2016-01-15

    The characteristics of a dc discharge excited between a metal anode and a water cathode in argon were studied experimentally. The dimensions of the positive column and the electric field in it were measured, and the vibrational temperature in the positive column was determined from the N{sub 2}C{sup 3}Π{sub u} → B{sup 3}Π{sub g} (0–2) emission band. It is shown that the power deposited in the positive column is almost entirely spent on gas heating. The obtained dependence of the reduced electric field on the gas pressure and the ionization frequencies calculated by solving the Boltzmann equation indicate that electrons are lost diffusively, whereas ionization proceeds in a stepwise manner via the lower metastable states of argon atoms.

  3. Characteristics of a DC discharge with a water cathode in argon

    International Nuclear Information System (INIS)

    The characteristics of a dc discharge excited between a metal anode and a water cathode in argon were studied experimentally. The dimensions of the positive column and the electric field in it were measured, and the vibrational temperature in the positive column was determined from the N2C3Πu → B3Πg (0–2) emission band. It is shown that the power deposited in the positive column is almost entirely spent on gas heating. The obtained dependence of the reduced electric field on the gas pressure and the ionization frequencies calculated by solving the Boltzmann equation indicate that electrons are lost diffusively, whereas ionization proceeds in a stepwise manner via the lower metastable states of argon atoms

  4. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antos, J; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baron, S; Baroncelli, A; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Bedajanek, I; Beddall, A J; Beddall, A; Bednár, P; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besana, M I; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Bosteels, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camarri, P; Cambiaghi, M; Cameron, D; Campabadal Segura, F; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R; Carvalho, J; Casadei, D

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.7% in the endcaps. This leads to an estimated contribution to the constant term of 0.29% in the barrel and 0.53% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61 +- 0.07 mm/microsecond at 88.5 K and 1 kV/mm.

  5. Surface modification of fluorosilicone acrylate RGP contact lens via low-temperature argon plasma

    International Nuclear Information System (INIS)

    A fluorosilicone acrylate rigid gas permeable (RGP) contact lens was modified via argon plasma to improve surface hydrophilicity and resistance to protein deposition. The influence of plasma treatment on surface chemical structure, hydrophilicity and morphology of RGP lens was investigated by X-ray photoelectron spectrometer (XPS), contact angle measurements and scanning electron microscope (SEM), respectively. The contact angle results showed that the hydrophilicity of the contact lens was improved after plasma treatment. XPS results indicated that the incorporation of oxygen-containing groups on surface and the transformation of silicone into hydrophilic silicate after plasma treatment are the main reasons for the surface hydrophilicity improvement. SEM results showed that argon plasma with higher power could lead to surface etching

  6. ATLAS endcap liquid argon calorimeters. Description and construction of the cryostats

    International Nuclear Information System (INIS)

    All forward calorimeters of the ATLAS detector use the same detection technique, energy loss in passive plates, followed by ionisation and charge detection in liquid argon. They are therefore all grouped in the same vessel which must basically support and keep in place the heavy plates and the detection electrodes and maintain liquid argon at cold and stable temperature. Taking into account all the constraints as detailed below, and the overall detector size, 5 meter diameter by 3 meter length this was quite a challenge. The design, construction and tests of these two cryostats, up to their delivery at CERN, are described in this document. These two cryostats are a joint 'in kind' contribution to the Atlas experiment of LAL (Orsay), Max Planck Institute (Muenchen) and Wuppertal University (Wuppertal) and have been designed and built under the responsibility of LAL (Orsay) with contributions of the technical groups of the above institutions and of ATLAS-CERN. (authors)

  7. Investigation of the influence of argon ions implantation on the wear of sintered carbides

    International Nuclear Information System (INIS)

    The paper relates the results of investigations how influences argon ions implantation into sintered carbides used in machining of metals. Research of sintered carbides surface microstructure showed that implantation effected the little increasing of its isotropy and improved the most universal roughness high parameters and forecasted bearing surface. t the same time the roughness altitudes were slightly 'scarified'. Measuring of cutting forces during turning showed that implanted edges are entailing lower value of cutting forces than not implanted edges. The reason is that the friction of implanted carbides is decreasing about 17%. Implantation of argon with the dose 1016 effects that abrasive wear of edges during cutting is two times lower that at implanted edges, but only so long like implanted layer exists. Then the wear intensity is the same like not implanted edges. In the paper conclusions concerning of further investigations of the helium group elements implantation are given. (author). 8 refs, 12 figs, 4 tabs

  8. Adsorption and diffusion of argon confined in ordered and disordered microporous carbons

    International Nuclear Information System (INIS)

    We use a combination of grand canonical Monte Carlo and microcanonical molecular dynamics simulations to study the adsorption and diffusion of argon at 77 K and 120 K confined in previously generated models of a disordered bituminous coal-based carbon, BPL, and an ordered carbon replica of Faujasite zeolite (C-FAU). Both materials exhibit a maximum in the diffusion coefficient as well as anomalous (sub-diffusive) behavior in the mean-squared displacements at short times at some relative pressures. In BPL, the anomalous diffusion occurs at low relative pressures, due to the trapping of argon atoms in small pores. In C-FAU, the anomalous diffusion occurs at high relative pressures, due to competitive diffusion of atoms traveling through windows and constrictions which interconnect the pores. All diffusion eventually tends to Fickian diffusion at longer times.

