WorldWideScience

Sample records for arginine methyltransferase hmt1p

  1. Theoretical insights into catalytic mechanism of protein arginine methyltransferase 1.

    Directory of Open Access Journals (Sweden)

    Ruihan Zhang

    Full Text Available Protein arginine methyltransferase 1 (PRMT1, the major arginine asymmetric dimethylation enzyme in mammals, is emerging as a potential drug target for cancer and cardiovascular disease. Understanding the catalytic mechanism of PRMT1 will facilitate inhibitor design. However, detailed mechanisms of the methyl transfer process and substrate deprotonation of PRMT1 remain unclear. In this study, we present a theoretical study on PRMT1 catalyzed arginine dimethylation by employing molecular dynamics (MD simulation and quantum mechanics/molecular mechanics (QM/MM calculation. Ternary complex models, composed of PRMT1, peptide substrate, and S-adenosyl-methionine (AdoMet as cofactor, were constructed and verified by 30-ns MD simulation. The snapshots selected from the MD trajectory were applied for the QM/MM calculation. The typical SN2-favored transition states of the first and second methyl transfers were identified from the potential energy profile. Deprotonation of substrate arginine occurs immediately after methyl transfer, and the carboxylate group of E144 acts as proton acceptor. Furthermore, natural bond orbital analysis and electrostatic potential calculation showed that E144 facilitates the charge redistribution during the reaction and reduces the energy barrier. In this study, we propose the detailed mechanism of PRMT1-catalyzed asymmetric dimethylation, which increases insight on the small-molecule effectors design, and enables further investigations into the physiological function of this family.

  2. An allosteric inhibitor of protein arginine methyltransferase 3.

    Science.gov (United States)

    Siarheyeva, Alena; Senisterra, Guillermo; Allali-Hassani, Abdellah; Dong, Aiping; Dobrovetsky, Elena; Wasney, Gregory A; Chau, Irene; Marcellus, Richard; Hajian, Taraneh; Liu, Feng; Korboukh, Ilia; Smil, David; Bolshan, Yuri; Min, Jinrong; Wu, Hong; Zeng, Hong; Loppnau, Peter; Poda, Gennadiy; Griffin, Carly; Aman, Ahmed; Brown, Peter J; Jin, Jian; Al-Awar, Rima; Arrowsmith, Cheryl H; Schapira, Matthieu; Vedadi, Masoud

    2012-08-01

    PRMT3, a protein arginine methyltransferase, has been shown to influence ribosomal biosynthesis by catalyzing the dimethylation of the 40S ribosomal protein S2. Although PRMT3 has been reported to be a cytosolic protein, it has been shown to methylate histone H4 peptide (H4 1-24) in vitro. Here, we report the identification of a PRMT3 inhibitor (1-(benzo[d][1,2,3]thiadiazol-6-yl)-3-(2-cyclohexenylethyl)urea; compound 1) with IC50 value of 2.5 μM by screening a library of 16,000 compounds using H4 (1-24) peptide as a substrate. The crystal structure of PRMT3 in complex with compound 1 as well as kinetic analysis reveals an allosteric mechanism of inhibition. Mutating PRMT3 residues within the allosteric site or using compound 1 analogs that disrupt interactions with allosteric site residues both abrogated binding and inhibitory activity. These data demonstrate an allosteric mechanism for inhibition of protein arginine methyltransferases, an emerging class of therapeutic targets.

  3. The Role of Protein Arginine Methyltransferases in Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Ji Hye Kim

    2016-01-01

    Full Text Available Protein arginine methyltransferases (PRMTs mediate the methylation of a number of protein substrates of arginine residues and serve critical functions in many cellular responses, including cancer development, progression, and aggressiveness, T-lymphocyte activation, and hepatic gluconeogenesis. There are nine members of the PRMT family, which are divided into 4 types (types I–IV. Although most PRMTs do not require posttranslational modification (PTM to be activated, fine-tuning modifications, such as interactions between cofactor proteins, subcellular compartmentalization, and regulation of RNA, via micro-RNAs, seem to be required. Inflammation is an essential defense reaction of the body to eliminate harmful stimuli, including damaged cells, irritants, or pathogens. However, chronic inflammation can eventually cause several types of diseases, including some cancers, atherosclerosis, rheumatoid arthritis, and periodontitis. Therefore, inflammation responses should be well modulated. In this review, we briefly discuss the role of PRMTs in the control of inflammation. More specifically, we review the roles of four PRMTs (CARM1, PRMT1, PRMT5, and PRMT6 in modulating inflammation responses, particularly in terms of modulating the transcriptional factors or cofactors related to inflammation. Based on the regulatory roles known so far, we propose that PRMTs should be considered one of the target molecule groups that modulate inflammatory responses.

  4. Mechanistic studies on transcriptional coactivator protein arginine methyltransferase 1.

    Science.gov (United States)

    Rust, Heather L; Zurita-Lopez, Cecilia I; Clarke, Steven; Thompson, Paul R

    2011-04-26

    Protein arginine methyltransferases (PRMTs) catalyze the transfer of methyl groups from S-adenosylmethionine (SAM) to the guanidinium group of arginine residues in a number of important cell signaling proteins. PRMT1 is the founding member of this family, and its activity appears to be dysregulated in heart disease and cancer. To begin to characterize the catalytic mechanism of this isozyme, we assessed the effects of mutating a number of highly conserved active site residues (i.e., Y39, R54, E100, E144, E153, M155, and H293), which are believed to play key roles in SAM recognition, substrate binding, and catalysis. The results of these studies, as well as pH-rate studies, and the determination of solvent isotope effects (SIEs) indicate that M155 plays a critical role in both SAM binding and the processivity of the reaction but is not responsible for the regiospecific formation of asymmetrically dimethylated arginine (ADMA). Additionally, mutagenesis studies on H293, combined with pH studies and the lack of a normal SIE, do not support a role for this residue as a general base. Furthermore, the lack of a normal SIE with either the wild type or catalytically impaired mutants suggests that general acid/base catalysis is not important for promoting methyl transfer. This result, combined with the fact that the E144A/E153A double mutant retains considerably more activity then the single mutants alone, suggests that the PRMT1-catalyzed reaction is primarily driven by bringing the substrate guanidinium into the proximity of the S-methyl group of SAM and that the prior deprotonation of the substrate guanidinium is not required for methyl transfer.

  5. Discovery of a Potent Class I Protein Arginine Methyltransferase Fragment Inhibitor.

    Science.gov (United States)

    Ferreira de Freitas, Renato; Eram, Mohammad S; Szewczyk, Magdalena M; Steuber, Holger; Smil, David; Wu, Hong; Li, Fengling; Senisterra, Guillermo; Dong, Aiping; Brown, Peter J; Hitchcock, Marion; Moosmayer, Dieter; Stegmann, Christian M; Egner, Ursula; Arrowsmith, Cheryl; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Schapira, Matthieu

    2016-02-11

    Protein methyltransferases (PMTs) are a promising target class in oncology and other disease areas. They are composed of SET domain methyltransferases and structurally unrelated Rossman-fold enzymes that include protein arginine methyltransferases (PRMTs). In the absence of a well-defined medicinal chemistry tool-kit focused on PMTs, most current inhibitors were identified by screening large and diverse libraries of leadlike molecules. So far, no successful fragment-based approach was reported against this target class. Here, by deconstructing potent PRMT inhibitors, we find that chemical moieties occupying the substrate arginine-binding site can act as efficient fragment inhibitors. Screening a fragment library against PRMT6 produced numerous hits, including a 300 nM inhibitor (ligand efficiency of 0.56) that decreased global histone 3 arginine 2 methylation in cells, and can serve as a warhead for the development of PRMT chemical probes.

  6. Aflatoxin B1 induced upregulation of protein arginine methyltransferase 5 in human cell lines.

    Science.gov (United States)

    Ghufran, Md Sajid; Ghosh, Krishna; Kanade, Santosh R

    2016-09-01

    The exposure of naturally occurring mycotoxins affects human health and play a vital role in cancer initiation and progression. Aflatoxin B1 is a difuranocoumarin mycotoxin, classified as a group I carcinogen. The present study was conducted to assess the effect of aflatoxin B1 on epigenetic regulatory proteins. The protein arginine methyltransferase 5 expression was induced upon aflatoxin B1 treatment in a dose and time dependent manner. Further global arginine methylation was also increased in the same manner. This is the first report showing the induction of epigenetic regulatory protein, protein arginine methyltransferase 5 upon aflatoxin B1 treatment. Further study is required to establish the detailed pathway of PRMT5 induction. PMID:27242039

  7. EWS is a substrate of type I protein arginine methyltransferase, PRMT8.

    Science.gov (United States)

    Kim, Jun-Dal; Kako, Koichiro; Kakiuchi, Misako; Park, Gwi Gun; Fukamizu, Akiyoshi

    2008-09-01

    EWS, a pro-oncoprotein which is encoded by the Ewing sarcoma (EWS) gene, contains arginine-glycine-glycine repeats (RGG box) in its COOH-terminus. We previously found that the RGG box of EWS is a target for dimethylation catalyzed by protein arginine methyltransferases (PRMTs). Although it has been observed that arginine residues in EWS are dimethylated in vivo, the endogenous enzyme(s) responsible for this reaction have not been identified to date. In the present study, we determined that EWS was physically associated with PRMT8, the novel eighth member of the PRMT family, through the COOH-terminal region of EWS including RGG3 with the NH2-terminal region of PRMT8 encompassing the S-adenosyl-L-methionine binding domain, and that arginine residues in EWS were asymmetrically dimethylated by PRMT8 using amino acid analysis with thin-layer chromatography. These results suggested that EWS is a substrate for PRMT8, as efficient as for PRMT1.

  8. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond.

    Science.gov (United States)

    Stopa, Nicole; Krebs, Jocelyn E; Shechter, David

    2015-06-01

    Post-translational arginine methylation is responsible for regulation of many biological processes. The protein arginine methyltransferase 5 (PRMT5, also known as Hsl7, Jbp1, Skb1, Capsuleen, or Dart5) is the major enzyme responsible for mono- and symmetric dimethylation of arginine. An expanding literature demonstrates its critical biological function in a wide range of cellular processes. Histone and other protein methylation by PRMT5 regulate genome organization, transcription, stem cells, primordial germ cells, differentiation, the cell cycle, and spliceosome assembly. Metazoan PRMT5 is found in complex with the WD-repeat protein MEP50 (also known as Wdr77, androgen receptor coactivator p44, or Valois). PRMT5 also directly associates with a range of other protein factors, including pICln, Menin, CoPR5 and RioK1 that may alter its subcellular localization and protein substrate selection. Protein substrate and PRMT5-MEP50 post-translation modifications induce crosstalk to regulate PRMT5 activity. Crystal structures of C. elegans PRMT5 and human and frog PRMT5-MEP50 complexes provide substantial insight into the mechanisms of substrate recognition and procession to dimethylation. Enzymological studies of PRMT5 have uncovered compelling insights essential for future development of specific PRMT5 inhibitors. In addition, newly accumulating evidence implicates PRMT5 and MEP50 expression levels and their methyltransferase activity in cancer tumorigenesis, and, significantly, as markers of poor clinical outcome, marking them as potential oncogenes. Here, we review the substantial new literature on PRMT5 and its partners to highlight the significance of understanding this essential enzyme in health and disease.

  9. Protein arginine methyltransferase 5 (PRMT5) is a novel coactivator of constitutive androstane receptor (CAR).

    Science.gov (United States)

    Kanno, Yuichiro; Inajima, Jun; Kato, Sayaka; Matsumoto, Maika; Tokumoto, Chikako; Kure, Yuki; Inouye, Yoshio

    2015-03-27

    The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that protein arginine methyltransferase 5 (PRMT5) is a novel CAR-interacting protein. Furthermore, the PRMT-dependent induction of a CAR reporter gene, which was independent of methyltransferase activity, was enhanced in the presence of steroid receptor coactivator 1 (SRC1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) or DEAD box DNA/RNA helicase DP97. Using tetracycline inducible-hCAR system in HepG2 cells, we showed that knockdown of PRMT5 with small interfering RNA suppressed tetracycline -induced mRNA expression of CYP2B6 but not of CYP2C9 or CYP3A4. PRMT5 enhanced phenobarbital-mediated transactivation of a phenobarbital-responsive enhancer module (PBREM)-driven reporter gene in co-operation with PGC-1α in rat primary hepatocytes. Based on these findings, we suggest PRMT5 to be a gene (or promoter)-selective coactivator of CAR by mediating the formation of complexes between hCAR and appropriate coactivators. PMID:25721668

  10. Identification and characterization of new molecular partners for the protein arginine methyltransferase 6 (PRMT6.

    Directory of Open Access Journals (Sweden)

    Alessandra Lo Sardo

    Full Text Available PRMT6 is a protein arginine methyltransferase that has been implicated in transcriptional regulation, DNA repair, and human immunodeficiency virus pathogenesis. Only few substrates of this enzyme are known and therefore its cellular role is not well understood. To identify in an unbiased manner substrates and potential regulators of PRMT6 we have used a yeast two-hybrid approach. We identified 36 new putative partners for PRMT6 and we validated the interaction in vivo for 7 of them. In addition, using invitro methylation assay we identified 4 new substrates for PRMT6, extending the involvement of this enzyme to other cellular processes beyond its well-established role in gene expression regulation. Holistic approaches create molecular connections that allow to test functional hypotheses. The assembly of PRMT6 protein network allowed us to formulate functional hypotheses which led to the discovery of new molecular partners for the architectural transcription factor HMGA1a, a known substrate for PRMT6, and to provide evidences for a modulatory role of HMGA1a on the methyltransferase activity of PRMT6.

  11. Role of type II protein arginine methyltransferase 5 in the regulation of Circadian Per1 gene.

    Directory of Open Access Journals (Sweden)

    Jungtae Na

    Full Text Available Circadian clocks are the endogenous oscillators that regulate rhythmic physiological and behavioral changes to correspond to daily light-dark cycles. Molecular dissections have revealed that transcriptional feedback loops of the circadian clock genes drive the molecular oscillation, in which PER/CRY complexes inhibit the transcriptional activity of the CLOCK/BMAL1 heterodimer to constitute a negative feedback loop. In this study, we identified the type II protein arginine methyltransferase 5 (PRMT5 as an interacting molecule of CRY1. Although the Prmt5 gene was constitutively expressed, increased interaction of PRMT5 with CRY1 was observed when the Per1 gene was repressed both in synchronized mouse liver and NIH3T3 cells. Moreover, rhythmic recruitment of PRMT5 and CRY1 to the Per1 gene promoter was found to be associated with an increased level of histone H4R3 dimethylation and Per1 gene repression. Consistently, decreased histone H4R3 dimethylation and altered rhythmic Per1 gene expression were observed in Prmt5-depleted cells. Taken together, these findings provide an insight into the link between histone arginine methylation by PRMT5 and transcriptional regulation of the circadian Per1 gene.

  12. Using oriented peptide array libraries to evaluate methylarginine-specific antibodies and arginine methyltransferase substrate motifs

    Science.gov (United States)

    Gayatri, Sitaram; Cowles, Martis W.; Vemulapalli, Vidyasiri; Cheng, Donghang; Sun, Zu-Wen; Bedford, Mark T.

    2016-01-01

    Signal transduction in response to stimuli relies on the generation of cascades of posttranslational modifications that promote protein-protein interactions and facilitate the assembly of distinct signaling complexes. Arginine methylation is one such modification, which is catalyzed by a family of nine protein arginine methyltransferases, or PRMTs. Elucidating the substrate specificity of each PRMT will promote a better understanding of which signaling networks these enzymes contribute to. Although many PRMT substrates have been identified, and their methylation sites mapped, the optimal target motif for each of the nine PRMTs has not been systematically addressed. Here we describe the use of Oriented Peptide Array Libraries (OPALs) to methodically dissect the preferred methylation motifs for three of these enzymes – PRMT1, CARM1 and PRMT9. In parallel, we show that an OPAL platform with a fixed methylarginine residue can be used to validate the methyl-specific and sequence-specific properties of antibodies that have been generated against different PRMT substrates, and can also be used to confirm the pan nature of some methylarginine-specific antibodies. PMID:27338245

  13. Protein arginine methyltransferase 5 (PRMT5) is a novel coactivator of constitutive androstane receptor (CAR)

    International Nuclear Information System (INIS)

    The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that protein arginine methyltransferase 5 (PRMT5) is a novel CAR-interacting protein. Furthermore, the PRMT-dependent induction of a CAR reporter gene, which was independent of methyltransferase activity, was enhanced in the presence of steroid receptor coactivator 1 (SRC1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) or DEAD box DNA/RNA helicase DP97. Using tetracycline inducible-hCAR system in HepG2 cells, we showed that knockdown of PRMT5 with small interfering RNA suppressed tetracycline -induced mRNA expression of CYP2B6 but not of CYP2C9 or CYP3A4. PRMT5 enhanced phenobarbital-mediated transactivation of a phenobarbital-responsive enhancer module (PBREM)-driven reporter gene in co-operation with PGC-1α in rat primary hepatocytes. Based on these findings, we suggest PRMT5 to be a gene (or promoter)-selective coactivator of CAR by mediating the formation of complexes between hCAR and appropriate coactivators. - Highlights: • Nuclear receptor CAR interact with PRMT5. • PRMT5 enhances transcriptional activity of CAR. • PRMT5 synergistically enhances transactivity of CAR by the co-expression of SRC-1, DP97 or PGC1α. • PRMT5 is a gene-selective co-activator for hCAR

  14. Protein arginine methyltransferase 5 (PRMT5) is a novel coactivator of constitutive androstane receptor (CAR)

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Yuichiro, E-mail: ykanno@phar.toho-u.ac.jp; Inajima, Jun; Kato, Sayaka; Matsumoto, Maika; Tokumoto, Chikako; Kure, Yuki; Inouye, Yoshio

    2015-03-27

    The constitutive androstane receptor (CAR) plays a key role in the expression of xenobiotic/steroid and drug metabolizing enzymes and their transporters. In this study, we demonstrated that protein arginine methyltransferase 5 (PRMT5) is a novel CAR-interacting protein. Furthermore, the PRMT-dependent induction of a CAR reporter gene, which was independent of methyltransferase activity, was enhanced in the presence of steroid receptor coactivator 1 (SRC1), peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) or DEAD box DNA/RNA helicase DP97. Using tetracycline inducible-hCAR system in HepG2 cells, we showed that knockdown of PRMT5 with small interfering RNA suppressed tetracycline -induced mRNA expression of CYP2B6 but not of CYP2C9 or CYP3A4. PRMT5 enhanced phenobarbital-mediated transactivation of a phenobarbital-responsive enhancer module (PBREM)-driven reporter gene in co-operation with PGC-1α in rat primary hepatocytes. Based on these findings, we suggest PRMT5 to be a gene (or promoter)-selective coactivator of CAR by mediating the formation of complexes between hCAR and appropriate coactivators. - Highlights: • Nuclear receptor CAR interact with PRMT5. • PRMT5 enhances transcriptional activity of CAR. • PRMT5 synergistically enhances transactivity of CAR by the co-expression of SRC-1, DP97 or PGC1α. • PRMT5 is a gene-selective co-activator for hCAR.

  15. Facile synthesis of N-6 adenosine modified analogue toward S-adenosyl methionine derived probe for protein arginine methyltransferases

    Institute of Scientific and Technical Information of China (English)

    Wei Hong; James Dowden

    2011-01-01

    Chemically modified cellular co-factors that provide function, such as immobilization or incorporation of fluorescent dyes, are valuable probes of biological activity. A convenient route to obtain S-adenosyl methionine (AdoMet) analogues modified at N-6 adenosine to feature a linker terminating in azide functionality is described herein. Subsequent decoration of such AdoMet analogues with guanidinium terminated linkers leads to novel potential bisubstrate inhibitors for protein arginine methyltransferases, PRMTs.

  16. Modulation of Epstein–Barr Virus Nuclear Antigen 2-dependent transcription by protein arginine methyltransferase 5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Der; Cheng, Chi-Ping; Fang, Jia-Shih; Chen, Ling-Chih [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China); Zhao, Bo; Kieff, Elliott [Department of Medicine and Microbiology and Molecular Genetics, Channing Laboratory, Brigham and Women’s Hospital and Harvard Medical School, 181 Longwood Ave., Boston 02115, MA (United States); Peng, Chih-Wen, E-mail: pengcw@mail.tcu.edu.tw [Department of Life Sciences, Tzu-Chi University, 701 Chung-Yang Rd. Sec 3, Hualien 97004, Taiwan (China)

    2013-01-18

    Highlights: ► Catalytic active PRMT5 substantially binds to the EBNA2 RG domain. ► PRMT5 augments the EBNA2-dependent transcription. ► PRMT5 triggers the symmetric dimethylation of the EBNA2 RG domain. ► PRMT5 enhances the promoter occupancy of EBNA2 on its target promoters. -- Abstract: Epstein–Barr Virus Nuclear Antigen (EBNA) 2 features an Arginine–Glycine repeat (RG) domain at amino acid positions 335–360, which is a known target for protein arginine methyltransferaser 5 (PRMT5). In this study, we performed protein affinity pull-down assays to demonstrate that endogenous PRMT5 derived from lymphoblastoid cells specifically associated with the protein bait GST-E2 RG. Transfection of a plasmid expressing PRMT5 induced a 2.5- to 3-fold increase in EBNA2-dependent transcription of both the LMP1 promoter in AKATA cells, which contain the EBV genome endogenously, and a Cp-Luc reporter plasmid in BJAB cells, which are EBV negative. Furthermore, we showed that there was a 2-fold enrichment of EBNA2 occupancy in target promoters in the presence of exogenous PRMT5. Taken together, we show that PRMT5 triggers the symmetric dimethylation of EBNA2 RG domain to coordinate with EBNA2-mediated transcription. This modulation suggests that PRMT5 may play a role in latent EBV infection.

  17. Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis.

    Science.gov (United States)

    Ren, Jinqi; Wang, Yaqing; Liang, Yuheng; Zhang, Yongqing; Bao, Shilai; Xu, Zhiheng

    2010-04-23

    Modulation of ribosomal assembly is a fine tuning mechanism for cell number and organ size control. Many ribosomal proteins undergo post-translational modification, but their exact roles remain elusive. Here, we report that ribosomal protein s10 (RPS10) is a novel substrate of an oncoprotein, protein-arginine methyltransferase 5 (PRMT5). We show that PRMT5 interacts with RPS10 and catalyzes its methylation at the Arg(158) and Arg(160) residues. The methylation of RPS10 at Arg(158) and Arg(160) plays a role in the proper assembly of ribosomes, protein synthesis, and optimal cell proliferation. The RPS10-R158K/R160K mutant is not efficiently assembled into ribosomes and is unstable and prone to degradation by the proteasomal pathway. In nucleoli, RPS10 interacts with nucleophosmin/B23 and is predominantly concentrated in the granular component region, which is required for ribosome assembly. The RPS10 methylation mutant interacts weakly with nucleophosmin/B23 and fails to concentrate in the granular component region. Our results suggest that PRMT5 is likely to regulate cell proliferation through the methylation of ribosome proteins, and thus reveal a novel mechanism for PRMT5 in tumorigenesis.

  18. Protein arginine methyltransferase 5 is associated with malignant phenotype and peritoneal metastasis in gastric cancer.

    Science.gov (United States)

    Kanda, Mitsuro; Shimizu, Dai; Fujii, Tsutomu; Tanaka, Haruyoshi; Shibata, Masahiro; Iwata, Naoki; Hayashi, Masamichi; Kobayashi, Daisuke; Tanaka, Chie; Yamada, Suguru; Nakayama, Goro; Sugimoto, Hiroyuki; Koike, Masahiko; Fujiwara, Michitaka; Kodera, Yasuhiro

    2016-09-01

    Identification of novel gastric cancer (GC)-related molecules is necessary to improve management of patients with GC in both diagnostic and therapeutic aspects. The aim of the present study was to determine whether protein arginine methyltransferase 5 (PRMT5) acts as an oncogene in the progression of GC and whether it serves as a novel diagnostic marker and therapeutic target. We conducted global expression profiling of GC cell lines and RNA interference experiments to evaluate the effect of PRMT5 expression on the phenotype of GC cells. We analysed tissues of 179 patients with GC to assess the association of PRMT5 mRNA levels with clinicopathological factors. Differential expression of PRMT5 mRNA by GC cell lines correlated positively with the levels of GEMIN2, STAT3 and TGFB3. PRMT5 knockdown reduced the proliferation, invasion and migration of a GC cell line. PRMT5 mRNA levels were significantly higher in GC tissues than the corresponding adjacent normal tissues and were independent of tumour depth, differentiation and lymph node metastasis. High PRMT5 expression was an independent risk factor of positive peritoneal lavage cytology (odds ratio 3.90, P=0.003) and decreased survival. PRMT5 enhances the malignant phenotype of GC cell lines and its expression in gastric tissues may serve as a biomarker for patient stratification and a potential target of therapy. PMID:27315569

  19. Novel Protein Arginine Methyltransferase 8 Isoform Is Essential for Cell Proliferation.

    Science.gov (United States)

    Hernandez, Sarah; Dominko, Tanja

    2016-09-01

    Identification of molecular mechanisms that regulate cellular replicative lifespan is needed to better understand the transition between a normal and a neoplastic cell phenotype. We have previously reported that low oxygen-mediated activity of FGF2 leads to an increase in cellular lifespan and acquisition of regeneration competence in human dermal fibroblasts (iRC cells). Though cells display a more plastic developmental phenotype, they remain non-tumorigenic when injected into SCID mice (Page et al. [2009] Cloning Stem Cells 11:417-426; Page et al. [2011] Eng Part A 17:2629-2640) allowing for investigation of mechanisms that regulate increased cellular lifespan in a non-tumorigenic system. Analysis of chromatin modification enzymes by qRT-PCR revealed a 13.3-fold upregulation of the arginine methyltransferase PRMT8 in iRC cells. Increased protein expression was confirmed in both iRC and human embryonic stem cells-the first demonstration of endogenous human PRMT8 expression outside the brain. Furthermore, iRC cells express a novel PRMT8 mRNA variant. Using siRNA-mediated knockdown we demonstrated that this novel variant was required for proliferation of human dermal fibroblasts (hDFs) and grade IV glioblastomas. PRMT8 upregulation in a non-tumorigenic system may offer a potential diagnostic biomarker and a therapeutic target for cells in pre-cancerous and cancerous states. J. Cell. Biochem. 117: 2056-2066, 2016. © 2016 Wiley Periodicals, Inc. PMID:26851891

  20. Protein arginine methyltransferase 6 enhances polyglutamine-expanded androgen receptor function and toxicity in spinal and bulbar muscular atrophy.

    Science.gov (United States)

    Scaramuzzino, Chiara; Casci, Ian; Parodi, Sara; Lievens, Patricia M J; Polanco, Maria J; Milioto, Carmelo; Chivet, Mathilde; Monaghan, John; Mishra, Ashutosh; Badders, Nisha; Aggarwal, Tanya; Grunseich, Christopher; Sambataro, Fabio; Basso, Manuela; Fackelmayer, Frank O; Taylor, J Paul; Pandey, Udai Bhan; Pennuto, Maria

    2015-01-01

    Polyglutamine expansion in androgen receptor (AR) is responsible for spinobulbar muscular atrophy (SBMA) that leads to selective loss of lower motor neurons. Using SBMA as a model, we explored the relationship between protein structure/function and neurodegeneration in polyglutamine diseases. We show here that protein arginine methyltransferase 6 (PRMT6) is a specific co-activator of normal and mutant AR and that the interaction of PRMT6 with AR is significantly enhanced in the AR mutant. AR and PRMT6 interaction occurs through the PRMT6 steroid receptor interaction motif, LXXLL, and the AR activating function 2 surface. AR transactivation requires PRMT6 catalytic activity and involves methylation of arginine residues at Akt consensus site motifs, which is mutually exclusive with serine phosphorylation by Akt. The enhanced interaction of PRMT6 and mutant AR leads to neurodegeneration in cell and fly models of SBMA. These findings demonstrate a direct role of arginine methylation in polyglutamine disease pathogenesis.

  1. Expression, purification, crystallization and preliminary crystallographic study of isolated modules of the mouse coactivator-associated arginine methyltransferase 1

    International Nuclear Information System (INIS)

    Isolated modules of mouse coactivator-associated arginine methyltransferase 1 encompassing the protein arginine N-methyltransferase catalytic domain have been overexpressed, purified and crystallized. X-ray diffraction data have been collected and have enabled determination of the structures by multiple isomorphous replacement using anomalous scattering. Coactivator-associated arginine methyltransferase 1 (CARM1) plays a crucial role in gene expression as a coactivator of several nuclear hormone receptors and also of non-nuclear receptor systems. Its recruitment by the transcriptional machinery induces protein methylation, leading to chromatin remodelling and gene activation. CARM128–507 and two structural states of CARM1140–480 were expressed, purified and crystallized. Crystals of CARM128–507 belong to space group P6222, with unit-cell parameters a = b = 136.0, c = 125.3 Å; they diffract to beyond 2.5 Å resolution using synchrotron radiation and contain one monomer in the asymmetric unit. The structure of CARM128–507 was solved by multiple isomorphous replacement and anomalous scattering methods. Crystals of apo CARM1140–480 belong to space group I222, with unit-cell parameters a = 74.6, b = 99.0, c = 207.4 Å; they diffract to beyond 2.7 Å resolution and contain two monomers in the asymmetric unit. Crystals of CARM1140–480 in complex with S-adenosyl-l-homocysteine belong to space P21212, with unit-cell parameters a = 74.6, b = 98.65, c = 206.08 Å; they diffract to beyond 2.6 Å resolution and contain four monomers in the asymmetric unit. The structures of apo and holo CARM1140–480 were solved by molecular-replacement techniques from the structure of CARM128–507

  2. 精氨酸甲基转移酶与肺部疾病%Protein arginine methyltransferases and pulmonary diseases

    Institute of Scientific and Technical Information of China (English)

    梁彦超; 陈哲; 陈燕

    2014-01-01

    Protein arginine methyltransferases (PRMTs) are enzymes that catalyze the transfer of a methyl group from S-adenosyl-L-methionine into a guanidino nitrogen of protein arginine.Protein arginine methylation is a novel posttranslational modification that plays a pivotal role in a variety of intracellular events,such as DNA repair,RNA processing,transcriptional regulation,and signal transduction.Recently,many studies reveal that PRMTs are significantly associated with pulmonary diseases,cardiovascular diseases,cancer,infections,glucose metabolic diseases,and autoimmune diseases.The paper introduces the recent progresses in the influence of dysregulation of PRMTs on pulmonary diseases.%蛋白质精氨酸甲基转移酶(protein arginine methyltransferases,PRMTs)是催化S-腺苷-甲硫氨酸的甲基转移至蛋白质精氨酸胍基氮原子上的酶.精氨酸甲基化是一种重要的翻译后修饰方式,参与许多重要的细胞过程,包括DNA修复、RNA加工、转录调控和信号转导.近年来大量研究证实,PRMTs与呼吸系统疾病、心血管系统疾病、肿瘤、病毒感染、糖代谢及其相关疾病、自身免疫性疾病密切相关.明确PRMTs的异常表达对肺部疾病的影响对疾病的治疗有重要作用.

  3. Different methylation characteristics of protein arginine methyltransferase 1 and 3 toward the Ewing Sarcoma protein and a peptide.

    Science.gov (United States)

    Pahlich, Steffen; Bschir, Karim; Chiavi, Claudio; Belyanskaya, Larisa; Gehring, Heinz

    2005-10-01

    The multifunctional Ewing Sarcoma (EWS) protein, a member of a large family of RNA-binding proteins, is extensively asymmetrically dimethylated at arginine residues within RGG consensus sequences. Using recombinant proteins we examined whether type I protein arginine methyltransferase (PRMT)1 or 3 is responsible for asymmetric dimethylations of the EWS protein. After in vitro methylation of the EWS protein by GST-PRMT1, we identified 27 dimethylated arginine residues out of 30 potential methylation sites by mass spectrometry-based techniques (MALDI-TOF MS and MS/MS). Thus, PRMT1 recognizes most if not all methylation sites of the EWS protein. With GST-PRMT3, however, only nine dimethylated arginines, located mainly in the C-terminal region of EWS protein, could be assigned, indicating that structural determinants prevent complete methylation. In contrary to previous reports this study also revealed that trypsin is able to cleave after methylated arginines. Pull-down experiments showed that endogenous EWS protein binds efficiently to GST-PRMT1 but less to GST-PRMT3, which is in accordance to the in vitro methylation results. Furthermore, methylation of a peptide containing different methylation sites revealed differences in the site selectivity as well as in the kinetic properties of GST-PRMT1 and GST-PRMT3. Kinetic differences due to an inhibition effect of the methylation inhibitor S-adenosyl-L-homocysteine could be excluded by determining the corresponding K(i) values of the two enzymes and the K(d) values for the methyl donor S-adenosyl-L-methionine. The study demonstrates the strength of MS-based methods for a qualitative and quantitative analysis of enzymic arginine methylation, a posttranslational modification that becomes more and more the object of investigations.

  4. Interplay among coactivator-associated arginine methyltransferase 1, CBP, and CIITA in IFN-γ-inducible MHC-II gene expression

    OpenAIRE

    Zika, Eleni; Fauquier, Lucas; Vandel, Laurence; Ting, Jenny P.-Y.

    2005-01-01

    Class II major histocompatibility (MHC-II) genes are prototype targets of IFN-γ. IFN-γ activates the expression of the non-DNA-binding master regulator of MHC-II, class II transactivator (CIITA), which is crucial for enhanceosome formation and gene activation. This report shows the importance of the histone methyltransferase, coactivator-associated arginine methyltransferase (CARM1/PRMT4), during IFN-γ-induced MHC-II gene activation. It also demonstrates the coordinated regulation of CIITA, C...

  5. Interplay among coactivator-associated arginine methyltransferase 1, CBP, and CIITA in IFN-gamma-inducible MHC-II gene expression.

    Science.gov (United States)

    Zika, Eleni; Fauquier, Lucas; Vandel, Laurence; Ting, Jenny P-Y

    2005-11-01

    Class II major histocompatibility (MHC-II) genes are prototype targets of IFN-gamma. IFN-gamma activates the expression of the non-DNA-binding master regulator of MHC-II, class II transactivator (CIITA), which is crucial for enhanceosome formation and gene activation. This report shows the importance of the histone methyltransferase, coactivator-associated arginine methyltransferase (CARM1/PRMT4), during IFN-gamma-induced MHC-II gene activation. It also demonstrates the coordinated regulation of CIITA, CARM1, and the acetyltransferase cyclic-AMP response element binding (CREB)-binding protein (CBP) during this process. CARM1 synergizes with CIITA in activating MHC-II transcription and synergy is abrogated when an arginine methyltransferase-defective CARM1 mutant is used. Protein-arginine methyltransferase 1 has much less effect on MHC-II transcription. Specific RNA interference reduced CARM1 expression as well as MHC-II expression. The recruitment of CARM1 to the promoter requires endogenous CIITA and results in methylation of histone H3-R17; hence, CIITA is an upstream regulator of histone methylation. Previous work has shown that CARM1 can methylate CBP at three arginine residues. Using wild-type CBP and a mutant of CBP lacking the CARM1-targeted arginine residues (R3A), we show that arginine methylation of CBP is required for IFN-gamma induction of MHC-II. A kinetic analysis shows that CIITA, CARM1, and H3-R17 methylation all precede CBP loading on the MHC-II promoter during IFN-gamma treatment. These results suggest functional and temporal relationships among CIITA, CARM1, and CBP for IFN-gamma induction of MHC-II.

  6. RmtA, a Putative Arginine Methyltransferase, Regulates Secondary Metabolism and Development in Aspergillus flavus

    Science.gov (United States)

    Satterlee, Timothy; Cary, Jeffrey W.; Calvo, Ana M.

    2016-01-01

    Aspergillus flavus colonizes numerous oil seed crops such as corn, peanuts, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been described to be involved in epigenetics regulation through histone modification. Epigenetics regulation affects a variety of cellular processes, including morphogenesis and secondary metabolism. Our study shows that deletion of rmtA in A. flavus results in hyperconidiating colonies, indicating that rmtA is a repressor of asexual development in this fungus. The increase in conidiation in the absence of rmtA coincides with greater expression of brlA, abaA, and wetA compared to that in the wild type. Additionally, the rmtA deletion mutant presents a drastic reduction or loss of sclerotial production, while forced expression of this gene increased the ability of this fungus to generate these resistant structures, revealing rmtA as a positive regulator of sclerotial formation. Importantly, rmtA is also required for the production of aflatoxin B1 in A. flavus, affecting the expression of aflJ. Furthermore, biosynthesis of additional metabolites is also controlled by rmtA, indicating a broad regulatory output in the control of secondary metabolism. This study also revealed that rmtA positively regulates the expression of the global regulatory gene veA, which could contribute to mediate the effects of rmtA on development and secondary metabolism in this relevant opportunistic plant pathogen. PMID:27213959

  7. The arginine methyltransferase Rmt2 is enriched in the nucleus and co-purifies with the nuclear porins Nup49, Nup57 and Nup100

    International Nuclear Information System (INIS)

    Arginine methylation is a post-translational modification of proteins implicated in RNA processing, protein compartmentalization, signal transduction, transcriptional regulation and DNA repair. In a screen for proteins associated with the nuclear envelope in the yeast Saccharomyces cerevisiae, we have identified the arginine methyltransferase Rmt2, previously shown to methylate the ribosomal protein L12. By indirect immunofluorescence and subcellular fractionations we demonstrate here that Rmt2 has nuclear and cytoplasmic localizations. Biochemical analysis of a fraction enriched in nuclei reveals that nuclear Rmt2 is resistant to extractions with salt and detergent, indicating an association with structural components. This was supported by affinity purification experiments with TAP-tagged Rmt2. Rmt2 was found to co-purify with the nucleoporins Nup49, Nup57 and Nup100, revealing a novel link between arginine methyltransferases and the nuclear pore complex. In addition, a genome-wide transcription study of the rmt2Δ mutant shows significant downregulation of the transcription of MYO1, encoding the Type II myosin heavy chain required for cytokinesis and cell separation

  8. Protein arginine methyltransferase and the related diseases%蛋白质精氨酸甲基转移酶与相关疾病

    Institute of Scientific and Technical Information of China (English)

    罗举

    2011-01-01

    The family of protein arginine methyltransferases ( PRMTs) , which selectively methylates the arginine residues, is involved in many important cellular processes like DNA damage repair, RNA processing, transcription regulation, and signal transduction. PRMTs are also the major source for asymmetric dimethylarginine, an endogenous nitric oxide synthase inhibitor. Many studies reveal that PRMTs are closely related to cardiovascular diseases, respiratory diseases, cancer, infections, and autoimmune diseases.%蛋白质精氨酸甲基转移酶家族(protein arginine methyltransferase,PRMTs)催化精氨酸残基甲基化,参与许多重要的细胞过程,包括DNA修复、RNA加工、转录调控和信号转导.此外,PRMTs还是内源性一氧化氮合酶抑制物非对称性二甲基精氨酸(asymmetric dimethylarginine,ADMA)的重要来源.大量研究证实,PRMTs与心血管疾病、呼吸系统疾病、肿瘤、病毒感染、自身免疫性疾病密切相关.

  9. Protein arginine methyltransferase Prmt5-Mep50 methylates histones H2A and H4 and the histone chaperone nucleoplasmin in Xenopus laevis eggs.

    Science.gov (United States)

    Wilczek, Carola; Chitta, Raghu; Woo, Eileen; Shabanowitz, Jeffrey; Chait, Brian T; Hunt, Donald F; Shechter, David

    2011-12-01

    Histone proteins carry information contained in post-translational modifications. Eukaryotic cells utilize this histone code to regulate the usage of the underlying DNA. In the maturing oocytes and eggs of the frog Xenopus laevis, histones are synthesized in bulk in preparation for deposition during the rapid early developmental cell cycles. During this key developmental time frame, embryonic pluripotent chromatin is established. In the egg, non-chromatin-bound histones are complexed with storage chaperone proteins, including nucleoplasmin. Here we describe the identification and characterization of a complex of the protein arginine methyltransferase 5 (Prmt5) and the methylosome protein 50 (Mep50) isolated from Xenopus eggs that specifically methylates predeposition histones H2A/H2A.X-F and H4 and the histone chaperone nucleoplasmin on a conserved motif (GRGXK). We demonstrate that nucleoplasmin (Npm), an exceedingly abundant maternally deposited protein, is a potent substrate for Prmt5-Mep50 and is monomethylated and symmetrically dimethylated at Arg-187. Furthermore, Npm modulates Prmt5-Mep50 activity directed toward histones, consistent with a regulatory role for Npm in vivo. We show that H2A and nucleoplasmin methylation appears late in oogenesis and is most abundant in the laid egg. We hypothesize that these very abundant arginine methylations are constrained to pre-mid blastula transition events in the embryo and therefore may be involved in the global transcriptional repression found in this developmental time frame.

  10. The critical role of protein arginine methyltransferase prmt8 in zebrafish embryonic and neural development is non-redundant with its paralogue prmt1.

    Directory of Open Access Journals (Sweden)

    Yu-ling Lin

    Full Text Available Protein arginine methyltransferase (PRMT 1 is the most conserved and widely distributed PRMT in eukaryotes. PRMT8 is a vertebrate-restricted paralogue of PRMT1 with an extra N-terminal sequence and brain-specific expression. We use zebrafish (Danio rerio as a vertebrate model to study PRMT8 function and putative redundancy with PRMT1. The transcripts of zebrafish prmt8 were specifically expressed in adult zebrafish brain and ubiquitously expressed from zygotic to early segmentation stage before the neuronal development. Whole-mount in situ hybridization revealed ubiquitous prmt8 expression pattern during early embryonic stages, similar to that of prmt1. Knockdown of prmt8 with antisense morpholino oligonucleotide phenocopied prmt1-knockdown, with convergence/extension defects at gastrulation. Other abnormalities observed later include short body axis, curled tails, small and malformed brain and eyes. Catalytically inactive prmt8 failed to complement the morphants, indicating the importance of methyltransferase activity. Full-length prmt8 but not prmt1 cRNA can rescue the phenotypic changes. Nevertheless, cRNA encoding Prmt1 fused with the N-terminus of Prmt8 can rescue the prmt8 morphants. In contrast, N-terminus- deleted but not full-length prmt8 cRNA can rescue the prmt1 morphants as efficiently as prmt1 cRNA. Abnormal brain morphologies illustrated with brain markers and loss of fluorescent neurons in a transgenic fish upon prmt8 knockdown confirm the critical roles of prmt8 in neural development. In summery, our study is the first report showing the expression and function of prmt8 in early zebrafish embryogenesis. Our results indicate that prmt8 may play important roles non-overlapping with prmt1 in embryonic and neural development depending on its specific N-terminus.

  11. Severe Hypomyelination and Developmental Defects Are Caused in Mice Lacking Protein Arginine Methyltransferase 1 (PRMT1) in the Central Nervous System.

    Science.gov (United States)

    Hashimoto, Misuzu; Murata, Kazuya; Ishida, Junji; Kanou, Akihiko; Kasuya, Yoshitoshi; Fukamizu, Akiyoshi

    2016-01-29

    Protein arginine methyltransferase 1 (PRMT1) is involved in cell proliferation, DNA damage response, and transcriptional regulation. Although PRMT1 is extensively expressed in the CNS at embryonic and perinatal stages, the physiological role of PRMT1 has been poorly understood. Here, to investigate the primary function of PRMT1 in the CNS, we generated CNS-specific PRMT1 knock-out mice by the Cre-loxP system. These mice exhibited postnatal growth retardation with tremors, and most of them died within 2 weeks after birth. Brain histological analyses revealed prominent cell reduction in the white matter tracts of the mutant mice. Furthermore, ultrastructural analysis demonstrated that myelin sheath was almost completely ablated in the CNS of these animals. In agreement with hypomyelination, we also observed that most major myelin proteins including myelin basic protein (MBP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), and myelin-associated glycoprotein (MAG) were dramatically decreased, although neuronal and astrocytic markers were preserved in the brain of CNS-specific PRMT1 knock-out mice. These animals had a reduced number of OLIG2(+) oligodendrocyte lineage cells in the white matter. We found that expressions of transcription factors essential for oligodendrocyte specification and further maturation were significantly suppressed in the brain of the mutant mice. Our findings provide evidence that PRMT1 is required for CNS development, especially for oligodendrocyte maturation processes.

