WorldWideScience

Sample records for argon 2s threshold

  1. Autoionization study of the Argon 2p satellites excited near the argon 2s threshold

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.; Glans, P.; Hemmers, O. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    The dynamics of near-threshold photoionization is a complex phenomenon in which the many-electron character of the wavefunctions plays an important role. According to generalized time-independent resonant scattering theory, the transition matrix element from an initial state to a final state is the summation of the amplitudes of direct photoionization and an indirect term in which intermediate states are involved and the resonant behavior is embedded. Studies of the interference effects of intermediate states have been explored in the cases where the direct term is negligible. In the present work, electron time-of-flight spectra of the Ar 2p satellites were measured at two angles (magic and 0{degrees}) in the dipole plane with the exciting photon energy tuned in the vicinity of the Ar 2s threshold. For excitation far below or above the 2s threshold, the 2p satellites spectrum is dominated by 3p to np shakeup contributions upon the ionization of a 2p electron.

  2. Above threshold ionization of Argon atoms by multicolor XUV radiation

    International Nuclear Information System (INIS)

    We analyse theoretically the Argon photoelectron spectra produced by strong and extreme ultraviolet radiation of six colors: from the 11th to the 16th harmonics of ω0 (800nm). In particular we concentrate in the range of the spectra where absorption of two photons occurs. The combination of photons of different frequencies results in eleven peaks that are separated by ω0. We point out that their relative intensities are very sensitive to the laser pulse parameters and target description. We also compare the theoretical description with experimental results finding good qualitative agreement

  3. Argon-ion charge distributions following near-threshold ionization

    International Nuclear Information System (INIS)

    When an atom is photoionized in an inner shell, there are two mechanisms by which the remaining electron cortege relaxes to fill the vacancy: x-ray emission and radiationless Auger and Coster-Kronig transitions. In the former, the inner-shell hole moves to a less tightly bound orbital without increasing the number of atomic vacancies. In Auger processes, however, the energy liberated by transfer of a less-tightly-bound electron to the inner-shell vacancy is transferred to another electron which is ejected into the continuum. In this case, the charge on the residual ion increases by one. Through a series of radiative and non-radiative processes, the initial vacancy bubbles up until all vacancies arrive at the outermost shell. Due to the many possible routes by which this may occur, there can be a broad distribution of residual ion charge states characteristic of the decay of a single inner-shell vacancy. Because so many processes can contribute to each charge state, it is difficult to determine the effect of each by examining the total ion charge distribution; the total-ion charge distribution represents an average over many effects. To overcome this limitation, the author has recently measured argon-ion production as a function of both photon energy and Auger decay channel following photoionization of K-shell electrons with highly monochromatic synchrotron radiation. When measured differential in decay channel, the ion charge distributions are greatly simplified. Analysis, in progress, of these simplified distributions will permit extraction of information about relative decay rates and shakeoff effects that is obscured in the single spectra

  4. Studies in Above- and Below-Threshold Harmonics in Argon with an Infrared Femtosecond Laser

    Science.gov (United States)

    Chew, Andrew; Yin, Yanchun; Li, Jie; Ren, Xiaoming; Cunningham, Eric; Wu, Yi; Chang, Zenghu

    2016-05-01

    We investigate and compare the above- and below-threshold harmonics in Argon gas using our recently-developed 1 kHz, two-cycle (11.4 fs), 3mJ, and carrier-envelope-phase(CEP)-stable laser at 1.6 μm. Such ultraviolet pulses can serve as pump or probe for studying dynamics in atoms and molecules. Unlike high harmonics with photon energy well above the ionization potential, the mechanism for generating harmonics near the ionization threshold is still under intense investigation. Previous work by Chini et al. on below-threshold harmonics was done using a 0.8 μm few-cycle Ti:Sapphire spectrally-broadened source with energy up to 300 μJ. It has been predicted by theory that free-free transitions dominate the below threshold harmonic generation as the laser wavelength increase from near infrared to mid-infrared. We are therefore interested in investigating how using a longer wavelength laser might lead to changes to the behavior of below-threshold harmonics when we vary various parameters. We report the π-periodity CEP dependence and ellipticity dependence of the above- and below-threshold harmonics. This material was based on work supported by National Science Foundation (1068604), Army Research Office (W911NF-14-1-0383), Air Force Office of Scientific Research (FA9550-15-1-0037) and the DARPA PULSE program by a Grant from AMRDEC (W31P4Q1310017).

  5. Non-perturbative generation of above-threshold harmonics from pre-excited argon atoms in intense mid-infrared laser fields

    CERN Document Server

    Li, Guihua; Li, Ziting; Yao, Jingpin; Zeng, Bin; Chu, Wei; Cheng, Ya

    2015-01-01

    We experimentally investigate the generation of above-threshold harmonics completely from argon atoms on an excited state using mid-infrared femtosecond laser pulses. The highly nonlinear dependences of the observed signal on the pulse energy and polarization of the driver laser pulses indicate its non-perturbative characteristic.

  6. Self-compression of femtosecond pulses in argon with a power close to the self-focusing threshold

    Institute of Scientific and Technical Information of China (English)

    Chen Xiao-Wei; Zeng Zhi-Nan; Dai Jun; Li Xiao-Fang; Li Ru-Xin; Xu Zhi-Zhan

    2008-01-01

    Self-compression of femtosecond pulses in noble gases with an input power close to the self-focusing threshold has been investigated experimentally and theoretically.It is demonstrated that either multiphoton ionization (MPI) or space-time focusing and self-steepening effects can induce pulse shortening,but they predominate at different beam intensities during the propagation.The latter effects play a key role in the final pulse self-compression.By choosing an appropriate focusing parameter,action distance of the space-time focusing and self-steepening effects can be lengthened,which can promote a shock pulse structure with a duration as short as two optical cycles.It is also found that,for our calculation eases in which an input pulse power is close to the self-focusing threshold,either group velocity dispersion(GVD) or multiphoton absorption (MPA) has a negligible influence on pulse characteristics in the propagation process.

  7. Theoretical and experimental study of inner-valence-shell satellites above the double-photoionization threshold of argon

    International Nuclear Information System (INIS)

    The Ar photoelectron lines located above the double-ionization threshold have been investigated both theoretically and experimentally. Their Auger decay, sorted in a coincidence experiment, is found to occur predominantly to the Ar2+ (1D) final state. Calculations demonstrate that while some photolines can be labelled as 3s3p5 (3P)nl, none of them can be described as 3s3p5 (1P)nl because such a configuration is always weaker than doubly excited ones in the configuration-interaction (CI) description of the state. This is evidence of 'second-order satellites', which we define as satellites dominated by a doubly excited configuration. The intensity of the photolines in the 45-58 eV binding energy region is qualitatively demonstrated to reflect correlation in the Ar(1S) ground state, and is related to the singly and doubly excited configurations in the CI development of the latter. (author)

  8. Direct WIMP Detection Using Scintillation Time Discrimination in Liquid Argon

    OpenAIRE

    Boulay, M. G.; Hime, A.

    2004-01-01

    Discrimination between electron and nuclear recoil events in a liquid argon scintillation detector has been demonstrated with simulations by using the differences in the scintillation photon time distribution between these classes of events. A discrimination power greater than 10^{8} is predicted for a liquid argon experiment with a 10 keV threshold, which would mitigate electron and gamma-ray backgrounds, including beta decays of 39-Ar and 42-Ar in atmospheric argon. A dark matter search usi...

  9. Scintillation efficiency of liquid argon in low energy neutron-argon scattering

    International Nuclear Information System (INIS)

    Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field

  10. Observations of acoustic-wave-induced superluminescence in an argon plasma

    International Nuclear Information System (INIS)

    It is shown that in an argon discharge plasma it is possible to obtain overpopulation of certain electronic levels of atomic argon under the influence of acoustic waves. When the specified threshold is exceeded, then a superluminescence (in the form of light flashes) from the overpopulated electronic levels of atomic argon is observed

  11. Argon plasma coagulation

    Directory of Open Access Journals (Sweden)

    Zenker, Matthias

    2008-03-01

    Full Text Available Argon Plasma Coagulation (APC is an application of gas discharges in argon in electrosurgery, which is increasingly used especially in endoscopy. The major application fields are haemostasis, tissue devitalization and tissue reduction.This review describes the physics and technology of electrosurgery and APC. Some characteristics of the argon discharge are shown and discussed, and thermal effects in biological tissue are described. Subsequently, examples of medical applications are given.

  12. Lunar exospheric argon modeling

    Science.gov (United States)

    Grava, Cesare; Chaufray, J.-Y.; Retherford, K. D.; Gladstone, G. R.; Greathouse, T. K.; Hurley, D. M.; Hodges, R. R.; Bayless, A. J.; Cook, J. C.; Stern, S. A.

    2015-07-01

    Argon is one of the few known constituents of the lunar exosphere. The surface-based mass spectrometer Lunar Atmosphere Composition Experiment (LACE) deployed during the Apollo 17 mission first detected argon, and its study is among the subjects of the Lunar Reconnaissance Orbiter (LRO) Lyman Alpha Mapping Project (LAMP) and Lunar Atmospheric and Dust Environment Explorer (LADEE) mission investigations. We performed a detailed Monte Carlo simulation of neutral atomic argon that we use to better understand its transport and storage across the lunar surface. We took into account several loss processes: ionization by solar photons, charge-exchange with solar protons, and cold trapping as computed by recent LRO/Lunar Orbiter Laser Altimeter (LOLA) mapping of Permanently Shaded Regions (PSRs). Recycling of photo-ions and solar radiation acceleration are also considered. We report that (i) contrary to previous assumptions, charge exchange is a loss process as efficient as photo-ionization, (ii) the PSR cold-trapping flux is comparable to the ionization flux (photo-ionization and charge-exchange), and (iii) solar radiation pressure has negligible effect on the argon density, as expected. We determine that the release of 2.6 × 1028 atoms on top of a pre-existing argon exosphere is required to explain the maximum amount of argon measured by LACE. The total number of atoms (1.0 × 1029) corresponds to ∼6700 kg of argon, 30% of which (∼1900 kg) may be stored in the cold traps after 120 days in the absence of space weathering processes. The required population is consistent with the amount of argon that can be released during a High Frequency Teleseismic (HFT) Event, i.e. a big, rare and localized moonquake, although we show that LACE could not distinguish between a localized and a global event. The density of argon measured at the time of LACE appears to have originated from no less than four such episodic events. Finally, we show that the extent of the PSRs that trap

  13. Depleted Argon from Underground Sources

    International Nuclear Information System (INIS)

    Argon is a strong scintillator and an ideal target for Dark Matter detection; however 39Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in 39Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO2 well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO2. We first concentrate the argon locally to 3% in an Ar, N2, and He mixture, from the CO2 through chromatographic gas separation, and then the N2 and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO2 facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

  14. Argon in action

    CERN Multimedia

    Corinne Pralavorio

    2015-01-01

    Over the past few days, the SPS has been accelerating argon ions, which have started to be sent to the NA61/SHINE experiment. This operating mode, using a new type of ion, required a number of modifications to the accelerator.   Picture 1: a “super-cycle” of the SPS, featuring a proton cycle for the LHC, followed by an argon ion cycle for the North Area. Today, the accelerators are once again juggling particles and even performing completely new tricks. The SPS is supplying beams of argon ions for the first time, at energies never before achieved for this type of beam. They are destined for the NA61/SHINE experiment (see box) located in the North Area, which began receiving the beams on 11 February. Argon ions have a relatively large mass, as they consist of 40 nucleons, so they can be used in a similar way to lead ions. The main difficulty in accelerating them lies in the SPS, where the variation in acceleration frequency is limited. “The SPS was designed for a...

  15. Thermophysical properties of argon

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, A.

    1988-02-01

    The entire report consists of tables of thermodynamic properties (including sound velocity, thermal conductivity and diffusivity, Prandtl number, density) of argon at 86 to 400/degree/K, in the form of isobars over 0.9 to 100 bars. (DLC)

  16. The Argon Geochronology Experiment (AGE)

    Science.gov (United States)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  17. Liquid argon neutrino detectors

    CERN Document Server

    Battistoni, G

    2001-01-01

    The liquid argon imaging technique, as proposed for the ICARUS detector, offers the possibility to perform complementary and simultaneous measurements of neutrinos, as those of CERN to Gran Sasso beam (CNGS) and those from cosmic ray events. For the currently allowed values of the Super-Kamiokande results, the combination of both CNGS and atmospheric data will provide a precise determination of the oscillation parameters. Since one can observe and unambiguously identify nu /sub e/, nu /sub mu / and nu /sub tau / components, this technology allows to explore the full (3*3) mixing matrix. The same class of detector can be proposed for high precision measurements at a neutrino factory. (3 refs).

  18. Argon Welding Inside A Workpiece

    Science.gov (United States)

    Morgan, Gene E.

    1988-01-01

    Canopies convert large hollow workpiece into inert-gas welding chamber. Large manifold serves welding chamber for attachment of liner parts in argon atmosphere. Every crevice, opening and passageway provided with argon-rich environment. Weld defects and oxidation dramatically reduced; also welding time reduced.

  19. Microwave Argon Plasma Torch

    Science.gov (United States)

    Felizardo, Edgar; Pencheva, Mariana; Benova, Evgenia; Dias, Fransisco; Tatarova, Elena

    2009-10-01

    A theoretical and experimental investigation of a microwave (2.45 GHz) Argon plasma torch driven by a surface wave is presented. The theoretical model couples in a self-consistent way the wave electrodynamics and the electron and heavy particle kinetics. The set of coupled equations includes: Maxwell's equations, the electron Boltzmann equation, including electron-electron collisions, and the particle balance equations for electrons, excited atoms (4s, 4p, 3d, 5s, 5p, 4d, 6s), and atomic (Ar^+) and molecular ions (Ar2^+). The input parameters of the model are: gas pressure (760 Torr), plasma radius (R = 0.75 cm), dielectric permittivity (ɛd = 4.0) and tube thickness (d = 0.15 cm) as well as the measured axial profile of the gas temperature (3500 K - 1500 K). The latter was determined from measurements of the rotational temperature of the OH molecular band in the range 306 - 315 nm. Phase and amplitude sensitive recording provides the data for the axial wavenumber and wave attenuation coefficient. The wavenumber decreases along the generated plasma torch. The electron density (Ne) axial profile as determined from measurements of Hβ Stark broadening is in agreement with the theoretical one.

  20. The Liquid Argon Purity Demonstrator

    Energy Technology Data Exchange (ETDEWEB)

    Adamowski, M.; Carls, B.; Dvorak, E.; Hahn, A.; Jaskierny, W.; Johnson, C.; Jostlein, H.; Kendziora, C.; Lockwitz, S.; Pahlka, B.; Plunkett, R.; Pordes, S.; Rebel, B.; Schmitt, R.; Stancari, M.; Tope, T.; Voirin, E.; Yang, T.

    2014-07-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  1. Electrical conductivity of compressed argon

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, R. [Univ. Regensburg (Germany); Windl, W.; Collins, L.; Kress, J.; Kwon, I. [Los Alamos National Lab., NM (United States)

    1997-10-01

    The authors report calculations of the electrical conductivity of solid argon as a function of compression within the density functional local density approximation formulation for a norm-conserving pseudopotential using both electron-phonon coupling and molecular dynamics techniques.

  2. Testing a liquid Argon calorimeter

    CERN Multimedia

    1976-01-01

    Physicists from Karlsruhe test a liquid argon calorimeter in the neutral beam b16 at the PS. The calorimeter was meant to supply some neutral particles identification at the Split-Field Magnet Facility for R416.

  3. The Liquid Argon Purity Demonstrator

    CERN Document Server

    Adamowski, M; Dvorak, E; Hahn, A; Jaskierny, W; Johnson, C; Jostlein, H; Kendziora, C; Lockwitz, S; Pahlka, B; Plunkett, R; Pordes, S; Rebel, B; Schmitt, R; Stancari, M; Tope, T; Voirin, E; Yang, T

    2014-01-01

    The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.

  4. Changes in a surface of polycrystalline aluminum upon bombardment with argon ions

    Science.gov (United States)

    Ashkhotov, O. G.; Ashkhotova, I. B.; Bliev, A. P.; Magkoev, T. T.; Krymshokalova, D. A.

    2014-10-01

    The interaction between argon ions and a natural oxide layer of polycrystalline aluminum is studied via Auger electron (AE) and electron energy loss (EEL) spectroscopy. It is found that bombardment with argon ions whose energy is lower than the Al2O3 sputtering threshold results in the accumulation of bombarding ions in interstitial surface voids, thus forming a supersaturated solid solution of target atoms and bombarding ions of argon and nitrogen entrapped by the ion beam from the residual gas of the working chamber of the spectrometer.

  5. Fano factor in pure argon

    International Nuclear Information System (INIS)

    The Fano factor for 5.3 MeV alpha particles in pure argon has been measured with a gridded ionization chamber and estimated to be 0.20 (+0.01-0.02). The obtained value is consistent with the theoretical value if the contribution of elastic nuclear collisions to the Fano factor is taken into the consideration. There is no appreciable difference between the values for pure argon and for a gas mixture of Ar (10%)CH4 obtained in the previous measurement. (orig.)

  6. Binocular indirect argon laser photocoagulator.

    OpenAIRE

    Mizuno, K

    1981-01-01

    The binocular indirect argon laser photocoagulator was newly designed to enable visualisation of the entire fundus during panretinal laser photocoagulation and to treat retinal tears immediately after buckling procedures of the sclera. The lamp housing of the binocular ophthalmoscope was remodelled and adjusted so that the laser beam and illuminating light are coaxial after leaving the ophthalmoscope. The blocking filter was permanently fixed in the eye-pieces to lighten the weight of the oph...

  7. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  8. Pilot study about dose-effect relationship of ocular injury in argon laser photocoagulation

    Science.gov (United States)

    Chen, P.; Zhang, C. P.; Fu, X. B.; Zhang, T. M.; Wang, C. Z.; Qian, H. W.; San, Q.

    2011-03-01

    The aim of this article was to study the injury effect of either convergent or parallel argon laser beam on rabbit retina, get the dose-effect relationship for the two types of laser beams, and calculate the damage threshold of argon laser for human retinas. An argon laser therapeutic instrument for ophthalmology was used in this study. A total of 80 rabbit eyes were irradiated for 600 lesions, half of which were treated by convergent laser and the other half were done with parallel laser beam. After irradiation, slit lamp microscope and fundus photography were used to observe the lesions, change and the incidence of injury was processed statistically to get the damage threshold of rabbit retina. Based on results from the experiments on animals and the data from clinical cases of laser treatment, the photocoagulation damage thresholds of human retinas for convergent and parallel argon laser were calculated to be 0.464 and 0.285 mJ respectively. These data provided biological reference for safely operation when employing laser photocoagulation in clinical practice and other fields.

  9. The scintillation of liquid argon

    CERN Document Server

    Heindl, T; Hofmann, M; Krücken, R; Oberauer, L; Potzel, W; Wieser, J; Ulrich, A

    2015-01-01

    A spectroscopic study of liquid argon from the vacuum ultraviolet at 110 nm to 1000 nm is presented. Excitation was performed using continuous and pulsed 12 keV electron beams. The emission is dominated by the analogue of the so called 2nd excimer continuum. Various additional emission features were found. The time structure of the light emission has been measured for a set of well defined wavelength positions. The results help to interpret literature data in the context of liquid rare gas detectors in which the wavelength information is lost due to the use of wavelength shifters.

  10. Isotopic fractionation of argon during stepwise release from shungite

    International Nuclear Information System (INIS)

    In previous attempts to determine the 40Ar/36Ar ratio in the ancient atmosphere, the only direct measurement yielding a value below the atmospheric value of today is for argon released at low temperatures from a pre-Cambrian shungite, an amorphous carbon mineral The present work confirms a low value for 40Ar/36Ar in gas released from a type I shungite at low temperatures. But quantitative scrutiny of the accompanying 38AR/36Ar ratios and the enhanced ratio of 40Ar/36Ar for the fractions released at high temperatures shows convincingly that the effect seen here is an artifact of the stepwise heating and the argon diffusion mobilized thereby. The low 40Ar/36Ar previously obtained is very likely from the same cause rather than reflecting the isotopic composition of the pre-Cambrian atmosphere. The vitreous character of and the sharp, conchoidal fractures seen in the specimens of type I shungite suggest that the substance may exhibit simple volume diffusion over macroscopic dimensions as glasses do. If so, the diffusion parameters (D infinitely = 3 x 10-4 cm2/s and E = 11 kcal/mole) obtained from the data imply rapid exchange with the atmosphere for any argon initially trapped in centimenter-thick veins of the material. (orig.)

  11. Argon luminescence bands between 1600 A and 2900 A

    International Nuclear Information System (INIS)

    It is proposed that the luminescence bands observed in high pressure argon between 1600A and 2900A are due to transitions involving excited states, Ar2+, of the molecular ion, Ar2+: the initial state is a bound state having a 2S-2S0 ion-atom asymptote and the final states two of the first set of molecular ion states which dissociate to the ion-atom pair 2P-1S0. This assumption accounts for most known experimental data on this emission bands. The competition between the radiative transitions and the quenching collisions between the excited-ions and electrons in α particle tracks has been studied experimentally and is discussed in terms of the present hypothesis. A comparison is also made between the neutralisation of excited and ground state molecular ions

  12. Transition probabilities for argon I

    International Nuclear Information System (INIS)

    Transition probabilities for ArI lines have been calculated on the basis of the (j,k)-coupling scheme for more than 16000 spectral lines belonging to the transition arrays 4s-np (n=4 to n=9), 5s-np (n=5 to n=9), 6s-np (n=6 to n=9), 7s-np (n=8 to n=9), 4p-ns (n=5 to n=10), 5p-ns (n=6 to n=9), 6p-ns (n=7 to n=8), 4p-nd (n=3 to n=9), 5p-nd (n=4 to n=9), 3d-np (n=5 to n=9), 4d-np (n=6 to n=9), 5d-np (n=7 to n=9), 3d-nf (n=4 to n=9), 4d-nf (n=4 to n=9), 5d-nf (n=5 to n=9), 4f-nd (n=5 to n=9) 5f-nd (n=6 to n=9), 4f-ng (n=5 to n=9), 5f-ng (n=6 to n=9). Inso far as values by other authors exist, comparison is made with these values. It turns out that the results obtained in (j,k)-coupling are close to those obtained in intermediate coupling except for intercombination lines. For high principal and/or orbital quantum numbers the transition probabilities for a multiplet approach those of the corresponding transitions in atomic hydrogen. The calculated values are applied to construct a simplified argon-atom model, which reflects the real transition properties and which allows simplified but realistic non-equilibrium calculations for argon plasmas which deviate from local thermodynamic equilibrium (LTE)

  13. CARA Risk Assessment Thresholds

    Science.gov (United States)

    Hejduk, M. D.

    2016-01-01

    Warning remediation threshold (Red threshold): Pc level at which warnings are issued, and active remediation considered and usually executed. Analysis threshold (Green to Yellow threshold): Pc level at which analysis of event is indicated, including seeking additional information if warranted. Post-remediation threshold: Pc level to which remediation maneuvers are sized in order to achieve event remediation and obviate any need for immediate follow-up maneuvers. Maneuver screening threshold: Pc compliance level for routine maneuver screenings (more demanding than regular Red threshold due to additional maneuver uncertainty).

  14. Argon-39 Background in DUNE Photon Detectors

    Science.gov (United States)

    Sinev, Gleb; DUNE Collaboration

    2016-03-01

    The Deep Underground Neutrino Experiment (DUNE) is a 40-kt liquid argon detector that will be constructed 5000 ft underground in the Sanford Underground Research Facility in order to study neutrino and proton decay physics. Instrumenting liquid argon with photon detectors to record scintillation in addition to the ionization signal can significantly improve time and energy resolution of the experiment. Argon produces light with wavelength of 128 nm. The reference design for the photon detectors includes acrylic bars covered in wavelength shifter, where the scintillation light can be captured and reemitted with longer wavelengths, then detected using silicon photomultipliers. Radiological backgrounds may noticeably deteriorate the photon detection system performance, especially for low-energy interactions. A particularly important background comes from argon-39 decays, because argon-39 is present in natural argon that will be used in DUNE and the background rate increases with the size of the experiment. The effect of the argon-39 background has been studied and is presented in this talk.

  15. Emissive spectra of shock-heated argon

    International Nuclear Information System (INIS)

    To study the radiant properties of argon under weak shock compression, an aluminum target filled with gaseous argon at ambient states was impacted by a tungsten alloy projectile which was launched from a two-stage light gun to 2.00 km/s. The radiant signals of single shock-compressed argon were recorded by a six-channel pyrometer and oscilloscopes, which varied with time linearly for the five channels from 405 nm to 700 nm and exponentially for the channel 800 nm, and the corresponding velocity of shock wave was determined to be 4.10 ± 0.09 km/s. By the present experiment, it has been shown that the absorbability of the shock-heated argon is low for visual light and the optical depths of argon gas turn from thin to thick as wavelengths gradually increase. The time-resolved spectra in the rising-front of the radiant signal in the re-shocked argon were recorded by means of an OMA, and strong emissive spectrum bands near 450 nm light-wave length but no linear spectrum were found. The emissive spectrum properties of shock-compression argon were qualitatively explained by the state parameters and ionization degree

  16. Argon plasma irradiation of polypropylene

    International Nuclear Information System (INIS)

    Polypropylene samples were exposed to argon plasma discharge and the changes of the PP surface properties were studied by different methods. Surface wettability was derived from contact angle measured by standard goniometry and chemical structure of the plasma modified PP was studied using X-ray photoelectron spectroscopy (XPS) and by Rutherford backscattering spectroscopy (RBS), surface morphology and roughness of samples using AFM. Zeta potential of pristine and modified PP was determined with the SurPASS. The presence of incorporated oxygen in the PP surface layer, about 60 nm thick, was observed in RBS spectra. Oxygen concentration is a decreasing function of the depth. With progressing aging time the oxygen concentration on the PP surface decreases. Plasma treatment results in a rapid decrease of the contact angle, which increases again with increasing aging time. In XPS measurement the oxygen containing structures, created by the plasma treatment, were found on the very surface of the modified PP and the zeta potential being changed too. The significant difference in zeta potential between pristine and plasma treated PP clearly indicates that the plasma treatment leads to a more hydrophilic PP surface.

  17. Status and perspecitves of liquid argon calorimeters

    International Nuclear Information System (INIS)

    The status of liquid argon calorimeters is reviewed, and experience obtained with these devices is described. Future perspectives of the liquid ionization chamber technique in calorimetry are also discussed. (orig.)

  18. Clinical periodontics with the argon laser

    Science.gov (United States)

    Finkbeiner, R. L.

    1995-04-01

    The argon laser has proven to be a valuable tool for the thermodynamic debridement of the periodontal lesion, incisions and tissue fusion. Illustrations of clinical applications and discussion of laser parameters will be provided.

  19. Liquid argon neutrals detector (LAND) for PEP

    International Nuclear Information System (INIS)

    The physical effects limiting the gamma energy resolution of a liquid argon calorimeter without passive converter plates is discussed. An example of such a detector based on the General User's Magnet designed at this Summer Study is given

  20. Opacity of Shock-Generated Argon Plasmas

    Institute of Scientific and Technical Information of China (English)

    王藩侯; 陈敬平; 周显明; 李西军; 经福谦; 孟续军; 孙永盛

    2001-01-01

    Argon plasmas with uniform density and temperature are generated by a planar shock wave through argon gas. The opacities of argon plasma, covering the thermodynamic states at temperatures of 1.4-2.2eV and in densities of 0.0083- 0.015 g/cm3, are investigated by measuring the emitted radiance versus time at several visible wavelengths. Comparison of the measured opacities with those calculated demonstrates that the average atom model can be used well to describe the essential transport behaviour of photons in argon plasma under the abovementioned thermodynamic condition. A simplified and self-consistent method to deduce the reflectivity R(λ) at the baseplate surface is applied. It demonstrates that the values of R(λ) are all around 0.4 in the experiments, which are basically in agreement with those given by Erskine previously (1994 J. Quant. Spectrosc. Radiat.Transfer 51 97).

  1. 21 CFR 868.1075 - Argon gas analyzer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon gas analyzer. 868.1075 Section 868.1075 Food... DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1075 Argon gas analyzer. (a) Identification. An argon gas analyzer is a device intended to measure the concentration of argon in a gas mixture to aid...

  2. Negative corona current pulses in argon and in mixture argon with SF6

    International Nuclear Information System (INIS)

    Waveforms of the first negative current pulses in a short negative point-to plane gap in pure argon and argon with SF6 admixture have been investigated with a nanosecond time resolution at a gas pressure 50 kPa as a function of applied gap voltage and content of SF6 in the mixture. We have made an attempt to explain the differences in the discharge development in pure argon and in argon with admixture of SF6 based on the observed changes of the pulse shape. The experimental results obtained will be discussed in context with existing computer simulation models (Authors)

  3. Oxygen and argon plasma effect in stainless steels and graphite in the ion energy range of 10-100 eV

    International Nuclear Information System (INIS)

    Experimental data on the effect of accelerated plasma flow of oxygen and argon in the near-threshold ion energy range on the possible materials of the thermonuclear reactor first wall (stainless steel and graphite) are presented. The oxygen ion sputtering coefficient are higher for graphite and lower for steel in comparison with argon ion. Effect on graphite of molecular accelerated oxygen ions is accompanied by their dissociation

  4. Measurements on scintillation light from liquid argon

    International Nuclear Information System (INIS)

    It is shown that an argon calorimeter can operate as a scintillation detector, provided that xenon is added. With the addition of 170 ppm xenon a light yield of 70% has been obtained. In addition the light yield is determined under influence of an electric field, from differently ionising particles and by the use of aluminium mirrors acting as light guides. Finally first measurements with a photomultiplier working at liquid argon temperatures are reported. (orig.)

  5. Improved GaSb surfaces using a (NH4)2S/(NH4)2S04 solution

    International Nuclear Information System (INIS)

    Bulk (1 0 0) n-GaSb surfaces have been treated with a sulphur based solution ((NH4)2S/(NH4)2SO4) to which sulphur has been added, not previously reported for the passivation of GaSb surfaces. Au/n-GaSb Schottky barrier diodes (SBDs) fabricated on the treated material show significant improvement compared to that of the similar SBDs on the as-received material as evidenced by the lower ideality factor (n), higher barrier height (φb) and lower contact resistance obtained. Additionally, the reverse leakage current, although not saturating, has been reduced by almost an order of magnitude at −0.2 V. The sample surfaces were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The native oxide, Sb–O, present on the as-received material is effectively removed on treating with ([(NH4)2S/(NH4)2SO4]+S) and (NH4)2S. Analysis of the as-received surface by XPS, prior to and after argon sputtering, suggests that the native oxide layer is ≤8.5 nm.

  6. Potassium-argon/argon-40-argon-39 geochronology of Cenozoic alkali basalts from the South China Sea

    Institute of Scientific and Technical Information of China (English)

    YAN Quanshu; SHI Xuefa; YANG Yaomin; WANG Kunshan

    2008-01-01

    Based on the isotopic chronologic results of Cenozoic alkali basalts from the South China Sea,the characteristics of volcanic activi-ty of the South China Sea after spreading were studied.The potassium - argon ages of eight alkali basalt samples from the South China Sea,and the argon - argon ages of two samples among them are reported.Apparent ages of the whole rock are 3.80 to 7.91 Ma with an average value of 5.43 Ma (potassium- argon,whole rock),and there is little difference among samples at the same location,e.g.,4.76~5.78 Ma for location S04-12.The argon - argon ages for the two samples are 6.06 and 4.71 Ma,which lie within the age scope of potassium - argon method.The dating results indicate that rock-forming age is from late Miocene to Pli-ocene,which is consistent with erupting event for alkali basalts from adjacent regions of the South China Sea.Volcanic activities occur after the cessation of spreading of the South China Sea,which are controlled by lithospheric fault and the spreading center formed during the spreading period of the South China Sea.These dating results,combined with geochemical characteristics of these basalts,the published chronological data for the South China Sea and its adjacent regions,and the updated geophysical data near Hainan Island,suggest that after the cessation of spreading of the South China Sea,there occur widely distributing magmatic activities which primarily is alkali basalt,and the volcanic activity continues to Quaternary.The activity may be relative to Hainan mantle plume originated from core/mantle boundary.

  7. Threshold Concepts in Biochemistry

    Science.gov (United States)

    Loertscher, Jennifer

    2011-01-01

    Threshold concepts can be identified for any discipline and provide a framework for linking student learning to curricular design. Threshold concepts represent a transformed understanding of a discipline, without which the learner cannot progress and are therefore pivotal in learning in a discipline. Although threshold concepts have been…

  8. Argon Collection And Purification For Proliferation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-09

    In order to determine whether a seismic event was a declared/undeclared underground nuclear weapon test, environmental samples must be taken and analyzed for signatures that are unique to a nuclear explosion. These signatures are either particles or gases. Particle samples are routinely taken and analyzed under the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) verification regime as well as by individual countries. Gas samples are analyzed for signature gases, especially radioactive xenon. Underground nuclear tests also produce radioactive argon, but that signature is not well monitored. A radioactive argon signature, along with other signatures, can more conclusively determine whether an event was a nuclear test. This project has developed capabilities for collecting and purifying argon samples for ultra-low-background proportional counting. SRNL has developed a continuous gas enrichment system that produces an output stream containing 97% argon from whole air using adsorbent separation technology (the flow diagram for the system is shown in the figure). The vacuum swing adsorption (VSA) enrichment system is easily scalable to produce ten liters or more of 97% argon within twelve hours. A gas chromatographic separation using a column of modified hydrogen mordenite molecular sieve has been developed that can further purify the sample to better than 99% purity after separation from the helium carrier gas. The combination of these concentration and purification systems has the capability of being used for a field-deployable system for collecting argon samples suitable for ultra-low-background proportional counting for detecting nuclear detonations under the On-Site Inspection program of the CTBTO verification regime. The technology also has applications for the bulk argon separation from air for industrial purposes such as the semi-conductor industry.

  9. Kinetic and experimental study of argon and argon--nitrogen mixtures excited by fission fragments

    International Nuclear Information System (INIS)

    Optical emission from argon and argon-nitrogen mixtures excited by fission fragments are studied in an effort to better understand the fission fragment energy deposition into the gas. A model of the energy flow in the gas is developed and compared with the experimental results

  10. Argon activation analysis, application to dating by the potassium-argon method

    International Nuclear Information System (INIS)

    Activation analysis using radiogenic argon-40 has been applied to rock-dating by the K-Ar method. The argon is extracted from the sample, purified, activated to saturation in a flux of 2 X 1013 neutrons/cm2 sec-1 and measured by gamma spectroscopy. The sensitivity obtained is such that it is possible to measure amounts of argon corresponding to age of a few thousand years only. However since it has not been possible to measure the amount of pollution of radiogenic argon by atmospheric argon with any accuracy, the measurable age limit is in fact of the order of MY. The method has been applied to basalts from the Mont-Dore region. The results obtained are in fairly good agreement with geological, stratigraphic and paleomagnetic data. (author)

  11. Attenuation of vacuum ultraviolet light in liquid argon

    CERN Document Server

    Neumeier, A; Oberauer, L; Potzel, W; Schönert, S; Dandl, T; Heindl, T; Ulrich, A; Wieser, J

    2015-01-01

    The transmission of liquid argon has been measured, wavelength resolved, for a wavelength interval from 118 to 250 nm. The wavelength dependent attenuation length is presented for pure argon. It is shown that no universal wavelength independent attenuation length can be assigned to liquid argon for its own fluorescence light due to the interplay between the wavelength dependent emission and absorption. A decreasing transmission is observed below 130 nm in both chemically cleaned and distilled liquid argon and assigned to absorption by the analogue of the first argon excimer continuum. For not perfectly cleaned argon a strong influence of impurities on the transmission is observed. Two strong absorption bands at 126.5 and 141.0 nm with approximately 2 and 4 nm width, respectively, are assigned to traces of xenon in argon. A broad absorption region below 180 nm is found for unpurified argon and tentatively attributed to the presence of water in the argon sample.

  12. Exact Threshold Circuits

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.

    2010-01-01

    We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave with the...... well-studied corresponding hierarchies defined using ordinary threshold gates. A major open problem in Boolean circuit complexity is to provide an explicit super-polynomial lower bound for depth two threshold circuits. We identify the class of depth two exact threshold circuits as a natural subclass of...... these where also no explicit lower bounds are known. Many of our results can be seen as evidence that this class is a strict subclass of depth two threshold circuits - thus we argue that efforts in proving lower bounds should be directed towards this class....

  13. The perils of thresholding

    CERN Document Server

    Font-Clos, Francesc; Deluca, Anna; Moloney, Nicholas R

    2014-01-01

    The thresholding of time series of activity or intensity is frequently used to define and differentiate events. This is either implicit, for example due to resolution limits, or explicit, in order to filter certain small scale physics from the supposed true asymptotic events. Thresholding the birth-death process, however, introduces a scaling region into the event size distribution, which is characterised by an exponent that is unrelated to the actual asymptote and is rather an artefact of thresholding. As a result, numerical fits of simulation data produce a range of exponents, with the true asymptote visible only in the tail of the distribution. This tail is increasingly difficult to sample as the threshold is increased. In the present case, the exponents and the spurious nature of the scaling region can be determined analytically, thus demonstrating the way in which thresholding conceals the true asymptote. The analysis also suggests a procedure for detecting the influence of the threshold by means of a da...

  14. Interaction in the systems Bi2S3-SmS and Bi2S3-Sm2S3

    International Nuclear Information System (INIS)

    Methods of physicochemical analysis are used to study Bi2S3-SmS (1) and Bi2S3-Sm2S3 (2) systems that are quasibinary cross sections of Sm-Bi-S ternary system. Formation of ternary phases of SmBi2S4, SmBi4S7 (in system 1) composition and of SmBiS3 composition (in system 2) is stated. The compounds are crystallized in stibnite type rhombic singony: SmBi2S4: a = 12.55; b = 14.11; c = 4.12 A; SmBi4S7: a = 12.61; b = 14.20, c = 4.70 A, SmBiS3: a 11.15, b = 11.77, c = 3.85 A. SmS(Sm2S3) solubility in Bi2S3 at 300 K is 3 mol.%

  15. Formation of nanopore in a suspended graphene sheet with argon cluster bombardment: A molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Formation of a nanopore in a suspended graphene sheet using an argon gas beam was simulated using molecular dynamics (MD) method. The Lennard-Jones (LJ) two-body potential and Tersoff–Brenner empirical potential energy function are applied in the MD simulations for different interactions between particles. The simulation results demonstrated that the incident energy and cluster size played a crucial role in the collisions. Simulation results for the Ar55–graphene collisions show that the Ar55 cluster bounces back when the incident energy is less than 11 eV/atom, the argon cluster penetrates when the incident energy is greater than 14 eV/atom. The two threshold incident energies, i.e., threshold incident energy of defect formation in graphene and threshold energy of penetration argon cluster were observed in the simulation. The threshold energies were found to have relatively weak negative power law dependence on the cluster size. The number of sputtered carbon atoms is obtained as a function of the kinetic energy of the cluster

  16. Contraction ionization waves in the argon contracted discharge

    International Nuclear Information System (INIS)

    An investigation of ionization waves in the argon contracted discharge and a definition of their arising propagation mechanism accounting for the specificity of elementary pocesses characteristic of argon are presented. (author)

  17. Threshold Concepts in Economics

    Science.gov (United States)

    Shanahan, Martin

    2016-01-01

    Purpose: The purpose of this paper is to examine threshold concepts in the context of teaching and learning first-year university economics. It outlines some of the arguments for using threshold concepts and provides examples using opportunity cost as an exemplar in economics. Design/ Methodology/Approach: The paper provides an overview of the…

  18. Thermal decomposition of barium valerate in argon

    DEFF Research Database (Denmark)

    Torres, P.; Norby, Poul; Grivel, Jean-Claude

    2015-01-01

    The thermal decomposition of barium valerate (Ba(C4H9CO2)(2)/Ba-pentanoate) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage optical microscopy. Melting takes place in two different steps, at 200 degrees C and 280...

  19. Antiapoptotic activity of argon and xenon.

    Science.gov (United States)

    Spaggiari, Sabrina; Kepp, Oliver; Rello-Varona, Santiago; Chaba, Kariman; Adjemian, Sandy; Pype, Jan; Galluzzi, Lorenzo; Lemaire, Marc; Kroemer, Guido

    2013-08-15

    Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combinations, including the same amount of oxygen (20%) and carbon dioxide (5%) but 75% helium, neon, argon, krypton, or xenon instead of nitrogen. The replacement of nitrogen with noble gases per se had no effects on the viability of cultured human osteosarcoma cells in vitro. Conversely, argon and xenon (but not helium, neon, and krypton) significantly limited cell loss induced by the broad-spectrum tyrosine kinase inhibitor staurosporine, the DNA-damaging agent mitoxantrone and several mitochondrial toxins. Such cytoprotective effects were coupled to the maintenance of mitochondrial integrity, as demonstrated by means of a mitochondrial transmembrane potential-sensitive dye and by assessing the release of cytochrome c into the cytosol. In line with this notion, argon and xenon inhibited the apoptotic activation of caspase-3, as determined by immunofluorescence microscopy coupled to automated image analysis. The antiapoptotic activity of argon and xenon may explain their clinically relevant cytoprotective effects. PMID:23907115

  20. Argon-ion contamination of the plasmasphere

    International Nuclear Information System (INIS)

    This paper applies present observational and analytic knowledge on effects of plasma beam interaction wth the magnetosphere to the plasmasphere contamination problem of the argon ion engine exhaust expected to be deposited in the magnetosphere during the construction phase of the Satellite Power System. Effects of plasmasphere, ionosphere, and radiation belt modifications are discussed

  1. Near-infrared scintillation of liquid argon

    Science.gov (United States)

    Alexander, T.; Escobar, C. O.; Lippincott, W. H.; Rubinov, P.

    2016-03-01

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 μm motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  2. Silicon compounds of neon and argon

    Czech Academy of Sciences Publication Activity Database

    Roithová, J.; Schröder, Detlef

    -, č. 46 (2009), s. 8788-8790. ISSN 1433-7851 R&D Projects: GA ČR GA203/09/1223 Grant ostatní: ERC(XE) Adg HORIZOMS Institutional research plan: CEZ:AV0Z40550506 Keywords : argon * bond formation * dications * neon Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 11.829, year: 2009

  3. Ionization and electron emission of heavy ion-atom collisions: The argon-krypton collision system

    International Nuclear Information System (INIS)

    The Ar-Kr collision system has been studied by examining the charge states of the scattered ions together with the energies of the emitted electrons. The charge state data show that there are increases in the average scattered charge state at distances of closest approach that correspond well with internuclear distances for which the molecular orbital model1 predicts electron promotions of krypton and argon electrons to occur. The electron data show a well resolved Auger peak between 150-200 eV superimposed on an exponentially decreasing background of continuum electrons. Doppler shifts identify the Auger peak as originating from the argon collision partner. Ion-electron coincidence experiments exhibit the same peak and link it to a specific distance of closest approach. The threshold for this L-Auger electron production falls between 0.2 and 0.3 a.u., agreeing well with molecular orbital predictions

  4. Effect of the electron energy distribution on total energy loss with argon in inductively coupled plasmas

    International Nuclear Information System (INIS)

    The total energy lost per electron-ion pair lost εT is investigated with the electron energy distribution function (EEDF). The EEDFs are measured at various argon powers in RF inductively coupled plasma, and the EEDFs show a depleted distribution (a discontinuity occurring at the minimum argon excitation threshold energy level) with the bulk temperature and the tail temperature. The total energy loss per electron-ion pair lost εT is calculated from a power balance model with the Maxwellian EEDFs and the depleted EEDFs and then compared with the measured εT from the floating probe. It is concluded that the small population of the depleted high energy electrons dramatically increases the collisional energy loss, and the calculated εT from the depleted EEDFs has a value that is similar to the measured εT

  5. X-ray fluorescence/Auger-electron coincidence spectroscopy of vacancy cascades in atomic argon

    Energy Technology Data Exchange (ETDEWEB)

    Arp, U. [National Inst. of Standards and Technology, Gaithersburg, MD (United States). Electron and Optical Physics Div.; LeBrun, T.; Southworth, S.H.; Jung, M. [Argonne National Lab., IL (United States). Physics Div.; MacDonald, M.A. [E.P.S.R.C. Daresbury Lab., Warrington (United Kingdom)

    1996-12-01

    Argon L{sub 2.3}-M{sub 2.3}M{sub 2.3} Auger-electron spectra were measured in coincidence with K{alpha} fluorescent x-rays in studies of Ar K-shell vacancy decays at several photon energies above the K-threshold and on the 1s-4p resonance in atomic argon. The complex spectra recorded by conventional electron spectroscopy are greatly simplified when recorded in coincidence with fluorescent x-rays, allowing a more detailed analysis of the vacancy cascade process. The resulting coincidence spectra are compared with Hartree-Fock calculations which include shake-up transitions in the resonant case. Small energy shifts of the coincidence electron spectra are attributed to post-collision interaction with 1s photoelectrons.

  6. Argon Laser Treatment of Strawberry Hemangioma in Infancy

    OpenAIRE

    Achauer, Bruce M.; Vander Kam, Victoria M.

    1985-01-01

    Argon laser therapy is effective for removing port-wine stains and for reducing cutaneous vascular and pigmented lesions. Strawberry hemangiomas, being much thicker lesions than port-wine stains, were considered not appropriate for argon laser treatment. Using argon laser therapy in 13 cases of strawberry hemangioma, we achieved poor to dramatic results.

  7. Top Threshold Physics

    OpenAIRE

    Hoang, Andre H.

    2006-01-01

    Running a future Linear Collider at the top pair threshold allows for precise measurements of the mass, the widths and the couplings of the top quark. I give a nontechnical review on recent theoretical developments and the theory status in top threshold physics concerning QCD corrections and top quark finite lifetime and electroweak effects. I also discuss threshold physics in the context of measurements of the top Yukawa coupling from $e^+e^-\\to t\\bar t H$ and of squark pair production.

  8. Measurement of heat-flow for the ATLAS liquid-argon FCal under HL-LHC conditions

    International Nuclear Information System (INIS)

    The ATLAS Forward Calorimeter (FCal) is a sampling calorimeter made of copper and tungsten with liquid argon as active medium. In the high luminosity phase of the LHC (HL-LHC) the luminosity will be increased up to 7 . 1034 cm-2 s-1. Under these conditions, the high energy density in the FCal may lead to formation of bubbles in the liquid argon, which would prevent a safe operation of the FCal. The main resistance for the heat transport away from the FCal is a small gap between the FCal and the Hadronic Endcap Calorimeter (HEC) filled with liquid argon. A simulation of the heat-flow shows large systematic uncertainties. Therefore, a mock-up of this detector area has been built to determine the heat-flow across this gap experimentally. Measurement results from the FCal test setup are reported, which indicate if the FCal can be safely operated at the HL-LHC.

  9. Controlling H{sub 2}S emissions

    Energy Technology Data Exchange (ETDEWEB)

    Nagl, G.J. [U.S. Filter Corp., Schaumburg, IL (United States)

    1997-03-01

    With its signature rotten egg smell, hydrogen sulfide (H{sub 2}S) is not only odorous, but corrosive and toxic, too. It is produced naturally, by the anaerobic decomposition of sulfur-bearing materials, and synthetically, by a host of chemical process operations, including hydrogenation and hydrodesulfurization and coking. Many processes have been developed to convert H{sub 2}S to innocuous forms, such as elemental sulfur and sulfates. Selecting the best one depends on the overall composition and variability of the gas stream, the concentration of H{sub 2}S present, and the absolute quantity of H{sub 2}S to be removed. This article describes the advantages and disadvantages of seven H{sub 2}S removal systems. Described are: the Claus process, chemical oxidants, caustic scrubbers, adsorption, H{sub 2}S scavengers, amine absorption units, and liquid-phase oxidation systems.

  10. Quantum threshold group signature

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In most situations, the signer is generally a single person. However, when the message is written on behalf of an organization, a valid message may require the approval or consent of several persons. Threshold signature is a solution to this problem. Generally speaking, as an authority which can be trusted by all members does not exist, a threshold signature scheme without a trusted party appears more attractive. Following some ideas of the classical Shamir’s threshold signature scheme, a quantum threshold group signature one is proposed. In the proposed scheme, only t or more of n persons in the group can generate the group signature and any t-1 or fewer ones cannot do that. In the verification phase, any t or more of n signature receivers can verify the message and any t-1 or fewer receivers cannot verify the validity of the signature.

  11. Electron impact excitation out of the metastable levels of argon into the 3p54p J = 3 level

    International Nuclear Information System (INIS)

    We have measured the direct cross section for electron impact excitation out of the metastable 3p54s[3/2]20 level (1s5 in Paschen's notation) into the 3p54p[5/2]3 level (2p9) of argon from threshold to 800 eV. The direct cross section is 40 x 10-16 cm2 at 10 eV. (author)

  12. Electron impact ionization of atomic hydrogen from the 1S and 2S states

    Energy Technology Data Exchange (ETDEWEB)

    Bartschat, K.; Bray, I.

    1996-05-01

    We present results from R-Matrix with Pseudo-States (RMPS) and Convergent Close-Coupling (CCC) calculations for electron impact total ionization of the 1S and 2S states of atomic hydrogen in the energy region from threshold to 100 eV. Particular attention is given to the near threshold region. We find the results for energies more than 2 eV above threshold to be in excellent agreement with the available experimental data. (authors). 19 refs., 3 figs.