  9. Surface modification of fluorosilicone acrylate RGP contact lens via low-temperature argon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yin Shiheng [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Analytical and Testing Center, South China University of Technology, Guangzhou 510640 (China); Wang Yingjun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Ren Li [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)], E-mail: psliren@scut.edu.cn; Zhao Lianna [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Kuang Tongchun [Analytical and Testing Center, South China University of Technology, Guangzhou 510640 (China); Chen Hao [Wenzhou Medical College, Wenzhou 325035 (China)], E-mail: chenhao823@mail.wz.zj.cn; Qu Jia [Wenzhou Medical College, Wenzhou 325035 (China)

    2008-11-15

    A fluorosilicone acrylate rigid gas permeable (RGP) contact lens was modified via argon plasma to improve surface hydrophilicity and resistance to protein deposition. The influence of plasma treatment on surface chemical structure, hydrophilicity and morphology of RGP lens was investigated by X-ray photoelectron spectrometer (XPS), contact angle measurements and scanning electron microscope (SEM), respectively. The contact angle results showed that the hydrophilicity of the contact lens was improved after plasma treatment. XPS results indicated that the incorporation of oxygen-containing groups on surface and the transformation of silicone into hydrophilic silicate after plasma treatment are the main reasons for the surface hydrophilicity improvement. SEM results showed that argon plasma with higher power could lead to surface etching.

  10. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    Energy Technology Data Exchange (ETDEWEB)

    Arp, U. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Electron and Optical Physics Div.; LeBrun, T.; Southworth, S.H.; Jung, M. [Argonne National Lab., IL (United States). Physics Div.; MacDonald, M.A. [E.P.S.R.C. Daresbury Lab., Warrington (United Kingdom)

    1996-12-01

    Argon L{sub 2.3}-M{sub 2.3}M{sub 2.3} Auger-electron spectra were measured in coincidence with K{alpha} fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons.

  11. Experimental thermal conductivity, thermal diffusivity, and specific heat values for mixtures of nitrogen, oxygen, and argon

    Science.gov (United States)

    Perkins, R. A.; Cieszkiewicz, M. T.

    1991-01-01

    Experimental measurements of thermal conductivity and thermal diffusivity obtained with a transient hot-wire apparatus are reported for three mixtures of nitrogen, oxygen, and argon. Values of the specific heat, Cp, are calculated from these measured values and the density calculated with an equation of state. The measurements were made at temperatures between 65 and 303 K with pressures between 0.1 and 70 MPa. The data cover the vapor, liquid, and supercritical gas phases for the three mixtures. The total reported points are 1066 for the air mixture (78.11 percent nitrogen, 20.97 percent oxygen, and 0.92 percent argon), 1058 for the 50 percent nitrogen, 50 percent oxygen mixture, and 864 for the 25 percent nitrogen, 75 oxygen mixture. Empirical thermal conductivity correlations are provided for the three mixtures.

  12. Electron energy distributions and excitation rates in high-frequency argon discharges

    International Nuclear Information System (INIS)

    The electron energy distribution functions and rate coefficients for excitation and ionisation in argon under the action of an uniform high-frequency electric field were calculated by numerically solving the homogeneous Boltzmann equation. Analytic calculations in the limiting cases ω>>νsub(c) and ω<<νsub(c), where ω is the wave angular frequency and νsub(c) is the electron-neutral collision frequency for momentum transfer, are also presented and shown to be in very good agreement with the numerical computations. The results reported here are relevant for the modelling of high-frequency discharges in argon and, in particular, for improving recent theoretical descriptions of a plasma column sustained by surface microwaves. The properties of surface wave produced plasmas make them interesting as possible substitutes for other more conventional plasma sources for such important applications as plasma chemistry laser excitation, plasma etching spectroscopic sources etc...