  12. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant

    Science.gov (United States)

    Li, Tingting; Kong, Ah-Ng Tony; Ma, Zhiqiang; Liu, Haiyan; Liu, Pinghua; Xiao, Yu; Jiang, Xuehua; Wang, Ling

    2016-01-01

    Purpose Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. Experimental Design Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. Results AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. Conclusions PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with

  13. Nuclear factor-kB dependent protein arginine methyltransferase%核因子kB依赖的蛋白质精氨酸甲基转移酶1

    Institute of Scientific and Technical Information of China (English)

    王翠莲; 楚东岭; 金发光

    2008-01-01

    Arginine methylation involves in manifold cellular processes like signaling, transcription regulation,chromatin remolding, and apoptosis with extensive biology function. During recent years, new members of the family of protein arginine methyltransferases have been increasing, by now there are eleven protein arginine methyltransferases. Protein arginine methyltransferases are classified into two groups. Type I protein arginine methyltransferases catalyze the formation of monomethylarginine and asymmetric dimethylarginine,type Ⅱ enzymes form monomethylarginine and symmetric dimethylarginine. Coactivator- associated arginine methyltransferasel is a nuclear faetor-kB(NF-kB) dependent transcriptional coactivator and functions as a promoter-specific regulator of NF-kB recruitment to chromatin. Coactivator-associated arginine methyltransferasel may activate NF-kB signal transduction pathway by enhancing NF-kB recruitment to cognate sites and initate transcriptional activation of a variety of proinflammatory and immunoregulation genes, which plays critical role in transcription regulation of immune and inflammatory reaction genes. Now it is generally accepted that lung is the major source of NO,plays an important role in NO metabolism,and acts as the major source of NOS inhibitor asymmetric dimethylarginine. Asymmetric dimethylarginine serves as false substrates and competitively inhibits NOS activity, blocking the formation of endogenous NO. As a major source of not only NO but also the NOS inhibitor asymmetric dimethylarginine, the lung likely plays a critical role in the important and delicate balance of arginine-methylarginine-NO.%精氨酸甲基化参与信号转导、转录调控、染色质重塑和凋亡等多种细胞事件具有广泛的生物学功能.近年来蛋白质精氨酸甲基转移酶家族的新成员日益增多,目前已知有11个人类蛋白质精氨酸甲基转移酶.蛋白质精氨酸甲基转移酶可分成两型,Ⅰ型蛋白质精氨酸甲

  14. Histone H2A and H4 N-terminal tails are positioned by the MEP50 WD repeat protein for efficient methylation by the PRMT5 arginine methyltransferase.

    Science.gov (United States)

    Burgos, Emmanuel S; Wilczek, Carola; Onikubo, Takashi; Bonanno, Jeffrey B; Jansong, Janina; Reimer, Ulf; Shechter, David

    2015-04-10

    The protein arginine methyltransferase PRMT5 is complexed with the WD repeat protein MEP50 (also known as Wdr77 or androgen coactivator p44) in vertebrates in a tetramer of heterodimers. MEP50 is hypothesized to be required for protein substrate recruitment to the catalytic domain of PRMT5. Here we demonstrate that the cross-dimer MEP50 is paired with its cognate PRMT5 molecule to promote histone methylation. We employed qualitative methylation assays and a novel ultrasensitive continuous assay to measure enzyme kinetics. We demonstrate that neither full-length human PRMT5 nor the Xenopus laevis PRMT5 catalytic domain has appreciable protein methyltransferase activity. We show that histones H4 and H3 bind PRMT5-MEP50 more efficiently compared with histone H2A(1-20) and H4(1-20) peptides. Histone binding is mediated through histone fold interactions as determined by competition experiments and by high density histone peptide array interaction studies. Nucleosomes are not a substrate for PRMT5-MEP50, consistent with the primary mode of interaction via the histone fold of H3-H4, obscured by DNA in the nucleosome. Mutation of a conserved arginine (Arg-42) on the MEP50 insertion loop impaired the PRMT5-MEP50 enzymatic efficiency by increasing its histone substrate Km, comparable with that of Caenorhabditis elegans PRMT5. We show that PRMT5-MEP50 prefers unmethylated substrates, consistent with a distributive model for dimethylation and suggesting discrete biological roles for mono- and dimethylarginine-modified proteins. We propose a model in which MEP50 and PRMT5 simultaneously engage the protein substrate, orienting its targeted arginine to the catalytic site.

  15. Inhibition of Nonsmall Cell Lung Cancer Cell Migration by Protein Arginine Methyltransferase 1-small Hairpin RNA Through Inhibiting Epithelial-mesenchymal Transition, Extracellular Matrix Degradation, and Src Phosphorylation In Vitro

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2015-01-01

    Full Text Available Background: Protein arginine methyltransferases 1 (PRMT1 is over-expressed in a variety of cancers, including lung cancer, and is correlated with a poor prognosis of tumor development. This study aimed to investigate the role of PRMT1 in nonsmall cell lung cancer (NSCLC migration in vitro. Methods: In this study, PRMT1 expression in the NSCLC cell line A549 was silenced using lentiviral vector-mediated short hairpin RNAs. Cell migration was measured using both scratch wound healing and transwell cell migration assays. The mRNA expression levels of matrix metalloproteinase 2 (MMP-2 and tissue inhibitor of metalloproteinase 1, 2 (TIMP1, 2 were measured using quantitative real-time reverse transcription-polymerase chain reaction. The expression levels of protein markers for epithelial-mesenchymal transition (EMT (E-cadherin, N-cadherin, focal adhesion kinase (FAK, Src, AKT, and their corresponding phosphorylated states were detected by Western blot. Results: Cell migration was significantly inhibited in the PRMT1 silenced group compared to the control group. The mRNA expression of MMP-2 decreased while TIMP1 and TIMP2 increased significantly. E-cadherin mRNA expression also increased while N-cadherin decreased. Only phosphorylated Src levels decreased in the silenced group while FAK or AKT remained unchanged. Conclusions: PRMT1-small hairpin RNA inhibits the migration abilities of NSCLC A549 cells by inhibiting EMT, extracellular matrix degradation, and Src phosphorylation in vitro.

  16. Inhibition of Nonsmall Cell Lung Cancer Cell Migration by Protein Arginine Methyltransferase 1-small Hairpin RNA Through Inhibiting Epithelial-mesenchymal Transition,Extracellular Matrix Degradation, and Src Phosphorylation In Vitro

    Institute of Scientific and Technical Information of China (English)

    Ting Zhang; Ge Cui; Yun-Liang Yao; Yue Guo; Qi-Chun Wang; Xi-Ning Li; Wen-Ming Feng

    2015-01-01

    Background:Protein arginine methyltransferases 1 (PRMT1) is over-expressed in a variety of cancers,including lung cancer,and is correlated with a poor prognosis of tumor development.This study aimed to investigate the role of PRMT1 in nonsmall cell lung cancer (NSCLC) migration in vitro.Methods:In this study,PRMT1 expression in the NSCLC cell line A549 was silenced using lentiviral vector-mediated short hairpin RNAs.Cell migration was measured using both scratch wound healing and transwell cell migration assays.The mRNA expression levels of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor ofmetalloproteinase 1,2 (TIMP l,2) were measured using quantitative real-time reverse transcription-polymerase chain reaction.The expression levels of protein markers for epithelial-mesenchymal transition (EMT) (E-cadherin,N-cadherin),focal adhesion kinase (FAK),Src,AKT,and their corresponding phosphorylated states were detected by Western blot.Results:Cell migration was significantly inhibited in the PRMT1 silenced group compared to the control group.The mRNA expression of MMP-2 decreased while TIMP 1 and TIMP2 increased significantly.E-cadherin mRNA expression also increased while N-cadherin decreased.Only phosphorylated Src levels decreased in the silenced group while FAK or AKT remained unchanged.Conclusions:PRMT1-small hairpin RNA inhibits the migration abilities of NSCLC A549 cells by inhibiting EMT,extracellular matrix degradation,and Src phosphorylation in vitro.

  17. Arginine methylation regulates the p53 response

    DEFF Research Database (Denmark)

    Jansson, Martin; Durant, Stephen T; Cho, Er-Chieh;

    2008-01-01

    on the p53 response. We show that the protein arginine methyltransferase (PRMT) 5, as a co-factor in a DNA damage responsive co-activator complex that interacts with p53, is responsible for methylating p53. Arginine methylation is regulated during the p53 response and affects the target gene specificity......Activation of the p53 tumour suppressor protein in response to DNA damage leads to apoptosis or cell-cycle arrest. Enzymatic modifications are widely believed to affect and regulate p53 activity. We describe here a level of post-translational control that has an important functional consequence...

  18. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells.

    Science.gov (United States)

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas; Lyon, David; Mullari, Meeli; Madsen, Maria V; Daniel, Jeremy A; Jensen, Lars J; Nielsen, Michael L

    2016-01-01

    The posttranslational modification of proteins by arginine methylation is functionally important, yet the breadth of this modification is not well characterized. Using high-resolution mass spectrometry, we identified 8030 arginine methylation sites within 3300 human proteins in human embryonic kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified by methylation. Through quantitative proteomics and RNA interference to examine arginine methylation stoichiometry, we unexpectedly found that the protein arginine methyltransferase (PRMT) family of arginine methyltransferases catalyzed methylation independently of arginine sequence context. In contrast to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially regulated the functions of the pre-mRNA splicing factor SRSF2 (serine/arginine-rich splicing factor 2) and the RNA transport ribonucleoprotein HNRNPUL1 (heterogeneous nuclear ribonucleoprotein U-like 1). Knocking down PRMT5 impaired the RNA binding function of SRSF2, whereas knocking down PRMT4 [also known as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human arginine methylome provides a missing piece in the global and integrative view of cellular physiology and protein regulation. PMID:27577262

  19. Measurement of arginine metabolites: regulators of nitric oxide metabolism.

    Science.gov (United States)

    Augustine, Molly S; Rogers, Lynette K

    2013-01-01

    Arginine is the substrate for nitric oxide synthases (NOS), and arginine availability regulates the production of nitric oxide. Through the activity of methyltransferases, arginine can be methylated to form monomethylarginine (NMMA), asymmetrical dimethylarginine (ADMA), and symmetrical dimethylarginine (SDMA). NMMA and ADMA directly inhibit NOS, whereas SDMA inhibits the cellular import of arginine through the cationic amino acid transporter. Increased levels of methylarginine compounds have been associated with many diseases including atherosclerosis, renal failure, pulmonary hypertension, and preeclampsia. Previous HPLC methods to measure these molecules rely on derivatization with ortho-phthalaldehyde, which is unstable and requires immediate pre- or post-column reactions. We have identified a new fluorometric agent that is stable for at least 1 week and provides chromatographic properties that facilitate separation of these chemically similar compounds by reverse phase chromatography. PMID:24510541

  20. Plant PRMTs Broaden the Scope of Arginine Methylation

    Institute of Scientific and Technical Information of China (English)

    Ayaz Ahmad; Xiaofeng Cao

    2012-01-01

    Post-translational methylation at arginine residues is one of the most important covalent modifications of proteins,involved in a myriad of essential cellular processes in eukaryotes,such as transcriptional regulation,RNA processing,signal transduction,and DNA repair.Methylation at arginine residues is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs).PRMTs have been extensively studied in various taxa and there is a growing tendency to unveil their functional importance in plants.Recent studies in plants revealed that this evolutionarily conserved family of enzymes regulates essential traits including vegetative growth,flowering time,circadian cycle,and response to high medium salinity and ABA.In this review,we highlight recent advances in the field of posttranslational arginine methylation with special emphasis on the roles and future prospects of this modification in plants.

  1. Characterization of the PRMT gene family in rice reveals conservation of arginine methylation.

    Directory of Open Access Journals (Sweden)

    Ayaz Ahmad

    Full Text Available Post-translational methylation of arginine residues profoundly affects the structure and functions of protein and, hence, implicated in a myriad of essential cellular processes such as signal transduction, mRNA splicing and transcriptional regulation. Protein arginine methyltransferases (PRMTs, the enzymes catalyzing arginine methylation have been extensively studied in animals, yeast and, to some extent, in model plant Arabidopsis thaliana. Eight genes coding for the PRMTs were identified in Oryza sativa, previously. Here, we report that these genes show distinct expression patterns in various parts of the plant. In vivo targeting experiment demonstrated that GFP-tagged OsPRMT1, OsPRMT5 and OsPRMT10 were localized to both the cytoplasm and nucleus, whereas OsPRMT6a and OsPRMT6b were predominantly localized to the nucleus. OsPRMT1, OsPRMT4, OsPRMT5, OsPRMT6a, OsPRMT6b and OsPRMT10 exhibited in vitro arginine methyltransferase activity against myelin basic protein, glycine-arginine-rich domain of fibrillarin and calf thymus core histones. Furthermore, they depicted specificities for the arginine residues in histones H3 and H4 and were classified into type I and Type II PRMTs, based on the formation of type of dimethylarginine in the substrate proteins. The two homologs of OsPRMT6 showed direct interaction in vitro and further titrating different amounts of these proteins in the methyltransferase assay revealed that OsPRMT6a inhibits the methyltransferase activity of OsPRMT6b, probably, by the formation of heterodimer. The identification and characterization of PRMTs in rice suggests the conservation of arginine methylation in monocots and hold promise for gaining further insight into regulation of plant development.

  2. L-arginine

    Science.gov (United States)

    ... that taking L-arginine, alone or together with antioxidants (Niteworks, Herbalife International, Inc), does not improve performance ... administered as a shot, or applied to the skin, short-term. It can cause some side effects ...

  3. Synthesis of Lysine Methyltransferase Inhibitors

    Directory of Open Access Journals (Sweden)

    Tao eYe

    2015-07-01

    Full Text Available Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  4. Histone methyltransferases in cancer

    DEFF Research Database (Denmark)

    Albert, Mareike; Helin, Kristian

    2009-01-01

    Cancer is perceived as a heterogeneous group of diseases that is characterized by aberrant patterns of gene expression. In the last decade, an increasing amount of data has pointed to a key role for epigenetic alterations in human cancer. In this review, we focus on a subclass of epigenetic...... regulators, namely histone methyltransferases (HMTs). Several HMTs have been linked to different types of cancer; however, in most cases we only have limited knowledge regarding the molecular mechanisms by which the HMTs contribute to disease development. We summarize the current knowledge regarding some...

  5. Arginine metabolism in wounds

    International Nuclear Information System (INIS)

    Arginine metabolism in wounds was investigated in the rat in 1) lambda-carrageenan-wounded skeletal muscle, 2) Schilling chambers, and 3) subcutaneous polyvinyl alcohol sponges. All showed decreased arginine and elevated ornithine contents and high arginase activity. Arginase could be brought to the wound by macrophages, which were found to contain arginase activity. However, arginase was expressed by macrophages only after cell lysis and no arginase was released by viable macrophages in vitro. Thus the extracellular arginase of wounds may derive from dead macrophages within the injured tissue. Wound and peritoneal macrophages exhibited arginase deiminase activity as demonstrated by the conversion of [guanido-14C]arginine to radiolabeled citrulline during culture, the inhibition of this reaction by formamidinium acetate, and the lack of prokaryotic contamination of the cultures. These findings and the known metabolic fates of the products of arginase and arginine deiminase in the cellular populations of the wound suggest the possibility of cooperativity among cells for the production of substrates for collagen synthesis

  6. The Ergogenic Potential of Arginine

    Directory of Open Access Journals (Sweden)

    La Bounty Paul M

    2004-12-01

    Full Text Available Abstract Arginine is a conditionally essential amino acid that is involved in protein synthesis, the detoxification of ammonia, and its conversion to glucose as well as being catabolized to produce energy. In addition to these physiological functions, arginine has been purported to have ergogenic potential. Athletes have taken arginine for three main reasons: 1 its role in the secretion of endogenous growth hormone; 2 its involvement in the synthesis of creatine; 3 its role in augmenting nitric oxide. These aspects of arginine supplementation will be discussed as well as a review of clinical investigations involving exercise performance and arginine ingestion.

  7. PRMT1-mediated arginine methylation controls ATXN2L localization

    Energy Technology Data Exchange (ETDEWEB)

    Kaehler, Christian; Guenther, Anika; Uhlich, Anja; Krobitsch, Sylvia, E-mail: krobitsc@molgen.mpg.de

    2015-05-15

    Arginine methylation is a posttranslational modification that is of importance in diverse cellular processes. Recent proteomic mass spectrometry studies reported arginine methylation of ataxin-2-like (ATXN2L), the paralog of ataxin-2, a protein that is implicated in the neurodegenerative disorder spinocerebellar ataxia type 2. Here, we investigated the methylation state of ATXN2L and its significance for ATXN2L localization. We first confirmed that ATXN2L is asymmetrically dimethylated in vivo, and observed that the nuclear localization of ATXN2L is altered under methylation inhibition. We further discovered that ATXN2L associates with the protein arginine-N-methyltransferase 1 (PRMT1). Finally, we showed that neither mutation of the arginine–glycine-rich motifs of ATXN2L nor methylation inhibition alters ATXN2L localization to stress granules, suggesting that methylation of ATXN2L is probably not mandatory. - Highlights: • ATXN2L is asymmetrically dimethylated in vivo. • ATXN2L interacts with PRMT1 under normal and stress conditions. • PRMT1-mediated dimethylation of ATXN2L controls its nuclear localization. • ATXN2L localization to stress granules appears independent of its methylation state.

  8. Structural biology of human H3K9 methyltransferases.

    Directory of Open Access Journals (Sweden)

    Hong Wu

    Full Text Available UNLABELLED: SET domain methyltransferases deposit methyl marks on specific histone tail lysine residues and play a major role in epigenetic regulation of gene transcription. We solved the structures of the catalytic domains of GLP, G9a, Suv39H2 and PRDM2, four of the eight known human H3K9 methyltransferases in their apo conformation or in complex with the methyl donating cofactor, and peptide substrates. We analyzed the structural determinants for methylation state specificity, and designed a G9a mutant able to tri-methylate H3K9. We show that the I-SET domain acts as a rigid docking platform, while induced-fit of the Post-SET domain is necessary to achieve a catalytically competent conformation. We also propose a model where long-range electrostatics bring enzyme and histone substrate together, while the presence of an arginine upstream of the target lysine is critical for binding and specificity. ENHANCED VERSION: This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  9. Arginine transport in catabolic disease states.

    Science.gov (United States)

    Pan, Ming; Choudry, Haroon A; Epler, Mark J; Meng, Qinghe; Karinch, Anne; Lin, Chengmao; Souba, Wiley

    2004-10-01

    Arginine appears to be a semiessential amino acid in humans during critical illness. Catabolic disease states such as sepsis, injury, and cancer cause an increase in arginine utilization, which exceeds body production, leading to arginine depletion. This is aggravated by the reduced nutrient intake that is associated with critical illness. Arginine depletion may have negative consequences on tissue function under these circumstances. Nutritional regimens containing arginine have been shown to improve nitrogen balance and lymphocyte function, and stimulate arginine transport in the liver. We have studied the effects of stress mediators on arginine transport in vascular endothelium, liver, and gut epithelium. In vascular endothelium, endotoxin stimulates arginine uptake, an effect that is mediated by the cytokine tumor necrosis factor-alpha (TNF-alpha) and by the cyclo-oxygenase pathway. This TNF-alpha stimulation involves the activation of intracellular protein kinase C (PKC). A significant increase in hepatic arginine transport activity also occurs following burn injury and in rats with progressive malignant disease. Surgical removal of the growing tumor results in a normalization of the accelerated hepatic arginine transport within days. Chronic metabolic acidosis and sepsis individually augment intestinal arginine transport in rats and Caco-2 cell culture. PKC and mitogen-activated protein kinases are involved in mediating the sepsis/acidosis stimulation of arginine transport. Understanding the regulation of plasma membrane arginine transport will enhance our knowledge of nutrition and metabolism in seriously ill patients and may lead to the design of improved nutritional support formulas. PMID:15465794

  10. Dietary arginine and linear growth

    DEFF Research Database (Denmark)

    van Vught, Anneke J A H; Dagnelie, Pieter C; Arts, Ilja C W;

    2013-01-01

    Child Intervention Study during 2001-2 (baseline), and at 3-year and 7-year follow-up, were used. Arginine intake was estimated via a 7 d precoded food diary at baseline and 3-year follow-up. Data were analysed in a multilevel structure in which children were embedded within schools. Random intercept...

  11. Physiological implications of arginine metabolism in plants

    Directory of Open Access Journals (Sweden)

    Gudrun eWinter

    2015-07-01

    Full Text Available Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO, although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions.

  12. Physiological implications of arginine metabolism in plants.

    Science.gov (United States)

    Winter, Gudrun; Todd, Christopher D; Trovato, Maurizio; Forlani, Giuseppe; Funck, Dietmar

    2015-01-01

    Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO), although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions. PMID:26284079

  13. Enzymes of creatine biosynthesis, arginine and methionine metabolism in normal and malignant cells.

    Science.gov (United States)

    Bera, Soumen; Wallimann, Theo; Ray, Subhankar; Ray, Manju

    2008-12-01

    The creatine/creatine kinase system decreases drastically in sarcoma. In the present study, an investigation of catalytic activities, western blot and mRNA expression unambiguously demonstrates the prominent expression of the creatine-synthesizing enzymes l-arginine:glycine amidinotransferase and N-guanidinoacetate methyltransferase in sarcoma, Ehrlich ascites carcinoma and Sarcoma 180 cells, whereas both enzymes were virtually undetectable in normal muscle. Compared to that of normal animals, these enzymes remained unaffected in the kidney or liver of sarcoma-bearing mice. High activity and expression of mitochondrial arginase II in sarcoma indicated increased ornithine formation. Slightly or moderately higher levels of ornithine, guanidinoacetate and creatinine were observed in sarcoma compared to muscle. Despite the intrinsically low level of creatine in Ehrlich ascites carcinoma and Sarcoma 180 cells, these cells could significantly take up and release creatine, suggesting a functional creatine transport, as verified by measuring mRNA levels of creatine transporter. Transcript levels of arginase II, ornithine-decarboxylase, S-adenosyl-homocysteine hydrolase and methionine-synthase were significantly upregulated in sarcoma and in Ehrlich ascites carcinoma and Sarcoma 180 cells. Overall, the enzymes related to creatine and arginine/methionine metabolism were found to be significantly upregulated in malignant cells. However, the low levels of creatine kinase in the same malignant cells do not appear to be sufficient for the building up of an effective creatine/phosphocreatine pool. Instead of supporting creatine biosynthesis, l-arginine:glycine amidinotransferase and N-guanidinoacetate methyltransferase appear to be geared to support cancer cell metabolism in the direction of polyamine and methionine synthesis because both these compounds are in high demand in proliferating cancer cells.

  14. Arginine regulation of gramicidin S biosynthesis.

    OpenAIRE

    Poirier, A.; Demain, A L

    1981-01-01

    Several amino acids are known to affect the gramicidin S producer Bacillus brevis ATCC 9999 with respect ot growth, soluble gramicidin S synthetase formation, antibiotic production, or a combination of these. Our studies confirmed that arginine has paradoxical effects on the B. brevis fermentation; it markedly increased growth and antibiotic production, yet decreased the soluble heavy gramicidin S synthetase activity. We found that arginine did not repress heavy gramicidin S synthetase. The a...

  15. The Histone Methyltransferase Inhibitor A-366 Uncovers a Role for G9a/GLP in the Epigenetics of Leukemia.

    Directory of Open Access Journals (Sweden)

    William N Pappano

    Full Text Available Histone methyltransferases are epigenetic regulators that modify key lysine and arginine residues on histones and are believed to play an important role in cancer development and maintenance. These epigenetic modifications are potentially reversible and as a result this class of enzymes has drawn great interest as potential therapeutic targets of small molecule inhibitors. Previous studies have suggested that the histone lysine methyltransferase G9a (EHMT2 is required to perpetuate malignant phenotypes through multiple mechanisms in a variety of cancer types. To further elucidate the enzymatic role of G9a in cancer, we describe herein the biological activities of a novel peptide-competitive histone methyltransferase inhibitor, A-366, that selectively inhibits G9a and the closely related GLP (EHMT1, but not other histone methyltransferases. A-366 has significantly less cytotoxic effects on the growth of tumor cell lines compared to other known G9a/GLP small molecule inhibitors despite equivalent cellular activity on methylation of H3K9me2. Additionally, the selectivity profile of A-366 has aided in the discovery of a potentially important role for G9a/GLP in maintenance of leukemia. Treatment of various leukemia cell lines in vitro resulted in marked differentiation and morphological changes of these tumor cell lines. Furthermore, treatment of a flank xenograft leukemia model with A-366 resulted in growth inhibition in vivo consistent with the profile of H3K9me2 reduction observed. In summary, A-366 is a novel and highly selective inhibitor of G9a/GLP that has enabled the discovery of a role for G9a/GLP enzymatic activity in the growth and differentiation status of leukemia cells.

  16. Arginine Adjunctive Therapy in Active Tuberculosis

    Directory of Open Access Journals (Sweden)

    Aliasghar Farazi

    2015-01-01

    Full Text Available Background. Dietary supplementation has been used as a mechanism to augment the immune system. Adjunctive therapy with L-arginine has the potential to improve outcomes in active tuberculosis. Methods. In a randomized clinical trial 63 participants with smear-positive pulmonary tuberculosis in Markazi Province of Iran were given arginine or placebo for 4 weeks in addition to conventional chemotherapy. The final treatment success, sputum conversion, weight gain, and clinical symptoms after one and two months were considered as primary outcomes and secondary outcomes were ESR, CRP, and Hg. Data were collected and analyzed with SPSS software (ver. 18. Results. Arginine supplementation reduced constitutional symptoms (P=0.032 in patients with smear-positive TB at the end of the first month of treatment. Arginine treated patients had significantly increased BMI at the end of the first and second months of treatment (P=0.032 and P=0.04 and a reduced CRP at the end of the first month of treatment (P=0.03 versus placebo group. Conclusion. Arginine is useful as an adjunctive therapy in patients with active tuberculosis, in which the effects are more likely mediated by the increased production of nitric oxide and improved constitutional symptoms and weight gain. This trial is registered with Clinical Trials Registry of Iran: IRCT201211179855N2.

  17. Arginase and Arginine Dysregulation in Asthma

    Directory of Open Access Journals (Sweden)

    Renée C. Benson

    2011-01-01

    Full Text Available In recent years, evidence has accumulated indicating that the enzyme arginase, which converts L-arginine into L-ornithine and urea, plays a key role in the pathogenesis of pulmonary disorders such as asthma through dysregulation of L-arginine metabolism and modulation of nitric oxide (NO homeostasis. Allergic asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Through substrate competition, arginase decreases bioavailability of L-arginine for nitric oxide synthase (NOS, thereby limiting NO production with subsequent effects on airway tone and inflammation. By decreasing L-arginine bioavailability, arginase may also contribute to the uncoupling of NOS and the formation of the proinflammatory oxidant peroxynitrite in the airways. Finally, arginase may play a role in the development of chronic airway remodeling through formation of L-ornithine with downstream production of polyamines and L-proline, which are involved in processes of cellular proliferation and collagen deposition. Further research on modulation of arginase activity and L-arginine bioavailability may reveal promising novel therapeutic strategies for asthma.

  18. Arginine, scurvy and Cartier's "tree of life"

    Directory of Open Access Journals (Sweden)

    Durzan Don J

    2009-02-01

    Full Text Available Abstract Several conifers have been considered as candidates for "Annedda", which was the source for a miraculous cure for scurvy in Jacques Cartier's critically ill crew in 1536. Vitamin C was responsible for the cure of scurvy and was obtained as an Iroquois decoction from the bark and leaves from this "tree of life", now commonly referred to as arborvitae. Based on seasonal and diurnal amino acid analyses of candidate "trees of life", high levels of arginine, proline, and guanidino compounds were also probably present in decoctions prepared in the severe winter. The semi-essential arginine, proline and all the essential amino acids, would have provided additional nutritional benefits for the rapid recovery from scurvy by vitamin C when food supply was limited. The value of arginine, especially in the recovery of the critically ill sailors, is postulated as a source of nitric oxide, and the arginine-derived guanidino compounds as controlling factors for the activities of different nitric oxide synthases. This review provides further insights into the use of the candidate "trees of life" by indigenous peoples in eastern Canada. It raises hypotheses on the nutritional and synergistic roles of arginine, its metabolites, and other biofactors complementing the role of vitamin C especially in treating Cartier's critically ill sailors.

  19. Altered brain arginine metabolism in schizophrenia

    Science.gov (United States)

    Liu, P; Jing, Y; Collie, N D; Dean, B; Bilkey, D K; Zhang, H

    2016-01-01

    Previous research implicates altered metabolism of l-arginine, a versatile amino acid with a number of bioactive metabolites, in the pathogenesis of schizophrenia. The present study, for we believe the first time, systematically compared the metabolic profile of l-arginine in the frontal cortex (Brodmann's area 8) obtained post-mortem from schizophrenic individuals and age- and gender-matched non-psychiatric controls (n=20 per group). The enzyme assays revealed no change in total nitric oxide synthase (NOS) activity, but significantly increased arginase activity in the schizophrenia group. Western blot showed reduced endothelial NOS protein expression and increased arginase II protein level in the disease group. High-performance liquid chromatography and liquid chromatography/mass spectrometric assays confirmed significantly reduced levels of γ-aminobutyric acid (GABA), but increased agmatine concentration and glutamate/GABA ratio in the schizophrenia cases. Regression analysis indicated positive correlations between arginase activity and the age of disease onset and between l-ornithine level and the duration of illness. Moreover, cluster analyses revealed that l-arginine and its main metabolites l-citrulline, l-ornithine and agmatine formed distinct groups, which were altered in the schizophrenia group. The present study provides further evidence of altered brain arginine metabolism in schizophrenia, which enhances our understanding of the pathogenesis of schizophrenia and may lead to the future development of novel preventions and/or therapeutics for the disease. PMID:27529679

  20. Modulators of arginine metabolism support cancer immunosurveillance

    Directory of Open Access Journals (Sweden)

    Freschi Massimo

    2009-01-01

    Full Text Available Abstract Background Tumor-associated accrual of myeloid derived suppressor cells (MDSC in the blood, lymphoid organs and tumor tissues may lead to perturbation of the arginine metabolism and impairment of the endogenous antitumor immunity. The objective of this study was to evaluate whether accumulation of MDSC occurred in Th2 prone BALB/c and Th1 biased C57BL/6 mice bearing the C26GM colon carcinoma and RMA T lymphoma, respectively, and to investigate whether N(G nitro-L-arginine methyl ester (L-NAME and sildenafil, both modulators of the arginine metabolism, restored antitumor immunity. Results We report here that MDSC accumulate in the spleen and blood of mice irrespective of the mouse and tumor model used. Treatment of tumor-bearing mice with either the phosphodiesterase-5 inhibitor sildenafil or the nitric-oxide synthase (NOS inhibitor L-NAME significantly restrained tumor growth and expanded the tumor-specific immune response. Conclusion Our data emphasize the role of MDSC in modulating the endogenous tumor-specific immune response and underline the anti-neoplastic therapeutic potential of arginine metabolism modulators.

  1. Determination of arginine catabolism by salivary pellet

    NARCIS (Netherlands)

    M.A. Hoogenkamp; J.M. ten Cate

    2014-01-01

    To determine the formation of ammonium from arginine by oral bacteria residing in saliva and dental plaque, an arginolytic activity assay based on the work described by Nascimento et al. [2] was developed. Following the original methodology, insufficient ammonium production could be determined. To i

  2. Low plasma arginine:asymmetric dimethyl arginine ratios predict mortality after intracranial aneurysm rupture

    DEFF Research Database (Denmark)

    Staalsø, Jonatan Myrup; Bergström, Anita; Edsen, Troels;

    2013-01-01

    Asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthases, predicts mortality in cardiovascular disease and has been linked to cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). In this prospective study, we assessed whether circulating ADMA, arginine...

  3. The role of arginine in infection and sepsis.

    Science.gov (United States)

    Luiking, Yvette C; Poeze, Martijn; Ramsay, Graham; Deutz, Nicolaas E P

    2005-01-01

    Sepsis is a systemic response to an infection, with high morbidity and mortality rates. Metabolic changes during infection and sepsis could be related to changes in metabolism of the amino acid L-arginine. In sepsis, protein breakdown is increased, which is a key process to maintain arginine delivery because both endogenous de novo arginine production from citrulline and food intake are reduced. Arginine catabolism, on the other hand, is markedly increased by enhanced use of arginine via the arginase and nitric oxide pathways. As a result, lowered plasma arginine levels are usually found. Arginine may therefore be considered as an essential amino acid in sepsis, and supplementation could be beneficial in sepsis by improving microcirculation and protein anabolism. L-Arginine supplementation in a hyperdynamic pig model of sepsis prohibits the increase in pulmonary arterial blood pressure, improves muscle and liver protein metabolism, and restores the intestinal motility pattern. Arguments raised against arginine supplementation are mainly pointed at stimulating nitric oxide (NO) production, with concerns about toxicity of increased NO and hemodynamic instability with refractory hypotension. NO synthase inhibition, however, increased mortality. Arginine supplementation in septic patients has transient effects on hemodynamics when supplied as a bolus but seems without hemodynamic side effects when supplied continuously. In conclusion, arginine could have an essential role in infection and sepsis.

  4. Evolution of novel O-methyltransferases from the Vanilla planifolia caffeic acid O-methyltransferase.

    Science.gov (United States)

    Li, Huaijun Michael; Rotter, David; Hartman, Thomas G; Pak, Fulya E; Havkin-Frenkel, Daphna; Belanger, Faith C

    2006-06-01

    The biosynthesis of many plant secondary compounds involves the methylation of one or more hydroxyl groups, catalyzed by O-methyltransferases (OMTs). Here, we report the characterization of two OMTs, Van OMT-2 and Van OMT-3, from the orchid Vanilla planifolia Andrews. These enzymes catalyze the methylation of a single outer hydroxyl group in substrates possessing a 1,2,3-trihydroxybenzene moiety, such as methyl gallate and myricetin. This is a substrate requirement not previously reported for any OMTs. Based on sequence analysis these enzymes are most similar to caffeic acid O-methyltransferases (COMTs), but they have negligible activity with typical COMT substrates. Seven of 12 conserved substrate-binding residues in COMTs are altered in Van OMT-2 and Van OMT-3. Phylogenetic analysis of the sequences suggests that Van OMT-2 and Van OMT-3 evolved from the V. planifolia COMT. These V. planifolia OMTs are new instances of COMT-like enzymes with novel substrate preferences.

  5. Distinction between the Cfr Methyltransferase Conferring Antibiotic Resistance and the Housekeeping RlmN Methyltransferase

    DEFF Research Database (Denmark)

    Atkinson, Gemma C; Hansen, Lykke H; Tenson, Tanel;

    2013-01-01

    The cfr gene encodes the Cfr methyltransferase that primarily methylates C-8 in A2503 of 23S rRNA in the peptidyl transferase region of bacterial ribosomes. The methylation provides resistance to six classes of antibiotics of clinical and veterinary importance. The rlmN gene encodes the Rlm......N methyltransferase that methylates C-2 in A2503 in 23S rRNA and A37 in tRNA, but RlmN does not significantly influence antibiotic resistance. The enzymes are homologous and use the same mechanism involving radical S-adenosyl methionine to methylate RNA via an intermediate involving a methylated cysteine....... The differentiation between the two classes is supported by previous and new experimental evidence from antibiotic resistance, primer extensions, and mass spectrometry. Finally, evolutionary aspects of the distribution of Cfr- and RlmN-like enzymes are discussed....

  6. Structures of NS5 Methyltransferase from Zika Virus.

    Science.gov (United States)

    Coloma, Javier; Jain, Rinku; Rajashankar, Kanagalaghatta R; García-Sastre, Adolfo; Aggarwal, Aneel K

    2016-09-20

    The Zika virus (ZIKV) poses a major public health emergency. To aid in the development of antivirals, we present two high-resolution crystal structures of the ZIKV NS5 methyltransferase: one bound to S-adenosylmethionine (SAM) and the other bound to SAM and 7-methyl guanosine diphosphate (7-MeGpp). We identify features of ZIKV NS5 methyltransferase that lend to structure-based antiviral drug discovery. Specifically, SAM analogs with functionalities on the Cβ atom of the methionine portion of the molecules that occupy the RNA binding tunnel may provide better specificity relative to human RNA methyltransferases.

  7. Structures of NS5 Methyltransferase from Zika Virus

    Directory of Open Access Journals (Sweden)

    Javier Coloma

    2016-09-01

    Full Text Available The Zika virus (ZIKV poses a major public health emergency. To aid in the development of antivirals, we present two high-resolution crystal structures of the ZIKV NS5 methyltransferase: one bound to S-adenosylmethionine (SAM and the other bound to SAM and 7-methyl guanosine diphosphate (7-MeGpp. We identify features of ZIKV NS5 methyltransferase that lend to structure-based antiviral drug discovery. Specifically, SAM analogs with functionalities on the Cβ atom of the methionine portion of the molecules that occupy the RNA binding tunnel may provide better specificity relative to human RNA methyltransferases.

  8. Structures of NS5 Methyltransferase from Zika Virus.

    Science.gov (United States)

    Coloma, Javier; Jain, Rinku; Rajashankar, Kanagalaghatta R; García-Sastre, Adolfo; Aggarwal, Aneel K

    2016-09-20

    The Zika virus (ZIKV) poses a major public health emergency. To aid in the development of antivirals, we present two high-resolution crystal structures of the ZIKV NS5 methyltransferase: one bound to S-adenosylmethionine (SAM) and the other bound to SAM and 7-methyl guanosine diphosphate (7-MeGpp). We identify features of ZIKV NS5 methyltransferase that lend to structure-based antiviral drug discovery. Specifically, SAM analogs with functionalities on the Cβ atom of the methionine portion of the molecules that occupy the RNA binding tunnel may provide better specificity relative to human RNA methyltransferases. PMID:27633330

  9. Knock-down of protein L-isoaspartyl O-methyltransferase increases β-amyloid production by decreasing ADAM10 and ADAM17 levels

    Institute of Scientific and Technical Information of China (English)

    Narkhyun BAE; Se Eun BYEON; Jihyuk SONG; Sang-Jin LEE; Moosik KWON; Inhee MOOK-JUNG; Jae Youl CHO; Sungyoul HONG

    2011-01-01

    Aim: To examine the role of protein L-isoaspartyl O-methyltransferase (PIMT; EC 2.1.1.77) on the secretion of Aβ peptides.Methods: HEK293 APPsw cells were treated with PIMT siRNA or adenosine dialdehyde (AdOX), a broad-spectrum methyltransferase inhibitor. Under the conditions, the level of Aβ secretion and regulatory mechanism by PIMT were examined.Results: Knock-down of PIMT and treatment with AdOX significantly increased Aβ40 secretion. Reductions in levels of PIMT decreased the secretion of soluble amyloid precursor protein alpha (sAPPα) without altering the total expression of APP or its membrane-bound C83 fragment. However, the levels of the C99 fragment generated by β-secretase were enhanced. Moreover, the decreased secretion of sAPPα resulting from PIMT knock-down seemed to be linked with the suppression of the expression of α-secretase gene products,α-disintegrin and metalloprotease 10 (ADAM10) and ADAM17, as indicated by Western blot analysis. In contrast, ADAM10 was not down-regulated in response to treatment with the protein arginine methyltransferase (PRMT) inhibitor, AMI-1.Conclusion: This study demonstrates a novel role for PIMT, but not PRMT, as a negative regulator of Aβ peptide formation and a potential protective factor in the pathogenesis of AD.

  10. Biosynthetic arginine decarboxylase in phytopathogenic fungi.

    Science.gov (United States)

    Khan, A J; Minocha, S C

    1989-01-01

    It has been reported that while bacteria and higher plants possess two different pathways for the biosynthesis of putrescine, via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC); the fungi, like animals, only use the former pathway. We found that contrary to the earlier reports, two of the phytopathogenic fungi (Ceratocystis minor and Verticillium dahliae) contain significant levels of ADC activity with very little ODC. The ADC in these fungi has high pH optimum (8.4) and low Km (0.237 mM for C. minor, 0.103 mM for V. dahliae), and is strongly inhibited by alpha-difluoromethylarginine (DFMA), putrescine and spermidine, further showing that this enzyme is probably involved in the biosynthesis of polyamines and not in the catabolism of arginine as in Escherichia coli. The growth of these fungi is strongly inhibited by DFMA while alpha-difluoromethylornithine (DFMO) has little effect.

  11. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.

    Science.gov (United States)

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-08-14

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  12. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome*

    Science.gov (United States)

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-01-01

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  13. Arginine, scurvy and Cartier's "tree of life"

    OpenAIRE

    Durzan Don J

    2009-01-01

    Abstract Several conifers have been considered as candidates for "Annedda", which was the source for a miraculous cure for scurvy in Jacques Cartier's critically ill crew in 1536. Vitamin C was responsible for the cure of scurvy and was obtained as an Iroquois decoction from the bark and leaves from this "tree of life", now commonly referred to as arborvitae. Based on seasonal and diurnal amino acid analyses of candidate "trees of life", high levels of arginine, proline, and guanidino compoun...

  14. Monolignol 4-O-methyltransferases and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang-Jun; Bhuiya, Mohammad-Wadud; Zhang, Kewei

    2014-11-18

    Modified (iso)eugenol 4-O-methyltransferase enzymes having novel capacity for methylation of monolignols and reduction of lignin polymerization in plant cell wall are disclosed. Sequences encoding the modified enzymes are disclosed.

  15. Protective Effects of Arginine on Saccharomyces cerevisiae Against Ethanol Stress

    Science.gov (United States)

    Cheng, Yanfei; Du, Zhaoli; Zhu, Hui; Guo, Xuena; He, Xiuping

    2016-01-01

    Yeast cells are challenged by various environmental stresses in the process of industrial fermentation. As the currently main organism for bio-ethanol production, Saccharomyces cerevisiae suffers from ethanol stress. Some amino acids have been reported to be related to yeast tolerance to stresses. Here the relationship between arginine and yeast response to ethanol stress was investigated. Marked inhibitions of ethanol on cell growth, expression of genes involved in arginine biosynthesis and intracellular accumulation of arginine were observed. Furthermore, extracellular addition of arginine can abate the ethanol damage largely. To further confirm the protective effects of arginine on yeast cells, yeast strains with different levels of arginine content were constructed by overexpression of ARG4 involved in arginine biosynthesis or CAR1 encoding arginase. Intracellular arginine was increased by 18.9% or 13.1% respectively by overexpression of ARG4 or disruption of CAR1, which enhanced yeast tolerance to ethanol stress. Moreover, a 41.1% decrease of intracellular arginine was observed in CAR1 overexpressing strain, which made yeast cells keenly sensitive to ethanol. Further investigations indicated that arginine protected yeast cells from ethanol damage by maintaining the integrity of cell wall and cytoplasma membrane, stabilizing the morphology and function of organellae due to low ROS generation. PMID:27507154

  16. An essential and evolutionarily conserved role of protein arginine methyltransferase 1 for adult intestinal stem cells during postembryonic development

    OpenAIRE

    Matsuda, Hiroki; Shi, Yun-Bo

    2010-01-01

    Organ-specific adult stem cells are critical for the homeostasis of adult organs and organ repair and regeneration. Unfortunately, it has been difficult to investigate the origins of these stem cells and the mechanisms of their development, especially in mammals. Intestinal remodeling during frog metamorphosis offers a unique opportunity for such studies. During the transition from an herbivorous tadpole to a carnivorous frog, the intestine is completely remodeled with the larval epithelial c...

  17. Arginine methylation and citrullination of splicing factor proline- and glutamine-rich (SFPQ/PSF) regulates its association with mRNA.

    Science.gov (United States)

    Snijders, Ambrosius P; Hautbergue, Guillaume M; Bloom, Alex; Williamson, James C; Minshull, Thomas C; Phillips, Helen L; Mihaylov, Simeon R; Gjerde, Douglas T; Hornby, David P; Wilson, Stuart A; Hurd, Paul J; Dickman, Mark J

    2015-03-01

    Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, including those involved in RNA processing, RNA splicing, and transcriptional regulation, consistent with a multifunctional role for SFPQ/NONO. In addition, we have identified several sites of arginine methylation in SFPQ/PSF using mass spectrometry and found that several arginines in the N-terminal domain of SFPQ/PSF are asymmetrically dimethylated. Furthermore, we find that the protein arginine N-methyltransferase, PRMT1, catalyzes this methylation in vitro and that this is antagonized by citrullination of SFPQ. Arginine methylation and citrullination of SFPQ/PSF does not affect complex formation with NONO. However, arginine methylation was shown to increase the association with mRNA in mRNP complexes in mammalian cells. Finally we show that the biochemical properties of the endogenous complex from cell lysates are significantly influenced by the ionic strength during purification. At low ionic strength, the SFPQ/NONO complex forms large heterogeneous protein assemblies or aggregates, preventing the purification of the SFPQ/NONO complex. The ability of the SFPQ/NONO complex to form varying protein assemblies, in conjunction with the effect of post-translational modifications of SFPQ modulating mRNA binding, suggests key roles affecting mRNP dynamics within the cell.

  18. Spectrophotometric Determination of Arginine in Grape Juice Using 8-Hydroquinoline

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; LIANG Xin-hong; ZHAO Rui-xiang; FENG Li-dan; LI Hua

    2008-01-01

    Arginine in grape juice can be metabolized by wine yeasts and malolactic bacteria to precursors of ethyl carbamate, known as carcinogen. The aim of this study was to develop a simple, fast, and accurate method for determining arginine in grape juice with Sakaguchi reaction by separating arginine with strong cation-exchange resins. Parameters were optimized including the concentrations of 8-hydroquinoline and sodium hydrobromite. The color stability lasted for 4 min, which is sufficient to finish the measurement. The method is simple, reproducible and accurate, and can be applied for quick measurement of arginine in grape juice to take necessary measures for controlling the level of ethyl carbamate.