  13. Argon laser irradiation of the otolithic organ

    Energy Technology Data Exchange (ETDEWEB)

    Okuno, T.; Nomura, Y.; Young, Y.H.; Hara, M. (Univ. of Tokyo (Japan))

    1990-12-01

    An argon laser was used to irradiate the otolithic organs of guinea pigs and cynomolgus monkeys. After stapedectomy, the argon laser (1.5 W x 0.5 sec/shot) irradiated the utricle or saccule without touching the sensory organs. The stapes was replaced over the oval window after irradiation. The animals used for acute observation were killed immediately for morphologic studies; those used for long-term observation were kept alive for 2, 4, or 10 weeks. Acute observation revealed that sensory and supporting cells were elevated from the basement membrane only in the irradiated area. No rupture of the membranous labyrinth was observed. Long-term observation revealed that the otolith of the macula utriculi had disappeared in 2-week specimens. The entire macula utricili had disappeared in 10-week specimens. No morphologic changes were observed in cochlea, semicircular canals, or membranous labyrinth. The saccule showed similar changes.

  14. Explanation of the memory effect in argon

    Directory of Open Access Journals (Sweden)

    Marković Vidosav

    2005-01-01

    Full Text Available Memory effect - the long time variation of the electrical breakdown time delay on the relaxation time td (τ was observed in argon 24 hours after relaxation times and explained by the long-lived metastable states remaining from the preceding glow. However, the quenching processes reducing the effective lifetime of metastable states several orders of magnitude below that relevant for the time scale of observation were neglected. By applying approximate gas phase models it was found that the early afterglow kinetics up to hundreds of milliseconds is dominated by the decay of molecular argon ions Ar2+ and the approximate value of their ambipolar diffusion coefficient is determined. After that, nitrogen atoms present as impurities and recombined on the cathode surface and/or field emission determine the breakdown time delay down to the cosmic rays and natural radioactivity level.

  15. Flow Parameters of Argon plasma Discharge

    International Nuclear Information System (INIS)

    Owing to the viscosity, the plasma will be adhering to the inner surface of the outer electrode and outer surface of the inner one. As result that the discharge will be eroding the walls of coaxial system. The thickness of the boundary layer near the walls has been estimated at different positions from the breech of coaxial plasma gun. It is found that the thickness of layer 0.008 cm at the end of inner electrode (17 cm). A coaxial plasma gun device is operated in argon gas at ambient pressure 0.6 Torr and discharge voltage about 10 KV. The electron temperature of argon discharge has been determined by using spectroscopic technique. It is found that kTe=3.4 eV. By knowing the thickness of the boundary layer, the density can be determined. The Reynolds number R=105 and Mach number M=5 i.e. the flow is compressible and hypersonic

  16. ATLAS liquid argon calorimeter back end electronics

    CERN Document Server

    Bán, J; Bellachia, F; Blondel, A; Böttcher, S; Clark, A; Colas, Jacques; Díaz-Gómez, M; Dinkespiler, B; Efthymiopoulos, I; Escalier, M; Fayard, Lo; Gara, A; He, Y; Henry-Coüannier, F; Hubaut, F; Ionescu, G; Karev, A; Kurchaninov, L; Lafaye, R; Laforge, B; La Marra, D; Laplace, S; Le Dortz, O; Léger, A; Liu, T; Martin, D; Matricon, P; Moneta, L; Monnier, E; Oberlack, H; Parsons, J A; Pernecker, S; Perrot, G; Poggioli, L; Prast, J; Przysiezniak, H; Repetti, B; Rosselet, L; Riu, I; Schwemling, P; Simion, S; Sippach, W; Strässner, A; Stroynowski, R; Tisserant, S; Unal, G; Wilkens, H; Wingerter-Seez, I; Xiang, A; Yang, J; Ye, J

    2007-01-01

    The Liquid Argon calorimeters play a central role in the ATLAS (A Toroidal LHC Apparatus) experiment. The environment at the Large Hadron Collider (LHC) imposes strong constraints on the detectors readout systems. In order to achieve very high precision measurements, the detector signals are processed at various stages before reaching the Data Acquisition system (DAQ). Signals from the calorimeter cells are received by on-detector Front End Boards (FEB), which sample the incoming pulse every 25ns and digitize it at a trigger rate of up to 75~kHz. Off-detector Read Out Driver (ROD) boards further process the data and send reconstructed quantities to the DAQ while also monitoring the data quality. In this paper, the ATLAS Liquid Argon electronics chain is described first, followed by a detailed description of the off-detector readout system. Finally, the tests performed on the system are summarized.

  17. Current and future liquid argon neutrino experiments

    International Nuclear Information System (INIS)

    The liquid argon time projection chamber (LArTPC) detector technology provides an opportunity for precision neutrino oscillation measurements, neutrino cross section measurements, and searches for rare processes, such as SuperNova neutrino detection. These proceedings review current and future LArTPC neutrino experiments. Particular focus is paid to the ICARUS, MicroBooNE, LAr1, 2-LArTPC at CERN-SPS, LBNE, and 100 kton at Okinoshima experiments

  18. WA105: a large-scale demonstrator of the Liquid Argon double phase TPC

    Science.gov (United States)

    Tonazzo, A.; WA105 Collaboration

    2016-05-01

    The physics case for a large underground detector devoted to neutrino oscillation measurements, nucleon decay and astrophysics is compelling. A time projection chamber based on the dual-phase liquid Argon technique is an extremely attractive option, allowing for long drift distances, low energy threshold and high readout granularity. It has been extensively studied in the LAGUNA-LBNO Design Study and is one of the two designs foreseen for the modules of the DUNE detector in the US. The WA105 experiment envisages the construction of a large scale prototype at CERN, to validate technical solutions and perform physics studies with charged particle beams.

  19. Low-energy structure in the ionization of argon:Comparison of experiment with theory

    Institute of Scientific and Technical Information of China (English)

    Feng Li-Qiang; Chu Tian-Shu; Wang Li

    2013-01-01

    The above-threshold ionization of argon in an intense 70-fs,400-nm linearly polarized laser pulse has been investigated by the velocity map imaging techniques,combined with an attosecond-resolution quantum wave packet dynamics method.There is a quantitative agreement in all dominant features between the experiment and the theory.Moreover,a peak-splitting phenomenon in the first energy peak has been observed at high pulse intensity.Further,through the theoretical analysis,an ac Stark splitting with evident resonant and nonresonant ionization pathways has been found to be the physical reason for the experimental observations.

  20. Liquid argon imaging a novel detection technology

    CERN Document Server

    Rubbia, Carlo

    2002-01-01

    Ionisation electrons may drift over large distances (meters) in a volume of highly purified liquid argon (O2 equivalent less than 0.1 ppb!) under the action of an electric field. With an appropriate readout system (i.e. a set of fine pitch wire grids) we have realised a massive, continuously sensitive 'bubble chamber' with multiple readouts of the same, small charge (a minimum ionising track segment, 2 mm long, yields • 10000 electrons). We have developed this technology since 1987, initially with small laboratory devices and later with progressively larger and more sophisticated detectors, the latest being the T600 module (740 ton of liquid Argon), which has been operated in Pavia, as a step toward the ICARUS programme in the Gran Sasso Laboratory (LNGS). With cloning of T600 we aim at a 3000 ton detector by 2005. Argon is a medium with density 1.4 g/cm3, similar in characteristics to the heavy freon used in the famous Gargamelle. With wire pitches of 2-3 mm, it provides an extremely high spatial re...

  1. Distribution and Abundance of Mars' Atmospheric Argon

    Science.gov (United States)

    Sprague, A. L.; Boynton, W. V.; Kerry, K. E.; Nelli, Steven; Murphy, Jim; Reedy, R. C.; Metzger, A. E.; Hunten, D. M.; Janes, K. D.; Crombie, M. K.

    2005-01-01

    One and one half Mars years (MY 26 and 27) of atmospheric Argon measurements are described and studied in the context of understanding how Argon, a minor constituent of Mars atmosphere that does not condense at Mars temperatures, can be used to study martian circulation and dynamics. Argon data are from the 2001 Mars Odyssey Gamma Subsystem (GS) of the suite of three instruments comprising the Gamma Ray Spectrometer (GRS). A comprehensive data analysis including gamma-ray production and attenuation by the atmosphere is included. Of particular interest is the enhanced abundance of Ar over the observed Ar abundance at lower latitudes at south (up to a factor of 10) and north (up to a factor of 4) polar regions during winter. Calibration of the measurements to actual Ar abundance is possible because GS measurements cover the same latitude and season as measurements made by the gas chromatograph mass spectrometer (GCMS) on Viking Landers 1 and 2 (VL1 and VL2). [2].

  2. Laser damage threshold of SiO2 films by the photoacoustic mirage technique

    International Nuclear Information System (INIS)

    SiO2 thin films of 240 nm thickness have been deposited by a dual-ion-beam sputtering technique using argon or xenon ions mixed with oxygen ions in the assisting ion beam and the role of the assisting ion beam and of the substrate temperature on the laser damage threshold at 308 nm (XeCl excimer laser) has been investigated by the photo acoustic mirage technique. It has been found that the laser damage threshold was quite dependent on the film deposition conditions. The sample grown at a substrate temperature of 300 deg. C and with the argon ion assisting beam was characterized by the highest damage threshold ( congruent with 10 J/cm2)

  3. Near-threshold sputtering of MoSi2

    International Nuclear Information System (INIS)

    This paper presents a comprehensive experimental, theoretical and computer simulation study of very low-energy (3-35 eV) argon ion sputtering of β-MoSi2 (0 0 0 1). Modification of MoSi2 surface composition under low-energy ion bombardment was studied by Auger electron spectroscopy (AES) and X-ray photoelectronic spectroscopy (XPS). The detected changes of surface composition were attributed to preferential sputtering combined with threshold effects. To verify the interpretation, an analytical theory of near-threshold sputtering of compounds is developed which provides a general relation between the sputter threshold energy of target atoms on one side and their atomic masses, surface-binding energies as well with the ion atomic mass on the other side. Elementary mechanisms of near-threshold sputtering are found from the theory and molecular dynamics simulation for MoSi2. Threshold energies for various mechanisms of Mo and Si sputtering are calculated and used to explain the experimental evidence. From results of the work it is concluded that the experimental study of surface composition changes after near-threshold sputtering provides a radically new approach to investigate surface binding in compounds

  4. Polynomial threshold functions and Boolean threshold circuits

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.

    2013-01-01

    secondary interest. We show that PTFs on general Boolean domains are tightly connected to depth two threshold circuits. Our main results in regard to this connection are: PTFs of polynomial length and polynomial degree compute exactly the functions computed by THRMAJ circuits. An exponential length lower...... bound for PTFs that holds regardless of degree, thereby extending known lower bounds for THRMAJ circuits. We generalize two-party unbounded error communication complexity to the multi-party number-on-the-forehead setting, and show that communication lower bounds for 3-player protocols would yield size...... lower bounds for THRTHR circuits. We obtain several other results about PTFs. These include relationships between weight and degree of PTFs, and a degree lower bound for PTFs of constant length. We also consider a variant of PTFs over the max-plus algebra. We show that they are connected to PTFs over...

  5. Pion photoproduction near threshold

    International Nuclear Information System (INIS)

    A review of the high accuracy π+ threshold photoproduction cross-section determinations on deuterium and helium-3 is presented. These must be considered on the same footing as the data on electromagnetic observables, with reference to the important question of the description of the non nucleonic degrees of freedom in the nucleus. The π0 threshold photoproduction on very light nuclei which conveys information on the elementary nucleonic amplitudes in an energy region where one is sensitive to the break down of isospin symmetry as revealed by the π+-, π0 and the n, p mass splittings is discussed

  6. Development of a low-cost inductively coupled argon plasma

    International Nuclear Information System (INIS)

    The aim of this investigation is to drastically reduce running costs of an inductively coupled plasma. This is done by reducing the argon consumption from 20 l/min to about 1 l/min. First, a sample introduction system operating on 0.1 l/min of carrier argon is described. This system ensures a high ratio of plasma argon and carrier argon even at the low total argon consumptions intended. Next, the developed low consumption plasma is presented. In the proposed design, air is blown perpendicularly against the outside of the torch. A different coil has been developed to make air-cooling efficient. Preliminary data on coupling efficiency for the air-cooled plasma are presented. A similarly low argon consumption has been achieved with water as an external coolant medium. It is concluded that a cheaper alternative to the current ICP has become available. (Auth.)

  7. ILC2s and fungal allergy

    Directory of Open Access Journals (Sweden)

    Hirohito Kita

    2015-07-01

    Full Text Available Innate lymphoid cells (ILCs have emerged recently as an important component of the immune system and the cell type that regulates mucosal immune responses and tissue homeostasis. Group 2 ILCs (ILC2s, a subset of ILCs, reside in various tissues and are characterized by their capacity to produce type 2 cytokines and tissue growth factors. These ILC2s play an important role in allergic immune responses by linking signals in the atmospheric environment to the immune system. Fungi are one of the major allergens associated with human asthma, and animal and in vitro models using the fungal allergens have provided significant information toward our understanding of the mechanisms of allergic disease. In mouse models of fungus-induced allergic airway inflammation, IL-33, IL-25, and TSLP are released by airway epithelial cells. Lung ILC2s that respond to these cytokines quickly produce a large quantity of type 2 cytokines, resulting in airway eosinophilia, mucus production, and airway hyperreactivity even in the absence of adaptive immune cells. Evidence also suggests that ILC2s interact with conventional immune cells, such as CD4+ T cells, and facilitate development of adaptive immune response and persistent airway inflammation. ILC2s are also present in respiratory mucosa in humans. Further investigations into the biology of ILC2s and their roles in the pathophysiology of allergic diseases will provide major conceptual advances in the field and may provide useful information toward development of new therapeutic strategies for patients.

  8. ILC2s and fungal allergy.

    Science.gov (United States)

    Kita, Hirohito

    2015-07-01

    Innate lymphoid cells (ILCs) have emerged recently as an important component of the immune system and the cell type that regulates mucosal immune responses and tissue homeostasis. Group 2 ILCs (ILC2s), a subset of ILCs, reside in various tissues and are characterized by their capacity to produce type 2 cytokines and tissue growth factors. These ILC2s play an important role in allergic immune responses by linking signals in the atmospheric environment to the immune system. Fungi are one of the major allergens associated with human asthma, and animal and in vitro models using the fungal allergens have provided significant information toward our understanding of the mechanisms of allergic disease. In mouse models of fungus-induced allergic airway inflammation, IL-33, IL-25, and TSLP are released by airway epithelial cells. Lung ILC2s that respond to these cytokines quickly produce a large quantity of type 2 cytokines, resulting in airway eosinophilia, mucus production, and airway hyperreactivity even in the absence of adaptive immune cells. Evidence also suggests that ILC2s interact with conventional immune cells, such as CD4(+) T cells, and facilitate development of adaptive immune response and persistent airway inflammation. ILC2s are also present in respiratory mucosa in humans. Further investigations into the biology of ILC2s and their roles in the pathophysiology of allergic diseases will provide major conceptual advances in the field and may provide useful information toward development of new therapeutic strategies for patients. PMID:26117252

  9. Elaborating on Threshold Concepts

    Science.gov (United States)

    Rountree, Janet; Robins, Anthony; Rountree, Nathan

    2013-01-01

    We propose an expanded definition of Threshold Concepts (TCs) that requires the successful acquisition and internalisation not only of knowledge, but also its practical elaboration in the domains of applied strategies and mental models. This richer definition allows us to clarify the relationship between TCs and Fundamental Ideas, and to account…

  10. Setting Graduation Rate Thresholds.

    Science.gov (United States)

    Underwood, David G.; Rieck, James R.

    1999-01-01

    Reviews the college completion/graduation rate thresholds developed by several states and discusses advantages and disadvantages of several statistical approaches, including use of the one standard deviation lower bound method, the logit prediction bound method, the linear regression method, and the logistic regression method. (DB)

  11. Effects of Nitrogen contamination in liquid Argon

    Science.gov (United States)

    Acciarri, R.; Antonello, M.; Baibussinov, B.; Baldo-Ceolin, M.; Benetti, P.; Calaprice, F.; Calligarich, E.; Cambiaghi, M.; Canci, N.; Carbonara, F.; Cavanna, F.; Centro, S.; Cocco, A. G.; Di Pompeo, F.; Fiorillo, G.; Galbiati, C.; Gallo, V.; Grandi, L.; Meng, G.; Modena, I.; Montanari, C.; Palamara, O.; Pandola, L.; Piano Mortari, G. B.; Pietropaolo, F.; Raselli, G. L.; Roncadelli, M.; Rossella, M.; Rubbia, C.; Segreto, E.; Szelc, A. M.; Ventura, S.; Vignoli, C.

    2010-06-01

    A dedicated test of the effects of Nitrogen contamination in liquid Argon has been performed at the INFN-Gran Sasso Laboratory (LNGS, Italy) within the WArP R&D program. A detector has been designed and assembled for this specific task and connected to a system for the injection of controlled amounts of gaseous Nitrogen into the liquid Argon. The purpose of the test is to detect the reduction of the Ar scintillation light emission as a function of the amount of the Nitrogen contaminant injected in the Argon volume. A wide concentration range, spanning from ~ 10-1 ppm up to ~ 103 ppm, has been explored. Measurements have been done with electrons in the energy range of minimum ionizing particles (γ-conversion from radioactive sources). Source spectra at different Nitrogen contaminations are analyzed, showing sensitive reduction of the scintillation yield at increasing concentrations. Direct PMT signal acquisition exploiting high time resolution by fast waveform recording allowed high precision extraction of the main characteristics of the scintillation light emission in contaminated LAr. In particular, the decreasing behavior in lifetime and relative amplitude of the slow component is found to be appreciable starting from Script O(1 ppm) of Nitrogen concentrations. The rate constant of the quenching process induced by Nitrogen in liquid Ar has been found to be kQ(N2) = 0.11 ± 0.01 μs-1ppm-1, consistent with a previous measurement of this quantity but with significant improvement in precision. On the other hand, no evidence for absorption by N2 impurities has been found up to the higher concentrations here explored.

  12. HARP: high pressure argon readout for calorimeters

    International Nuclear Information System (INIS)

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx.200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described

  13. Argon isotope fractionation induced by stepwise heating

    Science.gov (United States)

    Trieloff, Mario; Falter, Martina; Buikin, Alexei I.; Korochantseva, Ekaterina V.; Jessberger, Elmar K.; Altherr, Rainer

    2005-03-01

    Noble gas isotopes are widely used to elucidate the history of the rocks in which they have been trapped, either from distinct reservoirs or by accumulation following radioactive decay. To extract noble gases from their host rocks, stepwise heating is the most commonly used technique to deconvolve isotopically different components, e.g., atmospheric, in situ radiogenic, or excess radiogenic from mantle or crustal reservoirs. The accurate determination of the isotopic composition of these different components is of crucial importance, e.g., for ages obtained by 40Ar- 39Ar stepheating plateaus. However, diffusion theory-based model calculations predict that the stepwise thermal extraction process from mineral phases induces isotope fractionation and, hence, adulterates the original composition. Such effects are largely unconsidered, as they are small and a compelling experimental observation is lacking. We report the first unequivocal evidence for significant mass fractionation of argon isotopes during thermal extraction, observed on shungite, a carbon-rich Precambrian sedimentary rock. The degree of fractionation, as monitored by 38Ar/ 36Ar and 40Ar/ 36Ar ratios, very well agrees with theoretical predictions assuming an inverse square root dependence of diffusion coefficient and atomic mass, resulting in easier extraction of lighter isotopes. Hence, subatmospheric 40Ar/ 36Ar ratios obtained for argon extracted at low temperatures may not represent paleoatmospheric argon. Shungite argon resembles modern atmospheric composition, but constraints on the timing of trapping appear difficult to obtain, as shungites are multicomponent systems. In 40Ar- 39Ar stepwise heating, the isotope fractionation effect could cause systematic underestimations of plateau ages, between 0.15 and 0.4% depending on age, or considerably higher if samples contain appreciable atmospheric Ar. The magnitude of this effect is similar to the presently achieved uncertainties of this increasingly

  14. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  15. Near-infrared scintillation of liquid argon

    CERN Document Server

    Alexander, T; Lippincott, W H; Rubinov, P

    2016-01-01

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  16. Attosecond Time-Resolved Autoionization of Argon

    International Nuclear Information System (INIS)

    Autoionization of argon atoms was studied experimentally by transient absorption spectroscopy with isolated attosecond pulses. The peak position, intensity, linewidth, and shape of the 3s3p6np 1P Fano resonance series (26.6-29.2 eV) were modified by intense few-cycle near infrared laser pulses, while the delay between the attosecond pulse and the laser pulse was changed by a few femtoseconds. Numerical simulations revealed that the experimentally observed splitting of the 3s3p64p 1P line is caused by the coupling between two short-lived highly excited states in the strong laser field.

  17. Argon Purification Studies and a Novel Liquid Argon Re-circulation System

    CERN Document Server

    Mavrokoridis, K; Coleman, J; Lightfoot, P K; McCauley, N; McCormick, K J; Touramanis, C

    2011-01-01

    Future giant liquid argon (LAr) time projection chambers (TPCs) require a purity of better than 0.1 parts per billion (ppb) to allow the ionised electrons to drift without significant capture by any electronegative impurities. We present a comprehensive study of the effects of electronegative impurity on gaseous and liquid argon scintillation light, an analysis of the efficacy of various purification chemicals, as well as the Liverpool LAr setup, which utilises a novel re-circulation purification system. Of the impurities tested - Air, O_2, H_2O, N_2 and CO_2 in the range of between 0.01 ppm to 1000 ppm - H_2O was found to have the most profound effect on gaseous argon scintillation light, and N_2 was found to have the least. Additionally, a correlation between the slow component decay time and the total energy deposited with 0.01 ppm - 100 ppm O_2 contamination levels in liquid argon has been established. The superiority of molecular sieves over anhydrous complexes at absorbing Ar gas, N_2 gas and H_2O vapou...

  18. Phase equilibria in BaS-Cu2S-Gd2S3 system

    International Nuclear Information System (INIS)

    Phase equilibria in BaS-Cu2S-Gd2S3 system are studied along isothermal (800 K) and polythermal sections CuGdS2-BaS, Cu2S-BaGdCuS3, BaGdCuS3-Gd2S3, BaGdCuS3-BaGd2S4. Complex sulfide BaGdCuS3 with orthorhombic lattice is formed, lattice parameters are determined. Compositions of eutectics forming in the system are determined

  19. ARGON RECOIL ION ELECTRON CAPTURE FROM NEUTRAL ARGON AND HELIUM STUDIED BY TIME RESOLVED V.U.V. SPECTROSCOPY

    OpenAIRE

    Lesteven-Vaisse, I.; Chantepie, M.; Folkmann, F.; Lecler, D.; Ben Sitel, A.

    1989-01-01

    Electron capture phenomena in recoil ion V.U.V. spectroscopy are tested through the evolution of the observed argon spectrum by introduction of helium in addition to argon in the collision chamber. Taking into account these mixed gas data by the time-differential method and using decay time analysis, an improved analysis of argon recoil ion V.U.V. radiation is presented.

  20. Argon laser-welded arteriovenous anastomoses.

    Science.gov (United States)

    White, R A; Kopchok, G; Donayre, C; White, G; Lyons, R; Fujitani, R; Klein, S R; Uitto, J

    1987-11-01

    This study compared the healing of laser-welded and sutured canine femoral arteriovenous anastomoses. Arteriovenous fistulas 2 cm in length were created bilaterally in the femoral vessels of 10 dogs and were studied at 1 (n = 2), 2 (n = 2), 4 (n = 3), and 8 (n = 3) weeks. In each animal, one anastomosis (control) was closed with running 6-0 polypropylene sutures, and the contralateral anastomosis (experimental) was sealed with an argon laser (0.5 watt, 4 minutes of exposure, 1830 J/cm2/1 cm length of anastomosis). At removal all experimental anastomoses were patent without hematomas, aneurysms, or luminal narrowing. Histologic examination at 4 weeks revealed that laser-welded anastomoses had less inflammatory response and almost normal collagen and elastin reorientation. At 8 weeks sutured anastomoses had significant intimal hyperplasia whereas laser repairs had normal luminal architecture. Tensile strength and collagen production, measured by the synthesis of hydroxyproline and the steady-state levels of type I and type III procollagen messenger ribonucleic acids, at the anastomoses and in adjacent vein and artery specimens were similar in sutured and laser-welded repairs at 2, 4, and 8 weeks. We conclude that argon laser welding of anastomoses is an acceptable alternative to suture techniques, with the advantage of improved healing without foreign body response and possible diminished intimal hyperplasia at the anastomotic line. PMID:3312648

  1. Electron scattering and transport in liquid argon

    International Nuclear Information System (INIS)

    The transport of excess electrons in liquid argon driven out of equilibrium by an applied electric field is revisited using a multi-term solution of Boltzmann’s equation together with ab initio liquid phase cross-sections calculated using the Dirac-Fock scattering equations. The calculation of liquid phase cross-sections extends previous treatments to consider multipole polarisabilities and a non-local treatment of exchange, while the accuracy of the electron-argon potential is validated through comparison of the calculated gas phase cross-sections with experiment. The results presented highlight the inadequacy of local treatments of exchange that are commonly used in liquid and cluster phase cross-section calculations. The multi-term Boltzmann equation framework accounting for coherent scattering enables the inclusion of the full anisotropy in the differential cross-section arising from the interaction and the structure factor, without an a priori assumption of quasi-isotropy in the velocity distribution function. The model, which contains no free parameters and accounts for both coherent scattering and liquid phase screening effects, was found to reproduce well the experimental drift velocities and characteristic energies

  2. Pollution of liquid argon after neutron irradiation

    CERN Document Server

    Andrieux, M L; Collot, J; de Saintignon, P; Ferrari, A; Hostachy, J Y; Hoummada, A; Martin, P; Merkel, B; Puzo, P; Sauvage, D; Wielers, M

    2001-01-01

    The purpose of the neutron facility installed at SARA is to investigate the behavior of various materials to be used in the ATLAS liquid argon calorimeter, when submitted to fast neutron radiation. The samples are placed in a liquid argon cryostat a few cm away from the neutron source. Various pieces of the electromagnetic calorimeter have been tested in order to evaluate the rate of pollution of the liquid and consequently the possible signal loss in energy measurements. The average fluence was equivalent to the maximum expected in the calorimeter in about 10 years. The most striking feature of the results is that the pollution is not due to oxygen, at least for most of it. Using a particular value of the absorption length derived from these data, a simulation was carried out and the energy signal loss in the calorimeter could be predicted. Within the limits of our present knowledge, the conclusion is that damages due to this pollution will not be a problem. (17 refs).

  3. Pollution of liquid argon after neutron irradiation

    International Nuclear Information System (INIS)

    The purpose of the neutron facility installed at SARA is to investigate the behavior of various materials to be used in the ATLAS liquid argon calorimeter, when submitted to fast neutron radiation. The samples are placed in a liquid argon cryostat a few cm away from the neutron source. Various pieces of the electromagnetic calorimeter have been tested in order to evaluate the rate of pollution of the liquid and consequently the possible signal loss in energy measurements. The average fluence was equivalent to the maximum expected in the calorimeter in about 10 years. The most striking feature of the results is that the pollution is not due to oxygen, at least for most of it. Using a particular value of the absorption length derived from these data, a simulation was carried out and the energy signal loss in the calorimeter could be predicted. Within the limits of our present knowledge, the conclusion is that damages due to this pollution will not be a problem

  4. Ion-beam excitation of liquid argon

    CERN Document Server

    Hofmann, M; Heindl, T; Neumeier, A; Oberauer, L; Potzel, W; Roth, S; Schönert, S; Wieser, J; Ulrich, A

    2015-01-01

    The scintillation light of liquid argon has been recorded wavelength and time resolved with very good statistics in a wavelength interval ranging from 118 nm through 970 nm. Three different ion beams, protons, sulfur ions and gold ions, were used to excite liquid argon. Only minor differences were observed in the wavelength-spectra obtained with the different incident particles. Light emission in the wavelength range of the third excimer continuum was found to be strongly suppressed in the liquid phase. In time-resolved measurements, the time structure of the scintillation light can be directly attributed to wavelength in our studies, as no wavelength shifter has been used. These measurements confirm that the singlet-to-triplet intensity ratio in the second excimer continuum range is a useful parameter for particle discrimination, which can also be employed in wavelength-integrated measurements as long as the sensitivity of the detector system does not rise steeply for wavelengths longer than 190 nm. Using ou...

  5. Grossman's Missing Health Threshold

    OpenAIRE

    Titus J. Galama; Arie Kapteyn

    2009-01-01

    The authors present a generalized solution to Grossman's model of health capital (1972), relaxing the widely used assumption that individuals can adjust their health stock instantaneously to an "optimal" level without adjustment costs. The Grossman model then predicts the existence of a health threshold above which individuals do not demand medical care. Their generalized solution addresses a significant criticism: the model's prediction that health and medical care are positively related is ...

  6. Elaborating on threshold concepts

    Science.gov (United States)

    Rountree, Janet; Robins, Anthony; Rountree, Nathan

    2013-09-01

    We propose an expanded definition of Threshold Concepts (TCs) that requires the successful acquisition and internalisation not only of knowledge, but also its practical elaboration in the domains of applied strategies and mental models. This richer definition allows us to clarify the relationship between TCs and Fundamental Ideas, and to account for both the important and the problematic characteristics of TCs in terms of the Knowledge/Strategies/Mental Models Framework defined in previous work.

  7. Efficient Threshold Signature Scheme

    Directory of Open Access Journals (Sweden)

    Sattar J Aboud

    2012-01-01

    Full Text Available In this paper, we introduce a new threshold signature RSA-typed scheme. The proposed scheme has the characteristics of un-forgeable and robustness in random oracle model. Also, signature generation and verification is entirely non-interactive. In addition, the length of the entity signature participate is restricted by a steady times of the length of the RSA signature modulus. Also, the signing process of the proposed scheme is more efficient in terms of time complexity and interaction.

  8. Vibration intensity difference thresholds

    OpenAIRE

    Forta, Nazim Gizem

    2009-01-01

    The intensity difference threshold is defined as ‘the difference in the intensity of two stimuli which is just sufficient for their difference to be detected’. The aim of this thesis is to advance understanding of the perception of vibration intensity differences in humans. In addition to increasing understanding of the tactile senses, knowledge of difference perception could inform various applications such as the optimisation of the vibration characteristics of vehicles and ...

  9. Improved GaSb surfaces using a (NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}S0{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Murape, D.M., E-mail: Davison.Murape@live.nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Eassa, N.; Nyamhere, C.; Neethling, J.H. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Betz, R. [Department of Chemistry, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Coetsee, E.; Swart, H.C. [Department of Physics, University of the Free State, PO Box 339, Bloemfontein 9300 (South Africa); Botha, J.R.; Venter, A. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    Bulk (1 0 0) n-GaSb surfaces have been treated with a sulphur based solution ((NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4}) to which sulphur has been added, not previously reported for the passivation of GaSb surfaces. Au/n-GaSb Schottky barrier diodes (SBDs) fabricated on the treated material show significant improvement compared to that of the similar SBDs on the as-received material as evidenced by the lower ideality factor (n), higher barrier height ({phi}{sub b}) and lower contact resistance obtained. Additionally, the reverse leakage current, although not saturating, has been reduced by almost an order of magnitude at -0.2 V. The sample surfaces were studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The native oxide, Sb-O, present on the as-received material is effectively removed on treating with ([(NH{sub 4}){sub 2}S/(NH{sub 4}){sub 2}SO{sub 4}]+S) and (NH{sub 4}){sub 2}S. Analysis of the as-received surface by XPS, prior to and after argon sputtering, suggests that the native oxide layer is {<=}8.5 nm.

  10. Nitrogen Removal from Molten Steel under Argon DC Glow Plasma

    Institute of Scientific and Technical Information of China (English)

    SUN Ming-shan; DING Wei-zhong; LU Xiong-gang

    2005-01-01

    Under argon DC glow plasma, the nitrogen removal from molten steel was studied. The experimental result showed that nitrogen mass percent could be reduced to 0.000 8%. The change of polarity had no impact on nitrogen removal when the nitrogen mass percent was low. The mechanism of denitrogenation of molten steel under argon DC glow plasma was discussed.

  11. WARP: a double phase argon programme for dark matter detection

    International Nuclear Information System (INIS)

    WARP (Wimp ARgon Programme) is a double phase Argon detector for Dark Matter search under construction at Laboratori Nazionali del Gran Sasso. We present recent results obtained operating a prototype with a sensitive mass of 2.3 litres deep underground

  12. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.;

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...

  13. Structural and electronic features of binary Li2S-P2S5 glasses

    Science.gov (United States)

    Ohara, Koji; Mitsui, Akio; Mori, Masahiro; Onodera, Yohei; Shiotani, Shinya; Koyama, Yukinori; Orikasa, Yuki; Murakami, Miwa; Shimoda, Keiji; Mori, Kazuhiro; Fukunaga, Toshiharu; Arai, Hajime; Uchimoto, Yoshiharu; Ogumi, Zempachi

    2016-02-01

    The atomic and electronic structures of binary Li2S-P2S5 glasses used as solid electrolytes are modeled by a combination of density functional theory (DFT) and reverse Monte Carlo (RMC) simulation using synchrotron X-ray diffraction, neutron diffraction, and Raman spectroscopy data. The ratio of PSx polyhedral anions based on the Raman spectroscopic results is reflected in the glassy structures of the 67Li2S-33P2S5, 70Li2S-30P2S5, and 75Li2S-25P2S5 glasses, and the plausible structures represent the lithium ion distributions around them. It is found that the edge sharing between PSx and LiSy polyhedra increases at a high Li2S content, and the free volume around PSx polyhedra decreases. It is conjectured that Li+ ions around the face of PSx polyhedra are clearly affected by the polarization of anions. The electronic structure of the DFT/RMC model suggests that the electron transfer between the P ion and the bridging sulfur (BS) ion weakens the positive charge of the P ion in the P2S7 anions. The P2S7 anions of the weak electrostatic repulsion would causes it to more strongly attract Li+ ions than the PS4 and P2S6 anions, and suppress the lithium ionic conduction. Thus, the control of the edge sharing between PSx and LiSy polyhedra without the electron transfer between the P ion and the BS ion is expected to facilitate lithium ionic conduction in the above solid electrolytes.

  14. Triazine-based H2S Scavenging

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Vestergaard Jensen, Carina; Søgaard, Erik Gydesen

    2014-01-01

    The authors studied the applicability of a previously suggested model to describe the reaction between 1,3,5-tri-(2-hydroxypropyl)-hexahydro-s-triazine and H2S and thereby predict formation of fouling. To investigate the reaction system, electrospray ionization mass spectrometry was employed to a...

  15. Upgrade of the Trigger System of the ATLAS Liquid Argon calorimeters

    CERN Document Server

    Kanaya, N; The ATLAS collaboration

    2014-01-01

    The ATLAS detector was designed and build to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm^-2s^-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η| <3.2, and for hadronic calorimetry in the region from |η| = 1.5 to |η| = 4.9. The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals, which are digitized and processed by the front-end and back-end electronics for each triggered event. In addition, the front-end electronics sums analog signals to provide coarse-grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. In 2019, instantaneous luminosities of (2-3)×1034 cm^-2s^-1 are expected, far beyond that for which the detector was designed. In order to cope with this increased trigger rate, an improved spatial granularity of the trigger primitives is pro...

  16. Upgrade of the Trigger System of the ATLAS Liquid Argon calorimeters

    CERN Document Server

    Kanaya, N; The ATLAS collaboration

    2014-01-01

    ATLAS detector was designed and build to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034 cm-2s-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η| <3.2, and for hadronic calorimetry in the region from |η| = 1.5 to |η| = 4.9. The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals, which are digitized and processed by the front-end and back-end electronics for each triggered event. In addition, the front-end electronics sums analog signals to provide coarse-grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. In 2020, instantaneous luminosities of (2-3)×1034 cm-2s-1 are expected, far beyond that for which the detector was designed. In order to cope with this increased trigger rate, an improved spatial granularity of the trigger primitives is proposed, t...

  17. Upgrade of the Trigger Readout System of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Marino, CP; The ATLAS collaboration

    2013-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^34 cm^-2 s^-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |eta|<3.2, and for hadronic calorimetry in the region from |eta|=1.5 to |eta|=4.9. The ATLAS Liquid Argon (LAr) calorimeters produce a total of 182,486 signals which are digitizedand processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sums analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. In 2018, an instantaneous luminosity of 2-3 x 10^34 cm^-2 s^-1 is expected, far beyond the nominal one for which the detector was designed. In order to cope with this increased trigger rate, an improved spatial granularity of the trigger primi...

  18. Commissioning of the ATLAS liquid argon calorimeters

    CERN Document Server

    Rezaie, Erfan

    ATLAS, a multi-purpose detector built at the LHC at CERN, requires an extensive commissioning campaign to be ready for proton-proton collisions. In this work, we focus on the commissioning of the liquid Argon (LAr) calorimeters, with emphasis on commissioning with cosmic rays. First we outline one phase of the commissioning work, which involves testing of the front-end electronics of the two endcap calorimeters. We then describe two cosmic ray generators as input to a Monte-Carlo simulation of cosmic rays in ATLAS, and compare their results. Finally, we explain a technique developed for this work which uses information from the Tile calorimeters to predict the timing of cosmic rays within the LAr calorimeters, because cosmic rays occur randomly in time whereas the electronics are clocked at [Special characters omitted.] . The results from this analysis tool are compared to default tools, using both simulated and real cosmic ray data in the calorimeters.

  19. Neutron Inelastic Scattering Study of Liquid Argon

    International Nuclear Information System (INIS)

    The inelastic scattering functions for liquid argon have been measured at 85.2 K. The coherent scattering function was obtained from a measurement on pure A-36 and the incoherent function was derived from the result obtained from the A-36 sample and the result obtained from a mixture of A-36 and A-40 for which the scattering is predominantly incoherent. The data, which are presented as smooth scattering functions at constant values of the wave vector transfer in the range 10 - 44/nm, are corrected for multiple scattering contributions and for resolution effects. Such corrections are shown to be essential in the derivation of reliable scattering functions from neutron scattering data. The incoherent data are compared to recent molecular dynamics results and the mean square displacement as a function of time is derived. The coherent data are compared to molecular dynamics results and also, briefly, to some recent theoretical models

  20. Large vessel sealing with the argon laser.

    Science.gov (United States)

    White, R A; Kopchok, G; Donayre, C; Lyons, R; White, G; Klein, S R; Pizzurro, D; Abergel, R P; Dwyer, R M; Uitto, J

    1987-01-01

    This study compared the histology, biochemistry, and tensile strength of laser-welded and sutured canine venotomies, arteriotomies, and arteriovenous fistulas. Twelve animals had bilateral femoral vessels studied, with one repair (control) closed with interrupted 6-0 polypropylene sutures, and the contralateral repair (experimental) welded with the argon laser. Specimens were examined at weekly intervals from 1 to 4 weeks (four animals for each type of repair), and were evaluated histologically by hematoxylin and eosin, elastin, and trichrome stains; biochemically by the formation of [3H]hydroxyproline as an index of collagen synthesis; and mechanically by tensile strength determinations. At removal, all experimental closures were patent without hematomas, aneurysms, or luminal dilatation. Histologic and biochemical examination and tensile strength determinations suggest that laser welding may be an alternative to sutures for repair of large-diameter venotomies, arteriotomies, and arteriovenous fistulas, as healing is comparable to that seen with suture repairs up to 4 weeks postoperatively. PMID:3306233

  1. Vascular Welding Using The Argon Laser

    Science.gov (United States)

    White, Rodney A.; Donayre, Carlos; Kopchok, George; White, Geoffrey; Abergel, R. Patrick; Lyons, Richard; Klein, Stanley; Dwyer, Richard; Uitto, Jouni

    1987-03-01

    This study compared the histology, biochemistry, and tensile strength of laser welded and sutured canine venotomies, arteriotomies and arteriovenous fistulas. Bilateral femoral, carotid or jugular vessels were studied with one repair (control) closed with interrupted 6-0 polypropylene sutures, and the contralatral repair (experimental) welded with the argon laser. Specimens were examined at weekly intervals from 1 to 4 weeks for each type of repair and evaluated histologically by hematoxylineosin, elastin and trichrome stains, biochemically by the formation of [3H] hyaroxyproline as an index of collagen synthesis, ana mechanically by tensile strength determinations. At removal, all experimental closures were patent without hematomas, aneurysms or luminal dilatation. Histologic and biochemical examination and tensile strength determinations suggest that laser welaing may be an alternative to sutures for repair of large diameter venotomies, arteriotomies and arteriovenous fistulas, as they heal comparable to suture repairs up to 4 weeks postoperatively.

  2. Ideas for future liquid Argon detectors

    International Nuclear Information System (INIS)

    We outline a strategy for future experiments on neutrino and astroparticle physics based on the use, at different detector mass scales (100 ton and 100 kton), of the liquid Argon Time Projection Chamber (LAr TPC) technique. The LAr TPC technology has great potentials for both cases with large degree of interplay between the two applications and a strong synergy. The ICARUS R and D programme has demonstrated that the technology is mature and that one can built a large (∼ 1 kton) LAr TPC. We believe that one can conceive and design a very large mass LAr TPC with a mass of 100 kton by employing a monolithic technology based on the use of industrial, large volume cryogenic tankers developed by the petro-chemical industry. We show a potential implementation of a large LAr TPC detector. Such a detector would be an ideal match for a Superbeam[New J. Phys. 4 (2002) 88 [arXiv:hep-ph/0208047

  3. Liquid-argon cylindrical pulsed ionization chamber

    International Nuclear Information System (INIS)

    A liquid-argon cylindrical ionization chamber with a working volume of 200 cm2 is described. The chamber anode is made of stainless steel in the form of a hollow cylinder 30 mm in diameter and 140 mm in length. A beryllium bronze wire in diameter of 0.1 mm and at a spacing of 1 mm is used for winding the chamber screen grid. The chamber cathode is a brass thin-walled cylinder having an internal diameter of 56 mm and a height of 156 mm. The cathode-grid gap is 10 mm, the cathode-case gap is 2 mm. A 0.5 l cooling bath filled with liquid nitrogen is used to refrigirate the chamber. The chamber is evacuated to about 10-5 mm Hg. The total concentration of electronegative impurities in argon does not exceed 6x10-9. Dependences of the chamber counting and amplitude responses, on the cathode voltage under irradiation with γ-quanta at energies of 0.898 MeV and 1.836 MeV are given. The value of the energy resolution was evaluated by differentiating the high-energy edge of the Compton spectrum. The total width at a peak half-height constitutes 5% for an electron energy of 1.612 MeV. To achieve better resolution of the chamber it is necessary to reduce preamplifier noises by three times, to increase the working gap of the chamber and decrease the grid-anode gap

  4. Formation of argon-boron bonds in the reactions of BFn+/2+ cations with neutral argon

    Czech Academy of Sciences Publication Activity Database

    Levee, L.; Calogero, C.; Barbieri, E.; Byrne, S.; Donahue, C.; Eisenberg, M.; Hattenbach, S.; Le, J.; Capitani, J. F.; Roithová, J.; Schröder, Detlef

    2012-01-01

    Roč. 323, 1 Jun (2012), s. 2-7. ISSN 1387-3806 R&D Projects: GA ČR GA203/09/1223 Grant ostatní: European Research Council(XE) AdG HORIZOMS Institutional support: RVO:61388963 Keywords : argon compound * boron fluoride * dication * gas phase reactivity * mass spectrometry * neon compound Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.142, year: 2012

  5. Threshold laws for multiparticle fragmentation

    International Nuclear Information System (INIS)

    The threshold behavior of the cross section for break-up of an atomic particle into N charged fragments is described by power law, σfr ∼ Eμ, where E is the energy excess above the threshold. The threshold index μ reflects the dynamics of long-range Coulomb correlation. The general features of the theory are discussed. The charge and mass dependence of the threshold index is analyzed for some particular systems. Refs. 13 (author)

  6. Hadron production near threshold

    Indian Academy of Sciences (India)

    B K Jain; N G Kelkar; K P Khmemchandani

    2006-04-01

    Final state interaction effects in → + and → 3He reactions are explored near threshold to study the sensitivity of the cross-sections to the potential and the scattering matrix. The final state scattering wave functions between and and and 3He are described rigorously. The production is described by the exchange of one pion and a -meson between two protons in the incident channel. The production is described by a two-step model, where in the first step a pion is produced. This pion then produces an by interacting with another nucleon.

  7. Unstable Particles near Threshold

    CERN Document Server

    Chway, Dongjin; Kim, Hyung Do

    2015-01-01

    We explore physics of unstable particles when mother particle mass is around the sum of its daughter particle masses. In this case, the conventional wave function renormalization factor is ill-defined. We propose a simple resolution of the threshold singularity problem which still allows the use of narrow width approximation by defining branching ratio in terms of spectral density. The resonance peak and shape is different for different decay channels and no single decay width can be assigned to the unstable particles. Non-exponential decay happens in all time scales.

  8. MAGI2/S-SCAM outside brain.

    Science.gov (United States)

    Nagashima, Shunta; Kodaka, Manami; Iwasa, Hiroaki; Hata, Yutaka

    2015-04-01

    Membrane-associated guanylate kinase with an inverted arrangement of protein-protein interaction domains (MAGI)2 (also called synaptic scaffolding molecule (S-SCAM), atrophin-1-interacting protein 1, activin receptor-interacting protein 1) is a scaffold protein that binds a wide variety of receptors, cell adhesion molecules and signalling molecules. It also interacts with other scaffold proteins and adaptors, and forms a protein network that supports cell junctions. As it is highly expressed in brain, the study on its roles in synaptic organization initially preceded. However, mounting evidence indicates that MAGI2/S-SCAM functions as a tumour suppressor and plays essential roles to maintain the integrity of cell structures in non-neuronal tissues. We review the articles regarding to MAGI2/S-SCAM outside brain and discuss future perspectives for the research of MAGI family proteins. PMID:25637633

  9. Coloring geographical threshold graphs

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Percus, Allon [Los Alamos National Laboratory; Muller, Tobias [EINDHOVEN UNIV. OF TECH

    2008-01-01

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.

  10. Near threshold photodetachment cross section of negative atomic oxygen ions

    Institute of Scientific and Technical Information of China (English)

    Wu Jian-Hua(吴建华); Yuan Jian-Min(袁建民); Vo Ky Lan

    2003-01-01

    A 40-target state close-coupling calculation for the photodetachment cross section of negative atomic oxygen near threshold is carried out with core-valence electron correlation by using the R-matrix method. It was shown that after considering the excitations of two electrons from the 2s shell, the electron affinity of O- (2s22p5 2po) agrees with the experimental result much better than that just considering the excitations of electrons only from the 2p shell as well as only one electron from the 2s shell. Total cross section as well as the main contribution of the ionization channels to the partial cross section are illustrated to show the structure near threshold clearly.

  11. Argon laser induced changes to the carbonate content of enamel

    Energy Technology Data Exchange (ETDEWEB)

    Ziglo, M.J. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta, Private Practice, Regina, Saskatchewan (Canada); Nelson, A.E., E-mail: aenelson@dow.com [Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta (Canada); Heo, G.; Major, P.W. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada)

    2009-05-15

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm{sup -2}) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  12. Argon laser induced changes to the carbonate content of enamel

    International Nuclear Information System (INIS)

    Argon laser irradiation can be used to cure orthodontic brackets onto teeth in significantly less time than conventional curing lights. In addition, it has been shown that the argon laser seems to impart a demineralization resistance to the enamel. The purpose of this study was to use surface science techniques to ascertain if this demineralization resistance is possibly a result of a decrease in the carbonate content of enamel. Eleven mandibular third molars previously scheduled for extraction were collected and used in the present study. The teeth were sectioned in two and randomly assigned to either the argon laser (457-502 nm; 250 mW cm-2) or the control (no treatment) group. The sections assigned to the argon laser group were cured for 10 s and analyzed. To exaggerate any potential changes the experimental sections were then exposed to a further 110 s of argon laser irradiation. Surface analysis was performed using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results showed no statistically significant change in the carbonate content of enamel after argon laser irradiation (p > 0.05). Thus, it is suggested that any demineralization resistance imparted to the enamel surface by argon laser irradiation is not due to alterations in carbonate content.

  13. Nitric oxide reactivity of [2Fe-2S] clusters leading to H2S generation.

    Science.gov (United States)

    Tran, Camly T; Williard, Paul G; Kim, Eunsuk

    2014-08-27

    The crosstalk between two biologically important signaling molecules, nitric oxide (NO) and hydrogen sulfide (H2S), proceeds via elusive mechanism(s). Herein we report the formation of H2S by the action of NO on synthetic [2Fe-2S] clusters when the reaction environment is capable of providing a formal H(•) (e(-)/H(+)). Nitrosylation of (NEt4)2[Fe2S2(SPh)4] (1) in the presence of PhSH or (t)Bu3PhOH results in the formation of (NEt4)[Fe(NO)2(SPh)2] (2) and H2S with the concomitant generation of PhSSPh or (t)Bu3PhO(•). The amount of H2S generated is dependent on the electronic environment of the [2Fe-2S] cluster as well as the type of H(•) donor. Employment of clusters with electron-donating groups or H(•) donors from thiols leads to a larger amount of H2S evolution. The 1/NO reaction in the presence of PhSH exhibits biphasic decay kinetics with no deuterium kinetic isotope effect upon PhSD substitution. However, the rates of decay increase significantly with the use of 4-MeO-PhSH or 4-Me-PhSH in place of PhSH. These results provide the first chemical evidence to suggest that [Fe-S] clusters are likely to be a site for the crosstalk between NO and H2S in biology. PMID:25113815

  14. LArGe - A liquid argon scintillation veto for GERDA

    OpenAIRE

    Heisel, M.(Max-Planck-Institut für Kernphysik, Heidelberg, Germany)

    2011-01-01

    LArGe is a Gerda low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the Gerda experiment. Gerda searches for the neutrinoless double-beta decay in 76Ge, by operating naked germanium detectors submersed into 65 m3 of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m3 (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used...