  13. Are the argon metastables important in high power impulse magnetron sputtering discharges?

    International Nuclear Information System (INIS)

    We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization is always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work

  14. Chemical non-equilibrium modelling of an argon-oxygen supersonic ICP

    International Nuclear Information System (INIS)

    In this paper, a non-equilibrium mathematical model for an argon-oxygen inductively coupled plasma (ICP) torch with a supersonic nozzle is developed without making chemical equilibrium assumptions. Reaction rates of dissociation and recombination of diatomic gas and ionization are taken into account. Higher-order approximations of the Chapman-Enskog method are used to obtain better accuracy for transport properties, taking advantage of the most recent sets of collision integrals available in the literature. In order to validate the developed model, results are compared qualitatively and quantitatively with existing experimental data. The calculated results for the axial temperature profile for pure argon less than 10 mm above the substrate are in good agreement with spectroscopic measurements.

  15. Cell Proliferation of HaCaT Keratinocytes on Collagen Films Modified by Argon Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Jorge López García

    2010-04-01

    Full Text Available Argon plasma treatment was used to modify the surface of atelocollagen films using a plasmochemical reactor. To evaluate the effects of the treatment, the untreated and treated samples were characterized by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR, Scanning Electron Microscopy (SEM imaging, and X-ray Photoelectron Spectroscopy (XPS techniques. Cell growth was carried out by culturing human immortalized keratinocyte (HaCaT cells and proliferation was measured via MTT assay. It was observed that argon plasma treatment significantly enhanced the extent of cell proliferation, which was ascribed to the favourable role of plasma treatment in inducing surface oxygen-containing entities together with increasing surface roughness. This can be considered as a potentially promising approach for tissue regeneration purposes.

  16. Transpupillary Argon Laser Cyclophotocoagulation in a Refractory Traumatic Glaucoma Patient with Aphakia and Aniridia

    Directory of Open Access Journals (Sweden)

    Umut Duygu Uzunel

    2016-01-01

    Full Text Available We present a case of transpupillary argon laser cyclophotocoagulation (TALC in a patient with traumatic aniridia and aphakia secondary to blunt trauma who had previous bilateral trabeculectomy. Four months after the trauma the patient’s intraocular pressure (IOP rose to 35 mmHg despite topical antiglaucomatous medication. Inferior 180 degrees cyclophotocoagulation was performed with transpupillary argon laser in the first session and his IOP fell to values of 12-17 mmHg. Twelve weeks after TALC, his IOP rose to 22 mmHg and we had to apply TALC to the residual ciliary processes. Seven months later his IOP was 13 mmHg with topical dorzolamide/timolol and latanoprost administration. TALC may be an effective treatment alternative for lowering IOP in patients with visible ciliary processes who do not respond to conventional medical or laser treatment.

  17. EBR-II argon cooling system restricted fuel handling I and C upgrade

    International Nuclear Information System (INIS)

    The instrumentation and control of the Argon Cooling System (ACS) restricted fuel handling control system at Experimental Breeder Reactor II (EBR-II) is being upgraded from a system comprised of many discrete components and controllers to a computerized system with a graphical user interface (GUI). This paper describes the aspects of the upgrade including reasons for the upgrade, the old control system, upgrade goals, design decisions, philosophies and rationale, and the new control system hardware and software

  18. The WArP Experiment: A Double-Phase Argon Detector for Dark Matter Searches

    OpenAIRE

    Andrea Zani

    2014-01-01

    Cryogenic noble liquids emerged in the previous decade as one of the best media to perform WIMP dark matter searches, in particular due to the possibility to scale detector volumes to multiton sizes. The WArP experiment was then developed as one of the first to implement the idea of coupling Argon in liquid and gas phase, in order to discriminate β/γ -interactions from nuclear recoils and then achieve reliable background rejection. Since its construction, other projects spawned, employing Arg...

  19. Gas temperature effect on the time for onset of particle nucleation in argon diluted acetylene plasma

    CERN Document Server

    Stefanovic, I; Berndt, J; Winter, J; Stefanovic, Ilija; Kovacevic, Eva; Berndt, Johannes; Winter, Jorg

    2004-01-01

    In our work we are focused on study of powder formation in C2H2/Ar plasmas. In this scope we used a combination of FTIR and mass spectroscopy, which are the mostly used experimental techniques for plasma powder formation diagnostics. To test the proposed mechanism for particle nucleation delay we measured the particle nucleation under different plasma conditions: firstly we increased the gas temperature and secondly we changed the background gas from argon to helium.

  20. Comparison of Textural Information from Argon (87 K) and Nitrogen (77 K) Physisorption

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Matějová, Lenka; Topka, Pavel; Musilová, Zuzana; Schneider, Petr

    2011-01-01

    Roč. 18, č. 5 (2011), s. 557-565. ISSN 1380-2224 R&D Projects: GA ČR GA104/09/0694; GA ČR GP104/09/P290; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40400503 Keywords : nitrogen adsorption isotherm * argon adsorption isotherm * zsm-5 zeolite Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.238, year: 2011