  19. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    Science.gov (United States)

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%. PMID:15120115

  20. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    Science.gov (United States)

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%.

  1. Asymmetric arginine dimethylation of RelA provides a repressive mark to modulate TNFα/NF-κB response.

    Science.gov (United States)

    Reintjes, Anja; Fuchs, Julian E; Kremser, Leopold; Lindner, Herbert H; Liedl, Klaus R; Huber, Lukas A; Valovka, Taras

    2016-04-19

    Nuclear factor kappa B (NF-κB) is an inducible transcription factor that plays critical roles in immune and stress responses and is often implicated in pathologies, including chronic inflammation and cancer. Although much has been learned about NF-κB-activating pathways, the specific repression of NF-κB is far less well understood. Here we identified the type I protein arginine methyltransferase 1 (PRMT1) as a restrictive factor controlling TNFα-induced activation of NF-κB. PRMT1 forms a cellular complex with NF-κB through direct interaction with the Rel homology domain of RelA. We demonstrate that PRMT1 methylates RelA at evolutionary conserved R30, located in the DNA-binding L1 loop, which is a critical residue required for DNA binding. Asymmetric R30 dimethylation inhibits the binding of RelA to DNA and represses NF-κB target genes in response to TNFα. Molecular dynamics simulations of the DNA-bound RelA:p50 predicted structural changes in RelA caused by R30 methylation or a mutation that interferes with the stability of the DNA-NF-κB complex. Our findings provide evidence for the asymmetric arginine dimethylation of RelA and unveil a unique mechanism controlling TNFα/NF-κB signaling. PMID:27051065

  2. Isolation of DNA methyltransferase from plants

    International Nuclear Information System (INIS)

    DNA methyltransferases (DMT) were isolated from nuclei of cauliflower, soybean, and pea by extraction with 0.35 M NaCl. Assays were performed on hemimethylated Micrococcus luteus DNA or on M. luteus DNA to test for maintenance or de novo methylase activity, respectively. Fully methylated DNA was used as a substrate to determine background levels of methylation. Based on these tests, yields of maintenance DMT activity in the crude extract from pea hypocotyl, soybean hypocotyl, and cauliflower inflorescence were 2.8, 0.9, and 1.6 units per g wet tissue (one unit equals 1 pmol of methyl from [3H]AdoMet incorporated into acid precipitable material per h at 300). Two peaks of DMT activity were detected in the soybean nuclear extract following phosphocellulose chromatography. One eluted at 0.4 M and the other at 0.8 M KCl. With both fractions maintenance activity was approximately 2 times that of the de novo activity. Using gel filtration the DMT eluted at 220,000 Daltons. The optimal pH for activity was between 6.5 and 7.0, and the optimal temperature was 300

  3. Purification and properties of thioether methyltransferase

    International Nuclear Information System (INIS)

    A method to assay activity was developed which measures acceptance of methyl groups from [methyl-3H]-S-adenosylmethionine by dimethyl selenide. The product, [3H]trimethylselenonium ion, is separated by HPLC and quantitated by scintillation counting. Thioether methyltransferase from mouse liver and lung resides primarily in the cytosol. In terms of specific activity the enzyme is most active in the lung and liver. Purification from lung cytosol requires a three-step process of DEAE and gel filtration column chromatographies followed by chromatofocusing. SDS-Polyacrylamide gel electrophoresis shows a single homogeneous band with a molecular mass of 28,000 daltons. Vmax and Km values for dimethyl selenide as a substrate are 15. 7 pmol/min and 0.44 μM, respectively. Our studies have also shown that this purified enzyme is capable of methylating a wide range of compounds. To further test the enzyme's role in detoxification, in vivo studies were performed by injecting mice with substrate and [methyl-3H]methionine and analyzing tissue extracts and urine for [methyl-3H]sulfonium

  4. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice.

    Science.gov (United States)

    Marini, Juan C; Didelija, Inka Cajo

    2015-01-01

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight. PMID:25775142

  5. Systematic Comparisons of Orthologous Selenocysteine Methyltransferase and Homocysteine Methyltransferase Genes from Seven Monocots Species

    Directory of Open Access Journals (Sweden)

    De-yong ZHAO

    2015-06-01

    Full Text Available Identifying and manipulating genes underlying selenium metabolism could be helpful for increasing selenium content in crop grain, which is an important way to overcome diseases resulted from selenium deficiency. A reciprocal smallest distance algorithm (RSD approach was applied using two experimentally confirmed Homocysteine S-Methyltransferases genes (HMT1 and HMT2 and a putative Selenocysteine Methyltransferase (SMT from dicots plant Arabidopsis thaliana, to explore their orthologs in seven sequenced diploid monocot species: Oryza sativa, Zea mays, Sorghum bicolor, Brachypodium distachyon, Hordeum vulgare, Aegilops tauschii (the D-genome donor of common wheat and Triticum urartu (the A-genome donor of common wheat. HMT1 was apparently diverged from HMT2 and most of SMT orthologs were the same with that of HMT2 in this study, leading to the hypothesis that SMT and HMT originate from one common ancestor gene. Identifying orthologs provide candidates for further experimental confirmation; also it could be helpful in designing primers to clone SMT or HMT orthologs in other crops.

  6. ARCD, THE 1ST GENE OF THE ARC OPERON FOR ANAEROBIC ARGININE CATABOLISM IN PSEUDOMONAS-AERUGINOSA, ENCODES AN ARGININE-ORNITHINE EXCHANGER

    NARCIS (Netherlands)

    VERHOOGT, HJC; SMIT, H; ABEE, T; GAMPER, M; DRIESSEN, AJM; KONINGS, WN

    1992-01-01

    In the absence of oxygen and nitrate, Pseudomonas aeruginosa metabolizes arginine via the arginine deiminase pathway, which allows slow growth on rich media. The conversion of arginine to ornithine, CO2, and NH3 is coupled to the production of ATP from ADP. The enzymes of the arginine deiminase path

  7. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    Energy Technology Data Exchange (ETDEWEB)

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  8. Arginine specific aminopeptidase from Lactobacillus brevis

    Directory of Open Access Journals (Sweden)

    Arya Nandan

    2010-12-01

    Full Text Available The proteolytic system of lactic acid bacteria contribute to the development of flavor during the ripening of cheese through the generation of short peptides and free amino acids, which directly or indirectly act as flavor precursors. Newly isolated lactic acid bacteria (LAB as well as those procured from culture collection centers were screened for the production of various substrate specific aminopeptidases. Among all the strains screened, L. brevis (NRRL B-1836 was found to produce quantifiable amount of intracellular arginine specific aminopeptidase (EC 3.4.11.6. The productivity of arginine aminopeptidase in 5 L fermentor was 36 IU/L/h. The Luedeking and Piret model was tested for intracellular production of aminopeptidase and the data seemed to fit well, as the correlation coefficient was 0.9964 for MRS. The αAP and βAP was 0.4865 and 0.0046, respectively in MRS medium indicating that the yield was predominantly depended on growth. The culture produced lactic acid and also tolerated pH 2.0-3.0 and 0.3-0.5% bile salts, the most important probiotic features.

  9. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice.

    Directory of Open Access Journals (Sweden)

    Juan C Marini

    Full Text Available Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20 on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L, and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight.

  10. Arginine, citrulline and nitric oxide metabolism in sepsis

    Science.gov (United States)

    Arginine has vasodilatory effects, via its conversion by nitric oxide (NO) synthase into NO, and immunomodulatory actions that play important roles in sepsis. Protein breakdown affects arginine availability, and the release of asymmetric dimethylarginine, an inhibitor of NO synthase, may therefore a...

  11. Arginine Deiminase Resistance in Melanoma Cells Is Associated with Metabolic Reprogramming, Glucose Dependence and Glutamine Addiction

    OpenAIRE

    Long, Yan; Tsai, Wen-Bin; Wangpaichitr, Medhi; Tsukamoto, Takashi; Savaraj, Niramol; Feun, Lynn G.; Kuo, Macus Tien

    2013-01-01

    Many malignant human tumors, including melanomas are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of ...

  12. Anti-aging effects of l-arginine

    Directory of Open Access Journals (Sweden)

    Mohamed Z. Gad

    2010-07-01

    Full Text Available l-Arginine is one of the most metabolically versatile amino acids. In addition to its role in the synthesis of nitric oxide, l-arginine serves as a precursor for the synthesis of polyamines, proline, glutamate, creatine, agmatine and urea. Several human and experimental animal studies have indicated that exogenous l-arginine intake has multiple beneficial pharmacological effects when taken in doses larger than normal dietary consumption. Such effects include reduction in the risk of vascular and heart diseases, reduction in erectile dysfunction, improvement in immune response and inhibition of gastric hyperacidity. This review summarises several positive studies and personal experiences of l-arginine. The demonstrated anti-aging benefits of l-arginine show greater potential than any pharmaceutical or nutraceutical agent ever previously discovered.

  13. L-Arginine Pathway in COPD Patients with Acute Exacerbation

    DEFF Research Database (Denmark)

    Ruzsics, Istvan; Nagy, Lajos; Keki, Sandor;

    2016-01-01

    (ADMA, SDMA) is related to hypoxia. In COPD, a rise in ADMA results in a shift of L-arginine breakdown, contributing to airway obstruction. We aimed to compare serum levels of ADMA, SDMA and L-arginine in patients with and without AECOPD. METHODS: L-arginine metabolites quantified by high......BACKGROUND: Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) remains a major cause of mortality. Clinical criteria of AECOPD are subjective. Biomarkers for AECOPD may aid in the initiation of early treatment. Increased production of asymmetric and symmetric dimethylarginine......-arginine, ADMA and SDMA serum levels. In patients with AECOPD, production of ADMA and SDMA are more pronounced presumably due to more severe hypoxic insult. Methylated arginine derivatives in the sera may help early recognition of AECOPD....

  14. DNA Methyltransferases Inhibitors from Natural Sources.

    Science.gov (United States)

    Zwergel, Clemens; Valente, Sergio; Mai, Antonello

    2016-01-01

    DNA methyltransferases (DNMTs) catalyze the methylation at cytosine-C5 mainly in a CpG dinucleotide context. Although DNA methylation is essential for fundamental processes like embryonic development or differentiation, aberrant expression and/or activities of DNMTs are involved in several pathologies, from neurodegeneration to cancer. DNMTs inhibition can arrest tumor growth, cells invasiveness and induce differentiation, whereas their increased expression is shown in numerous cancer types. Moreover, hypermethylated promoters of tumor suppressor genes lead to their silencing. Hence, the use of specific inhibitors of DNMT might reactivate those genes and stop or even reverse the aberrant cell processes. To date, the only approved DNMTs inhibitors for therapy belong to the nucleoside-based family of drugs, but they display relevant side effects as well as high chemical instability. Thus, there is a keen interest actually exists to develop novel, potent and safe inhibitors possessing a nonnucleoside structure. Increasing literature evidence is highlighting that natural sources could help the researchers to achieve this goal. Indeed, several polyphenols, flavonoids, antraquinones, and others are described able to inhibit DNMTs activity and/or expression, thus decreasing the methylation/silencing of different genes involved in tumorigenesis. These events can lead to re-expression of such genes and to cell death in diverse cancer cell lines. Epigallocatechin-3-gallate (1) and laccaic acid A (11) resulted the most effective DNMT1 inhibitors with submicromolar IC50 values, acting as competitive inhibitors. Compound 1 and 11 both displayed gene demethylation and re-activation in several cancers. However, all of the natural compounds described in this review showed important results, from gene reactivation to cell growth inhibition. Moreover, some of them displayed interesting activity even in rodent cancer models and very recently entered clinical trials. PMID:26303417

  15. Characterization of a multifunctional methyltransferase from the orchid Vanilla planifolia.

    Science.gov (United States)

    Pak, F E; Gropper, S; Dai, W D; Havkin-Frenkel, D; Belanger, F C

    2004-07-01

    The final enzymatic step in the synthesis of the flavor compound vanillin (4-hydroxy-3-methoxybenzaldehyde) is believed to be methylation of 3,4-dihydroxybenzaldehyde. We have isolated and functionally characterized a cDNA that encodes a multifunctional methyltransferase from Vanilla planifolia tissue cultures that can catalyze the conversion of 3,4-dihydroxybenzaldehyde to vanillin, although 3,4-dihydroxybenzaldehyde is not the preferred substrate. The higher catalytic efficiency of the purified recombinant enzyme with the substrates caffeoyl aldehyde and 5-OH-coniferaldehyde, and its tissue distribution, suggest this methyltransferase may primarily function in lignin biosynthesis. However, since the enzyme characterized here does have 3,4-dihydroxybenzaldehyde-O-methyltransferase activity, it may be useful in engineering strategies for the synthesis of natural vanillin from alternate sources.

  16. Asymmetric Dimethyl Arginine in Hypothyroid Patients

    International Nuclear Information System (INIS)

    Thyroid diseases may lead to endothelial dysfunction, however, the mechanism underlying the endothelial dysfunction in thyroid disease is still not clear. Asymmetric dimethyl arginine (ADMA), a novel inhibitor of endothelial nitric oxide synthetase (eNOS), was reported to inhibit nitric oxide (NO) synthesis from L-arginine. The present study was carried out to investigate ADMA levels together with effects of dislipidemia in sub-clinical and overt hypothyroid females. There were significant increase in the levels of total cholesterol, low density lipoprotein-cholesterol (LDL-c), high density lipoprotein-cholesterol (HDL-c), thyroid stimulating hormone (TSH) and ADMA in hypothyroid females as compared to controls while the levels of NO and free T4 were significantly decreased than controls. Sub-clinical hypothyroid females had significant high TSH, LDL-c and non-significantly high ADMA levels and total cholesterol as compared to controls while they had significant decrease in NO, HDL-c and non-significant decrease in free T4 as compared to controls. There were significant negative correlations between NO and both ADMA (r2 = 0.84) and free T4 (r2 = 0.95) in overt hypothyroid group while significant positive correlation (r2 = 0.85) was detected between TSH and HDL-c in the same group. These results are highly suggestive that the decrease of nitric oxide secondary to accumulation of ADMA represent an important pathogenic factor together with dyslipidemia in endothelial dysfunction and increased cardiovascular risk especially in hypothyroid females

  17. Toxoplasma gondii lacks the enzymes required for de novo arginine biosynthesis and arginine starvation triggers cyst formation.

    Science.gov (United States)

    Fox, Barbara A; Gigley, Jason P; Bzik, David J

    2004-03-01

    Two separate carbamoyl phosphate synthetase activities are required for the de novo synthesis of pyrimidines and arginine in most eukaryotes. Toxoplasma gondii is novel in possessing a single carbamoyl phosphate synthetase II gene that corresponds to a glutamine-dependent form required for pyrimidine biosynthesis. We therefore examined arginine acquisition in T. gondii to determine whether the single carbamoyl phosphate synthetase II activity could provide both pyrimidine and arginine biosynthesis. We found that arginine deprivation efficiently blocks the replication of intracellular T. gondii, yet has little effect on long-term parasite viability. Addition of citrulline, but not ornithine, rescues the growth defect observed in the absence of exogenous arginine. This rescue with citrulline is ablated when parasites are cultured in a human citrullinemia fibroblast cell line that is deficient in argininosuccinate synthetase activity. These results reveal the absence of genes and activities of the arginine biosynthetic pathway and demonstrate that T. gondii is an arginine auxotroph. Arginine starvation was also found to efficiently trigger differentiation of replicative tachyzoites into bradyzoites contained within stable cyst-like structures. These same parasites expressing bradyzoite antigens can be efficiently switched back to rapidly proliferating tachyzoites several weeks after arginine starvation. We hypothesise that the absence of gene activities that are essential for the biosynthesis of arginine from carbamoyl phosphate confers a selective advantage by increasing bradyzoite switching during the host response to T. gondii infection. These findings are consistent with a model of host-parasite evolution that allowed host control of bradyzoite induction by trading off virulence for increased transmission. PMID:15003493

  18. Diversity in mechanism and function of tRNA methyltransferases

    Science.gov (United States)

    Swinehart, William E; Jackman, Jane E

    2015-01-01

    tRNA molecules undergo extensive post-transcriptional processing to generate the mature functional tRNA species that are essential for translation in all organisms. These processing steps include the introduction of numerous specific chemical modifications to nucleotide bases and sugars; among these modifications, methylation reactions are by far the most abundant. The tRNA methyltransferases comprise a diverse enzyme superfamily, including members of multiple structural classes that appear to have arisen independently during evolution. Even among closely related family members, examples of unusual substrate specificity and chemistry have been observed. Here we review recent advances in tRNA methyltransferase mechanism and function with a particular emphasis on discoveries of alternative substrate specificities and chemistry associated with some methyltransferases. Although the molecular function for a specific tRNA methylation may not always be clear, mutations in tRNA methyltransferases have been increasingly associated with human disease. The impact of tRNA methylation on human biology is also discussed. PMID:25626150

  19. Yorkie Promotes Transcription by Recruiting a Histone Methyltransferase Complex

    Directory of Open Access Journals (Sweden)

    Hyangyee Oh

    2014-07-01

    Full Text Available Hippo signaling limits organ growth by inhibiting the transcriptional coactivator Yorkie. Despite the key role of Yorkie in both normal and oncogenic growth, the mechanism by which it activates transcription has not been defined. We report that Yorkie binding to chromatin correlates with histone H3K4 methylation and is sufficient to locally increase it. We show that Yorkie can recruit a histone methyltransferase complex through binding between WW domains of Yorkie and PPxY sequence motifs of NcoA6, a subunit of the Trithorax-related (Trr methyltransferase complex. Cell culture and in vivo assays establish that this recruitment of NcoA6 contributes to Yorkie’s ability to activate transcription. Mammalian NcoA6, a subunit of Trr-homologous methyltransferase complexes, can similarly interact with Yorkie’s mammalian homolog YAP. Our results implicate direct recruitment of a histone methyltransferase complex as central to transcriptional activation by Yorkie, linking the control of cell proliferation by Hippo signaling to chromatin modification.

  20. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells

    DEFF Research Database (Denmark)

    Freiesleben, Ulrik Von

    1996-01-01

    Dam methyltransferase deficient Escherichia coli cells containing minichromosomes were constructed. Free plasmid DNA could not be detected in these cells and the minichromosomes were found to be integrated in multiple copies in the origin of replication (oriC) region of the host chromosome...

  1. Label-free electrochemical detection of human methyltransferase from tumors.

    Science.gov (United States)

    Furst, Ariel L; Muren, Natalie B; Hill, Michael G; Barton, Jacqueline K

    2014-10-21

    The role of abnormal DNA methyltransferase activity in the development and progression of cancer is an essential and rapidly growing area of research, both for improved diagnosis and treatment. However, current technologies for the assessment of methyltransferase activity, particularly from crude tumor samples, limit this work because they rely on radioactivity or fluorescence and require bulky instrumentation. Here, we report an electrochemical platform that overcomes these limitations for the label-free detection of human DNA(cytosine-5)-methyltransferase1 (DNMT1) methyltransferase activity, enabling measurements from crude cultured colorectal cancer cell lysates (HCT116) and biopsied tumor tissues. Our multiplexed detection system involving patterning and detection from a secondary electrode array combines low-density DNA monolayer patterning and electrocatalytically amplified DNA charge transport chemistry to measure selectively and sensitively DNMT1 activity within these complex and congested cellular samples. Based on differences in DNMT1 activity measured with this assay, we distinguish colorectal tumor tissue from healthy adjacent tissue, illustrating the effectiveness of this two-electrode platform for clinical applications. PMID:25288757

  2. Arginine-aromatic interactions and their effects on arginine-induced solubilization of aromatic solutes and suppression of protein aggregation

    KAUST Repository

    Shah, Dhawal

    2011-09-21

    We examine the interaction of aromatic residues of proteins with arginine, an additive commonly used to suppress protein aggregation, using experiments and molecular dynamics simulations. An aromatic-rich peptide, FFYTP (a segment of insulin), and lysozyme and insulin are used as model systems. Mass spectrometry shows that arginine increases the solubility of FFYTP by binding to the peptide, with the simulations revealing the predominant association of arginine to be with the aromatic residues. The calculations further show a positive preferential interaction coefficient, Γ XP, contrary to conventional thinking that positive Γ XP\\'s indicate aggregation rather than suppression of aggregation. Simulations with lysozyme and insulin also show arginine\\'s preference for aromatic residues, in addition to acidic residues. We use these observations and earlier results reported by us and others to discuss the possible implications of arginine\\'s interactions with aromatic residues on the solubilization of aromatic moieties and proteins. Our results also highlight the fact that explanations based purely on Γ XP, which measures average affinity of an additive to a protein, could obscure or misinterpret the underlying molecular mechanisms behind additive-induced suppression of protein aggregation. © 2011 American Institute of Chemical Engineers (AIChE).

  3. On the evolutionary origin of eukaryotic DNA methyltransferases and Dnmt2.

    Directory of Open Access Journals (Sweden)

    Tomasz P Jurkowski

    Full Text Available The Dnmt2 enzymes show strong amino acid sequence similarity with eukaryotic and prokaryotic DNA-(cytosine C5-methyltransferases. Yet, Dnmt2 enzymes from several species were shown to methylate tRNA-Asp and had been proposed that eukaryotic DNA methyltransferases evolved from a Dnmt2-like tRNA methyltransferase ancestor [Goll et al., 2006, Science, 311, 395-8]. It was the aim of this study to investigate if this hypothesis could be supported by evidence from sequence alignments. We present phylogenetic analyses based on sequence alignments of the methyltransferase catalytic domains of more than 2300 eukaryotic and prokaryotic DNA-(cytosine C5-methyltransferases and analyzed the distribution of DNA methyltransferases in eukaryotic species. The Dnmt2 homologues were reliably identified by an additional conserved CFT motif next to motif IX. All DNA methyltransferases and Dnmt2 enzymes were clearly separated from other RNA-(cytosine-C5-methyltransferases. Our sequence alignments and phylogenetic analyses indicate that the last universal eukaryotic ancestor contained at least one member of the Dnmt1, Dnmt2 and Dnmt3 families of enzymes and additional RNA methyltransferases. The similarity of Dnmt2 enzymes with DNA methyltransferases and absence of similarity with RNA methyltransferases combined with their strong RNA methylation activity suggest that the ancestor of Dnmt2 was a DNA methyltransferase and an early Dnmt2 enzyme changed its substrate preference to tRNA. There is no phylogenetic evidence that Dnmt2 was the precursor of eukaryotic Dnmts. Most likely, the eukaryotic Dnmt1 and Dnmt3 families of DNA methyltransferases had an independent origin in the prokaryotic DNA methyltransferase sequence space.

  4. Structure and Function of Flavivirus NS5 Methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Zhou,Y.; Ray, D.; Zhao, Y.; Dong, H.; Ren, S.; Li, Z.; Guo, Y.; Bernard, K.; Shi, P.; Li, H.

    2007-01-01

    The plus-strand RNA genome of flavivirus contains a 5' terminal cap 1 structure (m{sup 7}GpppAmG). The flaviviruses encode one methyltransferase, located at the N-terminal portion of the NS5 protein, to catalyze both guanine N-7 and ribose 2'-OH methylations during viral cap formation. Representative flavivirus methyltransferases from dengue, yellow fever, and West Nile virus (WNV) sequentially generate GpppA {yields} m{sup 7}GpppA {yields} m{sup 7}GpppAm. The 2'-O methylation can be uncoupled from the N-7 methylation, since m{sup 7}GpppA-RNA can be readily methylated to m{sup 7}GpppAm-RNA. Despite exhibiting two distinct methylation activities, the crystal structure of WNV methyltransferase at 2.8 {angstrom} resolution showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. Therefore, substrate GpppA-RNA should be repositioned to accept the N-7 and 2'-O methyl groups from SAM during the sequential reactions. Electrostatic analysis of the WNV methyltransferase structure showed that, adjacent to the SAM-binding pocket, is a highly positively charged surface that could serve as an RNA binding site during cap methylations. Biochemical and mutagenesis analyses show that the N-7 and 2'-O cap methylations require distinct buffer conditions and different side chains within the K{sub 61}-D{sub 146}-K{sub 182}-E{sub 218} motif, suggesting that the two reactions use different mechanisms. In the context of complete virus, defects in both methylations are lethal to WNV; however, viruses defective solely in 2'-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N-7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel target for flavivirus therapy.

  5. Cellular Mechanisms of L-arginine Induced Experimental Acute Pancreatitis

    OpenAIRE

    Masood, Omar

    2013-01-01

    AbstractThe University Of ManchesterOmar MasoodMD Thesis 2013Cellular Mechanisms of L-arginine Induced Experimental Acute Pancreatitis. IntroductionImpairment of cytosolic calcium ([Ca2+]i) signaling and in particular calcium overload has emerged as a possible unifying mechanism for precipitating acute pancreatitis (AP.)In the L-arginine (L-arg) experimental model of AP, nitric oxide (NO) has been implicated however the disease progression is largely unaffected by nitric oxide synthase (NOS) ...

  6. Local Administration of L-Arginine Accelerates Wound Closure

    Directory of Open Access Journals (Sweden)

    Masoumeh Varedi

    2009-09-01

    Full Text Available Objective(sThe process of wound healing involves tightly integrated events including inflammation, granulation tissue formation and remodeling. Systemic administration of L arginine promotes wound healing but its global side effects are undesirable. To confine the action of L-arginine at the site of injury, we tested the effects of local administration of L arginine on the healing of excisional wound in the rat.Materials and MethodsFull thickness excisional wounds were generated on the dorsum of adult male rats. The test wounds received 200 µm or 400 µm of L-arginine on day 3 and 5 post-wounding. Normal saline was injected into the sham wounds which were otherwise treated as the test wounds. Control wounds remained unmanipulated. The wound size was monitored daily by imaging. To determine the rate of wound closure, wound images were scanned and the rate of size reduction was analyzed and quantified by ScnImage software. The repaired tissues were harvested on day 12 post-wounding. The tissue sections were prepared and stained for microscopic examination. ResultsWounds treated with L-arginine showed a significant increase in the rate of wound closure. The morphology of basal keratinocytes was altered, and the thickness of neoepidermis was markedly reduced in the wounds treated with L-arginine. Both tested dose of L-arginine were equally effective. ConclusionLocal administration of L-arginine accelerates wound closure and has profound effects on keratinocytes performance during the process of healing. Therefore, it can be potentially used for treatment of skin disorders, in particular, those characterized by hyperkeratosis.

  7. Geometry of guanidinium groups in arginines.

    Science.gov (United States)

    Malinska, Maura; Dauter, Miroslawa; Dauter, Zbigniew

    2016-09-01

    The restraints in common usage today have been obtained based on small molecule X-ray crystal structures available 25 years ago and recent reports have shown that the values of bond lengths and valence angles can be, in fact, significantly different from those stored in libraries, for example for the peptide bond or the histidine ring geometry. We showed that almost 50% of outliers found in protein validation reports released in the Protein Data Bank on 23 March 2016 come from geometry of guanidine groups in arginines. Therefore, structures of small molecules and atomic resolution protein crystal structures have been used to derive new target values for the geometry of this group. The most significant difference was found for NE-CZ-NH1 and NE-CZ-NH2 angles, showing that the guanidinium group is not symmetric. The NE-CZ-NH1 angle is larger, 121.5(10)˚, than NE-CZ-NH2, 119.2(10)˚, due to the repulsive interaction between NH1 and CD1 atom.

  8. Molecular identification of carnosine N-methyltransferase as chicken histamine N-methyltransferase-like protein (hnmt-like.

    Directory of Open Access Journals (Sweden)

    Jakub Drozak

    Full Text Available Anserine (beta-alanyl-N(Pi-methyl-L-histidine, a naturally occurring derivative of carnosine (beta-alanyl-L-histidine, is an abundant constituent of skeletal muscles and brain of many vertebrates. Although it has long been proposed to serve as a proton buffer, radicals scavenger and transglycating agent, its physiological function remains obscure. The formation of anserine is catalyzed by carnosine N-methyltransferase which exhibits unknown molecular identity. In the present investigation, we have purified carnosine N-methyltransferase from chicken pectoral muscle about 640-fold until three major polypeptides of about 23, 26 and 37 kDa coeluting with the enzyme were identified in the preparation. Mass spectrometry analysis of these polypeptides resulted in an identification of histamine N-methyltransferase-like (HNMT-like protein as the only meaningful candidate. Analysis of GenBank database records indicated that the hnmt-like gene might be a paralogue of histamine N-methyltransferase gene, while comparison of their protein sequences suggested that HNMT-like protein might have acquired a new activity. Chicken HNMT-like protein was expressed in COS-7 cells, purified to homogeneity, and shown to catalyze the formation of anserine as confirmed by both chromatographic and mass spectrometry analysis. Both specificity and kinetic studies carried out on the native and recombinant enzyme were in agreement with published data. Particularly, several compounds structurally related to carnosine, including histamine and L-histidine, were tested as potential substrates for the enzyme, and carnosine was the only methyl group acceptor. The identification of the gene encoding carnosine N-methyltransferase might be beneficial for estimation of the biological functions of anserine.

  9. Acellular matrix of bovine pericardium bound with L-arginine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Joo [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Bae, Jin Woo [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Chun Ho [Laboratory of Tissue Engineering, Korea Cancer Center Hospital, Seoul 139-240 (Korea, Republic of); Lee, Jin Woo [Department of Orthopaedic Surgery, College of Medicine, Yonsei University, Seoul 120-749 (Korea, Republic of); Shin, Jung Woog [Department of Biomedical Engineering, Inje University, Gimhae 621-749 (Korea, Republic of); Park, Ki Dong [Department of Molecular Science and Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

    2007-09-15

    Surface immobilization of bioactive molecules onto natural tissues has been interestingly studied for the development of new functional matrices for the replacement of lost or malfunctioning tissues. In this study, an acellular matrix of bovine pericardium (ABP) was chemically modified by the direct coupling of L-arginine after glutaraldehyde (GA) cross-linking. The effects of L-arginine coupling on durability and calcification were investigated and the biocompatibility was evaluated in vitro and in vivo. A four-step detergent and enzymatic extraction process has been utilized to remove cellular components from fresh bovine pericardium (BP). Microscopic observation confirmed that nearly all cellular constituents are removed. Thermal and mechanical properties showed that the durability of L-arginine-treated matrices increased as compared with control ABP and GA-treated ABP. Resistance to collagenase digestion revealed that modified matrices have greater resistance to enzyme digestion than control ABP and GA-treated ABP. The in vivo calcification study demonstrated much less calcium deposition on L-arginine-treated ABP than GA-treated one. In vitro cell viability results showed that ABP modified with L-arginine leads to a significant increase in attachment of human dermal fibroblasts. The obtained results attest to the usefulness of L-arginine-treated ABP matrices for cardiovascular bioprostheses.

  10. Plasma arginine and ornithine are the main citrulline precursors in mice infused with arginine-free diets.

    Science.gov (United States)

    Marini, Juan C; Didelija, Inka Cajo; Castillo, Leticia; Lee, Brendan

    2010-08-01

    Dietary arginine is the main dietary precursor for citrulline synthesis, but it is not known if other precursors can compensate when arginine is absent in the diet. To address this question, the contributions of plasma and dietary precursors were determined by using multitracer protocols in conscious mice infused i.g. either an arginine-sufficient diet [Arg(+)] or an arginine-free diet [Arg(-)]. The plasma entry rate of citrulline and arginine did not differ between the 2 diet groups (156 +/- 6 and 564 +/- 30 micromol kg(-1) h(-1), respectively); however, the entry rate of ornithine was greater in the mice fed the Arg(+) than the Arg(-) diet (332 +/- 33 vs. 180 +/- 16 micromol kg(-1) h(-1)). There was a greater utilization of plasma ornithine for the synthesis of citrulline (49 +/- 4 vs. 36 +/- 3 micromol kg(-1) h(-1), 30 +/- 3% vs. 24 +/- 2% of citrulline entry rate) in the mice fed the Arg(-) diet than the Arg(+) diet. The utilization of plasma arginine did not differ between the 2 diet groups for citrulline synthesis, either through plasma ornithine (approximately 29 +/- 3 micromol kg(-1) h(-1)) or at the site of citrulline synthesis (approximately 12 +/- 3 micromol kg(-1) h(-1)). The contribution of dietary proline to the synthesis of citrulline was mainly at the site of citrulline production (17 +/- 1 micromol kg(-1) h(-1)), rather than through plasma ornithine (5 +/- 0.4 micromol kg(-1) h(-1)). Dietary glutamine was utilized only at the site of citrulline synthesis (4 +/- 0.2 micromol kg(-1) h(-1)). Dietary glutamine and proline made a greater contribution to the synthesis of citrulline in mice fed the Arg(-) diet but remained minor sources for citrulline production. Plasma arginine and ornithine are able to support citrulline synthesis during arginine-free feeding.

  11. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels

    Science.gov (United States)

    Armstrong, Craig T.; Mason, Philip E.; Anderson, J. L. Ross; Dempsey, Christopher E.

    2016-02-01

    Gating charges in voltage-sensing domains (VSD) of voltage-sensitive ion channels and enzymes are carried on arginine side chains rather than lysine. This arginine preference may result from the unique hydration properties of the side chain guanidinium group which facilitates its movement through a hydrophobic plug that seals the center of the VSD, as suggested by molecular dynamics simulations. To test for side chain interactions implicit in this model we inspected interactions of the side chains of arginine and lysine with each of the 19 non-glycine amino acids in proteins in the protein data bank. The arginine guanidinium interacts with non-polar aromatic and aliphatic side chains above and below the guanidinium plane while hydrogen bonding with polar side chains is restricted to in-plane positions. In contrast, non-polar side chains interact largely with the aliphatic part of the lysine side chain. The hydration properties of arginine and lysine are strongly reflected in their respective interactions with non-polar and polar side chains as observed in protein structures and in molecular dynamics simulations, and likely underlie the preference for arginine as a mobile charge carrier in VSD.

  12. L-Arginine Supplementation and Metabolism in Asthma

    Directory of Open Access Journals (Sweden)

    Angela Linderholm

    2011-01-01

    Full Text Available L-Arginine, the amino acid substrate for nitric oxide synthase, has been tested as a therapeutic intervention in a variety of chronic diseases and is commonly used as a nutritional supplement. In this study, we hypothesized that a subset of moderate to severe persistent asthma patients would benefit from supplementation with L-arginine by transiently increasing nitric oxide levels, resulting in bronchodilation and a reduction in inflammation. The pilot study consisted of a 3 month randomized, double-blind, placebo-controlled trial of L-arginine (0.05 g/kg twice daily in patients with moderate to severe asthma. We measured spirometry, exhaled breath nitric oxide, serum arginine metabolites, questionnaire scores, daily medication use and PEFR with the primary endpoint being the number of minor exacerbations at three months. Interim analysis of the 20 subjects showed no difference in the number of exacerbations, exhaled nitric oxide levels or lung function between groups, though participants in the L-arginine group had higher serum L-arginine at day 60 (2.0 ± 0.6 × 10−3 vs. 1.1 ± 0.2 × 10−3 µmol/L, p < 0.05, ornithine at day 30 (2.4 ± 0.9 vs. 1.2 ± 0.3 µmol/L serum, p < 0.05 and ADMA at day 30 (6.0 ± 1.5 × 10−1 vs. 2.6 ± 0.6 × 10−1 µmol/L serum, p < 0.05 on average compared to the placebo group. The study was terminated prematurely. Supplementing asthma subjects with L-arginine increases plasma levels; whether subgroups might benefit from such supplementation requires further study.

  13. Inhibition of lytic infection of pseudorabies virus by arginine depletion

    International Nuclear Information System (INIS)

    Pseudorabies virus (PRV) is a member of Alphahepesviruses; it is an enveloped virus with a double-stranded DNA genome. Polyamines (such as spermine and spermidine) are ubiquitous in animal cells and participate in cellular proliferation and differentiation. Previous results of our laboratory showed that the PRV can accomplish lytic infection either in the presence of exogenous spermine (or spermidine) or depletion of cellular polyamines. The amino acid arginine is a precursor of polyamine biosynthesis. In this work, we investigated the role of arginine in PRV infection. It was found that the plaque formation of PRV was inhibited by arginase (enzyme catalyzing the conversion of arginine into ornithine and urea) treatment whereas this inhibition can be reversed by exogenous arginine, suggesting that arginine is essential for PRV proliferation. Western blotting was conducted to study the effect of arginine depletion on the levels of structural proteins of PRV in virus-infected cells. Four PRV structural proteins (gB, gE, UL47, and UL48) were chosen for examination, and results revealed that the levels of viral proteins were obviously reduced in long time arginase treatment. However, the overall protein synthesis machinery was apparently not influenced by arginase treatment either in mock or PRV-infected cells. Analyzing with native gel, we found that arginase treatment affected the mobility of PRV structural proteins, suggesting the conformational change of viral proteins by arginine depletion. Heat shock proteins, acting as molecular chaperons, participate in protein folding and translocation. Our results demonstrated that long time arginase treatment could reduce the expression of cellular heat shock proteins 70 (hsc70 and hsp70), and transcriptional suppression of heat shock protein 70 gene promoter was one of the mechanisms involved in this reduced expression

  14. The effect of arginine on oral biofilm communities.

    Science.gov (United States)

    Nascimento, M M; Browngardt, C; Xiaohui, X; Klepac-Ceraj, V; Paster, B J; Burne, R A

    2014-02-01

    Alkali production by oral bacteria via the arginine deiminase system (ADS) increases the pH of oral biofilms and reduces the risk for development of carious lesions. This study tested the hypothesis that increased availability of arginine in the oral environment through an exogenous source enhances the ADS activity levels in saliva and dental plaque. Saliva and supra-gingival plaque samples were collected from 19 caries-free (CF) individuals (DMFT = 0) and 19 caries-active (CA) individuals (DMFT ≥ 2) before and after treatment, which comprised the use of a fluoride-free toothpaste containing 1.5% arginine, or a regular fluoride-containing toothpaste twice daily for 4 weeks. ADS activity was measured by quantification of ammonia produced from arginine by oral samples at baseline, after washout period, 4 weeks of treatment, and 2 weeks post-treatment. Higher ADS activity levels were observed in plaque samples from CF compared to those of CA individuals (P = 0.048) at baseline. The use of the arginine toothpaste significantly increased ADS activity in plaque of CA individuals (P = 0.026). The plaque microbial profiles of CA treated with the arginine toothpaste showed a shift in bacterial composition to a healthier community, more similar to that of CF individuals. Thus, an anti-caries effect may be expected from arginine-containing formulations due in large part to the enhancement of ADS activity levels and potential favorable modification to the composition of the oral microbiome.

  15. Plant isoflavone and isoflavanone O-methyltransferase genes

    Science.gov (United States)

    Broeckling, Bettina E.; Liu, Chang-Jun; Dixon, Richard A.

    2014-08-19

    The invention provides enzymes that encode O-methyltransferases (OMTs) from Medicago truncatula that allow modification to plant (iso)flavonoid biosynthetic pathways. In certain aspects of the invention, the genes encoding these enzymes are provided. The invention therefore allows the modification of plants for isoflavonoid content. Transgenic plants comprising such enzymes are also provided, as well as methods for improving disease resistance in plants. Methods for producing food and nutraceuticals, and the resulting compositions, are also provided.

  16. Structural characterization of the mitomycin 7-O-methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shanteri; Chang, Aram; Goff, Randal D.; Bingman, Craig A.; Grüschow, Sabine; Sherman, David H.; Phillips, Jr., George N.; Thorson, Jon S. (Michigan); (UW)

    2014-10-02

    Mitomycins are quinone-containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin-7-O-methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae, catalyzes the 7-O-methylation of both C9{beta}- and C9{alpha}-configured 7-hydroxymitomycins. We have determined the crystal structures of the MmcR-S-adenosylhomocysteine (SAH) binary complex and MmcR-SAH-mitomycin A (MMA) ternary complex at resolutions of 1.9 and 2.3 {angstrom}, respectively. The study revealed MmcR to adopt a common S-adenosyl-L-methionine-dependent O-methyltransferase fold and the presence of a structurally conserved active site general acid-base pair is consistent with a proton-assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylation to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins.

  17. DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents.

    OpenAIRE

    Glassner, Brian; Weeda, Geert; Allan, James; Broekhof, Jose'; Carls, Nick; Donker, Ingrid; Engelward, Bevin; Hampson, Richard; Hersmus, Remko; Hickman, Mark; Roth, Richard; Warren, Henry; Wu, Mavis; Hoeijmakers, Jan; Samson, Leona

    1999-01-01

    textabstractWe have generated mice deficient in O6-methylguanine DNA methyltransferase activity encoded by the murine Mgmt gene using homologous recombination to delete the region encoding the Mgmt active site cysteine. Tissues from Mgmt null mice displayed very low O6-methylguanine DNA methyltransferase activity, suggesting that Mgmt constitutes the major, if not the only, O6-methylguanine DNA methyltransferase. Primary mouse embryo fibroblasts and bone marrow cells from Mgmt -/- mice were s...

  18. Glutamine, arginine, and leucine signaling in the intestine.

    Science.gov (United States)

    Marc Rhoads, J; Wu, Guoyao

    2009-05-01

    Glutamine and leucine are abundant constituents of plant and animal proteins, whereas the content of arginine in foods and physiological fluids varies greatly. Besides their role in protein synthesis, these three amino acids individually activate signaling pathway to promote protein synthesis and possibly inhibit autophagy-mediated protein degradation in intestinal epithelial cells. In addition, glutamine and arginine stimulate the mitogen-activated protein kinase and mammalian target of rapamycin (mTOR)/p70 (s6) kinase pathways, respectively, to enhance mucosal cell migration and restitution. Moreover, through the nitric oxide-dependent cGMP signaling cascade, arginine regulates multiple physiological events in the intestine that are beneficial for cell homeostasis and survival. Available evidence from both in vitro and in vivo animal studies shows that glutamine and arginine promote cell proliferation and exert differential cytoprotective effects in response to nutrient deprivation, oxidative injury, stress, and immunological challenge. Additionally, when nitric oxide is available, leucine increases the migration of intestinal cells. Therefore, through cellular signaling mechanisms, arginine, glutamine, and leucine play crucial roles in intestinal growth, integrity, and function.

  19. Influence of L-arginine during bovine in vitro fertilization.

    Science.gov (United States)

    Silva, Thiago Velasco Guimarães; da Silva, Bruno Baraúna; de Sá, André Luiz Alves; da Costa, Nathalia Nogueira; Sampaio, Rafael Vilar; Cordeiro, Marcela da Silva; Santana, Priscila Di Paula Bessa; Adona, Paulo Roberto; Santos, Simone do Socorro Damasceno; Miranda, Moysés dos Santos; Ohashi, Otávio Mitio

    2014-12-01

    The objective of this work was to evaluate the effect of using L-arginine during in vitro fertilization (IVF) on in vitro embryonic development using Bos taurus and Bos indicus semen. Effect of different concentrations (0, 1, 10 and 50 mM) of L-arginine, added to the IVF medium, was evaluated on the fertilization rate at 18 h post-fertilization (hpf), NO3(-)/NO2(-) production during IVF by the Griess colorimetric method (30 hpf), cleavage and blastocyst rates (on Day 2 and Day 7 of culture, respectively) and total blastocyst cell number (Day 7 of culture). The results reveal that the addition of 50 mM L-arginine to IVF medium, with either Bos taurus or Bos indicus spermatozoa, decreased the cleavage rate and blastocyst rate compared to the control group. Other concentrations did not affect embryo production. However, 1 mM L-arginine with Bos indicus semen increased the proportion of hatched blastocysts. These results indicate that high L-arginine concentrations may exhibit toxic effects on bovine gametes during in vitro fertilization. PMID:25651608

  20. Local Structures and Chemical Properties of Deprotonated Arginine

    Institute of Scientific and Technical Information of China (English)

    Hong-bao Li; Zi-jing Lin; Yi Luo

    2012-01-01

    The potential energy surface of gaseous deprotonated arginine has been systematically investigated by first principles calculations.At the B3LYP/6-31G(d) level,apart from the identification of several stable local structures,a new global minimum is located which is about 6.56 kJ/mol more stable than what has been reported.The deprotonated arginine molecule has two distinct forms with the deprotonation at the carboxylate group (COO-).These two forms are bridged by a very high energy barrier and possess very different IR spectral profiles.Our calculated proton dissociation energy and gas-phase acidity of arginine molecule are found to be in good agreement with the corresponding experimental results.The predicted geometries,dipole moments,rotational constants,vertical ionization energies and IR spectra of low energy conformers will be useful for future experimental measurements.

  1. Mitochondria: role of citrulline and arginine supplementation in MELAS syndrome.

    Science.gov (United States)

    El-Hattab, Ayman W; Emrick, Lisa T; Chanprasert, Sirisak; Craigen, William J; Scaglia, Fernando

    2014-03-01

    Mitochondria are found in all nucleated human cells and generate most of the cellular energy. Mitochondrial disorders result from dysfunctional mitochondria that are unable to generate sufficient ATP to meet the energy needs of various organs. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a frequent maternally inherited mitochondrial disorder. There is growing evidence that nitric oxide (NO) deficiency occurs in MELAS syndrome and results in impaired blood perfusion that contributes significantly to several complications including stroke-like episodes, myopathy, and lactic acidosis. Both arginine and citrulline act as NO precursors and their administration results in increased NO production and hence can potentially have therapeutic utility in MELAS syndrome. Citrulline raises NO production to a greater extent than arginine, therefore, citrulline may have a better therapeutic effect. Controlled studies assessing the effects of arginine or citrulline supplementation on different clinical aspects of MELAS syndrome are needed.