  15. Practical reactor production of {sup 41}Ar from argon clathrate

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.R. E-mail: jmercer@pharmacy.ualberta.ca; Duke, M.J.M.; McQuarrie, S.A

    2000-06-01

    The radionuclide {sup 41}Ar has many ideal properties as a gas flow tracer. However, the modest cross-section of {sup 40}Ar for thermal neutron activation makes preparation of suitable activities of {sup 41}Ar technically difficult particularly for low flux reactors. Argon can however be trapped in a molecular complex called a clathrate that can then be irradiated. We prepared argon clathrate and explored its irradiation and stability characteristics. Argon clathrate can be used to provide gigabecquerel quantities of {sup 41}Ar even with low power reactors.

  16. Membrane separation processes for argon plasma gas recovery

    OpenAIRE

    Harlacher, Thomas

    2014-01-01

    A mixture of argon and hydrogen is used as plasma gas in a thermal plasma synthesis for the production of silicon carbide. Next to argon and hydrogen, the exhaust gas of the ceramic synthesis contains carbon monoxide. Since argon is an expensive gas, the plasma gas needs to be recycled. For this purpose, the carbon monoxide has to be removed from the exhaust gas. The applicability of a membrane based gas separation process for this separation task was investigated in this study. A process rou...

  17. Stopping Power of Solid Argon for Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Grauersen, O.; Hansen, Jens Leonhart; Sørensen, H.

    1981-01-01

    By means of the Rutherford-backscattering method, the stopping cross section of solid argon has been measured for 0.5–3 MeV helium ions to an accuracy of not, vert, similar3%. The results agree within the experimental accuracies with our earlier measurements for gaseous argon over the energy region...... studied. This proves that the gas/solid difference for argon predicted in recent stopping-power tabulations is significantly overestimated. With high-order Z1 correction terms included in the theoretical description, calculated shell corrections based on the Lindhard-Scharff model are in good agreement...

  18. Aerogel threshold Cherenkov counter

    International Nuclear Information System (INIS)

    The results of studying the SiO2 aerogel properties, used as radiator for the Cherenkov counters are presented. Brief data on the technology of preparing the aerogel samples and their optical characteristics are indicated. The formula binding the aerogel refractive index with its density with an account of light dispersion is analyzed. The results of the Cherenkov aerogel threshold counter testing on the charged particles beam within the pulse range of p = ∼ 0.4-2.5 eV/s are presented. The registration efficiency of pions with p ≥ 1 GeV/s constituted ∼ 97% and that of protons - ∼ 4% by the p ≤ 2.5 GeV/s

  19. Monolayer dispersion thresholds and threshold effect displayed by supported catalysts

    Institute of Scientific and Technical Information of China (English)

    Cun DENG

    2008-01-01

    The principle of spontaneous monolayer dis-persion holds that active components of many supported catalysts will disperse spontaneously onto the surface of the carrier. The monolayer dispersion threshold of the active component on the surface of the carrier can be measured by X-ray diffraction phase-quantitative extra-polation method, etc. By measuring the monolayer disper-sion threshold, beneficial information on the surface structure and dispersion of supported catalysts can be obtained, and the optimal preparative processing condi-tions of the catalysts can be chosen. The proportion of the active component of many supported catalysts can be optimized while its monolayer dispersion threshold is observed. Mutation values of many physicochemical properties of supported catalysts are related to monolayer dispersion thresholds; the threshold effect on catalysts is apparent, and the proposal regarding the threshold effect provides instruction for the research on catalysts.

  20. QI2S - Quick Image Interpretation System

    Science.gov (United States)

    Naghmouchi, Jamin; Aviely, Peleg; Ginosar, Ran; Ober, Giovanna; Bischoff, Ole; Nadler, Ron; Guiser, David; Citroen, Meira; Freddi, Riccardo; Berekovic, Mladen

    2015-09-01

    The evolution of the Earth Observation mission will be driven by many factors, and the deveploment of new processing paradigms to facilitate data downlink, handling and storage will be a key factor. Next generation EO satellites will generate a great amount of data at a very high data rate, both radar and optical. Real-time onboard processing can be the solution to reduce data downlink and management on ground. Radiometric, geometric, and atmospheric corrections of EO data as well as material/object detection in addition to the well-known needs for image compression and signal processing can be performed directly on board and the aim of QI2S project is to demonstrate this. QI2S, a concept prototype system for novel onboard image processing and image interpretation which has been designed, developed and validated in the framework of an EU FP7 project, targets these needs and makes a significant step towards exceeding current roadmaps of leading space agencies for future payload processors. The QI2S system features multiple chip components of the RC64, a novel rad-hard 64-core signal processing chip, which targets DSP performance of 75 GMACs (16bit), 150 GOPS and 38 single precision GFLOPS while dissipating less than 10 Watts. It integrates advanced DSP cores with a multibank shared memory and a hardware scheduler, also supporting DDR2/3 memory and twelve 3.125 Gbps full duplex high-speed serial links using SpaceFibre and other protocols. The processor is being developed within the European FP7 Framework Program and will be qualified to the highest space standards.

  1. Degradation of electron-induced dichroism in glassy As2S3-Sb2S3

    Directory of Open Access Journals (Sweden)

    Balitska V. O.

    2000-12-01

    Full Text Available Experimental results on time degradation of electron-induced dichroism in vitreous chalcogenide semiconductors As2S3-Sb2S3 are discussed. The adequate model for the quantitative description of this process can be developed on the basis of monomolecular relaxation function proper to annihilation of dipol-like coordination defects created on the basis of radiation-induced broken covalent chemical bonds

  2. Degradation of electron-induced dichroism in glassy As2S3-Sb2S3

    OpenAIRE

    Balitska V. O.; Shpotyuk O. I.; Vakiv M. M.

    2000-01-01

    Experimental results on time degradation of electron-induced dichroism in vitreous chalcogenide semiconductors As2S3-Sb2S3 are discussed. The adequate model for the quantitative description of this process can be developed on the basis of monomolecular relaxation function proper to annihilation of dipol-like coordination defects created on the basis of radiation-induced broken covalent chemical bonds

  3. Espectroscopia de fotoelétrons de limiares de átomos e moléculas Atomic and molecular threshold photoelectron spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Cristina Andreolli Lopes

    2006-02-01

    Full Text Available A threshold photoelectron spectrometer applied to the study of atomic and molecular threshold photoionization processes is described. The spectrometer has been used in conjunction with a toroidal grating monochromator at the National Synchrotron Radiation Laboratory (LNLS, Brazil. It can be tuned to accept threshold electrons (< 20 meV and work with a power resolution of 716 (~18 meV at 12 eV with a high signal/noise ratio. The performance of this apparatus and some characteristics of the TGM (Toroidal Grating Monochromator beam line of LNLS are described and discussed by means of argon, O2 and N2 threshold photoelectron spectra.

  4. Argon laser treatment of urethral stricture and vesical neck contracture.

    Science.gov (United States)

    Adkins, W C

    1988-01-01

    The physical characteristics of the argon laser wavelength allow a precise incision with excellent hemostasis and negligible heating of adjacent tissues resulting in less scarring. These qualities are used to advantage in the treatment of strictures. The argon laser was used to perform 13 internal urethrotomies and ten vesical neck incisions. The operative method used is similar to optical internal urethrotomy. The argon probe incises hemostatically, reducing the need for extensive fulguration of tissues at the operative site and thereby reducing the tendency for more scar tissue to form and compromise the operation. The same hemostasis reduces the need for postoperative indwelling urethral catheterization. Utility of the argon device in most instances allows treatment to be conducted on an outpatient basis without general anesthesia and without use of postoperative urethral catheters, yielding an effective, cost-saving therapy. PMID:3210887

  5. Evidence of electric breakdown induced by bubbles in liquid argon

    CERN Document Server

    Bay, F; Murphy, S; Resnati, F; Rubbia, A; Sergiampietri, F; Wu, S

    2014-01-01

    We report on the results of a high voltage test in liquid argon in order to measure its dielectric rigidity. Under stable conditions and below the boiling point, liquid argon was found to sustain a uniform electric field of 100 kV/cm, applied in a region of 20 cm$^2$ area across 1 cm thick gap. When the liquid is boiling, breakdowns may occur at electric fields as low as 40 kV/cm. This test is one of the R&D efforts towards the Giant Liquid Argon Charge Imaging ExpeRiment (GLACIER) as proposed Liquid Argon Time Projection Chamber (LAr TPC) for the LBNO observatory for neutrino physics, astrophysics and nucleon decay searches.

  6. Excitation temperatures of atmospheric argon in dielectric barrier discharges

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu; Wen Xiaohui; Yang Weihong [CAS Key Laboratory of Basic Plasma Physics and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2007-08-15

    A method for the determination of excitation temperatures based on optical emission spectroscopy and Fermi-Dirac distribution was set up and experiments were performed on atmospheric argon dielectric barrier discharges. Local thermodynamic equilibrium was proved to exist in the discharge and the validity of Boltzmann distribution is discussed. The main aim of this paper is to obtain the temperatures of atmospheric Ar II as a function of the discharge voltage, discharge frequency, argon flow rate and the argon fraction. It was found that the excitation temperatures are in the range 3800-4950 K. Besides, an increase in the argon flow rate resulting in a slight growth of the temperature and the add-in of air leading to the decrease in temperature was observed.

  7. The Effects of Dissolved Methane upon Liquid Argon Scintillation Light

    CERN Document Server

    Jones, B J P; Back, H O; Collin, G; Conrad, J M; Greene, A; Katori, T; Pordes, S; Toups, M

    2013-01-01

    In this paper we report on measurements of the effects of dissolved methane upon argon scintillation light. We monitor the light yield from an alpha source held 20 cm from a cryogenic photomultiplier tube (PMT) assembly as methane is injected into a high-purity liquid argon volume. We observe significant suppression of the scintillation light yield by dissolved methane at the 10 part per billion (ppb) level. By examining the late scintillation light time constant, we determine that this loss is caused by an absorption process and also see some evidence of methane-induced scintillation quenching at higher concentrations (50-100 ppb). Using a second PMT assembly we look for visible re-emission features from the dissolved methane which have been reported in gas-phase argon methane mixtures, and we find no evidence of visible re-emission from liquid-phase argon methane mixtures at concentrations between 10 ppb and 0.1%.

  8. The ATLAS Liquid Argon Calorimeter Construction, Integration, Commissioning

    CERN Document Server

    Aleksa, Martin

    2006-01-01

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps. The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read...

  9. Study on statistical breakdown delay time in argon gas using a W-band millimeter-wave gyrotron

    Science.gov (United States)

    Kim, Dongsung; Kim, Sung Gug; Sawant, Ashwini; Yu, Dongho; Choe, MunSeok; Choi, EunMi

    2016-04-01

    In this study, we investigated plasma initiation delay times for argon volume breakdown at the W-band frequency regime. The threshold electric field is defined as the minimum electric field amplitude needed for plasma breakdown at various pressures. The measured statistical delay time showed an excellent agreement with the theoretical Gaussian distribution and the theoretically estimated formative delay time. Also, we demonstrated that the normalized effective electric field as a function of the product of pressure and formative time shows an outstanding agreement to that of 1D particle-in-cell simulation coupled with a Monte Carlo collision model [H. C. Kim and J. P. Verboncoeur, Phys. Plasmas 13, 123506 (2006)].

  10. A liquid argon time projection chamber for the solar neutrino problem

    International Nuclear Information System (INIS)

    The construction and successful test of a large liquid argon time projection chamber prototype detector is presented. This effort is a part of the ICARUS project which is aimed at the development of new detector techniques to uncover the very rare events like proton decay and solar neutrinos. The construction and test of this detector has been carried out at CERN from 1989 until the present time. The charge lifetime measured is 3.19 ± 0.13 ms. The authors also report on a precision measurement of lifetime by a laser monitoring chamber and the operation of the recirculation system essential to keeping liquid for a long time. They show that a liquid argon detector is very well suited to study mass-enhanced neutrino oscillation (MSW effect) from the Sun by detecting simultaneous two modes of reaction. Ratio of two modes provides a model independent probe of neutrino oscillation, free of deviations from different solar models. Contours plots are presented at various threshold energies

  11. a Liquid Argon Time Projection Chamber for the Solar Neutrino Problem

    Science.gov (United States)

    Cheng, Mao-Tung

    The construction and successful test of a large liquid argon time projection chamber prototype detector is presented. This effort is a part of the ICARUS project which is aimed at the development of new detector techniques to uncover the very rare events like proton decay and solar neutrinos. The construction and test of this detector has been carried out at CERN from 1989 until the present time. The charge lifetime measured is 3.19 +/- 0.13 ms. We also report on a precision measurement of lifetime by a laser monitoring chamber and the operation of the recirculation system essential to keeping liquid for a long time. We show that a liquid argon detector is very well suited to study mass-enhanced neutrino oscillation (MSW effect) from the Sun by detecting simultaneous two modes of reaction. Ratio of two modes provides a model independent probe of neutrino oscillation, free of deviations from different solar models. Contour plots are presented at various threshold energies.

  12. Size Determination of Argon Clusters from a Rayleigh Scattering Experiment

    Institute of Scientific and Technical Information of China (English)

    LEI An-Le; ZHAI Hua-Jin; LIU Bing-Chen; LI Zhong; NI Guo-Yuan; XU Zhi-Zhan

    2000-01-01

    Argon clusters are produced in the process of adiabatic expansion of a high backing pressure gas into vacuum through a nozzle. The cluster size is determined by a Rayleigh scattering measurement. The scattered signal measured is proportional to the 2.78th power of gas stagnation pressure. The average cluster sizes vary from 100 to more than 12000 atoms/cluster with the argon gas backing pressures ranging between 3 to 45 atm.

  13. A purity monitoring system for liquid argon calorimeters

    International Nuclear Information System (INIS)

    For liquid argon calorimeters electronegative impurities dissolved in the medium degrade the detector response and deteriorate the energy resolution, especially at high energies. A concept for a purity monitoring system for liquid argon calorimeters has been developed and is presented here. Special combined monitors of 241Am- and 207Bi-cells are used to monitor the concentration of impurities. The working principle as well as results from test measurements are discussed

  14. Studies of Electron Avalanche Behavior in Liquid Argon

    OpenAIRE

    Kim, J.G.; Dardin, S. M.; Jackson, K.H.; Kadel, R. W.(Lawrence Berkeley National Laboratory and University of California, 94720, Berkeley, California, USA); Kadyk, J. A.; Peskov, V.; Wenzel, W. A.

    2002-01-01

    Electron avalanching in liquid argon is being studied as a function of voltage, pressure, radiation intensity, and the concentrations of certain additives, especially xenon. The avalanches produced in an intense electric field at the tip of a tungsten needle are initiated by ionization from a moveable americium (241Am) gamma ray source. Photons from xenon excimers are detected as photomultiplier signals in coincidence with the current pulse from the needle. In pure liquid argon the avalanche ...

  15. Pulse shape discrimination studies in a liquid Argon scintillation detector

    OpenAIRE

    Pollmann, T.

    2007-01-01

    Liquid rare gases have been gaining popularity as detector media in rare event searches, especially dark matter experiments, and one factor driving their adoption is the possibility to recognise different types of ionizing radiation by the pulse shapes they evoke. This work on pulse shape discrimination in a liquid argon scintillation detector was done in the framework of the GERDA experiment, where liquid argon scintillation signals may be used for background suppression purposes. Liquid arg...

  16. RF-ARGON PLASMA INDUCED SURFACE MODIFICATION OF PAPER

    OpenAIRE

    HALIL TURGUT SAHIN

    2008-01-01

    The radio frequency (RF) argon plasma induced surface modification of paper revealed novel surface characteristics and substantially changed surface topography. It was found that RF-argon glow discharge affects surface properties resulting in photo-degradation and chain-scission mechanism on paper network structure. High-power and extended treatment time caused increasing elemental carbon, while decreasing the oxygen concentration on paper surface. However, increased hydroxyls and the creatio...

  17. Characterization of microbulk detectors in argon- and neon-based mixtures

    CERN Document Server

    Iguaz, F J; Giganon, A; Giomataris, I

    2012-01-01

    A recent Micromegas manufacturing technique, so called Microbulk, has been developed, improving the uniformity and stability of this kind of detectors. Excellent energy resolutions have been obtained, reaching values as low as 11% FWHM at 5.9 keV in Ar+5%iC4H10. This detector has other advantages like its flexible structure, low material budget and high radio-purity. Two microbulk detectors with gaps of 50 and 25 um have been characterized in argon- and neon-based mixtures with ethane, isobutane and cyclohexane. The results will be presented and discussed. The gain curves have been fitted to the Rose-Korff gain model and dependences of the electron mean free path and the threshold energy for ionization have been obtained. The possible relation between these two parameters and the energy resolution will be also discussed.

  18. MD 751: Train Instability Threshold

    CERN Document Server

    Carver, Lee Robert; Metral, Elias; Salvant, Benoit; Levens, Tom; Nisbet, David; Zobov, M; CERN. Geneva. ATS Department

    2016-01-01

    The purpose of this MD is to measure the octupole current thresholds for stability for a single bunch, and then make an immediate comparison (with the same operational settings) for a train of 72 bunches separated by 25ns. From theory, the expected thresholds should be similar. Any discrepancy between the two cases will be of great interest as it could indicate the presence of additional mechanisms that contribute to the instability threshold, for example electron cloud.

  19. Lower Hearing Threshold by Noise

    Institute of Scientific and Technical Information of China (English)

    龙长才; 邵峰; 张燕萍; 秦佑国

    2004-01-01

    We demonstrate that noise can be a benefit factor that enables us to hear weaker signals. We measured the hearing thresholds of subjects for pure tone in different noise levels. The results show that pure tone thresholds with noise of some levels are lower than that without noise. The largest down-shift of the threshold by noise among the examined subjects is 5. 7dB, and the smallest is 1.7dB.

  20. Olfactory threshold in Parkinson's disease.

    OpenAIRE

    Quinn, N P; M.N. Rossor; Marsden, C. D.

    1987-01-01

    Olfactory threshold to differing concentrations of amyl acetate was determined in 78 subjects with idiopathic Parkinson's disease and 40 age-matched controls. Impaired olfactory threshold (previously reported by others) was confirmed in Parkinsonian subjects compared with controls. There was no significant correlation between olfactory threshold and age, sex, duration of disease, or current therapy with levodopa or anticholinergic drugs. In a sub-group of 14 levodopa-treated patients with sev...

  1. Energy resolution for α-particles in doped liquid argon

    International Nuclear Information System (INIS)

    The report describes experiments on the effect of allene doped in liquid argon. In the case of doped argon, a large amount of charge is obtained even at low electric fields and the measured charge increases with the field gradually. This can be explained as follows; part of deposited energy which does not form charge in pure argon contributes to charge signal in doped argon through scintillation photons which ionize allene molecules. The main factors determining the energy resolution for α-particles are considered to be (1) fluctuation in the number of produced ion-electron pairs as expressed by the Fano factor, (2) fluctuation in recombination process, (3) fluctuation in photoionization, (4) fluctuation due to the condition of radioactive source and surface of electrodes, (5) fluctuation in geometrical efficiency due to the range and emission angle of α-particles in liquid argon, and (6) electronic noise of amplifier. The factors (1) and (3) can be neglected because of a large number of associated electrons or photons. In pure liquid argon, the factor (2) may be a cause of bad resolution since the fraction of the produced ion-electron paris which do not recombine is small and the photoionization process never occurs for photons emitted through recombination. (N.K.)

  2. Power Consideration for Pulsed Discharges in Potassium Seeded Argon

    Institute of Scientific and Technical Information of China (English)

    XIA Sheng-Guo; HE Jun-Jia; LIU Ke-Fu

    2007-01-01

    Minimization of energy consumed in plasma generation is critical for applications, in which a large volume of plasmas is needed. We suggest that a high electron density atmospheric pressure plasmas can be generated by pulsed discharges in potassium seeded argon at an elevated temperature with a very small power input. The ionization efficiency and power budget of pulsed discharges in such plasmas are analytically studied. The results show that ionization efficiency of argon, especially at small reduced electric field E/N (the ratio of the electric field to the gas number density), is improved effectively in the presence of small amount of potassium additives. Power input of pulsed discharge to sustain a prescribed average level of ionization in potassium seeded argon is three orders of magnitude lower than that in pure argon. Further, unlike in pure argon, it is found that very short high-voltage pulses with very high repetition rates are unnecessary in potassium seeded argon. A pulse with 100ns of pulse duration, 5kHz of repetition rate, and 2Td (1 Td = 1 ×10-21 Vm2) of E/N is enough to sustain an electron density of 10l9m-3 in 1 atm 1500 K Ar+0.1% K mixture, with a very small power input of about 0.08 × 104 W/m3.

  3. Fast Quasi-Threshold Editing

    CERN Document Server

    Brandes, Ulrik; Strasser, Ben; Wagner, Dorothea

    2015-01-01

    We introduce Quasi-Threshold Mover (QTM), an algorithm to solve the quasi-threshold (also called trivially perfect) graph editing problem with edge insertion and deletion. Given a graph it computes a quasi-threshold graph which is close in terms of edit count. This edit problem is NP-hard. We present an extensive experimental study, in which we show that QTM is the first algorithm that is able to scale to large real-world graphs in practice. As a side result we further present a simple linear-time algorithm for the quasi-threshold recognition problem.

  4. Albania - Thresholds I and II

    Data.gov (United States)

    Millenium Challenge Corporation — From 2006 to 2011, the government of Albania (GOA) received two Millennium Challenge Corporation (MCC) Threshold Programs totaling $29.6 million. Albania received...

  5. Laboratory measurements of the x-ray emission following dielectronic recombination onto highly charged argon ions

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Bulbul, Esra; Hell, Natalie; Foster, Adam; Betancourt-Martinez, Gabriele; Porter, Frederick Scott; Smith, Randall K.

    2016-06-01

    We have used the LLNL EBIT-I electron beam ion trap to measure the X-ray emission following resonant dielectronic recombination (DR) onto helium-like and lithium-like argon as a function of electron energy. These measurements were completed by sweeping the energy of EBIT-I's near mono-energetic electron beam from below threshold for DR resonance to above threshold for direct excitation of K-shell transitions in helium-like argon. The X-ray emission was recorded as a function of electron beam energy using the EBIT Calorimeter Spectrometer, whose energy resolution is ~ 5 eV, and also a relatively low resolution, solid-state X-ray detector. These results will be useful when analyzing and interpreting high resolution spectra from celestial sources measured with the Soft X-ray Spectrometer (SXS) calorimeter instrument recently launched on the Hitomi X-ray Observatory (formerly known as Astro-H), as well as data measured using instruments on the Chandra and XMM-Newton X-ray Observatories. Specifically, these data will help determine if the feature detected at ~ 3.56 keV (Bulbul et al. 2014, Boyarsky et al. 2014) in clusters is the result of the decay of a sterile neutrino, a long sought after dark matter particle candidate. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and Chandra Grant AR5-16012A.

  6. Electron densities and energies of a guided argon streamer in argon and air environments

    International Nuclear Information System (INIS)

    In this study we report the temporally and spatially resolved electron densities and mean energies of a guided argon streamer in ambient argon and air obtained by Thomson laser scattering. The plasma is driven by a positive monopolar 3.5 kV pulse, with a pulse width of 500 ns and a frequency of 5 kHz which is synchronized with the high repetition rate laser system. This configuration enables us to use the spatial and temporal stability of the guided streamer to accumulate a multitude of laser/plasma shots by a triple grating spectrometer equipped with an ICCD camera and to determine the electron parameters. We found a strong initial ne-overshoot with a maximum of 7 × 1019 m−3 and a mean electron energy of 4.5 eV. This maximum is followed by a fast decay toward the streamer channel. Moreover, a 2D distribution of the electron density is obtained which exhibits a peculiar mushroom-like shape of the streamer head with a diameter significantly larger than that of the emission profile. A correlation of the width of the streamer head with the expected pre-ionization channel is found. (paper)

  7. Life below the threshold.

    Science.gov (United States)

    Castro, C

    1991-01-01

    This article explains that malnutrition, poor health, and limited educational opportunities plague Philippine children -- especially female children -- from families living below the poverty threshold. Nearly 70% of households in the Philippines do not meet the required daily level of nutritional intake. Because it is often -- and incorrectly -- assumed that women's nutritional requirements are lower than men's, women suffer higher rates of malnutrition and poor health. A 1987 study revealed that 11.7% of all elementary students were underweight and 13.9% had stunted growths. Among elementary-school girls, 17% were malnourished and 40% suffered from anemia (among lactating mothers, more than 1/2 are anemic). A 1988 Program for Decentralized Educational Development study showed that grade VI students learn only about 1/2 of what they are supposed to learn. 30% of the children enrolled in grade school drop out before they reach their senior year. The Department of Education, Culture and Sports estimates that some 2.56 million students dropped out of school in l989. That same year, some 3.7 million children were counted as part of the labor force. In Manila alone, some 60,000 children work the streets, whether doing odd jobs or begging, or turning to crime or prostitution. the article tells the story of a 12 year-old girl named Ging, a 4th grader at a public school and the oldest child in a poor family of 6 children. The undernourished Ging dreams of a good future for her family and sees education as a way out of poverty; unfortunately, her time after school is spend working in the streets or looking after her family. She considers herself luckier than many of the other children working in the streets, since she at least has a family. PMID:12285009

  8. Performance evaluation of a liquid tin anode solid oxide fuel cell operating under hydrogen, argon and coal

    Science.gov (United States)

    Khurana, Sanchit; LaBarbera, Mark; Fedkin, Mark V.; Lvov, Serguei N.; Abernathy, Harry; Gerdes, Kirk

    2015-01-01

    A liquid tin anode solid oxide fuel cell is constructed and investigated under different operating conditions. Electrochemical Impedance Spectroscopy (EIS) is used to reflect the effect of fuel feed as the EIS spectra changes significantly on switching the fuel from argon to hydrogen. A cathode symmetric cell is used to separate the impedance from the two electrodes, and the results indicate that a major contribution to the charge-transfer and mass-transfer impedance arises from the anode. The OCP of 0.841 V for the cell operating under argon as a metal-air battery indicates the formation of a SnO2 layer at the electrolyte/anode interface. The increase in the OCP to 1.1 V for the hydrogen fueled cell shows that H2 reduces the SnO2 film effectively. The effective diffusion coefficients are calculated using the Warburg element in the equivalent circuit model for the experimental EIS data, and the values of 1.9 10-3 cm2 s-1 at 700 °C, 2.3 10-3 cm2 s-1 at 800 °C and 3.5 10-3 cm2 s-1 at 900 °C indicate the system was influenced by diffusion of hydrogen in the system. Further, the performance degradation over time is attributed to the irreversible conversion of Sn to SnO2 resulting from galvanic polarization.

  9. New argon-argon (40Ar/39Ar) radiometric age dates from selected subsurface basalt flows at the Idaho National Laboratory, Idaho

    Science.gov (United States)

    Hodges, Mary K.; Turrin, Brent D.; Champion, Duane E.; Swisher, Carl C., III

    2015-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, collected samples for 12 new argon-argon radiometric ages from eastern Snake River Plain olivine tholeiite basalt flows in the subsurface at the Idaho National Laboratory. The core samples were collected from flows that had previously published paleomagnetic data. Samples were sent to Rutgers University for argon-argon radiometric dating analyses.

  10. ATLAS Liquid Argon Calorimeter Performance in Run 1 and Run 2

    CERN Document Server

    Kuwertz, Emma Sian; The ATLAS collaboration

    2016-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34}$ cm$^{−2}$ s$^{−1}$ . Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudo-rapidity region $\\eta < 3.2$, and for hadronic calorimetry in the region from $\\eta = 1.5$ to $\\eta = 4.9$. In the first LHC run a total luminosity of $27$ fb$^{−1}$ has been collected at center-of-mass energies of 7-8 TeV. Following a period of detector consolidation during a long shutdown, Run-2 started in 2015 with approximately $3.9$ fb$^{-1}$ of data at a center-of-mass energy of 13 TeV recorded in this year. The well calibrated and highly granular Liquid Argon Calorimeter achieved its design values both in energy measurement as well as in direction resolution, which was a main ingredient for the successful discovery of a Higgs boson in the di-photon decay channel. This contribution will give ...

  11. Second threshold in weak interactions

    NARCIS (Netherlands)

    Veltman, M.J.G.

    1977-01-01

    The point of view that weak interactions must have a second threshold below 300 – 600 GeV is developed. Above this threshold new physics must come in. This new physics may be the Higgs system, or some other nonperturbative system possibly having some similarities to the Higgs system. The limit of la

  12. Threshold Concepts and Information Literacy

    Science.gov (United States)

    Townsend, Lori; Brunetti, Korey; Hofer, Amy R.

    2011-01-01

    What do we teach when we teach information literacy in higher education? This paper describes a pedagogical approach to information literacy that helps instructors focus content around transformative learning thresholds. The threshold concept framework holds promise for librarians because it grounds the instructor in the big ideas and underlying…

  13. Evolution of Martian atmospheric argon: Implications for sources of volatiles

    Science.gov (United States)

    Hutchins, Kevin S.; Jakosky, Bruce M.

    We have examined processes affecting isotopes of argon (36Ar, 38Ar, 40Ar) in order to determine important atmospheric sources and sinks. Our simple model for argon evolution incorporates production of radiogenic argon in the mantle, outgassing of all argon species by extrusive and intrusive volcanism, and loss to space by knock-on sputtering above the exobase. Sputtering has been shown previously to be an important loss process for atmospheric species, especially isotopes of noble gases, which have few other mechanisms of escape. The integrated evolution of argon (36Ar, 38Ar, and 40Ar, respectively) is modeled in terms of these variables: (1) the planetary concentration of potassium, (2) the fraction of juvenile argon released catastrophically during the first 600 Myr., (3) potential variation in the time-history of sputtering loss from that suggested by Luhmann et al. [1992], and (4) the volume of total outgassing to the surface as compared to outgassing contributed by volcanic release. Our results indicate that Mars has lost between 85-95% of 36Ar and 70-88% of outgassed 40Ar. Due to this substantial loss, the planet must have outgassed the equivalent of between 10 and 100 times the total volume of gases released by extrusive and intrusive volcanics. This indicates that volcanic outgassing, alone, is insufficient to explain the present-day abundances of 36Ar and 40Ar in the Martian atmosphere. Similar calculations for 20Ne suggest outgassed volumes of between 100 and 1800 times in excess of that due to volcanism. This results in a distinct Ne/Ar elemental fractionation, with a preference for outgassing argon, of the order of 10 to 17. Although the results must be evaluated within the model uncertainties, the results are compelling in that they unequivocally show the existence of additional sources of atmospheric volatiles and helps define a means to identify them.

  14. Absolute measurement of the relativistic magnetic dipole transition energy in heliumlike argon.

    Science.gov (United States)

    Amaro, Pedro; Schlesser, Sophie; Guerra, Mauro; Le Bigot, Eric-Olivier; Isac, Jean-Michel; Travers, Pascal; Santos, José Paulo; Szabo, Csilla I; Gumberidze, Alexandre; Indelicato, Paul

    2012-07-27

    The 1s2s (3)S(1)→1s(2) (1)S(0) relativistic magnetic dipole transition in heliumlike argon, emitted by the plasma of an electron-cyclotron resonance ion source, has been measured using a double-flat crystal x-ray spectrometer. Such a spectrometer, used for the first time on a highly charged ion transition, provides absolute (reference-free) measurements in the x-ray domain. We find a transition energy of 3104.1605(77) eV (2.5 ppm accuracy). This value is the most accurate, reference-free measurement done for such a transition and is in good agreement with recent QED predictions. PMID:23006085

  15. Solid solutions in In2S3-MnIn2S4 system

    International Nuclear Information System (INIS)

    The research of semiconductors displaying ferromagnetic properties at room temperature has attracted more and more attention to investigations of doped AIIBVI, AIIIBV and A2IIIB3VI binary semiconductors (CdMnTe, GaMnAs, In2S3:Mn etc.) with Mn. During the last few years growing interest has been shown to spintronics or electronics using spin effects due to its potential applicability to new functional devices combining both transport and magnetic properties and possibility to work at room temperature. A number of exciting new properties such as spin injection, carrier-induced and optically controlled ferromagnetism have been discovered in III-V-based diluted semiconductors. Doping of In2S3 with ferromagnetic atoms of Mn shall lead to a change of existing and appearance of new unique physical properties in this compound, combining both semiconductor and magnetic properties. Results of study of In2S3-MnIn2S4 system have been presented in the given work for the first time. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Evaluation of bone response to synthetic bone grafting material treated with argon-based atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Bone graft materials are utilized to stimulate healing of bone defects or enhance osseointegration of implants. In order to augment these capabilities, various surface modification techniques, including atmospheric pressure plasma (APP) surface treatment, have been developed. This in vivo study sought to assess the effect of APP surface treatment on degradation and osseointegration of Synthograft™, a beta-tricalcium phosphate (β-TCP) synthetic bone graft. The experimental (APP-treated) grafts were subjected to APP treatment with argon for a period of 60 s. Physicochemical characterization was performed by environmental scanning electron microscopy, surface energy (SE), and x-ray photoelectron spectroscopy analyses both before and after APP treatment. Two APP-treated and two untreated grafts were surgically implanted into four critical-size calvarial defects in each of ten New Zealand white rabbits. The defect samples were explanted after four weeks, underwent histological analysis, and the percentages of bone, soft tissue, and remaining graft material were quantified by image thresholding. Material characterization showed no differences in particle surface morphology and that the APP-treated group presented significantly higher SE along with higher amounts of the base material chemical elements on it surface. Review of defect composition showed that APP treatment did not increase bone formation or reduce the amount of soft tissue filling the defect when compared to untreated material. Histologic cross-sections demonstrated osteoblastic cell lines, osteoid deposition, and neovascularization in both groups. Ultimately, argon-based APP treatment did not enhance the osseointegration or degradation of the β-TCP graft. Future investigations should evaluate the utility of gases other than argon to enhance osseointegration through APP treatment. - Highlights: • Degradation/osseointegration of bone graft treated with argon-based APP is studied. • APP treatment did

  17. Characterisation of GERDA Phase-I detectors in liquid argon

    International Nuclear Information System (INIS)

    GERDA will search for neutrinoless double beta decay in 76Ge by submerging bare enriched HPGe detectors in liquid argon. In GERDA Phase-I, reprocessed enriched-Ge detectors, which were previously operated by the Heidelberg-Moscow and IGEX collaborations, and reprocessed natural-Ge detectors from Genius-TF, will be redeployed. We have tested the operation and performance of bare HPGe detectors in liquid nitrogen and in liquid argon over more than three years with three non-enriched p-type prototype detectors. The detector handling and mounting procedures have been defined and the Phase-I detector technology, the low-mass assembly and the long-term stability in liquid argon have been tested successfully. The Phase-I detectors were reprocessed by Canberra Semiconductor NV, Olen, according to their standard technology but without the evaporation of a passivation layer. After their reprocessing, the detectors have been mounted in their low-mass holders and their characterisation in liquid argon performed. The leakage current, the counting characteristics and the efficiency of the detectors have been measured. The testing of the detectors was carried out in the liquid argon test stand of the GERDA underground Detector Laboratory (GDL) at LNGS. The detectors are now stored underground under vacuum until their operation in GERDA.

  18. Microwave Spectra and Structures of H_2S-CuCl and H_2O-CuCl.

    Science.gov (United States)

    Walker, N. R.; Wheatley, D. E.; Stephens, S. L.; Roberts, F. J.; Mikhailov, V. A.; Legon, A. C.

    2010-06-01

    A Balle-Flygare FT-MW spectrometer coupled to a laser ablation source has been used to measure the pure rotational spectra of H2S-CuCl and H2O-CuCl. Both molecules are generated via laser ablation (532 nm) of a metal rod in the presence of CCl4, argon, a low partial pressure of H2S or H2O and are stabilized by supersonic expansion. Rotational constants and centrifugal distortion constants have been measured for eight isotopologues of H2S-CuCl with substitutions available at the copper, chlorine and hydrogen atoms. Transitions in the spectra of nine isotopologues of H2O-CuCl have been measured with isotopic substitutions achieved for every atom. The spectra of both H2S-CuCl and H2O-CuCl are consistent with a linear arrangement of sulphur or oxygen, metal and chlorine atoms. The structure of H2S-CuCl is pyramidal with CS symmetry. The structure of H2O-CuCl is either C2v planar at equilibrium or CS pyramidal but with a low potential-energy barrier to planarity such that the v=0 and 1 states associated with the motion that inverts the configuration at the O atom are well separated. Nuclear quadrupole coupling constants have been measured for the chlorine and copper atoms in each molecule. Nuclear spin-rotation constants have been determined for the copper atom.

  19. Music effect on pain threshold evaluated with current perception threshold

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: Music relieves anxiety and psychotic tension. This effect of music is applied to surgical operation in the hospital and dental office. It is still unclear whether this music effect is only limited to the psychological aspect but not to the physical aspect or whether its music effect is influenced by the mood or emotion of audience. To elucidate these issues, we evaluated the music effect on pain threshold by current perception threshold (CPT) and profile of mood states (POMC) test. METHODS: Healthy 30 subjects (12 men, 18 women, 25-49 years old, mean age 34.9) were tested. (1)After POMC test, all subjects were evaluated pain threshold with CPT by Neurometer (Radionics, USA) under 6 conditions, silence, listening to the slow tempo classic music, nursery music, hard rock music, classic paino music and relaxation music with 30 seconds interval. (2)After Stroop color word test as the stresser, pain threshold was evaluated with CPT under 2 conditions, silence and listening to the slow tempo classic music. RESULTS: Under litening to the music, CPT sores increased, especially 2 000 Hz level related with compression, warm and pain sensation. Type of music, preference of music and stress also affected CPT score. CONCLUSION: The present study demonstrated that the concentration on the music raise the pain threshold and that stress and mood influence the music effect on pain threshold.

  20. Argon-40: Excess in submarine pillow basalts from Kilauea Volcano, Hawaii

    Science.gov (United States)

    Brent, Dalrymple G.; Moore, J.G.

    1968-01-01

    Submarine pillow basalts from Kilauea Volcano contain excess radiogenic argon-40 and give anomalously high potassium-argon ages. Glassy rims of pillows show a systematic increase in radiogenic argon-40 with depth, and a pillow from a depth of 2590 meters shows a decrease in radiogenic argon-40 inward from the pillow rim. The data indicate that the amount of excess radiogenic argon-40 is a direct function of both hydrostatic pressure and rate of cooling, and that many submarine basalts are not suitable for potassium-argon dating.

  1. Metastable argon beam source using a surface wave sustained plasma

    International Nuclear Information System (INIS)

    A new source of metastable argon atoms in the thermal energy range is reported. The source is based on expanding a plasma sustained by electromagnetic surface waves in a quartz tube through a converging nozzle and extracting a beam from the supersonic free-expansion jet. The beam was characterized by time-of-flight measurements which yielded the absolute intensity and velocity distribution of the argon metastables. The source produced a maximum intensity of 6.2x1014 metastables per second per steradian, the highest time-averaged intensity of thermal argon metastables of any source reported to date. A simple picture of an expanding plasma in a recombination regime is used to explain the dependence of the metastable intensity on absorbed power

  2. On the electric breakdown in liquid argon at centimeter scale

    Science.gov (United States)

    Auger, M.; Blatter, A.; Ereditato, A.; Goeldi, D.; Janos, S.; Kreslo, I.; Luethi, M.; von Rohr, C. Rudolf; Strauss, T.; Weber, M. S.

    2016-03-01

    We present a study on the dependence of electric breakdown discharge properties on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

  3. Pressure regulation in the dry-boxes. Argon purification

    International Nuclear Information System (INIS)

    Each dry-box is equipped with an autonomous installation for circulation and purification of argon and for pressure regulation. This installation consists essentially of a ballast tank, a compressor and two valves electromagnetically controlled by a contact manometer. The compressor and the valves are enclosed in the tank to form a system as compact as possible. The argon is purified by passing it over a furnace filled with titanium-zirconium turnings brought to about 800 deg. C, branching off the main system. With this set-up as well as the automatic maintenance of a constant depression in the box, a quality of argon is obtained whose oxygen contact is undetectable by the manganous hydroxide method. (author)

  4. Bacteria Inactivation Using DBD Plasma Jet in Atmospheric Pressure Argon

    International Nuclear Information System (INIS)

    A coaxial dielectric barrier discharge plasma jet was designed, which can be operated in atmospheric pressure argon under an intermediate frequency sinusoidal resonant power supply, and an atmospheric pressure glow-like discharge was achieved. Two kinds of typical bacteria, i.e., the Staphylococcus aureus (S. aureus) and Escherichia coil (E. coil), were employed to study the bacterial inactivation mechanism by means of the non-thermal plasma. The killing log value (KLV) of S. aureus reached up to 5.38 with a treatment time of 90 s and that of E. coil up to 5.36 with 60 s, respectively. According to the argon emission spectra of the plasma jet and the scanning electron microscope (SEM) images of the two bacteria before and after the plasma treatment, it is concluded that the reactive species in the argon plasma played a major role in the bacterial inactivation, while the heat, electric field and UV photons had little effect. (plasma technology)

  5. Energy resolution studies of liquid argon ionization detectors

    International Nuclear Information System (INIS)

    A gridded ionization chamber was used to study the energy resolution in liquid argon with electrons from a 207Bi radioactive source. Argon was purified in the gas phase with a simple and reliable system, capable of reducing the impurity level below 1 ppb O2 equivalent, as inferred by a pulse shape analysis of the ionization signals. The electron spectrum was measured at different drift fields, up to 10.9 KV/cm. At this maximum field, a total energy resolution of 32 keV (fwhm), corresponding to a noise-subtracted energy resolution of 26 keV (fwhm), was obtained for the 976 keV conversion electron line. This value is the best reported so far in liquid argon but is still a factor of seven worse than the theoretical limit set by the Fano factor. The reasons for this discrepancy are discussed. (orig.)

  6. Attenuation measurements of vacuum ultraviolet light in liquid argon revisited

    CERN Document Server

    Neumeier, A; Himpsl, A; Hofmann, M; Oberauer, L; Potzel, W; Schönert, S; Ulrich, A

    2015-01-01

    The attenuation of vacuum ultraviolet light in liquid argon in the context of its application in large liquid noble gas detectors has been studied. Compared to a previous publication several technical issues concerning transmission measurements in general are addressed and several systematic effects were quantitatively measured. Wavelength-resolved transmission measurements have been performed from the vacuum ultraviolet to the near-infrared region. On the current level of sensitivity with a length of the optical path of 11.6 cm, no xenon-related absorption effects could be observed, and pure liquid argon is fully transparent down to the short wavelength cut-off of the experimental setup at 118 nm. A lower limit for the attenuation length of pure liquid argon for its own scintillation light has been estimated to be 1.10 m based on a very conservative approach.

  7. On the Electric Breakdown in Liquid Argon at Centimeter Scale

    CERN Document Server

    Auger, M; Ereditato, A; Goeldi, D; Janos, S; Kreslo, I; Luethi, M; von Rohr, C Rudolf; Strauss, T; Weber, M S

    2015-01-01

    We present a study on the dependence of electric breakdown discharge parameters on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).

  8. Liquid Argon Calorimetry with LHC-Performance Specifications

    CERN Multimedia

    2002-01-01

    % RD-3 Liquid Argon Calorimetry with LHC-Performance Specifications \\\\ \\\\Good electromagnetic and hadronic calorimetry will play a central role in an LHC detector. Among the techniques used so far, or under development, the liquid argon sampling calorimetry offers high radiation resistence, good energy resolution (electromagnetic and hadronic), excellent calibration stability and response uniformity. Its rate capabilities, however, do not yet match the requirements for LHC. \\\\ \\\\The aim of this proposal is to improve the technique in such a way that high granularity, good hermiticity and adequate rate capabilities are obtained, without compromising the above mentioned properties. To reach this goal, we propose to use a novel structure, the $^{\\prime\\prime}$accordion$^{\\prime\\prime}$, coupled to fast preamplifiers working at liquid argon temperature. Converter and readout electrodes are no longer planar and perpendicular to particles, as usual, but instead they are wiggled around a plane containing particles. ...

  9. Effect of pulse duration on resonant heating of laser-irradiated argon and deuterium clusters.

    Science.gov (United States)

    Gupta, Ayush; Antonsen, T M; Taguchi, T; Palastro, J

    2006-10-01

    We study the effect of pulse duration on the heating of single van der Waals bound argon and deuterium clusters by a strong laser field using a two-dimensional (2D) electrostatic particle-in-cell (PIC) code in the range of laser-cluster parameters such that kinetic as well as hydrodynamic effects are active. Heating is dominated by a collisionless resonant absorption process that involves energetic electrons transiting through the cluster. A size-dependent intensity threshold defines the onset of this resonance [T. Taguchi, Physical Review Letters, 92, 20 (2004)]. It is seen that increasing the laser pulse duration lowers this intensity threshold and the energetic electrons take multiple laser periods to transit the cluster instead of one laser period. Our simulations also show that strong electron heating is accompanied by the generation of a high-energy peak in the ion energy distribution function. We also calculate the yield of thermonuclear fusion neutrons from exploding deuterium clusters using the PIC model with periodic boundary conditions that allows for the interaction of ions from neighboring clusters. PMID:17155183

  10. Parton distributions with threshold resummation

    CERN Document Server

    Bonvini, Marco; Rojo, Juan; Rottoli, Luca; Ubiali, Maria; Ball, Richard D; Bertone, Valerio; Carrazza, Stefano; Hartland, Nathan P

    2015-01-01

    We construct a set of parton distribution functions (PDFs) in which fixed-order NLO and NNLO calculations are supplemented with soft-gluon (threshold) resummation up to NLL and NNLL accuracy respectively, suitable for use in conjunction with any QCD calculation in which threshold resummation is included at the level of partonic cross sections. These resummed PDF sets, based on the NNPDF3.0 analysis, are extracted from deep-inelastic scattering, Drell-Yan, and top quark pair production data, for which resummed calculations can be consistently used. We find that, close to threshold, the inclusion of resummed PDFs can partially compensate the enhancement in resummed matrix elements, leading to resummed hadronic cross-sections closer to the fixed-order calculation. On the other hand, far from threshold, resummed PDFs reduce to their fixed-order counterparts. Our results demonstrate the need for a consistent use of resummed PDFs in resummed calculations.

  11. Laser propagation and energy absorption by an argon spark

    OpenAIRE

    Bindhu, C V; Harilal, S S; Tillack, M. S.; Najmabadi, F; Gaeris, A C

    2003-01-01

    The laser propagation and energy absorption of an argon spark induced by a laser at different pressures is investigated. 8 ns pulses from a frequency-doubled Q-switched Nd:YAG laser are used to create the spark. The pressure of the argon is varied from 1 atm to 10 Torr. Significant energy absorption by the plasma is observed at high pressures (>100 Torr) while there is negligible absorption when the pressure is lower than 50 Torr. The plasma kernel showed distinct behavior with respect to las...

  12. Modelling of a supersonic ICP argon-hydrogen expansion

    International Nuclear Information System (INIS)

    An expanding argon-hydrogen plasma is investigated by means of simulations. The model is a hydrodynamical model specific for plasma expansions, taking into account the conservation laws of mass, momentum and energy. The code includes the Rankine-Hugoniot relations to calculate shock jump conditions. Results are shown for the expansion from an inductively coupled plasma (ICP) with a separated Laval nozzle. The expansion discussed here is a 'weakly' under-expanding argon-hydrogen plasma. The results from the ICP expansion are verified with probe measurements

  13. Oxygen removal from tantalum and niobium in an argon atmosphere

    International Nuclear Information System (INIS)

    The rate of oxygen removal from tantalum and niobium has been determined as a function of argon pressure (0-760 Torr) at temperatures from 1900 to 24000C. The reduction of the reaction rate v depends only on the argon pressure and can be given by a factor α = v/v0. The following formulae are obtained for α: Ta: α = (1 + 0.15psub(Ar)sup(0.9))-1, Nb: α = (1 + 0.5psub(Ar)sup(0.9))-1.

  14. Photoionization in liquid argon doped with trimethylamine or triethylamine

    International Nuclear Information System (INIS)

    Ionization yields for alpha particles and 1 MeV electrons in liquid argon doped with trimethylamine and with triethylamine have been measured. In both liquids, a collected charge larger than Anderson's results is observed for alpha particles although that for electrons is similar to Anderson's value. By using a new equation for the collected charge, the photoionization quantum efficiencies for scintillation light in liquid argon are estimated to be 0.35+-0.05 for trimethylamine and greater than 0.23+-0.03 for triethylamine. (orig.)

  15. Superconductivity of compressed solid argon from first principles

    Science.gov (United States)

    Ishikawa, Takahiro; Asano, Masamichi; Suzuki, Naoshi; Shimizu, Katsuya

    2015-02-01

    We present first-principles calculations on the superconductivity of solid argon under high pressure. Solid argon is found to take the double hexagonal close-packed structure in pressure range from 420 to 690 GPa, where an insulator-to-metal transition occurs at around 590 GPa. The crystal structure transforms into the hexagonal close-packed structure at 690 GPa and into the face-centered cubic structure at 2300 GPa. The superconducting critical temperature is gradually increased with the successive phase transitions and reaches the maximum value of 12 K at 2600 GPa due to the enhancement of the Fermi surface nesting.

  16. Attosecond-correlated dynamics of two electrons in argon

    Indian Academy of Sciences (India)

    V Sharma; N Camus; B Fischer; M Kremer; A Rudenko; B Bergues; M Kuebel; N G Johnson; M F Kling; T Pfeifer; J Ullrich; R Moshammer

    2014-01-01

    In this work we explored strong field-induced decay of doubly excited transient Coulomb complex Ar** → Ar2++2. We measured the correlated two-electron emission as a function of carrier envelop phase (CEP) of 6 fs pulses in the non-sequential double ionization (NSDI) of argon. Classical model calculations suggest that the intermediate doubly excited Coulomb complex loses memory of its formation dynamics. We estimated the ionization time difference between the two electrons from NSDI of argon and it is 200 ± 100 as (N Camus et al, Phys. Rev. Lett. 108, 073003 (2012)).