  2. Arginine protection against ammonia toxicity in exhausted rat.

    Science.gov (United States)

    Krishna Mohan, P; Indira, K; Rajendra, W

    1987-01-01

    Arginine administration (5 m moles/kg/day) to albino rats for 7 days, revealed that this vital basic amino acid possesses latent potentiality for the accentuation of urea cycle or at least for arginase activity. The mitigation of ammonia toxicity was observed to be more effective in the case of gastrocnemius and red vastus as compared to white vastus. Further, ammonia and lactate levels were also decreased by arginine in blood and thereby delaying the onset of fatigue by preventing ammonotoxemia and lactic acidemia. PMID:3666875

  3. Contents of corticotropin-releasing hormone and arginine vasopressin immunoreativity in the spleen and thymus during a chronic inflammatory stress

    DEFF Research Database (Denmark)

    Chowdrey, H.S.; Lightman, S.L.; Harbuz, M.S.;

    1994-01-01

    Corticotropin-releasing hormone, spleen, thymus, immune system, stress, arthritis, arginine vasopressin......Corticotropin-releasing hormone, spleen, thymus, immune system, stress, arthritis, arginine vasopressin...

  4. Effect of oral L-arginine administration on exhaled nitric oxide (no) concentration in healthy volunteers

    OpenAIRE

    Ogata, Hiroshi; Yatabe, Midori; Misaka, Shingen; Shikama, Yayoi; Sato, Suguru; Munakata, Mitsuru; Kimura, Junko

    2013-01-01

    We previously reported a case of pulmonary hypertension, where the symptoms were improved by oral L-arginine (arginine) administration. Arginine may increase nitric oxide (NO) production in the pulmonary artery. Exhaled NO may reflect pulmonary artery NO production. It has been demonstrated that exhaled NO concentration is higher in patients with allergic diseases, but whether oral arginine administration alters exhaled NO is unknown. Therefore, in this study, we investigated whether oral arg...

  5. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin.

    Science.gov (United States)

    McGann, Patrick; Chahine, Sarah; Okafor, Darius; Ong, Ana C; Maybank, Rosslyn; Kwak, Yoon I; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2016-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test. PMID:26537447

  6. Detecting 16S rRNA Methyltransferases in Enterobacteriaceae by Use of Arbekacin

    OpenAIRE

    McGann, Patrick; Chahine, Sarah; Okafor, Darius; Ong, Ana C; Maybank, Rosslyn; Kwak, Yoon I.; Wilson, Kerry; Zapor, Michael; Lesho, Emil; Hinkle, Mary

    2015-01-01

    16S rRNA methyltransferases confer resistance to most aminoglycosides, but discriminating their activity from that of aminoglycoside-modifying enzymes (AMEs) is challenging using phenotypic methods. We demonstrate that arbekacin, an aminoglycoside refractory to most AMEs, can rapidly detect 16S methyltransferase activity in Enterobacteriaceae with high specificity using the standard disk susceptibility test.

  7. DNA methyltransferase 1 and DNA methylation patterning contribute to germinal center B-cell differentiation

    DEFF Research Database (Denmark)

    Shaknovich, Rita; Cerchietti, Leandro; Tsikitas, Lucas;

    2011-01-01

    cells. Among DNA methyltransferases (DNMTs), only DNMT1 was significantly up-regulated in GC B cells. Dnmt1 hypomorphic mice displayed deficient GC formation and treatment of mice with the DNA methyltransferase inhibitor decitabine resulted in failure to form GCs after immune stimulation. Notably...

  8. A SABATH Methyltransferase from the moss Physcomitrella patens catalyzes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nan [ORNL; Ferrer, Jean-Luc [Universite Joseph Fourier, France; Moon, Hong S [Department of Plant Sciences, University of Tennessee; Kapteyn, Jeremy [Institute of Biological Chemistry, Washington State University; Zhuang, Xiaofeng [Department of Plant Sciences, University of Tennessee; Hasebe, Mitsuyasu [Laboratory of Evolutionary Biology, National Institute for Biology, 38 Nishigounaka; Stewart, Neal C. [Department of Plant Sciences, University of Tennessee; Gang, David R. [Institute of Biological Chemistry, Washington State University; Chen, Feng [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella patens was identified and characterized. Four SABATH-like sequences (PpSABATH1, PpSABATH2, PpSABATH3, and PpSABATH4) were identified from the P. patens genome. Only PpSABATH1 and PpSABATH2 showed expression in the leafy gametophyte of P. patens. Full-length cDNAs of PpSABATH1 and PpSABATH2 were cloned and expressed in soluble form in Escherichia coli. Recombinant PpSABATH1 and PpSABATH2 were tested for methyltransferase activity with a total of 75 compounds. While showing no activity with carboxylic acids or nitrogen-containing compounds, PpSABATH1 displayed methyltransferase activity with a number of thiols. PpSABATH2 did not show activity with any of the compounds tested. Among the thiols analyzed, PpSABATH1 showed the highest level of activity with thiobenzoic acid with an apparent Km value of 95.5 lM, which is comparable to those of known SABATHs. Using thiobenzoic acid as substrate, GC MS analysis indicated that the methylation catalyzed by PpSABATH1 is on the sulfur atom. The mechanism for S-methylation of thiols catalyzed by PpSABATH1 was partially revealed by homology-based structural modeling. The expression of PpSABATH1 was induced by the treatment of thiobenzoic acid. Further transgenic studies showed that tobacco plants overexpressing PpSABATH1 exhibited enhanced tolerance to thiobenzoic acid, suggesting that PpSABATH1 have a role in the detoxification of xenobiotic thiols.

  9. Coordinate regulation of DNA methyltransferase expression during oogenesis

    Directory of Open Access Journals (Sweden)

    Bestor Timothy H

    2007-04-01

    Full Text Available Abstract Background Normal mammalian development requires the action of DNA methyltransferases (DNMTs for the establishment and maintenance of DNA methylation within repeat elements and imprinted genes. Here we report the expression dynamics of Dnmt3a and Dnmt3b, as well as a regulator of DNA methylation, Dnmt3L, in isolated female germ cells. Results Our results indicate that these enzymes are coordinately regulated and that their expression peaks during the stage of postnatal oocyte development when maternal methylation imprints are established. We find that Dnmt3a, Dnmt3b, Dnmt3L and Dnmt1o transcript accumulation is related to oocyte diameter. Furthermore, DNMT3L deficient 15 dpp oocytes have aberrantly methylated Snrpn, Peg3 and Igf2r DMRs, but normal IAP and LINE-1 methylation levels, thereby highlighting a male germ cell specific role for DNMT3L in the establishment of DNA methylation at repeat elements. Finally, real-time RT-PCR analysis indicates that the depletion of either DNMT3L or DNMT1o in growing oocytes results in the increased expression of the de novo methyltransferase Dnmt3b, suggesting a potential compensation mechanism by this enzyme for the loss of one of the other DNA methyltransferases. Conclusion Together these results provide a better understanding of the developmental regulation of Dnmt3a, Dnmt3b and Dnmt3L at the time of de novo methylation during oogenesis and demonstrate that the involvement of DNMT3L in retrotransposon silencing is restricted to the male germ line. This in turn suggests the existence of other factors in the oocyte that direct DNA methylation to transposons.

  10. Purification and characterization of DNA methyltransferases from Neisseria gonorrhoeae.

    OpenAIRE

    Piekarowicz, A; Yuan, R.; Stein, D C

    1988-01-01

    Three DNA methyltransferases, M.NgoAI, and M.NgoBI and M.NgoBII, free of any nuclease activities were isolated from Neisseria gonorrhoeae strains WR220 and MUG116 respectively. M.NgoAI recognizes the sequence 5' GGCC 3' and methylates the first 5' cytosine on both strands. M.NgoBI and M.NgoBII recognize 5' TCACC 3' and 5' GTAN5CTC 3' respectively. M.NgoBII methylates cytosine on only one strand to produce 5' GTAN5mCTC 3'.

  11. High level expression and purification of HhaI methyltransferase.

    OpenAIRE

    Wu, J. C.; Santi, D V

    1988-01-01

    A cloning system for the DNA-(cytosine-5)-methyltransferase MHhaI and high level expression of the enzyme are described. A parent plasmid was constructed from fragments of the MHhaI gene and synthetic oligonucleotides. The construct permits introduction of various restriction sites for cloning at precise positions near the initiation codon, and beyond the termination codon. The entire MHhaI coding sequence was introduced as a 1042 b.p. NdeI-XbaI fragment into the vector pAR3040 which contains...

  12. In vivo arginine production and intravascular nitric oxide synthesis in hypotensive sepsis

    Science.gov (United States)

    Arginine is important in the response to infections and is a precursor for the synthesis of the vasodilator nitric oxide (NO). Low plasma arginine is correlated with a worse prognosis in patients with sepsis, and increased NO has been implicated in the hypotension of sepsis. Data on in vivo arginine...

  13. High plasma arginine concentrations in critically ill patients suffering from hepatic failure

    NARCIS (Netherlands)

    R. Nijveldt (Robin); M.P.C. Siroen; B. van der Hoven (Ben); T. Teerlink (Tom); H.A. Prins (Hubert); A.R.J. Girbes (Armand); P.A.M. van Leeuwen

    2004-01-01

    textabstractObjective: In physiological conditions, the liver plays an important role in the regulation of plasma arginine concentrations by taking up large amounts of arginine from the hepatic circulation. When hepatic failure is present, arginine metabolism may be disturbed. Therefore, we hypothes

  14. Arginine dimethylation products in pediatric patients with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Akram E. El-Sadek

    2016-08-01

    Conclusion: Disturbed serum levels of arginine and its dimethyl derivatives may underlie development and/or progression of CKD. Elevated serum SDMA level is strongly correlated with impaired kidney functions and could be considered as a predictor for kidney functions deterioration and CKD progression.

  15. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wenyu [Univ. of Toronto, ON (Canada); Chory, Emma J. [Dana-Farber Cancer Inst., Boston, MA (United States); Northeastern Univ., Boston, MA (United States); Wernimont, Amy K. [Univ. of Toronto, ON (Canada); Tempel, Wolfram [Univ. of Toronto, ON (Canada); Scopton, Alex [Univ. of Toronto, ON (Canada); Federation, Alexander [Dana-Farber Cancer Inst., Boston, MA (United States); Marineau, Jason J. [Dana-Farber Cancer Inst., Boston, MA (United States); Qi, Jun [Dana-Farber Cancer Inst., Boston, MA (United States); Barsyte-Lovejoy, Dalia [Univ. of Toronto, ON (Canada); Yi, Joanna [Dana-Farber Cancer Inst., Boston, MA (United States); Marcellus, Richard [Ontario Inst. for Cancer Research, Toronto, ON (Canada); Iacob, Roxana E. [Northeastern Univ., Boston, MA (United States); Engen, John R. [Northeastern Univ., Boston, MA (United States); Griffin, Carly [Ontario Inst. for Cancer Research, Toronto, ON (Canada); Aman, Ahmed [Ontario Inst. for Cancer Research, Toronto, ON (Canada); Wienholds, Erno [Univ. of Toronto, ON (Canada); Li, Fengling [Univ. of Toronto, ON (Canada); Pineda, Javier [Dana-Farber Cancer Inst., Boston, MA (United States); Univ. of Notre Dame, IN (United States); Estiu, Guillermina [Univ. of Notre Dame, IN (United States); Shatseva, Tatiana [Univ. of Toronto, ON (Canada); Hajian, Taraneh [Univ. of Toronto, ON (Canada); Al-awar, Rima [Ontario Inst. for Cancer Research, Toronto, ON (Canada); Dick, John E. [Univ. of Toronto, ON (Canada); Vedadi, Masoud [Univ. of Toronto, ON (Canada); Brown, Peter J. [Univ. of Toronto, ON (Canada); Arrowsmith, Cheryl H. [Univ. of Toronto, ON (Canada); Bradner, James E. [Dana-Farber Cancer Inst., Boston, MA (United States); Harvard Medical School, Boston, MA (United States); Schapira, Matthieu [Univ. of Toronto, ON (Canada)

    2012-12-18

    Selective inhibition of protein methyltransferases is a promising new approach to drug discovery. An attractive strategy towards this goal is the development of compounds that selectively inhibit binding of the cofactor, S-adenosylmethionine, within specific protein methyltransferases. Here we report the three-dimensional structure of the protein methyltransferase DOT1L bound toEPZ004777, the first S-adenosylmethionine-competitive inhibitor of a protein methyltransferase with in vivo efficacy. This structure and those of four new analogues reveal remodelling of the catalytic site. EPZ004777 and a brominated analogue, SGC0946, inhibit DOT1L in vitro and selectively kill mixed lineage leukaemia cells, in which DOT1L is aberrantly localized via interaction with an oncogenic MLL fusion protein. These data provide important new insight into mechanisms of cell-active S-adenosylmethionine-competitive protein methyltransferase inhibitors, and establish a foundation for the further development of drug-like inhibitors of DOT1L for cancer therapy.

  16. Circadian variation of plasma arginine vasopressin concentration, or arginine vasopressin in enuresis.

    Science.gov (United States)

    Aikawa, T; Kasahara, T; Uchiyama, M

    1999-01-01

    The objective of these studies was to determine a relationship between primary nocturnal enuresis and arginine vasopressin (AVP) secretion. The first study compared 24-h AVP secretion profiles of enuretic (n = 9) and non-enuretic children (n = 8). Blood samples were collected at 1-h intervals for 24 h. In the second study, nocturnal AVP secretion in group A (n = 40)--with low urinary osmotic pressure (UOP) and large nocturnal urine output (NUO)--was compared with that in group D (n = 11) with normal UOP and small NUO. Plasma AVP levels were measured at 30-min intervals, immediately after falling asleep until 06.00 the following morning. The results of the first study showed that the plasma AVP level was significantly lower (p < 0.05-0.001) in the enuretic group between 23.00 and 04.00. The second study showed that group A had significantly lower AVP levels (p < 0.05-0.001) than group D throughout the night. The mean AVP level during night sleep was 0.64 +/- 0.23 pg/ml in group A and 1.43 +/- 0.66 pg/ml in group D. The results of the first study suggest that decreased nocturnal AVP secretion is a cause of bedwetting. However, the results of the second study suggest that nocturnal enuresis cannot be explained by a decrease in nocturnal AVP secretion alone.

  17. Lipid substrate specificity of phosphatidylethanolamine N-methyltransferase of Tetrahymena

    International Nuclear Information System (INIS)

    The ciliate protozoan Tetrahymena thermophila forms about 60% of its phosphatidylcholine by methylation of phosphatidylethanolamine with S-adenosylmethionine using the enzyme phosphatidylethanolamine N-methyltransferase. Analogues of ethanolamine or of ethanolamine phosphate are incorporated into the phospholipids of Tetrahymena when cells are cultured in their presence. These compounds, 3-amino-1-propanol, 2-aminoethylphosphonate, 3-aminopropylphosphonate and N,N-dimethylaminoethylphosphonate replace from 50 to 75% of the ethanolamine phosphate in phosphatidylethanolamine. However, analysis of the phospholipids of lipid-altered Tetrahymena showed that none of the phosphatidylethanolamine analogues had been converted to the corresponding phosphatidylcholine analogue. No incorration of [14C-CH3]methionine into the phosphatidylcholine analogues could be demonstrated in vivo, nor was label from [3H-CH3]S-adenosylmethionine incorporated in virto. Thus, only phosphatidylethanolamine and its monomethyl and dimethyl derivatives have been found to be substrates for the phosphatidylethanoiamine N-methyltransferase. The enzyme therefore requires a phospholipid substrate containing an ester linkage between the alkylamine and phosphorus, with the amino group required to be β to the alcohol

  18. Analysis of an Alanine/Arginine Mixture by Using TLC/FTIR Technique

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-01-01

    Full Text Available We applied TLC/FTIR coupled with mapping technique to analyze an alanine/arginine mixture. Narrow band TLC plates prepared by using AgI as a stationary phase were used to separate alanine and arginine. The distribution of alanine and arginine spots was manifested by a 3D chromatogram. Alanine and arginine can be successfully separated by the narrow band TLC plate. In addition, the FTIR spectra of the separated alanine and arginine spots on the narrow band TLC plate are roughly the same as the corresponding reference IR spectra.

  19. Expression of arg genes of Escherichia coli during arginine limitation dependent upon stringent control of translation.

    OpenAIRE

    Williams, M.G.; Rogers, P

    1987-01-01

    The transcription and translation of operons for arginine biosynthetic enzymes after arginine removal (arginine down shift) were studied in relA and relA+ strains of Escherichia coli. After arginine down shift, derepression of synthesis of the arginine biosynthetic enzymes ornithine carbamoyltransferase (argF) and argininosuccinate lyase (argH) began at about 15 min in relA+ cells but was delayed in relA cells for more than 2 h. However, both relA+ and relA cells accumulated high levels of ar...

  20. Enthalpy-driven interactions with sulfated glycosaminoglycans promote cell membrane penetration of arginine peptides.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Nadai, Ryo; Kimura, Hitoshi; Nishitsuji, Kazuchika; Uchimura, Kenji; Sakai-Kato, Kumiko; Kawakami, Kohsaku; Shigenaga, Akira; Kawakami, Toru; Otaka, Akira; Hojo, Hironobu; Sakashita, Naomi; Saito, Hiroyuki

    2016-06-01

    The first step of cell membrane penetration of arginine peptides is thought to occur via electrostatic interactions between positive charges of arginine residues and negative charges of sulfated glycosaminoglycans (GAGs) on the cell surface. However, the molecular interaction of arginine peptides with GAG still remains unclear. Here, we compared the interactions of several arginine peptides of Tat, R8, and Rev and their analogues with heparin in relation to the cell membrane penetration efficiency. The high-affinity binding of arginine peptides to heparin was shown to be driven by large favorable enthalpy contributions, possibly reflecting multidentate hydrogen bondings of arginine residues with sulfate groups of heparin. Interestingly, the lysine peptides in which all arginine residues are substituted with lysine residues exhibited negligible binding enthalpy despite of their considerable binding to heparin. In CHO-K1 cells, arginine peptides exhibited a great cell-penetrating ability whereas their corresponding lysine peptides did not penetrate into cells. The degree of cell penetration of arginine peptides markedly decreased by the chlorate treatment of cells which prevents the sulfation of GAG chains. Significantly, the cell penetration efficiency of arginine peptides was found to be correlated with the favorable enthalpy of binding to heparin. These results suggest that the enthalpy-driven strong interaction with sulfated GAGs such as heparan sulfate plays a critical role in the efficient cell membrane penetration of arginine peptides.

  1. Arginine starvation in colorectal carcinoma cells: Sensing, impact on translation control and cell cycle distribution.

    Science.gov (United States)

    Vynnytska-Myronovska, Bozhena O; Kurlishchuk, Yuliya; Chen, Oleh; Bobak, Yaroslav; Dittfeld, Claudia; Hüther, Melanie; Kunz-Schughart, Leoni A; Stasyk, Oleh V

    2016-02-01

    Tumor cells rely on a continued exogenous nutrient supply in order to maintain a high proliferative activity. Although a strong dependence of some tumor types on exogenous arginine sources has been reported, the mechanisms of arginine sensing by tumor cells and the impact of changes in arginine availability on translation and cell cycle regulation are not fully understood. The results presented herein state that human colorectal carcinoma cells rapidly exhaust the internal arginine sources in the absence of exogenous arginine and repress global translation by activation of the GCN2-mediated pathway and inhibition of mTOR signaling. Tumor suppressor protein p53 activation and G1/G0 cell cycle arrest support cell survival upon prolonged arginine starvation. Cells with the mutant or deleted TP53 fail to stop cell cycle progression at defined cell cycle checkpoints which appears to be associated with reduced recovery after durable metabolic stress triggered by arginine withdrawal.

  2. Restoration of impaired nitric oxide production in MELAS syndrome with citrulline and arginine supplementation.

    Science.gov (United States)

    El-Hattab, Ayman W; Hsu, Jean W; Emrick, Lisa T; Wong, Lee-Jun C; Craigen, William J; Jahoor, Farook; Scaglia, Fernando

    2012-04-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most common mitochondrial disorders. Although the pathogenesis of stroke-like episodes remains unclear, it has been suggested that mitochondrial proliferation may result in endothelial dysfunction and decreased nitric oxide (NO) availability leading to cerebral ischemic events. This study aimed to assess NO production in subjects with MELAS syndrome and the effect of the NO precursors arginine and citrulline. Using stable isotope infusion techniques, we assessed arginine, citrulline, and NO metabolism in control subjects and subjects with MELAS syndrome before and after arginine or citrulline supplementation. The results showed that subjects with MELAS had lower NO synthesis rate associated with reduced citrulline flux, de novo arginine synthesis rate, and plasma arginine and citrulline concentrations, and higher plasma asymmetric dimethylarginine (ADMA) concentration and arginine clearance. We conclude that the observed impaired NO production is due to multiple factors including elevated ADMA, higher arginine clearance, and, most importantly, decreased de novo arginine synthesis secondary to decreased citrulline availability. Arginine and, to a greater extent, citrulline supplementation increased the de novo arginine synthesis rate, the plasma concentrations and flux of arginine and citrulline, and NO production. De novo arginine synthesis increased markedly with citrulline supplementation, explaining the superior efficacy of citrulline in increasing NO production. The improvement in NO production with arginine or citrulline supplementation supports their use in MELAS and suggests that citrulline may have a better therapeutic effect than arginine. These findings can have a broader relevance for other disorders marked by perturbations in NO metabolism.

  3. Substrate recognition and modification by the nosiheptide resistance methyltransferase.

    Directory of Open Access Journals (Sweden)

    Sitao Yin

    Full Text Available The proliferation of antibiotic resistant pathogens is an increasing threat to the general public. Resistance may be conferred by a number of mechanisms including covalent or mutational modification of the antibiotic binding site, covalent modification of the drug, or the over-expression of efflux pumps. The nosiheptide resistance methyltransferase (NHR confers resistance to the thiazole antibiotic nosiheptide in the nosiheptide producer organism Streptomyces actuosus through 2'O-methylation of 23S rRNA at the nucleotide A1067. Although the crystal structures of NHR and the closely related thiostrepton-resistance methyltransferase (TSR in complex with the cofactor S-Adenosyl-L-methionine (SAM are available, the principles behind NHR substrate recognition and catalysis remain unclear.We have analyzed the binding interactions between NHR and model 58 and 29 nucleotide substrate RNAs by gel electrophoresis mobility shift assays (EMSA and fluorescence anisotropy. We show that the enzyme binds to RNA as a dimer. By constructing a hetero-dimer complex composed of one wild-type subunit and one inactive mutant NHR-R135A subunit, we show that only one functional subunit of the NHR homodimer is required for its enzymatic activity. Mutational analysis suggests that the interactions between neighbouring bases (G1068 and U1066 and A1067 have an important role in methyltransfer activity, such that the substitution of a deoxy sugar spacer (5' to the target nucleotide achieved near wild-type levels of methylation. A series of atomic substitutions at specific positions on the substrate adenine show that local base-base interactions between neighbouring bases are important for methylation.Taken together these data suggest that local base-base interactions play an important role in aligning the substrate 2' hydroxyl group of A1067 for methyl group transfer. Methylation of nucleic acids is playing an increasingly important role in fundamental biological processes

  4. Gliclazide directly inhibits arginine-induced glucagon release

    DEFF Research Database (Denmark)

    Cejvan, Kenan; Coy, David H; Holst, Jens Juul;

    2002-01-01

    Arginine-stimulated insulin and somatostatin release is enhanced by the sulfonylurea gliclazide. In contrast, gliclazide inhibits the glucagon response. The aim of the present study was to investigate whether this inhibition of glucagon release was mediated by a direct suppressive effect of...... specific antagonist of type 2 somatostatin receptor, DC-41-33 (2 micro mol/l), which fully antagonizes the suppressive somatostatin effect on rat A cells. Gliclazide (30 micro mol/l) inhibited glucagon release by 54% in the perfusion experiments, whereas the somatostatin response was nearly abolished. In...... islet perifusions with DC-41-33, arginine-induced glucagon release was inhibited by 66%. We therefore concluded that gliclazide inhibits glucagon release by a direct action on the pancreatic A cell....

  5. Arginine vasopressin in septic shock: supplement or substitute for norepinephrine?

    OpenAIRE

    Rehberg, Sebastian; Enkhbaatar, Perenlei; Traber, Daniel L

    2009-01-01

    In the current issue of Critical Care, Simon and coworkers investigated the effects of first-line arginine vasopressin (AVP) on organ function and systemic metabolism compared with norepinephrine in a pig model of fecal peritonitis. AVP was titrated according to the mean arterial pressure suggesting a vasopressor rather than a hormone replacement therapy. The study provides some evidence for the safety of this therapeutic approach. It needs to be determined whether AVP is most beneficial as a...

  6. Proteome identification of proteins interacting with histone methyltransferase SET8

    Institute of Scientific and Technical Information of China (English)

    Yi Qin; Huafang Ouyang; Jing Liu; Youhua Xie

    2013-01-01

    SET8 (also known as PR-Set7/9,SETD8,KMT5A),a member of the SET domain containing methyltransferase family,which specifically catalyzes mono-methylation of K20 on histone H4 (H4K20me1),has been implicated in multiple biological processes,such as gene transcriptional regulation,cell cycle control,genomic integrity maintenance and development.In this study,we used GST-SET8 fusion protein as bait to search for SET8 interaction partners to elucidate physiological functions of SET8.In combination with mass spectrometry,we identified 40 proteins that potentially interact with SET8.DDX21,a nucleolar protein,was further confirmed to associate with SET8.Furthermore,we discovered a novel function of SET8 in the regulation of rRNA transcription.

  7. Clinical utility of thiopurine S-methyltransferase genotyping.

    Science.gov (United States)

    Corominas, Hèctor; Baiget, Montserrat

    2004-01-01

    Thiopurine S-methyltransferase (TPMT) is a cytosolic enzyme that plays a major role in the metabolism of thiopurine drugs such as mercaptopurine and azathioprine. The interindividual differences in response to thiopurine administration is in part due to the presence of genetic polymorphisms in the gene that regulates TPMT activity. TPMT genotype correlates well with the in vivo enzyme activity within erythrocytes. Patients with genetically determined decreased TPMT activity develop severe myelosuppression when treated with standard doses of thiopurine drugs because an excess of thioguanine nucleotides accumulates in hematopoietic tissues. TPMT genotyping provides clinicians with a reliable method for identifying TPMT-deficient patients who can benefit from low doses of thiopurine drugs in order to reduce the risk of developing adverse effects. Moreover, the administration of higher doses of the drug could improve therapeutic response in patients in whom the TPMT genotyping demonstrates the absence of mutated alleles.

  8. Effects of L-Arginine on Physicochemical and Sensory Characteristics of Pork Sausage

    Directory of Open Access Journals (Sweden)

    Cunliu Zhou

    2014-05-01

    Full Text Available The objective of this study is to investigate the effects of L-arginine on physicochemical and sensory properties of pork sausage. CL decreased while pH increased with L-arginine levels (p<0.05. WHC increased at 0.8% L-arginine, but decreased at 0.2% L-arginine, compared with the control. L* decreased while a* increased at 0.4-0.8% L-arginine, compared with the control. Hardness, springiness and chewiness increased at 0.2-0.8% L-arginine (p<0.05, compared with the control. SEM illustrated that the addition of 0.6% L-arginine induced myofibrillar proteins to form a more smooth, compact and uniform gel matrix. DSC disclosed that the addition of 0.6% L-arginine increased the two thermal transition temperatures (Tp. The sample containing 0.6% L-arginine had higher sensory color, flavor, mouthfeel and slice traits than the control. Therefore, L-arginine showed a potential for improvement of yield, texture and sensory qualities of pork sausage.

  9. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production.

    Science.gov (United States)

    Man, Zaiwei; Xu, Meijuan; Rao, Zhiming; Guo, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong

    2016-01-01

    L-arginine is an important amino acid in food and pharmaceutical industries. Until now, the main production method of L-arginine in China is the highly polluting keratin acid hydrolysis. The industrial level L-arginine production by microbial fermentation has become an important task. In previous work, we obtained a new L-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through screening and mutation breeding. In this work, we performed systems pathway engineering of C. crenatum for improved L-arginine production, involving amplification of L-arginine biosynthetic pathway flux by removal of feedback inhibition and overexpression of arginine operon; optimization of NADPH supply by modulation of metabolic flux distribution between glycolysis and pentose phosphate pathway; increasing glucose consumption by strengthening the preexisting glucose transporter and exploitation of new glucose uptake system; channeling excess carbon flux from glycolysis into tricarboxylic acid cycle to alleviate the glucose overflow metabolism; redistribution of carbon flux at α-ketoglutarate metabolic node to channel more flux into L-arginine biosynthetic pathway; minimization of carbon and cofactor loss by attenuation of byproducts formation. The final strain could produce 87.3 g L(-1) L-arginine with yield up to 0.431 g L-arginine g(-1) glucose in fed-batch fermentation. PMID:27338253

  10. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production

    Science.gov (United States)

    Man, Zaiwei; Xu, Meijuan; Rao, Zhiming; Guo, Jing; Yang, Taowei; Zhang, Xian; Xu, Zhenghong

    2016-01-01

    L-arginine is an important amino acid in food and pharmaceutical industries. Until now, the main production method of L-arginine in China is the highly polluting keratin acid hydrolysis. The industrial level L-arginine production by microbial fermentation has become an important task. In previous work, we obtained a new L-arginine producing Corynebacterium crenatum (subspecies of Corynebacterium glutamicum) through screening and mutation breeding. In this work, we performed systems pathway engineering of C. crenatum for improved L-arginine production, involving amplification of L-arginine biosynthetic pathway flux by removal of feedback inhibition and overexpression of arginine operon; optimization of NADPH supply by modulation of metabolic flux distribution between glycolysis and pentose phosphate pathway; increasing glucose consumption by strengthening the preexisting glucose transporter and exploitation of new glucose uptake system; channeling excess carbon flux from glycolysis into tricarboxylic acid cycle to alleviate the glucose overflow metabolism; redistribution of carbon flux at α-ketoglutarate metabolic node to channel more flux into L-arginine biosynthetic pathway; minimization of carbon and cofactor loss by attenuation of byproducts formation. The final strain could produce 87.3 g L−1 L-arginine with yield up to 0.431 g L-arginine g−1 glucose in fed-batch fermentation. PMID:27338253

  11. Betaine-homocysteine methyltransferase (BHMT) : genomic sequencing and relevance to hyperhomocysteinemia and vascular disease in humans

    NARCIS (Netherlands)

    Heil, S.G.; Lievers, K.J.A.; Boers, G.H.; Verhoef, P.; Heijer, den M.; Trijbels, F.J.M.; Blom, H.J.

    2000-01-01

    Elevated homocysteine levels have been associated with arteriosclerosis and thrombosis. Hyperhomocysteinemia is caused by altered functioning of enzymes of its metabolism due to either inherited or acquired factors. Betaine-homocysteine methyltransferase (BHMT) serves, next to methionine synthase, a

  12. An audit of thiopurine methyltransferase genotyping and phenotyping before intended azathioprine treatment for dermatological conditions

    DEFF Research Database (Denmark)

    Vestergaard, T; Bygum, A

    2009-01-01

    Summary Background. Determining thiopurine methyltransferase (TPMT) genotype and phenotype before azathioprine treatment predicts which patients are most likely to develop myelosuppression. Aim. To evaluate the course of azathioprine treatment in people with TPMT heterozygosity and whether this d...

  13. Arsenic (+3 oxidation state) methyltransferase and the methylation of arsenicals in the invertebrate chordate Ciona intestinalis

    Science.gov (United States)

    Biotransformation of inorganic arsenic (iAs) involves methylation catalyzed by arsenic (+3 oxidation state) methyltransferase (As3mt), yielding mono- , di- , and trimethylated arsenicals. To investigate the evolution of molecular mechanisms that mediate arsenic biotransformation,...

  14. “MGMT for pt mgmt”: Is Methylguanine-DNA Methyltransferase Testing Ready for Patient Management?

    OpenAIRE

    Iafrate, A. John; Louis, David N.

    2008-01-01

    This Commentary reports on a robust quantitative assay for the interpretation of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation assays that should facilitate the comparison and implementation of such assays across laboratories.

  15. Molecular Basis for the Regulation of the H3K4 Methyltransferase Activity of PRDM9

    Directory of Open Access Journals (Sweden)

    Hong Wu

    2013-10-01

    Full Text Available PRDM9, a histone lysine methyltransferase, is a key determinant of the localization of meiotic recombination hot spots in humans and mice and the only vertebrate protein known to be involved in hybrid sterility. Here, we report the crystal structure of the PRDM9 methyltransferase domain in complex with a histone H3 peptide dimethylated on lysine 4 (H3K4me2 and S-adenosylhomocysteine (AdoHcy, which provides insights into the methyltransferase activity of PRDM proteins. We show that the genuine substrate of PRDM9 is histone H3 lysine 4 (H3K4 and that the enzyme possesses mono-, di-, and trimethylation activities. We also determined the crystal structure of PRDM9 in its autoinhibited state, which revealed a rearrangement of the substrate and cofactor binding sites by a concerted action of the pre-SET and post-SET domains, providing important insights into the regulatory mechanisms of histone lysine methyltransferase activity.

  16. Structure–function analysis of vaccinia virus mRNA cap (guanine-N7) methyltransferase

    OpenAIRE

    Zheng, Sushuang; Shuman, Stewart

    2008-01-01

    The guanine-N7 methyltransferase domain of vaccinia virus mRNA capping enzyme is a heterodimer composed of a catalytic subunit and a stimulatory subunit. Structure–function analysis of the catalytic subunit by alanine scanning and conservative substitutions (49 mutations at 25 amino acids) identified 12 functional groups essential for methyltransferase activity in vivo, most of which were essential for cap methylation in vitro. Defects in cap binding were demonstrated for a subset of lethal m...

  17. The RNA–Methyltransferase Misu (NSun2) Poises Epidermal Stem Cells to Differentiate

    OpenAIRE

    Sandra Blanco; Agata Kurowski; Jennifer Nichols; Watt, Fiona M.; Salvador Aznar Benitah; Michaela Frye

    2011-01-01

    Homeostasis of most adult tissues is maintained by balancing stem cell self-renewal and differentiation, but whether post-transcriptional mechanisms can regulate this process is unknown. Here, we identify that an RNA methyltransferase (Misu/Nsun2) is required to balance stem cell self-renewal and differentiation in skin. In the epidermis, this methyltransferase is found in a defined sub-population of hair follicle stem cells poised to undergo lineage commitment, and its depletion results in e...

  18. An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion.

    Directory of Open Access Journals (Sweden)

    Adele Goldman-Pinkovich

    2016-04-01

    Full Text Available Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3, as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade.

  19. An Arginine Deprivation Response Pathway Is Induced in Leishmania during Macrophage Invasion.

    Science.gov (United States)

    Goldman-Pinkovich, Adele; Balno, Caitlin; Strasser, Rona; Zeituni-Molad, Michal; Bendelak, Keren; Rentsch, Doris; Ephros, Moshe; Wiese, Martin; Jardim, Armando; Myler, Peter J; Zilberstein, Dan

    2016-04-01

    Amino acid sensing is an intracellular function that supports nutrient homeostasis, largely through controlled release of amino acids from lysosomal pools. The intracellular pathogen Leishmania resides and proliferates within human macrophage phagolysosomes. Here we describe a new pathway in Leishmania that specifically senses the extracellular levels of arginine, an amino acid that is essential for the parasite. During infection, the macrophage arginine pool is depleted due to its use to produce metabolites (NO and polyamines) that constitute part of the host defense response and its suppression, respectively. We found that parasites respond to this shortage of arginine by up-regulating expression and activity of the Leishmania arginine transporter (LdAAP3), as well as several other transporters. Our analysis indicates the parasite monitors arginine levels in the environment rather than the intracellular pools. Phosphoproteomics and genetic analysis indicates that the arginine-deprivation response is mediated through a mitogen-activated protein kinase-2-dependent signaling cascade. PMID:27043018

  20. Oral L-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Smith, Eric P;

    2013-01-01

    -induced obesity, may provide an alternative therapeutic approach. Importantly, recent evidence suggests the amino acid l-arginine, a well-known insulin secretagogue, can also stimulate release of GLP-1 from isolated rat intestine. Here we tested the hypothesis that oral l-arginine acts as a GLP-1 secretagogue...... in vivo, to augment postprandial insulin secretion and improve glucose tolerance. To test this, we administered l-arginine or vehicle by oral gavage, immediately prior to an oral glucose tolerance test in lean and diet-induced obese mice. In both lean and obese mice oral l-arginine increased plasma GLP-1...... and insulin and substantially improved glucose clearance. To directly assess the contribution of GLP-1 receptor (GLP-1R)-signaling to these improvements, l-arginine was given to Glp1r knockout mice and their wild-type littermates. In this experiment oral l-arginine significantly augmented insulin secretion...

  1. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    Science.gov (United States)

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation.

  2. The arginine-ornithine antiporter ArcD contributes to biological fitness of Streptococcus suis

    Directory of Open Access Journals (Sweden)

    Marcus eFulde

    2014-08-01

    Full Text Available The arginine-ornithine antiporter (ArcD is part of the Arginine Deiminase System (ADS, a catabolic, energy-providing pathway found in a variety of different bacterial species, including the porcine zoonotic pathogen Streptococcus suis. The ADS has recently been shown to play a role in the pathogenicity of S. suis, in particular in its survival in host cells. The contribution of arginine and arginine transport mediated by ArcD, however, has yet to be clarified. In the present study, we showed by experiments using [U-13C6]arginine as a tracer molecule that S. suis is auxotrophic for arginine and that bacterial growth depends on the uptake of extracellular arginine. To further study the role of ArcD in arginine metabolism, we generated an arcD-specific mutant strain and characterized its growth compared to the wild-type (WT strain, a virulent serotype 2 strain. The mutant strain showed a markedly reduced growth rate in chemically defined media supplemented with arginine when compared to the WT strain, indicating that ArcD promotes arginine uptake. To further evaluate the in vivo relevance of ArcD, we studied the intracellular bacterial survival of the arcD mutant strain in an epithelial cell culture infection model. The mutant strain was substantially attenuated, and its reduced intracellular survival rate correlated with a lower ability to neutralize the acidified environment. Based on these results, we propose that ArcD, by its function as an arginine-ornithine antiporter, is important for supplying arginine as substrate of the ADS and, thereby, contributes to biological fitness and virulence of S. suis in the host.

  3. Remission of diabetes mellitus in cats cannot be predicted by the arginine stimulation test

    OpenAIRE

    Tschuor, F

    2011-01-01

    Background: Responsiveness of β-cells to arginine persists the longest during diabetes progression, making the intravenous arginine stimulation test (IVAST) a useful tool to assess residual insulin and glucagon secretion. Hypothesis: Diabetic cats with and without remission will have different arginine-induced insulin or glucagon response. Animals: 17 cats with diabetes, 7 healthy cats. Methods: Response to IVAST was assessed by calculating insulin and glucagon area under the c...

  4. Arginine synthesis from enteral glutamine in healthy adults in the fed state.

    Science.gov (United States)

    Tomlinson, Chris; Rafii, Mahroukh; Ball, Ronald O; Pencharz, Paul

    2011-08-01

    Recent studies have documented transfer of labeled nitrogen from [2-(15)N]glutamine to citrulline and arginine in fasting human adults. Conversely, in neonates and piglets we have shown no synthesis of arginine from [2-(15)N]glutamate, and others have shown in mice that glutamine is a nitrogen, but not a carbon donor, for arginine synthesis. Therefore, we performed a multitracer study to determine whether glutamine is a nitrogen and/or carbon donor for arginine in healthy adult men. Two glutamine tracers, 2-(15)N and 1-(13)C, were given enterally to five healthy men fed a standardized milkshake diet. There was no difference in plasma enrichments between the two glutamine tracers. 1-(13)C isotopomers of citrulline and arginine were synthesized from [1-(13)C]glutamine. Three isotopomers each of citrulline and arginine were synthesized from the [2-(15)N]glutamine tracer: 2-(15)N, 5-(15)N, and 2,5-(15)N(2). Significantly greater enrichment was found of both [5-(15)N]arginine (0.75%) and citrulline (3.98%) compared with [2-(15)N]arginine (0.44%) and [2-(15)N]citrulline (2.62%), indicating the amino NH(2) from glutamine is mostly transferred to arginine and citrulline by transamination. Similarly, the enrichment of the 1-(13)C isotopomers was significantly less than the 2-(15)N isotopomers, suggesting rapid formation of α-ketoglutarate and recycling of the nitrogen label. Our results show that the carbon for 50% of newly synthesized arginine comes from dietary glutamine but that glutamine acts primarily as a nitrogen donor for arginine synthesis. Hence, studies using [2-(15)N]glutamine will overestimate arginine synthesis rates.

  5. Hyponatraemia in the first week of life in preterm infants. Part I. Arginine vasopressin secretion.

    OpenAIRE

    Rees, L; Brook, C G; Shaw, J C; Forsling, M L

    1984-01-01

    Continuous sequential urinary arginine vasopressin measurements in 14 preterm, ventilated infants suggest that both osmoreceptor and volume receptor systems are able to stimulate the prolonged secretion of arginine vasopressin from 26 weeks' gestation. The kidney is able to respond to arginine vasopressin stimulation from the first day of life and from 26 weeks' gestation. A maximum urine osmolality not exceeding 550 mOsm/kg was reached which varied with hydration of the infant. Excretion of ...

  6. Vasodilator effects of L-arginine are stereospecific and augmented by insulin in humans.

    Science.gov (United States)

    Dallinger, Susanne; Sieder, Anna; Strametz, Jeanette; Bayerle-Eder, Michaela; Wolzt, Michael; Schmetterer, Leopold

    2003-06-01

    The amino acid l-arginine, the precursor of nitric oxide (NO) synthesis, induces vasodilation in vivo, but the mechanism behind this effect is unclear. There is, however, some evidence to assume that the l-arginine membrane transport capacity is dependent on insulin plasma levels. We hypothesized that vasodilator effects of l-arginine may be dependent on insulin plasma levels. Accordingly, we performed two randomized, double-blind crossover studies in healthy male subjects. In protocol 1 (n = 15), subjects received an infusion of insulin (6 mU x kg(-1) x min(-1) for 120 min) or placebo and, during the last 30 min, l-arginine or d-arginine (1 g/min for 30 min) x In protocol 2 (n = 8), subjects received l-arginine in stepwise increasing doses in the presence (1.5 mU x kg(-1) x min(-1)) or absence of insulin. Renal plasma flow and glomerular filtration rate were assessed by the para-aminohippurate and inulin plasma clearance methods, respectively. Pulsatile choroidal blood flow was assessed with laser interferometric measurement of fundus pulsation, and mean flow velocity in the ophthalmic artery was measured with Doppler sonography. l-arginine, but not d-arginine, significantly increased renal and ocular hemodynamic parameters. Coinfusion of l-arginine with insulin caused a dose-dependent leftward shift of the vasodilator effect of l-arginine. This stereospecific renal and ocular vasodilator potency of l-arginine is enhanced by insulin, which may result from facilitated l-arginine membrane transport, enhanced intracellular NO formation, or increased NO bioavailability.

  7. Protective Effect of Arginine on Oxidative Stress in Transgenic Sickle Mouse Models

    OpenAIRE

    Dasgupta, Trisha; Hebbel, Robert P.; Kaul, Dhananjay K.

    2006-01-01

    Sickle cell disease (SCD) is characterized by reperfusion injury and chronic oxidative stress. Oxidative stress and hemolysis in SCD result in inactivation of nitric oxide (NO) and depleted arginine levels. We hypothesized that augmenting NO production by arginine supplementation will reduce oxidative stress in SCD. To this end, we measured the effect of arginine (5% in mouse chow) on NO metabolites (NOx), lipid peroxidation (LPO) and selected antioxidants in transgenic sickle mouse models. U...

  8. Expression and Characterization of ArgR, An Arginine Regulatory Protein in Corynebacterium crenatum

    Institute of Scientific and Technical Information of China (English)

    CHEN Xue Lan; ZHANG Bin; TANG Li; JIAO Hai Tao; XU Heng Yi; XU Feng; XU Hong; WEI Hua; XIONG Yong Hua

    2014-01-01

    Objective Corynebacterium crenatum MT, a mutant from C. crenatum AS 1.542 with a lethal argR gene, exhibits high arginine production. To confirm the effect of ArgR on arginine biosynthesis in C. crenatum, an intact argR gene from wild-type AS 1.542 was introduced into C. crenatum MT, resulting in C. crenatum MT. sp, and the changes of transcriptional levels of the arginine biosynthetic genes and arginine production were compared between the mutant strain and the recombinant strain. Methods Quantitative real-time polymerase chain reaction was employed to analyze the changes of the related genes at the transcriptional level, electrophoretic mobility shift assays were used to determine ArgR binding with the argCJBDF, argGH, and carAB promoter regions, and arginine production was determined with an automated amino acid analyzer. Results Arginine production assays showed a 69.9%reduction in arginine from 9.01±0.22 mg/mL in C. crenatum MT to 2.71±0.13 mg/mL (P Conclusion The arginine biosynthetic genes in C. crenatum are clearly controlled by the negative regulator ArgR, and intact ArgR in C. crenatum MT results in a significant descrease in arginine production.

  9. Evaluation of chemical labeling methods for identifying functional arginine residues of proteins by mass spectrometry.

    Science.gov (United States)

    Wanigasekara, Maheshika S K; Chowdhury, Saiful M

    2016-09-01

    Arginine residues undergo several kinds of post-translational modifications (PTMs). These PTMs are associated with several inflammatory diseases, such as rheumatoid arthritis, atherosclerosis, and diabetes. Mass spectrometric studies of arginine modified proteins and peptides are very important, not only to identify the reactive arginine residues but also to understand the tandem mass spectrometry behavior of these peptides for assigning the sequences unambiguously. Herein, we utilize tandem mass spectrometry to report the performance of two widely used arginine labeling reagents, 1,2-cyclohexanedione (CHD) and phenylglyoxal (PG) with several arginine containing peptides and proteins. Time course labeling studies were performed to demonstrate the selectivity of the reagents in proteins or protein digests. Structural studies on the proteins were also explored to better understand the reaction sites and position of arginine residues. We found CHD showed better labeling efficiencies compared to phenylglyoxal. Reactive arginine profiling on a purified albumin protein clearly pointed out the cellular glycation modification site for this protein with high confidence. We believe these detailed mass-spectrometric studies will provide significant input to profile reactive arginine residues in large-scale studies; therefore, targeted proteomics can be performed to the short listed reactive sites for cellular arginine modifications. PMID:27543028

  10. Proteomic analysis of arginine methylation sites in human cells reveals dynamic regulation during transcriptional arrest

    DEFF Research Database (Denmark)

    Sylvestersen, Kathrine B; Horn, Heiko; Jungmichel, Stephanie;

    2014-01-01

    The covalent attachment of methyl groups to the side-chain of arginine residues is known to play essential roles in regulation of transcription, protein function and RNA metabolism. The specific N-methylation of arginine residues is catalyzed by a small family of gene products known as protein......, transcription, and chromatin remodeling are predominantly found modified with MMA. Despite this, MMA sites prominently are located outside RNA-binding domains as compared to the proteome-wide distribution of arginine residues. Quantification of arginine methylation in cells treated with Actinomycin D uncovers...

  11. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Pistorius Elfriede K

    2007-11-01

    Full Text Available Abstract Background So far very limited knowledge exists on L-arginine catabolism in cyanobacteria, although six major L-arginine-degrading pathways have been described for prokaryotes. Thus, we have performed a bioinformatic analysis of possible L-arginine-degrading pathways in cyanobacteria. Further, we chose Synechocystis sp. PCC 6803 for a more detailed bioinformatic analysis and for validation of the bioinformatic predictions on L-arginine catabolism with a transcript analysis. Results We have evaluated 24 cyanobacterial genomes of freshwater or marine strains for the presence of putative L-arginine-degrading enzymes. We identified an L-arginine decarboxylase pathway in all 24 strains. In addition, cyanobacteria have one or two further pathways representing either an arginase pathway or L-arginine deiminase pathway or an L-arginine oxidase/dehydrogenase pathway. An L-arginine amidinotransferase pathway as a major L-arginine-degrading pathway is not likely but can not be entirely excluded. A rather unusual finding was that the cyanobacterial L-arginine deiminases are substantially larger than the enzymes in non-photosynthetic bacteria and that they are membrane-bound. A more detailed bioinformatic analysis of Synechocystis sp. PCC 6803 revealed that three different L-arginine-degrading pathways may in principle be functional in this cyanobacterium. These are (i an L-arginine decarboxylase pathway, (ii an L-arginine deiminase pathway, and (iii an L-arginine oxidase/dehydrogenase pathway. A transcript analysis of cells grown either with nitrate or L-arginine as sole N-source and with an illumination of 50 μmol photons m-2 s-1 showed that the transcripts for the first enzyme(s of all three pathways were present, but that the transcript levels for the L-arginine deiminase and the L-arginine oxidase/dehydrogenase were substantially higher than that of the three isoenzymes of L-arginine decarboxylase. Conclusion The evaluation of 24

  12. Different roles of cell surface and exogenous glycosaminoglycans in controlling gene delivery by arginine-rich peptides with varied distribution of arginines.

    Science.gov (United States)

    Naik, Rangeetha J; Chatterjee, Anindo; Ganguli, Munia

    2013-06-01

    The role of cell surface and exogenous glycosaminoglycans (GAGs) in DNA delivery by cationic peptides is controlled to a large extent by the peptide chemistry and the nature of its complex with DNA. We have previously shown that complexes formed by arginine homopeptides with DNA adopt a GAG-independent cellular internalization mechanism and show enhanced gene delivery in presence of exogenous GAGs. In contrast, lysine complexes gain cellular entry primarily by a GAG-dependent pathway and are destabilized by exogenous GAGs. The aim of the current study was to elucidate the factors governing the role of cell surface and soluble glycosaminoglycans in DNA delivery by sequences of arginine-rich peptides with altered arginine distributions (compared to homopeptide). Using peptides with clustered arginines which constitute known heparin-binding motifs and a control peptide with arginines alternating with alanines, we show that complexes formed by these peptides do not require cell surface GAGs for cellular uptake and DNA delivery. However, the charge distribution and the spacing of arginine residues affects DNA delivery efficiency of these peptides in presence of soluble GAGs, since these peptides show only a marginal increase in transfection in presence of exogenous GAGs unlike that observed with arginine homopeptides. Our results indicate that presence of arginine by itself drives these peptides to a cell surface GAG-independent route of entry to efficiently deliver functional DNA into cells in vitro. However, the inherent stability of the complexes differ when the distribution of arginines in the peptides is altered, thereby modulating its interaction with exogenous GAGs.

  13. Intravenous Selenium Modulates L-Arginine-Induced Experimental Acute Pancreatitis

    Directory of Open Access Journals (Sweden)

    Jonathan Hardman

    2005-09-01

    Full Text Available Context Oxidative stress is understood to have a critical role in the development of acinar injury in experimental acute pancreatitis. We have previously demonstrated that compound multiple antioxidant therapy ameliorates end-organ damage in the intra-peritoneal L-arginine rat model. As the principal co-factor for glutathione, selenium is a key constituent of multiple antioxidant preparations. Objective The intention of this study was to investigate the effect of selenium on pancreatic and remote organ injury in a wellvalidated experimental model of acute pancreatitis. Methods Male Sprague-Dawley rats were randomly allocated to one of 3 groups (n=5/group and sacrificed at 72 hours. Acute pancreatitis was induced by 250 mg per 100 g body weight of 20% L-arginine hydrochloride in 0.15 mol/L sodium chloride. Group allocations were: Group 1, control; Group 2, acute pancreatitis; Group 3, selenium. Main outcome measures Serum amylase, anti-oxidant levels, bronchoalveolar lavage protein, lung myeloperoxidase activity, and histological assessment of pancreatic injury. Results L-arginine induced acute pancreatitis characterised by oedema, neutrophil infiltration, acinar cell degranulation and elevated serum amylase. Selenium treatment was associated with reduced pancreatic oedema and inflammatory cell infiltration. Acinar degranulation and dilatation were completely absent. A reduction in bronchoalveolar lavage protein content was also demonstrated. Conclusion Intravenous selenium given 24 hours after induction of experimental acute pancreatitis was associated with a reduction in the histological stigmata of pancreatic injury and a dramatic reduction in broncho-alveolar lavage protein content. Serum selenium fell during the course of experimental acute pancreatitis and this effect was not reversed by exogenous selenium supplementation.

  14. Detection of a novel arginine vasopression defect by dideoxy fingerprinting

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamani, M.R.S.; Phillips, J.A. III; Copeland, K.C. (Vanderbilt Univ. School of Medicine, Nashville, TN (United States) Univ. of Vermont College of Medicine, Burlington, VT (United States))

    1993-09-01

    Autosomal dominant neurohypophyseal diabetes insipidus is a familial form of diabetes insipidus. This disorder is associated with variable levels of arginine vasopressin (AVP) and diabetes insipidus of varying severity, which responds to exogenous AVP. To determine the molecular basis of autosomal dominant neurohypophyseal diabetes insipidus, the AVP genes of members of a large kindred were analyzed. A new method, called dideoxy fingerprinting, was used to detect an AVP mutation that was characterized by DNA sequencing. The novel defect found changes the last codon of the AVP signal peptide from alanine to threonine, which should perturb cleavage of mature AVP from its precursor protein and inhibit its secretion or action. 18 refs., 3 figs.

  15. The subcellular compartmentalization of arginine metabolizing enzymes and their role in endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Feng eChen

    2013-07-01

    Full Text Available The endothelial production of nitric oxide (NO mediates endothelium-dependent vasorelaxation and restrains vascular inflammation, smooth muscle proliferation and platelet aggregation. Impaired production of NO is a hallmark of endothelial dysfunction and promotes the development of cardiovascular disease. In endothelial cells, NO is generated by endothelial nitric oxide synthase (eNOS through the conversion of its substrate, L-arginine to L-citrulline. Reduced access to L-arginine has been proposed as a major mechanism underlying reduced eNOS activity and NO production in cardiovascular disease. The arginases (Arg1 and Arg2 metabolize L-arginine to generate L-ornithine and urea and increased expression of arginase has been proposed as a mechanism of reduced eNOS activity secondary to the depletion of L-arginine. Indeed, supplemental L-arginine and suppression of arginase activity has been shown to improve endothelium-dependent relaxation and ameliorate cardiovascular disease. However, L-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis suggesting additional mechanisms. The compartmentalization of intracellular L-arginine into poorly interchangeable pools has been proposed to allow for the local depletion of L-arginine. Indeed the subcellular location of L-arginine metabolizing enzymes plays important functional roles. In endothelial cells, eNOS is found in discrete intracellular locations and the capacity to generate NO is heavily influenced by its localtion. Arg1 and Arg2 also reside in different subcellular environments and are thought to differentially influence endothelial function. The plasma membrane solute transporter, CAT-1 and the arginine recycling enzyme, ASL, co-localize with eNOS and facilitate NO release. This review highlights the importance of the subcellular location of eNOS and arginine transporting and metabolizing enzymes to NO release and cardiovascular disease.

  16. Oral L-arginine supplementation impacts several reproductive parameters during the postpartum period in mares.

    Science.gov (United States)

    Kelley, Dale E; Warren, Lori K; Mortensen, Christopher J

    2013-05-01

    L-arginine is an amino acid which can alter pituitary function and increase blood flow to the reproductive tract. The objective was to determine the effect of supplementing 100g of L-arginine on plasma arginine concentrations, follicular dynamics and ovarian and uterine artery blood flow during the estrus that occurs subsequent to foaling. In Experiment 1, mares were fed 100g L-arginine for 1 day during the last 3 weeks of pregnancy and plasma samples taken for every hour for the first 4h and every other hour until 12h.L-arginine supplementation elevated plasma arginine concentrations from 1 to 8h post feeding; arginine peaked at 6h (arginine: 515±33μmol/L; control: 80±33μmol/L). In Experiment 2, mares received either 100g L-arginine or control diets beginning 21 d before the expected foaling date and continued for 30 d postpartum. The reproductive tract was evaluated by transrectal Doppler ultrasonography from Day 1 postpartum through Day 30. There were no differences in ovarian follicular dynamics, ovarian or uterine resistance indices between groups. Vascular perfusion of the F1 follicular wall was greater in L-arginine supplemented mares (37.3±2.6%) than controls (25.4±2.7%; Pmares had a smaller uterine body and horns and accumulated less uterine fluid than controls (Pfollicular development, raises the possible use of L-arginine supplementation as a breeding management tool during the postpartum period to increase reproductive success. PMID:23523236

  17. Characterization of the phospholipid methyltransferase in RBC ghost preparations

    International Nuclear Information System (INIS)

    The activity of the phospholipid methyltransferase from human RBC ghosts was studied using radio-HPLC techniques to analyze the products. Both monomethyl phosphatidyl ethanolamine (MMPE) and dimethyl phosphatidyl ethanolamine (DMPE) were used as substrated. The reaction rate was linear for 45 min. Apparent K/sub M/s of 24-28 uM and 19-21 uM were measured for these two substrates, respectively. The reaction rate was not linear with protein. It appeared to increase logarithmic. An apparent K/sub M/ for S-adenosylmethionine was 36-45 uM. These K/sub M/ values are similar to those reported by others for liver. As the concentration of MMPE was increased, the ratio of DMPE/PC also increased due largely to a greater increase in DMPE formation. Optimal reaction rates for the formation of DMPE were 0.9-1.3 pmol/mg/min, and an optimal rate of about 1.7-2.4 pmol/min/mg was measured for the conversion of DMPE to phosphatidyl choline (PC). Freezing the ghost preparation did not affect the activity of the enzyme. When no exogenous phospholipid was added to the incubation, the sum of the formation rates of all three methylated products was about 26 pmol/mg/hr. The relative amount of each product was 46% MMPE, 32% DMPE and 22% PC. When either MMPE or DMPE was added as substrate, the formation of MMPE was reduced to less than 1%

  18. Methyltransferase and demethylase profiling studies during brown adipocyte differentiation.

    Science.gov (United States)

    Son, Min Jeong; Kim, Won Kon; Oh, Kyoung-Jin; Park, Anna; Lee, Da Som; Han, Baek Soo; Lee, Sang Chul; Bae, Kwang-Hee

    2016-07-01

    Although brown adipose tissue is important with regard to energy balance, the molecular mechanism of brown adipocyte differentiation has not been extensively studied. Specifically, regulation factors at the level of protein modification are largely unknown. In this study, we examine the changes in the expression level of enzymes which are involved in protein lysine methylation during brown adipocyte differentiation. Several enzymes, in this case SUV420H2, PRDM9, MLL3 and JHDM1D, were found to be up-regulated. On the other hand, Set7/9 was significantly down-regulated. In the case of SUV420H2, the expression level increased sharply during brown adipocyte differentiation, whereas the expression of SUV420H2 was marginally enhanced during the white adipocyte differentiation. The knock-down of SUV420H2 caused the suppression of brown adipocyte differentiation, as compared to a scrambled control. These results suggest that SUV420H2, a methyltransferase, is involved in brown adipocyte differentiation, and that the methylation of protein lysine is important in brown adipocyte differentiation. [BMB Reports 2016; 49(7): 388-393].

  19. Identification and functional characterization of lysine methyltransferases of Entamoeba histolytica.

    Science.gov (United States)

    Borbolla-Vázquez, Jessica; Orozco, Esther; Medina-Gómez, Christian; Martínez-Higuera, Aarón; Javier-Reyna, Rosario; Chávez, Bibiana; Betanzos, Abigail; Rodríguez, Mario A

    2016-07-01

    Lysine methylation of histones, a posttranslational modification catalyzed by lysine methyltransferases (HKMTs), plays an important role in the epigenetic regulation of transcription. Lysine methylation of non-histone proteins also impacts the biological function of proteins. Previously it has been shown that lysine methylation of histones of Entamoeba histolytica, the protozoan parasite that infects 50 million people worldwide each year and causing up to 100,000 deaths annually, is implicated in the epigenetic machinery of this microorganism. However, the identification and characterization of HKMTs in this parasite had not yet been determined. In this work we identified four HKMTs in E. histolytica (EhHKMT1 to EhHKMT4) that are expressed by trophozoites. Enzymatic assays indicated that all of them are able to transfer methyl groups to commercial histones. EhHKMT1, EhHKMT2 and EhHKMT4 were detected in nucleus and cytoplasm of trophozoites. In addition EhHKMT2 and EhHKMT4 were located in vesicles containing ingested cells during phagocytosis, and they co-immunoprecipitated with EhADH, a protein involved in the phagocytosis of this parasite. Results suggest that E. histolytica uses its HKMTs to regulate transcription by epigenetic mechanisms, and at least two of them could also be implicated in methylation of proteins that participate in phagocytosis. PMID:27062489

  20. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zirong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060 (China); Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 (United States); Jin, Guorong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060 (China); Lin, Shuibin [Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 (United States); Lin, Xiumei [Department of Hematology, Guangzhou First Municipal People' s Hospital, Guangzhou 510180 (China); Gu, Yumei [Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 (United States); Zhu, Yujuan; Hu, Chengbin; Zhang, Qingjiong [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060 (China); Wu, Lizi [Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, FL 32610 (United States); Shen, Huangxuan, E-mail: shenhx@mail.sysu.edu.cn [State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060 (China)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer CDA-II inhibits myogenic differentiation in a dose-dependent manner. Black-Right-Pointing-Pointer CDA-II repressed expression of muscle transcription factors and structural proteins. Black-Right-Pointing-Pointer CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiation of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.

  1. Euchromatin histone methyltransferase 1 regulates cortical neuronal network development

    Science.gov (United States)

    Bart Martens, Marijn; Frega, Monica; Classen, Jessica; Epping, Lisa; Bijvank, Elske; Benevento, Marco; van Bokhoven, Hans; Tiesinga, Paul; Schubert, Dirk; Nadif Kasri, Nael

    2016-01-01

    Heterozygous mutations or deletions in the human Euchromatin histone methyltransferase 1 (EHMT1) gene cause Kleefstra syndrome, a neurodevelopmental disorder that is characterized by autistic-like features and severe intellectual disability (ID). Neurodevelopmental disorders including ID and autism may be related to deficits in activity-dependent wiring of brain circuits during development. Although Kleefstra syndrome has been associated with dendritic and synaptic defects in mice and Drosophila, little is known about the role of EHMT1 in the development of cortical neuronal networks. Here we used micro-electrode arrays and whole-cell patch-clamp recordings to investigate the impact of EHMT1 deficiency at the network and single cell level. We show that EHMT1 deficiency impaired neural network activity during the transition from uncorrelated background action potential firing to synchronized network bursting. Spontaneous bursting and excitatory synaptic currents were transiently reduced, whereas miniature excitatory postsynaptic currents were not affected. Finally, we show that loss of function of EHMT1 ultimately resulted in less regular network bursting patterns later in development. These data suggest that the developmental impairments observed in EHMT1-deficient networks may result in a temporal misalignment between activity-dependent developmental processes thereby contributing to the pathophysiology of Kleefstra syndrome. PMID:27767173

  2. Adverse effects associated with arginine alpha-ketoglutarate containing supplements.

    Science.gov (United States)

    Prosser, J M; Majlesi, N; Chan, G M; Olsen, D; Hoffman, R S; Nelson, L S

    2009-05-01

    The athletic performance supplement industry is a multibillion-dollar business and one popular category claims to increase nitric oxide (NO) production. We report three patients presenting to the emergency department with adverse effects. A 33-year-old man presented with palpitations, dizziness, vomiting, and syncope, after the use of NO(2) platinum. His examination and electrocardiogram (ECG) were normal. The dizziness persisted, requiring admission overnight. A 21-year-old man with palpitations and near syncope had used a "nitric oxide" supplement. He was tachycardic to 115 bpm with otherwise normal examination. Laboratory values including methemoglobin, and ECG were unremarkable. He was treated with 1 L of saline with no change in heart rate. He was admitted for observation. A 24-year-old man presented after taking NO-Xplode with palpitations and a headache. His examination, laboratory values, and ECG were normal. He was discharged. The purported active ingredient in these products is arginine alpha-ketoglutarate (AAKG), which is claimed to increase NO production by supplying the precursor L-arginine. The symptoms could be due to vasodilation from increased levels of NO, though other etiologies cannot be excluded. AAKG containing supplements may be associated with adverse effects requiring hospital admission. PMID:19755457

  3. Supplementation with l-arginine stabilizes plasma arginine and nitric oxide metabolites, suppresses elevated liver enzymes and peroxidation in sickle cell anaemia.

    Science.gov (United States)

    Jaja, S I; Ogungbemi, S O; Kehinde, M O; Anigbogu, C N

    2016-06-01

    The effect of l-arginine on liver function in SCD has received little or no attention. The effect of a chronic, oral, low-dose supplementation with l-arginine (1gm/day for 6 weeks) on some liver enzymes, lipid peroxidation and nitric oxide metabolites was studied in 20 normal (non-sickle cell anaemia; NSCA) subjects and 20 sickle cell anaemia (SCA) subjects. Ten milliliters of blood was withdrawn from an ante-cubital vein for the estimation of plasma arginine concentration ([R]), alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and alkaline phosphatase (ALP), plasma total bilirubin concentration [TB], malondialdehyde concentration [MDA] and nitric oxide metabolites concentration [NOx]. Before supplementation, ALT, AST, ALP (pconcentration and nitric oxide metabolites levels in NSCA and SCA subjects. Responses in SCA subjects to l-arginine were more sensitive than in NSCA subjects.

  4. A Picrinine N-Methyltransferase Belongs to a New Family of γ-Tocopherol-Like Methyltransferases Found in Medicinal Plants That Make Biologically Active Monoterpenoid Indole Alkaloids.

    Science.gov (United States)

    Levac, Dylan; Cázares, Paulo; Yu, Fang; De Luca, Vincenzo

    2016-04-01

    Members of the Apocynaceae plant family produce a large number of monoterpenoid indole alkaloids (MIAs) with different substitution patterns that are responsible for their various biological activities. A novel N-methyltransferase involved in the vindoline pathway in Catharanthus roseus showing distinct similarity to γ-tocopherol C-methyltransferases was used in a bioinformatic screen of transcriptomes from Vinca minor, Rauvolfia serpentina, and C. roseus to identify 10 γ-tocopherol-like N-methyltransferases from a large annotated transcriptome database of different MIA-producing plant species (www.phytometasyn.ca). The biochemical function of two members of this group cloned from V. minor (VmPiNMT) and R. serpentina (RsPiNMT) have been characterized by screening their biochemical activities against potential MIA substrates harvested from the leaf surfaces of MIA-accumulating plants. The approach was validated by identifying the MIA picrinine from leaf surfaces of Amsonia hubrichtii as a substrate of VmPiNMT and RsPiNMT. Recombinant proteins were shown to have high substrate specificity and affinity for picrinine, converting it to N-methylpicrinine (ervincine). Developmental studies with V. minor and R. serpentina showed that RsPiNMT and VmPiNMT gene expression and biochemical activities were highest in younger leaf tissues. The assembly of at least 150 known N-methylated MIAs within members of the Apocynaceae family may have occurred as a result of the evolution of the γ-tocopherol-like N-methyltransferase family from γ-tocopherol methyltransferases. PMID:26848097

  5. Giardia duodenalis arginine deiminase modulates the phenotype and cytokine secretion of human dendritic cells by depletion of arginine and formation of ammonia.

    Science.gov (United States)

    Banik, Stefanie; Renner Viveros, Pablo; Seeber, Frank; Klotz, Christian; Ignatius, Ralf; Aebischer, Toni

    2013-07-01

    Depletion of arginine is a recognized strategy that pathogens use to evade immune effector mechanisms. Depletion depends on microbial enzymes such as arginases, which are considered virulence factors. The effect is mostly interpreted as being a consequence of successful competition with host enzymes for the substrate. However, both arginases and arginine deiminases (ADI) have been associated with pathogen virulence. Both deplete arginine, but their reaction products differ. An ADI has been implicated in the virulence of Giardia duodenalis, an intestinal parasite that infects humans and animals, causing significant morbidity. Dendritic cells (DC) play a critical role in host defense and also in a murine G. duodenalis infection model. The functional properties of these innate immune cells depend on the milieu in which they are activated. Here, the dependence of the response of these cells on arginine was studied by using Giardia ADI and lipopolysaccharide-stimulated human monocyte-derived DC. Arginine depletion by ADI significantly increased tumor necrosis factor alpha and decreased interleukin-10 (IL-10) and IL-12p40 secretion. It also reduced the upregulation of surface CD83 and CD86 molecules, which are involved in cell-cell interactions. Arginine depletion also reduced the phosphorylation of S6 kinase in DC, suggesting the involvement of the mammalian target of rapamycin signaling pathway. The changes were due to arginine depletion and the formation of reaction products, in particular, ammonium ions. Comparison of NH(4)(+) and urea revealed distinct immunomodulatory activities of these products of deiminases and arginases, respectively. The data suggest that a better understanding of the role of arginine-depleting pathogen enzymes for immune evasion will have to take enzyme class and reaction products into consideration.

  6. Arginine Catabolism by Sourdough Lactic Acid Bacteria: Purification and Characterization of the Arginine Deiminase Pathway Enzymes from Lactobacillus sanfranciscensis CB1

    OpenAIRE

    De Angelis, Maria; Mariotti, Liberato; Rossi, Jone; Servili, Maurizio; Fox, Patrick F.; Rollán, Graciela; Gobbetti, Marco

    2002-01-01

    The cytoplasmic extracts of 70 strains of the most frequently isolated sourdough lactic acid bacteria were screened initially for arginine deiminase (ADI), ornithine transcarbamoylase (OTC), and carbamate kinase (CK) activities, which comprise the ADI (or arginine dihydrolase) pathway. Only obligately heterofermentative strains such as Lactobacillus sanfranciscensis CB1; Lactobacillus brevis AM1, AM8, and 10A; Lactobacillus hilgardii 51B; and Lactobacillus fructivorans DD3 and DA106 showed al...

  7. Effect of L-arginine, dimercaptosuccinic acid (DMSA and the association of L-arginine and DMSA on tissue lead mobilization and blood pressure level in plumbism

    Directory of Open Access Journals (Sweden)

    Malvezzi C.K.

    2001-01-01

    Full Text Available Lead (Pb-induced hypertension is characterized by an increase in reactive oxygen species (ROS and a decrease in nitric oxide (NO. In the present study we evaluated the effect of L-arginine (NO precursor, dimercaptosuccinic acid (DMSA, a chelating agent and ROS scavenger, and the association of L-arginine/DMSA on tissue Pb mobilization and blood pressure levels in plumbism. Tissue Pb levels and blood pressure evolution were evaluated in rats exposed to: 1 Pb (750 ppm, in drinking water, for 70 days, 2 Pb plus water for 30 more days, 3 Pb plus DMSA (50 mg kg-1 day-1, po, L-arginine (0.6%, in drinking water, and the combination of L-arginine/DMSA for 30 more days, and 4 their respective matching controls. Pb exposure increased Pb levels in the blood, liver, femur, kidney and aorta. Pb levels in tissues decreased after cessation of Pb administration, except in the aorta. These levels did not reach those observed in nonintoxicated rats. All treatments mobilized Pb from the kidney, femur and liver. Pb mobilization from the aorta was only effective with the L-arginine/DMSA treatment. Blood Pb concentrations in Pb-treated groups were not different from those of the Pb/water group. Pb increased blood pressure starting from the 5th week. L-arginine and DMSA treatments (4th week and the combination of L-arginine/DMSA (3rd and 4th weeks decreased blood pressure levels of intoxicated rats. These levels did not reach those of nonintoxicated rats. Treatment with L-arginine/DMSA was more effective than the isolated treatments in mobilizing Pb from tissues and in reducing the blood pressure of intoxicated rats.

  8. Giardia duodenalis Arginine Deiminase Modulates the Phenotype and Cytokine Secretion of Human Dendritic Cells by Depletion of Arginine and Formation of Ammonia

    Science.gov (United States)

    Banik, Stefanie; Renner Viveros, Pablo; Seeber, Frank; Klotz, Christian; Ignatius, Ralf

    2013-01-01

    Depletion of arginine is a recognized strategy that pathogens use to evade immune effector mechanisms. Depletion depends on microbial enzymes such as arginases, which are considered virulence factors. The effect is mostly interpreted as being a consequence of successful competition with host enzymes for the substrate. However, both arginases and arginine deiminases (ADI) have been associated with pathogen virulence. Both deplete arginine, but their reaction products differ. An ADI has been implicated in the virulence of Giardia duodenalis, an intestinal parasite that infects humans and animals, causing significant morbidity. Dendritic cells (DC) play a critical role in host defense and also in a murine G. duodenalis infection model. The functional properties of these innate immune cells depend on the milieu in which they are activated. Here, the dependence of the response of these cells on arginine was studied by using Giardia ADI and lipopolysaccharide-stimulated human monocyte-derived DC. Arginine depletion by ADI significantly increased tumor necrosis factor alpha and decreased interleukin-10 (IL-10) and IL-12p40 secretion. It also reduced the upregulation of surface CD83 and CD86 molecules, which are involved in cell-cell interactions. Arginine depletion also reduced the phosphorylation of S6 kinase in DC, suggesting the involvement of the mammalian target of rapamycin signaling pathway. The changes were due to arginine depletion and the formation of reaction products, in particular, ammonium ions. Comparison of NH4+ and urea revealed distinct immunomodulatory activities of these products of deiminases and arginases, respectively. The data suggest that a better understanding of the role of arginine-depleting pathogen enzymes for immune evasion will have to take enzyme class and reaction products into consideration. PMID:23589577

  9. Enteral L-Arginine and Glutamine Supplementation for Prevention of NEC in Preterm Neonates.

    Science.gov (United States)

    El-Shimi, M S; Awad, H A; Abdelwahed, M A; Mohamed, M H; Khafagy, S M; Saleh, G

    2015-01-01

    Objective. Evaluating the efficacy and safety of arginine and glutamine supplementation in decreasing the incidence of NEC among preterm neonates. Methods. Prospective case-control study done on 75 preterm neonates ≤34 weeks, divided equally into L-arginine group receiving enteral L-arginine, glutamine group receiving enteral glutamine, and control group. Serum L-arginine and glutamine levels were measured at time of enrollment (sample 1), after 14 days of enrollment (sample 2), and at time of diagnosis of NEC (sample 3). Results. The incidence of NEC was 9.3%. There was no difference in the frequency of NEC between L-arginine and control groups (P > 0.05). NEC was not detected in glutamine group; L-arginine concentrations were significantly lower in arginine group than control group in both samples while glutamine concentrations were comparable in glutamine and control groups in both samples. No significant difference was found between groups as regards number of septic episodes, duration to reach full oral intake, or duration of hospital stay. Conclusion. Enteral L-arginine supplementation did not seem to reduce the incidence of NEC. Enteral glutamine may have a preventive role against NEC if supplied early to preterm neonates. However, larger studies are needed to confirm these findings. This work is registered in ClinicalTrials.gov (ClinicalTrials.gov Identifier: NCT01263041).

  10. Enteral L-Arginine and Glutamine Supplementation for Prevention of NEC in Preterm Neonates

    Directory of Open Access Journals (Sweden)

    M. S. El-Shimi

    2015-01-01

    Full Text Available Objective. Evaluating the efficacy and safety of arginine and glutamine supplementation in decreasing the incidence of NEC among preterm neonates. Methods. Prospective case-control study done on 75 preterm neonates ≤34 weeks, divided equally into L-arginine group receiving enteral L-arginine, glutamine group receiving enteral glutamine, and control group. Serum L-arginine and glutamine levels were measured at time of enrollment (sample 1, after 14 days of enrollment (sample 2, and at time of diagnosis of NEC (sample 3. Results. The incidence of NEC was 9.3%. There was no difference in the frequency of NEC between L-arginine and control groups (P>0.05. NEC was not detected in glutamine group; L-arginine concentrations were significantly lower in arginine group than control group in both samples while glutamine concentrations were comparable in glutamine and control groups in both samples. No significant difference was found between groups as regards number of septic episodes, duration to reach full oral intake, or duration of hospital stay. Conclusion. Enteral L-arginine supplementation did not seem to reduce the incidence of NEC. Enteral glutamine may have a preventive role against NEC if supplied early to preterm neonates. However, larger studies are needed to confirm these findings. This work is registered in ClinicalTrials.gov (ClinicalTrials.gov Identifier: NCT01263041.

  11. Synthesis, characterization and behaviour of trans-bis (argininate) copper (II) to gamma radiation

    International Nuclear Information System (INIS)

    The synthesis, the characterization and the behaviour to gamma radiation of trans-bis (argininate) copper (II) are presented. The synthesis is made from copper sulfate, sodium hydroxide and hydrochloride of L (+) arginine, in aqueous medium, and the characterization by infrared spectroscopy, visible and ultraviolet spectroscopy and elementary analysis. (C.G.C.)

  12. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria.

    Science.gov (United States)

    Tang, Hong; Zhang, Peng; Kieft, Thomas L; Ryan, Shannon J; Baker, Shenda M; Wiesmann, William P; Rogelj, Snezna

    2010-07-01

    The antimicrobial activity of chitosan and chitosan derivatives has been well established. However, although several mechanisms have been proposed, the exact mode of action is still unclear. Here we report on the investigation of antibacterial activity and the antibacterial mode of action of a novel water-soluble chitosan derivative, arginine-functionalized chitosan, on the Gram-negative bacteria Pseudomonas fluorescens and Escherichia coli. Two different arginine-functionalized chitosans (6% arginine-substituted and 30% arginine-substituted) each strongly inhibited P. fluorescens and E. coli growth. Time-dependent killing efficacy experiments showed that 5000 mg l(-1) of 6%- and 30%-substituted chitosan-arginine killed 2.7 logs and 4.5 logs of P. fluorescens, and 4.8 logs and 4.6 logs of E. coli in 4h, respectively. At low concentrations, the 6%-substituted chitosan-arginine was more effective in inhibiting cell growth even though the 30%-substituted chitosan-arginine appeared to be more effective in permeabilizing the cell membranes of both P. fluorescens and E. coli. Studies using fluorescent probes, 1-N-phenyl-naphthylamine (NPN), nile red (NR) and propidium iodide (PI), and field emission scanning electron microscopy (FESEM) suggest that chitosan-arginine's antibacterial activity is, at least in part, due to its interaction with the cell membrane, in which it increases membrane permeability. PMID:20060936

  13. Facilitation of peptide fibre formation by arginine-phosphate/carboxylate interactions

    Indian Academy of Sciences (India)

    K Krishna Prasad; Sandeep Verma

    2008-01-01

    This study describes peptide fibre formation in a hexapeptide, derived from the V3 loop of HIV-1, mediated by the interactions between arginine residues and phosphate/carboxylate anions. This charge neutralization approach was further confirmed when the deletion of arginine residue from the hexapeptide sequence resulted in fibre formation, which was studied by a combination of microscopic techniques.

  14. Enzymatic Synthesis of Agmatine by Immobilized Escherichia coli Cells with Arginine Decarboxylase Activity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-guo; ZHAO Gen-hai; LIU Jun-zhong; LIU Qian; JIAO Qing-cai

    2011-01-01

    A new method for the enzymatic synthesis of agmatine by immobilized Escherichia coli cells with arginine decarboxylase(ADC)activity was established and a series of optimal reaction conditions was set down.The arginine decarboxylase showed the maximum activity when the pyridoxal phosphate(PLP)concentration was 50 mmol/L,pH=7 and 45 ℃.The arginine decarboxylase exhibited the maximum production efficiency when the substrate concentration was 100 mmol/L and the reaction time was 15 h.It was also observed that the appropriate concentration of Mg2+,especially at 0.5 mmol/L promoted the arginine decarboxylase activity; Mn2+ had little effect on the arginine decarboxylase activity.The inhibition of Cu2+ and Zn2+ to the arginine decarboxylase activity was significant.The immobilized cells were continuously used 6 times and the average conversion rate during the six-time usage was 55.6%.The immobilized cells exhibited favourable operational stability.After optimization,the maximally cumulative amount of agmatine could be up to 20 g/L.In addition,this method can also catalyze D,L-arginine to agmatine,leaving the pure optically D-arginine simultaneously.The method has a very important guiding significance to the enzymatic preparation of agmatine.

  15. Acute hypothalamic administration of L-arginine increases feed intake in rats

    OpenAIRE

    Carlos Ricardo Maneck Malfatti; Luiz Augusto da Silva; Ricardo Aparecido Pereira; Renan Garcia Michel; André Luiz Snak; Fabio Seidel dos Santos

    2015-01-01

    Objective: This study investigated the chronic (oral) and acute (hypothalamic infusion) effects of L-arginine supplementation on feed intake, body composition, and behavioral changes in rats. Methods: Twenty rats were divided into two groups treated orally for 60 days; one group received L-arginine (1 g/kg body weight) and one group received saline (1 mL/NaCl ...

  16. Solid-state properties and dissolution behaviour of tablets containing co-amorphous indomethacin-arginine

    DEFF Research Database (Denmark)

    Lenz, Elisabeth; Jensen, Katrine Birgitte Tarp; Blaabjerg, Lasse Ingerslev;

    2015-01-01

    arginine in a larger production scale. In this work, a tablet formulation was developed for a co-amorphous salt, namely spray dried indomethacin–arginine (SD IND–ARG). The effects of compaction pressure on tablet properties, physical stability and dissolution profiles under non-sink conditions were examined...

  17. Supplementation with l-arginine stabilizes plasma arginine and nitric oxide metabolites, suppresses elevated liver enzymes and peroxidation in sickle cell anaemia.

    Science.gov (United States)

    Jaja, S I; Ogungbemi, S O; Kehinde, M O; Anigbogu, C N

    2016-06-01

    The effect of l-arginine on liver function in SCD has received little or no attention. The effect of a chronic, oral, low-dose supplementation with l-arginine (1gm/day for 6 weeks) on some liver enzymes, lipid peroxidation and nitric oxide metabolites was studied in 20 normal (non-sickle cell anaemia; NSCA) subjects and 20 sickle cell anaemia (SCA) subjects. Ten milliliters of blood was withdrawn from an ante-cubital vein for the estimation of plasma arginine concentration ([R]), alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and alkaline phosphatase (ALP), plasma total bilirubin concentration [TB], malondialdehyde concentration [MDA] and nitric oxide metabolites concentration [NOx]. Before supplementation, ALT, AST, ALP (pNOx] were higher in NSCA subjects (pNOX] in SCA than in NSCA subjects (plow-dose supplementation with l-arginine improved liver function, oxidative stress, plasma arginine concentration and nitric oxide metabolites levels in NSCA and SCA subjects. Responses in SCA subjects to l-arginine were more sensitive than in NSCA subjects. PMID:27156372

  18. Differential effects of cranial radiation on growth hormone response to arginine and insulin infusion

    International Nuclear Information System (INIS)

    The growth hormone responses to arginine infusion and to insulin-induced hypoglycemia were studied in 13 patients with neoplastic disease after treatment with radiation and chemotherapy. Patients who received intensive cranial radiation (greater than 2,400 rads) had no response to either arginine or insulin; those who received moderate cranial radiation (greater than or equal to 2,400 rads) had GH response to arginine but not to insulin; patients receiving no cranial radiation responded to both arginine and insulin. These data support the hypothesis that GH secretion in response to arginine infusion has a different mechanism in contrast to the response to insulin-induced hypoglycemia and that the latter is more vulnerable to cranial radiation

  19. Arginine does not exacerbate markers of inflammation in cocultures of human enterocytes and leukocytes

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Negrier, I.; Neveux, N.;

    2007-01-01

    with arginine did not affect epithelial integrity, production of any of the cytokines investigated, or the amount of nitric oxide. The amino acid used primarily by nonstimulated intestinal epithelial cells cocultured with leukocytes was glutamine. Activation of IEC with bacteria significantly enhanced...... the catabolism of serine, asparagine, and lysine, and reduced glutamine catabolism. Addition of arginine increased ornithine formation and moderately reduced transepithelial transport of methionine and other amino acids. Hence, arginine supplementation does not interfere with inflammation-associated cross......Enteral arginine supplementation in the critically ill has become a matter of controversy. In this study, we investigated effects of the addition of 0.4 and 1.2 mmol/L arginine in a coculture model on markers of inflammation, enterocyte layer integrity, and amino acid transport. In this model...

  20. Structural Basis of Substrate Recognition in Thiopurine S-Methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yi; Feng, Qiping; Wilk, Dennis; Adjei, Araba A.; Salavaggione, Oreste E.; Weinshilboum, Richard M.; Yee, Vivien C. (Case Western); (MCCM)

    2008-09-23

    Thiopurine S-methyltransferase (TPMT) modulates the cytotoxic effects of thiopurine prodrugs such as 6-mercaptopurine by methylating them in a reaction using S-adenosyl-l-methionine as the donor. Patients with TPMT variant allozymes exhibit diminished levels of protein and/or enzyme activity and are at risk for thiopurine drug-induced toxicity. We have determined two crystal structures of murine TPMT, as a binary complex with the product S-adenosyl-l-homocysteine and as a ternary complex with S-adenosyl-l-homocysteine and the substrate 6-mercaptopurine, to 1.8 and 2.0 {angstrom} resolution, respectively. Comparison of the structures reveals that an active site loop becomes ordered upon 6-mercaptopurine binding. The positions of the two ligands are consistent with the expected S{sub N}2 reaction mechanism. Arg147 and Arg221, the only polar amino acids near 6-mercaptopurine, are highlighted as possible participants in substrate deprotonation. To probe whether these residues are important for catalysis, point mutants were prepared in the human enzyme. Substitution of Arg152 (Arg147 in murine TPMT) with glutamic acid decreases V{sub max} and increases K{sub m} for 6-mercaptopurine but not K{sub m} for S-adenosyl-l-methionine. Substitution at this position with alanine or histidine and similar substitutions of Arg226 (Arg221 in murine TPMT) result in no effect on enzyme activity. The double mutant Arg152Ala/Arg226Ala exhibits a decreased V{sub max} and increased K{sub m} for 6-mercaptopurine. These observations suggest that either Arg152 or Arg226 may participate in some fashion in the TPMT reaction, with one residue compensating when the other is altered, and that Arg152 may interact with substrate more directly than Arg226, consistent with observations in the murine TPMT crystal structure.

  1. Altered Nitrogen Balance and Decreased Urea Excretion in Male Rats Fed Cafeteria Diet Are Related to Arginine Availability

    Directory of Open Access Journals (Sweden)

    David Sabater

    2014-01-01

    rats, but low arginine levels point to a block in the urea cycle between ornithine and arginine, thereby preventing the elimination of excess nitrogen as urea. The ultimate consequence of this paradoxical block in the urea cycle seems to be the limitation of arginine production and/or availability.

  2. Negative in vitro selection identifies the rRNA recognition motif for ErmE methyltransferase

    DEFF Research Database (Denmark)

    Nielsen, A K; Douthwaite, S; Vester, B

    1999-01-01

    Erm methyltransferases modify bacterial 23S ribosomal RNA at adenosine 2058 (A2058, Escherichia coli numbering) conferring resistance to macrolide, lincosamide, and streptogramin B (MLS) antibiotics. The motif that is recognized by Erm methyltransferases is contained within helix 73 of 23S r......RNA and the adjacent single-stranded region around A2058. An RNA transcript of 72 nt that displays this motif functions as an efficient substrate for the ErmE methyltransferase. Pools of degenerate RNAs were formed by doping 34-nt positions that extend over and beyond the putative Erm recognition motif within the 72......-mer RNA. The RNAs were passed through a series of rounds of methylation with ErmE. After each round, RNAs were selected that had partially or completely lost their ability to be methylated. After several rounds of methylation/selection, 187 subclones were analyzed. Forty-three of the subclones...

  3. Microwave heating of arginine yields highly fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Brightly fluorescent nanoparticles were produced via a single-step, single-precursor procedure based on microwave heating of an aqueous solution of the amino acid arginine. Key structural and optical properties of the resulting Arg nanoparticles, Arg-dots, are reported and discussed with emphasis on the pH dependence of their fluorescence emission. The surface of the Arg-dots was functionalised through coupling to folic acid, opening up ways for connecting fluorescent nanoparticles to cancer cells. The generality and versatility of the microwave heating procedure was further demonstrated by the synthesis of different types of carbon nanoparticles, such as CE-dots, that were produced by use of citric acid and ethanolamine as precursors and compared to the Arg-dots.

  4. Microwave heating of arginine yields highly fluorescent nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Philippidis, Aggelos [Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser (Greece); Stefanakis, Dimitrios [University of Crete, Department of Chemistry (Greece); Anglos, Demetrios, E-mail: anglos@iesl.forth.gr [Foundation for Research and Technology-Hellas, Institute of Electronic Structure and Laser (Greece); Ghanotakis, Demetrios, E-mail: ghanotakis@chemistry.uoc.gr [University of Crete, Department of Chemistry (Greece)

    2013-01-15

    Brightly fluorescent nanoparticles were produced via a single-step, single-precursor procedure based on microwave heating of an aqueous solution of the amino acid arginine. Key structural and optical properties of the resulting Arg nanoparticles, Arg-dots, are reported and discussed with emphasis on the pH dependence of their fluorescence emission. The surface of the Arg-dots was functionalised through coupling to folic acid, opening up ways for connecting fluorescent nanoparticles to cancer cells. The generality and versatility of the microwave heating procedure was further demonstrated by the synthesis of different types of carbon nanoparticles, such as CE-dots, that were produced by use of citric acid and ethanolamine as precursors and compared to the Arg-dots.