  17. The ATLAS liquid argon electromagnetic calorimeter construction status

    CERN Document Server

    Jérémie, A

    2004-01-01

    The construction and assembly of the ATLAS liquid argon electromagnetic calorimeter was described. The calorimeter was built with accordion geometry composed of lead absorbers, liquid argon as ionizing medium and highly granular readout electrodes. The calorimeter was composed of the Barrel and the End-cap, both preceded by presampler sectors to ensure complete recovery of the energy resolution. The detection of cabling errors and testing of the whole calibration chain was done by sending a pulse through the calibration circuit with single readout. (Edited abstract) 3 Refs.

  18. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.; Hansen, Jens Leonhart; Sørensen, H.

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...

  19. Measurement of Longitudinal Electron Diffusion in Liquid Argon

    CERN Document Server

    Li, Yichen; Thorn, Craig; Qian, Xin; Diwan, Milind; Joshi, Jyoti; Kettell, Steve; Morse, William; Rao, Triveni; Stewart, Jim; Tang, Wei; Viren, Brett

    2015-01-01

    We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. Our results, which are consistent with previous measurements in the region between 100 to 350 V/cm [1] , are systematically higher than the prediction of Atrazhev-Timoshkin[2], and represent the world's best measurement in the region between 350 to 2000 V/cm. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

  20. Threshold models in radiation carcinogenesis

    International Nuclear Information System (INIS)

    Cancer incidence and mortality data from the atomic bomb survivors cohort has been analyzed to allow for the possibility of a threshold dose response. The same dose-response models as used in the original papers were fit to the data. The estimated cancer incidence from the fitted models over-predicted the observed cancer incidence in the lowest exposure group. This is consistent with a threshold or nonlinear dose-response at low-doses. Thresholds were added to the dose-response models and the range of possible thresholds is shown for both solid tumor cancers as well as the different leukemia types. This analysis suggests that the A-bomb cancer incidence data agree more with a threshold or nonlinear dose-response model than a purely linear model although the linear model is statistically equivalent. This observation is not found with the mortality data. For both the incidence data and the mortality data the addition of a threshold term significantly improves the fit to the linear or linear-quadratic dose response for both total leukemias and also for the leukemia subtypes of ALL, AML, and CML

  1. Guidelines for Auditory Threshold Measurement for Significant Threshold Shift.

    Science.gov (United States)

    Campbell, Kathleen; Hammill, Tanisha; Hoffer, Michael; Kil, Jonathan; Le Prell, Colleen

    2016-09-01

    The purpose of this article is to provide guidelines for determining a Significant Noise-Induced Threshold Shift in clinical trials involving human populations. The article reviews recommendations for the standards to be referenced for human subjects, equipment, test environment, and personnel. Additional guidelines for military populations are provided. Guidelines for the calibration of audiometers, sound booth noise levels, and immitance equipment are provided. In addition the guidance provides specific suggestions for the subjects history before study onset, and otoscopy.Test frequencies for threshold determination and methods of threshold determination are reviewed for both air conduction and bone conduction for both baseline testing and later determination of either a temporary (TTS) or permanent threshold shift (PTS). Once a Significant Noise-Induced Threshold Shift has been determined, subjects should be retested, conductive component should be ruled out or addressed, and the subject should be counseled or referred for additional medical evaluation. Guidance for reporting procedures and the computerized study database are described. Finally, experimental designs suggested for noise-induced otoprotection clinical trials are described. PMID:27518134

  2. Conversion of emitted dimethyl sulfide into eco-friendly species using low-temperature atmospheric argon micro-plasma system

    International Nuclear Information System (INIS)

    Highlights: ► Dimethyl sulfide (DMS) was fully decomposed by two-electrode Ar micro-plasma. ► The reaction of DMS/Ar resulted in forming solid compound and gaseous product. ► The C-, H- and S-containing solid compound was fixed on the quartz inner tube. ► The H2-, CS2-, and H2S-gaseous products were possibly recyclable and trapped. ► The dissociation mechanism and treatment efficiency of DMS were also discussed. - Abstract: A custom-made atmospheric argon micro-plasma system was employed to dissociate dimethyl sulfide (DMS) into a non-foul-smelling species. The proposed system takes the advantages of low energy requirement and non-thermal process with a constant flow rate at ambient condition. In the experiments, the compositions of DMS/argon plasma, the residual gaseous phases, and solid precipitates were respectively characterized using an optical emission spectrometer, various gas-phase analyzers, and X-ray photoemission spectroscopy. For 400 ppm DMS introduced into argon plasma with two pairs of electrodes (90 W), a complete decomposition of DMS was achieved; the DMS became converted into excited species such as C*, C2*, H*, and CH*. When gaseous products were taken away from the treatment area, the excited species tended to recombine and form stable compounds or species, which formed as solid particles and gaseous phases. The solid deposition was likely formed by the agglomeration of C-, H-, and S-containing species that became deposited on the quartz inner tube. For the residual gaseous phases, low-molecular-weight segments mostly recombined into relatively thermodynamic stable species, such as hydrogen, hydrogen sulfide, and carbon disulfide. The dissociation mechanism and treatment efficiency are discussed, and a treatment of converting DMS into H2-, CS2-, and H2S-dominant by-products is proposed.

  3. The influence of different species of gases on the luminescent and structural properties of pulsed laser-ablated Y2O2S:Eu3+ thin films

    Science.gov (United States)

    Ali, A. G.; Dejene, B. F.; Swart, H. C.

    2016-05-01

    Y2O2S:Eu3+ films have been grown on Si (100) substrates by using a pulsed laser deposition technique. The thin films grown under vacuum, argon and oxygen ambient have been characterized using structural and luminescent measurements. The X-ray diffraction patterns showed mixed phases of cubic and hexagonal crystal structures. The crystallinity of the film deposited in vacuum is poor, but improved significantly in argon and oxygen atmosphere. Similarly, both scanning electron microscopy and atomic force microscopy confirmed that different species of gases affected the morphology of the films. The average band gap of the films calculated from diffuse reflectance spectra using the Kubelka-Munk function was about 4.69 eV. The photoluminescence measurements indicated red emission of Y2O2S:Eu3+ thin films with the most intense peak appearing at 612 nm, which is assigned to the 5 D 0-7 F 2 transition of Eu3+. The intensities of this most intense peak greatly depend on the species of gas with argon having the highest peak. This phosphor has applications in the flat panel displays.

  4. Uranium-liquid argon calorimetry: preliminary results from the DO tests

    International Nuclear Information System (INIS)

    The motivations for using uranium and liquid argon in sampling calorimetry are reviewed and the pros and cons of the technique are discussed. Preliminary results of the DO uranium-liquid argon test program are presented. 9 refs., 7 figs

  5. Frequency dependence of vestibuloocular reflex thresholds

    OpenAIRE

    Haburcakova, Csilla; Lewis, Richard F.; Merfeld, Daniel M.

    2011-01-01

    How the brain processes signals in the presence of noise impacts much of behavioral neuroscience. Thresholds provide one way to assay noise. While perceptual thresholds have been widely investigated, vestibuloocular reflex (VOR) thresholds have seldom been studied and VOR threshold dynamics have never, to our knowledge, been reported. Therefore, we assessed VOR thresholds as a function of frequency. Specifically, we measured horizontal VOR thresholds evoked by yaw rotation in rhesus monkeys, ...

  6. Main: O2F1BE2S1 [PLACE

    Lifescience Database Archive (English)

    Full Text Available O2F1BE2S1 S000162 17-May-1998 (last modified) kehi opaque-2 recognition site F1 in Bertholle...quences of be2S1 promoter; F1 is hybrid C/G box; O2; opaque-2; be2S1; F1; seed; Brazil nut tree (Bertholletia excelsa); TCCACGTCGA ...

  7. Main: O2F3BE2S1 [PLACE

    Lifescience Database Archive (English)

    Full Text Available O2F3BE2S1 S000164 17-May-1998 (last modified) kehi opaque-2 recognition site F3 in Bertholle...quences of be2S1 promoter; F3 is hybrid of A/G box; O2; opaque-2; be2S1; seed; Brazil nut tree (Bertholletia excelsa) TCCACGTACT ...

  8. H-mode threshold power dependences in ITPA threshold database

    International Nuclear Information System (INIS)

    Newly contributed data and the current status of the International H-mode threshold database are presented. Selecting data from only one divertor geometry per tokamak leads to a reduction in the data scattering and improves the quality of the fits. The selection of a reduced set of transition types also leads to fit improvement. A new parameter, (R+a)/(R-a), is introduced in the power law scaling to account for the data provided by the spherical tokamaks. A prediction for ITER is given for the different power law scalings. Threshold power for ITER is estimated at about 35MW. (author)

  9. Optical emission spectroscopy of argon and hydrogen-containing plasmas

    Science.gov (United States)

    Siepa, Sarah; Danko, Stephan; Tsankov, Tsanko V.; Mussenbrock, Thomas; Czarnetzki, Uwe

    2015-09-01

    Optical emission spectroscopy (OES) on neutral argon is applied to investigate argon, hydrogen and hydrogen-silane plasmas. The spectra are analyzed using an extensive collisional-radiative model (CRM), from which the electron density and the electron temperature (or mean energy) can be calculated. The CRM also yields insight into the importance of different excited species and kinetic processes. The OES measurements are performed on pure argon plasmas at intermediate pressure. Besides, hydrogen and hydrogen-silane plasmas are investigated using argon as a trace gas. Especially for the gas mixture discharges, CRMs for low and high pressure differ substantially. The commonly used line-ratio technique is found to lose its sensitivity for gas mixture discharges at higher pressure. A solution using absolutely calibrated line intensities is proposed. The effect of radiation trapping and the shape of the electron energy distribution function on the results are discussed in detail, as they have been found to significantly influence the results. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].

  10. High-frequency electrodeless lamps in argon-mercury mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Denisova, N [Institute of Theoretical and Applied Mechanics, Novosibirsk (Russian Federation); Revalde, G [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga (Latvia); Skudra, A [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga (Latvia); Zissis, G [CPAT, University Toulouse 3, 118 rte de Narbonne, 31062 Toulouse (France); Zorina, N [Institute of Atomic Physics and Spectroscopy, University of Latvia, Raina blvd. 19, Riga (Latvia)

    2005-09-07

    In this paper, numerical and experimental investigations of high-frequency (HF) electrodeless lamps in argon-mercury mixtures are performed. The intensities of the mercury spectral lines having wavelengths {lambda} = 404.66, 435.83, 546.07 nm (7{sup 3}S{sub 1}-6{sup 3}P{sub 0,1,2}) and the resonance line {lambda} = 253.7 nm (6{sup 3} P{sub 1}-6{sup 1}S{sub 0}) are measured at a wide range of mercury pressures, varying the HF generator current and argon filling pressure. A stationary self-consistent model of HF electrodeless discharge lamp is developed including kinetics of the excited mercury and argon atomic states. Based on the developed model, the radiation characteristics of the discharge plasma are calculated. Numerical simulation of the line intensities behaviour in dependence on the mercury pressure, HF generator current and argon filling pressure is performed. The model results are in qualitative agreement with the experimental data. The calculations of the relative intensities of the visible triplet lines 7{sup 3}S{sub 1}-6{sup 3}P{sub 0,1,2} are presented for the first time in this paper.

  11. Measurement of the argon plasma temperature by use of pyrometer

    International Nuclear Information System (INIS)

    The author describes in detail how to use pyrometer to measure the plasma temperature. The temperatures of shock-generated argon plasmas are given in the present work. Measured results of temperature-pressure curve are compared with calculated results using Saha-Debye-Huckel model, which are in good agreement

  12. LArGe. A liquid argon scintillation veto for GERDA

    International Nuclear Information System (INIS)

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in 76Ge, by operating naked germanium detectors submersed into 65 m3 of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m3 (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 103 have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10-2 cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural 42Ar abundance (in parallel to Gerda), and have indication for the 2νββ-decay in natural germanium. (orig.)

  13. Study of Liquid Argon Dopants for LHC Hadron Calorimetry

    CERN Multimedia

    2002-01-01

    Hadron calorimetry based on the Liquid Argon Ionisation Chamber technique is one of the choice techniques for LHC-experimentation. A systematic study of the effect of selected dopants on Liquid Argon (LAr) will be carried out with the aim to achieve an improvement on: \\item (i)~``Fast Liquid Argon'' search and study of dopants to increase the drift velocity. It has been already shown that CH&sub4. added at a fraction of one percent increases the drift velocity by a factor of two or more. \\item (ii)~``Compensated Liquid Argon'' search and study of dopants to increase the response to densely ionising particles, resulting in improved compensation, such as photosensitive dopants. \\end{enumerate}\\\\ \\\\ Monitoring of the parameters involved in understanding the response of a calorimeter is essential. In case of doped LAr, the charge yield, the non-saturated drift velocity and the electron lifetime in the liquid should be precisely and simultaneously monitored as they all vary with the level of dopant concentrati...

  14. Aging tests of ethylene contaminated argon/ethane

    International Nuclear Information System (INIS)

    We report on aging tests of argon/ethane gas with a minor (1800 ppM) component of ethylene. The measurements were first conducted with the addition of alcohol to test the suppression of aging by this additive, with exposure up to ∼1.5 C/cm. Tests have included: a proportional tube with ethanol, another with isopropyl alcohol, and for comparison a tube has also been run with ethanol and argon/ethane from CDF's old (ethylene-free) ethane supply. The aging test with ethanol showed no difference between the ethylene-free and the ethylene tube. Furthermore, raw aging rates of argon/ethane and argon/ethane/ethylene were measured by exposing tubes without the addition of alcohol to about 0.1 C/cm. Again, no significant difference was observed. In conclusion, we see no evidence that ethylene contamination up to 1800 ppM has any adverse effect on wire aging. However, this level of ethylene does seem to significantly suppress the gas gain

  15. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    International Nuclear Information System (INIS)

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors

  16. Investigation of non-equilibrium argon and hydrogen plasmas

    International Nuclear Information System (INIS)

    Theoretical and experimental investigations are made into non-equilibrium argon and hydrogen partially-ionized plasmas characteristic of glow-discharge devices such as thyratrons and discharge tubes. For an argon plasma, the development and use of a collisional-radiative, steady-state, three-energy-level model is presented, and experimental measurements on pulsed argon plasmas are briefly mentioned. Two different theoretical argon plasma models are discussed; the first is numerically solved using a non-Maxwellian electron distribution function, while the second is solved analytically, including atom-atom inelastic collisions, assuming Maxwellian electron and atom distribution functions. For a hydrogen plasma, experimental measurements using fluorescence and laser-induced fluorescence have been made in a modified hydrogen thyratron over a wide current density range (from 100 to 8000 A/cm2) for the atomic hydrogen population densities n = 2,3,4. A pronounced rise in the atomic hydrogen excited state populations is observed after the end of the current pulse. A new method to measure the time-resolved electron density was developed and results are presented

  17. X ray diagnostics of the argon filled dense plasma focus

    International Nuclear Information System (INIS)

    An experimental investigation has been conducted to use a Dense Plasma Focus Machine as a prospected high intensity pulsed x ray source. The argon was chosen for the plasma discharge. An effort to reach the highest x ray intensity emission has been made. Although it has not yet been possible to operate with as high energy in argon as in hydrogen, the argon focus provides an intensified ''point source'' of x ray. Based on the diagnostic data and the characteristic difference between argon and hydrogen, a theoretical model of the shock wave was proposed. The x ray energy spectrum of the focus was determined by a crystal spectrometer. Analyzing this spectrum, one can obtain a combined radiation from a 3 keV thermal plasma and a 48 keV electron beam bombarding the center electrode. The polarization of the x ray was measured at a direction perpendicular to the DPF axis. The change of the polarization with time indicated that the plasma impinged radially and then followed by an axial flow. The correlation of the x ray signal with the voltage signal showed that the plasma resistance was rising after the density reached its maximum, and associated the increase of the resistivity as a result of ion-acoustic instability

  18. Scattering of Slow Metastable Argon Atoms by Dielectric Nanospheres

    Science.gov (United States)

    Baudon, J.; Hamamda, M.; Grucker, J.; Perales, F.; Dutier, G.; Ducloy, M.; Bocvarski, V.

    2009-11-01

    The elastic scattering at low energy of metastable argon atoms with internal angular momentum J = 0 and 2 by dielectric nanospheres is investigated. The differential cross sections are calculated for both isotropic and anisotropic interactions. A polarization effect is clearly evidenced. The possible use of a metastable atom beam as a probe of an ensemble of nanospheres deposited on a passive substrate is examined.

  19. LArGe. A liquid argon scintillation veto for GERDA

    Energy Technology Data Exchange (ETDEWEB)

    Heisel, Mark

    2011-04-13

    LArGe is a GERDA low-background test facility to study novel background suppression methods in a low-background environment, for possible applications in the GERDA experiment. GERDA searches for the neutrinoless double-beta decay in {sup 76}Ge, by operating naked germanium detectors submersed into 65 m{sup 3} of liquid argon. Similarly, LArGe runs Ge-detectors in 1 m{sup 3} (1.4 tons) of liquid argon, which in addition is instrumented with photomultipliers to detect argon scintillation light. The light is used in anti-coincidence with the germanium detectors, to effectively suppress background events that deposit energy in the liquid argon. This work adresses the design, construction, and commissioning of LArGe. The background suppression efficiency has been studied in combination with a pulse shape discrimination (PSD) technique for various sources, which represent characteristic backgrounds to GERDA. Suppression factors of a few times 10{sup 3} have been achieved. First background data of LArGe (without PSD) yield a background index of (0.12-4.6).10{sup -2} cts/(keV.kg.y) (90% c.l.), which is at the level of the Gerda phase I design goal. Furthermore, for the first time we measure the natural {sup 42}Ar abundance (in parallel to Gerda), and have indication for the 2{nu}{beta}{beta}-decay in natural germanium. (orig.)

  20. Design of capsules capable of argon-filling

    International Nuclear Information System (INIS)

    The possibility of the use of polycarbosilane capsules as fuel container in inertial confinement fusion experiments was analyzed in the paper. Primary study indicates that the polycarbosilane capsules can be filled with argon by means of diffusion and possess reasonable retention time for deuterium. (author)

  1. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...

  2. Experimental and numerical study of high intensity argon cluster beams

    International Nuclear Information System (INIS)

    Experimental and numerical investigations of expansion of argon with homogeneous condensation in supersonic conical nozzle and in free jet behind it were carried out. Optimal parameters (stagnation pressure, nozzle-skimmer distance) for the formation of cluster beam with maximum intensity were determined. Two available models for nonequilibrium nucleation were tested. The numerical results are in satisfactory agreement with the measured data

  3. Thermal decomposition of yttrium(III) valerate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao; Pallewatta, Pallewatta G A P; Watenphul, A.; Zimmermann, M. v.

    2014-01-01

    The thermal decomposition of yttrium(III) valerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction, in-situ synchrotron diffraction and hot-stage microscopy as well as room temperature optical microscopy. Melting...

  4. Turbulence and transport in a magnetized argon plasma

    International Nuclear Information System (INIS)

    An experimental study on turbulence and transport in the highly ionized argon plasma of a hollow cathode discharge is described. In order to determine the plasma parameters three standard diagnostics have been used, whilst two diagnostics have been developed to study the plasma turbulence. (Auth.)

  5. Study of a microwave discharge in argon/helium mixtures

    International Nuclear Information System (INIS)

    A discharge created by a surface wave in Argon-Helium mixture is studied. First, the helium influence on plasma parameters has been studied (electron density, electric field, effective collision frequency, etc...), then, on excitation processes in the discharge. Relations between plasma lines, electron density and electric field have been established

  6. Thermophysical properties of multi-shock compressed dense argon.

    Science.gov (United States)

    Chen, Q F; Zheng, J; Gu, Y J; Chen, Y L; Cai, L C; Shen, Z J

    2014-02-21

    In contrast to the single shock compression state that can be obtained directly via experimental measurements, the multi-shock compression states, however, have to be calculated with the aid of theoretical models. In order to determine experimentally the multiple shock states, a diagnostic approach with the Doppler pins system (DPS) and the pyrometer was used to probe multiple shocks in dense argon plasmas. Plasma was generated by a shock reverberation technique. The shock was produced using the flyer plate impact accelerated up to ∼6.1 km/s by a two-stage light gas gun and introduced into the plenum argon gas sample, which was pre-compressed from the environmental pressure to about 20 MPa. The time-resolved optical radiation histories were determined using a multi-wavelength channel optical transience radiance pyrometer. Simultaneously, the particle velocity profiles of the LiF window was measured with multi-DPS. The states of multi-shock compression argon plasma were determined from the measured shock velocities combining the particle velocity profiles. We performed the experiments on dense argon plasmas to determine the principal Hugonoit up to 21 GPa, the re-shock pressure up to 73 GPa, and the maximum measure pressure of the fourth shock up to 158 GPa. The results are used to validate the existing self-consistent variational theory model in the partial ionization region and create new theoretical models. PMID:24559345

  7. Thermal decomposition of yttrium(III) hexanoate in argon

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Suarez Guevara, Maria Josefina; Attique, Fahmida;

    2015-01-01

    The thermal decomposition of yttrium(III) hexanoate (Y(C5H11CO2)3)·xH2O in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction at a laboratory Cu-tube source and in-situ experiments at a synchrotron radiation source as well as hot...

  8. Multiwalled carbon nanotubes as masks against carbon and argon irradiation. A molecular dynamics study

    Science.gov (United States)

    Denton, Cristian D.; Moreno-Marín, Juan Carlos; Heredia-Avalos, Santiago

    2016-04-01

    Experiments showed that multiwalled carbon nanotubes (MWCNT) can be used as masks against irradiation to create metallic nanowires in a substrate. In order to understand the limitations of this application, it is interesting to know the energy and number of carbon atoms emerging from the MWCNT after the irradiation and how the structure of the MWCNT is modified. Using a molecular dynamics code that we have previously developed, we have simulated the continuous irradiation of MWCNT with carbon and argon projectiles. We have obtained that the use of carbon instead of argon to irradiate the MWCNT increases de effectiveness of the MWCNTs as masks, due to the ability of the carbon projectiles to be part of the MWCNT structure and partially mend the damage produced during irradiation. We have analyzed the number, energy, and spatial distribution of the recoils generated during irradiation and the change of the MWCNT structure as a function of the incident energy (100 and 500 eV), fluence (up to 4.5 ·1015ions /cm2), and number of shells (up to 5-shells) of the MWCNT. These results determine the effectiveness of MWCNT as a mask, being useful to understand whether the atoms emerging from the MWCNT produce damage in the substrate or not. We find that for carbon projectiles the efficiency of MWCNT as masks does not depend much on the fluence, but on the number of nanotube shells and projectile incident energy. On the other hand, for a given nanotube and fluence, we observe a threshold incident energy below which the nanotube acts as a perfect mask.

  9. The role of metastable atoms in argon-diluted silane radiofrequency plasmas

    OpenAIRE

    Sansonnens, L.; Howling, A.A.; Hollenstein, C.; Dorier, J. L.; Kroll, U.

    2008-01-01

    The evolution of the argon metastable states density has been studied by absorption spectroscopy in power-modulated plasmas of argon and a mixture of 4% silane in argon. A small concentration of silane suppresses the argon metastable states density by molecular quenching. This molecular quenching adds to the electronic collisional dissociation to increase the silane dissociation rate as compared with pure silane plasmas. Using time-resolved emission spectroscopy, the role of metastable states...

  10. Potassium-Argon ages on mesozoic tholeutic dike Swarm in Rio Grande do Norte, Brazil

    International Nuclear Information System (INIS)

    Potassium-argon ages are reported for samples from four localities which represent three laterally separated Mesozoic tholeitic dikes in Precambrian oF Rio Grande do Norte, Brazil. The ages for the dikes are between 167 Ma and 130 Ma. It is shown that most of the ages determined are minimum ages due to argon losses. The methodological approach to identify argon losses is described. Ecess argon cannot be of significant influence on the ages found. (author)

  11. Conversion of an atomic to a molecular argon ion and low pressure argon relaxation

    Science.gov (United States)

    M, N. Stankov; A, P. Jovanović; V, Lj Marković; S, N. Stamenković

    2016-01-01

    The dominant process in relaxation of DC glow discharge between two plane parallel electrodes in argon at pressure 200 Pa is analyzed by measuring the breakdown time delay and by analytical and numerical models. By using the approximate analytical model it is found that the relaxation in a range from 20 to 60 ms in afterglow is dominated by ions, produced by atomic-to-molecular conversion of Ar+ ions in the first several milliseconds after the cessation of the discharge. This conversion is confirmed by the presence of double-Gaussian distribution for the formative time delay, as well as conversion maxima in a set of memory curves measured in different conditions. Finally, the numerical one-dimensional (1D) model for determining the number densities of dominant particles in stationary DC glow discharge and two-dimensional (2D) model for the relaxation are used to confirm the previous assumptions and to determine the corresponding collision and transport coefficients of dominant species and processes. Project supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. ON171025).

  12. The ATLAS liquid argon calorimeter: upgrade plans for the HL-LHC

    CERN Document Server

    Novgorodova, O; The ATLAS collaboration

    2014-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 1034cm-2s-1. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region |η|<3.2, and for hadronic calorimetry in the region from |η|=1.5 to |η|=4.9. Although the nominal LHC experimental programme is still in progress, plans for a High Luminosity LHC (HL-LHC) are already being developed for operation of the collider and associated detectors at luminosities of up to (5-7)×1034 cm-2s-1, with the goal of accumulating an integrated luminosity of 3000 fb-1. The proposed instantaneous and integrated luminosities are both well beyond the values for which the detectors were designed. The electromagnetic and hadronic calorimeters will be able to tolerate the increased particle flux, but the performance of the forward calorimeter (FCal) will be affected. Two solutions for this are un...

  13. Argon metastable dynamics and lifetimes in a direct current microdischarge

    Science.gov (United States)

    Stefanović, Ilija; Kuschel, Thomas; Schröter, Sandra; Böke, Marc

    2014-09-01

    In this paper we study the properties of a pulsed dc microdischarge with the continuous flow of argon. Argon metastable lifetimes are measured by tunable diode laser absorption spectroscopy (TDLAS) and are compared with calculated values which yield information about excitation and de-excitation processes. By increasing the gas flow-rate about 5 times from 10 to 50 sccm, the Arm lifetime increases from 1 to 5 μs due to the reduction of metastable quenching with gas impurities. Optical emission spectroscopy reveals nitrogen and water molecules as the main gas impurities. The estimated N2 density [N2] = 0.1% is too low to explain the measured metastable lifetimes. Water impurity was found to be the main de-excitation source of argon metastable atoms due to high quenching coefficients. The water impurity level of [H2O] = 0.15% to 1% is sufficient to bring calculated metastable lifetimes in line with experiments. The maximum value of water content in the discharge compared to the argon atoms is estimated to approximately 6%, due to the large surface to volume ratio of the microdischarge. The current pulse releases the water molecules from the electrode surface and they are either re-adsorbed in the time between 0.4 ms for [H2O] = 1% and 2.6 ms for [H2O] = 0.15% or pumped out of the discharge with the speed equal to the gas flow-rate. Depending on its partial pressure, the water impurity re-adsorption time is of the order of magnitude or less then the argon gas residence time.

  14. 21 CFR 874.4490 - Argon laser for otology, rhinology, and laryngology.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Argon laser for otology, rhinology, and laryngology. 874.4490 Section 874.4490 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Argon laser for otology, rhinology, and laryngology. (a) Identification. The argon laser device for...

  15. Baryon Form Factors at Threshold

    Energy Technology Data Exchange (ETDEWEB)

    Baldini Ferroli, Rinaldo [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Rome (Italy); INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Pacetti, Simone [INFN and Dipartimento di Fisica, Universita di Perugia, Perugia (Italy)

    2012-04-15

    An extensive study of the e{sup +}e{sup -}{yields}pp{sup Macron }BABAR cross section data is presented. Two unexpected outcomes have been found: the modulus of the proton form factor is normalized to one at threshold, i.e.: |G{sup p}(4M{sub p}{sup 2})|=1, as a pointlike fermion, and the resummation factor in the Sommerfeld formula is not needed. Other e{sup +}e{sup -} {yields} baryon-antibaryon cross sections show a similar behavior near threshold.

  16. Hypergraphs with Zero Chromatic Threshold

    OpenAIRE

    Balogh, József; Lenz, John

    2013-01-01

    Let F be an r-uniform hypergraph. The chromatic threshold of the family of F-free, r-uniform hypergraphs is the infimum of all non-negative reals c such that the subfamily of F-free, r-uniform hypergraphs H with minimum degree at least $c \\binom{|V(H)|}{r-1}$ has bounded chromatic number. The study of chromatic thresholds of various graphs has a long history, beginning with the early work of Erd\\H{o}s-Simonovits. One interesting question, first proposed by \\L{}uczak-Thomass\\'{e} and then solv...

  17. Photoionization of the Be-like O4+ ion: total and partial cross sections for the ground 2s21S and excited 2s2p 1,3P states

    International Nuclear Information System (INIS)

    Photoionization cross sections of the Be-like O4+ ion in the photon energy region from the first threshold up to the O5+ 3d threshold have been calculated using a non-iterative variational R-matrix method combined with multichannel quantum-defect theory for the ground 2s21S and excited 2s2p 1,3P states. The partial cross sections are presented and the autoionizing resonance structures arising from the ground and excited states are identified and characterized. Our calculational results, which show excellent agreement between length and velocity gauges, are compared with the available experiment and previous calculations, and good agreement is found.

  18. Method to determine argon metastable number density and plasma electron temperature from spectral emission originating from four 4p argon levels

    CERN Document Server

    Mariotti, Davide; Sasaki, Takeshi; Koshizaki, Naoto; 10.1063/1.2390631

    2010-01-01

    A simple model and method is proposed here to determine argon metastable number densities and electron temperature with the assumption of a Maxwell-Boltzmann electron energy distribution. This method is based on the availability of experimental relative emission intensities of only four argon lines that originate from any of the 4p argon levels. The proposed model has a relatively wide range of validity for laboratory plasmas that contain argon gas and can be a valuable tool for the emerging field of atmospheric microplasmas, for which diagnostics is still limited.

  19. Modeling of H2S migration through landfill cover materials.

    Science.gov (United States)

    Xu, Qiyong; Powell, Jon; Jain, Pradeep; Townsend, Timothy

    2014-01-15

    The emission of H2S from landfills in the United States is an emergent problem because measured concentrations within the waste mass and in ambient air have been observed at potentially unsafe levels for on-site workers and at levels that can cause a nuisance and potentially deleterious health impacts to surrounding communities. Though recent research has provided data on H2S concentrations that may be observed at landfills, facility operators and landfill engineers have limited predictive tools to anticipate and plan for potentially harmful H2S emissions. A one-dimensional gas migration model was developed to assist engineers and practitioners better evaluate and predict potential emission levels of H2S based on four factors: concentration of H2S below the landfill surface (C0), advection velocity (v), H2S effective diffusion coefficient (D), and H2S adsorption coefficient of landfill cover soil (μ). Model simulations indicated that H2S migration into the atmosphere can be mitigated by reducing H2S diffusion and advection or using alternative cover soils with a high H2S adsorption coefficient. Laboratory column experiments were conducted to investigate the effects of the four parameters on H2S migration in cover soils and to calculate the adsorption coefficient of different cover materials. The model was validated by comparing results with laboratory column experiments. Based on the results, the laboratory column provides an effective way to estimate the H2S adsorption coefficient, which can then be incorporated into the developed model to predict the depth of cover soil required to reduce emitted H2S concentrations below a desired level. PMID:24316799

  20. Weights of Exact Threshold Functions

    DEFF Research Database (Denmark)

    Babai, László; Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.;

    2010-01-01

    We consider Boolean exact threshold functions defined by linear equations, and in general degree d polynomials. We give upper and lower bounds on the maximum magnitude (absolute value) of the coefficients required to represent such functions. These bounds are very close and in the linear case in ...

  1. Quark States Near a Threshold

    CERN Document Server

    Bashinsky, S V

    1996-01-01

    We reduce the problem of many-channel hadron scattering at nonrelativistic energies to calculations on the scale of a few fermis. Having thus disentangled kinematics from interior quark dynamics, we study their interplay when a quark state occurs near a hadronic threshold. Characteristic parameters, such as the observed peak width, the decay width, and the shape of a cross-section itself are highly affected by the threshold. A general pole-form expression for the S-matrix in an arbitrary background is given, and the pole structure of S is examined. We show that at a hadronic threshold two poles in S are generally important. We also classify the S-matrix pole structure considering an example where nonsingular coupled channels are closed at the threshold. The framework of our paper is the P-matrix formalism, which is reviewed and extended for use together with conventional methods of computing quark-gluon dynamics. Results and applications are illustrated for the doubly strange two-baryon system, the detailed a...

  2. Crossing Thresholds in Academic Reading

    Science.gov (United States)

    Abbott, Rob

    2013-01-01

    This paper looks at the conceptual thresholds in relation to academic reading which might be crossed by undergraduate English Literature students. It is part of a wider study following 16 students through three years of undergraduate study. It uses theoretical ideas from Bakhtin and Foucault to analyse interviews with English lecturers. It…

  3. The Nature of Psychological Thresholds

    NARCIS (Netherlands)

    Rouder, Jeffrey N.; Morey, Richard D.

    2009-01-01

    Following G. T. Fechner (1966), thresholds have been conceptualized as the amount of intensity needed to transition between mental states, such as between a states of unconsciousness and consciousness. With the advent of the theory of signal detection, however, discrete-state theory and the correspo

  4. Formation of very low energy states crossing the ionization threshold of argon atoms in strong mid-infrared fields

    CERN Document Server

    Wolter, Benjamin; Baudisch, Matthias; Pullen, Michael G; Tong, Xiao-Min; Hemmer, Michaël; Senftleben, Arne; Schröter, Claus Dieter; Ullrich, Joachim; Moshammer, Robert; Biegert, Jens; Burgdörfer, Joachim

    2014-01-01

    Atomic ionization by intense mid-infrared (mid-IR) pulses produces low electron energy features that the strong-field approximation, which is expected to be valid in the tunneling ionization regime characterized by small Keldysh parameters ($\\gamma \\ll 1$), cannot describe. These features include the low-energy structure (LES), the very-low-energy structure (VLES), and the more recently found zero-energy structure (ZES). They result from the interplay between the laser electric field and the atomic Coulomb field which controls the low-energy spectrum also for small $\\gamma$. In the present joint experimental and theoretical study we investigate the vectorial momentum spectrum at very low energies. Using a reaction microscope optimized for the detection of very low energy electrons, we have performed a thorough study of the three-dimensional momentum spectrum well below 1 eV. Our measurements are complemented by quantum and classical simulations, which allow for an interpretation of the LES, VLES and of the ne...

  5. EFFECTS OF ARGON ON THE PROPERTIES OF RF SPUTTERED AMORPHOUS SILICON

    OpenAIRE

    Shao-Qi, Peng; Qai, Yu; Xian, Zhang; Jing, Ye

    1981-01-01

    The Effects of argon on the properties of rf sputtered amorphous silicon film have been investigated. As the sputtering argon pressure is increased from 2 to 20 mTorr, the content of argon in the amorphous silicon film increases apparently (Argon/Silicon : from 10-2 to 5 x 10-2). The other properties measured as a function of argon pressure PAr show that as the PAr is increased, the photoconductivity, resistivity (300K), conductivity activation energy and optical gap increase also, while the ...

  6. Copper diffusion in In2S3 and charge separation at In2S3/CuSCN and TiO2/In2S3 interfaces

    OpenAIRE

    Juma, Albert Owino

    2014-01-01

    Das Konzept der anorganischen nanostrukturierten Solarzellen basiert auf sehr dünnen Absorberschichten zwischen hochstrukturierten Elektronen- und Lochleitern. Wird ein TiO2/In2S3/CuSCN nanostrukturierter Verbundwerkstoff belichtet, können in In2S3 photogenerierte Elektronen in das TiO2-Leitungsband und die entsprechenden Löcher in das CuSCN Valenzband injiziert werden. Begrenzt wird die Landungstrennung an den Grenzschichten durch die Abscheideparameter, die Bandstruktur und die Diffusion de...

  7. Photoelectrochemical cells based on In2S3 single crystals

    International Nuclear Information System (INIS)

    The single crystals of tetragonal modification t-In2S3 are grown by the planar crystallization of the melt. On their basis, the photosensitive H2O/t-In2S3 cells are fabricated, and the spectra of their quantum efficiency are investigated. The broadband photosensivity of H2O/t-In2S3 cells is determined. On the basis of the photosensivity spectra, the character of interband transitions and the t-In2S3 band gaps corresponding to them are determined. The possibility of using the t-In2S3 crystals in broadband photoconverters of natural and polarized radiations is shown. The relation between the energy spectrum and the phase state of In2S3 crystals is revealed.

  8. The Role of Endogenous H(2)S in Cardiovascular Physiology

    DEFF Research Database (Denmark)

    Skovgaard, Nini; Gouliaev, Anja; Aalling, Mathilde;

    2011-01-01

    -γ-lyase (CSE) in smooth muscle cells (SMC) and 3-mercaptopyruvate sulfuresterase (3MST) and CSE in the endothelial cells. In pulmonary and systemic arteries, H(2)S induces relaxation and/or contraction dependent on the concentration of H(2)S, type of vessel and species. H(2)S relaxes SMC through a direct...... effect on K(ATP)-channels or K(v)-channels causing hyperpolarization and closure of voltage-dependent Ca(2+)-channels followed by a reduction in intracellular calcium. H(2)S also relaxes SMC through the release of endothelium-derived hyperpolarizing factor (EDHF) and nitric oxide (NO) from the...... endothelium. H(2)S contracts SMC through a reduction in nitric oxide (NO) availability by reacting with NO forming a nitrosothiol compound and through an inhibitory effect on endothelial nitric oxide synthase (eNOS) as well as a reduction in SMC cyclic AMP concentration. Evidence supports a role for H(2)S in...

  9. First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon

    CERN Document Server

    Back, Henning O; Alton, Andrew; Condon, Christopher; de Haas, Ernst; Galbiati, Cristiano; Goretti, Augusto; Hohmann, Tristan; Ianni, Andrea; Kendziora, Cary; Loer, Ben; Montanari, David; Mosteiro, Pablo; Pordes, Stephen

    2012-01-01

    We report on the performance and commissioning of a cryogenic distillation column for low radioactivity underground argon at Fermi National Accelerator Laboratory. The distillation column is designed to accept a mixture of argon, helium, and nitrogen and return pure argon with a nitrogen contamination less than 10 ppm. In the first commissioning, we were able to run the distillation column in a continuous mode and produce argon that is 99.9% pure. After running in a batch mode, the argon purity was increased to 99.95%, with 500 ppm of nitrogen remaining. The efficiency of collecting the argon from the gas mixture was between 70% and 81%, at an argon production rate of 0.84-0.98 kg/day.

  10. Influence of H2S poisoned biomethane on catalyst performance

    OpenAIRE

    Bruijstens, A.J.; Beuman, W.P.H.; Van Der Molen, M; Bleuanus, W.A.J.

    2008-01-01

    The influence of the level of H2S in the fuel on catalyst performance was investigated. The main conclusion is that at H2S levels of 30ppm and above, it is probable that the exhaust gas emissions of NGV’s are negatively influenced. Further research is suggested to: 1) Determine the effect of different H2S concentrations on tailpipe emissions. And, if it is found that there is an influence on tailpipe emissions: 2) Determine a maximum fuel H2S content to limit this influence.

  11. Investigation of the Chemistry of Liquid H2S Scavengers

    OpenAIRE

    Buhaug, Janne Bjørntvedt

    2002-01-01

    1,3,5-Tris(2-hydroxyethyl)-1,3,5-triazinane (1), in the industry often referred to as "Triazine", is a widely used liquid H2S scavenger. The goal of the work presented in this dissertation was to examine the chemistry of its reaction with H2S, and to determine the efficiency of 1 and other potential scavengers in H2S removal. It was found that two competing reactions take place when 1 is used as an H2S scavenger. One is the hydrolysis of the compound, in which ethanolamine (5) and formaldehyd...

  12. [Experience with argon laser in urological diseases (author's transl)].

    Science.gov (United States)

    Rothauge, C F; Nöske, H D; Kraushaar, J

    1981-09-01

    The application of the Argon laser in urology has proved to be effective in resecting recurrent, exophytic urothelial tumors of the bladder up to the size of a raspberry. In cases of wide spread bladder tumors we only perform a radiation of the resected area as local recurrence prophylaxis following transurethral resection. The urethroscopic Argon laser irradiation makes laser urethrotomy and evaporisation of urethral strictures possible. Furthermore, a curative and conservative treatment of urethral tumors is possible in combination with chemotherapy. The same applies for the penis carcinoma. Urethral ruptures are also successfully treated by urethroscopic laser recanalization. A determination of the ureteral submucosal course, which may allow a prognosis about the probable maturation, is possible in cases of cystoureteral reflux with the help of laser diaphanoscopy. PMID:7197839

  13. Development of cryogenic installations for large liquid argon neutrino detectors

    CERN Document Server

    Adamowski, M; Geynisman, M; Hentschel, S; Montanari, D; Nessi, M; Norris, B

    2015-01-01

    A proposal for a very large liquid argon (68,000 kg) based neutrino detector is being studied. To validate the design principles and the detector technology, and to gain experience in the development of the cryostats and the cryogenic systems needed for such large experiments, several smaller scale installations will be developed and implemented, at Fermilab and CERN. The cryogenic systems for these installations will be developed, constructed, installed and commissioned by an international engineering team. These installations shall bring the required cooling power under specific conditions to the experiments for the initial cool-down and the long term operation, and shall also guarantee the correct distribution of the cooling power within the cryostats to ensure a homogeneous temperature distribution within the cryostat itself. The cryogenic systems shall also include gaseous and liquid phase argon purification devices to be used to reach and maintain the very stringent purity requirements needed for these...

  14. Measurement of longitudinal electron diffusion in liquid argon

    Science.gov (United States)

    Li, Yichen; Tsang, Thomas; Thorn, Craig; Qian, Xin; Diwan, Milind; Joshi, Jyoti; Kettell, Steve; Morse, William; Rao, Triveni; Stewart, James; Tang, Wei; Viren, Brett

    2016-04-01

    We report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. In the region between 100 and 350 V/cm, our results show a discrepancy with the previous measurement [1]. In the region between 350 and 2000 V/cm, our results represent the world's best measurement. Over the entire measured electric field range, our results are systematically higher than the calculation of Atrazhev-Timoshkin [2]. The quantum efficiency of the gold photocathode, the drift velocity and longitudinal diffusion coefficients in gas argon are also presented.

  15. Evaporation and condensation at a liquid surface. I. Argon

    Science.gov (United States)

    Yasuoka, Kenji; Matsumoto, Mitsuhiro; Kataoka, Yosuke

    1994-11-01

    Molecular dynamics computer simulations were carried out to investigate the dynamics of evaporation and condensation for argon at the temperature of 80 and 100 K. From the decrease of the survival probability of vapor molecules, the ratio of self reflection to collision is estimated to be 12%-15%, only weakly dependent on the temperature. This suggests that argon vapor molecules are in the condition of almost complete capture, and the condensation is considered to be a barrierless process. The total ratio of reflection which is evaluated with the flux correlation of condensation and evaporation is 20% at both temperature. The difference between these two ratios of reflection is ascribed to a phenomenon that vapor molecules colliding with the surface drive out other liquid molecules. This molecule exchange at the surface is as important as the self-reflection, and the conventional picture of condensation as a unimolecular chemical reaction is not appropriate.

  16. Trimming a Metallic Biliary Stent Using an Argon Plasma Coagulator

    International Nuclear Information System (INIS)

    Background. Distal migration is one of the common complications after insertion of a covered metallic stent. Stent repositioning or removal is not always possible in every patient. Therefore, trimming using an argon plasma coagulator (APC) may be a good alternative method to solve this problem. Methods. Metallic stent trimming by APC was performed in 2 patients with biliary Wallstent migration and in another patient with esophageal Ultraflex stent migration. The power setting was 60-100 watts with an argon flow of 0.8 l/min. Observations. The procedure was successfully performed and all distal parts of the stents were removed. No significant collateral damage to the nearby mucosa was observed. Conclusions. In a patient with a distally migrated metallic stent, trimming of the stent is possible by means of an APC. This new method may be applicable to other sites of metallic stent migration

  17. Narrow spectral width laser diode for metastable argon atoms pumping

    Science.gov (United States)

    Gao, Jun; Li, Bin; Wang, Xinbing; Zuo, Duluo

    2016-03-01

    Diode laser pump source with narrow emitting spectrum for optically pumped metastable rare gas laser (OPRGL) of argon was achieved by employing a complex external cavity coupled with volume Bragg grating (VBG). A commercially available c-mount laser diode with rated power of 6 W was used and studied in both the free running mode and VBG external cavity. The maximum output power of 3.9 W with FWHM less than 25 pm and peak wavelength locked around 811.53 nm was obtained from the VBG external cavity laser diode. Precise control of VBG temperature enabled fine tuning of the emission wavelength over a range of 450 pm. Future researches on OPRGL of argon will benefit from it.

  18. Scintillation time dependence and pulse shape discrimination in liquid argon

    International Nuclear Information System (INIS)

    Using a single-phase liquid argon detector with a signal yield of 4.85 photoelectrons per keV of electronic-equivalent recoil energy (keVee), we measure the scintillation time dependence of both electronic and nuclear recoils in liquid argon down to 5 keVee. We develop two methods of pulse shape discrimination to distinguish between electronic and nuclear recoils. Using one of these methods, we measure a background- and statistics-limited level of electronic recoil contamination to be 7.6x10-7 between 52 and 110 keV of nuclear recoil energy (keVr) for a nuclear recoil acceptance of 50% with no nuclear recoil-like events above 62 keVr. Finally, we develop a maximum likelihood method of pulse shape discrimination based on the measured scintillation time dependence

  19. Demonstration of a Lightguide Detector for Liquid Argon TPCs

    CERN Document Server

    Bugel, L; Ignarra, C; Jones, B J P; Katori, T; Smidt, T; Tanaka, H -K

    2011-01-01

    We report demonstration of light detection in liquid argon using an acrylic lightguide detector system. This opens the opportunity for development of an inexpensive, large-area light collection system for large liquid argon time projection chambers. The guides are constructed of acrylic, with TPB embedded in a surface coating with a matching index of refraction. We study the response to early scintillation light produced by a 5.3 MeV alpha. We measure coating responses from 7 to 8 PE on average, compared to an ideal expectation of 10 PE on average. We estimate the attenuation length of light along the lightguide bar to be greater than 0.5 m. The coating response and the attenuation length can be improved; we show, however, that these results are already sufficient for triggering in a large detector.

  20. Opacity measurements in shock-generated argon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, D.

    1993-07-01

    Dense plasmas having uniform and constant density and temperature are generated by passage of a planar shock wave through gas. The opacity of the plasma is accurately measured versus wavelength by recording the risetime of emitted light. This technique is applicable to a wide variety of species and plasma conditions. Initial experiments in argon have produced plasmas with 2 eV temperatures, 0.004--0.04 g/cm{sup 3} densities, and coupling parameters {Gamma} {approximately}0.3--0.7. Measurements in visible light are compared with calculations using the HOPE code. An interesting peak in the capacity at 400 nm is observed for the first time and is identified with the 4s-5p transition in excited neutral argon atoms.

  1. The Erosion of Frozen Argon by Swift Helium Ions

    DEFF Research Database (Denmark)

    Besenbacher, F.; Bøttiger, Jørgen; Graversen, O.;

    1981-01-01

    The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore unequivo......The temperature, energy, and thickness dependence of the erosion rates of frozen argon films when irradiated with 0.1–3 MeV helium ions have been measured. The erosion yields Y are much too high to be explained by the concentional collisional cascade-sputtering theory and are furthermore...... unequivocally associated with electronic processes generated by the bombarding particle. In the present energy region, it is found that Y scales approximately as the electronic stopping power squared, depends on the charge state of the incoming helium ions, and perhaps more important, is independent of the...

  2. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G; Abdallah, J; Abdelalim, A A; Abdesselam, A; Abdinov, O; Abi, B; Abolins, M; Abramowicz, H; Abreu, H; Acharya, B S; Adams, D L; Addy, T N; Adelman, J; Adorisio, C; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahmed, H; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Aktas, A; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Aliyev, M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amorós, G; Amram, N; Anastopoulos, C; Andeen, T; Anders, C F; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Angerami, A; Anghinolfi, F; Anjos, N; Antonaki, A; Antonelli, M; Antonelli, S; Antunovic, B; Anulli, F; Aoun, S; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Archambault, J P; Arfaoui, S; Arguin, J-F; Argyropoulos, T; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnault, C; Artamonov, A; Arutinov, D; Asai, M; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asner, D; Asquith, L; Assamagan, K; Astbury, A; Astvatsatourov, A; Atoian, G; Auerbach, B; Auge, E; Augsten, K; Aurousseau, M; Austin, N; Avolio, G; Avramidou, R; Axen, D; Ay, C; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A; Bachacou, H; Bachas, K; Backes, M; Badescu, E; Bagnaia, P; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baltasar Dos Santos Pedrosa, F; Banas, E; Banerjee, P; Banerjee, S; Banfi, D; Bangert, A; Bansal, V; Baranov, S P; Baranov, S; Barashkou, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baron, S; Baroncelli, A; Barr, A J; Barreiro, F; BarreiroGuimarães da Costa, J; Barrillon, P; Barros, N; Bartoldus, R; Bartsch, D; Bastos, J; Bates, R L; Bathe, S; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Bazalova, M; Beare, B; Beau, T; Beauchemin, P H; Beccherle, R; Becerici, N; Bechtle, P; Beck, G A; Beck, H P; Beckingham, M; Becks, K H; Bedajanek, I; Beddall, A J; Beddall, A; Bednár, P; Bednyakov, V A; Bee, C; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Belotskiy, K; Beltramello, O; Ben Ami, S; Benary, O; Benchekroun, D; Bendel, M; Benedict, B H; Benekos, N; Benhammou, Y; Benincasa, G P; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Beretta, M; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernardet, K; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertin, A; Besson, N; Bethke, S; Bianchi, R M; Bianco, M; Biebel, O; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bocci, A; Boehler, M; Boek, J; Boelaert, N; Böser, S; Bogaerts, J A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Boldyrev, A; Bondarenko, V G; Bondioli, M; Boonekamp, M; Booth, J R A; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borroni, S; Bos, K; Boscherini, D; Bosman, M; Bosteels, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boulahouache, C; Bourdarios, C; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Braem, A; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brelier, B; Bremer, J; Brenner, R; Bressler, S; Breton, D; Brett, N D; Britton, D; Brochu, F M; Brock, I; Brock, R; Brodbeck, T J; Brodet, E; Broggi, F; Bromberg, C; Brooijmans, G; Brooks, W K; Brown, G; Brubaker, E; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Bucci, F; Buchanan, J; Buchholz, P; Buckley, A G; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butin, F; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Byatt, T; Caballero, J; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Camarri, P; Cambiaghi, M; Cameron, D; Campabadal-Segura, F; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Capasso, L; Capeans-Garrido, M D M; Caprini, I; Caprini, M; Capua, M; Caputo, R; Caracinha, D; Caramarcu, C; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carrillo Montoya, G D; Carron Montero, S; Carter, A A; Carter, J R

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  3. Electron Neutrino Classification in Liquid Argon Time Projection Chamber Detector

    OpenAIRE

    Płoński, Piotr; Stefan, Dorota; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    Neutrinos are one of the least known elementary particles. The detection of neutrinos is an extremely difficult task since they are affected only by weak sub-atomic force or gravity. Therefore large detectors are constructed to reveal neutrino's properties. Among them the Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. The computerized methods for automatic reconstruction and identification of parti...