  5. Haloarchaeal Protein Translocation via the Twin Arginine Translocation Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Pohlschroder Mechthild

    2009-02-03

    Protein transport across hydrophobic membranes that partition cellular compartments is essential in all cells. The twin arginine translocation (Tat) pathway transports proteins across the prokaryotic cytoplasmic membranes. Distinct from the universally conserved Sec pathway, which secretes unfolded proteins, the Tat machinery is unique in that it secretes proteins in a folded conformation, making it an attractive pathway for the transport and secretion of heterologously expressed proteins that are Sec-incompatible. During the past 7 years, the DOE-supported project has focused on the characterization of the diversity of bacterial and archaeal Tat substrates as well as on the characterization of the Tat pathway of a model archaeon, Haloferax volcanii, a member of the haloarchaea. We have demonstrated that H. volcanii uses this pathway to transport most of its secretome.

  6. Catabolism and safety of supplemental L-arginine in animals.

    Science.gov (United States)

    Wu, Zhenlong; Hou, Yongqing; Hu, Shengdi; Bazer, Fuller W; Meininger, Cynthia J; McNeal, Catherine J; Wu, Guoyao

    2016-07-01

    L-arginine (Arg) is utilized via multiple pathways to synthesize protein and low-molecular-weight bioactive substances (e.g., nitric oxide, creatine, and polyamines) with enormous physiological importance. Furthermore, Arg regulates cell signaling pathways and gene expression to improve cardiovascular function, augment insulin sensitivity, enhance lean tissue mass, and reduce obesity in humans. Despite its versatile roles, the use of Arg as a dietary supplement is limited due to the lack of data to address concerns over its safety in humans. Data from animal studies are reviewed to assess arginine catabolism and the safety of long-term Arg supplementation. The arginase pathway was responsible for catabolism of 76-85 and 81-96 % Arg in extraintestinal tissues of pigs and rats, respectively. Dietary supplementation with Arg-HCl or the Arg base [315- and 630-mg Arg/(kg BW d) for 91 d] had no adverse effects on male or female pigs. Similarly, no safety issues were observed for male or female rats receiving supplementation with 1.8- and 3.6-g Arg/(kg BW d) for at least 91 d. Intravenous administration of Arg-HCl to gestating sheep at 81 and 180 mg Arg/(kg BW d) is safe for at least 82 and 40 d, respectively. Animals fed conventional diets can well tolerate large amounts of supplemental Arg [up to 630-mg Arg/(kg BW d) in pigs or 3.6-g Arg/(kg BW d) in rats] for 91 d, which are equivalent to 573-mg Arg/(kg BW d) for humans. Collectively, these results can help guide studies to determine the safety of long-term oral administration of Arg in humans. PMID:27156062

  7. The RNA-methyltransferase Misu (NSun2 poises epidermal stem cells to differentiate.

    Directory of Open Access Journals (Sweden)

    Sandra Blanco

    2011-12-01

    Full Text Available Homeostasis of most adult tissues is maintained by balancing stem cell self-renewal and differentiation, but whether post-transcriptional mechanisms can regulate this process is unknown. Here, we identify that an RNA methyltransferase (Misu/Nsun2 is required to balance stem cell self-renewal and differentiation in skin. In the epidermis, this methyltransferase is found in a defined sub-population of hair follicle stem cells poised to undergo lineage commitment, and its depletion results in enhanced quiescence and aberrant stem cell differentiation. Our results reveal that post-transcriptional RNA methylation can play a previously unappreciated role in controlling stem cell fate.

  8. The Nitric Oxide Synthase Inhibitor NG-Nitro-L-Arginine Methyl Ester Diminishes the Immunomodulatory Effects of Parental Arginine in Rats with Subacute Peritonitis.

    Science.gov (United States)

    Lo, Hui-Chen; Hung, Ching-Yi; Huang, Fu-Huan; Su, Tzu-Cheng; Lee, Chien-Hsing

    2016-01-01

    The combined treatment of parenteral arginine and the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) have been shown to improve liver function and systemic inflammation in subacute peritonitic rats. Here, we investigated the effects of single and combined parenteral arginine and L-NAME treatments on leukocyte and splenocyte immunity. Male Wistar rats were subjected to cecal punctures and were intravenously given total parenteral nutrition solutions with or without arginine and/or L-NAME supplementations for 7 days. Non-surgical and sham-operated rats with no cecal puncture were given a chow diet and parenteral nutrition, respectively. Parenteral feeding elevated the white blood cell numbers and subacute peritonitis augmented the parenteral nutrition-induced alterations in the loss of body weight gain, splenomegaly, and splenocyte decreases. Parenteral arginine significantly increased the B-leukocyte level, decreased the natural killer T (NKT)-leukocyte and splenocyte levels, alleviated the loss in body weight gain and total and cytotoxic T-splenocyte levels, and attenuated the increases in plasma nitrate/nitrite and interferon-gamma production by T-splenocytes. L-NAME infusion significantly decreased NKT-leukocyte level, tumor-necrosis factor (TNF)-alpha production by T-splenocytes and macrophages, and interferon-gamma production by T-leukocytes, monocytes, and T-splenocytes, as well as increased interleukin-6 production by T-leukocytes and monocytes and nitrate/nitrite production by T-leukocytes. Combined treatment significantly decreased plasma nitrate/nitrite, the NKT-leukocyte level, and TNF-alpha production by T-splenocytes. Parenteral arginine may attenuate immune impairment and L-NAME infusion may augment leukocyte proinflammatory response, eliminate splenocyte proinflammatory and T-helper 1 responses, and diminish arginine-induced immunomodulation in combined treatment in subacute peritonitic rats.

  9. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis

    Directory of Open Access Journals (Sweden)

    Mechteld A. R. Vermeulen

    2016-01-01

    Full Text Available Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%. Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285.

  10. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis.

    Science.gov (United States)

    Vermeulen, Mechteld A R; Brinkmann, Saskia J H; Buijs, Nikki; Beishuizen, Albertus; Bet, Pierre M; Houdijk, Alexander P J; van Goudoever, Johannes B; van Leeuwen, Paul A M

    2016-01-01

    Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE) calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%). Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285.

  11. L-arginine, the substrate of nitric oxide synthase,inhibits fertility of male rats

    Institute of Scientific and Technical Information of China (English)

    W. D. Ramasooriya; M. G. Dharmasiri

    2001-01-01

    Aim: To examine the effect of L-arginine, the substrate of nitric oxide (NO) synthase, on reproductive function of male rots. Methods: Male rats were gavaged with either L-arginine (100 or 200 mg@ kg- 1@ d-1), D-arginine (200 mg@ kg- 1@ d-1 ) or vehicle (0.9% NaCl) for seven consecutive days. Their sexual behaviour and fertility were evaluat ed using receptive females. Results: L-arginine (200 mg/kg) had no significant effect on sexual competence (in terms of sexual arousal, libido, sexual vigour and sexual performance). In mating experiments, the higher dose of L arginine effectively and reversibly inhibited fertility, whilst the lower dose and the inactive stereoisomer D-arginine had no significant effect. The antifertility effect caused by L-arginine was due to a profound elevation in the preimplantation loss mediated possibly by impairment in epididymal sperm maturation, hyperactivated sperm motility and sperm capaci ration. Conclusion: Elevated NO production may be detrimental to male fertility.

  12. Enteral Glutamine Administration in Critically Ill Nonseptic Patients Does Not Trigger Arginine Synthesis

    Science.gov (United States)

    Vermeulen, Mechteld A. R.; Brinkmann, Saskia J. H.; Buijs, Nikki; Beishuizen, Albertus; Bet, Pierre M.; Houdijk, Alexander P. J.; van Goudoever, Johannes B.; van Leeuwen, Paul A. M.

    2016-01-01

    Glutamine supplementation in specific groups of critically ill patients results in favourable clinical outcome. Enhancement of citrulline and arginine synthesis by glutamine could serve as a potential mechanism. However, while receiving optimal enteral nutrition, uptake and enteral metabolism of glutamine in critically ill patients remain unknown. Therefore we investigated the effect of a therapeutically relevant dose of L-glutamine on synthesis of L-citrulline and subsequent L-arginine in this group. Ten versus ten critically ill patients receiving full enteral nutrition, or isocaloric isonitrogenous enteral nutrition including 0.5 g/kg L-alanyl-L-glutamine, were studied using stable isotopes. A cross-over design using intravenous and enteral tracers enabled splanchnic extraction (SE) calculations. Endogenous rate of appearance and SE of glutamine citrulline and arginine was not different (SE controls versus alanyl-glutamine: glutamine 48 and 48%, citrulline 33 versus 45%, and arginine 45 versus 42%). Turnover from glutamine to citrulline and arginine was not higher in glutamine-administered patients. In critically ill nonseptic patients receiving adequate nutrition and a relevant dose of glutamine there was no extra citrulline or arginine synthesis and glutamine SE was not increased. This suggests that for arginine synthesis enhancement there is no need for an additional dose of glutamine when this population is adequately fed. This trial is registered with NTR2285. PMID:27200186

  13. One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhongjun; Zhu Hui; Wang Xiaolei; Yang Fan; Yang Xiurong, E-mail: xryang@ciac.jl.c [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 (China)

    2009-11-18

    A green one-step approach has been developed for the synthesis of amino-functionalized magnetite nanoparticles. The synthesis was accomplished by simply mixing FeCl{sub 2} with arginine under ambient conditions. It was found that the Fe{sup 2+}/arginine molar ratio, reaction duration and temperature greatly influence the size, morphology and composition of magnetic nanoparticles. The arginine-stabilized magnetic nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy techniques. The results show that the prepared nanoparticles are spherically shaped with a nearly uniform size distribution and pure magnetite phase. The presence of arginine on the magnetic nanoparticle surface has been confirmed and the amount of surface arginine varies with the Fe{sup 2+}/arginine molar ratio. The surface amine densities are calculated to be 5.60 and 7.84 {mu}mol mg{sup -1} for magnetic nanoparticles prepared at 1:1 and 1:2 Fe{sup 2+}/arginine molar ratio, respectively. The as-synthesized nanoparticles show superparamagnetic behavior at room temperature and good solubility in water. In addition, using a similar synthesis procedure, we have been able to synthesize superparamagnetic manganese and cobalt ferrite nanoparticles.

  14. One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles

    International Nuclear Information System (INIS)

    A green one-step approach has been developed for the synthesis of amino-functionalized magnetite nanoparticles. The synthesis was accomplished by simply mixing FeCl2 with arginine under ambient conditions. It was found that the Fe2+/arginine molar ratio, reaction duration and temperature greatly influence the size, morphology and composition of magnetic nanoparticles. The arginine-stabilized magnetic nanoparticles were characterized by transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy techniques. The results show that the prepared nanoparticles are spherically shaped with a nearly uniform size distribution and pure magnetite phase. The presence of arginine on the magnetic nanoparticle surface has been confirmed and the amount of surface arginine varies with the Fe2+/arginine molar ratio. The surface amine densities are calculated to be 5.60 and 7.84 μmol mg-1 for magnetic nanoparticles prepared at 1:1 and 1:2 Fe2+/arginine molar ratio, respectively. The as-synthesized nanoparticles show superparamagnetic behavior at room temperature and good solubility in water. In addition, using a similar synthesis procedure, we have been able to synthesize superparamagnetic manganese and cobalt ferrite nanoparticles.

  15. Investigation on the remineralization effect of arginine toothpaste for early enamel caries: nanotribological and nanomechanical properties

    Science.gov (United States)

    Yu, Ping; Arola, Dwayne D.; Min, Jie; Yu, Dandan; Xu, Zhou; Li, Zhi; Gao, Shanshan

    2016-11-01

    Remineralization is confirmed as a feasible method to restore early enamel caries. While there is evidence that the 8% arginine toothpaste has a good remineralization effect by increasing surface microhardness, the repair effect on wear-resistance and nanomechanical properties still remains unclear. Therefore, this research was conducted to reveal the nanotribological and nanomechanical properties changes of early caries enamel after remineralized with arginine toothpaste. Early enamel caries were created in bovine enamel blocks, and divided into three groups according to the treatment solutions: distilled and deionized water (DDW group), arginine toothpaste slurry (arginine group) and fluoride toothpaste slurry (fluoride group). All of the samples were subjected to pH cycling for 12 d. The nanotribological and nanomechanical properties were evaluated via the nanoscratch and nanoindentation tests. The wear depth and scratch morphology were observed respectively by scanning probe microscopic (SPM) and scanning electron microscopy (SEM). Finally, x-ray photoelectron spectroscopy (XPS) was used for element analysis of remineralized surfaces. Results showed that the wear depth of early caries enamel decreased after remineralization treatment and both the nanohardness and elastic modulus increased. Compared with the fluoride group, the arginine group exhibited higher nanohardness and elastic modulus with higher levels of calcium, fluoride, nitrogen and phosphorus; this group also underwent less wear and related damage. Overall, the synergistic effect of arginine and fluoride in arginine toothpaste achieves better nanotribological and nanomechanical properties than the single fluoride toothpaste, which could have significant impact on fight against early enamel caries.

  16. Properly substituted analogues of BIX-01294 lose inhibition of G9a histone methyltransferase and gain selective anti-DNA methyltransferase 3A activity.

    Directory of Open Access Journals (Sweden)

    Dante Rotili

    Full Text Available Chemical manipulations performed on the histone H3 lysine 9 methyltransferases (G9a/GLP inhibitor BIX-01294 afforded novel desmethoxyquinazolines able to inhibit the DNA methyltransferase DNMT3A at low micromolar levels without any significant inhibition of DNMT1 and G9a. In KG-1 cells such compounds, when tested at sub-toxic doses, induced the luciferase re-expression in a stable construct controlled by a cytomegalovirus (CMV promoter silenced by methylation (CMV-luc assay. Finally, in human lymphoma U-937 and RAJI cells, the N-(1-benzylpiperidin-4-yl-2-(4-phenylpiperazin-1-ylquinazolin-4-amine induced the highest proliferation arrest and cell death induction starting from 10 µM, in agreement with its DNMT3A inhibitory potency.

  17. Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats

    Directory of Open Access Journals (Sweden)

    J.M. Cruciol-Souza

    1999-10-01

    Full Text Available Although it has been demonstrated that nitric oxide (NO released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg induced tetanic fade. The Nw-nitro-L-arginine (L-NOARG; 2 mg/kg alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg or ODQ (15 µg/kg. ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors.

  18. Hepatic adaptation compensates inactivation of intestinal arginine biosynthesis in suckling mice.

    Directory of Open Access Journals (Sweden)

    Vincent Marion

    Full Text Available Suckling mammals, including mice, differ from adults in the abundant expression of enzymes that synthesize arginine from citrulline in their enterocytes. To investigate the importance of the small-intestinal arginine synthesis for whole-body arginine production in suckling mice, we floxed exon 13 of the argininosuccinate synthetase (Ass gene, which codes for a key enzyme in arginine biosynthesis, and specifically and completely ablated Ass in enterocytes by crossing Ass (fl and Villin-Cre mice. Unexpectedly, Ass (fl/fl /VilCre (tg/- mice showed no developmental impairments. Amino-acid fluxes across the intestine, liver, and kidneys were calculated after determining the blood flow in the portal vein, and hepatic and renal arteries (86%, 14%, and 33%, respectively, of the transhepatic blood flow in 14-day-old mice. Relative to control mice, citrulline production in the splanchnic region of Ass (fl/fl /VilCre (tg/- mice doubled, while arginine production was abolished. Furthermore, the net production of arginine and most other amino acids in the liver of suckling control mice declined to naught or even changed to consumption in Ass (fl/fl /VilCre (tg/- mice, and had, thus, become remarkably similar to that of post-weaning wild-type mice, which no longer express arginine-biosynthesizing enzymes in their small intestine. The adaptive changes in liver function were accompanied by an increased expression of genes involved in arginine metabolism (Asl, Got1, Gpt2, Glud1, Arg1, and Arg2 and transport (Slc25a13, Slc25a15, and Slc3a2, whereas no such changes were found in the intestine. Our findings suggest that the genetic premature deletion of arginine synthesis in enterocytes causes a premature induction of the post-weaning pattern of amino-acid metabolism in the liver.

  19. Arginines Plasma Concentration and Oxidative Stress in Mild to Moderate COPD

    Science.gov (United States)

    Zinellu, Angelo; Fois, Alessandro Giuseppe; Sotgia, Salvatore; Sotgiu, Elisabetta; Zinellu, Elisabetta; Bifulco, Fabiana; Mangoni, Arduino A; Pirina, Pietro; Carru, Ciriaco

    2016-01-01

    Background Elevated plasma concentrations of the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) have been observed in respiratory conditions such as asthma and cystic fibrosis. Since oxidative stress has been shown to increase the activity of arginine methylating enzymes, hence increased ADMA synthesis, and to reduce ADMA degrading enzymes, hence increased ADMA concentrations, we assessed methylated arginines concentrations in chronic obstructive pulmonary disease (COPD), a disease characterized by increased oxidative stress. Methods Plasma arginine, ADMA and symmetric dimethylarginine (SDMA), oxidative stress markers (thiobarbituric acid reactive substances, TBARS, and plasma proteins SH, PSH) and antioxidants (taurine and paraoxonase 1, PON1, activity) were measured in 43 COPD patients with mild (n = 29) or moderate (n = 14) disease and 43 age- and sex-matched controls. Results TBARS significantly increased with COPD presence and severity (median 2.93 vs 3.18 vs 3.64 μmol/L, respectively in controls, mild and moderate group, p<0.0001 by ANOVA) whereas PSH decreased (6.69±1.15 vs 6.04±0.85 vs 5.33±0.96 μmol/gr prot, p<0.0001 by ANOVA). Increased ADMA/arginine ratio, primarily due to reduced arginine concentrations, was also observed with COPD presence and severity (median 0.0067 vs 0.0075 vs 0.0100, p<0.0001 by ANOVA). In multiple logistic regression analysis, only TBARS (OR 0.44, 95% CI 0.25–0.77; p = 0.0045) and ADMA/Arginine ratio (OR 1.72, 95% CI 2.27–13.05; p = 0.02) were independently associated with COPD severity. Conclusion COPD presence and severity are associated with increased oxidative stress and alterations in arginine metabolism. The reduced arginine concentrations in COPD may offer a new target for therapeutic interventions increasing arginine availability. PMID:27479314

  20. The effect of L-arginine on guinea-pig and rabbit airway smooth muscle function in vitro

    OpenAIRE

    Perez A.C.; Paul W.; Harrison S.; Page C.P.; Spina D.

    1998-01-01

    We have investigated the effects of L-arginine, D-arginine and L-lysine on airway smooth muscle responsiveness to spasmogens in vitro. Both L-arginine and D-arginine (100 mM) significantly reduced the contractile potency and maximal contractile response to histamine but not to methacholine or potassium chloride in guinea-pig epithelium-denuded isolated trachea. Similarly, the contractile response to histamine was significantly reduced by L-arginine (100 mM) in rabbit epithelium-denuded isolat...

  1. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases

    Directory of Open Access Journals (Sweden)

    Purta Elzbieta

    2007-03-01

    Full Text Available Abstract Background SPOUT methyltransferases (MTases are a large class of S-adenosyl-L-methionine-dependent enzymes that exhibit an unusual alpha/beta fold with a very deep topological knot. In 2001, when no crystal structures were available for any of these proteins, Anantharaman, Koonin, and Aravind identified homology between SpoU and TrmD MTases and defined the SPOUT superfamily. Since then, multiple crystal structures of knotted MTases have been solved and numerous new homologous sequences appeared in the databases. However, no comprehensive comparative analysis of these proteins has been carried out to classify them based on structural and evolutionary criteria and to guide functional predictions. Results We carried out extensive searches of databases of protein structures and sequences to collect all members of previously identified SPOUT MTases, and to identify previously unknown homologs. Based on sequence clustering, characterization of domain architecture, structure predictions and sequence/structure comparisons, we re-defined families within the SPOUT superfamily and predicted putative active sites and biochemical functions for the so far uncharacterized members. We have also delineated the common core of SPOUT MTases and inferred a multiple sequence alignment for the conserved knot region, from which we calculated the phylogenetic tree of the superfamily. We have also studied phylogenetic distribution of different families, and used this information to infer the evolutionary history of the SPOUT superfamily. Conclusion We present the first phylogenetic tree of the SPOUT superfamily since it was defined, together with a new scheme for its classification, and discussion about conservation of sequence and structure in different families, and their functional implications. We identified four protein families as new members of the SPOUT superfamily. Three of these families are functionally uncharacterized (COG1772, COG1901, and COG4080

  2. A NOVEL S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE FROM RAT LIVER CYTOSOL

    Science.gov (United States)

    A Novel S-Adenosyl-L-methionine: Arsenic(III) Methyltransferase from Rat Liver CytosolShan Lin, Qing Shi, F. Brent Nix, Miroslav Styblo, Melinda A. Beck, Karen M. Herbin-Davis, Larry L. Hall, Josef B. Simeonsson, and David J. Thomas S-adenosyl-L-methionine (AdoMet): ar...

  3. CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE (CYT19)

    Science.gov (United States)

    CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE (cyt19)Stephen B. Waters1 , Felicia Walton1 , Miroslav Styblo1 , Karen Herbin-Davis2, and David J. Thomas2 1 School of Medicine, University of North Carolina at Chape...

  4. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1.

    Science.gov (United States)

    Guja, Kip E; Venkataraman, Krithika; Yakubovskaya, Elena; Shi, Hui; Mejia, Edison; Hambardjieva, Elena; Karzai, A Wali; Garcia-Diaz, Miguel

    2013-09-01

    Eukaryotic transcription factor B (TFB) proteins are homologous to KsgA/Dim1 ribosomal RNA (rRNA) methyltransferases. The mammalian TFB1, mitochondrial (TFB1M) factor is an essential protein necessary for mitochondrial gene expression. TFB1M mediates an rRNA modification in the small ribosomal subunit and thus plays a role analogous to KsgA/Dim1 proteins. This modification has been linked to mitochondrial dysfunctions leading to maternally inherited deafness, aminoglycoside sensitivity and diabetes. Here, we present the first structural characterization of the mammalian TFB1 factor. We have solved two X-ray crystallographic structures of TFB1M with (2.1 Å) and without (2.0 Å) its cofactor S-adenosyl-L-methionine. These structures reveal that TFB1M shares a conserved methyltransferase core with other KsgA/Dim1 methyltransferases and shed light on the structural basis of S-adenosyl-L-methionine binding and methyltransferase activity. Together with mutagenesis studies, these data suggest a model for substrate binding and provide insight into the mechanism of methyl transfer, clarifying the role of this factor in an essential process for mitochondrial function. PMID:23804760

  5. Association of Catechol-O-Methyltransferase (COMT) Polymorphism and Academic Achievement in a Chinese Cohort

    Science.gov (United States)

    Yeh, Ting-Kuang; Chang, Chun-Yen; Hu, Chung-Yi; Yeh, Ting-Chi; Lin, Ming-Yeh

    2009-01-01

    Catechol-O-methyltransferase (COMT) is a methylation enzyme that catalyzes the degradation pathway and inactivation of dopamine. It is accepted widely as being involved in the modulation of dopaminergic physiology and prefrontal cortex (PFC) function. The COMT Val158Met polymorphism is associated with variation in COMT activity. COMT 158Met allele…

  6. Effect of alternative temozolomide schedules on glioblastoma O 6-methylguanine-DNA methyltransferase activity and survival

    OpenAIRE

    Robinson, C G; Palomo, J M; Rahmathulla, G; McGraw, M; Donze, J; L. Liu; Vogelbaum, M A

    2010-01-01

    Background: O 6-methylguanine-DNA methyltransferase (MGMT) expression in glioblastoma correlates with temozolomide resistance. Dose-intense temozolomide schedules deplete MGMT activity in peripheral blood mononuclear cells; however, no published data exist evaluating the effect of temozolomide schedules on intracranial tumour MGMT activity. Methods: Human glioblastoma cells (GBM43) with an unmethylated MGMT promoter were implanted intracranially in immunodeficient rodents. Three weeks later, ...

  7. rmtA, encoding a putative anginine methyltransferase, regulates secondary metabolism and development in Aspergillus flavus

    Science.gov (United States)

    Aspergillus flavus is found colonizing numerous oil seed crops such as corn, peanuts, sorghum, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been de...

  8. Catechol-O-methyltransferase gene methylation and substance use in adolescents : the TRAILS study

    NARCIS (Netherlands)

    van der Knaap, L. J.; Schaefer, J. M.; Franken, I. H. A.; Verhulst, F. C.; van Oort, F. V. A.; Riese, H.

    2014-01-01

    Substance use often starts in adolescence and poses a major problem for society and individual health. The dopamine system plays a role in substance use, and catechol-O-methyltransferase (COMT) is an important enzyme that degrades dopamine. The Val(108/158)Met polymorphism modulates COMT activity an

  9. Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry

    DEFF Research Database (Denmark)

    Vranken, Charlotte; Deen, Jochem; Dirix, Lieve;

    2014-01-01

    We demonstrate an approach to optical DNA mapping, which enables near single-molecule characterization of whole bacteriophage genomes. Our approach uses a DNA methyltransferase enzyme to target labelling to specific sites and copper-catalysed azide-alkyne cycloaddition to couple a fluorophore to ...

  10. SABATH Methyltransferases from White Spruce (Picea glauca [Moench] Voss): Gene Cloning, Functional Characterization and Structural Analysis

    Science.gov (United States)

    Known members of the plant SABATH family of methyltransferases have important biological functions by methylating hormones, signaling molecules and other metabolites. While all previously characterized SABATH genes were isolated from angiosperms, in this article, we report on the isolation and funct...

  11. Catechol-O-methyltransferase gene methylation and substance use in adolescents: The TRAILS study

    NARCIS (Netherlands)

    L.J. van der Knaap (Lisette); J.M. Schäfer (Johanna); I.H.A. Franken (Ingmar); F.C. Verhulst (Frank); F.V.A. van Oort (Floor); H. Riese (Harriëtte)

    2014-01-01

    textabstractSubstance use often starts in adolescence and poses a major problem for society and individual health. The dopamine system plays a role in substance use, and catechol-O-methyltransferase (COMT) is an important enzyme that degrades dopamine. The Val108/158Met polymorphism modul

  12. Cations modulate the substrate specificity of bifunctional class I O-methyltransferase from Ammi majus.

    Science.gov (United States)

    Lukacin, Richard; Matern, Ulrich; Specker, Silvia; Vogt, Thomas

    2004-11-19

    Caffeoyl-coenzyme A O-methyltransferase cDNA was cloned from dark-grown Ammi majus L. (Apiaceae) cells treated with a crude fungal elicitor and the open reading frame was expressed in Escherichia coli. The translated polypeptide of 27.1-kDa shared significant identity to other members of this highly conserved class of proteins and was 98.8% identical to the corresponding O-methyltransferase from parsley. For biochemical characterization, the recombinant enzyme could be purified to apparent homogeneity by metal-affinity chromatography, although the recombinant enzyme did not contain any affinity tag. Based on sequence analysis and substrate specificity, the enzyme classifies as a cation-dependent O-methyltransferase with pronounced preference for caffeoyl coenzyme A, when assayed in the presence of Mg2+-ions. Surprisingly, however, the substrate specificity changed dramatically, when Mg2+ was replaced by Mn2+ or Co2+ in the assays. This effect could point to yet unknown functions and substrate specificities in situ and suggests promiscuous roles for the lignin specific cluster of plant O-methyltransferases.

  13. Global developmental delay in guanidionacetate methyltransferase deficiency : differences in formal testing and clinical observation

    NARCIS (Netherlands)

    Verbruggen, Krijn T.; Knijff, Wilma A.; Soorani-Lunsing, Roelineke J.; Sijens, Paul E.; Verhoeven, Nanda M.; Salomons, Gajja S.; Goorhuis-Brouwer, Siena M.; van Spronsen, Francjan J.

    2007-01-01

    Guanidinoacetate N-methyltransferase (GAMT) deficiency is a defect in the biosynthesis of creatine (Cr). So far, reports have not focused on the description of developmental abilities in this disorder. Here, we present the result of formal testing of developmental abilities in a GAMT-deficient patie

  14. DNA repair methyltransferase (Mgmt) knockout mice are sensitive to the lethal effects of chemotherapeutic alkylating agents.

    NARCIS (Netherlands)

    B.J. Glassner (Brian); G. Weeda (Geert); J.M. Allan (James); J.L.M. Broekhof (Jose'); N.H.E. Carls (Nick); I. Donker (Ingrid); B.P. Engelward (Bevin); R.J. Hampson (Richard); R. Hersmus (Remko); M.J. Hickman (Mark); R.B. Roth (Richard); H.B. Warren (Henry); M.M. Wu (Mavis); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1999-01-01

    textabstractWe have generated mice deficient in O6-methylguanine DNA methyltransferase activity encoded by the murine Mgmt gene using homologous recombination to delete the region encoding the Mgmt active site cysteine. Tissues from Mgmt null mice displayed very low O6-methylguanine DNA methyltransf

  15. Local chromatin microenvironment determines DNMT activity : from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; Venkiteswaran, Muralidhar; Chen, Hui; Xu, Guo-Liang; Plosch, Torsten; Rots, Marianne G.

    2015-01-01

    Insights on active DNA demethylation disproved the original assumption that DNA methylation is a stable epigenetic modification. Interestingly, mammalian DNA methyltransferases 3A and 3B (DNMT-3A and -3B) have also been reported to induce active DNA demethylation, in addition to their well-known fun

  16. DNA methyltransferase and alcohol dehydrogenase: gene-nutrient interactions in relation to risk of colorectal polyps.

    NARCIS (Netherlands)

    Jung, A.Y.; Poole, E.M.; Bigler, J.; Whitton, J.; Potter, J.D.; Ulrich, C.M.

    2008-01-01

    Disturbances in DNA methylation are a characteristic of colorectal carcinogenesis. Folate-mediated one-carbon metabolism is essential for providing one-carbon groups for DNA methylation via DNA methyltransferases (DNMTs). Alcohol, a folate antagonist, could adversely affect one-carbon metabolism. In

  17. Clinical Pharmacogenetics Implementation Consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing

    DEFF Research Database (Denmark)

    Relling, M V; Gardner, E E; Sandborn, W J;

    2011-01-01

    Thiopurine methyltransferase (TPMT) activity exhibits monogenic co-dominant inheritance, with ethnic differences in the frequency of occurrence of variant alleles. With conventional thiopurine doses, homozygous TPMT-deficient patients (~1 in 178 to 1 in 3,736 individuals with two nonfunctional TP...

  18. A fluorescence resonance energy transfer-based method for histone methyltransferases

    DEFF Research Database (Denmark)

    Devkota, Kanchan; Lohse, Brian; Nyby Jakobsen, Camilla;

    2015-01-01

    A simple dye–quencher fluorescence resonance energy transfer (FRET)-based assay for methyltransferases was developed and used to determine kinetic parameters and inhibitory activity at EHMT1 and EHMT2. Peptides mimicking the truncated histone H3 tail were functionalized in each end with a dye...

  19. Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity

    DEFF Research Database (Denmark)

    Pasini, Diego; Bracken, Adrian P; Jensen, Michael R;

    2004-01-01

    SUZ12 is a recently identified Polycomb group (PcG) protein, which together with EZH2 and EED forms different Polycomb repressive complexes (PRC2/3). These complexes contain histone H3 lysine (K) 27/9 and histone H1 K26 methyltransferase activity specified by the EZH2 SET domain. Here we show...

  20. The histone methyltransferase SET8 is required for S-phase progression

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Elvers, Ingegerd; Trelle, Morten Beck;

    2008-01-01

    Chromatin structure and function is influenced by histone posttranslational modifications. SET8 (also known as PR-Set7 and SETD8) is a histone methyltransferase that monomethylates histonfe H4-K20. However, a function for SET8 in mammalian cell proliferation has not been determined. We show...

  1. Resveratrol inhibits Trypanosoma cruzi arginine kinase and exerts a trypanocidal activity.

    Science.gov (United States)

    Valera Vera, Edward A; Sayé, Melisa; Reigada, Chantal; Damasceno, Flávia S; Silber, Ariel M; Miranda, Mariana R; Pereira, Claudio A

    2016-06-01

    Arginine kinase catalyzes the reversible transphosphorylation between ADP and phosphoarginine which plays a critical role in the maintenance of cellular energy homeostasis. Arginine kinase from the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, meets the requirements to be considered as a potential therapeutic target for rational drug design including being absent in its mammalian hosts. In this study a group of polyphenolic compounds was evaluated as potential inhibitors of arginine kinase using molecular docking techniques. Among the analyzed compounds with the lowest free binding energy to the arginine kinase active site (market price; and (3) has as a well-defined target enzyme which is absent in the mammalian host, it is a promising compound as a trypanocidal drug for Chagas disease. PMID:26976067

  2. Large-Scale Identification of the Arginine Methylome by Mass Spectrometry

    DEFF Research Database (Denmark)

    Sylvestersen, Kathrine B; Nielsen, Michael L

    2016-01-01

    The attachment of one or more methylation groups to the side chain of arginine residues is a regulatory mechanism for cellular proteins. Recent advances in mass spectrometry-based characterization allow comprehensive identification of arginine methylation sites by peptide-level enrichment...... strategies. Described in this unit is a 4-day protocol for enrichment of arginine-methylated peptides and subsequent identification of thousands of distinct sites by mass spectrometry. Specifically, the protocol explains step-by-step sample preparation, enrichment using commercially available antibodies......, prefractionation using strong cation exchange, and identification using liquid chromatography coupled to tandem mass spectrometry. A strategy for relative quantification is described using stable isotope labeling by amino acids in cell culture (SILAC). Approaches for analysis of arginine methylation site occupancy...

  3. Corrosion Inhibition Effect of Carbon Steel in Sea Water by L-Arginine-Zn2+ System

    Directory of Open Access Journals (Sweden)

    S. Gowri

    2014-01-01

    Full Text Available The inhibition efficiency of L-Arginine-Zn2+ system in controlling corrosion of carbon steel in sea water has been evaluated by the weight-loss method. The formulation consisting of 250 ppm of L-Arginine and 25 ppm of Zn2+ has 91% IE. A synergistic effect exists between L-Arginine and Zn2+. Polarization study reveals that the L-Arginine-Zn2+ system functions as an anodic inhibitor and the formulation controls the anodic reaction predominantly. AC impedance spectra reveal that protective film is formed on the metal surface. Cyclic voltammetry study reveals that the protective film is more compact and stable even in a 3.5% NaCl environment. The nature of the protective film on a metal surface has been analyzed by FTIR, SEM, and AFM analysis.

  4. Endothelial arginine resynthesis contributes to the maintenance of vasomotor function in male diabetic mice

    DEFF Research Database (Denmark)

    Chennupati, Ramesh; Meens, Merlijn J P M T; Marion, Vincent;

    2014-01-01

    AIM: Argininosuccinate synthetase (ASS) is essential for recycling L-citrulline, the by-product of NO synthase (NOS), to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice. METHODS...... AND RESULTS: Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/- = Ass-KOTie2) were generated by crossing Assfl/fl mice ( = control) with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP) was recorded in 34-week-old male mice. Vasomotor...... of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting...

  5. Metabolomic analysis of plasma and liver from surplus arginine fed Atlantic salmon

    Science.gov (United States)

    Andersen, Synne M.; Assaad, Houssein I.; Lin, Gang; Wang, Junjun; Aksnes, Anders; Wu, Guoyao; Espe, Marit

    2016-01-01

    The aim of this study was to determine the metabolic effect of surplus arginine (36.1 g/kg dry matter) compared to a control diet with required arginine (21.1 g/kg dry matter) in adult Atlantic salmon (Salmo salar L.). Although the feeding trial had no significant effect on growth, there were significant differences in the metabolite profile in both plasma and liver in experimental group as compared to the control group. There was increased concentrations of biliverdin, PGF-2 alpha, oxidized glutathione, selenocysteine, two monoacylglycerols and a tripeptide in the liver as well as decreased concentrations of valine and a vitamin D3 metabolite in plasma of arginine supplemented fish. These results indicate that while surplus arginine does not affect growth or body weight, it induces metabolic changes in Atlantic salmon. PMID:25553364

  6. Utilization of ornithine and arginine as specific precursors of clavulanic acid.

    Science.gov (United States)

    Romero, J; Liras, P; Martín, J F

    1986-01-01

    Ornithine and arginine (5 to 20 mM), but not glutamic acid or proline, exerted a concentration-dependent stimulatory effect on the biosynthesis of clavulanic acid in both resting-cell cultures and long-term fermentations of Streptomyces clavuligerus. Ornithine strongly inhibited cephamycin biosynthesis in the same strain. [1-14C]-, [5-14C]-, or [U-14 C] ornithine was efficiently incorporated into clavulanic acid, whereas the incorporation of uniformly labeled glutamic acid was very poor. [U-14C] citrulline were not incorporated at all. Mutant nca-1, a strain that is blocked in clavulanic acid biosynthesis, did not incorporate arginine into clavulanic acid. S. clavuligerus showed arginase activity, converting arginine into ornithine, but not amidinotransferase activity. Both arginase activity and clavulanic acid formation were enhanced simultaneously by supplementing the production medium with 10 mM arginine. PMID:2877616

  7. Increased arginine vasopressin mRNA expression in the human hypothalamus in depression: A preliminary report

    NARCIS (Netherlands)

    G. Meynen; U.A. Unmehopa; J.J. van Heerikhuize; M.A. Hofman; D.F. Swaab; W.J.G. Hoogendijk

    2006-01-01

    Background: Elevated arginine vasopressin (AVP) plasma levels have been observed in major depression, particularly in relation to the melancholic subtype. Two hypothalamic structures produce plasma vasopressin: the supraoptic nucleus (SON) and the paraventricular nucleus (PVN). The aim of this study

  8. The effect of citrulline and arginine supplementation on lactic acidemia in MELAS syndrome.

    Science.gov (United States)

    El-Hattab, Ayman W; Emrick, Lisa T; Williamson, Kaitlin C; Craigen, William J; Scaglia, Fernando

    2013-12-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a mitochondrial disorder in which nitric oxide (NO) deficiency may play a role in the pathogenesis of several complications including stroke-like episodes and lactic acidosis. Supplementing the NO precursors arginine and citrulline restores NO production in MELAS syndrome. In this study we evaluated the effect of arginine or citrulline on lactic acidemia in adults with MELAS syndrome. Plasma lactate decreased significantly after citrulline supplementation, whereas the effect of arginine supplementation did not reach statistical significance. These results support the potential therapeutic utility of arginine and citrulline in MELAS syndrome and suggest that citrulline supplementation may be more efficacious. However, therapeutic efficacy of these compounds should be further evaluated in clinical trials.

  9. Streptococcus pneumoniae arginine synthesis genes promote growth and virulence in pneumococcal meningitis

    NARCIS (Netherlands)

    J.R. Piet; M. Geldhoff; B.D.C. van Schaik; M.C. Brouwer; M. Valls Seron; M.E. Jakobs; K. Schipper; Y. Pannekoek; A.H. Zwinderman; T. van der Poll; A.H.C. van Kampen; F. Baas; A van der Ende; D. van de Beek

    2014-01-01

    Streptococcus pneumoniae (pneumococcus) is a major human pathogen causing pneumonia, sepsis and bacterial meningitis. Using a clinical phenotype based approach with bacterial whole-genome sequencing we identified pneumococcal arginine biosynthesis genes to be associated with outcome in patients with

  10. Thermal, FT–IR and SHG efficiency studies of L-arginine doped KDP crystals

    Indian Academy of Sciences (India)

    K D Parikh; D J Dave; B B Parekh; M J Joshi

    2007-04-01

    Potassium dihydrogen phosphate (KDP) is a well known nonlinear optical (NLO) material with different applications. Since most of the amino acids exhibit NLO property, it is of interest to dope them in KDP. In the present study, amino acid L-arginine was doped in KDP. The doping of L-arginine was confirmed by FT–IR and paper chromatography. Thermogravimetry suggested that as the amount of doping increases the thermal stability decreases as well as the value of thermodynamic and kinetic parameters decreases. The second harmonic generation (SHG) efficiency of L-arginine doped KDP crystals was found to be increasing with doping concentration of L-arginine. The results are discussed here.

  11. Arginine metabolism by macrophages promotes cardiac and muscle fibrosis in mdx muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Michelle Wehling-Henricks

    Full Text Available BACKGROUND: Duchenne muscular dystrophy (DMD is the most common, lethal disease of childhood. One of 3500 new-born males suffers from this universally-lethal disease. Other than the use of corticosteroids, little is available to affect the relentless progress of the disease, leading many families to use dietary supplements in hopes of reducing the progression or severity of muscle wasting. Arginine is commonly used as a dietary supplement and its use has been reported to have beneficial effects following short-term administration to mdx mice, a genetic model of DMD. However, the long-term effects of arginine supplementation are unknown. This lack of knowledge about the long-term effects of increased arginine metabolism is important because elevated arginine metabolism can increase tissue fibrosis, and increased fibrosis of skeletal muscles and the heart is an important and potentially life-threatening feature of DMD. METHODOLOGY: We use both genetic and nutritional manipulations to test whether changes in arginase metabolism promote fibrosis and increase pathology in mdx mice. Our findings show that fibrotic lesions in mdx muscle are enriched with arginase-2-expressing macrophages and that muscle macrophages stimulated with cytokines that activate the M2 phenotype show elevated arginase activity and expression. We generated a line of arginase-2-null mutant mdx mice and found that the mutation reduced fibrosis in muscles of 18-month-old mdx mice, and reduced kyphosis that is attributable to muscle fibrosis. We also observed that dietary supplementation with arginine for 17-months increased mdx muscle fibrosis. In contrast, arginine-2 mutation did not reduce cardiac fibrosis or affect cardiac function assessed by echocardiography, although 17-months of dietary supplementation with arginine increased cardiac fibrosis. Long-term arginine treatments did not decrease matrix metalloproteinase-2 or -9 or increase the expression of utrophin, which have

  12. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    Energy Technology Data Exchange (ETDEWEB)

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  13. Mannitol/l-Arginine-Based Formulation Systems for Freeze Drying of Protein Pharmaceuticals: Effect of the l-Arginine Counter Ion and Formulation Composition on the Formulation Properties and the Physical State of Mannitol.

    Science.gov (United States)

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2016-10-01

    Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride. PMID:27506270

  14. Mannitol/l-Arginine-Based Formulation Systems for Freeze Drying of Protein Pharmaceuticals: Effect of the l-Arginine Counter Ion and Formulation Composition on the Formulation Properties and the Physical State of Mannitol.

    Science.gov (United States)

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2016-10-01

    Previous studies have shown that protein storage stability in freeze-dried l-arginine-based systems improved in the presence of chloride ions. However, chloride ions reduced the glass transition temperature of the freeze concentrate (Tg') and made freeze drying more challenging. In this study, l-arginine was freeze dried with mannitol to obtain partially crystalline solids that can be freeze dried in a fast process and result in elegant cakes. We characterized the effect of different l-arginine counter ions on physicochemical properties of mannitol compared with mannitol/sucrose systems. Thermal properties of formulations with different compositions were correlated to thermal history during freeze drying and to physicochemical properties (cake appearance, residual moisture, reconstitution time, crystallinity). Partially crystalline solids were obtained even at the highest l-arginine level (mannitol:l-arginine of 2:1) used in this study. All l-arginine-containing formulations yielded elegant cakes. Only cakes containing l-arginine chloride and succinate showed a surface "crust" formed by phase separation. X-ray powder diffraction showed that inhibition of mannitol crystallization was stronger for l-arginine compared with sucrose and varied with the type of l-arginine counter ion. The counter ion affected mannitol polymorphism and higher levels of mannitol hemi-hydrate were obtained at high levels of l-arginine chloride.

  15. Histone arginine methylation in cocaine action in the nucleus accumbens.

    Science.gov (United States)

    Damez-Werno, Diane M; Sun, HaoSheng; Scobie, Kimberly N; Shao, Ningyi; Rabkin, Jaclyn; Dias, Caroline; Calipari, Erin S; Maze, Ian; Pena, Catherine J; Walker, Deena M; Cahill, Michael E; Chandra, Ramesh; Gancarz, Amy; Mouzon, Ezekiell; Landry, Joseph A; Cates, Hannah; Lobo, Mary-Kay; Dietz, David; Allis, C David; Guccione, Ernesto; Turecki, Gustavo; Defilippi, Paola; Neve, Rachael L; Hurd, Yasmin L; Shen, Li; Nestler, Eric J

    2016-08-23

    Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms-such as histone acetylation and methylation on Lys residues-have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, including self-administration, and in the NAc of cocaine-addicted humans. Such PRMT6 down-regulation occurs selectively in NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2-MSNs), with opposite regulation occurring in D1-MSNs, and serves to protect against cocaine-induced addictive-like behavioral abnormalities. Using ChIP-seq, we identified Src kinase signaling inhibitor 1 (Srcin1; also referred to as p140Cap) as a key gene target for reduced H3R2me2a binding, and found that consequent Srcin1 induction in the NAc decreases Src signaling, cocaine reward, and the motivation to self-administer cocaine. Taken together, these findings suggest that suppression of Src signaling in NAc D2-MSNs, via PRMT6 and H3R2me2a down-regulation, functions as a homeostatic brake to restrain cocaine action, and provide novel candidates for the development of treatments for cocaine addiction. PMID:27506785

  16. Nonspecific blockade of vascular free radical signals by methylated arginine analogues

    Directory of Open Access Journals (Sweden)

    Pedro M.A.

    1998-01-01

    Full Text Available Methylated arginine analogues are often used as probes of the effect of nitric oxide; however, their specificity is unclear and seems to be frequently overestimated. This study analyzed the effects of NG-methyl-L-arginine (L-NMMA on the endothelium-dependent release of vascular superoxide radicals triggered by increased flow. Plasma ascorbyl radical signals measured by direct electron paramagnetic resonance spectroscopy in 25 rabbits increased by 3.8 ± 0.7 nmol/l vs baseline (28.7 ± 1.4 nmol/l, P<0.001 in response to papaverine-induced flow increases of 121 ± 12%. In contrast, after similar papaverine-induced flow increases simultaneously with L-NMMA infusions, ascorbyl levels were not significantly changed compared to baseline. Similar results were obtained in isolated rabbit aortas perfused ex vivo with the spin trap a-phenyl-N-tert-butylnitrone (N = 22. However, in both preparations, this complete blockade was not reversed by co-infusion of excess L-arginine and was also obtained by N-methyl-D-arginine, thus indicating that it is not related to nitric oxide synthase. L-arginine alone was ineffective, as previously demonstrated for NG-methyl-L-arginine ester (L-NAME. In vitro, neither L-arginine nor its analogues scavenged superoxide radicals. This nonspecific activity of methylated arginine analogues underscores the need for careful controls in order to assess nitric oxide effects, particularly those related to interactions with active oxygen species.

  17. Effect of L-arginine supplement on liver regeneration after partial hepatectomy in rats

    Directory of Open Access Journals (Sweden)

    Kurokawa Tsuyoshi

    2012-05-01

    Full Text Available Abstract Background Nitric oxide (NO has been reported to be a key mediator in hepatocyte proliferation during liver regeneration. NO is the oxidative metabolite of L-arginine, and is produced by a family of enzymes, collective termed nitric oxide synthase (NOS. Thus, administration of L-arginine might enhance liver regeneration after a hepatectomy. Another amino acid, L-glutamine, which plays an important role in catabolic states and is a crucial factor in various cellular and organ functions, is widely known to enhance liver regeneration experimentally. Thus, the present study was undertaken to evaluate the effects of an L-arginine supplement on liver regeneration, and to compared this with supplementation with L-glutamine and L-alanine (the latter as a negative control, using a rat partial hepatectomy model. Methods Before and after a 70% hepatectomy, rats received one of three amino acid solutions (L-arginine, L-glutamine, or L-alanine. The effects on liver regeneration of the administered solutions were examined by assessment of restituted liver mass, staining for proliferating cell nuclear antigen (PCNA, and total RNA and DNA content 24 and 72 hours after the operation. Results At 72 hours after the hepatectomy, the restituted liver mass, the PCNA labeling index and the DNA quantity were all significantly higher in the L-arginine and L-glutamine groups than in the control. There were no significant differences in those parameters between the L-arginine and L-glutamine groups, nor were any significant differences found between the L-alanine group and the control. Conclusion Oral supplements of L-arginine and L-glutamine enhanced liver regeneration after hepatectomy in rats, suggesting that an oral arginine supplement can clinically improve recovery after a major liver resection.

  18. L-Arginine but not L-glutamine likely increases exogenous carbohydrate oxidation during endurance exercise.

    Science.gov (United States)

    Rowlands, David S; Clarke, Jim; Green, Jackson G; Shi, Xiaocai

    2012-07-01

    The addition of L-arginine or L-glutamine to glucose-electrolyte solutions can increase intestinal water, glucose, and sodium absorption in rats and humans. We evaluated the utility of L-arginine and L-glutamine in energy-rehydration beverages through assessment of exogenous glucose oxidation and perceptions of exertion and gastrointestinal distress during endurance exercise. Eight cyclists rode 150 min at 50% of peak power on four occasions while ingesting solutions at a rate of 150 mL 15 min(-1) that contained (13)C-enriched glucose (266 mmol L(-1)) and sodium citrate ([Na(+)] 60 mmol L(-1)), and either: 4.25 mmol L(-1) L-arginine or 45 mmol L(-1) L-glutamine, and as controls glucose only or no glucose. Relative to glucose only, L-arginine invoked a likely 12% increase in exogenous glucose oxidation (90% confidence limits: ± 8%); however, the effect of L-glutamine was possibly trivial (4.5 ± 7.3%). L-Arginine also led to very likely small reductions in endogenous fat oxidation rate relative to glucose (12 ± 4%) and L-glutamine (14 ± 4%), and relative to no glucose, likely reductions in exercise oxygen consumption (2.6 ± 1.5%) and plasma lactate concentration (0.20 ± 0.16 mmol L(-1)). Effects on endogenous and total carbohydrate oxidation were inconsequential. Compared with glucose only, L-arginine and L-glutamine caused likely small-moderate effect size increases in perceptions of stomach fullness, abdominal cramp, exertion, and muscle tiredness during exercise. Addition of L-arginine to a glucose and electrolyte solution increases the oxidation of exogenous glucose and decreases the oxygen cost of exercise, although the mechanisms responsible and impact on endurance performance require further investigation. However, L-arginine also increases subjective feelings of gastrointestinal distress, which may attenuate its other benefits.

  19. Effects of inhaled L-arginine administration in a murine model of acute asthma.

    Directory of Open Access Journals (Sweden)

    Zeynep Arikan-Ayyildiz

    2014-10-01

    Full Text Available Increased arginase activity in the airways decreases L-arginine and causes deficiency of bronchodilating and anti-inflammatory nitric oxide (NO in asthma. As, it is suggested that L-arginine may have therapeutic potential in asthma treatment, we aimed to investigate the effects of inhaled L-arginine on oxygen saturation (SaO₂ and airway histology in a murine model of acute asthma. Twenty eight BALB/c mice were divided into four groups; I, II, III and IV (control. All groups except the control were sensitized and challenged with ovalbumin. After establishement of acute asthma attack by metacholine administration, the mice were treated with inhaled L-arginine (Group I, saline (Group II and budesonide (Group III, respectively. SaO₂was measured by pulse oximeter just before and 5 min after methacholine. A third measurement of SaO₂was also obtained 15 min after drug administration in these study groups. Inflammation in the lung tissues of the sacrificed animals were scored to determine the effects of the study drugs. The number of eosinophils in bronchoalveolar lavage (BAL was determined. The results indicated that inflammatory scores significantly improved in groups receiving study drugs when compared with placebo and L-arginine was similar in decreasing scores when compared with budesonide. SaO₂had a tendency to increase after L-arginine administration after acute asthma attack and this increase was statistically significant (p=0.043. Eosinophilia in BAL significantly reduced in group receiving L-arginine when compared with placebo (p<0.05. Thus in this study we demonstrated that L-arginine improved SaO₂and inflammatory scores in an acute model of asthma.

  20. Influence of in ovo injection of L-arginine on productive and physiological performance of quail

    Directory of Open Access Journals (Sweden)

    W. K. Al–Hayani,

    2011-07-01

    Full Text Available This study evaluated the influence of inoculation of different levels of L–arginine into eggs of 0-day-old quail embryos. On 0 day of incubation, 480 eggs (120 for each treatment group were injected with 0% arginine (C group; 1% arginine (T1; 2% arginine (T2; or 3% arginine (T3. After hatching, 336 quail chicks (84 chicks produced from each in ovo injection treatment were placed in an experimental quail house and distributed into 4 treatment groups of 3 replicates each with 16 quail chicks for each replicate. Traits determined in this study were hatchability rate, initial body weight (7 days of age, final body weight (42 days old, feed intake, weight gain, feed conversion ratio, proportional weights of carcass, breast, legs, back bone, wings, neck, abdominal fat, liver, heart, and gizzard, blood serum glucose, protein, cholesterol, total lipids, triglycerides, calcium and phosphorus and Results revealed that in ovo injection with different levels of L–arginine on 0 day of incubation resulted in significant increase (P≤0.05 in hatchability rate, initial body weight, final body weight, feed conversion ratio and serum glucose, protein, total protein, calcium, phosphorus and proportional weights of carcass, breast, legs, liver, heart, and gizzard and significant decrease (P≤0.05 in serum cholesterol, total lipids, triglycerides and proportional weight of back bone, wings and abdominal fat. In conclusion, the inoculation of different levels of L–arginine into eggs of 0–day–old quail embryos especially at the levels of 2% and 3% resulted in significant improvement in productive and physiological performance of quail. Hence in ovo injection with L–arginine could be used as a beneficial tool for enhance productive performance of quail.

  1. Chiral pharmacokinetics and inversion of NG-nitro-arginine in the rat

    Institute of Scientific and Technical Information of China (English)

    Yan-feiXIN; RuiTONG; YangFANG; Xiang-junZHOU; Yong-xiangWANG

    2004-01-01

    AIM: To explore pharmacokinetics of NG-nitro-D-arginine (D-NNA) and NG-nitro-L-arginine (L-NNA) in conscious rats.METHODS: The plasma concentration of D-NNA and L-NNA were determined by chiral ligand exchange method with capillary electrochromatography (CEC). Pharmacokinetic parameters were estimated using non-compartment model and were fitted using a computer program DAS. Chiral inversion rate of D-NNA to L-

  2. L-Arginine but not L-glutamine likely increases exogenous carbohydrate oxidation during endurance exercise.

    Science.gov (United States)

    Rowlands, David S; Clarke, Jim; Green, Jackson G; Shi, Xiaocai

    2012-07-01

    The addition of L-arginine or L-glutamine to glucose-electrolyte solutions can increase intestinal water, glucose, and sodium absorption in rats and humans. We evaluated the utility of L-arginine and L-glutamine in energy-rehydration beverages through assessment of exogenous glucose oxidation and perceptions of exertion and gastrointestinal distress during endurance exercise. Eight cyclists rode 150 min at 50% of peak power on four occasions while ingesting solutions at a rate of 150 mL 15 min(-1) that contained (13)C-enriched glucose (266 mmol L(-1)) and sodium citrate ([Na(+)] 60 mmol L(-1)), and either: 4.25 mmol L(-1) L-arginine or 45 mmol L(-1) L-glutamine, and as controls glucose only or no glucose. Relative to glucose only, L-arginine invoked a likely 12% increase in exogenous glucose oxidation (90% confidence limits: ± 8%); however, the effect of L-glutamine was possibly trivial (4.5 ± 7.3%). L-Arginine also led to very likely small reductions in endogenous fat oxidation rate relative to glucose (12 ± 4%) and L-glutamine (14 ± 4%), and relative to no glucose, likely reductions in exercise oxygen consumption (2.6 ± 1.5%) and plasma lactate concentration (0.20 ± 0.16 mmol L(-1)). Effects on endogenous and total carbohydrate oxidation were inconsequential. Compared with glucose only, L-arginine and L-glutamine caused likely small-moderate effect size increases in perceptions of stomach fullness, abdominal cramp, exertion, and muscle tiredness during exercise. Addition of L-arginine to a glucose and electrolyte solution increases the oxidation of exogenous glucose and decreases the oxygen cost of exercise, although the mechanisms responsible and impact on endurance performance require further investigation. However, L-arginine also increases subjective feelings of gastrointestinal distress, which may attenuate its other benefits. PMID:22048324

  3. Mechanism of arginine sensing by CASTOR1 upstream of mTORC1.

    Science.gov (United States)

    Saxton, Robert A; Chantranupong, Lynne; Knockenhauer, Kevin E; Schwartz, Thomas U; Sabatini, David M

    2016-08-11

    The mechanistic Target of Rapamycin Complex 1 (mTORC1) is a major regulator of eukaryotic growth that coordinates anabolic and catabolic cellular processes with inputs such as growth factors and nutrients, including amino acids. In mammals arginine is particularly important, promoting diverse physiological effects such as immune cell activation, insulin secretion, and muscle growth, largely mediated through activation of mTORC1 (refs 4, 5, 6, 7). Arginine activates mTORC1 upstream of the Rag family of GTPases, through either the lysosomal amino acid transporter SLC38A9 or the GATOR2-interacting Cellular Arginine Sensor for mTORC1 (CASTOR1). However, the mechanism by which the mTORC1 pathway detects and transmits this arginine signal has been elusive. Here, we present the 1.8 Å crystal structure of arginine-bound CASTOR1. Homodimeric CASTOR1 binds arginine at the interface of two Aspartate kinase, Chorismate mutase, TyrA (ACT) domains, enabling allosteric control of the adjacent GATOR2-binding site to trigger dissociation from GATOR2 and downstream activation of mTORC1. Our data reveal that CASTOR1 shares substantial structural homology with the lysine-binding regulatory domain of prokaryotic aspartate kinases, suggesting that the mTORC1 pathway exploited an ancient, amino-acid-dependent allosteric mechanism to acquire arginine sensitivity. Together, these results establish a structural basis for arginine sensing by the mTORC1 pathway and provide insights into the evolution of a mammalian nutrient sensor. PMID:27487210

  4. Structural organization of the rat gene for the arginine vasopressin-neurophysin precursor

    OpenAIRE

    Schmale, H.; Heinsohn, S; Richter, D

    1983-01-01

    The rat arginine vasopressin-neurophysin precursor gene has been isolated from a genomic library cloned in lambda phage Charon 4A. Restriction mapping and nucleotide sequence analysis demonstrated that the gene is 1.85 kilobase pairs long and contains two intervening sequences located in the protein coding region. Exon A encodes a putative signal peptide, the hormone arginine vasopressin and the variable N terminus of the carrier protein neurophysin, exon B encodes the highly conserved middle...

  5. Abnormal mitochondrial L-arginine transport contributes to the pathogenesis of heart failure and rexoygenation injury.

    Directory of Open Access Journals (Sweden)

    David Williams

    Full Text Available BACKGROUND: Impaired mitochondrial function is fundamental feature of heart failure (HF and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury. METHODS AND RESULTS: In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01 compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05. The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1 exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress. CONCLUSION: These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury.

  6. Abnormal Mitochondrial L-Arginine Transport Contributes to the Pathogenesis of Heart Failure and Rexoygenation Injury

    Science.gov (United States)

    Byrne, Melissa; Joshi, Mandar; Horlock, Duncan; Lam, Nicholas T.; Gregorevic, Paul; McGee, Sean L.; Kaye, David M.

    2014-01-01

    Background Impaired mitochondrial function is fundamental feature of heart failure (HF) and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO) metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury. Methods and Results In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model) we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively) and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01) compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05). The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1) exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress. Conclusion These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury. PMID:25111602

  7. Physiology and Posttranscriptional Regulation of Methanol:Coenzyme M Methyltransferase Isozymes in Methanosarcina acetivorans C2A ▿ §

    OpenAIRE

    Opulencia, Rina B.; Bose, Arpita; Metcalf, William W.

    2009-01-01

    Methanosarcina species possess three operons (mtaCB1, mtaCB2, and mtaCB3) encoding methanol-specific methyltransferase 1 (MT1) isozymes and two genes (mtaA1 and mtaA2) with the potential to encode a methanol-specific methyltransferase 2 (MT2). Previous genetic studies showed that these genes are differentially regulated and encode enzymes with distinct levels of methyltransferase activity. Here, the effects of promoter strength on growth and on the rate of methane production were examined by ...

  8. Arginine Inhibits Adsorption of Proteins on Polystyrene Surface

    Science.gov (United States)

    Shikiya, Yui; Tomita, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2013-01-01

    Nonspecific adsorption of protein on solid surfaces causes a reduction of concentration as well as enzyme inactivation during purification and storage. However, there are no versatile inhibitors of the adsorption between proteins and solid surfaces at low concentrations. Therefore, we examined additives for the prevention of protein adsorption on polystyrene particles (PS particles) as a commonly-used material for vessels such as disposable test tubes and microtubes. A protein solution was mixed with PS particles, and then adsorption of protein was monitored by the concentration and activity of protein in the supernatant after centrifugation. Five different proteins bound to PS particles through electrostatic, hydrophobic, and aromatic interactions, causing a decrease in protein concentration and loss of enzyme activity in the supernatant. Among the additives, including arginine hydrochloride (Arg), lysine hydrochloride, guanidine hydrochloride, NaCl, glycine, and glucose, Arg was most effective in preventing the binding of proteins to PS particles as well as activity loss. Moreover, even after the mixing of protein and PS particles, the addition of Arg caused desorption of the bound protein from PS particles. This study demonstrated a new function of Arg, which expands the potential for application of Arg to proteins. PMID:23967100

  9. Adaptations of Arginine's Intestinal-Renal Axis in Cachectic Tumor-Bearing Rats.

    Science.gov (United States)

    Buijs, Nikki; Vermeulen, Mechteld A R; Weeda, Viola B; Bading, James R; Houdijk, Alexander P J; van Leeuwen, Paul A M

    2015-01-01

    Malignancies induce disposal of arginine, an important substrate for the immune system. To sustain immune function, the tumor-bearing host accelerates arginine's intestinal-renal axis by glutamine mobilization from skeletal muscle and this may promote cachexia. Glutamine supplementation stimulates argi-nine production in healthy subjects. Arginine's intestinal-renal axis and the effect of glutamine supplementation in cancer cach-exia have not been investigated. This study evaluated the long-term adaptations of the interorgan pathway for arginine production following the onset of cachexia and the metabolic effect of glutamine supplementation in the cachectic state. Fischer-344 rats were randomly divided into a tumor-bearing group (n = 12), control group (n = 7) and tumor-bearing group receiving a glutamine-enriched diet (n = 9). Amino acid fluxes and net fractional extractions across intestine, kidneys, and liver were studied. Compared to controls, the portal-drained viscera of tumor-bearing rats took up significantly more glutamine and released significantly less citrulline. Renal metabolism was unchanged in the cachectic tumor-bearing rats compared with controls. Glutamine supplementation had no effects on intestinal and renal adaptations. In conclusion, in the cachectic state, an increase in intestinal glutamine uptake is not accompanied by an increase in renal arginine production. The adaptations found in the cachectic, tumor-bearing rat do not depend on glutamine availability.

  10. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    Full Text Available Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  11. Arginine- and Polyamine-Induced Lactic Acid Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Gong, Zheng; Tang, M Matt; Wu, Xueliang; Phillips, Nancy; Galkowski, Dariusz; Jarvis, Gary A; Fan, Huizhou

    2016-01-01

    Microbe-derived lactic acid protects women from pathogens in their genital tract. The purpose of this study was to determine lactic acid susceptibility of Neisseria gonorrhoeae, and identify potential acid resistance mechanisms present in this pathogen. Tested in vitro, lactic acid killed all 10 gonococcal strains analyzed in a low pH-dependent manner. Full inactivation occurred at pH 4.5. At low pH, lactic acid treatment resulted in the entry of the DNA-binding fluorochrome propidium iodide into the microbial cells, suggesting that hydrogen ions from lactic acid compromise the integrity of the bacterial cell wall/membrane. Most likely, hydrogen ions also inactivate intracellular proteins since arginine rendered significant protection against lactic acid presumably through action of the gonococcal arginine decarboxylase, an enzyme located in the bacterial cytoplasm. Surprisingly, arginine also lessened lactic acid-mediated cell wall/membrane disruption. This effect is probably mediated by agmatine, a triamine product of arginine decarboxylase, since agmatine demonstrated a stronger protective effect on GC than arginine at equal molar concentration. In addition to agmatine, diamines cadaverine and putrescine, which are generated by bacterial vaginosis-associated microbes, also induced significant resistance to lactic acid-mediated GC killing and cell wall/membrane disruption. These findings suggest that the arginine-rich semen protects gonococci through both neutralization-dependent and independent mechanisms, whereas polyamine-induced acid resistance contributes to the increased risk of gonorrhea in women with bacterial vaginosis.

  12. Relationship of arginine with lysine in diets for laying Japanese quails

    Directory of Open Access Journals (Sweden)

    Renata de Souza Reis

    2012-01-01

    Full Text Available To determine the relationship of arginine with lysine for Japanese quails during the period of production, an experiment was conducted using 360 subspecies of Japanese quails (Coturnix coturnix japonica with 162 days of age, distributed in a completely randomized design. Diets were formulated with corn, soybean meal, sorghum and wheat bran containing 20.0% crude protein and 2,800 kcal ME/kg. The basal diet contained suboptimal level of lysine equal to 1% and was supplemented with five levels of L-arginine 99% (0.032; 0.083; 0.134; 0.185 and 0.236% to replace the glutamic acid, corresponding to the relationship of arginine with digestible lysine of 1.16, 1.21, 1.26, 1.31 and 1.36. The parameters studied were: feed intake, egg production per hen/day, egg production per hen housed, commercial egg production, egg weight, egg mass, feed conversion by egg mass, feed conversion per dozen eggs, weight and percentage of components of the eggs (yolk, albumen and shell and specific gravity. There was no significant effect on the relationship of arginine with digestible lysine in the diet of Japanese quails for any of the parameters examined. The arginine/lysine ratio of 1.16, which corresponds to a daily intake of 288.84 mg of arginine, provides satisfactory performance and egg quality of Japanese quails.

  13. A conformational switch in the active site of BT_2972, a methyltransferase from an antibiotic resistant pathogen B. thetaiotaomicron.

    Directory of Open Access Journals (Sweden)

    Veerendra Kumar

    Full Text Available Methylation is one of the most common biochemical reactions involved in cellular and metabolic functions and is catalysed by the action of methyltransferases. Bacteroides thetaiotaomicron is an antibiotic-resistant bacterium that confers resistance through methylation, and as yet, there is no report on the structure of methyltransferases from this bacterium. Here, we report the crystal structure of an AdoMet-dependent methyltransferase, BT_2972 and its complex with AdoMet and AdoHcy for B. thetaiotaomicron VPI-5482 strain along with isothermal titration calorimetric assessment of the binding affinities. Comparison of the apo and complexed BT_2972 structures reveals a significant conformational change between open and closed forms of the active site that presumably regulates the association with cofactors and may aid interaction with substrate. Together, our analysis suggests that BT_2972 is a small molecule methyltransferase and might catalyze two O-methylation reaction steps involved in the ubiquinone biosynthesis pathway.

  14. A conformational switch in the active site of BT_2972, a methyltransferase from an antibiotic resistant pathogen B. thetaiotaomicron.

    Science.gov (United States)

    Kumar, Veerendra; Sivaraman, J

    2011-01-01

    Methylation is one of the most common biochemical reactions involved in cellular and metabolic functions and is catalysed by the action of methyltransferases. Bacteroides thetaiotaomicron is an antibiotic-resistant bacterium that confers resistance through methylation, and as yet, there is no report on the structure of methyltransferases from this bacterium. Here, we report the crystal structure of an AdoMet-dependent methyltransferase, BT_2972 and its complex with AdoMet and AdoHcy for B. thetaiotaomicron VPI-5482 strain along with isothermal titration calorimetric assessment of the binding affinities. Comparison of the apo and complexed BT_2972 structures reveals a significant conformational change between open and closed forms of the active site that presumably regulates the association with cofactors and may aid interaction with substrate. Together, our analysis suggests that BT_2972 is a small molecule methyltransferase and might catalyze two O-methylation reaction steps involved in the ubiquinone biosynthesis pathway. PMID:22140448

  15. Effects of Arginine Vasopressin on musical short-term memory

    Directory of Open Access Journals (Sweden)

    Roni Y. Granot

    2013-10-01

    Full Text Available Previous genetic studies showed an association between variations in the gene coding for the 1a receptor of the neuro-hormone arginine vasopressin (AVP and musical working memory (WM. The current study set out to test the influence of intranasal administration (INA of AVP on musical as compared to verbal WM using a double blind crossover (AVP – placebo design. Two groups of 25 males were exposed to 20 IU of AVP in one session, and 20 IU of saline water (placebo in a second session, one week apart. In each session subjects completed the tonal subtest from Gordon's Musical Aptitude Profile, the interval subtest from the Montreal Battery for Evaluation of Amusias (MBEA, and the forward and backward digit span tests. Scores in the digit span tests were not influenced by AVP. In contrast, in the music tests there was an AVP effect. In the MBEA test, scores for the group receiving placebo in the first session (PV were higher than for the group receiving vasopressin in the first session (VP (p < .05 with no main Session effect nor Group * Session interaction. In the Gordon test there was a main Session effect (p < .05 with scores higher in the second as compared to the first session, a marginal main Group effect (p = .093 and a marginal Group X Session interaction (p = 0.88. In addition we found that the group that received AVP in the first session scored higher on scales indicative of happiness, and alertness on the Positive and Negative Affect Scale, (PANAS. Only in this group and only in the music test these scores were significantly correlated with memory scores. Together the results reflect a complex interaction between AVP, musical memory, arousal, and contextual effects such as session, and base levels of memory. The results are interpreted in light of music's universal use as a means to modulate arousal on the one hand, and AVP's influence on mood, arousal, and social interactions on the other.

  16. Spatiotemporal profiles of arginine vasopressin transcription in cultured suprachiasmatic nucleus.

    Science.gov (United States)

    Yoshikawa, Tomoko; Nakajima, Yoshihiro; Yamada, Yoshiko; Enoki, Ryosuke; Watanabe, Kazuto; Yamazaki, Maya; Sakimura, Kenji; Honma, Sato; Honma, Ken-ichi

    2015-11-01

    Arginine vasopressin (AVP), a major neuropeptide in the suprachiasmatic nucleus (SCN), is postulated to mediate the output of the circadian oscillation. Mice carrying a reporter gene of AVP transcription (AVP(ELuc)) were produced by knocking-in a cDNA of Emerald-luciferase (ELuc) in the translational initiation site. Homozygous mice did not survive beyond postnatal day 7. Using the heterozygous (AVP(ELuc/+)) mice, a bioluminescence reporter system was developed that enabled to monitor AVP transcription through AVP-ELuc measurement in real time for more than 10 cycles in the cultured brain slice. AVP(ELuc/+) mice showed circadian behaviour rhythms and light responsiveness indistinguishable from those of the wild-type. Robust circadian rhythms in AVP-ELuc were detected in the cultured SCN slice at a single cell as well as tissue levels. The circadian rhythm of the whole SCN slice was stable, with the peak at the mid-light phase of a light-dark cycle, while that of a single cell was more variable. By comparison, rhythmicity in the paraventricular nucleus and supraoptic nucleus in the hypothalamus was unstable and damped rapidly. Spatiotemporal profiles of AVP expression at the pixel level revealed significant circadian rhythms in the entire area of AVP-positive cells in the SCN, and at least two clusters that showed different circadian oscillations. Contour analysis of bioluminescence intensity in a cell-like region demonstrated the radiation area was almost identical to the cell size. This newly developed reporter system for AVP gene expression is a useful tool for the study of circadian rhythms. PMID:26342201

  17. Transsulfuration pathway thiols and methylated arginines: the Hunter Community Study.

    Directory of Open Access Journals (Sweden)

    Arduino A Mangoni

    Full Text Available BACKGROUND: Serum homocysteine, when studied singly, has been reported to be positively associated both with the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine [ADMA, via inhibition of dimethylarginine dimethylaminohydrolase (DDAH activity] and with symmetric dimethylarginine (SDMA. We investigated combined associations between transsulfuration pathway thiols, including homocysteine, and serum ADMA and SDMA concentrations at population level. METHODS: Data on clinical and demographic characteristics, medication exposure, C-reactive protein, serum ADMA and SDMA (LC-MS/MS, and thiols (homocysteine, cysteine, taurine, glutamylcysteine, total glutathione, and cysteinylglycine; capillary electrophoresis were collected from a sample of the Hunter Community Study on human ageing [n = 498, median age (IQR = 64 (60-70 years]. RESULTS: REGRESSION ANALYSIS SHOWED THAT: a age (P = 0.001, gender (P = 0.03, lower estimated glomerular filtration rate (eGFR, P = 0.08, body mass index (P = 0.008, treatment with beta-blockers (P = 0.03, homocysteine (P = 0.02, and glutamylcysteine (P = 0.003 were independently associated with higher ADMA concentrations; and b age (P = 0.001, absence of diabetes (P = 0.001, lower body mass index (P = 0.01, lower eGFR (P<0.001, cysteine (P = 0.007, and glutamylcysteine (P < 0.001 were independently associated with higher SDMA concentrations. No significant associations were observed between methylated arginines and either glutathione or taurine concentrations. CONCLUSIONS: After adjusting for clinical, demographic, biochemical, and pharmacological confounders the combined assessment of transsulfuration pathway thiols shows that glutamylcysteine has the strongest and positive independent associations with ADMA and SDMA. Whether this reflects a direct effect of glutamylcysteine on DDAH activity (for ADMA and/or cationic amino acid transport requires further investigations.

  18. Effects of arginine vasopressin on musical working memory.

    Science.gov (United States)

    Granot, Roni Y; Uzefovsky, Florina; Bogopolsky, Helena; Ebstein, Richard P

    2013-01-01

    Previous genetic studies showed an association between variations in the gene coding for the 1a receptor of the neuro-hormone arginine vasopressin (AVP) and musical working memory (WM). The current study set out to test the influence of intranasal administration (INA) of AVP on musical as compared to verbal WM using a double blind crossover (AVP-placebo) design. Two groups of 25 males were exposed to 20 IU of AVP in one session, and 20 IU of saline water (placebo) in a second session, 1 week apart. In each session subjects completed the tonal subtest from Gordon's "Musical Aptitude Profile," the interval subtest from the "Montreal Battery for Evaluation of Amusias (MBEA)," and the forward and backward digit span tests. Scores in the digit span tests were not influenced by AVP. In contrast, in the music tests there was an AVP effect. In the MBEA test, scores for the group receiving placebo in the first session (PV) were higher than for the group receiving vasopressin in the first session (VP) (p effect nor Group × Session interaction. In the Gordon test there was a main Session effect (p effect (p = 0.093) and a marginal Group × Session interaction (p = 0.88). In addition we found that the group that received AVP in the first session scored higher on scales indicative of happiness, and alertness on the positive and negative affect scale, (PANAS). Only in this group and only in the music test these scores were significantly correlated with memory scores. Together the results reflect a complex interaction between AVP, musical memory, arousal, and contextual effects such as session, and base levels of memory. The results are interpreted in light of music's universal use as a means to modulate arousal on the one hand, and AVP's influence on mood, arousal, and social interactions on the other. PMID:24151474

  19. MOLECULAR AND FUNCTIONAL CHARACTERIZATION OF A JUVENILE HORMONE ACID METHYLTRANSFERASE EXPRESSED IN THE CORPORA ALLATA OF MOSQUITOES

    OpenAIRE

    Mayoral, Jaime G.; Nouzova, Marcela; Yoshiyama, Michiyo; Shinoda, Tetsuro; Hernandez-Martinez, Salvador; Dolghih, Elena; Turjanski, Adrian G; Roitberg, Adrian E.; Priestap, Horacio; Perez, Mario; Mackenzie, Lucy; Li, Yiping; Noriega, Fernando G.

    2008-01-01

    A juvenile hormone acid methyltransferase (JHAMT) was isolated as an abundant EST in a library of the corpora allata of the adult female mosquito Aedes aegypti. Its full-length cDNA encodes a 278-aa protein that has 43 % amino acid identity with BmJHAMT, a juvenile hormone acid methyltransferase previously cloned from Bombyx mori. Heterologous expression produced a recombinant protein that metabolizes farnesoic acid (FA) into methyl farnesoate, as well as juvenile hormone acid into juvenile h...

  20. N-6-Adenine-Specific DNA Methyltransferase 1 (N6AMT1) Polymorphisms and Arsenic Methylation in Andean Women

    OpenAIRE

    Harari, Florencia; Engström, Karin; Concha, Gabriela; Colque, Graciela; Vahter, Marie; Broberg, Karin

    2013-01-01

    BACKGROUND: In humans, inorganic arsenic is metabolized to methylated metabolites mainly by arsenic (+3 oxidation state) methyltransferase (AS3MT). AS3MT polymorphisms are associated with arsenic metabolism efficiency. Recently, a putative N-6-adenine-specific DNA methyltransferase 1 (N6AMT1) was found to methylate arsenic in vitro. OBJECTIVE: We evaluated the role of N6AMT1 polymorphisms in arsenic methylation efficiency in humans. METHODS: We assessed arsenic methylation efficiency in 188 w...

  1. Differential role of arginine mutations on the structure and functions of α-crystallin☆

    Science.gov (United States)

    Panda, Alok Kumar; Nandi, Sandip Kumar; Chakraborty, Ayon; Nagaraj, Ram H.; Biswas, Ashis

    2016-01-01

    Background α-Crystallin is a major protein of the eye lens in vertebrates. It is composed of two subunits, αA- and αB-crystallin. α-Crystallin is an oligomeric protein having these two subunits in 3:1 ratio. It belongs to small heat shock protein family and exhibits molecular chaperone function, which plays an important role in maintaining the lens transparency. Apart from chaperone function, both subunits also exhibit anti-apoptotic property. Comparison of their primary sequences reveals that αA- and αB-crystallin posses 13 and 14 arginine residues, respectively. Several of them undergo mutations which eventually lead to various eye diseases such as congenital cataract, juvenile cataract, and retinal degeneration. Interestingly, many arginine residues of these subunits are modified during glycation and even some are truncated during aging. All these facts indicate the importance of arginine residues in α-crystallin. Scope of review In this review, we will emphasize the recent in vitro and in vivo findings related to congenital cataract causing arginine mutations in α-crystallin. Major conclusions Congenital cataract causing arginine mutations alters the structure and decreases the chaperone function of α-crystallin. These mutations also affect the lens morphology and phenotypes. Interestingly, non-natural arginine mutations (generated for mimicking the glycation and truncation environment) improve the chaperone function of α-crystallin which may play an important role in maintaining the eye lens transparency during aging. General significance The neutralization of positive charge on the guanidino group of arginine residues is not always detrimental to the functionality of α-crystallin. PMID:26080000

  2. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction.

    Science.gov (United States)

    Long, Yan; Tsai, Wen-Bin; Wangpaichitr, Medhi; Tsukamoto, Takashi; Savaraj, Niramol; Feun, Lynn G; Kuo, Macus Tien

    2013-11-01

    Many malignant human tumors, including melanomas, are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase-1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine, resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of resistance, we established several ADI-PEG20-resistant (ADI(R)) variants from A2058 and SK-Mel-2 melanoma cells. Compared with the parental lines, these ADI(R) variants showed the following characteristics: (i) all ADI(R) cell lines showed elevated ASS1 expression, resulting from the constitutive binding of the transcription factor c-Myc on the ASS1 promoter, suggesting that elevated ASS1 is the major mechanism of resistance; (ii) the ADI(R) cell lines exhibited enhanced AKT signaling and were preferentially sensitive to PI3K/AKT inhibitors, but reduced mTOR signaling, and were preferentially resistant to mTOR inhibitor; (iii) these variants showed enhanced expression of glucose transporter-1 and lactate dehydrogenase-A, reduced expression of pyruvate dehydrogenase, and elevated sensitivity to the glycolytic inhibitors 2-deoxy-glucose and 3-bromopyruvate, consistent with the enhanced glycolytic pathway (the Warburg effect); (iv) the resistant cells showed higher glutamine dehydrogenase and glutaminase expression and were preferentially vulnerable to glutamine inhibitors. We showed that c-Myc, not elevated ASS1 expression, is involved in upregulation of many of these enzymes because knockdown of c-Myc reduced their expression, whereas overexpressed ASS1 by transfection reduced their expression. This study identified multiple targets for overcoming ADI-PEG resistance in cancer chemotherapy using recombinant arginine-degrading enzymes.

  3. Arginine and glutamine availability and macrophage functions in the obese insulin-resistant Zucker rat.

    Science.gov (United States)

    Blanc, Marie-Céline; Moinard, Christophe; Béziel, Aurélie; Darquy, Sylviane; Cynober, Luc; De Bandt, Jean-Pascal

    2005-01-01

    Increased susceptibility to infections in obese patients may be related to decreased availability of arginine and glutamine, which may affect immune cell functions. Our aim was to evaluate the in vitro effects of these amino acids on the function of macrophages from obese insulin-resistant Zucker rats. Macrophages, isolated from male Zucker obese or lean rats by peritoneal lavage, were incubated in Dulbecco's modified Eagle medium (DMEM) without arginine or glutamine. Arginine or glutamine was added to the medium at increasing final concentrations (0, 0.25, 0.5, 1 or 2 mM). After stimulation by lipopolysaccharide (LPS) from E. coli (40 microg/ml), productions of tumour necrosis factor alpha (TNFalpha) and of nitric oxide (NO) were measured after 3 or 48 h incubation, respectively. NO production, lower in macrophages from obese rats, decreased in macrophages from lean rats (0 mM: 2,423 +/- 1,174 vs. 2 mM: 198 +/- 31 microM/mg protein/24 h; P glutamine was added. TNFalpha production, lower in macrophages from obese rats, was inversely correlated with glutamine concentration. In the presence of arginine, NO production was constantly higher in macrophages from obese rats. It peaked at 0.5 mM arginine and decreased thereafter in both groups. TNFalpha production in macrophages from lean rats was unaffected by arginine, but decreased in macrophages from obese rats (0 mM: 1920 +/- 450 vs. 2 mM: 810 +/- 90 microM/mg protein/3 h; P arginine and glutamine metabolism in macrophages of obese rats, resulting in decreased TNFalpha production and increased NO release, may contribute to increased susceptibility to infection in insulin-resistant states.

  4. Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence, and glutamine addiction.

    Science.gov (United States)

    Long, Yan; Tsai, Wen-Bin; Wangpaichitr, Medhi; Tsukamoto, Takashi; Savaraj, Niramol; Feun, Lynn G; Kuo, Macus Tien

    2013-11-01

    Many malignant human tumors, including melanomas, are auxotrophic for arginine due to reduced expression of argininosuccinate synthetase-1 (ASS1), the rate-limiting enzyme for arginine biosynthesis. Pegylated arginine deiminase (ADI-PEG20), which degrades extracellular arginine, resulting in arginine deprivation, has shown favorable results in clinical trials for treating arginine-auxotrophic tumors. Drug resistance is the major obstacle for effective ADI-PEG20 usage. To elucidate mechanisms of resistance, we established several ADI-PEG20-resistant (ADI(R)) variants from A2058 and SK-Mel-2 melanoma cells. Compared with the parental lines, these ADI(R) variants showed the following characteristics: (i) all ADI(R) cell lines showed elevated ASS1 expression, resulting from the constitutive binding of the transcription factor c-Myc on the ASS1 promoter, suggesting that elevated ASS1 is the major mechanism of resistance; (ii) the ADI(R) cell lines exhibited enhanced AKT signaling and were preferentially sensitive to PI3K/AKT inhibitors, but reduced mTOR signaling, and were preferentially resistant to mTOR inhibitor; (iii) these variants showed enhanced expression of glucose transporter-1 and lactate dehydrogenase-A, reduced expression of pyruvate dehydrogenase, and elevated sensitivity to the glycolytic inhibitors 2-deoxy-glucose and 3-bromopyruvate, consistent with the enhanced glycolytic pathway (the Warburg effect); (iv) the resistant cells showed higher glutamine dehydrogenase and glutaminase expression and were preferentially vulnerable to glutamine inhibitors. We showed that c-Myc, not elevated ASS1 expression, is involved in upregulation of many of these enzymes because knockdown of c-Myc reduced their expression, whereas overexpressed ASS1 by transfection reduced their expression. This study identified multiple targets for overcoming ADI-PEG resistance in cancer chemotherapy using recombinant arginine-degrading enzymes. PMID:23979920

  5. Metabolism via arginase or nitric oxide synthase: two competing arginine pathways in macrophages

    Directory of Open Access Journals (Sweden)

    Meera eRath

    2014-10-01

    Full Text Available Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase (NOS, which metabolizes arginine to nitric oxide (NO and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline-NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and antiinflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions and cancer.

  6. Expression pattern of a nuclear encoded mitochondrial arginine-ornithine translocator gene from Arabidopsis

    Directory of Open Access Journals (Sweden)

    Schneider Anja

    2003-01-01

    Full Text Available Abstract Background Arginine and citrulline serve as nitrogen storage forms, but are also involved in biosynthetic and catabolic pathways. Metabolism of arginine, citrulline and ornithine is distributed between mitochondria and cytosol. For the shuttle of intermediates between cytosol and mitochondria transporters present on the inner mitochondrial membrane are required. Yeast contains a mitochondrial translocator for ornithine and arginine, Ort1p/Arg11p. Ort1p/Arg11p is a member of the mitochondrial carrier family (MCF essential for ornithine export from mitochondria. The yeast arg11 mutant, which is deficient in Ort1p/Arg11p grows poorly on media lacking arginine. Results High-level expression of a nuclear encoded Arabidopsis thaliana homolog (AtmBAC2 of Ort1p/Arg11p was able to suppress the growth deficiency of arg11. RT-PCR analysis demonstrated expression of AtmBAC2 in all tissues with highest levels in flowers. Promoter-GUS fusions showed preferential expression in flowers, i.e. pollen, in the vasculature of siliques and in aborted seeds. Variable expression was observed in leaf vasculature. Induction of the promoter was not observed during the first two weeks in seedlings grown on media containing NH4NO3, arginine or ornithine as sole nitrogen sources. Conclusion AtmBAC2 was isolated as a mitochondrial transporter for arginine in Arabidopsis. The absence of expression in developing seeds and in cotyledons of seedlings indicates that other transporters are responsible for storage and mobilization of arginine in seeds.

  7. Absence of Btn1p in the yeast model for juvenile Batten disease may cause arginine to become toxic to yeast cells.

    Science.gov (United States)

    Vitiello, Seasson Phillips; Wolfe, Devin M; Pearce, David A

    2007-05-01

    Lymphoblast cell lines established from individuals with juvenile Batten disease (JNCL) bearing mutations in CLN3 and yeast strains lacking Btn1p (btn1-Delta), the homolog to CLN3, have decreased intracellular levels of arginine and defective lysosomal/vacuolar transport of arginine. It is important to establish the basis for this decrease in arginine levels and whether restoration of arginine levels would be of therapeutic value for Batten disease. Previous studies have suggested that synthesis and degradation of arginine are unaltered in btn1-Delta. Using the yeast model for the Batten disease, we have determined that although btn1-Delta results in decreased intracellular arginine levels, it does not result from altered arginine uptake, arginine efflux or differences in arginine incorporation into peptides. However, expression of BTN1 is dependent on arginine and Gcn4p, the master regulator of amino acid biosynthesis. Moreover, deletion of GCN4 (gcn4-Delta), in combination with btn1-Delta, results in a very specific growth requirement for arginine. In addition, increasing the intracellular levels of arginine through overexpression of Can1p, the plasma membrane basic amino acid permease, results in increased cell volume and a severe growth defect specific to basic amino acid availability for btn1-Delta, but not wild-type cells. Therefore, elevation of intracellular levels of arginine in btn1-Delta cells is detrimental and is suggestive that btn1-Delta and perhaps mutation of CLN3 predispose cells to keep arginine levels lower than normal.

  8. Uncovering the protein lysine and arginine methylation network in Arabidopsis chloroplasts.

    Directory of Open Access Journals (Sweden)

    Claude Alban

    Full Text Available Post-translational modification of proteins by the addition of methyl groups to the side chains of Lys and Arg residues is proposed to play important roles in many cellular processes. In plants, identification of non-histone methylproteins at a cellular or subcellular scale is still missing. To gain insights into the extent of this modification in chloroplasts we used a bioinformatics approach to identify protein methyltransferases targeted to plastids and set up a workflow to specifically identify Lys and Arg methylated proteins from proteomic data used to produce the Arabidopsis chloroplast proteome. With this approach we could identify 31 high-confidence Lys and Arg methylation sites from 23 chloroplastic proteins, of which only two were previously known to be methylated. These methylproteins are split between the stroma, thylakoids and envelope sub-compartments. They belong to essential metabolic processes, including photosynthesis, and to the chloroplast biogenesis and maintenance machinery (translation, protein import, division. Also, the in silico identification of nine protein methyltransferases that are known or predicted to be targeted to plastids provided a foundation to build the enzymes/substrates relationships that govern methylation in chloroplasts. Thereby, using in vitro methylation assays with chloroplast stroma as a source of methyltransferases we confirmed the methylation sites of two targets, plastid ribosomal protein L11 and the β-subunit of ATP synthase. Furthermore, a biochemical screening of recombinant chloroplastic protein Lys methyltransferases allowed us to identify the enzymes involved in the modification of these substrates. The present study provides a useful resource to build the methyltransferases/methylproteins network and to elucidate the role of protein methylation in chloroplast biology.