  4. Unified set of atomic transition probabilities for neutral argon

    OpenAIRE

    Wiese, W.; Brault, J.; Danzmann, K.; Helbig, V.; de Kock, M

    1989-01-01

    The atomic transition probabilities and radiative lifetimes of neutral argon have been the subject of numerous experiments and calculations, but the results exhibit many discrepancies and inconsistencies. We present a unified set of atomic transition probabilities, which is consistent with essentially all recent results, albeit sometimes only after critical reanalysis. The data consistency and scale confirmation has been achieved in two ways. (i) We have carried out some lifetime–branching-ra...

  5. Operational performance of a large liquid argon photon calorimeter

    International Nuclear Information System (INIS)

    We describe the performance of a large (0.9x1.4 m2) liquid argon photon calorimeter in high energy experiments at Fermilab. Resolutions for π0 and electron showers, obtained under data-taking conditions, are compared with electron-beam calibration results. Exceptional spatial and time resolutions have been achieved for isolated showers (sigmasub(x,y)0 data up to 180 GeV are presented. (orig.)

  6. Changes in colour contrast sensitivity associated with operating argon lasers.

    OpenAIRE

    Gündüz, K; Arden, G B

    1989-01-01

    A new test of colour vision using computer graphics has been used to obtain quantitative estimates of colour contrast sensitivity in ophthalmologists before and after they have treated patients by argon laser retinal photocoagulation. The colour vision of all subjects is normal when tested with the 100-hue test and HRR (Hardy, Rittler, Rand) plates, but colour contrast sensitivity measured along a tritan colour confusion line is selectively impaired after a treatment session. No such change o...

  7. Influence of argon pollution on the weld surface morphology

    OpenAIRE

    Krolczyk, G.M.; Nieslony, P.; Krolczyk, J.B.; I. Samardzic; Legutko, S.; S. Hloch; Barrans, Simon; Maruda, R.W.

    2015-01-01

    In this paper the surfaces of butt welded joints in steel tubes were analyzed using an optical 3D measurement system to determine the morphology and topographic parameters. It was established that pollution of the argon shield gas with oxygen did not influence the width of the heat-affected zone. However, the composition of the shield gas significantly influenced the surface asymmetry, Ssk, and its inclination Sku. The measurement of these parameters enabled the selection of a ...

  8. Experimental Investigation of Low Pressure Audio Frequency Discharge in Argon

    International Nuclear Information System (INIS)

    Experimental data obtained on audio frequency (100–10000 Hz) discharge in argon at four pressures 50, 60, 70, and 80 mTorr are presented. The data show significant changes of the discharge current waveform with frequency. These changes seem to be associated with the glow discharge profile and colour. An empirical model based on the assumption of a frequency-dependent breakdown voltage is used to describe the experimental data

  9. STATUS OF THE ATLAS LIQUID ARGON CALORIMETER AND ITS PERFORMANCE

    CERN Document Server

    Berillari, T; The ATLAS collaboration

    2011-01-01

    The liquid argon (LAr) calorimeters are used in ATLAS for all electromagnetic and for hadron calorimetry. The LAr calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic, hadronic and forward calorimeters. The latest status of the detector as well as problems and solutions addressed during the last years will be presented. Aspects of operation of a large detector over a long time period will be summarized and selected topics showing the performance of the detector will be shown.

  10. Thermal decomposition of lanthanum(III) butyrate in argon atmosphere

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Yue, Zhao; Xiao, Tang;

    2013-01-01

    The thermal decomposition of La(C3H7CO2)3·xH2O (x≈0.82) was studied in argon during heating at 5K/min. After the loss of bound H2O, the anhydrous butyrate presents at 135°C a phase transition to a mesophase, which turns to an isotropic liquid at 180°C. The decomposition of the anhydrous butyrate ...

  11. Argon laser photocoagulation of cyclodialysis clefts after cataract surgery

    International Nuclear Information System (INIS)

    Three patients with cyclodialysis clefts, hypotony and hypotonic retinopathy subsequent to cataract surgery were treated with argon laser photocoagulation. The hypotony was reversed in each patient and their visual acuity was normalized. Laser photocoagulation is a noninvasive treatment that can be repeated easily and safely. The complications of the treatment are minor. A hypertensive episode commonly occurs in the early postoperative period. (au) 8 refs

  12. Spectroscopy of Argon Excited in an Electron Beam Ion Trap

    Energy Technology Data Exchange (ETDEWEB)

    Trabert, E

    2005-04-18

    Argon is one of the gases best investigated and most widely used in plasma discharge devices for a multitude of applications that range from wavelength reference standards to controlled fusion experiments. Reviewing atomic physics and spectroscopic problems in various ionization stages of Ar, the past use and future options of employing an electron beam ion trap (EBIT) for better and more complete Ar data in the x-ray, EUV and visible spectral ranges are discussed.

  13. Spectroscopic Investigations of Air Entrainment into an Argon Plasma Jet

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Něnička, Václav; Šlechta, Jiří; Krejčí, Luděk; Dolínek, Vladimír; Sopuch, Pavel

    Vol. 3. Orléans : GREMI, CNRS/University of Orléans, 2001 - (Bouchoule, A.; Pouvesle, J.), s. 1107-1110 [INTERNATIONAL SYMPOSIUM ON PLASMA CHEMISTRY /15./. Orléans (FR), 09.07.2001-13.07.2001] R&D Projects: GA AV ČR IAA1057001; GA ČR GA202/99/0389 Keywords : nitrogen molecular bands * dependence of nitrogen radiations on the argon flow rate Subject RIV: BL - Plasma and Gas Discharge Physics

  14. Total (complete) and ionization cross-sections of argon and krypton by positron impact from 15 to 2000 eV – Theoretical investigations

    Indian Academy of Sciences (India)

    Harshit N Kothari; K N Joshipura

    2012-09-01

    Considering interactions and scattering of positrons with argon (Ar) and krypton (Kr) atoms, we have calculated total cross-sections $(Q_{T} = Q_{el} + Q_{inel})$ using complex spherical potentials for these systems. In positron–atom scattering it is difficult to bifurcate the ionization and cumulative excitation contained in the total inelastic cross-section. An approximate method called CSP-ic (complex scattering potential-ionization contribution) similar to electron–atom scattering has been applied to bifurcate ionization and cumulative excitation cross-sections at energies from the threshold to 2000 eV. Adequate comparisons of the present results are made, with available data.

  15. Tests of PMT Signal Read-out in a Liquid Argon Dark Matter Detector with a New Fast Waveform Digitizer

    CERN Document Server

    Acciarri, R; Cavanna, F; Cortopassi, A; D'Incecco, M; Mini, G; Pietropaolo, F; Romboli, A; Segreto, E; Szelc, A M

    2012-01-01

    The CAEN V1751 is a new generation of Waveform Digitizer recently introduced by CAEN SpA. Its features, i.e. 8 Channels per board, 10 bit, 1 GS/s Flash ADC Waveform Digitizer (or 4 channel, 10 bit, 2 GS/s Flash ADC Waveform Digitizer - Dual Edge Sampling mode) with threshold and Auto-Trigger capabilities provides a very good (relatively low-cost) solution for data acquisition in Dark Matter searches using PMTs to detect scintillation light in liquid argon. The board was tested by operating it in real experimental conditions and by comparing it with a state of the art digital oscilloscope. We find that the sampling at 1 or 2 GS/s is appropriate for the reconstruction of the fast component of the scintillation light in argon (characteristic time of about 6-7 ns) and the extended dynamic range, after a small customization, allows for the detection of signals in the range of energy needed. The bandwidth is found to be adequate and the intrinsic noise is very low.

  16. Copper diffusion in In2S3 and charge separation at In2S3/CuSCN and TiO2/In2S3 interfaces

    International Nuclear Information System (INIS)

    The concept of inorganic nanostructured solar cells consists of a very thin absorber layer sandwiched between highly structured electron and hole conductors. When a TiO2/In2S3/CuSCN nanocomposite heterostructure is illuminated with light, photo-generated electrons in In2S3 can be injected into the conduction band of TiO2 and holes into the valence band of CuSCN. Charge transfer at the interfaces is limited by the deposition parameters, band alignment and diffusion of Cu from CuSCN into In2S3, which was the focus of this work. TiO2 nanoparticles were screen printed onto SnO2:F (FTO)-coated glass substrates to give a layer of nanoporous (np) TiO2. In2S3 layers were deposited by thermal evaporation or ion layer gas reaction (ILGAR) methods producing Cl-free (In(acac)3 precursor) and Cl-containing (InCl3 precursor) layers. A spray-spin method was developed for deposition of CuSCN onto In2S3. Diffusion of Cu into In2S3 layers was investigated by Rutherford backscattering spectrometry (RBS) while charge transport mechanisms were studied with surface photovoltage (SPV) technique in the fixed capacitor configuration. The activation energy (Ea) for Cu diffusion in thermally evaporated and Cl-free ILGAR In2S3 layers was 0.30 and 0.24 eV, respectively but increased to between 0.72 and 0.78 eV for Cl-containing In2S3 with residual Cl concentrations of 7.8 - 13.8 at.%. The diffusion prefactor (D0) was six orders of magnitude higher for Cl-containing compared to Cl-free layers. The relationship between Ea and D0 was described by the Meyer-Neldel rule with a Meyer-Neldel energy of 40 meV. The presence of Cl has no significant influence on the structural properties of In2S3 but resulted in a modified diffusion mechanism for Cu diffusion. The photovoltage of In2S3/CuSCN samples decreased after annealing for longer than 2 min at 200 C. A defect band was formed near the interface where holes accumulated and electrons tunneled through traps to recombine. The minimum distribution of

  17. Two dimensional condensation of argon adsorbed on lamellar halides

    International Nuclear Information System (INIS)

    Lamellar halides such as NiCl2, FeCl2, NiBr2, MnBr2, MgBr2, CdBr2, CoI2, FeI2, MnI2, CaI2 and PbI2 were sublimed in a rapid stream of dry nitrogen. The adsorption of argon on such materials shows stepped isotherms which reveal two dimensional condensations. From sets of isotherms the Helmholtz free energy, the internal energy and the entropy of the successive layers are determined. From the entropy of the first layer the role of the potential relief of the adsorbent surface on the structure of the adsorbed layer may be determined while the Helmholtz free energy reveals how the ionic character of the adsorbent governs the attractive force of adsorption. The study of the second third and fourth layers shows that their growth follows quite a different behaviour depending on whether the Van der Waals diameter of argon is greater or smaller than the distance between adjacent anions on the crystal surface. A proposition is made to account for the difference in the critical temperatures of the first and second dense layers in terms of the vibrationnal state of their respective substrate. The occurence for the maximum critical temperature observed of corresponding to a triangular layer 3% more expanded than the (111) plane of solid argon is discussed

  18. A liquid argon scintillation veto for the Gerda experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wegmann, Anne [Max-Planck Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay of {sup 76}Ge. Bare germanium detectors are operated in a cryostat with 65 m{sup 3} of liquid argon (LAr). To reach the aspired background index of ≤10{sup -3} cts/(keV.kg.yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). A light instrumentation of LAr installed in the LArGe test facility has demonstrated that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. Based on these results, Gerda pursues several options for the light instrumentation, which have to be compatible with the stringent radiopurity requirements of the experiment and should provide a significant suppression of the background in the region of interest around Q{sub ββ} at 2039 keV. This talk gives an account of the competing design options under investigation in the Gerda collaboration. The design options using photomultiplier tubes (PMT) and silicon photomultipliers (SiPM) are discussed, together with their expected performance from Monte Carlo simulations. In addition, the progress of development is reported, along with the design criteria for light instrumentation in Gerda.

  19. A liquid argon scintillation veto for the Gerda experiment

    International Nuclear Information System (INIS)

    Gerda is an experiment to search for the neutrinoless double beta decay of 76Ge. Bare germanium detectors are operated in a cryostat with 65 m3 of liquid argon (LAr). To reach the aspired background index of ≤10-3 cts/(keV.kg.yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). A light instrumentation of LAr installed in the LArGe test facility has demonstrated that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. Based on these results, Gerda pursues several options for the light instrumentation, which have to be compatible with the stringent radiopurity requirements of the experiment and should provide a significant suppression of the background in the region of interest around Qββ at 2039 keV. This talk gives an account of the competing design options under investigation in the Gerda collaboration. The design options using photomultiplier tubes (PMT) and silicon photomultipliers (SiPM) are discussed, together with their expected performance from Monte Carlo simulations. In addition, the progress of development is reported, along with the design criteria for light instrumentation in Gerda.

  20. Demonstration and comparison of photomultiplier tubes at liquid Argon temperature

    International Nuclear Information System (INIS)

    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photomultiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics K.K. Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R and D program of the WArP Collaboration. During these tests the Hamamatsu PMTs showed excellent performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments.

  1. Electron density measurements of high pressure argon surface wave plasmas

    International Nuclear Information System (INIS)

    The electron density of an argon standing surface wave plasma has been measured from Stark broadening of the hydrogen H/sub beta/ (4861A) line. The experimental setup, consisting of two coaxial cavities, was similar to that reported by Rogers and Asmussen. The plasma was generated by 45 watts per cavity of CW, 2.54 GHz microwave power in a 6 mm O.D. (4 mm I.D.) quartz tube. Experimental argon gas pressure varied from 50 torr to over one atmosphere. Small amounts (1-5%) of hydrogen added to the argon plasma were found to shorten the plasma by as much as 80%. Thus, the Stark measurements were made using trace amounts of hydrogen. The line width of H/sub beta/ was measured with a 1 meter Czerny-Turner grating spectrometer. The Stark broadening measurements revealed that the electron density is between 1013 and 1014 electrons/cc for a pressure range of 50 to 1000 torr. These measurements agree very well with the electron density determined from the wavelength of standing surface waves. The volume of the plasma was also measured photographically and average plasma power densities (absorbed power in the plasma divided by the plasma volume) was calculated

  2. MARLEY: Model of Argon Reaction Low Energy Yields

    Science.gov (United States)

    Gardiner, Steven; Bilton, Kyle; Grant, Christopher; Pantic, Emilija; Svoboda, Robert

    2015-10-01

    Core-collapse supernovae are sources of tremendous numbers of neutrinos with energies of up to about 50 MeV. In recent years, there has been growing interest in building detectors that are sensitive to supernova neutrinos. Such detectors can provide information about the initial stages of stellar collapse, early warning signals for light emission from supernovae, and opportunities to study neutrino oscillation physics over astronomical distances. In an effort to enable supernova neutrino detection in next-generation experiments like DUNE, the CAPTAIN collaboration plans to make the first direct measurement of cross sections for neutrino interactions on argon in the supernova energy regime. To help predict neutrino event signatures in the CAPTAIN liquid argon time projection chamber (LArTPC), we have developed a first-of-its-kind Monte Carlo event generator called MARLEY (Model of Argon Reaction Low Energy Yields). This generator attempts to model the complicated nuclear structure dependence of low-energy neutrino-nucleus reactions in sufficient detail for use in LArTPC simulations. In this talk we present some preliminary results calculated using MARLEY and discuss how the current version of the generator may be improved and expanded.

  3. Isotopic fractionation of argon during stepwise release from shungite

    Science.gov (United States)

    Rison, W.

    1980-05-01

    It is noted that in previous attempts to determine the Ar-40/Ar-36 ratio in the ancient atmosphere, the only direct measurement yielding a value below the atmospheric value of today is for argon released at low temperatures from a pre-Cambrian shungite. In the present work, a low value for Ar-40/Ar-36 in gas released from a type I shungite at low temperatures is confirmed. Attention is given to a study of the accompanying Ar-38/Ar-36 ratios and the enhanced ratio of Ar-40/Ar-36 for the fractions released at high temperatures which shows that the effect observed is a result of the stepwise heating and the argon diffusion mobilized thereby. It is suggested that the low Ar-40/Ar-36 obtained in the past is from the same source rather than reflecting the isotropic composition of the pre-Cambrian atmosphere, and that the type I shungite may exhibit simple volume diffusion over macroscopic dimensions as glasses do. It is concluded that if this is so, the diffusion parameters obtained from the data would imply rapid exchange with the atmosphere for any argon initially trapped in the veins of the material.

  4. ARAPUCA a new device for liquid argon scintillation light detection

    International Nuclear Information System (INIS)

    We present a totally innovative device for the detection of liquid argon scintillation light, that has been named ARAPUCA (Argon R and D Advanced Program at UniCAmp). It is composed of a passive light collector and of active devices. The latters are standard SiPMs that operate at liquid argon temperature, while the passive collector is based on a new technology, never explored in this field before. It is a photon trap, that allows to collect light with extremely high efficiency. The total detection efficiency of the device can be tuned by modifying the ratio between the area of the active devices (SiPM) and the area of the optical window. For example, it will allow to reach a detection efficiency at the level of 1% on a surface of 50 × 50 cm2 with an active coverage of 2 × 2 cm2 (two/three large area SiPM). It is also a cheap device, since the major part of its cost is represented by the active devices. For these reason this appears to be the ideal device for scintillation light detection in large Time Projection Chambers. With appropriate modifications it can be used also in next generation Dark Matter detectors

  5. Demonstration and comparison of photomultiplier tubes at liquid Argon temperature

    Science.gov (United States)

    Acciarri, R.; Antonello, M.; Boffelli, F.; Cambiaghi, M.; Canci, N.; Cavanna, F.; Cocco, A. G.; Deniskina, N.; Di Pompeo, F.; Fiorillo, G.; Galbiati, C.; Grandi, L.; Kryczynski, P.; Meng, G.; Montanari, C.; Palamara, O.; Pandola, L.; Perfetto, F.; Piano Mortari, G. B.; Pietropaolo, F.; Raselli, G. L.; Rubbia, C.; Segreto, E.; Szelc, A. M.; Triossi, A.; Ventura, S.; Vignoli, C.; Zani, A.

    2012-01-01

    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photomultiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics K.K. Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these tests the Hamamatsu PMTs showed excellent performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments.

  6. Metal clusters on supported argon layers; Metallcluster auf dielektrischen Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Bernhard

    2011-10-21

    The deposition of small sodium clusters on supported Ar(001)-surfaces is simulated. Theoretical description is achieved by a hierarchical model consisting of time-dependent DFT and molecular dynamics. The valence electrons of the sodium atoms are considered by Kohn-Sham-Scheme with self interaction correction. The interaction of argon atoms and sodium ions is described by atom-atom potentials whereas the coupling to the QM electrons is done by local pseudo-potentials. A decisive part of the model is the dynamical polarizability of the rare-gas atoms. The optional metal support is considered by the method of image charges. The influence of the forces caused by image charges and the influence of the number of argon monolayers on structure, optical response and deposition dynamics of Na{sub 6} and Na{sub 8} is investigated. There is very little influence on cluster structure and only a small shift of the cluster perpendicular to the surface. Concerning optical response the position of the Mie plasmon peak stays robust whereas the details of spectral fragmentation react very sensitively to changes. The forces caused by image charges of the metal support play only a little role with the dynamics of deposition while the thickness of the argon surface strongly influences the dissipation. (orig.)

  7. Status of the ATLAS Liquid Argon Calorimeter and its Performance

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region |eta|<3.2, as well as for hadronic calorimetry from |eta|=1.4 to |eta|=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes ...

  8. ARAPUCA a new device for liquid argon scintillation light detection

    Science.gov (United States)

    Machado, A. A.; Segreto, E.

    2016-02-01

    We present a totally innovative device for the detection of liquid argon scintillation light, that has been named ARAPUCA (Argon R&D Advanced Program at UniCAmp). It is composed of a passive light collector and of active devices. The latters are standard SiPMs that operate at liquid argon temperature, while the passive collector is based on a new technology, never explored in this field before. It is a photon trap, that allows to collect light with extremely high efficiency. The total detection efficiency of the device can be tuned by modifying the ratio between the area of the active devices (SiPM) and the area of the optical window. For example, it will allow to reach a detection efficiency at the level of 1% on a surface of 50 × 50 cm2 with an active coverage of 2 × 2 cm2 (two/three large area SiPM). It is also a cheap device, since the major part of its cost is represented by the active devices. For these reason this appears to be the ideal device for scintillation light detection in large Time Projection Chambers. With appropriate modifications it can be used also in next generation Dark Matter detectors.

  9. Assessment of flow induced vibration limits in preliminary I2S-LWR fuel designs

    International Nuclear Information System (INIS)

    The Integral Inherently Safe Light Water Reactor (I2S-LWR) is a novel PWR concept being developed by a multi-institutional team, led by Georgia Tech, under the auspices of the Department of Energy's Nuclear Energy University Programs Integrated Research Projects (DOE NEUP IRP). The I2S-LWR aims at delivering an electric power of ∼1 GW while, simultaneously, achieving an overall level of safety that is enhanced with respect to GW-class Generation III+ LWRs, including considerations for “accident tolerant fuels”. The adoption of inherent safety features and unconventional materials for the main core components are key design features intended to permit the I2S-LWR to achieve the design objectives. This work summarizes a preliminary approach to identify Flow Induced Vibration (FIV) limits for new fuel designs proposed for the I2S-LWR. While not a substitute for a detailed, system-level Computational Fluid Dynamics (CFD) analysis, the approach presented here provides a methodology assembled from “best practices” documented in the literature to establish design thresholds and enable designs that resist FIV damage. This is an essential task to evaluate early in the design process, simply because the best designs considering other perspectives may inherently fail due to FIV related causes. Because different fuels behave differently, we identify the essential design considerations and focus on the main fuel candidates for the I2S-LWR, i.e. UO2 and U3Si2, augmenting the fuel material selection process and the fuel rod design in general. (author)

  10. Near-threshold behavior of positronium-antiproton scattering

    Science.gov (United States)

    Fabrikant, I. I.; Bray, A. W.; Kadyrov, A. S.; Bray, I.

    2016-07-01

    Using the convergent close-coupling theory we study the threshold behavior of cross sections for positronium (Ps) of energy E scattering on antiprotons. In the case of Ps (1 s ) elastic scattering, simple power laws are observed for all partial waves studied. The partial-wave summed cross section is nearly constant, and dominates the antihydrogen formation cross section at all considered energies, even though the latter is exothermic and behaves as 1 /E1 /2 . For Ps (2 s ), oscillations spanning orders of magnitude on top of the 1 /E behavior are found in the elastic and quasielastic cross sections. The antihydrogen formation is influenced by dipole-supported resonances below the threshold of inelastic processes. Resonance energies form a geometric progression relative to the threshold. The exothermic antihydrogen formation cross sections behave as 1 /E at low energies, but are oscillation free. We demonstrate that all these rich features are reproduced by the threshold theory developed by Gailitis [J. Phys. B: At. Mol. Phys. 15, 3423 (1982), 10.1088/0022-3700/15/19/012].

  11. The issue of threshold states

    International Nuclear Information System (INIS)

    The states which have not joined the Non-proliferation Treaty nor have undertaken any other internationally binding commitment not to develop or otherwise acquire nuclear weapons are considered a threshold states. Their nuclear status is rendered opaque as a conscious policy. Nuclear threshold status remains a key disarmament issue. For those few states, as India, Pakistan, Israel, who have put themselves in this position, the security returns have been transitory and largely illusory. The cost to them, and to the international community committed to the norm of non-proliferation, has been huge. The decisions which could lead to recovery from the situation in which they find themselves are essentially at their own hands. Whatever assistance the rest of international community is able to extend, it will need to be accompanied by a vital political signal

  12. Hadronic resonances enhanced by thresholds

    CERN Document Server

    Caramés, T F

    2016-01-01

    We present a neat example of a meson--baryon system where the vicinity of two different thresholds enhances the binding of a hadronic resonance, a pentaquark. As a consequence the pattern of states may change when moving among different flavor sectors, what poses a warning on naive extrapolations to heavy flavor sectors based on systematic expansions. For this purpose we simultaneously analyze the $N\\bar D$ and $NB$ two-hadron systems looking for possible bound states or resonances. When a resonance is controlled by a coupled-channel effect, going to a different flavor sector may enhance or diminish the binding. This effect may, for example, generate significant differences between the charmonium and bottomonium spectra above open-flavor thresholds or pentaquark states in the open-charm and open-bottom sectors.

  13. Pion production reaction near threshold

    International Nuclear Information System (INIS)

    The differential cross section of the 40Ca(p,π+)41Ca reaction has been measured. The energy dependence of pion production near threshold has been studied at constant transferred momentum. The cross-section decreases by a factor 7, for proton energies varying from 154 to 149MeV (E(π) varies from 17.4 to 12.4MeV). The results are analyzed in the framework of the one nucleon mechanism

  14. Roots at the Percolation Threshold

    Science.gov (United States)

    Kroener, E.; Ahmed, M. A.; Kaestner, A.; Vontobel, P.; Zarebanadkouki, M.; Carminati, A.

    2014-12-01

    Much of the carbon assimilated by plants during photosynthesis is lost to the soil via rhizodepositions. One component of rhizopdeposition is mucilage, a hydrogel that dramatically alters the soil physical properties. Mucilage was assumed to explain unexpectedly low rhizosphere rewetting rates during irrigation (Carminati et al. 2010) and temporarily water repellency in the rhizosphere after severe drying (Moradi et al. 2012).Here, we present an experimental and theoretical study for the rewetting behaviour of a soil mixed with mucilage, which was used as an analogue of the rhizosphere. Our samples were made of two layers of untreated soils separated by a thin layer (ca. 1 mm) of soil treated with mucilage. We prepared soil columns of varying particle size, mucilage concentration and height of the middle layer above the water table. The dry soil columns were re-wetted by capillary rise from the bottom.The rewetting of the middle layer showed a distinct dual behavior. For mucilage concentrations lower than a certain threshold, water could cross the thin layer almost immediately after rewetting of bulk soil. At slightly higher mucilage concentrations, the thin layer was almost impermeable. The mucilage concentration at the threshold strongly depended on particle size: the smaller the particle size the larger the soil specific surface and the more mucilage was needed to cover the entire particle surface and to induce water repellency.We applied a classic pore network model to simulate the experimental observations. In the model a certain fraction of nodes were randomly disconnected to reproduce the effect of mucilage in temporarily blocking the flow. The percolation model could qualitatively reproduce well the threshold characteristics of the experiments. Our experiments, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively

  15. Root finding with threshold circuits

    Czech Academy of Sciences Publication Activity Database

    Jeřábek, Emil

    2012-01-01

    Roč. 462, Nov 30 (2012), s. 59-69. ISSN 0304-3975 R&D Projects: GA AV ČR IAA100190902; GA MŠk(CZ) 1M0545 Institutional support: RVO:67985840 Keywords : root finding * threshold circuit * power series Subject RIV: BA - General Mathematics Impact factor: 0.489, year: 2012 http://www.sciencedirect.com/science/article/pii/S0304397512008006#

  16. Kauffman networks with threshold functions

    OpenAIRE

    Greil, Florian; Drossel, Barbara

    2007-01-01

    We investigate Threshold Random Boolean Networks with $K = 2$ inputs per node, which are equivalent to Kauffman networks, with only part of the canalyzing functions as update functions. According to the simplest consideration these networks should be critical but it turns out that they show a rich variety of behaviors, including periodic and chaotic oscillations. The results are supported by analytical calculations and computer simulations.

  17. Lorentz violating kinematics: threshold theorems

    Science.gov (United States)

    Baccetti, Valentina; Tate, Kyle; Visser, Matt

    2012-03-01

    Recent tentative experimental indications, and the subsequent theoretical speculations, regarding possible violations of Lorentz invariance have attracted a vast amount of attention. An important technical issue that considerably complicates detailed calculations in any such scenario, is that once one violates Lorentz invariance the analysis of thresholds in both scattering and decay processes becomes extremely subtle, with many new and naively unexpected effects. In the current article we develop several extremely general threshold theorems that depend only on the existence of some energy momentum relation E(p), eschewing even assumptions of isotropy or monotonicity. We shall argue that there are physically interesting situations where such a level of generality is called for, and that existing (partial) results in the literature make unnecessary technical assumptions. Even in this most general of settings, we show that at threshold all final state particles move with the same 3-velocity, while initial state particles must have 3-velocities parallel/anti-parallel to the final state particles. In contrast the various 3-momenta can behave in a complicatedand counter-intuitive manner.

  18. Directional Compton profiles and reciprocal form factors for the isoelectronic hydrides PH3, H2S and HCl

    International Nuclear Information System (INIS)

    Isotropic and directional Compton profiles (J(q)) and reciprocal form factors (B(s)), as well as momentum densities and various momentum expectation values, were evaluated for the 18-electron hydrides PH3, H2S and HCl in their ground states, as well as for the argon atom. Density functional theory, Moeller-Plesset and configuration interaction wavefunctions were employed for this purpose. Components of the J(q) and B(s) were obtained for several directions relevant to the molecular structure of these molecules. Results were obtained using a configuration interaction wavefunction with singles and doubles, and analysed by means of difference curves with the corresponding isotropic and self-consistent field results

  19. Endogenous mitigation of H2S inside of the landfills.

    Science.gov (United States)

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang

    2016-02-01

    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes. PMID:26423286

  20. Main: O2F2BE2S1 [PLACE

    Lifescience Database Archive (English)

    Full Text Available O2F2BE2S1 S000163 17-May-1998 (last modified) kehi opaque-2 recognition site F2 in Bertholle...coxin, the maize b-32 genes and the AP-1 pseudopalindrome; O2; opaque-2; be2S1; seed; Brazil nut tree (Bertholletia excelsa) GCCACCTCAT ...

  1. Threshold criteria for undervoltage breakdown

    Science.gov (United States)

    Cooley, James E.; Choueiri, Edgar Y.

    2008-05-01

    The conditions under which an externally supplied pulse of electrons will induce breakdown in an undervoltaged, low-gain discharge gap are experimentally and theoretically explored. The minimum number of injected electrons required to achieve breakdown in a parallel-plate gap is measured in argon at pd values of 3-10 Torr m using ultraviolet laser pulses to photoelectrically release electrons from the cathode. This value was found to scale inversely with voltage at constant pd and with pressure within the parameter range explored. A dimensionless theoretical description of the phenomenon is formulated and numerically solved. It is found that a significant fraction of the charge on the plates must be injected for breakdown to be achieved at low gain. It is also found that fewer electrons are required as the gain due to electron-impact ionization (α process) is increased, or as the sensitivity of the α process to electric field is enhanced by increasing the gas pressure. A predicted insensitivity to ion mobility implies that the breakdown is determined during the first electron avalanche when space-charge distortion is greatest.

  2. Chemical absorption of H2S for biogas purification

    Directory of Open Access Journals (Sweden)

    Horikawa M.S.

    2004-01-01

    Full Text Available This work presents an experimental study of purification of a biogas by removal of its hydrogen sulphide (H2S content. The H2S was removed by means of chemical absorption in an iron-chelated solution catalyzed by Fe/EDTA, which converts H2S into elemental sulphur (S. Preparation of the catalyst solution and the results of biogas component absorption in the catalyst solution (0.2 mol/L are presented. These results are compared with those for physical absorption into pure water under similar conditions. Experimental results demonstrate that, under the same experimental conditions, a higher percentage of H2S can be removed in the catalytic solution than in water. In a continuous counter current using adequate flow-rate phases contact at room temperature and low gas pressure, the results demonstrate that is possible to totally remove the H2S from the biogas with the prepared catalytic solution.

  3. Preparation and characterization of Bi2S3 compound semiconductor

    Indian Academy of Sciences (India)

    M P Deshpande; Pallavi N Sakariya; Sandip V Bhatt; Nikita H Patel; Kamakshi Patel; S H Chaki

    2015-02-01

    Bi2S3 single crystals were grown by the chemical vapour transport technique using ammonium chloride (NH4Cl) as a transporting agent. The stoichiometry of Bi2S3 single crystal was confirmed by energy-dispersive analysis of X-rays (EDAX). The powder X-ray diffraction (XRD) pattern showed that Bi2S3 crystals belong to the orthorhombic phase with calculated lattice constant = 11.14 Å, = 11.30 Å and = 3.96 Å. Scanning electron microscopy (SEM) pictures indicate the presence of layer lines on the surface of crystals thereby proving that these crystals are grown by layer by layer mechanism.We studied the transport properties viz. Hall effect, resistivity, thermoelectric power and thermal conductivity on Bi2S3 pellets. Raman spectroscopy and thermal gravimetric analysis (TGA) were carried out on Bi2S3 single crystal for studying their optical and thermal behaviours.

  4. Characterization of a Spherical Proportional Counter in argon-based mixtures

    CERN Document Server

    Iguaz, F J; Castel, J F; Irastorza, I G

    2014-01-01

    The Spherical Proportional Counter is a novel type of radiation detector, with a low energy threshold (typically below 100 eV) and good energy resolution. This detector is being developed by the network NEWS, which includes several applications. We can name between many others Dark Matter searches, low level radon and neutron counting or low energy neutrino detection from supernovas or nuclear reactors via neutrino-nucleus elastic scattering. In this context, this works will present the characterization of a spherical detector of 1 meter diameter using two argon-based mixtures (with methane and isobutane) and for gas pressures between 50 and 1250 mbar. In each case, the energy resolution shows its best value in a wide range of gains, limited by the ballistic effect at low gains and by ion-backflow at high gains. Moreover, the best energy resolution shows a degradation with pressure. These effects will be discussed in terms of gas avalanche properties. Finally, the effect of an electrical field corrector in th...

  5. Study of effective secondary electron emission in dc breakdown of argon with various metal electrodes

    Science.gov (United States)

    Adams, Steven; Huang, Xuhai; Howe, Kenneth; Demidov, Vladimir; Tolson, Boyd

    2015-11-01

    An attractive aspect of Townsend's expression for the ionization coefficient, α = A exp[-B/(E/p)], is that the exponential form allows a derivation of a neat analytical expression for the Paschen curve. Notwithstanding the elegance and fame of this expression, the theoretical Paschen curve does not always provide an accurate prediction for all E/p ranges and all gases. Deviations can be attributed to a variety of factors, including non-exponential behavior of α at higher E/p, variations of γ with E/p and geometric effects. An experimental study of the effective secondary electron emission in Townsend breakdown has been conducted in Ar using a variety of electrodes. The threshold breakdown voltage was measured when the current became self-sustained, which corresponded to an effective secondary emission coefficient of γ = 1/[exp((α/p)pd)-1]. This allowed a fundamental relationship to be derived between γ and E/p from an experimental Paschen curve. In this work, argon gas was studied with copper, aluminum and platinum electrodes. The trends of the effective secondary electron emission are analyzed in different E/p ranges for various modes of secondary electron emission, including Ar ion impact, photon absorption, Ar metastable collisions and heavy-particle-ionization.

  6. Voting on Thresholds for Public Goods

    DEFF Research Database (Denmark)

    Rauchdobler, Julian; Sausgruber, Rupert; Tyran, Jean-Robert

    Introducing a threshold in the sense of a minimal project size transforms a public goods game with an inefficient equilibrium into a coordination game with a set of Pareto-superior equilibria. Thresholds may therefore improve efficiency in the voluntary provision of public goods. In our one......-shot experiment, we find that coordination often fails and exogenously imposed thresholds are ineffective at best and often counter-productive. This holds under a range of threshold levels and refund rates. We test if thresholds perform better if they are endogenously chosen, i.e. if a threshold is approved in a...

  7. Roles of argon seeding in energy confinement and pedestal structure in JT-60U

    International Nuclear Information System (INIS)

    The mechanism of improving energy confinement with argon seeding at high density has been investigated in JT-60U. Better confinement is sustained at high density by argon seeding accompanied by higher core and pedestal temperatures. The electron density profiles become flatter with increasing density in conventional H-mode plasmas, whereas peaked density profiles are maintained with argon seeding. Density peaking and dilution effects lower the pedestal density at a given averaged density. The pedestal density in the argon seeded plasmas, which is lower than that in plasmas with deuterium puff, enables the pedestal temperature to be higher, whereas the increase in the pedestal pressure with argon seeding is small. High pedestal temperature is a boundary condition for high core temperature through profile stiffness, which leads to better confinement with argon seeding. The density peaking is a key factor of sustaining better confinement in argon seeded H-mode plasmas. The radiative loss power density is predominantly enhanced in the edge region by argon puff. The role of argon seeding in the pedestal characteristics has also been examined. The pedestal width becomes larger continuously with edge collisionality, but is nearly independent of the presence of argon seeding. (paper)

  8. Argon-41 production and evolution at the Oregon State University TRIGA Reactor (OSTR)

    International Nuclear Information System (INIS)

    In this study, argon-41 concentrations were measured at various locations within the reactor facility to assess the accuracy of models used to predict argon-41 evolution from the reactor tank, and to determine the relationship between argon gas evolution from the tank and subsequent argon-41 concentrations throughout the reactor room. In particular, argon-41 was measured directly above the reactor tank with the reactor tank lids closed, at other accessible locations on the reactor top with the tank lids both closed and open, and at several locations on the first floor of the reactor room. These measured concentrations were then compared to values calculated using a modified argon-41 production and evolution model for TRIGA reactor tanks and ventilation values applicable to the OSTR facility. The modified model was based in part on earlier TRIGA models for argon-41 production and release, but added features which improved the agreement between predicted and measured values. The approximate dose equivalent rate due to the presence of argon-41 in reactor room air was calculated for several different locations inside the OSTR facility. These dose rates were determined using the argon-41 concentration measured at each specific location, and were subsequently converted to a predicted quarterly dose equivalent for each location based on the reactor's operating history. The predicted quarterly dose equivalent values were then compared to quarterly doses measured by film badges deployed as dose-integrating area radiation monitors at the locations of interest. The results indicate that the modified production and evolution model is able to predict argon-41 concentrations to within a factor of ten when compared to the measured data. Quarterly dose equivalents calculated from the measured argon-41 concentrations and the reactor's operating history seemed consistent with results obtained from the integrating area radiation monitors. Given the argon-41 concentrations measured

  9. Influences of the propyl group on the van der Waals structures of 4-propylaniline complexes with one and two argon atoms studied by electronic and cationic spectroscopy

    International Nuclear Information System (INIS)

    4-propylaniline complexes with one and two argon atoms formed in the molecular beam were studied in the first excited electronic state, S1, using resonance enhanced two-photon ionization spectroscopy and in the cation ground state, D0, using mass analyzed threshold ionization spectroscopy. The combination of electronic and cationic spectra of the clusters allows two conformations to be identified in both aniline-Ar1 and aniline-Ar2, which are assigned to either the gauche configuration or anti-configuration of 4-propylaniline. The gauche isomer exhibits complex bands shifted 29 cm−1 and 89 cm−1 from the S1 origin bands and 83 cm−1 and 148 cm−1 from the ionization potential assigned to the Ar1 and Ar2 complexes, respectively. For the anti-rotamer, the corresponding shifts actually become nearly additive, 53 cm−1 and 109 cm−1 for the S1 origin bands, and 61 cm−1 and 125 cm−1 for the ionization potentials. Ab initio calculations provide insights into the influences of the propyl and amino groups on the positions of the argon atoms within the clusters. In addition, the binding energy of one argon with the gauche isomer of 4-propylaniline has been measured to be 550 ± 5 cm−1 in the D0 state, 496 ± 5 cm−1 in the S1 state, and 467 ± 5 cm−1 in the neutral ground state, S0

  10. Variable Threshold MOSFET Approach (Through Dynamic Threshold MOSFET) For Universal Logic Gates

    OpenAIRE

    Ragini, K.; DR.M. SATYAM; Dr. B.C. Jinaga

    2010-01-01

    In this article, we proposed a Variable threshold MOSFET(VTMOS)approach which is realized from Dynamic Threshold MOSFET(DTMOS), suitable for sub-threshold digital circuit operation. Basically the principle of sub- threshold logics is operating MOSFET in sub-threshold region and using the leakage current in that region for switching action, there by drastically decreasing power. To reduce the power consumption of sub-threshold circuits further, a novel body biasing technique termed VTMOS is in...

  11. Two-photon above-threshold ionization using extreme-ultraviolet harmonic emission from relativistic laser-plasma interaction

    International Nuclear Information System (INIS)

    We report on the observation of energy-resolved photoelectron (PE) spectra produced via two-extreme-ultraviolet-(XUV)-photon above-threshold ionization (ATI) of argon atoms. The XUV radiation consists of higher-order harmonics generated by the process of the relativistic oscillating mirror (ROM) in high-peak-power laser-pulse interaction with solid targets. The energetic XUV radiation is focused into an argon gas target at intensities high enough to induce two-photon ionization at yields that allow the recording of energy-resolved PE spectra. A clear two-XUV-photon ATI PE peak structure is observed in shot-to-shot measurements. This work is a first step towards a frequency-resolved optical gating-type characterization of attosecond pulse trains emanating from relativistic laser-plasma interactions and thus is important for XUV-pump-XUV-probe applications of these harmonics. (paper)

  12. SmS-Ga2S3 system

    International Nuclear Information System (INIS)

    The system SmS-Ga2S3 was studied by physico-chemical methods and diagrams of state drawn up. It was established that the compounds SmGa2S4 and SmGa4S7 were formed in the system. Orthorhombic (a=10.28, b=10.42, c=6.16 A, space group Bmbm) and monoclinic symetries are determined for SmGa2S4 and SmGa4S7 single crystals respectively

  13. PMI Thresholds for GDP Growth

    OpenAIRE

    Kilinc, Zubeyir; Yucel, Eray

    2016-01-01

    In this study, we try to uncover the information capacity of the Purchasing Managers Index (PMI) as a leading indicator of GDP growth of euro area. Our results show that PMI carries a significant amount of information that can be used to forecast the growth rate in the current as well as subsequent quarters. In particular, having verified that a PMI level around 50 works as the threshold distinguishing between positive and negative rates of GDP growth, we establish a sequence of other PMI thr...

  14. Oscillation threshold of woodwind instruments

    OpenAIRE

    Grand, Noël; Gilbert, Joël; Laloë, Franck

    1997-01-01

    this version has figures at the end, which was not the case of version 1 We give a theoretical study of the nature of the bifurcations occurring at the oscillation threshold of woodwind instruments, or of physical systems obeying similar non-linear equations of motion. We start from the simplest description of the acoustical behavior these instruments, a mathematical model containing two equations only, one of which is linear but includes delays, while the other is non-linear but has no de...

  15. Compositional threshold for Nuclear Waste Glass Durability

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Albert A. [Pacific Northwest National Lab., Richland, WA (United States); Farooqi, Rahmatullah [Pohang Univ. of Science and Technology, (Korea, Republic of); Hrma, Pavel R. [Pacific Northwest National Lab., Richland, WA (United States), Pohang Univ. of Science and Technology, (Korea, Republic of)

    2013-04-24

    Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.

  16. Threshold Concepts in Finance: Student Perspectives

    Science.gov (United States)

    Hoadley, Susan; Kyng, Tim; Tickle, Leonie; Wood, Leigh N.

    2015-01-01

    Finance threshold concepts are the essential conceptual knowledge that underpin well-developed financial capabilities and are central to the mastery of finance. In this paper we investigate threshold concepts in finance from the point of view of students, by establishing the extent to which students are aware of threshold concepts identified by…

  17. Upgrade readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  18. Upgraded readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Yamanaka, T; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics at every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34 cm^-2s^-1. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger ch...

  19. Upgraded readout and trigger electronics for the ATLAS liquid argon calorimeters for future LHC running

    CERN Document Server

    Ma, Hong; The ATLAS collaboration

    2014-01-01

    The ATLAS Liquid Argon (LAr) calorimeters produce almost 200K signals that must be digitized and processed by the front-end and back-end electronics for every triggered event. Additionally, the front-end electronics sums analog signals to provide coarse-grained energy sums to the first-level (L1) trigger system. The current design was optimized for the nominal LHC luminosity of 10^34/cm^2/s. However, in future higher-luminosity phases of LHC operation, the luminosity (and associated pile-up noise) will be 3-7 times higher. An improved spatial granularity of the trigger primitives is therefore proposed, in order to improve the trigger performance at high background rejection rates. For the first upgrade phase in 2018, new LAr Trigger Digitizer Boards are being designed to receive the higher granularity signals, digitize them on-detector and send them via fast optical links to a new digital processing system (DPS). This applies digital filtering and identifies significant energy depositions in each trigger chan...

  20. Spin-orbit relaxation of cesium 7 2D in mixtures of helium and argon

    Science.gov (United States)

    Davila, Ricardo C.; Perram, Glen P.

    2016-03-01

    Pulsed excitation on the two-photon Cs 6 2S1 /2→7 2D3 /2 ,5 /2 transition results in time-resolved fluorescence at 697 and 672 nm. The rates for fine-structure mixing between the 7 2D3 /2 ,5 /2 states have been measured for helium and argon rare-gas collision partners. The mixing rates are very fast, 1.26 ±0.05 ×10-9 cm3/atom s for He and 1.52 ±0.05 ×10-10 cm3/atom s for Ar, driven by the small energy splitting and large radial distribution for the valence electron. The quenching rates are considerably slower, 6.84 ±0.09 ×10-11 and 2.65 ±0.04 ×10-11 cm3/atom s for He and Ar, respectively. The current results are placed in context with similar rates for other alkali-metal-rare-gas collision pairs using adiabaticity arguments.

  1. Performance of the ATLAS Liquid Argon Calorimeters in LHC Run-1 and Run-2

    CERN Document Server

    Benitez, Jose; The ATLAS collaboration

    2016-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34}$ cm$^{-2}$ s${^-1}$. Liquid argon (LAr) sampling calorimeters are employed for all electromagnetic calorimetry in the pseudorapidity region $|\\eta|<3.2$, and for hadronic calorimetry in the region from $|\\eta|=1.5$ to $|\\eta|=4.9$. The calibration and performance of the LAr calorimetry system was established during beam tests, cosmic ray muon measurements and in particular the first three years of pp collision data-taking. During this period, referred to as Run-1, approximately 27~fb$^{-1}$ of data have been collected at the center-of-mass energies of 7 and 8~TeV. Following a period of detector consolidation during a long shutdown, Run-2 started in 2015 with approximately 3.9~fb$^{-1}$ of data at a center-of-mass energy of 13~TeV recorded in this year. Results on the LAr calorimeter operation, monitoring and data quality, as we...

  2. Comparative effects of argon green and krypton red laser photocoagulation for patients with diabetic exudative maculopathy.

    OpenAIRE

    Khairallah, M; Brahim, R; Allagui, M.; Chachia, N

    1996-01-01

    AIMS/BACKGROUND: Focal treatment of diabetic macular oedema is usually done using a haemoglobin absorbing wave-length, such as argon green laser. This study aimed to compare photocoagulation with argon green (514 nm) and krypton red (647 nm), which is poorly absorbed by haemoglobin, in the focal treatment of patients with diabetic exudative maculopathy. METHODS: A total of 151 eyes of 78 outpatients were assigned randomly to receive either argon green (n = 79) or krypton red (n = 72) laser tr...

  3. Emission properties of an atmospheric pressure argon plasma jet excited by barrier discharge

    International Nuclear Information System (INIS)

    An atmospheric-pressure argon plasma jet is initiated by the barrier discharge in a capillary, through which argon was flown. The spectral composition of radiation emitted by the jet in the atmosphere and its variation in the space are analyzed in detail. The jet radiation spectrum is shown to be predominantly formed by spectral transitions of argon and oxygen atoms, by electron-vibrational transitions of the first positive system of nitrogen molecules N2, and by transitions of hydroxyl radical OH

  4. The effects of argon in the bioenergetics of the hamster and the rat

    Science.gov (United States)

    Tempel, G. E.; Musacchia, X. J.

    1974-01-01

    Oxygen consumption was examined in hamsters and rats exposed to normoxic mixtures of argon at 1 atm. In fasted and nonfasted animals, no marked change in O2 utilization was detectable at 22 C. However, at 7 C a significant decrease in oxygen consumption was observed where the animals were exposed in argon. The data are interpreted in terms of the greater thermal conductivity of nitrogen. The study was prompted by conflicting reports on the metabolic effects of argon and helium.

  5. Argon Laser Photoablation for Treating Benign Pigmented Conjunctival Nevi

    Science.gov (United States)

    Alsharif, Abdulrahman M.; Al-Gehedan, Saeed M.; Alasbali, Tariq; Alkuraya, Hisham S.; Lotfy, Nancy M.; Khandekar, Rajiv

    2016-01-01

    Purpose: To evaluate the outcomes of argon laser photoablation of benign conjunctival pigmented nevi with different clinical presentations. Patients and Methods: This interventional case series was conducted between July 2014 and January 2015. Patients presenting with benign conjunctival nevi were included. Data were collected on the clinical features at presentation, argon laser photoablation, and follow-up at 8 and 24 weeks. Postoperative photography allowed recording of the success of each case and the overall success rate. Complete removal of conjunctival pigments was considered an absolute success. Partial pigmentation requiring repeat laser treatment was considered a qualified success. Results: There were 14 eyes (four right eyes and ten left eyes) with benign pigmented conjunctival nevi. There were three males and eight females in the study sample. The median age was 36 (25% percentile: 26 years). Three patients had bilateral lesions. The nevi were located temporally in nine eyes, nasally in three eyes, and on the inferior bulbar conjunctiva in two eyes. The mean horizontal and vertical diameters of nevi were 5 ± 2 mm and 4 ± 2.7 mm, respectively. The mean follow-up period was 5 months. Following laser treatment, no eyes had subconjunctival hemorrhage, infection, scarring, neovascularization, recurrence, or corneal damage. The absolute success rate of laser ablation was 79%. Three eyes with elevated nevi had one to three sessions of laser ablation resulting in a qualified success rate of 100%. Conclusions: Argon laser ablation was a safe and effective treatment for the treatment of selective benign pigmented conjunctival nevi in Arab patients. PMID:27555708

  6. Threshold enhancement of diphoton resonances

    CERN Document Server

    Bharucha, Aoife; Goudelis, Andreas

    2016-01-01

    The data collected by the LHC collaborations at an energy of 13 TeV indicates the presence of an excess in the diphoton spectrum that would correspond to a resonance of a 750 GeV mass. The apparently large production cross section is nevertheless very difficult to explain in minimal models. We consider the possibility that the resonance is a pseudoscalar boson $A$ with a two--photon decay mediated by a charged and uncolored fermion having a mass at the $\\frac12 M_A$ threshold and a very small decay width, $\\ll 1$ MeV; one can then generate a large enhancement of the $A\\gamma\\gamma$ amplitude which explains the excess without invoking a large multiplicity of particles propagating in the loop, large electric charges and/or very strong Yukawa couplings. The implications of such a threshold enhancement are discussed in two explicit scenarios: i) the Minimal Supersymmetric Standard Model in which the $A$ state is produced via the top quark mediated gluon fusion process and decays into photons predominantly through...

  7. Laser-induced nonsequential double ionization at and above the recollision-excitation-tunneling threshold

    International Nuclear Information System (INIS)

    We perform a rigorous, semianalytic study of the recollision excitation with subsequent tunneling ionization (RESI) mechanism in laser-induced nonsequential double ionization (NSDI), based on the strong-field approximation. We show that the shapes of the electron momentum distributions carry information about the bound state with which the first electron collides, the bound state to which the second electron is excited, and the type of electron-electron interaction. Furthermore, one may define a driving-field intensity threshold for the RESI physical mechanism. At the threshold, the kinetic energy of the first electron, upon return, is just sufficient to excite the second electron. We compute the distributions for helium and argon in the threshold and above-threshold intensity regimes. In the latter case, we relate our findings to existing experiments. The electron momentum distributions encountered are symmetric with respect to all quadrants of the plane spanned by the momentum components parallel to the laser-field polarization, instead of concentrating on only the second and fourth quadrants. The above-mentioned momentum constraints, together with the strong dependence of the distributions on the bound states involved, may be important for singling out the RESI mechanism in actual physical situations and using NSDI in ultrafast imaging.

  8. Assay Methods for H2S Biogenesis and Catabolism Enzymes

    OpenAIRE

    Banerjee, Ruma; Chiku, Taurai; Kabil, Omer; Libiad, Marouane; Motl, Nicole; Yadav, Pramod K.

    2015-01-01

    H2S is produced from sulfur-containing amino acids, cysteine and homocysteine, or a catabolite, 3-mercaptopyruvate, by three known enzymes: cystathionine β-synthase, γ-cystathionase, and 3-mercaptopyruvate sulfurtransferase. Of these, the first two enzymes reside in the cytoplasm and comprise the transsulfuration pathway, while the third enzyme is found both in the cytoplasm and in the mitochondrion. The following mitochondrial enzymes oxidize H2S: sulfide quinone oxidoreductase, sulfur dioxy...

  9. Seismic Wave Recording by 2S-Seismographs

    OpenAIRE

    Gurcan, Ruhi

    1999-01-01

    Researchers of seismic waves may construct a new seismographic recording adding one seismometer to each component of a conventional seismic station. The two identical conventional seismometers are set up in position of perpendicular and are connected in parallel feeding one recording device (digital or analog). This use of the seismometers (which they may be both horizontal or, one is vertical) is called "two seismometers seismograph" or simply "2S-S". 2S-seismograph performs new capabilities...

  10. Predictions of exclusive psi(2S) production at the LHC

    CERN Document Server

    Jones, S P; Ryskin, M G; Teubner, T

    2013-01-01

    Gluon parametrisations extracted from exclusive J/psi production at HERA and the LHC are used to calculate the cross section for exclusive psi(2S) ultraperipheral production at the LHC. Predictions are given at leading and next-to-leading order for pp centre-of-mass energies of 7, 8 and 14 TeV, assuming the non-relativistic approximation for the psi(2S) wave function.

  11. Sodium aerosol formation in an argon flow over hot sodium

    International Nuclear Information System (INIS)

    Vapour evaporation, which partly forms aerosol, occurs when a cold gas flows over a hot liquid. A previous well-mixed model is extended to predict the final vapour plus aerosol content of such a flow in terms of its initial and final temperatures. The predictions are compared to results of the Copacabana II experiment in which argon passed over a sodium pool. Agreement is obtained for the final sodium density at moderate flow rates, and physical reasons are given as to why deviations occur at low and high flow rates. (author)

  12. Performance of the TGT liquid argon calorimeter and trigger system

    International Nuclear Information System (INIS)

    A novel concept of a liquid argon calorimeter, the 'Thin Gap Turbine' (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a 'circular data store' and standalone readout and playback capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given. 12 refs., 21 figs., 6 tabs

  13. Optical fiber read-out for liquid argon scintillation light

    CERN Document Server

    Csáthy, J Janicskó; Kratz, J; Schönert, S; Wiesinger, Ch

    2016-01-01

    In this paper we describe the performance of a light detector for Ar scintillation light made of wavelength-shifting (WLS) fibers connected to Silicon-Photomultipliers (SiPM). The setup was conceived to be used as anti-Compton veto for high purity germanium (HPGe) detectors operated directly in liquid Argon (LAr). Background suppression efficiencies for different radioactive sources were measured in a test cryostat with about 800 kg LAr. This work was part of the R\\&D effort for the GERDA experiment.

  14. HARP: high-pressure argon readout for calorimeters

    International Nuclear Information System (INIS)

    Steel tubes of approximately 8 mm O.D., filled with Argon gas to approx. 200 bar, are considered as the active element for a charge collecting sampling calorimeter readout system. The tubes are permanently sealed and operated in the ion chamber mode, with the charge collection on a one-millimeter concentric anode. We present the motivation for such a device, including Monte Carlo predictions of performance. The method of construction and signal collection are discussed, with initial results on leakage and ageing of the filling gas. A prototype electromagnetic calorimeter is described

  15. Modeling of an argon cascaded arc plasma by ANSYS FLUENT

    International Nuclear Information System (INIS)

    In this work, an argon cascaded arc plasma is simulated by the business software ANSYS FLUENT. In fact, thus plasma is a high temperature arc (plasma window) with an average temperature of 12000 °C, which can be used as a medium between high pressure and vacuum mainly due to its characteristics of high temperature. According to the simulating results, the temperature can reach as high as 11500 °C which is in great agreement with that of other reports about plasma window.

  16. Diffusion coefficient of metal vapours into rare gases. Mercury - argon

    International Nuclear Information System (INIS)

    The source information is present as well as the results of analysis and integration of data on mutual diffusion coefficient (MDC) of mercury - argon mixture at Hg concentration → 0 in 300-2500 K temperature range. Reference data on MDC for metal - inert gas binary mixtures obtained on the base of complex analysis of various information, as it exemplified by Hg-Ar pair, can be used as a part of metrological support at calibration of devices for determination MDC of gas - metal vapors

  17. Searching for dark matter with single phase liquid argon

    Science.gov (United States)

    Caldwell, Thomas S., Jr.

    The first hint that we fail to understand the nature of a large fraction of the gravitating matter in the universe came from Fritz Zwicky's measurements of the velocity distribution of the Coma cluster in 1933. Using the Virial theorem, Zwicky found that galaxies in the cluster were orbiting far too fast to remain gravitationally bound when their mass was estimated by the brightness of the visible matter. This led to the postulation that some form of non-luminous dark matter is present in galaxies comprising a large fraction of the galactic mass. The nature of this dark matter remains yet unknown over 80 years after Zwicky's measurements despite the efforts of many experiments. Dark matter is widely believed to be a beyond the Standard Model particle which brings the dark matter problem into the realm of particle physics. Supersymmetry is one widely explored extension of the Standard model, from which particles meeting the constraints on dark matter properties can naturally arise. These particles are generically termed weakly interacting massive particles (WIMPs), and are a currently favored dark matter candidate. A variety of experimental efforts are underway aimed towards direct detection of dark matter through observation of rare scattering of WIMPs in terrestrial detectors. Single phase liquid argon detectors are an appealing WIMP detection technique due to the scintillation properties of liquid argon and the scalability of the single phase approach. The MiniCLEAN dark matter detector is a single phase liquid argon scintillation scintillation detector with a 500 kg active mass. The modular design offers 4pi coverage with 92 optical cassettes, each containing TPB coated acrylic and a cryogenic photomultiplier tube. The MiniCLEAN detector has recently completed construction at SNOLAB. The detector is currently being commissioned, and will soon begin operation with the liquid argon target. Utilizing advanced pulse-shape discrimination techniques, MiniCLEAN will

  18. Penning transfer in argon-based gas mixtures

    CERN Document Server

    Sahin, O; Tapan, I; Ozmutlu, E N

    2010-01-01

    Penning transfers, a group of processes by which excitation energy is used to ionise the gas, increase the gas gain in some detectors. Both the probability that such transfers occur and the mechanism by which the transfer takes place, vary with the gas composition and pressure. With a view to developing a microscopic electron transport model that takes Penning transfers into account, we use this dependence to identify the transfer mechanisms at play. We do this for a number of argon-based gas mixtures, using gain curves from the literature.

  19. The main properties of microwave argon plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  20. Study of a Novel Concept for a Liquid Argon Calorimeter \

    CERN Multimedia

    2002-01-01

    % RD33 \\\\ \\\\ The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter prototype is proposed as a generic R\\&D project for a novel concept of calorimetry in proton-proton and electron-positron collider detectors: the $^{\\prime$Thin Gap Turbine$^{\\prime}$ (TGT). The TGT calorimeter has a modular construction, is flexible in its longitudinal and transverse granularity, and offers a uniform energy response and resolution, independent of the production angle of incident particles. An important aspect of the project is the development of fast, radiation-hard front-end electronics which is operating in the cold.

  1. Intracavity frequency doubling in a wide-aperture argon laser

    International Nuclear Information System (INIS)

    The four-mirror cavity with a BBO crystal for frequency doubling in a wide-aperture argon laser is optimised. The dependences of the second-harmonic power on the displacement of a focusing mirror, the displacement of the crystal, and the discharge current are measured. These dependences are in good agreement with calculations. After optimisation, ∼1 W of UV laser radiation at 244 nm was obtained with the conversion efficiency twice as large as that for the known similar lasers. It is shown that the increase in the efficiency was achieved mainly due to the increase in the discharge-tube aperture. (nonlinear optical phenomena)

  2. High intensity, argon ion laser-jet photochemistry

    Science.gov (United States)

    Wilson, R. Marshall; Schnapp, Karlyn A.; Hannemann, Klaus; Ho, Douglas M.; Memarian, Hamid R.; Azadnia, Ardeshir; Pinhas, Allan R.; Figley, Timothy M.

    A new technique for the study of high intensity solution photochemistry has been developed. With this laser-jet technique, a high velocity microjet is irradiated with the focussed output of an argon ion laser. Under these extremely high intensity conditions, photochemically generated transient species with suitable absorption properties are excited further and produce relatively large amounts of photoproducts which are not observed under low intensity conditions. The application of this laser-jet technique in the study of the photochemistry of radicals, biradicals, photoenols and the higher excited states of carbonyl and polycyclic aromatic compounds is described.

  3. The main properties of microwave argon plasma at atmospheric pressure

    Science.gov (United States)

    Benova, E.; Pencheva, M.

    2010-01-01

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  4. The main properties of microwave argon plasma at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Benova, E; Pencheva, M, E-mail: benova_phys@deo.uni-sofia.b [Department for Language Teaching and International Students, University of Sofia, 27 Kosta Loulchev Street, BG-1111 Sofia (Bulgaria)

    2010-01-01

    Plasma torch sustained by surface wave at atmospheric pressure is theoretically studied by means of 1D model. A steady-state Boltzmann equation in an effective field approximation coupled with a collisional-radiative model for high-pressure argon discharge is numerically solved together with Maxwell's equations for an azimuthally symmetric TM surface wave. The axial dependences of the electrons, excited atoms, atomic and molecular ions densities as well as the electron temperature, the mean power per electron and the effective electron-neutral collision frequency are determined. A strong dependence of the plasma properties on the discharge conditions and the gas temperature is obtained.

  5. Laser-induced vibrational dynamics of ozone in solid argon

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Amstrup, B.; Henriksen, Niels Engholm

    1997-01-01

    We consider the vibrational dynamics, induced by an intense infrared laser pulse, in an ozone molecule with isotopic substitution, that is, (OOO)-O-16-O-16-O-18 and compare the dynamics in the gas phase and in solid ar on. not perturbed by argon on a time-scale of a few picoseconds and selective...... bond-breaking in the molecule should be possible following the same laser control scheme as suggested in the gas phase. (C) 1997 Elsevier Science B.V....

  6. Electron transport in argon in crossed electric and magnetic fields

    Science.gov (United States)

    Ness; Makabe

    2000-09-01

    An investigation of electron transport in argon in the presence of crossed electric and magnetic fields is carried out over a wide range of values of electric and magnetic field strengths. Values of mean energy, ionization rate, drift velocity, and diffusion tensor are reported here. Two unexpected phenomena arise; for certain values of electric and magnetic field we find regions where the swarm mean energy decreases with increasing electric fields for a fixed magnetic field and regions where swarm mean energy increases with increasing magnetic field for a fixed electric field. PMID:11088933

  7. Ionization coefficients for argon in a micro-discharge

    International Nuclear Information System (INIS)

    Ionization coefficients are measured for electrons in a dc micro-discharge in argon from optical emission profiles. The micro-discharge is operated in the Townsend regime between two parallel-plate electrodes. Axial profiles of emission are obtained with sufficient resolution to provide spatial ionization coefficients. The measured coefficients agree very well with the data obtained from other sources, indicating the operation of the discharge in the Townsend regime and also that Townsend mechanisms do not need extension to describe such discharges. (paper)

  8. Kinetic modeling of the Townsend breakdown in argon

    Science.gov (United States)

    Macheret, S. O.; Shneider, M. N.

    2013-10-01

    Kinetic modeling of the Townsend breakdown in argon was performed in the "forward-back" approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  9. Ionization coefficients for argon in a micro-discharge

    Science.gov (United States)

    Kuschel, Thomas; Stefanović, Ilija; Malović, Gordana; Marić, Dragana; Petrović, Zoran Lj

    2013-08-01

    Ionization coefficients are measured for electrons in a dc micro-discharge in argon from optical emission profiles. The micro-discharge is operated in the Townsend regime between two parallel-plate electrodes. Axial profiles of emission are obtained with sufficient resolution to provide spatial ionization coefficients. The measured coefficients agree very well with the data obtained from other sources, indicating the operation of the discharge in the Townsend regime and also that Townsend mechanisms do not need extension to describe such discharges.

  10. Argon Analyses of Lherzolic Shergottites Y984028 and Y000097

    Science.gov (United States)

    Park, J.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Shih, C.-Y.; Mikouchi, T.; Misawa, K.

    2010-01-01

    Antarctic Martian meteorites Yamato (Y) 984028 and Y000027/47/97 have similar textures, mineralogy, chemistry, and isotopic composition and are possibly paired. We analyzed the argon isotopic composition of Y984028 whole rock (WR) and pyroxene mineral separates (Px) in order to evaluate their trapped Ar components and compare with Y000097 Ar data. WR and Px yield an apparent Ar-39-Ar-40 age spectra of roughly 2 Ga, much older than the crystallization age determined by other isotopic techniques. Sm-Nd and Rb-Sr ages for Y984028 are approximately 170 Ma. This discrepancy is likely the byproduct of several coexisting Ar components, such as radiogenic 40Ar*, cosmogenic Ar, and trapped Ar from the multiple minerals, as well as multiple source origins. Similarly, the reported Ar-39-Ar-40 age of Y000097 is approximately 260 Ma with a Rb-Sr age of 147+/- 28 Ma and a Sm-Nd age of 152 +/- 13 Ma [4]. Apparently Ar-Ar ages of both Y984028 and Y000097 show trapped Ar components. Stepwise temperature extractions of Ar from Y984028 Px show several Arcomponents released at different temperatures. For example, intermediate temperature data (800-1100 C) are nominally consistent with the Sm-Nd and Rb-Sr radiometric ages (approximately 170 Ma) with an approximately Martian atmosphere trapped Ar composition with a Ar-40-Ar-36 ratio of approximately 1800. Based on K/Ca distribution, we know that Ar-39 at both lower and intermediate temperatures is primarily derived from plagioclase and olivine. Argon released during higher temperature extractions (1200-1500 C), however, differs significantly. The thermal profile of argon released from Martian meteorites is complicated by multiple sources, such as Martian atmosphere, Martian mantle, inherited Ar, terrestrial atmosphere, cosmogenic Ar. Obviously, Ar release at higher temperatures from Px should contain little terrestrial atmospheric component. Likewise, Xe-129/Xe-132 from high temperature extractions (1200-1800 C) gives a value above that

  11. Charges recombination in α particle tracks in argon

    International Nuclear Information System (INIS)

    The creation and evolution of (neutral) excited states and ionized states in α particle tracks in high pressure argon are studied. The main features of recently published experimental results on the recombination luminescence can be explained and a track model is proposed. Details are given on the track radius, on the electrons thermallization, and on collisions between electrons and triplet excited states. The most important result is that at high pressure and high electron and ion densities a collective electron-ion recombination is possible, that is more efficient that the well known dissociative recombination

  12. Activation of copper by nitrogen and argon beams

    Energy Technology Data Exchange (ETDEWEB)

    Chetvertkova, Vera [IAP, Goethe-University, Frankfurt am Main (Germany); GSI Darmstadt (Germany); Mustafin, Edil; Strasik, Ivan [GSI Darmstadt (Germany); Belousov, Anton [TU Darmstadt (Germany); Latysheva, Ludmila; Sobolevsky, Nikolai [INR RAS, Moscow (Russian Federation); Ratzinger, Ulrich [IAP, Goethe-University, Frankfurt am Main (Germany)

    2012-07-01

    Monte Carlo transport codes are widely used for various purposes in nuclear physics, radiation protection, medical applications, accelerator design etc. Code verification by experiments is needed to be sure that the codes give accurate results. New data on the activation of copper by a nitrogen beam of 500 MeV/u is presented and compared with FLUKA and SHIELD simulation results. The activation of copper by a nitrogen beam is compared to activation by an argon beam and respective simulations. This gives a chance to see the accuracy of the codes at different projectile masses. Correspondences and discrepancies of calculations and experiments are discussed.

  13. Electron drift velocity in argon-methane mixture

    International Nuclear Information System (INIS)

    Described are the results of a series of measurements of electron drift velocity taken with samples of chemically pure grade gas mixture of Ar-10% CH4 (N2222O<2 ppm). The measured drift velocity is plotted as a function of the ratio of electric field to pressure in the range from 0.05 to 0.8 V/cmxtorr. The measurements are reproducible only to within 4%. The results of numerical calculations employing the well-established argon elastic and methane elastic and inelastic cross sections are also included. The disagreement from the present experimental results, and from those obtained elsewhere, is rather puzzling

  14. Study of a novel electromagnetic liquid argon calorimeter TGT

    International Nuclear Information System (INIS)

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a test beam exposure. 15 refs., 16 figs., 2 tabs

  15. Photodissociation dynamics of CH3C(O)SH in argon matrix: A QM/MM nonadiabatic dynamics simulation

    International Nuclear Information System (INIS)

    In this work, we have first employed the combined quantum mechanics/molecular mechanics (QM/MM) method to study the photodissociation mechanism of thioacetic acid CH3C(O)SH in the S1, T1, and S0 states in argon matrix. CH3C(O)SH is treated quantum mechanically using the complete active space self-consistent field and complete active space second-order perturbation theory methods; argon matrix is described classically using Lennard-Jones potentials. We find that the C-S bond fission is predominant due to its small barriers of ca. 3.0 and 1.0 kcal/mol in the S1 and T1 states. It completely suppresses the nearby C—C bond fission. After the bond fission, the S1 radical pair of CH3CO and SH can decay to the S0 and T1 states via internal conversion and intersystem crossing, respectively. In the S0 state, the radical pair can either recombine to form CH3C(O)SH or proceed to form molecular products of CH2CO and H2S. We have further employed our recently developed QM/MM generalized trajectory-based surface-hopping method to simulate the photodissociation dynamics of CH3C(O)SH. In 1 ps dynamics simulation, 56% trajectories stay at the Franck-Condon region; the S1 C—S bond fission takes place in the remaining 44% trajectories. Among all nonadiabatic transitions, the S1 → S0 internal conversion is major (55%) but the S1 → T1 intersystem crossing is still comparable and cannot be ignored, which accounts for 28%. Finally, we have found a radical channel generating the molecular products of CH2CO and H2S, which is complementary to the concerted molecular channel. The present work sets the stage for simulating photodissociation dynamics of similar thio-carbonyl systems in matrix

  16. Thermodynamic investigations of UO2F2(s)

    International Nuclear Information System (INIS)

    The standard molar Gibbs energy of formation of UO2F2(s) has been determined using an e.m.f. technique. The fluoride cell:(-) Pt, Ni(s)+NiF2(s)/CaF2/UF4(s)+U3O8(s)+UO2F2(s), Pt(+) has been constructed to measure Gibbs energy of formation of UO2F2(s) using CaF2(s) as solid electrolyte. The e.m.f. values obtained from the cell is represented by the expression: E/V = 0.4949 - 2.668* 10-4. (T/K) From the measured e.m.f.s and required Gibbs energy values from the literature, the Gibbs energy for UO2F(s) has been expressed as: ΔG°m(UO2F2, s,T)kJ· mol-1 = -1648.764 + 0.286.(T/K). The chemical potential diagram of U-F-O system has been calculated from the minimization of Gibbs energy method. (author)

  17. Evidence of network demixing in GeS2-Ga2S3 chalcogenide glasses: A phase transformation study

    International Nuclear Information System (INIS)

    The information of phase transformation is attained by in situ XRD experiments leading to the knowledge of topological threshold in GeS2-Ga2S3 glasses. The turning point of phase transformation behavior is demonstrated to be glasses containing 14-15 mol% Ga2S3. To interpret it a network demixing model is further improved and proposed for the structure of these ternary or quasi-binary chalcogenide glasses. For the nearest-neighbor coordination environment of glass with a transitional composition of 85.7 mol% (6/7) GeS2.14.3 mol% (1/7) Ga2S3, six-coordinated [S3Ga-X-GaS3] units (X=S or None) are well isolated by the [GeS4] structures, which contributes to the decreasing of precipitation of Ga2S3 crystals in (100-x)GeS2-xGa2S3 (x≤14.3) glasses corresponding to the experimental evidence of the phase transformation behavior. This scenario of intermediate-range structural order, firstly, includes the arrangement of structural units which is consistent with and provides an atomistic explanation of the compositional evolution of phase transformation behavior in these glasses. -- Graphical abstract: Synopsis: network demixing in GeS2-Ga2S3 chalcogenide glasses. Display Omitted Highlights: → Phase transformation in GeS2-Ga2S3 glasses. → Turning point of the phase transformation behavior. → Medium-range order structure of chalcogenide glasses. → Network demixing model for GeS2-Ga2S3 glasses.

  18. XUV-initiated high harmonic generation: driving inner valence electrons using below-threshold-energy XUV light

    CERN Document Server

    Brown, A C

    2016-01-01

    We propose a novel scheme for resolving the contribution of inner- and outer-valence electrons in XUV-initiated high-harmonic generation in neon. By probing the atom with a low energy (below the 2s ionisation threshold) ultrashort XUV pulse, the 2p electron is steered away from the core, while the 2s electron is enabled to describe recollision trajectories. By selectively suppressing the 2p recollision trajectories we can resolve the contribution of the 2s electron to the high-harmonic spectrum. We apply the classical trajectory model to account for the contribution of the 2s electron, which allows for an intuitive understanding of the process.

  19. A comparison of the frequencies of the 1S-2S and 2S-4P transitions in atomic hydrogen

    International Nuclear Information System (INIS)

    The difference between the frequency of the 2S-4P1/2 transition and a quarter of the 1S-2S transition frequency in atomic hydrogen has been measured by high-resolution laser spectroscopy. The result is 4696.3 (2.0) MHz, from which the value 8168 (8) MHz is derived for the 1S Lamb shift. This is the first determination of this quantify from continuous wave spectroscopy without frequency standards. (author)

  20. Measurements of the ratio between the transverse diffusion coefficient and the mobility for argon ions in argon

    International Nuclear Information System (INIS)

    The ratio DT/μ between the transverse diffusion coefficient and the mobility for 40Ar+ ions in argon has been determined from directly measured transverse current density distribution profiles of mass-analysed ions, as a function of the ratio E/n0 between the electric field and the gas number density in the interval 50≤E/n0≤4000 Td, at gas temperature T=294 K using a variable-length drift tube mass spectrometer. The error (two standard deviations) in the results is believed to be less than ±4% for E/n0o-values. (author)

  1. Hadronic Production of psi(2S) Cross section and Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kwangzoo; /Carnegie Mellon U.

    2008-05-01

    The hadronic production cross section and the polarization of {psi}(2S) meson are measured by using the data from p{bar p} collisions at {radical}s = 1.96 TeV collected by the Collider Detector at Fermilab. The datasets used correspond to integrated luminosity of 1.1 fb{sup -1} and 800 pb{sup -1}, respectively. The decay {psi}(2S) {yields} {mu}{sup +}{mu}{sup -} is used to reconstruct {psi}(2S) mesons in the rapidity range |y({psi}(2S))| < 0.6. The coverage of the p{sub T} range is 2.0 GeV/c {le} p{sub T} ({psi}(2S)) < 30 GeV/c for the cross section analysis and pT {ge} 5 GeV/c for the polarization analysis. For events with p{sub T} ({psi}(2S)) > 2 GeV/c the integrated inclusive cross section multiplied by the branching ratio for dimuon decay is 3.17 {+-} 0.04 {+-} 0.28 nb . This result agrees with the CDF Run I measurement considering the increased center-of-mass energy from 1.8 TeV to 1.96 TeV. The polarization of the promptly produced {psi}(2S) mesons is found to be increasingly longitudinal as p{sub T} increases from 5 GeV/c to 30 GeV/c. The result is compared to contemporary theory models.

  2. A liquid argon scintillation veto for the GERDA experiment

    International Nuclear Information System (INIS)

    Gerda is an experiment to search for the neutrinoless double beta decay of 76Ge. Results of Phase I have been published in summer 2013. Currently Gerda is being upgraded to a second phase. To reach the aspired background index of ≤ 10-3 cts/(keV . kg . yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). It has been demonstrated by the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. This talk focusses on the light instrumentation which is being installed in GERDA. Photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon photomultipliers (SiPM) are combined to maximize the photoelectron-yield with respect to various background sources. Monte Carlo simulations have been performed to optimize the design for background suppression and low self-induced background. First results of the prototypes and the progress of installation are reported.

  3. A liquid argon scintillation veto for the GERDA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Wegmann, Anne [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2014-07-01

    Gerda is an experiment to search for the neutrinoless double beta decay of {sup 76}Ge. Results of Phase I have been published in summer 2013. Currently Gerda is being upgraded to a second phase. To reach the aspired background index of ≤ 10{sup -3} cts/(keV . kg . yr) for Phase II active background-suppression techniques will be applied, including an active liquid argon veto (LAr veto). It has been demonstrated by the LArGe test facility that the detection of argon scintillation light can be used to effectively suppress background events in the germanium, which simultaneously deposit energy in LAr. This talk focusses on the light instrumentation which is being installed in GERDA. Photomultiplier tubes (PMT) and wavelength-shifting fibers connected to silicon photomultipliers (SiPM) are combined to maximize the photoelectron-yield with respect to various background sources. Monte Carlo simulations have been performed to optimize the design for background suppression and low self-induced background. First results of the prototypes and the progress of installation are reported.

  4. Compilation of electron collision excitation cross sections for neutro argon

    International Nuclear Information System (INIS)

    The present work presents a compilation and critical analysis of the available data on electron collision excitation cross sections for neutral Argon levels. This study includes: 1.- A detailed description in intermediate coupling for all the levels belonging the 20 configurations 3p''5 ns(n=4 to 12), np(n=4 to 8) and nd(n=3 to 8) of neutral Argon. 2.- Calculation of the electron collision excitation cross sections in Born and Born-Oppenheimer-Ochkur approximations for all the levels in the 14 configurations 3p''5 ns(n=4 to 7), np(n=4 to 7) and nd(n=3 to 8). 3.- Comparison and discussion of the compiled data. These are the experimental and theoretical values available from the literature, and those from this work. 4.- Analysis of the regularities and systematic behaviors in order to determine which values can be considered more reliable. It is show that the concept of one electron cross section results quite useful for this purpose. In some cases it has been possible to obtain in this way approximate analytical expressions interpolating the experimental data. 5.- All the experimental and theoretical values studied are graphically presented and compared. 6.- The last part of the work includes a listing of several general purpose programs for Atomic Physics calculations developed for this work. (Author)

  5. Model of a stationary microwave argon discharge at atmospheric pressure

    International Nuclear Information System (INIS)

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≅ 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number

  6. Analysis of microdischarges in asymmetric dielectric barrier discharges in argon

    International Nuclear Information System (INIS)

    Theoretical and experimental studies of two different discharge modes in asymmetric dielectric barrier discharges in argon at atmospheric pressure have been performed. The first mode appears to be the well-known filamentary microdischarge with non-striated positive column whereas the second mode is characterized by discharge instabilities and the appearance of striations. Both experiment and model calculations predict a transition from the first mode to the second mode when the applied voltage amplitude is increased above approximately 2 kV. The reliability of the employed fluid model is confirmed by comparison of the current–voltage characteristics obtained by model calculations and measurements for different applied voltage amplitudes. The results of the model calculations point out that in the second discharge mode the ionization of excited argon atoms prevents the total recombination of charge carriers between two subsequent discharge events. This leads to the occurrence of the memory from one discharge to the following one, which plays an important role in mode transition. (paper)

  7. Model of a stationary microwave argon discharge at atmospheric pressure

    Science.gov (United States)

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-01

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power θ necessary for sustaining an electron—ion pair, electron—neutral collision frequency for momentum transfer ven, and gas temperature Tg. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency ω/2π = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature Tg are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L ≈ 14 cm, sustained by wave power of 110 W—the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  8. Liquid argon scintillation read-out with silicon devices

    International Nuclear Information System (INIS)

    Silicon photosensors represent a viable alternative to standard photomultipliers in fields such as communications and medical imaging. We explored the interesting possibility of using these sensors in combination with liquid argon (LAr) for astroparticle physics applications such as neutrino, dark matter and double beta decay experiments. In fact, silicon photosensors have detection efficiencies comparable with those of the highest performance PMTs and can be manufactured with high level of radiopurity. In particular within the on-going R and D activity of the SILENT project (Low background and low noise techniques for double beta decay physics funded by ASPERA) a large area SiPM (Silicon PhotoMultiplier - Hamamatsu S11828-3344M - 1.7 cm2 area) has been installed in a LAr scintillation chamber of 0.5 liters volume together with a cryogenic photomultiplier tube (Hamamatsu R11065) used as a reference. The liquid argon chamber has been exposed to many gamma sources of different energies and single photoelectron response and light yield for the SiPM and PMT have been measured and compared. In this contribution the results of the tests, and the ongoing R and D to optimize the SiPM for cryogenic and for ultralow background applications, are reported, as well as the possible application in the GERDA experiment on Double Beta Decay Searches of 76Ge

  9. Elastic properties of liquid and solid argon in nanopores.

    Science.gov (United States)

    Schappert, Klaus; Pelster, Rolf

    2013-10-16

    We have measured sorption isotherms and determined the intrinsic longitudinal elastic modulus β(Ar,ads) of nanoconfined material via ultrasonic measurements combined with a special effective medium analysis. In the liquid regime the adsorbate only contributes to the measured effective properties when the pores are completely filled and the modulus is bulklike. At partial fillings its contribution is cancelled out by the high compressibility of the vapour phase. In contrast, at lower temperatures frozen argon as well as underlying liquid surface layers cause a linear increase of the effective longitudinal modulus upon filling. During sorption the contribution of the liquid surface layers near the pore wall β(Ar,surf) increases with the thickness of the solid layers reaching the bulk value β(Ar,liquid) only in the limit of complete pore filling. We interpret this effect as due to the gradual stiffening of the solid argon membrane. The measurements and their analysis show that longitudinal ultrasonic waves are well suited to the study of the elastic properties and liquid-solid phase transitions in porous systems. This method should also help to detect the influence of nanoconfinement on elastic properties in further research. PMID:24057946

  10. Liquid argon scintillation read-out with silicon devices

    Science.gov (United States)

    Canci, N.; Cattadori, C.; D'Incecco, M.; Lehnert, B.; Machado, A. A.; Riboldi, S.; Sablone, D.; Segreto, E.; Vignoli, C.

    2013-10-01

    Silicon photosensors represent a viable alternative to standard photomultipliers in fields such as communications and medical imaging. We explored the interesting possibility of using these sensors in combination with liquid argon (LAr) for astroparticle physics applications such as neutrino, dark matter and double beta decay experiments. In fact, silicon photosensors have detection efficiencies comparable with those of the highest performance PMTs and can be manufactured with high level of radiopurity. In particular within the on-going R&D activity of the SILENT project (Low background and low noise techniques for double beta decay physics funded by ASPERA) a large area SiPM (Silicon PhotoMultiplier - Hamamatsu S11828-3344M - 1.7 cm2 area) has been installed in a LAr scintillation chamber of 0.5 liters volume together with a cryogenic photomultiplier tube (Hamamatsu R11065) used as a reference. The liquid argon chamber has been exposed to many gamma sources of different energies and single photoelectron response and light yield for the SiPM and PMT have been measured and compared. In this contribution the results of the tests, and the ongoing R&D to optimize the SiPM for cryogenic and for ultralow background applications, are reported, as well as the possible application in the GERDA experiment on Double Beta Decay Searches of 76Ge.

  11. Investigation of a Mercury-Argon Hot Cathode Discharge

    Science.gov (United States)

    Wamsley, Robert Charles

    Classical absorption and laser induced fluorescence (LIF) experiments are used to investigate processes in the cathode region of a Hg-Ar hot cathode discharge. The absorption and LIF measurements are used to test the qualitative understanding and develop a quantitative model of a hot cathode discharge. The main contribution of this thesis is a model of the negative glow region that demonstrates the importance of Penning ionization to the ionization balance in the negative glow. We modeled the excited argon balance equation using a Monte Carlo simulation. In this simulation we used the trapped radiative decay rate of the resonance levels and the Penning ionization rate as the dominant loss terms in the balance equation. The simulated data is compared to and found to agree with absolute excited argon densities measured in a classical absorption experiment. We found the primary production rate per unit volume of excited Ar atoms in the simulation is sharply peaked near the cathode hot spot. We used the ion production rate from this simulation and a Green's function solution to the ambipolar diffusion equation to calculate the contribution of Penning ionization to the total ion density. We compared the results of this calculation to our experimental values of the Hg ^+ densities in the negative glow. We found that Penning ionization is an important and possibly the dominant ionization process in the negative glow.

  12. Argon laser trabeculoplasty as primary therapy in open angle glaucoma

    International Nuclear Information System (INIS)

    To determine the effect of Argon Laser Trabeculoplasty (ALT) as a primary mode of therapy in reducing the intraocular Pressure (IOP) of patients diagnosed with Primary Open Angle Glaucoma (POAG). A total of 35 eyes of 35 patients with the gender distribution of 27 men and 8 women who were newly diagnosed with POAG, were included in this study. Mean age of the patients was 55.2 years with the range of 32 to 76 years. All of them were treated with argon laser trabeculoplasty as a primary mode of therapy. Intra ocular pressure was measured objectively using Goldman applanation tonometer, pre-and-post laser therapy. The pre-laser mean IOP was 27.63 mmHg (range 21-40 mmHg). The post-laser mean IOP measured at 6 months follow up was 15.5 mmHg (range 11 - 33 mmHg) with mean decrease of 12.1 mmHg. The decrease in IOP was seen in 32 eyes (95%) with no change observed in 3 (5%) eyes. The result shows a marked decline in IOP in patients with POAG who underwent ALT as a primary mode of treatment. Further studies with large sample size and longer follow-up will help in making future recommendations. (author)

  13. Dating of mineral samples through activation analysis of argon

    International Nuclear Information System (INIS)

    Mass Spectrometry has been the usual method to determine Ar concentrations in mineral samples for dating them through the 40Ar/40K ratio. This technique has been replaced since 1966 by measurement of 40Ar/39Ar ratio, after artificial production of 39Ar from the 39K(n,p)39Ar reaction produced in the fast neutron flux of a nuclear reactor. This method requires the fusion of the sample by incremental heating until reaching a temperature of 1000 deg C in order to get the total release of both argon isotopes. In principle, it should be possible to determine the 40Ar/40K ratio by activation analysis in an easier, non-destructive way, but it presents the following drawbacks: manufacture of argon standards; usual low ratio peak/Compton distribution for both peaks: 1.29 Mev and 1.52 Mev (41Ar and 42K respectively), since potassium minerals are usually very rich in sodium, manganese and chlorine; reaction 41K(n,p)41Ar induced by fast neutrons present in the thermal flux; and possible contamination of the samples and standards with atmospheric 40Ar(99.6% of elementary Ar, whose proportion in the atmosphere at sea level is 0.93%). This paper describes how these problems may be solved, also determining the limits of Ar and K concentration related to Compton distribution, in our experimental conditions. (author) 5 refs.; 1 tab

  14. Some transport properties in plasmas containing argon and fluorine

    Directory of Open Access Journals (Sweden)

    Novaković R.N.V.

    2003-01-01

    Full Text Available In this paper some results of numerical evaluation of transport coefficients in plasmas in the mixtures of argon and fluorine are presented. These transport characteristics are given in the function of the temperature for low pressures ranging from 0,1 kPa to 1,0 kPa and for low temperatures between 500 K and 5 000 K in argon plasmas with 20% and 30% of the fluorine added. It is assumed that the system is kept under constant pressure and that a corresponding state of local thermodynamical equilibrium (LTE is attained in it. The equilibrium plasma composition, necessary for the evaluations, was determined on the ground of the Saha equations for ionization processes and the law of mass action for the thermal dissociation of F2, combined with the charge conservation relation and the assumption that the pressure remained constant in the course of temperature variations. The ionization energy lowering, required in conjunction with the Saha equations, was obtained with the aid of a modified expression for the plasma Debye radius proposed previously. A previously derived expression for the modified Debye radius, offering the possibility to treat the plasmas considered as weakly non-ideal in the whole temperature range, is used. The cut-off at the Landau length rather than of the smallest of ionic radii is introduced. This alteration in the evaluation procedure brings different considerable changes in the final numerical results for the all relevant quantities.

  15. Orientability thresholds for random hypergraphs

    CERN Document Server

    Gao, Pu

    2010-01-01

    Let $h>w>0$ be two fixed integers. Let $\\orH$ be a random hypergraph whose hyperedges are all of cardinality $h$. To {\\em $w$-orient} a hyperedge, we assign exactly $w$ of its vertices positive signs with respect to the hyperedge, and the rest negative. A $(w,k)$-orientation of $\\orH$ consists of a $w$-orientation of all hyperedges of $\\orH$, such that each vertex receives at most $k$ positive signs from its incident hyperedges. When $k$ is large enough, we determine the threshold of the existence of a $(w,k)$-orientation of a random hypergraph. The $(w,k)$-orientation of hypergraphs is strongly related to a general version of the off-line load balancing problem. The graph case, when $h=2$ and $w=1$, was solved recently by Cain, Sanders and Wormald and independently by Fernholz and Ramachandran, which settled a conjecture of Karp and Saks.

  16. Instability Threshold “Hysteresis”

    Directory of Open Access Journals (Sweden)

    Agnes Muszynska

    1999-01-01

    Full Text Available The transient process which starts at the instability threshold of a rotor rotating in a fluid environment, and ends up in the limit cycle of self-excited vibrations known as fluid whirl or fluid whip, is discussed in this paper. A one-lateral-mode, isotropic, nonlinear model of the rotor with fluid interaction allows for exact particular solutions and an estimation of the transient process. The fluid interacting with the rotor is contained in a small radial clearance area, such as in bearings, seals, or rotor-to-stator clearances, and its effects are represented by fluid film radial stiffness, damping, and fluid inertia rotating at a different angular velocities.

  17. Astronomy below the Survey Threshold

    CERN Document Server

    Zwart, Jonathan T L; Karim, Alexander; Jackson, Carole; Norris, Ray; Condon, Jim; Afonso, Jose; Heywood, Ian; Jarvis, Matt; Navarrete, Felipe; Prandoni, Isabella; Rigby, Emma; Rottgering, Huub; Santos, Mario; Sargent, Mark; Seymour, Nick; Taylor, Russ; Vernstrom, Tessa

    2014-01-01

    Astronomy at or below the 'survey threshold' has expanded significantly since the publication of the original 'Science with the Square Kilometer Array' in 1999 and its update in 2004. The techniques in this regime may be broadly (but far from exclusively) defined as 'confusion' or 'P(D)' analyses (analyses of one-point statistics), and 'stacking', accounting for the flux-density distribution of noise-limited images co-added at the positions of objects detected/isolated in a different waveband. Here we discuss the relevant issues, present some examples of recent analyses, and consider some of the consequences for the design and use of surveys with the SKA and its pathfinders.

  18. THRESHOLD FOR EXTENDED EMISSION IN SHORT GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    The initial pulse complex (IPC) in short gamma-ray bursts is sometimes accompanied by a softer, low-intensity extended emission (EE) component. In cases where such a component is not observed, it is not clear if it is present but below the detection threshold. Using Bayesian Block (BB) methods, we measure the EE component and show that it is present in one-quarter of a Swift/BAT sample of 51 short bursts, as was found for the Compton/BATSE sample. We simulate bursts with EE to calibrate the BAT threshold for EE detection and show that this component would have been detected in nearly half of BAT short bursts if it were present, to intensities ∼10-2 counts cm-2 s-1, a factor of 5 lower than actually observed in short bursts. In the BAT sample, the ratio of average EE intensity to IPC peak intensity, Rint, ranges over a factor of 25, Rint ∼ 3 x 10-3 to 8 x 10-2. In comparison, for the average of the 39 bursts without an EE component, the 2σ upper limit is Rint -4. These results suggest that a physical threshold effect operates near Rint ∼ few x 10-3 below which the EE component is not manifest.

  19. Local effects of ECRH on argon transport at ASDEX upgrade

    International Nuclear Information System (INIS)

    Future deuterium-tritium magnetically confined fusion power plants will most probably rely an high-Z Plasma Facing Components (PFCs) such as tungsten. This choice is determined by the necessity of low erosion of the first wall materials (to guarantee a long lifetime of the wall components) and by the need to avoid the too high tritium wall retention of typical carbon based PFCs. The experience gathered at the ASDEX Upgrade (AUG) tokamak has demonstrated the possibility of reliable and high performance plasma operation with a full tungsten-coated first wall. The observed accumulation of tungsten which can lead to excessive radiation losses is mitigated with the use of Electron Cyclotron Resonance Heating (ECRH). Although this impurity control method is routinely performed at AUG, the underlying physics principles are still not clear. This thesis aims an providing further knowledge an the effects of ECRH an the transport of impurities inside the core plasma. The transport of argon has been therefore investigated in-depth in purely ECR heated L-mode (low-confinement) discharges. Studies an impurity transport in centrally ECR heated nitrogen-seeded H-mode (high-confinement) discharges have also been performed. To this scope, a new crystal X-ray spectrometer of the Johann type has been installed an AUG for argon concentration and ion temperature measurements. New methods for the experimental determination of the total argon density through the integrated use of this diagnostic and of the Soft X-Ray (SXR) diode arrays have been developed. This gives the possibility of evaluating the full profiles of the argon transport coefficients from the linear flux-gradient dependency of local argon density. In comparison to classical χ2-minimization methods, the approach proposed here delivers transport coefficients intrinsically independent of the modelling of periodic relaxation mechanisms such as those Lied to sawtooth MHD (Magneto-Hydro-Dynamic) activity. Moreover, the good

  20. Luminescent Ag-doped In{sub 2}S{sub 3} nanoparticles stabilized by mercaptoacetate in water and glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Raevskaya, Alexandra E.; Ivanchenko, Maria V.; Stroyuk, Oleksandr L., E-mail: alstroyuk@ukr.net, E-mail: stroyuk@inphyschem-nas.kiev.ua; Kuchmiy, Stepan Ya. [L.V. Pysarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine, Department of Photochemistry (Ukraine); Plyusnin, Victor F. [Institute of Chemical Kinetics and Combustion of Siberian Branch of Russian Academy of Sciences (Russian Federation)

    2015-03-15

    Colloidal nanoparticles (NPs) of tetragonal β-In{sub 2}S{sub 3} were stabilized in water and glycerol by mercaptoacetate anions. Doping of In{sub 2}S{sub 3} NPs with Ag{sup I} cations at the time of the synthesis imparts the NPs with the photoluminescence (PL) in the visible part of the spectrum. The doping results also in a shift of the absorption threshold and the PL band maximum to longer wavelengths proportional to the Ag{sup I} content. The PL band maximum of Ag{sup I}-doped In{sub 2}S{sub 3} NPs can be varied from 575–580 to 760–765 nm by augmenting the silver(I) amount and the duration and temperature of the post-synthesis aging. The average radiative life-time of Ag{sup I}-doped In{sub 2}S{sub 3} NPs also depends on the silver(I) content and reaches the maximal value, 960 ns, at a molar Ag:In ratio of 1:4. The maximal quantum yield of stationary PL, 12 %, is observed at this Ag:In ratio as well. Deposition of a ZnS “shell” on the surface of Ag{sup I}-doped In{sub 2}S{sub 3} NPs results in an increase of the PL quantum yield to ∼30 %.

  1. Diffractive photoproduction of ψ(2 S) mesons at HERA

    Science.gov (United States)

    Adloff, C.; Andreev, V.; Andrieu, B.; Anthonis, T.; Astvatsatourov, A.; Babaev, A.; Bähr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Berger, Ch.; Berndt, T.; Bizot, J. C.; Böhme, J.; Boudry, V.; Braunschweig, W.; Brisson, V.; Bröker, H.-B.; Brown, D. P.; Brückner, W.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Caron, S.; Cassol-Brunner, F.; Clarke, D.; Collard, C.; Contreras, J. G.; Coppens, Y. R.; Coughlan, J. A.; Cousinou, M.-C.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E. A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J. D.; Droutskoi, A.; Dubak, A.; Duprel, C.; Eckerlin, G.; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleischmann, P.; Fleming, Y. H.; Flügge, G.; Fomenko, A.; Foresti, I.; Formánek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, J.; Gerhards, R.; Gerlich, C.; Ghazaryan, S.; Goerlich, L.; Gogitidze, N.; Grab, C.; Grabski, V.; Grässler, H.; Greenshaw, T.; Grindhammer, G.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, J.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K. H.; Hladký, J.; Höting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hurling, S.; Ibbotson, M.; İşsever, Ç.; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, C.; Johnson, D. P.; Jones, M. A. S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I. R.; Kermiche, S.; Kiesling, C.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Koutouev, R.; Koutov, A.; Kroseberg, J.; Krüger, K.; Kuhr, T.; Kurča, T.; Lamb, D.; Landon, M. P. J.; Lange, W.; Laštovička, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leißner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Lüders, S.; Lüke, D.; Lytkin, L.; Malden, N.; Malinovski, E.; Malinovski, I.; Mangano, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.-U.; Martyniak, J.; Maxfield, S. J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Mikocki, S.; Milstead, D.; Mohrdieck, S.; Mondragon, M. N.; Moreau, F.; Morozov, A.; Morris, J. V.; Müller, K.; Murín, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Nellen, G.; Newman, P. R.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Olsson, J. E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G. D.; Peez, M.; Perez, E.; Petrukhin, A.; Phillips, J. P.; Pitzl, D.; Pöschl, R.; Potachnikova, I.; Povh, B.; Rädel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schätzel, S.; Scheins, J.; Schilling, F.-P.; Schleper, P.; Schmidt, D.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schöning, A.; Schörner, T.; Schröder, V.; Schultz-Coulon, H.-C.; Schwanenberger, C.; Sedlák, K.; Sefkow, F.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Swart, M.; Tchetchelnitski, S.; Thompson, G.; Thompson, P. D.; Tomasz, F.; Traynor, D.; Truöl, P.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J. E.; Tzamariudaki, E.; Udluft, S.; Uraev, A.; Urban, M.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vassiliev, S.; Vazdik, Y.; Vest, A.; Vichnevski, A.; Wacker, K.; Wagner, J.; Wallny, R.; Waugh, B.; Weber, G.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.-G.; Wissing, Ch.; Wobisch, M.; Woehrling, E.-E.; Wünsch, E.; Wyatt, A. C.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.; H1 Collaboration

    2002-08-01

    Results on diffractive photoproduction of ψ(2 S) mesons are presented using data collected between 1996 and 2000 with the H1 detector at the HERA ep collider. The data correspond to an integrated luminosity of 77 pb -1. The energy dependence of the diffractive ψ(2 S) cross section is found to be similar to or possibly somewhat steeper than that for J/ ψ mesons. The dependences of the elastic and proton dissociative ψ(2 S) photoproduction cross sections on the squared momentum transfer t at the proton vertex are measured. The t-dependence of the elastic channel, parametrised as ebt, yields belψ(2 S) =(4.31±0.57±0.46) GeV -2, compatible with that of the J/ ψ. For the proton dissociative channel the result bpdψ(2 S) =(0.59±0.13±0.12) GeV -2 is 2.3 standard deviations smaller than that measured for the J/ ψ. With proper account of the individual wavefunctions theoretical predictions based on perturbative QCD are found to describe the measurements well.

  2. Is NiCo2S4 really a semiconductor?

    KAUST Repository

    Xia, Chuan

    2015-08-31

    NiCo2S4 is a technologically important electrode material that has recently achieved remarkable performance in pseu-docapacitor, catalysis, and dye-synthesized solar cell applications.[1-5] Essentially, all reports on this material have pre-sumed it to be semiconducting, like many of the chalcogenides, with a reported band-gap in the range of 1.2-1.7 eV.[6,7] In this report, we have conducted detailed experimental and theoretical studies, most of which done for the first time, which overwhelmingly show that NiCo2S4 is in fact a metal. We have also calculated the Raman spectrum of this mate-rial and experimentally verified it for the first time, hence clarifying inconsistent Raman spectra reports. Some of the key results that support our conclusions include: (1) the measured carrier density in NiCo2S4 is 3.18×1022 cm-3, (2) Ni-Co2S4 has a room temperature resistivity of around 103 µΩ cm which increases with temperature, (3) NiCo2S4 exhibits a quadratic dependence of the magnetoresistance on magnetic field, (4) thermopower measurements show an extremely low Seebeck coefficient of 5 µV K-1, (5) first principles calculations confirm that NiCo2S4 is a metal. These results sug-gest that it is time to re-think the presumed semiconducting nature of this promising material. They also suggest that the metallic conductivity is another reason (besides the known significant redox activity) behind the excellent perfor-mance reported for this material.

  3. Thermodynamic studies on RbCrO2(s)

    International Nuclear Information System (INIS)

    The equilibrium pressures of CO2(g) over the ternary phase mixture of Rb2CO3(s), Cr2O3(s) and RbCrO2(s) for the reaction, Rb2CO3 (s) + Cr2O3(s)= 2RbCrO2(s)+ CO2(g) was studied at various temperatures from 609-724 K by equilibrium vapour pressure technique using a static manometry. The temperature dependence of the measured CO2(g) pressures is represented as, log pco2(g)/Pa ± 0.006 = - 1325.3/T/(K) + 4.7066. (author)

  4. Study of electron recombination in liquid argon with the ICARUS TPC

    International Nuclear Information System (INIS)

    Electron recombination in liquid argon (LAr) is studied by means of charged particle tracks collected in various ICARUS liquid argon TPC prototypes. The dependence of the recombination on the particle stopping power has been fitted with a Birks functional dependence. The simulation of the process of electron recombination in Monte Carlo calculations is discussed. A quantitative comparison with previously published data is carried out

  5. Theoretical Investigation on Excitation, Ionization and Capture in H(1s, 2s) + H(1s, 2s) Collisions

    Institute of Scientific and Technical Information of China (English)

    CHEN Lan-Fang; ZHU Xiao-Long; MA Xin-Wen; LIU Ling; HE Bin; WANG Jian-Guo; Ratko JANEV

    2008-01-01

    @@ Cross sections of electron-loss in H(1s)+ H(1s) collisions and total collisional destruction of H(2s) in H(1s) + H(2s) collisions are calculated by four-body classical-trajectory Monte Carlo (CTMC) method and compared with previous theoretical and experimental data over the energy range of 4-100 keV. For the former a good agreement is obtained within different four-body CTMC calculations, and for the incident energy Ep > 10 keV, comparison with the experimental data shows a better agreement than the results calculated by the impact parameter approx-imation. For the latter, our theory predicts the correct experimental behaviour, and the discrepancies between our results and experimental ones are less than 30%. Based on the successive comparison with experiments, the cross sections for excitation to H(2p), single- and double-ionization and H- formation in H(2s)+H(2s) collisions are calculated in the energy range of 4-100 keV for the first time, and compared with those in H(1s)+H(1s) and H(1s)+H(2s) collisions.

  6. Electron excitation cross sections for the 2s(2)2p(3)4S(O) -- 2s(2)2p(3)2D(O) (forbidden) and 4S(O) -- 2s2p(4) 4P (resonance) transitions in O II

    Science.gov (United States)

    Zuo, M.; Smith, Steven J.; Chutjian, A.; Williams, I. D.; Tayal, S. S.; Mclaughlin, Brendan M.

    1995-01-01

    Experimental and theoretical excitation cross sections are reported for the first forbidden transition 4S(O) -- 2S(2)2p(3) 2D(O) (lambda-lambda 3726, 3729) and the first allowed (resonance) transition 4S(O) -- 2s2p(4) 4P(lambda-833) in O II. Use is made of electron energy loss and merged-beams methods. The electron energy range covered is 3.33 (threshold) to 15 eV for the S -- D transition, and 14.9 (threshold) to 40 eV for the S -- P transition. Care was taken to assess and minimize the metastable fraction of the O II beam. An electron mirror was designed and tested to reflect inelastically backscattered electrons into the forward direction to account for the full range of polar scattering angles. Comparisons are made between present experiments and 11-state R-matrix calculations. Calculations are also presented for the 4S(O) -- 2s(2)2p(3)2P(O) (lambda-2470) transition.

  7. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    International Nuclear Information System (INIS)

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images

  8. First measurement of the ionization yield of nuclear recoils in liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, T. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sangiorgio, Samuele [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bernstein, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Foxe, Michael P. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Hagmann, Chris [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Jovanovic, Igor [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mechanical and Nuclear Engineering; Kazkaz, K. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Mozin, Vladimir V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Norman, E. B. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Pereverzev, S. V. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rebassoo, Finn O. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Sorensen, Peter F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)

    2014-05-01

    Liquid phase argon has long been used as a target medium for particle detection via scintillation light. Recently there has been considerable interest in direct detection of both hypothetical darkmatter particles and coherent elastic neutrino nucleus scattering. These as-yet unobserved neutral particle interactions are expected to result in a recoiling argon atom O(keV), generally referred to in the literature as a nuclear recoil. This prompts the question of the available electromagnetic signal in a liquid argon detector. In this Letter we report the first measurement of the ionization yield (Qy), detected electrons per unit energy, resulting from nuclear recoils in liquid argon, measured at 6.7 keV. This is also the lowest energy measurement of nuclear recoils in liquid argon.

  9. Effect of argon addition on plasma parameters and dust charging in hydrogen plasma

    International Nuclear Information System (INIS)

    Experimental results on effect of adding argon gas to hydrogen plasma in a multi-cusp dusty plasma device are reported. Addition of argon modifies plasma density, electron temperature, degree of hydrogen dissociation, dust current as well as dust charge. From the dust charging profile, it is observed that the dust current and dust charge decrease significantly up to 40% addition of argon flow rate in hydrogen plasma. But beyond 40% of argon flow rate, the changes in dust current and dust charge are insignificant. Results show that the addition of argon to hydrogen plasma in a dusty plasma device can be used as a tool to control the dust charging in a low pressure dusty plasma.

  10. Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol

    Science.gov (United States)

    Sun, Wen-Ting; Li, Guo; Li, He-Ping; Bao, Cheng-Yu; Wang, Hua-Bo; Zeng, Shi; Gao, Xing; Luo, Hui-Ying

    2007-06-01

    Rf, atmospheric-pressure glow discharge (APGD) plasmas with bare metal electrodes have promising prospects in the fields of plasma-aided etching, thin film deposition, disinfection and sterilization, etc. In this paper, the discharge characteristics are presented for the rf APGD plasmas generated with pure argon or argon-ethanol mixture as the plasma-forming gas and using water-cooled, bare copper electrodes. The experimental results show that the breakdown voltage can be reduced significantly when a small amount of ethanol is added into argon, probably due to the fact that the Penning ionization process is involved, and a pure α-mode discharge can be produced more easily with the help of ethanol. The uniformity of the rf APGDs of pure argon or argon-ethanol mixtures using bare metallic electrodes is identified with the aid of the intensified charge coupled device images.

  11. First measurements with ARGONTUBE, a 5 m long drift Liquid Argon TPC

    International Nuclear Information System (INIS)

    The Liquid Argon Time Projection Chamber (LAr TPC) technique is a promising technology for future neutrino detectors. At LHEP of the University of Bern (Switzerland), an R and D program towards large detectors are on-going. The main goal is to show the feasibility of long drift paths over many meters. Therefore, a liquid Argon TPC with 5 m of drift distance was constructed. Many other aspects of the liquid Argon TPC technology are also investigated, such as a new device to generate high voltage in liquid Argon (Greinacher circuit), a recirculation filtering system and the multi-photon ionization of liquid Argon with a UV laser. Two detectors are built: a medium size prototype for specific detector technology studies, and ARGONTUBE, a 5 m long device

  12. Influence of longitudinal argon flow on DC glow discharge at atmospheric pressure

    Science.gov (United States)

    Zhu, Sha; Jiang, Weiman; Tang, Jie; Xu, Yonggang; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2016-05-01

    A one-dimensional self-consistent fluid model was employed to investigate the influence of longitudinal argon flow on the DC glow discharge at atmospheric pressure. It is found that the charges exhibit distinct dynamic behaviors at different argon flow velocities, accompanied by a considerable change in the discharge structure. The positive argon flow allows for the reduction of charge densities in the positive column and negative glow regions, and even leads to the disappearance of negative glow. The negative argon flow gives rise to the enhancement of charge densities in the positive column and negative glow regions. These observations are attributed to the fact that the gas flow convection influences the transport of charges through different manners by comparing the argon flow velocity with the ion drift velocity. The findings are important for improving the chemical activity and work efficiency of the plasma source by controlling the gas flow in practical applications.

  13. Iran: the next nuclear threshold state?

    OpenAIRE

    Maurer, Christopher L.

    2014-01-01

    Approved for public release; distribution is unlimited A nuclear threshold state is one that could quickly operationalize its peaceful nuclear program into one capable of producing a nuclear weapon. This thesis compares two known threshold states, Japan and Brazil, with Iran to determine if the Islamic Republic could also be labeled a threshold state. Furthermore, it highlights the implications such a status could have on U.S. nonproliferation policy. Although Iran's nuclear program is mir...

  14. VIBRATORY THRESHOLDS AND MOBILITY IN OLDER PERSONS

    OpenAIRE

    Buchman, Aron S; Wilson, Robert S.; Leurgans, Sue; David A Bennett

    2009-01-01

    We tested the hypothesis that vibratory thresholds in the elderly are related to mobility. 629 older persons without dementia underwent testing including 11 lower extremity performance measures and modified UPDRS, summarized as composite mobility and global Parkinsonian signs. Vibratory thresholds were measured at the ankle and toes bilaterally using the graduated Rydel-Seiffer tuning fork. In linear regression models adjusted for age, sex and education, vibratory threshold was associated wit...

  15. Threshold Effects of Energy Price Changes

    International Nuclear Information System (INIS)

    This paper presents a theoretical model emphasising energy investments' characteristics of uncertainty and irreversibility. The theoretical model suggests threshold effects. Firms are induced to substitute away from energy only if prices of energy exceed a certain threshold level and they reverse the technology only if energy prices are low enough. Estimating a simple investment relation using panel data for the Dutch economy, we find evidence for threshold effects. 23 refs

  16. Proportional electroluminescence in two-phase argon and its relevance to rare-event experiments

    Science.gov (United States)

    Bondar, A.; Buzulutskov, A.; Dolgov, A.; Nosov, V.; Shekhtman, L.; Shemyakina, E.; Sokolov, A.

    2015-10-01

    Proportional electroluminescence (EL) in gaseous Ar has for the first time been systematically studied in the two-phase mode, at 87 K and 1.00 atm. Liquid argon had a minor (56 ppm) admixture of nitrogen, which allowed to understand, inter alia, the effect of N2 doping on the EL mechanism in rare-event experiments using two-phase Ar detectors. The measurements were performed in a two-phase cryogenic avalanche detector (CRAD) with EL gap located directly above the liquid-gas interface. The EL gap was optically read out in the vacuum ultraviolet (VUV), near 128 nm (Ar excimer emission), and in the near ultraviolet (UV), at 300-450 nm (N2 second positive system emission), via cryogenic photomultiplier tubes (PMTs) and a Geiger-mode APD (GAPD). Proportional electroluminescence was measured to have an amplification parameter of 109 ± 10 photons per drifting electron per kV overall in the VUV and UV, of which 51 ± 6% were emitted in the UV. The measured EL threshold, at an electric field of 3.7 ± 0.2 kV/cm, was in accordance with that predicted by the theory. The latter result is particularly relevant to DarkSide and SCENE dark matter search-related experiments, where the operation electric field was thereby on the verge of appearance of the S2 (ionization-induced) signal. The results obtained pave the way to the development of N2-doped two-phase Ar detectors with enhanced sensitivity to the S2 signal.

  17. Threshold pion electroproduction at large momentum transfers

    International Nuclear Information System (INIS)

    We consider pion electroproduction close to threshold for Q2 in the region 1-10 GeV2 on a nucleon target. The momentum transfer dependence of the S-wave multipoles at threshold, E0+ and L0+, is calculated in the chiral limit using light-cone sum rules. Predictions for the cross sections in the threshold region are given taking into account P-wave contributions that, as we argue, are model independent to a large extent. The results are compared with the SLAC E136 data on the structure function F2(W,Q2) in the threshold region. (orig.)

  18. Percolation Threshold in Polycarbonate Nanocomposites

    Science.gov (United States)

    Ahuja, Suresh

    2014-03-01

    Nanocomposites have unique mechanical, electrical, magnetic, optical and thermal properties. Many methods could be applied to prepare polymer-inorganic nanocomposites, such as sol-gel processing, in-situ polymerization, particle in-situ formation, blending, and radiation synthesis. The analytical composite models that have been put forth include Voigt and Reuss bounds, Polymer nanocomposites offer the possibility of substantial improvements in material properties such as shear and bulk modulus, yield strength, toughness, film scratch resistance, optical properties, electrical conductivity, gas and solvent transport, with only very small amounts of nanoparticles Experimental results are compared against composite models of Hashin and Shtrikman bounds, Halpin-Tsai model, Cox model, and various Mori and Tanaka models. Examples of numerical modeling are molecular dynamics modeling and finite element modeling of reduced modulus and hardness that takes into account the modulus of the components and the effect of the interface between the hard filler and relatively soft polymer, polycarbonate. Higher nanoparticle concentration results in poor dispersion and adhesion to polymer matrix which results in lower modulus and hardness and departure from the existing composite models. As the level of silica increases beyond a threshold level, aggregates form which results in weakening of the structure. Polymer silica interface is found to be weak as silica is non-interacting promoting interfacial slip at silica-matrix junctions. Our experimental results compare favorably with those of nanocomposites of polyesters where the effect of nanoclay on composite hardness and modulus depended on dispersion of nanoclay in polyester.

  19. Efficient threshold for volumetric segmentation

    Science.gov (United States)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  20. Roots at the percolation threshold

    Science.gov (United States)

    Kroener, Eva; Ahmed, Mutez Ali; Carminati, Andrea

    2015-04-01

    The rhizosphere is the layer of soil around the roots where complex and dynamic interactions between plants and soil affect the capacity of plants to take up water. The physical properties of the rhizosphere are affected by mucilage, a gel exuded by roots. Mucilage can absorb large volumes of water, but it becomes hydrophobic after drying. We use a percolation model to describe the rewetting of dry rhizosphere. We find that at a critical mucilage concentration the rhizosphere becomes impermeable. The critical mucilage concentration depends on the radius of the soil particle size. Capillary rise experiments with neutron radiography prove that for concentrations below the critical mucilage concentration water could easily cross the rhizosphere, while above the critical concentration water could no longer percolate through it. Our studies, together with former observations of water dynamics in the rhizosphere, suggest that the rhizosphere is near the percolation threshold, where small variations in mucilage concentration sensitively alter the soil hydraulic conductivity. Is mucilage exudation a plant mechanism to efficiently control the rhizosphere conductivity and the access to water?

  1. Radiation-optical properties of vitreous As2S3

    International Nuclear Information System (INIS)

    Physical features and microstructural mechanism of radiation-induced effects in vitreous As2S3 are studied. Observed changes, i.e., long-wave shift of fundamental edge absorption, increase of longitudinal ultrasonic velocity, decrease of frequency normalized acoustic loss coefficient and acoustooptical figure of merit, etc. are described. (author). 19 refs, 6 figs, 1 tab

  2. The PI2S2 project: grid and new challenges .

    Science.gov (United States)

    Becciani, U.

    The new grid e-Infrastructure in Sicily is offering new perspectives and important resources for both scientific and industrial application in the National context. This paper shows the infrastructure of the Cometa Consortium built with the PI2S2 project, the current status of the project and the new challenges, mainly in the HPC area, that the project is carrying out.

  3. H2S-Mediated Thermal and Photochemical Methane Activation

    NARCIS (Netherlands)

    Baltrusaitis, Jonas; Graaf, de Coen; Broer, Ria; Patterson, Eric V.

    2013-01-01

    Sustainable, low-temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with met

  4. Photoluminescence in MgIn2S4 spinel crystals

    International Nuclear Information System (INIS)

    The ingot of MgIn2S4 with a spinel structure was synthesized. The photoluminescence of this semiconductor material was studied at room temperature. The bell-shaped photoluminescence spectra with peaks at 1.35 and 1.49 eV were observed; their possible interpretation is suggested. (authors)

  5. Optical and electronic properties of semiconducting Sn2S3

    Science.gov (United States)

    Singh, David J.

    2016-07-01

    We report the electronic and optical properties of Sn2S3 as obtained from first principles calculations with the modified Becke-Johnson potential. The electronic structure shows that Sn occurs in both divalent and tetravalent forms. The fundamental band gap of 0.82 eV is indirect. The direct gap is 0.97 eV, but the onset of strong optical absorption is much higher at ˜1.75 eV. This is as a consequence of the Sn2+ s and Sn4+ s characters of the valence and conduction band extrema, respectively. We also find strong and different anisotropies for conduction in p- and n-type Sn2S3. This should be taken into account in device structures in order to obtain efficient charge collection. The thermopowers are reasonably high for both p- and n-type materials. p-type Sn2S3 shows complex corrugated isosurface sections, while the n-type material shows multiple band extrema.

  6. The numerical benchmark CB2-S, final evaluation

    International Nuclear Information System (INIS)

    In this paper are final results of numerical benchmark CB2-S compared (activity, gamma and neutron sources, concentration of important nuclides and decay heat). The participants are: Vladimir Chrapciak (SCALE), Ludmila Markova (SCALE), Svetlana Zabrodskaja (SCALA), Pavel Mikolas (WIMS). Eva Tinkova (HELIOS) and Maria Manolova (SCALE) (Authors)

  7. Triazine chemistry: removing H2S and mercaptans

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Thomas R.; Lesage, Kevin L.; Clark, Peter D.; Primak, Alex [University of Calgary (Canada)

    2011-07-01

    Chemical scavengers like triazines cause sulfur to be deposited with by-products and not in its pure form. This paper presents techniques to remove H2S and mercaptans. One process for H2S scavenging is injection of formaldehyde into the pipelines. But this causes solids to be formed as by-products. Triazine chemistry and synthesis and reaction mechanisms for H2S and its by-products that are formed are shown. Some of the mitigation strategies include maintaining optimal methanol concentration and running the chemical at lower scavenging efficiencies. There are no documented issues regarding the reaction of triazines with mercaptans. The experimental setup and process are explained and the results show that scavenging efficiency for mercaptans is inversely related to its molecular weight. Improved scavenging systems and various methods for mercaptan scavenging are given. From the study it can be concluded that triazine-based scavengers efficiently remove low levels of H2S from gas streams but not mercaptans.

  8. Radiative decays of the upsilon (2S) resonance

    International Nuclear Information System (INIS)

    The Crystal Ball Detector at DORIS II was used to study radiative decays of the upsilon (2S) resonance with more than twice the previously available data. The inclusive photon spectrum of hadronic upsilon (2S) decays and the exclusive channel upsilon (2S) → γγ upsilon (1S) → γγ l+l- were analyzed. In the inclusive spectrum three significant photon lines at energies of Eγ1 = (108.2 +- 0.7 +- 4) MeV, Eγ1 = (127.1 +- 0.8 +- 4) MeV and Eγ3 = (160.0 +- 2.4 +- 4) MeV with branching fractions of (6.0 +- 0.7 +- 0.9)%, (6.6 +- 0.8 +- 1.0)%, (2.6 +- 0.7 +- 0.8)% respectively were measured. The lines are consistent with being transitions from the upsilon (2S) to the 3P2, 3P1 and 3P0 states. In addition a line at Eγ approx. 427 MeV was observed which is interpreted as transitions from the 3P21 states to the upsilon (1S). 17 references

  9. Electron Neutrino Classification in Liquid Argon Time Projection Chamber Detector

    CERN Document Server

    Płoński, Piotr; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    Neutrinos are one of the least known elementary particles. The detection of neutrinos is an extremely difficult task since they are affected only by weak sub-atomic force or gravity. Therefore large detectors are constructed to reveal neutrino's properties. Among them the Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. The computerized methods for automatic reconstruction and identification of particles are needed to fully exploit the potential of the LAr-TPC technique. Herein, the novel method for electron neutrino classification is presented. The method constructs a feature descriptor from images of observed event. It characterizes the signal distribution propagated from vertex of interest, where the particle interacts with the detector medium. The classifier is learned with a constructed feature descriptor to decide whether the images represent the electron neutrino or cascade produced by photons. The proposed ap...

  10. Image Segmentation in Liquid Argon Time Projection Chamber Detector

    CERN Document Server

    Płoński, Piotr; Sulej, Robert; Zaremba, Krzysztof

    2015-01-01

    The Liquid Argon Time Projection Chamber (LAr-TPC) detectors provide excellent imaging and particle identification ability for studying neutrinos. An efficient and automatic reconstruction procedures are required to exploit potential of this imaging technology. Herein, a novel method for segmentation of images from LAr-TPC detectors is presented. The proposed approach computes a feature descriptor for each pixel in the image, which characterizes amplitude distribution in pixel and its neighbourhood. The supervised classifier is employed to distinguish between pixels representing particle's track and noise. The classifier is trained and evaluated on the hand-labeled dataset. The proposed approach can be a preprocessing step for reconstructing algorithms working directly on detector images.

  11. A Thermodynamic Model for Argon Plasma Kernel Formation

    Directory of Open Access Journals (Sweden)

    James Keck

    2010-11-01

    Full Text Available Plasma kernel formation of argon is studied experimentally and theoretically. The experiments have been performed in a constant volume cylindrical vessel located in a shadowgraph system. The experiments have been done in constant pressure. The energy of plasma is supplied by an ignition system through two electrodes located in the vessel. The experiments have been done with two different spark energies to study the effect of input energy on kernel growth and its properties. A thermodynamic model employing mass and energy balance was developed to predict the experimental data. The agreement between experiments and model prediction is very good. The effect of various parameters such as initial temperature, initial radius of the kernel, and the radiation energy loss have been investigated and it has been concluded that initial condition is very important on formation and expansion of the kernel.

  12. The readout driver (ROD) for the ATLAS liquid argon calorimeters

    Science.gov (United States)

    Efthymiopoulos, Ilias

    2001-04-01

    The Readout Driver (ROD) for the Liquid Argon calorimeter of the ATLAS detector is described. Each ROD module receives triggered data from 256 calorimeter cells via two fiber-optics 1.28 Gbit/s links with a 100 kHz event rate (25 kbit/event). Its principal function is to determine the precise energy and timing of the signal from discrete samples of the waveform, taken each period of the LHC clock (25 ns). In addition, it checks, histograms, and formats the digital data stream. A demonstrator system, consisting of a motherboard and several daughter-board processing units (PUs) was constructed and is currently used for tests in the lab. The design of this prototype board is presented here. The board offers maximum modularity and allows the development and testing of different PU designs based on today's leading integer and floating point DSPs.

  13. Fluorescence Spectrum of SiO in an Argon Matrix

    Science.gov (United States)

    Scullman, R.; Hormes, J.; Schroeder, W.; Wiggenhauser, H.

    1987-04-01

    Fluorescence from SiO matrix isolated in argon has been investigated in the wavelength region 120-300 nm. Fluorescence emission spectra from the valence states, A1Π, E1Σ+ and G1Π, revealed that nearly all radiation comes from one channel at 305 nm, which was analysed as originating from the b3Π-X1Σ+ transition. Contrary to the A1Π and G1Π states, the E1Σ+ state also decays radiatively, although weakly, through two other channels situated in the vicinity of 305 nm. These two channels were believed to originate from the a3Σ+-X1Σ+ and e3Σ--X1Σ+ transitions.

  14. The ATLAS liquid Argon calorimeters read-out system

    CERN Document Server

    Blondel, A; Fayard, L; La Marra, D; Léger, A; Matricon, P; Perrot, G; Poggioli, L; Prast, J; Riu, I; Simion, S

    2004-01-01

    The calorimetry of the ATLAS experiment takes advantage of different detectors based on the liquid Argon (LAr) technology. Signals from the LAr calorimeters are processed by various stages before being delivered to the Data Acquisition system. The calorimeter cell signals are received by the front-end boards, which digitize a predetermined number of samples of the bipolar waveform and sends them to the Read-Out Driver (ROD) boards. The ROD board receives triggered data from 1028 calorimeter cells, and determines the precise energy and timing of the signals by processing the discrete samplings of the pulse. In addition, it formats the digital stream for the following elements of the DAQ chain, and performs monitoring. The architecture and functionality of the ATLAS LAr ROD board are discussed, along with the final design of the Processing Unit boards housing the Digital Signal Processors (DSP). (9 refs).

  15. The readout driver (ROD) for the ATLAS liquid argon calorimeters

    CERN Document Server

    Efthymiopoulos, I

    2001-01-01

    The Readout Driver (ROD) for the Liquid Argon calorimeter of the ATLAS detector is described. Each ROD module receives triggered data from 256 calorimeter cells via two fiber-optics 1.28 Gbit/s links with a 100 kHz event rate (25 kbit/event). Its principal function is to determine the precise energy and timing of the signal from discrete samples of the waveform, taken each period of the LHC clock (25 ns). In addition, it checks, histograms, and formats the digital data stream. A demonstrator system, consisting of a motherboard and several daughter-board processing units (PUs) was constructed and is currently used for tests in the lab. The design of this prototype board is presented here. The board offers maximum modularity and allows the development and testing of different PU designs based on today's leading integer and floating point DSPs. (3 refs).

  16. Photodegradation Mechanisms of Tetraphenyl Butadiene Coatings for Liquid Argon Detectors

    CERN Document Server

    Jones, B J P; Conrad, J M; Pla-Dalmau, A

    2013-01-01

    We report on studies of degradation mechanisms of tetraphenyl butadiene (TPB) coatings of the type used in neutrino and dark matter liquid argon experiments. Using gas chromatography coupled to mass spectrometry we have detected the ultraviolet-blocking impurity benzophenone (BP). We monitored the drop in performance and increase of benzophenone concentration in TPB plates with exposure to ultraviolet (UV) light, and demonstrate the correlation between these two variables. Based on the presence and initially exponential increase in the concentration of benzophenone observed, we propose that TPB degradation is a free radical-mediated photooxidation reaction, which is subsequently confirmed by displaying delayed degradation using a free radical inhibitor. Finally we show that the performance of wavelength-shifting coatings of the type envisioned for the LBNE experiment can be improved by 10-20%, with significantly delayed UV degradation, by using a 20% admixture of 4-tert-Butylcatechol.

  17. Photodegradation mechanisms of tetraphenyl butadiene coatings for liquid argon detectors

    Science.gov (United States)

    Jones, B. J. P.; VanGemert, J. K.; Conrad, J. M.; Pla-Dalmau, A.

    2013-01-01

    We report on studies of degradation mechanisms of tetraphenyl butadiene (TPB) coatings of the type used in neutrino and dark matter liquid argon experiments. Using gas chromatography coupled to mass spectrometry we have detected the ultraviolet-blocking impurity benzophenone. We monitored the drop in performance and increase of benzophenone concentration in TPB plates with exposure to ultraviolet (UV) light, and demonstrate the correlation between these two variables. Based on the presence and initially exponential increase in the concentration of benzophenone observed, we propose that TPB degradation is a free radical-mediated photooxidation reaction, which is subsequently confirmed by displaying delayed degradation using a free radical inhibitor. Finally we show that the performance of wavelength-shifting coatings of the type envisioned for the LBNE experiment can be improved by 10-20%, with significantly delayed UV degradation, by using a 20% admixture of 4-tert-Butylcatechol.

  18. Liquid Argon Cryogenic Detector Calibration by Inelastic Scattering of Neutrons

    CERN Document Server

    Polosatkin, Sergey; Dolgov, Alexander

    2014-01-01

    A method for calibration of cryogenic liquid argon detector response to recoils with certain energy -8.2 keV - is proposed. The method utilizes a process of inelastic scattering of monoenergetic neutrons produced by fusion DD neutron generator. Features of kinematics of inelastic scattering cause sufficient (forty times) increase in count rate of useful events relative to traditional scheme exploited elastic scattering with the same recoil energy and compatible energy resolution. The benefits of the proposed scheme of calibration most well implemented with the use of tagged neutron generator as a neutron source that allows to eliminate background originated from casual coincidence of signals on cryogenic detector and additional detector of scattered neutrons.

  19. Characterization of SF6/Argon Plasmas for Microelectronics Applications; TOPICAL

    International Nuclear Information System (INIS)

    This report documents measurements in inductively driven plasmas containing SF(sub 6)/Argon gas mixtures. The data in this report is presented in a series of appendices with a minimum of interpretation. During the course of this work we investigated: the electron and negative ion density using microwave interferometry and laser photodetachment; the optical emission; plasma species using mass spectrometry, and the ion energy distributions at the surface of the rf biased electrode in several configurations. The goal of this work was to assemble a consistent set of data to understand the important chemical mechanisms in SF(sub 6) based processing of materials and to validate models of the gas and surface processes

  20. Low energy scattering in an argon and methane system

    International Nuclear Information System (INIS)

    The theory for an argon-methane scattering system and several calculations in both the close coupling and coupled states schemes are presented. The problem is reduced to the irreducible A, E, and T representations and calculations in all these symmetries are performed and combined. Methane is treated as a rigid rotor. Two interaction potentials are employed and both contain an angle dependent term. Compound state resonances in this system are studied extensively and characterized. Close coupling and coupled states cross sections are compared in calculations with both interaction potentials and in the A and E representations. Coupled states cross sections in all three representations are presented over a range of energies from 25 to 90 MeV

  1. Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching

    Directory of Open Access Journals (Sweden)

    Jolie M. Nokes

    2016-03-01

    Full Text Available We present a rapid, simple, and scalable approach to achieve superhydrophobic (SH substrates directly in commodity shrink wrap film utilizing Argon (Ar plasma. Ar plasma treatment creates a stiff skin layer on the surface of the shrink film. When the film shrinks, the mismatch in stiffness between the stiff skin layer and bulk shrink film causes the formation of multiscale hierarchical wrinkles with nano-textured features. Scanning electron microscopy (SEM images confirm the presence of these biomimetic structures. Contact angle (CA and contact angle hysteresis (CAH measurements, respectively, defined as values greater than 150° and less than 10°, verified the SH nature of the substrates. Furthermore, we demonstrate the ability to reliably pattern hydrophilic regions onto the SH substrates, allowing precise capture and detection of proteins in urine. Finally, we achieved self-driven microfluidics via patterning contrasting superhydrophilic microchannels on the SH Ar substrates to induce flow for biosensing.

  2. Attosecond Coherent Control of Single and Double Photoionization in Argon.

    Science.gov (United States)

    Hogle, C W; Tong, X M; Martin, L; Murnane, M M; Kapteyn, H C; Ranitovic, P

    2015-10-23

    Ultrafast high harmonic beams provide new opportunities for coherently controlling excitation and ionization processes in atoms, molecules, and materials on attosecond time scales by employing multiphoton two-pathway electron-wave-packet quantum interferences. Here we use spectrally tailored and frequency tuned vacuum and extreme ultraviolet harmonic combs, together with two phase-locked infrared laser fields, to show how the total single and double photoionization yields of argon can be coherently modulated by controlling the relative phases of both optical and electronic-wave-packet quantum interferences. This Letter is the first to apply quantum control techniques to double photoionization, which is a fundamental process where a single, high-energy photon ionizes two electrons simultaneously from an atom. PMID:26551112

  3. Dynamic resonances and tunnelling in the multiphoton ionization of argon

    International Nuclear Information System (INIS)

    We present results of wavepacket simulations for multiphoton ionization in argon. A single active electron model is applied to estimate the single-electron ionization rates and photoelectron energy distributions for λ = 390 nm light with intensities up to I = 2 x 1014 W cm-2. The multiphoton ionization rates are compared with R-matrix Floquet calculations and found to be in very good agreement. The photoelectron energy distribution is used to study the nature of ionization at the higher intensities. Our results are consistent with recent calculations and experiments which show the imprint of the tunnelling process in the multiphoton regime. For few-cycle intense pulses, we find that the strong modulation of intensity and increased bandwidth leads to dynamic mixing of the 3d and 5s resonances.

  4. The liquid argon TPC for the ICARUS experiment

    CERN Document Server

    Arneodo, F

    1997-01-01

    The ICARUS project aims at the realisation of a large liquid argon TPC to be run at the Underground Laboratories of Gran Sasso in Italy. An intense R&D; activity has put on firm grounds this new detector technology and experimentally confirmed its feasibility on a few ton scale. Based on these solid achievements, the collaboration is now confident of being able to build and safely operate a multi-kton detector. The reseach program of the experiment involves the systematic study of a wide spectrum of physical phenomena covering many orders of magnitude in the energy deposited in the detector: from the few MeV of solar neutrino interactions, to the about one GeV of the proton decay and atmospheric neutrinos, up to the higher energies of neutrinos from accelerators.

  5. Large area liquid argon detectors for interrogation systems

    International Nuclear Information System (INIS)

    Measurements of the efficiency, pulse shape, and energy and time resolution of liquid argon (LAr) detectors are presented. Liquefied noble gas-based (LNbG) detectors have been developed for the detection of dark matter and neutrinoless double-beta decay. However, the same qualities that make LNbG detectors ideal for these applications, namely their size, cost, efficiency, pulse shape discrimination and resolution, make them promising for portal screening and the detection of Special Nuclear Materials (SNM). Two 18-liter prototype detectors were designed, fabricated, and tested, one with pure LAr and the other doped with liquid Xe (LArXe). The LArXe detector presented the better time and energy resolution of 3.3 ns and 20% at 662 KeV, respectively. The total efficiency of the detector was measured to be 35% with 4.5% of the total photons detected in the photopeak.

  6. Response Uniformity of the ATLAS Liquid Argon Electromagnetic Calorimeter

    CERN Document Server

    Aharrouche, M; Di Ciaccio, L; El Kacimi, M; Gaumer, O; Gouanère, M; Goujdami, D; Lafaye, R; Laplace, S; Le Maner, C; Neukermans, L; Perrodo, P; Poggioli, L; Prieur, D; Przysiezniak, H; Sauvage, G; Wingerter-Seez, I; Zitoun, R; Lanni, F; Lü, L; Ma, H; Rajagopalan, S; Takai, H; Belymam, A; Benchekroun, D; Hakimi, M; Hoummada, A; Gao, Y; Stroynowsk, R; Aleksa, M; Carli, T; Fassnacht, P; Gianotti, F; Hervás, L; Lampl, W; Collot, J; Hostachy, J Y; Ledroit-Guillon, F; Malek, F; Martin, P; Viret, S; Leltchouk, M; Parsons, J A; Simion, S; Barreiro, F; Del Peso, J; Labarga, L; Oliver, C; Rodier, S; Barrillon, P; Benchouk, C; Djama, F; Hubaut, F; Monnier, E; Pralavorio, P; Sauvage, D; Serfon, C; Tisserant, S; Tóth, J; Banfi, D; Carminati, L; Cavalli, D; Costa, G; Delmastro, M; Fanti, M; Mandell, L; Mazzanti, M; Tartarelli, F; Kotov, K; Maslennikov, A; Pospelov, G; Tikhonov, Yu; Bourdarios, C; Fayard, L; Fournier, D; Iconomidou-Fayard, L; Kado, M; Parrour, G; Puzo, P; Rousseau, D; Sacco, R; Serin, L; Unal, G; Zerwas, D; Dekhissi, B; Derkaoui, J; EL Kharrim, A; Maaroufi, F; Cleland, W; Lacour, D; Laforge, B; Nikolic-Audit, I; Schwemling, Ph; Ghazlane, H; Cherkaoui El Moursli, R; Idrissi Fakhr-Eddine, A; Boonekamp, M; Kerschen, N; Mansoulié, B; Meyer, P; Schwindlingy, J; Lund-Jensen, B

    2007-01-01

    The construction of the ATLAS electromagnetic liquid argon calorimeter modules is completed and all the modules are assembled and inserted in the cryostats. During the production period four barrel and three endcap modules were exposed to test beams in order to assess their performance, ascertain the production quality and reproducibility, and to scrutinize the complete energy reconstruction chain from the readout and calibration electronics to the signal and energy reconstruction. It was also possible to check the full Monte Carlo simulation of the calorimeter. The analysis of the uniformity, resolution and extraction of constant term is presented. Typical non-uniformities of 0.5% and typical global constant terms of 0.6% are measured for the barrel and end-cap modules.

  7. Kinetic modeling of the Townsend breakdown in argon

    Energy Technology Data Exchange (ETDEWEB)

    Macheret, S. O.; Shneider, M. N. [Department of Mechanical and Aerospace Engineering, Princeton University, D-414 Engineering Quadrangle, Princeton, New Jersey 08544 (United States)

    2013-10-15

    Kinetic modeling of the Townsend breakdown in argon was performed in the “forward-back” approximation. The kinetic model was found to adequately describe the left branch of the Paschen curve, and the important role of ionization by fast ions and atoms near the cathode, as well as the increase in secondary emission coefficient in strong electric fields described in the literature, was confirmed. The modeling also showed that the electron energy distribution function develops a beam of high-energy electrons and that the runaway effect, i.e., the monotonic increase of the mean electron energy with the distance from the cathode, occurs at the left branch of the Paschen curve.

  8. Pulsed electron beam propagation in argon and nitrogen gas mixture

    International Nuclear Information System (INIS)

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N2). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively

  9. Low-energy ion implantation: Large mass fractionation of argon

    Science.gov (United States)

    Ponganis, K. V.; Graf, TH.; Marti, K.

    1993-01-01

    The isotropic signatures of noble gases in the atmospheres of the Earth and other planets are considerably evolved when compared to signatures observed in the solar wind. The mechanisms driving the evolution of planetary volatiles from original compositions in the solar accretion disk are currently poorly understood. Modeling of noble-gas compositional histories requires knowledge of fractionating processes that may have operated through the evolutionary stages. Since these gases are chemically inert, information on noble-gas fractionation processes can be used as probes. The importance of understanding these processes extends well beyond 'noble-gas planetology.' Trapped argon acquired by low-energy implantation (approximately less than 100 eV) into solids is strongly mass fractionated (approximately greater than or equal to 3 percent/amu). This has potential implications for the origin and evolution of terrestrial planet atmospheres.

  10. Primary argon laser trabeculoplasty in the treatment of glaucoma

    International Nuclear Information System (INIS)

    During the last ten years, argon laser trabeculoplasty has been shown to be a very useful tool in the treatment of glaucoma when medical therapy has failed. In the present study laser was used as primary therapy in 27 patients with newly detected glaucoma. Pretreatment with topical timolol gave an immediate pressure drop in all eyes, and the dreaded actue pressure rise after laser treatment was avoided. Upon follow-up examination after two years, more than half the patients had an intraocular pressure below 21 mm Hg without additional therapy. Primary laser trabeculoplasty was found to be a safe and time-saving procedure. Expenses and complications associated with medical therapy are reduced. Many patients may avoid lifelong daily instillation of eye drops. 11 refs., 2 tabs

  11. Development of membrane cryostats for large liquid argon neutrino detectors

    CERN Document Server

    Montanari, D; Gendotti, A; Geynisman, M; Hentschel, S; Loew, T; Mladenov, D; Montanari, C; Murphy, S; Nessi, M; Norris, B; Noto, F; Rubbia, A; Sharma, R; Smargianaki, D; Stewart, J; Vignoli, C; Wilson, P; Wu, S

    2015-01-01

    A new collaboration is being formed to develop a multi-kiloton Long-Baseline neutrino experiment that will be located at the Surf Underground Research Facility (SURF) in Lead, SD. In the present design, the detector will be located inside cryostats filled with 68,400 ton of ultrapure liquid argon (less than 100 parts per trillion of oxygen equivalent contamination). To qualify the membrane technology for future very large-scale and underground implementations, a strong prototyping effort is ongoing: several smaller detectors of growing size with associated cryostats and cryogenic systems will be designed and built at Fermilab and CERN. They will take physics data and test different detector elements, filtration systems, design options and installation procedures. In addition, a 35 ton prototype is already operational at Fermilab and will take data with single-phase detector in early 2016. After the prototyping phase, the multi-kton detector will be constructed. After commissioning, it will detect and study ne...

  12. Electron-ion recombination study in argon at atmospheric pressure

    International Nuclear Information System (INIS)

    This study deals with a wall-stabilized arc burning in argon at atmospheric pressure. A transient mode is obtained using a fast thyristor connected to the electrodes, which short-circuits the discharge. By means of two wavelengths laser interferometry and spectroscopy measurements we have determined the temporal changes of the electron density, ground state atom density and excited atom density. We have shown that, when the electric field is suppressed, the electron temperature rapidly decreases to the gas temperature before changing electron and atom densities. This phenomenon is applied to determine the gas temperature and to evaluate the role played by ionization in electron density balance. The coefficients of ambipolar diffusion, ionization and recombination and an apparent recombination coefficient are determined versus electron temperature and compared with theoretical values

  13. Grid pattern Argon Laser photocoagulation for diabetic diffuse macular edema

    Directory of Open Access Journals (Sweden)

    Karkhane R

    1998-05-01

    Full Text Available Purpose: to determine the effect of Grid pattern laser photocoagulation on diabetic diffuse macular edema with assessment of visual outcome. Patients & Methods: The author reviewed the medical records of 84 eyes of 62 patients with diabetic diffuse macular edema treated with Grid pattern green Argon laser photocoagulation in Farabi Eye Hospital between the years 1992-1995, the follow-up period was 16-48 months (average 24.55±6.42, median 28 mounths. Results: Visual acuity was improved in 11.9%; unchanged in 65.4% and worsened in 22.7% of eyes. Conclusion: In assessing long-term visual outcome, Grid laser photocoagulation is an effective modality in maintaining or improving visual acuity.

  14. Photodegradation mechanisms of tetraphenyl butadiene coatings for liquid argon detectors

    International Nuclear Information System (INIS)

    We report on studies of degradation mechanisms of tetraphenyl butadiene (TPB) coatings of the type used in neutrino and dark matter liquid argon experiments. Using gas chromatography coupled to mass spectrometry we have detected the ultraviolet-blocking impurity benzophenone. We monitored the drop in performance and increase of benzophenone concentration in TPB plates with exposure to ultraviolet (UV) light, and demonstrate the correlation between these two variables. Based on the presence and initially exponential increase in the concentration of benzophenone observed, we propose that TPB degradation is a free radical-mediated photooxidation reaction, which is subsequently confirmed by displaying delayed degradation using a free radical inhibitor. Finally we show that the performance of wavelength-shifting coatings of the type envisioned for the LBNE experiment can be improved by 10-20%, with significantly delayed UV degradation, by using a 20% admixture of 4-tert-Butylcatechol.

  15. Development of the Trigger Readout System for the Phase-I Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Xu, Hao; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and at instantaneous luminosities up to 1034cm-2s-1. An LHC upgrade is planned to enhance the luminosities to 2-3 x 1034cm-2s-1 and to deliver an integrated luminosity of about 300 fb-1 during Run 3 from 2019 through 2021. In order to improve the identification performance for electrons, photons, taus, jets, missing energy at high background rejection rates, an improved spatial granularity of the trigger primitives has been proposed. Therefore, a new trigger readout system is being designed to digitize and process the signals with higher spatial granularity. A demonstrator system has been developed and installed on the ATLAS detector to evaluate the technical and performance aspects. Analog signal parameters including noise and cross-talk have been analyzed. The performance of the new demonstrator system in the ...

  16. Development of the Trigger Readout System for Phase-I Upgrade of the ATLAS Liquid Argon Calorimeters

    CERN Document Server

    Xu, Hao; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and at instantaneous luminosities up to 10^34 cm^-2s^-1. An LHC upgrade is planned to enhance the luminosities to 2-3 x 10^34 cm^-2 s^-1 and to deliver an integrated luminosity of about 300 fb^-1 during Run 3 from 2019 through 2021. In order to improve the identification performance for electrons, photons, taus, jets, missing energy at high background rejection rates, an improved spatial granularity of the trigger primitives has been proposed. Therefore, a new trigger readout system is being designed to digitize and process the signals with higher spatial granularity. A demonstrator system has been developed and installed on the ATLAS detector to evaluate the technical and performance aspects. Analog signal parameters including noise and cross-talk have been analyzed. The performance of the new readout system is...

  17. Atmospheric dispersion of argon-41 from anuclear research reactor: measurement and modeling of plume geometry and gamma radiation field

    DEFF Research Database (Denmark)

    Lauritzen, Bent; Astrup, Poul; Drews, Martin; Jørgensen, Hans; Mikkelsen, Torben; Thykier-Nielsen, Søren; Aage, Helle Karina; Korsbech, Uffe C C; Bargholz, Kim; Rojas-Palma, Carlos; Van Ammel, Raf

    2003-01-01

    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine release of argon-41 from the BR1 research reactor in Mol, Belgium. Simultaneous measurements of plume geometry and radiation fields for argon-41 decay were performed as well as measurements of the argon...

  18. Study on H2S stress corrosion test of welded joint for X65 pipeline steel and numerical analysis

    Institute of Scientific and Technical Information of China (English)

    金晓军; 霍立兴; 张玉凤; 白秉仁; 李晓巍; 曹军

    2004-01-01

    The susceptibility of welded joint for the X65 pipeline steel to H2S stress corrosion cracking (SCC) is investigated. SCC tests on the steel are carried out in the environment based on NACE TM-01-77 solution with saturated gaseous H2S. The threshold stress intensity factor and crack propagation velocity are calculated according to wedge-opening loading (WOL) specimens. The three-dimensional elastic-plastic finite element analysis of WOL specimens is performed by using the FEM programming package ANSYS. Stress field and concentration of hydrogen distribution property ahead of the crack tip are obtained. This paper surveyed the microstructure of welded joint and studied on the mechanical properties of X65 pipeline steel. It provides experimental basis for studying stress corrosion. The results of numerical analysis are consistent with conclusions of stress corrosion test.

  19. Optimal thresholds for the estimation of area rain-rate moments by the threshold method

    Science.gov (United States)

    Short, David A.; Shimizu, Kunio; Kedem, Benjamin

    1993-01-01

    Optimization of the threshold method, achieved by determination of the threshold that maximizes the correlation between an area-average rain-rate moment and the area coverage of rain rates exceeding the threshold, is demonstrated empirically and theoretically. Empirical results for a sequence of GATE radar snapshots show optimal thresholds of 5 and 27 mm/h for the first and second moments, respectively. Theoretical optimization of the threshold method by the maximum-likelihood approach of Kedem and Pavlopoulos (1991) predicts optimal thresholds near 5 and 26 mm/h for lognormally distributed rain rates with GATE-like parameters. The agreement between theory and observations suggests that the optimal threshold can be understood as arising due to sampling variations, from snapshot to snapshot, of a parent rain-rate distribution. Optimal thresholds for gamma and inverse Gaussian distributions are also derived and compared.

  20. Search for an H-dibaryon with mass near 2m_Lambda in Y(1S) and Y(2S) decays

    CERN Document Server

    Kim, B H

    2013-01-01

    We report the results of a high-statistics search for H-dibaryon production in inclusive Y(1S) and Y(2S) decays. No indication of an H-dibaryon with mass near the M_H=2m_Lambda threshold is seen in either the H-> Lambda p pi- or Lambda-Lambda decay channels and 90% confidence level branching-fraction upper limits are set that are between one and two orders of magnitude below the measured branching fractions for inclusive Y(1S) and Y(2S) decays to antideuterons. Since Y(1,2S) decays produce flavor-SU(3)-symmetric final states, these results put stringent constraints on H-dibaryon properties. The results are based on analyses of 102 million Y(1S) and 158 million Y(2S) events collected with the Belle detector at the KEKB electron-positron collider.

  1. Determination of the number densities of argon metastables in argon-hydrogen plasma by absorption and self-absorption methods

    Energy Technology Data Exchange (ETDEWEB)

    Gavare, Z [Institute of Atomic Physics and Spectroscopy, University of Latvia, Skunu str. 4, Riga LV -1050 (Latvia); Goett, D [Institute for Low Temperature Plasma Physics, 17489 Greifswald (Germany); Pipa, A V [Institute for Low Temperature Plasma Physics, 17489 Greifswald (Germany); Roepcke, J [Institute for Low Temperature Plasma Physics, 17489 Greifswald (Germany); Skudra, A [Institute of Atomic Physics and Spectroscopy, University of Latvia, Skunu str. 4, Riga LV -1050 (Latvia)

    2006-08-15

    The number densities of Ar 3s{sup 2}3p{sup 5}4s levels have been measured by means of two methods: a self-absorption method with a mirror behind the discharge vessel and an absorption method with a high-frequency electrodeless discharge lamp. Concentrations ranging from 6 x 10{sup 7}-4 x 10{sup 9} cm{sup -3} were obtained for the Ar 3s{sup 2}3p{sup 5}4s levels, depending on the argon content (10-100% Ar) in Ar/H{sub 2} microwave plasma. The populations of various sublevels of measured resonant and metastable states coincide within the experimental errors. It was observed that values from measurements of both methods are in good agreement.

  2. On the nullification of threshold amplitudes

    OpenAIRE

    Gonera, Joanna

    2002-01-01

    The nullification of threshold amplitudes is considered within the conventional framework of quantum field theory. The relevant Ward identities for the reduced theory are derived both on path-integral and diagrammatic levels. They are then used to prove the vanishing of tree-graph threshold amplitudes.

  3. Threshold Effects in Coral Reef Fisheries

    OpenAIRE

    Crépin, Anne Sophie

    2003-01-01

    Coral reefs may naturally flip between coral-dominated and algae-dominated states, when species' stocks trespass some threshold levels. This essay uses a stylized model of a coral reef to show how fishing may induce flips towards more algae-dominated states. Threshold effects have consequences for fisheries management, which are analyzed for open access fisheries and sole ownership.

  4. Threshold Concepts, Systems and Learning for Sustainability

    Science.gov (United States)

    Sandri, Orana Jade

    2013-01-01

    This paper presents a framework for understanding the role that systems theory might play in education for sustainability (EfS). It offers a sketch and critique of Land and Meyer's notion of a "threshold concept", to argue that seeing systems as a threshold concept for sustainability is useful for understanding the processes of…

  5. Intelligence and Creativity: Over the Threshold Together?

    Science.gov (United States)

    Welter, Marisete Maria; Jaarsveld, Saskia; van Leeuwen, Cees; Lachmann, Thomas

    2016-01-01

    Threshold theory predicts a positive correlation between IQ and creativity scores up to an IQ level of 120 and no correlation above this threshold. Primary school children were tested at beginning (N = 98) and ending (N = 70) of the school year. Participants performed the standard progressive matrices (SPM) and the Test of Creative…

  6. Applying Threshold Concepts to Finance Education

    Science.gov (United States)

    Hoadley, Susan; Wood, Leigh N.; Tickle, Leonie; Kyng, Tim

    2016-01-01

    Purpose: The purpose of this paper is to investigate and identify threshold concepts that are the essential conceptual content of finance programmes. Design/Methodology/Approach: Conducted in three stages with finance academics and students, the study uses threshold concepts as both a theoretical framework and a research methodology. Findings: The…

  7. Detectability thresholds of general modular graphs

    CERN Document Server

    Kawamoto, Tatsuro

    2016-01-01

    We investigate the detectability thresholds of various modular structures in the stochastic block model. Our analysis reveals how the detectability threshold is related to the details of the modular pattern, including the hierarchy of the clusters. We show that certain planted structures are impossible to infer regardless of their fuzziness.

  8. Thresholding magnetic resonance images of human brain

    Institute of Scientific and Technical Information of China (English)

    Qing-mao HU; Wieslaw L NOWINSKI

    2005-01-01

    In this paper, methods are proposed and validated to determine low and high thresholds to segment out gray matter and white matter for MR images of different pulse sequences of human brain. First, a two-dimensional reference image is determined to represent the intensity characteristics of the original three-dimensional data. Then a region of interest of the reference image is determined where brain tissues are present. The non-supervised fuzzy c-means clustering is employed to determine: the threshold for obtaining head mask, the low threshold for T2-weighted and PD-weighted images, and the high threshold for T1-weighted, SPGR and FLAIR images. Supervised range-constrained thresholding is employed to determine the low threshold for T1-weighted, SPGR and FLAIR images. Thresholding based on pairs of boundary pixels is proposed to determine the high threshold for T2- and PD-weighted images. Quantification against public data sets with various noise and inhomogeneity levels shows that the proposed methods can yield segmentation robust to noise and intensity inhomogeneity. Qualitatively the proposed methods work well with real clinical data.

  9. Voting on Thresholds for Public Goods

    DEFF Research Database (Denmark)

    Rauchdobler, Julian; Sausgruber, Rupert; Tyran, Jean-Robert

    2010-01-01

    Introducing a threshold in the sense of a minimal project size transforms a public-good game with an inefficient equilibrium into a coordination game with a set of Pareto-superior equilibria. Thresholds may therefore improve efficiency in the voluntary provision of public goods. In our one...

  10. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    Science.gov (United States)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  11. Provably secure robust threshold partial blind signature

    Institute of Scientific and Technical Information of China (English)

    CAO Zhenfu; ZHU Haojin; LU Rongxing

    2006-01-01

    Threshold digital signature and blind signature are playing important roles in cryptography as well as in practical applications such as e-cash and e-voting systems.Over the past few years, many cryptographic researchers have made considerable headway in this field. However, to our knowledge, most of existing threshold blind signature schemes are based on the discrete logarithm problem. In this paper, we propose a new robust threshold partial blind signature scheme based on improved RSA cryptosystem.This scheme is the first threshold partial blind signature scheme based on factoring, and the robustness of threshold partial blind signature is also introduced. Moreover, in practical application, the proposed scheme will be especially suitable for blind signature-based voting systems with multiple administrators and secure electronic cash systems to prevent their abuse.

  12. Summary of DOE threshold limits efforts

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has been developing the concept of threshold quantities for use in determining which waste materials may be disposed of as nonradioactive waste in DOE sanitary landfills. Waste above a threshold level could be managed as radioactive or mixed waste (if hazardous chemicals are present); waste below this level would be handled as sanitary waste. After extensive review of a draft threshold guidance document in 1985, a second draft threshold background document was produced in March 1986. The second draft included a preliminary cost-benefit analysis and quality assurance considerations. The review of the second draft has been completed. Final changes to be incorporated include an in-depth cost-benefit analysis of two example sites and recommendations of how to further pursue (i.e. employ) the concept of threshold quantities within the DOE. 3 references

  13. Optical Properties of In2S3 Thin Films

    Science.gov (United States)

    Bodnar, I. V.; Polubok, V. A.

    2014-11-01

    Laser deposition on substrates at temperatures of 480, 610, and 720 K has been used to produce films of the compound In2S3. Single crystals of this compound grown by the Bridgeman-Stockbarger method are used as targets. The composition is determined by x-ray spectral analysis and the structure of the resulting crystals and films is determined by x-ray methods. Both the crystals and the films crystallize into a tetragonal spinel structure. Transmission spectra in the region of the intrinsic absorption edge are used to determine the width of the band gap and the refractive index of the In2S3 films. The band gap width is found to increase as the substrate temperature is raised.

  14. Hydrogen atom in 2s state in a laser field

    Directory of Open Access Journals (Sweden)

    Vučić Svetlana

    2012-01-01

    Full Text Available The hydrogen atom in the 2s state exposed to a linearly polarized laser field is studied by using the non-perturbative non-Hermitian Floquet theory. The electronic density of the quasi-energy H(2s state versus the electron coordinate is analyzed. We conclude that the decay of an atom in a low-intensity non-resonant laser field occurs from the asymptotically distant part of the initial state. On the other hand, the process of electron emission in a resonant laser field is governed by the excited-bound-statepart of the resonance wave function. With an increase in the intensity and by increasing the degree of excitation of the initial state not too high, the electron is ionized at smaller distances from the nucleus. [Projekat Ministarstva nauke Republike Srbije, br. 171020

  15. A dual type gridded ionization chamber as purity monitor of liquid argon

    International Nuclear Information System (INIS)

    The liquid argon time projection chamber (LATPC) is currently developed for detecting solar neutrons or proton decays. A dual type gripped ionization chamber with different drift distances of liberated electrons is constructed to measure the purity of liquid argon. A purification system of gaseous argon for LATPC with a drift space of about 150 cm is also constructed. The performances of both the dual type gripped ionization chamber and the purifier are tested seeking to develop a large scale LATPC. It is demonstrated that the attenuation length of electrons and also the impurity level in liquid argon can be well determined in the dual type gripped ionization chamber. In the case of the purifier, there still remains unknown low-level impurities in purified liquid argon. The results are compared with UCI data which were obtained with liquid argon mixed with water vapor. the same tendency is found in the attenuation length of their data as in the present results. This seems to suggest the dominant impurity remaining in the purifier is still water. The present apparatus was previously tested with liquid argon purified by other purification system of Ti-Ba getters. The attenuation length obtained by those tests was almost 100 cm. (N.K.)

  16. Electrowinning Al from Al2S3 in Molten Salt

    OpenAIRE

    Xiao, Y; Van der Plas, D.W.; Bohte, J.; Lans, S.C.; Van Sandwijk, A.; Reuter, M.A.

    2007-01-01

    In order to investigate an alternative process for the production of primary aluminum via a sulfide intermediate, the electrochemical behavior of Al2S3 in molten salt has been studied on a laboratory scale. The effects of electrolyte composition, temperature, and cell design on the cell performance have been investigated. Temperature and cryolite addition have positive effects on the current density. Increasing the anode-to-cathode surface area (closer to unity) and shortening the interelectr...

  17. Search for the Bc(2S) meson at CMS

    CERN Document Server

    Alves, Bruno

    2016-01-01

    The work was developed during the CERN Summer Student Programme, from June 27th to September 14th. We looked for the excited state of the Bc meson that has already been found in the ATLAS experiment. Optimized cuts were obtained both for the Bc and for the Bc(2S) mesons. The final results are not conclusive, but indicate the presence of a signal. Run 2 data set (2015-2016) is required.

  18. The Cometa Consortium and the PI2S2 project .

    Science.gov (United States)

    Becciani, U.

    The new grid e-Infrastructure in Sicily is offering new perspectives and important resources and starts to give new great opportunity for research using the HPC resources. We will show the infrastructure of the Cometa Consortium, the main activities of the PI2S2 project and the new challenges, mainly in the HPC area, that the project is carrying out. A simple but useful procedure for running HPC is also described.

  19. Optical and Thermal Properties of In2S3

    Directory of Open Access Journals (Sweden)

    Faycel Saadallah

    2011-01-01

    Full Text Available Photothermal deflection spectroscopy (PDS is carried out in order to investigate thermal and optical properties of Al doped In2S3. The influence of thermal annealing on its gap energy as well as its thermal properties is revealed. In this way, we notice that thermal conductivity is increased and the gap energy is reduced. These features are probably due to the improvement of the crystalline structure of the sample.

  20. H2S removal from biogas using bioreactors: a review

    Directory of Open Access Journals (Sweden)

    E. Dumont

    2015-01-01

    Full Text Available This review aims to provide an overview of the bioprocesses used for the removal of H2S from biogas. The ability of aerobic and anoxic bioreactors (biotrickling filters, bioscrubbers, and a combination of chemical scrubbers and bioreactors to perform the degradation of H2S is considered. For each operating mode (aerobic and anoxic, the bioprocesses are presented, the operating conditions affecting performance are summarized, the state of the art of research studies is described and commercial applications are given. At laboratory-scale, whatever their operating mode, biological processes are effective for biogas cleaning and provide the same performance. The clogging of the packed bed due to the deposit of elemental sulfur S0 and biomass accumulation clearly represents the main drawback of bioprocesses. Although elimination capacities (EC determined at laboratory-scale can be very high, EC should not be higher than 90 g m-3 h-1 at industrial-scale in order to limit clogging effects. For aerobic processes, the need to control the oxygen mass transfer accurately remains a key issue for their development at full-scale. As a result, the aerobic processes alone are probably not the most suitable bioprocesses for the treatment of biogas highly loaded with H2S. For anaerobic bioprocesses using nitrate as an electron acceptor, the scale-up of the laboratory process to a full-size plant remains a challenge. However, the use of wastewater from treatment plants, which constitutes a cheap source of nitrates, represents an interesting opportunity for the development of innovative bioprocesses enabling the simultaneous removal of H2S and nitrates.

  1. Synovial fluid phospholipase A2s and inflammation.

    OpenAIRE

    Gonzalez-Buritica, H; Khamashita, M A; Hughes, G R

    1989-01-01

    The activation of phospholipase A2 is believed to have an important role in the inflammatory process owing to its induction of eicosanoids, platelet activating factor, and other mediators. Soluble phospholipase A2 has been associated with exudates in different inflammatory conditions. In this review the general physiology and control of this enzyme and, in particular, the most recent findings on human synovial fluid phospholipase A2s are discussed.

  2. Seismic Wave Recording by 2S-Seismographs

    CERN Document Server

    Gurcan, R

    1999-01-01

    Researchers of seismic waves may construct a new seismographic recording adding one seismometer to each component of a conventional seismic station. The two identical conventional seismometers are set up in position of perpendicular and are connected in parallel feeding one recording device (digital or analog). This use of the seismometers (which they may be both horizontal or, one is vertical) is called "two seismometers seismograph" or simply "2S-S". 2S-seismograph performs new capabilities: 1.-it cause to a higher gain which is based on directly ground motion energy from the two orthogonal components of signals, 2.-it has a much smoother response curve than that of the single use of seismometer,3.-because of this smoothing, we are able to apply a higher level of static magnification which cause to widening the response at its both ends, therefore, 2S-System enable to work with a larger dynamic range frequency, 4.- it has a directional and motional filtering property which may be used in some cases advantag...

  3. Pru du 2S albumin or Pru du vicilin?

    Science.gov (United States)

    Garino, Cristiano; De Paolis, Angelo; Coïsson, Jean Daniel; Arlorio, Marco

    2015-06-01

    A short partial sequence of 28 amino acids is all the information we have so far about the putative allergen 2S albumin from almond. The aim of this work was to analyze this information using mainly bioinformatics tools, in order to verify its rightness. Based on the results reported in the paper describing this allergen from almond, we analyzed the original data of amino acids sequencing through available software. The degree of homology of the almond 12kDa protein with any other known 2S albumin appears to be much lower than the one reported in the paper that firstly described it. In a publicly available cDNA library we discovered an expressed sequence tag which translation generates a protein that perfectly matches both of the sequencing outputs described in the same paper. A further analysis indicated that the latter protein seems to belong to the vicilin superfamily rather than to the prolamin one. The fact that also vicilins are seed storage proteins known to be highly allergenic would explain the IgE reactivity originally observed. Based on our observations we suggest that the IgE reactive 12kDa protein from almond currently known as Pru du 2S albumin is in reality the cleaved N-terminal region of a 7S vicilin like protein. PMID:25854802

  4. Argon Kα measurement on DIII endash D by Ross filters technique (abstract)

    International Nuclear Information System (INIS)

    Techniques to reduce the heat flux to the divertor plates in tokamak power plants and the consequent erosion of, and subsequent damage to the divertor target plates include the injection of impurities such as argon, that can dissipate the energy (through radiative or collisional processes) before it reaches the target plates. An important issue with this type of scheme is poisoning of the plasma core by the impurities introduced in the divertor region. Subsequently, there is a desire to measure the profiles of the injected impurities in the core. X-ray Ross filters with an effective narrow band pass centered on the argon Kα line at 3.2 keV, have been installed on two of the existing x-ray arrays on DIII endash D in order to help determine the argon concentration profiles. Emissivity profiles of the Kα lines and the emissivity profiles for the argon enhanced continuum can be inferred from the inverted filtered x-ray brightness signals if Te, ne, and Ar18+ profiles are known. The MIST code is used to couple the filtered x-ray signals to the time dependent measurements of Te and ne. Further, the Ar16+ profiles measured by charge transfer spectroscopy, are used as a constraint on the MIST code runs to calculate Ar18+ profiles and unfold the argon emissivity profiles. A discussion of the Ross filters, the DIII endash D argon data, and the data analysis scheme for inferring argon emissivity profiles will be discussed. Estimates of the total argon concentration in the core determined from this technique in DIII endash D argon puff experiments will be presented. copyright 1999 American Institute of Physics

  5. Design Principles and Operational Results of the Cryogenic System for the ATLAS Liquid Argon Calorimeter

    CERN Document Server

    Fabre, C; Chalifour, M; Gonidec, G; Passardi, Giorgio; Petit, P; Pezzetti, M; Wicek, F

    2009-01-01

    The ATLAS liquid argon calorimeter housed in three independent cryostats containing a total argon volume of about 78 m3 has been installed in the underground cavern. The three detectors have been cooled down following stringent temperature gradient limits and have been filled with liquid argon. The cryostats are now in a stable condition for periods going up to almost two years. The temperature uniformity within each of the three detector volumes is found to be within 70 mK rms, while the temperature stability stays below 5 mK rms.

  6. Effect of secondary emission on the afterglow of argon with negatively charged dust particles

    International Nuclear Information System (INIS)

    A theoretical model for an argon/dusty plasma afterglow in presence of nano-sized dust particles with large density is developed. According to the model, in the plasma afterglow the electrons are generated in metastable collisions and in the secondary emission by collisions of ions with electrodes. By using the model and experimental time-dependencies for metastable density and electrode bias, the time-dependencies for electron density in argon/dusty plasma afterglow are calculated. The effect of secondary emission on electron generation in argon/dusty plasma afterglow is analyzed.

  7. The production of regular pyramids on argon ion bombarded surfaces of copper crystals

    International Nuclear Information System (INIS)

    Argon ion bombardment of poly-crystalline copper is shown to produce pyramid covered surfaces on grains having orientation in particular high index direction. Single crystals cut in similar direction also show pyramid covered surfaces when bombarded with 40 keV argon ions. Evidence is presented to show that the dominant parameter contributing to pyramid production is crystallographic, rather than impurity-induced as proposed in earlier works. The pyramids are of such regular size, shape and spacing that light is selectively absorbed and for 40 keV argon ion bombardment, only light of red colour is reflected from an initially plane surface. (Auth.)

  8. Cryopumping hydrogen isotope mixtures in MFTF-B with and without argon adsorbent

    International Nuclear Information System (INIS)

    Mixtures of hydrogen isotopes, primarily deuterium (D2), protium-deuterium (HD), and protium (H2) must be pumped by the vacuum system in the Mirror Fusion Test Facility at Lawrence Livermore National Laboratory. In this study, we used argon as an adsorbent for cryopumping these isotopes at 4.2 K and found that deuterium will displace already adsorbed protium. Thus, when we pump mixtures of the two, sufficient argon must be supplied to adsorb both species. We also found that without argon, deuterium will cryptrap protium in accord with Raoult's law

  9. Ramsey Number of K2,s+1 vs. K1,n%关于K2,s+1 VS,K1,n的Ramsey数

    Institute of Scientific and Technical Information of China (English)

    秦大伟; 沈大鹏

    2007-01-01

    It is shown that the Ramsey number r(K2,s+1, K1,n) ≤ n + √sn+ (s + 3)/2 + o(1) for large n, and r(K2,s+1, K1,n)∈{(q-1)2/s+1,-(q-1)2/s+2},wheren: (q-1)2/s-q+2 and q is a prime power such that s|(q - 1).

  10. Development of a Laser Probe for Argon Isotope Studies.

    Science.gov (United States)

    McConville, Paul

    Available from UMI in association with The British Library. The first objective of this study was to develop a laser outgassing facility for argon isotope studies. Apart from the laser and construction of the laser sample port, existing vacuum and mass spectrometer systems were used. Laser performance and optimum operating conditions were investigated. The second objective was test and evaluate the laser extraction technique by studies of simple geological samples. Previous laser ^{40} Ar-^{39}Ar dating studies by other workers had not systematically established the basis or characteristics of the method. Results from laser and complementary stepped heating studies of the ^{40}Ar-^ {39}Ar dating standard hornblende, hb3gr; a phlogopite sample from the Palabora (Phalaborwa) Complex; and biotites in a thin section of the Hamlet Bjerg granite from East Greenland, verified that: (1) Laser extraction reproduced within experimental error the stepped heating ^{40}Ar-^ {39}Ar and K-Ar ages of simple samples. (2) The precision of the technique i.e. the amount of sample required to give reliable ages, was limited in the present experiments largely by the level of the blanks and backgrounds to 10-100 ug samples. (3) Sample outgassing appeared to be limited to the order of 10 um outside the physical size of the laser pit, consistent with other estimates of the spatial definition in the literature. This could be understood by thermal diffusion and the length of the laser pulse. (4) The efficiency of the laser pulse in melting and outgassing mineral samples was shown to be dependent on silicate latent heats and mineral absorption at the laser wavelength. In addition, the ^{40} Ar-^{39}Ar age of the geologically significant Palabora Complex was determined as (2053 +/- 5) Ma. Excess argon led to a discrepancy between the laser and stepped heating ages of biotite and muscovite, (405 +/- 5) Ma, and laser ages of feldspars (510 +/- 20) Ma in the Hamlet Bjerg granite. This illustrated

  11. Radiation stimulated changes in the transmission of chalcogenide glasses As2S3-Ge2S3

    International Nuclear Information System (INIS)

    The radiation - optical properties of chalcogenide glass-like semiconductors systems As2S3-Ge2S3 in the field of topological 2D-3D of phase transition are investigated. It is shown, that a gamma irradiation by an absorbed doze 4.4·106 Gy results in long-wave shift of a spectral position of their edge of optical passing. The observable effect depends on a structural type of researched glasses and essentially varies near to 2D-3D of phase transition. Two making shifts of an edge of passing are detected: static, remaining a constant long time after irradiation and dynamic, gradually damping during 2-3 months. It is supposed, that the microstructural mechanism of the data changes is stipulated by processes coordination defect creation in a structural framework of samples

  12. Hyper-arousal decreases human visual thresholds.

    Directory of Open Access Journals (Sweden)

    Adam J Woods

    Full Text Available Arousal has long been known to influence behavior and serves as an underlying component of cognition and consciousness. However, the consequences of hyper-arousal for visual perception remain unclear. The present study evaluates the impact of hyper-arousal on two aspects of visual sensitivity: visual stereoacuity and contrast thresholds. Sixty-eight participants participated in two experiments. Thirty-four participants were randomly divided into two groups in each experiment: Arousal Stimulation or Sham Control. The Arousal Stimulation group underwent a 50-second cold pressor stimulation (immersing the foot in 0-2° C water, a technique known to increase arousal. In contrast, the Sham Control group immersed their foot in room temperature water. Stereoacuity thresholds (Experiment 1 and contrast thresholds (Experiment 2 were measured before and after stimulation. The Arousal Stimulation groups demonstrated significantly lower stereoacuity and contrast thresholds following cold pressor stimulation, whereas the Sham Control groups showed no difference in thresholds. These results provide the first evidence that hyper-arousal from sensory stimulation can lower visual thresholds. Hyper-arousal's ability to decrease visual thresholds has important implications for survival, sports, and everyday life.

  13. Reinterpreting several narrow `resonances' as threshold cusps

    CERN Document Server

    Bugg, D V

    2004-01-01

    The threshold pbar-p peak in BES data for J/\\Psi to gamma-pbar-p may be fitted as a cusp. It arises from the well known threshold peak in pbar-p elastic scattering due to annihilation. Several similar examples are discussed. The PS185 data for pbar-p to Lambdabar-Lambda require an almost identical cusp at the Lambdabar-Lambda threshold. There is also a cusp at the Sigma-N threshold in Kminus-d to piminus-Lambda-p. Similar cusps are likely to arise at thresholds for all 2-body de-excitation processes, providing the interaction is attractive; likely examples are Lambda-pbar, Sigma-pbar, and Kbar-Lambda. The narrow peak observed by Belle at 3872 MeV in piplus-piminus-J/Psi may be a 1++ cusp due to the Dbar-D* threshold. The narrow Xi*(1862) observed by NA49 may be due to a threshold cusp in Sigma(1385)-Kbar coupled to Xi-pi and Sigma-Kbar. The relation of cusps to known resonances such as fo(980) is discussed.

  14. Variable Threshold MOSFET Approach (Through Dynamic Threshold MOSFET) For Universal Logic Gates

    CERN Document Server

    Ragini, K; Jinaga, B C; 10.5121/vlsic.2010.1104

    2010-01-01

    In this article, we proposed a Variable threshold MOSFET(VTMOS)approach which is realized from Dynamic Threshold MOSFET(DTMOS), suitable for sub-threshold digital circuit operation. Basically the principle of sub- threshold logics is operating MOSFET in sub-threshold region and using the leakage current in that region for switching action, there by drastically decreasing power. To reduce the power consumption of sub-threshold circuits further, a novel body biasing technique termed VTMOS is introduced .VTMOS approach is realized from DTMOS approach. Dynamic threshold MOS (DTMOS) circuits provide low leakage and high current drive, compared to CMOS circuits, operated at lower voltages. The VTMOS is based on operating the MOS devices with an appropriate substrate bias which varies with gate voltage, by connecting a positive bias voltage between gate and substrate for NMOS and negative bias voltage between gate and substrate for PMOS. With VTMOS, there is a considerable reduction in operating current and power di...

  15. Influences of the propyl group on the van der Waals structures of 4-propylaniline complexes with one and two argon atoms studied by electronic and cationic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhijun [School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003 (China); Gu, Quanli [School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003 (China); Department of Chemistry, University of Oklahoma, Norman, Oklahoma 73019 (United States); Trindle, Carl O., E-mail: cot@virginia.edu [Chemistry Department, University of Virginia, Charlottesville, Virginia 22904 (United States); Knee, J. L., E-mail: jknee@wesleyan.edu [Chemistry Department, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2015-07-21

    4-propylaniline complexes with one and two argon atoms formed in the molecular beam were studied in the first excited electronic state, S{sub 1}, using resonance enhanced two-photon ionization spectroscopy and in the cation ground state, D{sub 0}, using mass analyzed threshold ionization spectroscopy. The combination of electronic and cationic spectra of the clusters allows two conformations to be identified in both aniline-Ar{sub 1} and aniline-Ar{sub 2}, which are assigned to either the gauche configuration or anti-configuration of 4-propylaniline. The gauche isomer exhibits complex bands shifted 29 cm{sup −1} and 89 cm{sup −1} from the S{sub 1} origin bands and 83 cm{sup −1} and 148 cm{sup −1} from the ionization potential assigned to the Ar{sub 1} and Ar{sub 2} complexes, respectively. For the anti-rotamer, the corresponding shifts actually become nearly additive, 53 cm{sup −1} and 109 cm{sup −1} for the S{sub 1} origin bands, and 61 cm{sup −1} and 125 cm{sup −1} for the ionization potentials. Ab initio calculations provide insights into the influences of the propyl and amino groups on the positions of the argon atoms within the clusters. In addition, the binding energy of one argon with the gauche isomer of 4-propylaniline has been measured to be 550 ± 5 cm{sup −1} in the D{sub 0} state, 496 ± 5 cm{sup −1} in the S{sub 1} state, and 467 ± 5 cm{sup −1} in the neutral ground state, S{sub 0}.

  16. Bethe-Salpeter wave functions of $\\eta_c(2S)$ and $\\psi(2S)$ states from full lattice QCD

    CERN Document Server

    Nochi, Kazuki; Sasaki, Shoichi

    2016-01-01

    We discuss the internal structure of radially excited charmonium mesons based on the equal-time and Coulomb gauge Bethe-Salpeter (BS) amplitudes, which are obtained in lattice QCD. Our simulations are performed with a relativistic heavy-quark action for the charm quark on the 2+1 flavor PACS-CS gauge configurations at the lightest pion mass, $M_{\\pi}=156(7)$ MeV. The variational method is applied to the study of optimal charmonium operator for ground and first excited states of $S$-wave charmonia. We successfully calculate the BS wave functions of $\\eta_c(2S)$ and $\\psi(2S)$ states, as well as $\\eta_c(1S)$ and $J/\\psi$ states, and then estimate the root-mean-square radii of both the $1S$ and $2S$ charmonium states. We also examine whether a series of the BS wave functions from the ground state to excited states can be described by a single set of the spin-independent and spin-dependent interquark potentials with a unique quark mass. It is found that the quark kinetic mass and, both the central and spin-spin c...

  17. Pseudorandom Generators for Polynomial Threshold Functions

    OpenAIRE

    Meka, Raghu; Zuckerman, David

    2009-01-01

    We study the natural question of constructing pseudorandom generators (PRGs) for low-degree polynomial threshold functions (PTFs). We give a PRG with seed-length log n/eps^{O(d)} fooling degree d PTFs with error at most eps. Previously, no nontrivial constructions were known even for quadratic threshold functions and constant error eps. For the class of degree 1 threshold functions or halfspaces, we construct PRGs with much better dependence on the error parameter eps and obtain a PRG with se...

  18. Learning Optimal Nonlinearities for Iterative Thresholding Algorithms

    Science.gov (United States)

    Kamilov, Ulugbek S.; Mansour, Hassan

    2016-05-01

    Iterative shrinkage/thresholding algorithm (ISTA) is a well-studied method for finding sparse solutions to ill-posed inverse problems. In this letter, we present a data-driven scheme for learning optimal thresholding functions for ISTA. The proposed scheme is obtained by relating iterations of ISTA to layers of a simple deep neural network (DNN) and developing a corresponding error backpropagation algorithm that allows to fine-tune the thresholding functions. Simulations on sparse statistical signals illustrate potential gains in estimation quality due to the proposed data adaptive ISTA.

  19. Production of Heavy Quarks Close to Threshold

    OpenAIRE

    Adel, K.; Ynduráin, F. J.

    1995-01-01

    We calculate production by vector and axial currents of heavy quark pairs ($c\\bar{c}$, $b\\bar{b}$, $t\\bar{t}$) close to threshold. We take into account strong interaction contributions (including radiative corrections and leading nonperturbative effects) by using the Fermi-Watson final state interaction theorem. We use the results obtained to compare with experiment for open production of $c\\bar{c}$, $b\\bar{b}$ near threshold, and to give a reliable estimate of the so-called ``threshold effec...

  20. Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn

    International Nuclear Information System (INIS)

    This paper aims at defining precisely, the threshold limits for several trace elements (Cu, Ni, Sn or Zn) which correspond to the maximum amount that could be incorporated into a standard clinker whilst reaching the limit of solid solution of its four major phases (C3S, C2S, C3A and C4AF). These threshold limits were investigated through laboratory synthesised clinkers that were mainly studied by X-ray Diffraction and Scanning Electron Microscopy. The reference clinker was close to a typical Portland clinker (65% C3S, 18% C2S, 8% C3A and 8% C4AF). The threshold limits for Cu, Ni, Zn and Sn are quite high with respect to the current contents in clinker and were respectively equal to 0.35, 0.5, 0.7 and 1 wt.%. It appeared that beyond the defined threshold limits, trace elements had different behaviours. Ni was associated with Mg as a magnesium nickel oxide (MgNiO2) and Sn reacted with lime to form a calcium stannate (Ca2SnO4). Cu changed the crystallisation process and affected therefore the formation of C3S. Indeed a high content of Cu in clinker led to the decomposition of C3S into C2S and of free lime. Zn, in turn, affected the formation of C3A. Ca6Zn3Al4O15 was formed whilst a tremendous reduction of C3A content was identified. The reactivity of cements made with the clinkers at the threshold limits was followed by calorimetry and compressive strength measurements on cement paste. The results revealed that the doped cements were at least as reactive as the reference cement.

  1. Dynamic range compression in a liquid argon calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, W.E. [Univ. of Pittsburgh, PA (United States); Lissauer, D.; Radeka, V.; Rescia, S.; Takai, H. [Brookhaven National Lab., Upton, NY (United States); Wingerter-Seez, I. [LAPP, Annecy-le-Vieux (France)

    1996-12-31

    The anticipated range of particle energies at the LHC, coupled with the need for precision, low noise calorimetry makes severe demands on the dynamic range of the calorimeter readout. A common approach to this problem is to use shapers with two or more gain scales. In this paper, the authors describe their experience with a new approach in which a preamplifier with dynamic gain compression is used. An unavoidable consequence of dynamic gain adjustment is that the peaking time of the shaper output signal becomes amplitude dependent. The authors have carried out a test of such a readout system in the RD3 calorimeter, a liquid argon device with accordion geometry. The calibration system is used to determine both the gain of the individual channels as well as to map the shape of the waveform as a function of signal amplitude. A new procedure for waveform analysis, in which the fitted parameters describe the impulse response of the system, permits a straightforward translation of the calibration waveform to the waveform generated by a particle crossing the ionization gap. They find that the linearity and resolution of the calorimeter is equivalent to that obtained with linear preamplifiers, up to an energy of 200 GeV.

  2. Interaction of an argon plasma jet with a silicon wafer

    Science.gov (United States)

    Engelhardt, Max; Pothiraja, Ramasamy; Kartaschew, Konstantin; Bibinov, Nikita; Havenith, Martina; Awakowicz, Peter

    2016-04-01

    A filamentary discharge is ignited in an argon plasma jet under atmospheric pressure conditions. The gas discharge is characterized with voltage-current measurements, optical emission spectroscopy and an ICCD-camera with a high temporal resolution down to 10 ns. In the effluent of the plasma jet, filaments come into contact with the surface of a silicon wafer and modify it, namely etching traces are produced and microcrystals are deposited. These traces are studied with optical and electron microscopes. The material of the deposited microcrystals and the surface modifications of the silicon wafer are analyzed with Raman microspectroscopy. Amorphous silicon is found within the etching traces. The largest part of the deposited microcrystals are composed of nitratine (NaNO3) and some of them are calcite (CaCO3). Analyzing the possible reasons for the silicon wafer modifications we come to the conclusion that plasmoids, which are produced near the substrate surface by interaction with ionization waves, are a plausible explanation for the observed surface modifications of the silicon wafer.

  3. State-selective radiative recombination cross sections of argon ions

    International Nuclear Information System (INIS)

    The n-, (n,l)- and fine-structure level state-selective radiative recombinations (RR) cross sections of argon ions Ar18+,Ar13+,Ar7+ and Ar+ are obtained with the semi-classical Kramer formula, the relativistic self-consistent field (RSCF) method and the relativistic configuration interaction (RCI) method. It is found that for the highly charged ions with few electrons, the cross sections calculated with these three methods are in good agreement with each other. But as the number of electrons increases, the Kramer formula deviates from the RSCF and RCI results. For instance, when the energy of the incident electron is larger than 100 eV, the n-state selective cross sections of Ar7+ calculated from the Kramer formula are underestimated for more than 50%. The RSCF results are in general agreement with the RCI results. However, for the low charged ions, a clear distinction appears due to the strong configuration interaction, especially near the Cooper minimum. The n-resolved (n≤10) and total Maxwellian averaged rate coefficients are calculated, and the analytic fitting parameters are also provided. -- Highlights: ► The RR cross sections of Ar18+, Ar13+, Ar7+ and Ar+ are obtained. ► The Kramer formula, the relativistic self-consistent field and RCI methods are used. ► Results from three methods are compared with each other.

  4. Uranium (III) precipitation in molten chloride by wet argon sparging

    Science.gov (United States)

    Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis

    2016-06-01

    In the context of pyrochemical processes for nuclear fuel treatment, the precipitation of uranium (III) in molten salt LiCl-CaCl2 (30-70 mol%) at 705 °C is studied. First, this molten chloride is characterized with the determination of the water dissociation constant. With a value of 10-4.0, the salt has oxoacid properties. Then, the uranium (III) precipitation using wet argon sparging is studied. The salt is prepared using UCl3 precursor. At the end of the precipitation, the salt is totally free of solubilized uranium. The main part is converted into UO2 powder but some uranium is lost during the process due to the volatility of uranium chloride. The main impurity of the resulting powder is calcium. The consequences of oxidative and reductive conditions on precipitation are studied. Finally, coprecipitation of uranium (III) and neodymium (III) is studied, showing a higher sensitivity of uranium (III) than neodymium (III) to precipitation.

  5. Scintillation Light from Cosmic-Ray Muons in Liquid Argon

    CERN Document Server

    Whittington, Denver

    2014-01-01

    This paper reports the results of the first experiment to directly measure the properties of the scintillation light generated by minimum ionizing cosmic-ray muons in liquid argon. Scintillation light from these muons is of value to studies of weakly-interacting particles in neutrino experiments and dark matter searches, as well as for particle identification. The experiment was carried out at the TallBo facility at Fermilab using prototype light guides and electronics developed for the Long-Baseline Neutrino Experiment. Analysis of the time-resolved structure of the scintillation light from cosmic-ray muons gives $\\langle \\tau_{\\text{T}}\\rangle = 1.43 \\pm 0.04~\\text{(stat.)} \\pm 0.007~\\text{(sys.)}~\\mu$s for the triplet light decay time constant. The ratio of singlet to triplet light measured using surface-coated light guides is $R = 0.39 \\pm 0.01~\\text{(stat.)} \\pm 0.008~\\text{(sys.)}$. There is some evidence that this value is not consistent with $R$ for minimum ionizing electrons. However, the value for $...

  6. Single nucleon heavy ion transfer reactions on argon isotopes

    International Nuclear Information System (INIS)

    Single nucleon transfer reactions, both pickup and stripping, on all three stable isotopes of argon - 36Ar, 38Ar and 40Ar - have been studied using a 11B projectile at a laboratory energy of 116 MeV. Using a gas target, the forward angle reaction cross-sections were measured with a telescope of silicon surface barrier detectors. The shape of the differential cross-section is discussed in terms of a semiclassical reaction analysis. An exact finite range DWBA code has been used to extract the spectroscopic factors of the strongly populated states and the spectroscopic factors are compared with those obtained using light ion transfer reactions. The excitation energies and spectroscopic factors of levels in nuclei in the mass range A=35-41 are modelled using various effective shell model interactions. Both a complete sd shell space and a space incorporating parts of the sd and fp shells have been used. The results of a phenomenological modified surface delta interaction are compared with those of interactions based on the realistic interaction matrix elements of Kuo. (author)

  7. Methane from benzene in argon dielectric barrier discharge

    International Nuclear Information System (INIS)

    Highlights: ► Efficient on-line conversion of benzene to methane at room temperature. ► Absence of other H-atom donor suggests new type of chemistry. ► For parent loss > 90%, methane yield was ∼40% of limit due to H-atom availability. ► Surface moisture contributed ·OH radical for trace phenolic products’ formation. ► This method may emerge as an exploitable tactic for pollutants’ usable alterations. -- Abstract: A first-time account of direct, on-line, instantaneous and efficient chemical conversion of gas phase benzene to methane in argon Dielectric Barrier Discharge (DBD) is presented. In the absence of another overt hydrogen-donating source, potency of analogous parents toward methane generation is found to follow the order: benzene > toluene > p-xylene. Simultaneous production of trace amounts of phenolic surface deposits suggest (a) prompt decomposition of the parent molecules, including a large fraction yielding atomic transients (H-atom), (b) continuous and appropriate recombination of such parts, and (c) trace moisture in parent contributing ·OH radicals and additional H-atoms, which suitably react with the unreacted fraction of the parent, and also other intermediates. Results highlight Ar DBD to be a simple and exploitable technology for transforming undesirable hazardous aromatics to usable/useful low molecular weight open-chain products following the principles of green chemistry and engineering

  8. Accurate calculations of bound rovibrational states for argon trimer

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, Drew; Poirier, Bill [Department of Chemistry and Biochemistry, and Department of Physics, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061 (United States)

    2014-07-21

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar{sub 3}), using the ScalIT suite of parallel codes. The Ar{sub 3} rovibrational energy levels are computed to a very high level of accuracy (10{sup −3} cm{sup −1} or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar{sub 3} are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar{sub 3} is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar{sub 3} may be found in the current literature—and only for the lowest-lying rotational excitations.

  9. Coherent set of electron cross sections for argon

    Science.gov (United States)

    Alves, L. L.; Ferreira, C. M.

    2011-10-01

    This paper presents a coherent set of electron impact cross sections for argon (elastic momentum-transfer, inelastic for the excitation of 37 levels Ar(4s,4p,3d,5p,4d,6s) and ionization), which was recently uploaded onto the LXcat IST-Lisbon database. The cross section set was validated by comparing calculated swarm parameters (electron mobility and characteristic energy) and rate coefficients (Townsend ionization coefficient and direct + cascade excitation coefficients to the 4s and 4p states) with available experimental data, for E / N = 10-4 - 100 Td and Tg = 300, 77 K. The validation procedure involves the solution to the homogeneous two-term electron Boltzmann equation, resorting to three different solvers: (i) IST-Lisbon's (ii) BOLSIG+ (v1.2) with LXcat; (iii) BOLSIG+ (v1.23). The results obtained with these solvers are compared to evidence the importance of certain numerical features related with both the energy-grid (number of points, grid-type and maximum energy value) and the interpolation scheme adopted for the cross sections. In particular, the latter can cause a 6% variation on the values of swarm parameters at intermediate E/Ns.

  10. An update of argon inelastic cross sections for plasma discharges

    International Nuclear Information System (INIS)

    This paper proposes a coherent set of electron impact inelastic cross sections for argon, based on recent experimental measurements. The updated set is validated by comparing calculated swarm parameters and rate coefficients (obtained by solving the two-term approximation electron Boltzmann equation) with available experimental data. This validation procedure is usually adopted when the cross section set is to be later used in plasma discharge modelling. Simulation results for the electron drift velocity and characteristic energy are in very good agreement with experimental values of these quantities. Calculations, using cross section sets proposed by different authors, of the total (direct + cascade) excitation coefficients to the 4s and 4p states, and of the Townsend ionization coefficient, show that the present set ensures the best overall agreement with measured values. The agreement is particularly good for the excitation coefficient to metastable 4s'[1/2]0 and the Townsend ionization coefficient, which are probably the most relevant electron macroscopic coefficients in the modelling of discharge plasmas

  11. Accurate calculations of bound rovibrational states for argon trimer

    International Nuclear Information System (INIS)

    This work presents a comprehensive quantum dynamics calculation of the bound rovibrational eigenstates of argon trimer (Ar3), using the ScalIT suite of parallel codes. The Ar3 rovibrational energy levels are computed to a very high level of accuracy (10−3 cm−1 or better), and up to the highest rotational and vibrational excitations for which bound states exist. For many of these rovibrational states, wavefunctions are also computed. Rare gas clusters such as Ar3 are interesting because the interatomic interactions manifest through long-range van der Waals forces, rather than through covalent chemical bonding. As a consequence, they exhibit strong Coriolis coupling between the rotational and vibrational degrees of freedom, as well as highly delocalized states, all of which renders accurate quantum dynamical calculation difficult. Moreover, with its (comparatively) deep potential well and heavy masses, Ar3 is an especially challenging rare gas trimer case. There are a great many rovibrational eigenstates to compute, and a very high density of states. Consequently, very few previous rovibrational state calculations for Ar3 may be found in the current literature—and only for the lowest-lying rotational excitations

  12. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles

    International Nuclear Information System (INIS)

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large ArN and (H2O)N, N¯≈ 102–103, clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX)n clusters on ArN upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H2O)N. The photodissociation on ArN leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on ArN are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H2O)N also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H3O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H3O. The corresponding Cl-cofragment from the photoexcitation of the HCl·(H2O)N is trapped in the ice nanoparticle

  13. Electronics calibration board for the ATLAS liquid argon calorimeters

    International Nuclear Information System (INIS)

    To calibrate the energy response of the ATLAS liquid argon calorimeter, an electronics calibration board has been designed; it delivers a signal whose shape is close to the calorimeter ionization current signal with amplitude up to 100 mA in 50 Ω with 16 bit dynamic range. The amplitude of this signal is designed to be uniform over all calorimeters channels, stable in time and with an integral linearity much better that the electronics readout. The various R and D phases and most of the difficulties met are discussed and illustrated by many measurements. The custom design circuits are described and the layout of the ATLAS calibration board presented. The procedure used to qualify the boards is explained and the performance obtained illustrated: a dynamic range up to 3 TeV in three energy scales with an integral linearity better than 0.1% in each of them, a response uniformity better than 0.2% and a stability better than 0.1%. The performance of the board is well within the ATLAS requirements. Finally, in situ measurements done on the ATLAS calorimeter are shown to validate these performances

  14. Final report on demonstration of movable Argon-37

    International Nuclear Information System (INIS)

    A prototype of Movable Argon-37 Rapid Detection System for the mission of on-site inspection under the CTBT was developed. In order to demonstrate the performance and its feasibility for OSI, the demonstration of MARDS-I was held. In the period of the demonstration, the specification and technical capability of MARDS-I was demonstrated by four experiments: experiment on vehicle transportation in rugged countryside; experiment on rapid separation, purification and measurement of simulating samples; experiment on rapid separation, purification and measurement of underground samples; the effectiveness of sampling process. these experimental results are certified scientifically by gas chromatograph analysis in laboratory. the results show that the MDC of the system is less than 1 Bq/m3 that meet the practical requirements of OSI in field for detecting 1 kt underground nuclear explosion during a period of several months after the explosion. MARDS-I is movable, rapid and in small size. Otherwise, there is still room for further improvement of the system, e.g. reliability enhancement, reduction of the MDC, upgrading automation of system. (authors)

  15. Summary of the liquid argon calorimeter hermeticity working group

    International Nuclear Information System (INIS)

    The cryogenic nature, and hence the need to provide thermal insulation, of liquid argon calorimeters is known to pose serious problems for precise measurements of missing transverse energy, a key signature for new physics at the SSC. This problem is exacerbated by the central detector requirement of access to both sides of the detector. The original DiGiacomo et al. design sought to satisfy this access requirement and still minimize the effect of electromagnetic showers by protruding the end cap calorimeter into the central volume. This design was compared with two design variations by using a parameterization of hadronic and electromagnetic showers assuming no transverse width. These authors concluded that a flat head End Cap design was preferable to the original design for both electromagnetic and hadronic showers. The practical design advantages of this method was further demonstrated by the conclusions that instrumented calorimeter volumes which are not thick enough to absorb most of an electromagnetic shower before a dead volume enhance the resolution degradation. This means, for instance, that calorimeter modules should have their large eta edge on the front face beveled to decrease the effect of the structural washers separating the calorimeter module bays

  16. Argon defect complexes in low energy Ar irradiated molybdenum

    Energy Technology Data Exchange (ETDEWEB)

    van Veen, A.; Buters, W.T.M.; van der Kolk, G.J.; Caspers, L.M. (Interuniversitair Reactor Instituut, Delft (Netherlands)); Armstrong, T.R. (Victoria Univ., Wellington (New Zealand). Dept. of Physics)

    1982-03-15

    Thermal desorption spectrometry has been used to study the defects created in Mo irradiated along the <110> direction with Ar ions ranging in energy from 0.1 to 2 keV. In addition to monitoring the release of the implanted Ar, additional information has been obtained by decoration of the defects with low energy helium and subsequent monitoring of the helium release. The studies show evidence that the Ar can be trapped in both substitutional sites and in a configuration in which the Ar is associated with vacancies (ArVsub(n), n >= 2). Most of the Ar implanted at high energy is released at approx. equal to 1500 K by thermal vacancy assisted diffusion. Argon trapped closer to the surface is released at lower temperatures via at least three different surface related release mechanisms. Additional results are presented on the interaction of self interstitial atoms (introduced by 100 eV Xe bombardment) with the Ar defects. Substitutional Ar is found to convert to interstitial Ar which seems to be mobile at room temperature. The Ar-vacancy complexes are found to be reduced to substitutional Ar. The results of atomistic calculations of the release mechanisms will also be presented.

  17. ECR Plasma Sterilisation, Argon and Nitrogen Treated Plasma

    Science.gov (United States)

    Helhel, Selcuk; Oksuz, Lutfi; Cerezci, Osman; Rad, Abbas Y.

    2004-09-01

    ECR type plasma system was built to produce plasma in axial direction. Plasma was initiated in a specially designed Nickel - Chrome cylindrical vacuum tube which is being driven through dielectric window by 2.45GHz commercial magnetron source. Tube is also surrounded by a coil driving 150ADC to generate approximately 875Gauss magnetic field at the center. Langmuir probe and ICCD for optical spectrometry were used to characterize internal parameters like electron density, electron temperature and different characteristics of the plasma. Bacillus Subtilis var nigar, bacillus Stearothermophilus, bacillus pumilus E601, Escherichia coli and staphylococcus aureus type bacteria were selected as a reference. Each is resistant for different actions while the Bacilus cereus is the most resistant bacteria for microwave interaction. This study presents the effect of system on used bacteria. Those are gram positive and gram negative bacteria that refers to structure of cell wall. The sterilization efficacy of Argon type ECR plasma was found to be over 99, 5% in Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis (vegetative cell), Bacillus cereus (vegetative cell), Bacillus pumilus and Escherichia coli. System response type is less than 2 minutes.

  18. Transport Properties of Bi2S3 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    H.T.Shaban; M.M.Nassary; M.S.El-Sadek

    2008-01-01

    Bi2S3 single crystals were grown by using a modification of Bridgman method. Measurements of the electrical conductivity, Hall effect and thermoelectric power (TEP) were preformed in two crystallographic directions(parallel and perpendicular to the c-axis). The measurements showed that the electrical conductivity, Hall mobility, and Seebeck coefficient have anisotropic nature. From these measurements some physical parameters were estimated and the crystals showed n-type of conduction mechanism. Also, values of the energy gap were found to be different in the two directions.

  19. Crystal structure of FeU2S5

    International Nuclear Information System (INIS)

    FeU2S5, monoclinic, C2/c, a=14.697 (5), b=6.326 (3), c=7.024 (5) A, β=96030' (3), Z=4, Dsub(m)=6.97, Dsub(x)=7.09 g cm-3. Fe is octahedrally coordinated by sulphur and the uranium coordination polyhedron is a bicapped trigonal prism. This structure is related to that of CrUS3 and can be considered as an anti-Fe5S2 type structure. (Auth.)

  20. Surface Chemistry of Polymers Physical Adsorption of Nitrogen, Argon, Sulfur Dioxide and Neopentane on Polyvinylidene Fluoride

    OpenAIRE

    Houriet, Jean-Philippe; Ghiste, Patrick; Stoeckli, Fritz

    2007-01-01

    The adsorption of nitrogen, argon, sulfur dioxide and neopentane on polyvinylidene fluoride has been measured by static methods and by gas-solid chromatography. The polymer has a homogeneous surface of low energy, which is not significantly affected by heating.