  9. Deprivation of L-Arginine Induces Oxidative Stress Mediated Apoptosis in Leishmania donovani Promastigotes: Contribution of the Polyamine Pathway

    Science.gov (United States)

    Mandal, Abhishek; Das, Sushmita; Roy, Saptarshi; Ghosh, Ayan Kumar; Sardar, Abul Hasan; Verma, Sudha; Saini, Savita; Singh, Ruby; Abhishek, Kumar; Kumar, Ajay; Mandal, Chitra; Das, Pradeep

    2016-01-01

    The growth and survival of intracellular parasites depends on the availability of extracellular nutrients. Deprivation of nutrients viz glucose or amino acid alters redox balance in mammalian cells as well as some lower organisms. To further understand the relationship, the mechanistic role of L-arginine in regulation of redox mediated survival of Leishmania donovani promastigotes was investigated. L-arginine deprivation from the culture medium was found to inhibit cell growth, reduce proliferation and increase L-arginine uptake. Relative expression of enzymes, involved in L-arginine metabolism, which leads to polyamine and trypanothione biosynthesis, were downregulated causing decreased production of polyamines in L-arginine deprived parasites and cell death. The resultant increase in reactive oxygen species (ROS), due to L-arginine deprivation, correlated with increased NADP+/NADPH ratio, decreased superoxide dismutase (SOD) level, increased lipid peroxidation and reduced thiol content. A deficiency of L-arginine triggered phosphatidyl serine externalization, a change in mitochondrial membrane potential, release of intracellular calcium and cytochrome-c. This finally led to DNA damage in Leishmania promastigotes. In summary, the growth and survival of Leishmania depends on the availability of extracellular L-arginine. In its absence the parasite undergoes ROS mediated, caspase-independent apoptosis-like cell death. Therefore, L-arginine metabolism pathway could be a probable target for controlling the growth of Leishmania parasites and disease pathogenesis. PMID:26808657

  10. Effect of counter ions of arginine as an additive for the solubilization of protein and aromatic compounds.

    Science.gov (United States)

    Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-10-01

    Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions. PMID:27234496

  11. Effect of counter ions of arginine as an additive for the solubilization of protein and aromatic compounds.

    Science.gov (United States)

    Yoshizawa, Shunsuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2016-10-01

    Arginine is widely used in biotechnological application, but mostly with chloride counter ion. Here, we examined the effects of various anions on solubilization of aromatic compounds and reduced lysozyme and on refolding of the lysozyme. All arginine salts tested increased the solubility of propyl gallate with acetate much more effectively than chloride. The effects of arginine salts were compared with those of sodium or guanidine salts, indicating that the ability of anions to modulate the propyl gallate solubility is independent of the cation. Comparison of transfer free energy of propyl gallate between sodium and arginine salts indicates that the interaction of propyl gallate is more favorable with arginine than sodium. On the contrary, the solubility of aromatic amino acids is only slightly modulated by anions, implying that there is specific interaction between acetic acid and propyl gallate. Unlike their effects on the solubility of small aromatic compounds, the solubility of reduced lysozyme was much higher in arginine chloride than in arginine acetate or sulfate. Consistent with high solubility, refolding of reduced lysozyme was most effective in arginine chloride. These results suggest potential broader applications of arginine modulated by different anions.

  12. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy.

    Science.gov (United States)

    Morera, Ludovica; Lübbert, Michael; Jung, Manfred

    2016-01-01

    The term epigenetics is defined as heritable changes in gene expression that are not due to alterations of the DNA sequence. In the last years, it has become more and more evident that dysregulated epigenetic regulatory processes have a central role in cancer onset and progression. In contrast to DNA mutations, epigenetic modifications are reversible and, hence, suitable for pharmacological interventions. Reversible histone methylation is an important process within epigenetic regulation, and the investigation of its role in cancer has led to the identification of lysine methyltransferases and demethylases as promising targets for new anticancer drugs. In this review, we describe those enzymes and their inhibitors that have already reached the first stages of clinical trials in cancer therapy, namely the histone methyltransferases DOT1L and EZH2 as well as the demethylase LSD1. PMID:27222667

  13. Discovery of sphingosine 1-O-methyltransferase in rat kidney and liver homogenates

    Institute of Scientific and Technical Information of China (English)

    Santosh J SACKET; Dong-soon IM

    2008-01-01

    Aim:To characterize sphingosine methyltransferase in rat tissues.Methods:By using S-adenosyl-L-(methyl-3H) methionine,enzymatic activity was measured in the rat liver and kidney homogenates.Results:The optimum pH and reaction time for the enzyme assay were pH 7.8 and 1 h.ZnCl2 inhibited the activity,but not MgCl2,CaCl2,CoCl2,or NiCl2.In the kidney homogenate,enzymatic activity was detectable in the cytosol and all membrane fractions from the plasma membrane and other organelles; however,in the liver homogenate,enzymatic activity was detectable in all membrane fractions,but not in the cytosol.We also tested the enzymatic activity with structurally-modified sphingosine derivatives.Conclusion:We found sphingosine l-O-methyltransferase activity in the rat liver and kidney homogenates.

  14. Reduced arginine availability and nitric oxide synthesis in cancer is related to impaired endogenous arginine synthesis.

    Science.gov (United States)

    Engelen, Mariëlle P K J; Safar, Ahmed M; Bartter, Thaddeus; Koeman, Fari; Deutz, Nicolaas E P

    2016-07-01

    Reduced plasma arginine (ARG) concentrations are found in various types of cancer. ARG and its product nitric oxide (NO) are important mediators in the immune function and the defense against tumour cells. It remains unclear whether the diminished systemic ARG availability in cancer is related to insufficient endogenous ARG synthesis, negatively affecting NO synthesis, and whether a dietary amino acid mixture is able to restore this. In 13 patients with advanced non-small cell lung cancer (NSCLC) and 11 healthy controls, whole body ARG and CIT (citrulline) rates of appearance were measured by stable isotope methodology before and after intake of a mixture of amino acids as present in whey protein. The conversions of CIT to ARG (indicator of de novo ARG synthesis) and ARG to CIT (marker of NO synthesis), and ARG clearance (reflecting ARG disposal capacity) were calculated. Plasma isotopic enrichments and amino acid concentrations were measured by LC-MS/MS. Conversions of CIT to ARG and ARG to CIT (P<0.05), and CIT rate of appearance (P=0.07) were lower in NSCLC. ARG rate of appearance and clearance were comparable suggesting no enhanced systemic ARG production and disposal capacity in NSCLC. After intake of the mixture, ARG rate of appearance and concentration increased (P<0.001), and ARG to CIT conversion was restored in NSCLC. In conclusion, an impaired endogenous ARG synthesis plays a role in the reduced systemic ARG availability and NO synthesis in advanced NSCLC. Nutritional approaches may restore systemic ARG availability and NO synthesis in cancer, but the clinical implication remains unclear. PMID:27129191

  15. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability

    DEFF Research Database (Denmark)

    Tatton-Brown, Katrina; Seal, Sheila; Ruark, Elise;

    2014-01-01

    Overgrowth disorders are a heterogeneous group of conditions characterized by increased growth parameters and other variable clinical features such as intellectual disability and facial dysmorphism. To identify new causes of human overgrowth, we performed exome sequencing in ten proband...... and histone binding. Similar mutations were not present in 1,000 UK population controls (13/152 cases versus 0/1,000 controls; P intellectual disability and greater height. DNMT3A encodes a DNA methyltransferase essential for establishing...

  16. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1

    OpenAIRE

    Guja, Kip E.; Venkataraman, Krithika; Yakubovskaya, Elena; Hui SHI; Mejia, Edison; Hambardjieva, Elena; Karzai, A. Wali; Garcia-Diaz, Miguel

    2013-01-01

    Eukaryotic transcription factor B (TFB) proteins are homologous to KsgA/Dim1 ribosomal RNA (rRNA) methyltransferases. The mammalian TFB1, mitochondrial (TFB1M) factor is an essential protein necessary for mitochondrial gene expression. TFB1M mediates an rRNA modification in the small ribosomal subunit and thus plays a role analogous to KsgA/Dim1 proteins. This modification has been linked to mitochondrial dysfunctions leading to maternally inherited deafness, aminoglycoside sensitivity and di...

  17. Expression of O6-methylguanine DNA methyltransferase (MGMT) and its clinical significance in gastroenteropancreatic neuroendocrine neoplasm

    OpenAIRE

    Yang, Qiu-chen; Wang, Yu-Hong; Lin, Yuan; Xue, Ling; Chen, Yuan-Jia; Chen, Min-hu; Chen, Jie

    2014-01-01

    O6-methylguanine-DNA methyltransferase (MGMT) is a widespread DNA repair enzyme defending against mutation caused by guanine O6-alkylating agents. Until now, we know only little about the expression of MGMT in gastroenteropancreatic neuroendocrine neoplasm (GEP-NEN). To study the expression of MGMT and its clinical significance in GEP-NEN, 174 specimens of GEP-NEN were examined, of which 152 specimens came from The First Affiliated Hospital, Sun Yat-sen University during October 1995 to Novem...

  18. Survival and tumorigenesis in O6-methylguanine DNA methyltransferase-deficient mice following cyclophosphamide exposure

    OpenAIRE

    Nagasubramanian, Ramamoorthy; Hansen, Ryan J.; Delaney, Shannon M.; Cherian, Mathew M.; Samson, Leona D.; Kogan, Scott C.; Dolan, M. Eileen

    2008-01-01

    O6-methylguanine DNA methyltransferase (MGMT) deficiency is associated with an increased susceptibility to alkylating agent toxicity. To understand the contribution of MGMT in protecting against cyclophosphamide (CP)-induced toxicity, mutagenesis and tumorigenesis, we compared the biological effects of this agent in transgenic Mgmt knockout and wild-type mice. In addition, neurofibromin (Nf1)+/− background was used to increase the likelihood of CP-induced tumorigenesis. Cohorts of Mgmt-profic...

  19. Somatic mutations in glioblastoma are associated with methylguanine-DNA methyltransferase methylation

    OpenAIRE

    McDonald, Kerrie L.; Tabone, Tania; Nowak, Anna K; Erber, Wendy N.

    2015-01-01

    The high level of methylguanine-DNA methyltransferase (MGMT) in glioblastoma is responsible for resistance to alkylating agents, such as temozolomide (TMZ). In glioblastomas with a methylated MGMT promoter, MGMT deficiency is presumed, resulting in an enhanced effect of TMZ. The aim of the present study was to investigate whether genomic alterations work synergistically with MGMT methylation status and contribute to the response to treatment and overall prognosis in glioblastoma. The current ...

  20. Three-dimensional culture sensitizes epithelial ovarian cancer cells to EZH2 methyltransferase inhibition

    Science.gov (United States)

    Amatangelo, Michael D.; Garipov, Azat; Li, Hua; Conejo-Garcia, Jose R.; Speicher, David W.; Zhang, Rugang

    2013-01-01

    Inhibitors of EZH2 methyltransferase activity have been demonstrated to selectively suppress the growth of diffused large B cell lymphoma (DLBCL) cells with gain-of-function mutations in EZH2, while exhibiting very limited effects on the growth of DLBCL cells with wild-type EZH2. Given that EZH2 is often overexpressed but not mutated in solid tumors, it is important to investigate the determinants of sensitivity of solid tumor cells to EZH2 inhibitors. In the current study, we show that three-dimensional (3D) culture of epithelial ovarian cancer (EOC) cells that overexpress EZH2 sensitizes these cells to EZH2 methyltransferase inhibition. Treatment of EOC cells with GSK343, a specific inhibitor of EZH2 methyltransferase, decreases the level of H3K27Me3, the product of EZH2’s enzymatic activity. However, GSK343 exhibited limited effects on the growth of EOC cells in conventional two-dimensional (2D) culture. In contrast, GSK343 significantly suppressed the growth of EOC cells cultured in 3D matrigel extracellular matrix (ECM), which more closely mimics the tumor microenvironment in vivo. Notably, GSK343 induces apoptosis of EOC cells in 3D but not 2D culture. In addition, GSK343 significantly inhibited the invasion of EOC cells. In summary, we show that the 3D ECM sensitizes EOC cells to EZH2 methyltransferase inhibition, which suppresses cell growth, induces apoptosis and inhibits invasion. Our findings imply that in EZH2 wild-type solid tumors, the ECM tumor microenvironment plays an important role in determining sensitivity to EZH2 inhibition and suggest that targeting the ECM represents a novel strategy for enhancing EZH2 inhibitor efficacy. PMID:23759589

  1. Catecholamine-o-methyltransferase polymorphisms are associated with postoperative pain intensity.

    LENUS (Irish Health Repository)

    Lee, Peter J

    2011-02-01

    single nucleotide polymorphisms (SNPs) in the genes for catecholamine-O-methyltransferase (COMT), μ-opioid receptor and GTP cyclohydrolase (GCH1) have been linked to acute and chronic pain states. COMT polymorphisms are associated with experimental pain sensitivity and a chronic pain state. No such association has been identified perioperatively. We carried out a prospective observational clinical trial to examine associations between these parameters and the development of postoperative pain in patients undergoing third molar (M3) extraction.

  2. Towards more specific O6-Methylguanine-DNA methyltransferase (MGMT) inactivators

    OpenAIRE

    CORDEIRO MACHADO, ALESSANDRA; MC MURRY, THOMAS; Rozas, Isabel

    2011-01-01

    PUBLISHED Searching for a novel family of inactivators of the human DNA repair protein O6?methylguanine?DNA methyltransferase (MGMT) which is known to bind to the DNA minor groove, we have computationally modelled and synthesised two series of 2?amino?6?aryloxy?5?nitropyrimidines with morpholino or aminodiaryl substituents (potential minor groove binders) at the 4?position. Synthesis of these compounds was achieved by successive substitution of each of the two Cl atoms of 2?amino?4,6?dichl...

  3. miR-221/222 Target the DNA Methyltransferase MGMT in Glioma Cells

    OpenAIRE

    Cristina Quintavalle; Davide Mangani; Giuseppina Roscigno; Giulia Romano; Angel Diaz-Lagares; Margherita Iaboni; Elvira Donnarumma; Danilo Fiore; Pasqualino De Marinis; Ylermi Soini; Manel Esteller; Gerolama Condorelli

    2013-01-01

    Glioblastoma multiforme (GBM) is one of the most deadly types of cancer. To date, the best clinical approach for treatment is based on administration of temozolomide (TMZ) in combination with radiotherapy. Much evidence suggests that the intracellular level of the alkylating enzyme O(6)-methylguanine-DNA methyltransferase (MGMT) impacts response to TMZ in GBM patients. MGMT expression is regulated by the methylation of its promoter. However, evidence indicates that this is not the only regula...

  4. O6-methylguanine-DNA methyltransferase (MGMT): can function explain a suicidal mechanism?

    OpenAIRE

    Gouws, Chrisna; Pretorius, Petrus Jacobus

    2011-01-01

    Why does O6-methylguanine-DNA methyltransferase (MGMT), an indispensable DNA repair enzyme, have a mechanism which seems to run counter to its importance? This enzyme is key to the removal of detrimental alkyl adducts from guanine bases. Although the mechanism is well known, an unusual feature surrounds its mode of action, which is its so-called suicidal endpoint. In addition, induction of MGMT is highly variable and its kinetics is atypical. These features raise some questions on the seeming...

  5. Kupplung der DNA-Methyltransferase M.SssI mit Triplehelix-bildenden Oligodesoxynucleotiden

    OpenAIRE

    Monami, Amélie Joséphine

    2007-01-01

    DNA modifying enzymes, like DNA methyltransferases (DNA MTases) and restriction endonucleases (REases), could in principle be used to map or manipulate genomes. However, these enzymes are inappropriate for that purpose because of their generally short recognition sequences. An increase of their sequence specificity would therefore be desirable. One strategy to produce megaspecific DNA modifying enzymes is to couple them with triple helix forming oligodeoxynucleotide (TFO). These additional DN...

  6. Thiopurine S-methyltransferase polymorphisms and thiopurine toxicity in treatment of inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM: To evaluate the relationship between thiopu- rine S-methyltransferase (TPMT) polymorphisms and thiopurine-induced adverse drug reactions (ADRs) in inflammatory bowel disease (IBD). METHODS: Eligible articles that compared the frequency of TPMT polymorphisms among thiopurine-tolerant and-intolerant adult IBD patients were included. Statistical analysis was performed with Review Manager 5.0. Sub-analysis/sensitivity analysis was also performed. RESULTS: Nine studies that investigated a total of 1309 part...

  7. Genetic, physiological and biochemical characterization of multiple methanol methyltransferase isozymes in Methanosarcina acetivorans C2A.

    Science.gov (United States)

    Pritchett, Matthew A; Metcalf, William W

    2005-06-01

    Biochemical evidence suggests that methanol catabolism in Methanosarcina species requires the concerted effort of methanol:5-hydroxybenzimidazolylcobamide methyltransferase (MtaB), a corrinoid-containing methyl-accepting protein (MtaC) and Co-methyl-5-hydroxybenzimidazolylcobamide:2-mercapto-ethanesulphonic acid methyltransferase (MtaA). Here we show that Methanosarcina acetivorans possesses three operons encoding putative methanol-specific MtaB and corrinoid proteins: mtaCB1, mtaCB2 and mtaCB3. Deletion mutants lacking the three operons, in all possible combinations, were constructed and characterized. Strains deleted for any two of the operons grew on methanol, whereas strains lacking all three did not. Therefore, each operon encodes a bona fide methanol-utilizing MtaB/corrinoid protein pair. Most of the mutants were similar to the wild-type strain, with the exception of the DeltamtaCB1 DeltamtaCB2 double mutant, which grew more slowly and had reduced cell yields on methanol medium. However, all mutants displayed significantly longer lag times when switching from growth on trimethylamine to growth on methanol. This indicates that all three operons are required for wild-type growth on methanol and suggests that each operon has a distinct role in the metabolism of this substrate. The combined methanol:CoM methyltransferase activity of strains carrying only mtaCB1 was twofold higher than strains carrying only mtaCB2 and fourfold higher than strains carrying only mtaCB3. Interestingly, the presence of the mtaCB2 and mtaCB3 operons, in addition to the mtaCB1 operon, did not increase the overall methyltransferase activity, suggesting that these strains may be limited by MtaA availability. All deletion mutants were unaffected with respect to growth on trimethylamine and acetate corroborating biochemical evidence indicating that each methanogenic substrate has specific methyltransfer enzymes. PMID:15882413

  8. The histone methyltransferase and putative oncoprotein MMSET is overexpressed in a large variety of human tumors

    DEFF Research Database (Denmark)

    Hudlebusch, Heidi Rye; Santoni-Rugiu, Eric; Simon, Ronald;

    2011-01-01

    Multiple myeloma SET (Suppressor of variegation, Enhancer of zeste, and Trithorax) domain (MMSET) is a histone lysine methyltransferase deregulated in a subgroup of multiple myelomas with the t(4;14)(p16;q32) translocation and poor prognosis. With the aim of understanding, if MMSET can be involve...... in other types of cancer we investigated the expression of MMSET protein in different types of human tumors....

  9. Identification and Characterization of a Highly Conserved Crenarchaeal Protein Lysine Methyltransferase with Broad Substrate Specificity

    OpenAIRE

    Chu, Yindi; Zhang, Zhenfeng; Wang, Qian; Luo, Yuanming; Huang, Li

    2012-01-01

    Protein lysine methylation occurs extensively in the Crenarchaeota, a major kingdom in the Archaea. However, the enzymes responsible for this type of posttranslational modification have not been found. Here we report the identification and characterization of the first crenarchaeal protein lysine methyltransferase, designated aKMT, from the hyperthermophilic crenarchaeon Sulfolobus islandicus. The enzyme was capable of transferring methyl groups to selected lysine residues in a substrate prot...

  10. Arginine: A Potent Prey Attractant to Predatory Newts in Mountain Streams

    Science.gov (United States)

    Ferrer, R. P.; Zimmer, R. K.

    2005-05-01

    Chemoreception of aquatic organisms has been well-studied in the laboratory, but rarely in the field. The California newt, Taricha torosa, in natural stream habitats is an excellent animal for exploring behavioral responses to prey odors. Here, we selected 13 amino acids for field bioassays based on their concentrations in prey tissue extracts. Bioassays were calibrated for stimulus dilution by means of fluorescent dye releases and flow-through spectrofluorometry. Moreover, hydrodynamic properties of stream flows were determined using an electromagnetic current meter. Of all amino acids tested, only arginine, alanine and glycine were significantly attractive (relative to stream water controls). These three substances caused free-ranging newts to turn upstream and swim towards the odor sources. Additional experiments showed that arginine was the most effective attractant, evoking plume-tracking behavior at concentrations as low as 10 nM. In subsequent trials, nine arginine analogs were tested, but each compound failed to elicit a significant response. Even subtle changes to arginine, such as the addition of a single carbon to the side chain, destroyed all bioactivity. Within its natural habitat, the California newt thus exhibits keen sensitivity and narrow tuning to the free amino acid, arginine, a chemical signal of its prey.

  11. Mechanism of Allosteric Inhibition of N-Acetyl-L-glutamate Synthase by L-Arginine

    Energy Technology Data Exchange (ETDEWEB)

    Min, Li; Jin, Zhongmin; Caldovic, Ljubica; Morizono, Hiroki; Allewell, Norma M.; Tuchman, Mendel; Shi, Dashuang (GUW); (Maryland); (GWU); (Georgia)

    2010-01-07

    N-Acetylglutamate synthase (NAGS) catalyzes the first committed step in L-arginine biosynthesis in plants and micro-organisms and is subject to feedback inhibition by L-arginine. This study compares the crystal structures of NAGS from Neisseria gonorrhoeae (ngNAGS) in the inactive T-state with L-arginine bound and in the active R-state complexed with CoA and L-glutamate. Under all of the conditions examined, the enzyme consists of two stacked trimers. Each monomer has two domains: an amino acid kinase (AAK) domain with an AAK-like fold but lacking kinase activity and an N-acetyltransferase (NAT) domain homologous to other GCN5-related transferases. Binding of L-arginine to the AAK domain induces a global conformational change that increases the diameter of the hexamer by {approx}10 {angstrom} and decreases its height by {approx}20{angstrom}. AAK dimers move 5{angstrom} outward along their 2-fold axes, and their tilt relative to the plane of the hexamer decreases by {approx}4{sup o}. The NAT domains rotate {approx}109{sup o} relative to AAK domains enabling new interdomain interactions. Interactions between AAK and NAT domains on different subunits also change. Local motions of several loops at the L-arginine-binding site enable the protein to close around the bound ligand, whereas several loops at the NAT active site become disordered, markedly reducing enzymatic specific activity.

  12. L-Arginine Intake Effect on Adenine Nucleotide Metabolism in Rat Parenchymal and Reproductive Tissues

    Directory of Open Access Journals (Sweden)

    G. Kocic

    2012-01-01

    Full Text Available L-arginine is conditionally essetcial amino acid, required for normal cell growth, protein synthesis, ammonia detoxification, tissue growth and general performance, proposed in the treatment of men sterility and prevention of male impotence. The aim of the present paper was to estimate the activity of the enzymes of adenine nucleotide metabolism: 5′-nucleotidase (5′-NU, adenosine deaminase (ADA, AMP deaminase, and xanthine oxidase (XO, during dietary intake of L-arginine for a period of four weeks of male Wistar rats. Adenosine concentration in tissues is maintained by the relative activities of the adenosine-producing enzyme, 5′-NU and the adenosine-degrading enzyme-ADA adenosine deaminase. Dietary L-arginine intake directed adenine nucleotide metabolism in liver, kidney, and testis tissue toward the activation of adenosine production, by increased 5′-NU activity and decreased ADA activity. Stimulation of adenosine accumulation could be of importance in mediating arginine antiatherosclerotic, vasoactive, immunomodulatory, and antioxidant effects. Assuming that the XO activity reflects the rate of purine catabolism in the cell, while the activity of AMP deaminase is of importance in ATP regeneration, reduced activity of XO, together with the increased AMP-deaminase activity, may suggest that adenine nucleotides are presumably directed to the ATP regenerating process during dietary L-arginine intake.

  13. Cooperativity between DNA Methyltransferases in the Maintenance Methylation of Repetitive Elements

    Science.gov (United States)

    Liang, Gangning; Chan, Matilda F.; Tomigahara, Yoshitaka; Tsai, Yvonne C.; Gonzales, Felicidad A.; Li, En; Laird, Peter W.; Jones, Peter A.

    2002-01-01

    We used mouse embryonic stem (ES) cells with systematic gene knockouts for DNA methyltransferases to delineate the roles of DNA methyltransferase 1 (Dnmt1) and Dnmt3a and -3b in maintaining methylation patterns in the mouse genome. Dnmt1 alone was able to maintain methylation of most CpG-poor regions analyzed. In contrast, both Dnmt1 and Dnmt3a and/or Dnmt3b were required for methylation of a select class of sequences which included abundant murine LINE-1 promoters. We used a novel hemimethylation assay to show that even in wild-type cells these sequences contain high levels of hemimethylated DNA, suggestive of poor maintenance methylation. We showed that Dnmt3a and/or -3b could restore methylation of these sequences to pretreatment levels following transient exposure of cells to 5-aza-CdR, whereas Dnmt1 by itself could not. We conclude that ongoing de novo methylation by Dnmt3a and/or Dnmt3b compensates for inefficient maintenance methylation by Dnmt1 of these endogenous repetitive sequences. Our results reveal a previously unrecognized degree of cooperativity among mammalian DNA methyltransferases in ES cells. PMID:11756544

  14. Preliminary characterization of (nucleoside-2′-O-)-methyltransferase crystals from Meaban and Yokose flaviviruses

    Energy Technology Data Exchange (ETDEWEB)

    Mastrangelo, Eloise; Bollati, Michela; Milani, Mario [Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Via Celoria 26, 20133 Milano (Italy); Lamballeire, Xavier de; Brisbare, Nadege [Unité des Virus Emergents, Faculté de Médecine, 27 Boulevard Jean Moulin, 13005 Marseille (France); Dalle, Karen; Lantez, Violaine; Egloff, Marie-Pierre; Coutard, Bruno; Canard, Bruno [Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS ESIL, Case 932, 163 Avenue de Luminy, 13288 Marseille CEDEX 9 (France); Gould, Ernest; Forrester, Naomi [CEH Oxford, Mansfield Road, Oxford OX1 3SR (United Kingdom); Bolognesi, Martino, E-mail: martino.bolognesi@unimi.it [Department of Biomolecular Sciences and Biotechnology, CNR-INFM, University of Milano, Via Celoria 26, 20133 Milano (Italy)

    2006-08-01

    Two methyltransferases from flaviviruses (Meaban and Yokose viruses) have been overexpressed and crystallized. Diffraction data and characterization of the two crystal forms are presented, together with a preliminary molecular-replacement solution for both enzymes. Viral methyltranferases (MTase) are involved in the third step of the mRNA-capping process, transferring a methyl group from S-adenosyl-l-methionine (SAM) to the capped mRNA. MTases are classified into two groups: (guanine-N7)-methyltransferases (N7MTases), which add a methyl group onto the N7 atom of guanine, and (nucleoside-2′-O-)-methyltransferases (2′OMTases), which add a methyl group to a ribose hydroxyl. The MTases of two flaviviruses, Meaban and Yokose viruses, have been overexpressed, purified and crystallized in complex with SAM. Characterization of the crystals together with details of preliminary X-ray diffraction data collection (at 2.8 and 2.7 Å resolution, respectively) are reported here. The sequence homology relative to Dengue virus 2′OMTase and the structural conservation of specific residues in the putative active sites suggest that both enzymes belong to the 2′OMTase subgroup.

  15. miR-29 Represses the Activities of DNA Methyltransferases and DNA Demethylases

    Directory of Open Access Journals (Sweden)

    Izuho Hatada

    2013-07-01

    Full Text Available Members of the microRNA-29 (miR-29 family directly target the DNA methyltransferases, DNMT3A and DNMT3B. Disturbances in the expression levels of miR-29 have been linked to tumorigenesis and tumor aggressiveness. Members of the miR-29 family are currently thought to repress DNA methylation and suppress tumorigenesis by protecting against de novo methylation. Here, we report that members of the miR-29 family repress the activities of DNA methyltransferases and DNA demethylases, which have opposing roles in control of DNA methylation status. Members of the miR-29 family directly inhibited DNA methyltransferases and two major factors involved in DNA demethylation, namely tet methylcytosine dioxygenase 1 (TET1 and thymine DNA glycosylase (TDG. Overexpression of miR-29 upregulated the global DNA methylation level in some cancer cells and downregulated DNA methylation in other cancer cells, suggesting that miR-29 suppresses tumorigenesis by protecting against changes in the existing DNA methylation status rather than by preventing de novo methylation of DNA.

  16. Rapid restriction enzyme free detection of DNA methyltransferase activity based on DNA-templated silver nanoclusters.

    Science.gov (United States)

    Kermani, Hanie Ahmadzade; Hosseini, Morteza; Dadmehr, Mehdi; Ganjali, Mohammad Reza

    2016-06-01

    DNA methylation has significant roles in gene regulation. DNA methyltransferase (MTase) enzyme characterizes DNA methylation and also induces an aberrant methylation pattern that is related to many diseases, especially cancers. Thus, it is required to develop a method to detect the DNA MTase activity. In this study, we developed a new sensitive and reliable method for methyltransferase activity assay by employing DNA-templated silver nanoclusters (DNA/Ag NCs) without using restriction enzymes. The Ag NCs have been utilized for the determination of M.SssI MTase activity and its inhibition. We designed an oligonucleotide probe which contained an inserted six-cytosine loop as Ag NCs formation template. The changes in fluorescence intensity were monitored to quantify the M.SssI activity. The fluorescence spectra showed a linear decrease in the range of 0.4 to 20 U/ml with a detection limit of 0.1 U/ml, which was significant compared with previous reports. The proposed method was applied successfully for demonstrating the Gentamicin effect as MTase inhibitor. The proposed method showed convenient reproducibility and sensitivity indicating its potential for the determination of methyltransferase activity. PMID:27052776

  17. Methylated nucleosides in tRNA and tRNA methyltransferases

    Directory of Open Access Journals (Sweden)

    Hiroyuki eHori

    2014-05-01

    Full Text Available To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s. Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon–anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responses to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.

  18. Purification of homologous protein carboxyl methyltransferase isozymes from human and bovine erythrocytes

    International Nuclear Information System (INIS)

    The authors have purified the two major isozymes of the L-isoaspartyl/D-aspartyl protein methyltransferase from both human and bovine erythrocytes. These four enzymes all have polypeptide molecular weights of approximately 26,500 and appear to be monomers in solution. Each of these enzymes cross-reacts with antibodies directed against protein carboxyl methyltransferase I from bovine brain. Their structures also appear to be similar when analyzed by dodecyl sulfate gel electrophoresis for the large fragments produced by digestion with Staphylococcus aureus protease V8 or when analyzed by high-performance liquid chromatography (HPLC) for tryptic peptides. The structural relatedness of these enzymes was confirmed by sequence analysis of a total of 433 residues in 32 tryptic fragments of the human erythrocyte isozymes I and II and of the bovine erythrocyte isozyme II. They found sequence identity or probable identity in 111 out of 112 residues when they compared the human isozymes I and II and identities in 127 out of 134 residues when the human and bovine isozymes II were compared. These results suggest that the erythrocyte isozymes from both organisms may have nearly identical structures and confirm the similarities in the function of these methyltransferases that have been previously demonstrated

  19. Transcriptome profiling of Set5 and Set1 methyltransferases: Tools for visualization of gene expression

    Directory of Open Access Journals (Sweden)

    Glòria Mas Martín

    2014-12-01

    Full Text Available Cells regulate transcription by coordinating the activities of multiple histone modifying complexes. We recently identified the yeast histone H4 methyltransferase Set5 and discovered functional overlap with the histone H3 methyltransferase Set1 in gene expression. Specifically, using next-generation RNA sequencing (RNA-Seq, we found that Set5 and Set1 function synergistically to regulate specific transcriptional programs at subtelomeres and transposable elements. Here we provide a comprehensive description of the methodology and analysis tools corresponding to the data deposited in NCBI's Gene Expression Omnibus (GEO under the accession number GSE52086. This data complements the experimental methods described in Mas Martín G et al. (2014 and provides the means to explore the cooperative functions of histone H3 and H4 methyltransferases in the regulation of transcription. Furthermore, a fully annotated R code is included to enable researchers to use the following computational tools: comparison of significant differential expression (SDE profiles; gene ontology enrichment of SDE; and enrichment of SDE relative to chromosomal features, such as centromeres, telomeres, and transposable elements. Overall, we present a bioinformatics platform that can be generally implemented for similar analyses with different datasets and in different organisms.

  20. Arsenic (+3 oxidation state) methyltransferase and the inorganic arsenic methylation phenotype

    International Nuclear Information System (INIS)

    Inorganic arsenic is enzymatically methylated; hence, its ingestion results in exposure to the parent compound and various methylated arsenicals. Both experimental and epidemiological evidences suggest that some of the adverse health effects associated with chronic exposure to inorganic arsenic may be mediated by these methylated metabolites. If i As methylation is an activation process, then the phenotype for inorganic arsenic methylation may determine risk associated with exposure to this metalloid. We examined inorganic arsenic methylation phenotypes and arsenic (+3 oxidation state) methyltransferase genotypes in four species: three that methylate inorganic arsenic (human (Homo sapiens), rat (Rattus norwegicus), and mouse (Mus musculus)) and one that does not methylate inorganic arsenic (chimpanzee, Pan troglodytes). The predicted protein products from arsenic (+3 oxidation state) methyltransferase are similar in size for rat (369 amino acid residues), mouse (376 residues), and human (375 residues). By comparison, a 275-nucleotide deletion beginning at nucleotide 612 in the chimpanzee gene sequence causes a frameshift that leads to a nonsense mutation for a premature stop codon after amino acid 205. The null phenotype for inorganic arsenic methylation in the chimpanzee is likely due to the deletion in the gene for arsenic (+3 oxidation state) methyltransferase that yields an inactive truncated protein. This lineage-specific loss of function caused by the deletion event must have occurred in the Pan lineage after Homo-Pan divergence about 5 million years ago

  1. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase

    Institute of Scientific and Technical Information of China (English)

    Bin-Zhong Li; Guo-Liang Xu; Zheng Huang; Qing-Yan Cui; Xue-Hui Song; Lin Du; Albert Jeltsch; Ping Chen; Guohong Li; En Li

    2011-01-01

    Cytosine methylation of genomic DNA controls gene expression and maintains genome stability. How a specific DNA sequence is targeted for methylation by a methyltransferase is largely unknown. Here, we show that histone H3 tails lacking lysine 4 (K4) methylation function as an allosteric activator for methyltransferase Dnmt3a by binding to its plant homeodomain (PHD). In vitro, histone H3 peptides stimulated the methylation activity of Dnmt3a up to 8-fold, in a manner reversely correlated with the level of K4 methylation. The biological significance of allosteric regulation was manifested by molecular modeling and identification of key residues in both the PHD and the catalytic domain of Dnmt3a whose mutations impaired the stimulation of methylation activity by H3 peptides but not the binding of H3 peptides. Significantly, these mutant Dnmt3a proteins were almost inactive in DNA methylation when expressed in mouse embryonic stem cells while their recruitment to genomic targets was unaltered. We therefore propose a two-step mechanism for de novo DNA methylation - first recruitment of the methyltransferase probably assisted by a chromatin- or DNA-binding factor, and then allosteric activation depending on the interaction between Dnmt3a and the histone tails - the latter might serve as a checkpoint for the methylation activity.

  2. Chromatin Targeting of de Novo DNA Methyltransferases by the PWWP Domain

    Institute of Scientific and Technical Information of China (English)

    Ying-ZiGe; Min-TiePu; HumairaGowher; Hai-PingWu; Jian-PingDing; AlbertJeltsch; Guo-LiangXu

    2005-01-01

    DNA methylation patterns of mammalian genomes are generated in gametogenesis and early embryonic development. Two de novo DNA methyltransferases, Dnmt3a and Dnmt3b, are responsible for the process. Both en-zymes contain a long N-terminal regulatory region linked to a conserved C-terminal domain responsible forthe catalytic activity. Although a PWWP domain in the N-terminal region has been shown to bind DNA in vitro, it is unclear how the DNA methyltransferases access their substrate in chromatin in vivo. We show here that the two proteins are associated with chromatin including mitotic chromosomes in mammalian cells, and the PWWP domain is essential for the chromatin targeting of the enzymes. The functional significance of PWWPmediated chromatin targeting is suggested by the fact that a missense mutation in this domain of human DNMT3B causes immunodeficiency, centromeric heterochromatin instability, facial anomalies (ICF) syndrome, which is characterized by loss of methylation insatellite DNA, pericentromeric instability, and immunodeficiency. We demonstrate that the mutant protein completely loses its chromatin targeting capacity. Our data establish the PWWP domain as a novel chromatin/chromosome-targeting module and suggest that the PWWP-mediated chromatin association is essential for the function of the de novo methyltransferases during development.

  3. Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide.

    Directory of Open Access Journals (Sweden)

    Robert J Wood

    Full Text Available BACKGROUND: DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. METHODOLOGY/PRINCIPAL FINDINGS: Herein we report the expression and purification of Yersinia pestis Dam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that is suitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Dam inhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site. When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting in separation of fluorophore (fluorescein and quencher (dabcyl and therefore an increase in fluorescence. The assays were monitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisation of Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated for high throughput screening, giving a Z-factor of 0.71+/-0.07 indicating that it is a sensitive assay for the identification of inhibitors. CONCLUSIONS/SIGNIFICANCE: The assay is therefore suitable for high throughput screening for inhibitors of DNA adenine methyltransferases and the kinetic characterisation of the inhibition.

  4. The Eukaryotic DNMT2 Genes Encode a New Class of Cytosine-5 DNA Methyltransferases

    Institute of Scientific and Technical Information of China (English)

    Lin-YaTang; M.NarsaReddy; VanyaRasheva; Tai-LinLee; Meng-JauLin; Ming-ShiuHung; C.-K.JamesShen

    2005-01-01

    DNMT2 is a subgroup of the eukaryotic cytosine-5 DNA methyltransferase gene family. Unlike the other family members, proteins encoded by DNMT2 genes were not known before to possess DNA methyltransferase activities. Most recently, we have showm that thegenome of Drosophila S2 cells stably expressing an exogenous Drosophila dDNMT2 cDNA became anoma-lously methylated at the 5'-positions of cytosines(Reddy, M. N., Tang, L. Y., Lee, T. L., and Shen, C.-K. J.(2003) Oncogene, in press). We present evidence here that the genomes of transgenic flies overexpressing the dDnmt2 protein also became hypermethylated at specific regions. Furthermore, transient transfection studies in combination with sodium bisulfite sequencing demonstrated that dDnmt2 as well as its mousc ortholog, mDnmt2, are capable of methylating a cotrans-fected plasmid DNA. These data provide solid evidence that the fly and mouse DNMT2 gene products are genuine cytosine-5 DNA methyltransferases.

  5. A novel methyltransferase from the intracellular pathogen Plasmodiophora brassicae methylates salicylic acid.

    Science.gov (United States)

    Ludwig-Müller, Jutta; Jülke, Sabine; Geiß, Kathleen; Richter, Franziska; Mithöfer, Axel; Šola, Ivana; Rusak, Gordana; Keenan, Sandi; Bulman, Simon

    2015-05-01

    The obligate biotrophic pathogen Plasmodiophora brassicae causes clubroot disease in Arabidopsis thaliana, which is characterized by large root galls. Salicylic acid (SA) production is a defence response in plants, and its methyl ester is involved in systemic signalling. Plasmodiophora brassicae seems to suppress plant defence reactions, but information on how this is achieved is scarce. Here, we profile the changes in SA metabolism during Arabidopsis clubroot disease. The accumulation of SA and the emission of methylated SA (methyl salicylate, MeSA) were observed in P. brassicae-infected Arabidopsis 28 days after inoculation. There is evidence that MeSA is transported from infected roots to the upper plant. Analysis of the mutant Atbsmt1, deficient in the methylation of SA, indicated that the Arabidopsis SA methyltransferase was not responsible for alterations in clubroot symptoms. We found that P. brassicae possesses a methyltransferase (PbBSMT) with homology to plant methyltransferases. The PbBSMT gene is maximally transcribed when SA production is highest. By heterologous expression and enzymatic analyses, we showed that PbBSMT can methylate SA, benzoic and anthranilic acids.

  6. Deletion of Genes Encoding Arginase Improves Use of "Heavy" Isotope-Labeled Arginine for Mass Spectrometry in Fission Yeast.

    Directory of Open Access Journals (Sweden)

    Weronika E Borek

    Full Text Available The use of "heavy" isotope-labeled arginine for stable isotope labeling by amino acids in cell culture (SILAC mass spectrometry in the fission yeast Schizosaccharomyces pombe is hindered by the fact that under normal conditions, arginine is extensively catabolized in vivo, resulting in the appearance of "heavy"-isotope label in several other amino acids, most notably proline, but also glutamate, glutamine and lysine. This "arginine conversion problem" significantly impairs quantification of mass spectra. Previously, we developed a method to prevent arginine conversion in fission yeast SILAC, based on deletion of genes involved in arginine catabolism. Here we show that although this method is indeed successful when (13C6-arginine (Arg-6 is used for labeling, it is less successful when (13C6(15N4-arginine (Arg-10, a theoretically preferable label, is used. In particular, we find that with this method, "heavy"-isotope label derived from Arg-10 is observed in amino acids other than arginine, indicating metabolic conversion of Arg-10. Arg-10 conversion, which severely complicates both MS and MS/MS analysis, is further confirmed by the presence of (13C5(15N2-arginine (Arg-7 in arginine-containing peptides from Arg-10-labeled cells. We describe how all of the problems associated with the use of Arg-10 can be overcome by a simple modification of our original method. We show that simultaneous deletion of the fission yeast arginase genes car1+ and aru1+ prevents virtually all of the arginine conversion that would otherwise result from the use of Arg-10. This solution should enable a wider use of heavy isotope-labeled amino acids in fission yeast SILAC.

  7. Regulatory role for L-arginine in the utilization of amino acids by pig small-intestinal bacteria.

    Science.gov (United States)

    Dai, Zhao-Lai; Li, Xi-Long; Xi, Peng-Bin; Zhang, Jing; Wu, Guoyao; Zhu, Wei-Yun

    2012-07-01

    We recently reported that bacteria from the pig small intestine rapidly utilize and metabolize amino acids (AA). This study investigated the effect of L-arginine on the utilization of AA by pure bacterial strains (Streptococcus sp., Escherichia coli and Klebsiella sp.) and mixed bacterial cultures derived from the pig small intestine. Bacteria were incubated at 37°C for 3 h in anaerobic AA media containing 0-5 mmol/L of arginine to determine the effect of arginine on the bacterial utilization of AA. Amino acids in the medium plus cell extracts were analyzed by high-performance liquid chromatography. Results indicated concentration-dependent increases in the bacterial utilization of arginine and altered fluxes of arginine into ornithine and citrulline in the bacteria. Net glutamine utilization increased in pure bacterial strains with increased concentrations of arginine. With the addition of arginine, net utilization of threonine, glycine, phenylalanine and branched-chain AA increased (P<0.05) in Streptococcus sp. and Klebsiella sp., but decreased in E. coli. Net utilization of lysine, threonine, isoleucine, leucine, glycine and alanine by jejunal or ileal mixed bacteria decreased (P<0.05) with the addition of arginine. Complete utilization of asparagine, aspartate and serine were observed in pig small-intestinal bacteria after 3 h of incubation. Overall, the addition of arginine affected the metabolism of the arginine-family of AA and the serine- and aspartate-family of AA in small-intestinal bacteria and reduced the utilization of most AA in ileal mixed bacteria. These novel findings indicate that arginine exerts its beneficial effects on swine nutrition partially by regulating AA utilization and metabolism in the small-intestinal microbiota.

  8. Signifiance of Arginine 20 in the 2A protease for swine vesicular disease virus pathogenicity

    DEFF Research Database (Denmark)

    Inoue, Toru; Zhang, Zhidong; Wang, Leyuan;

    2007-01-01

    of the 2A protease is particularly significant. Inoculation of pigs with mutant viruses containing single amino acid substitutions at this residue leads to the appearance of revertants, often containing an arginine at this position encoded by an AGA codon, one of six codons for this residue. The properties...... in pigs of two chimeric viruses, each with an arginine residue at this position but encoded by different codons, have been investigated in parallel with the parental pathogenic and attenuated strains. Presence of the arginine residue, but not of the AGA codon, is essential for induction of high viraemia......Pathogenic and attenuated strains of swine vesicular disease virus (SVDV), an enterovirus, have been characterized previously and, by using chimeric infectious cDNA clones, the key determinants of pathogenicity in pigs have been mapped to the coding region for 1D–2A. Within this region, residue 20...

  9. Oral arginine metabolism may decrease the risk for dental caries in children.

    Science.gov (United States)

    Nascimento, M M; Liu, Y; Kalra, R; Perry, S; Adewumi, A; Xu, X; Primosch, R E; Burne, R A

    2013-07-01

    Arginine metabolism by oral bacteria via the arginine deiminase system (ADS) increases the local pH, which can neutralize the effects of acidification from sugar metabolism and reduce the cariogenicity of oral biofilms. To explore the relationship between oral arginine metabolism and dental caries experience in children, we measured ADS activity in oral samples from 100 children and correlated it with their caries status and type of dentition. Supragingival dental plaque was collected from tooth surfaces that were caries-lesion-free (PF) and from dentinal (PD) and enamel (PE) caries lesions. Regardless of children's caries status or type of dentition, PF (378.6) had significantly higher ADS activity compared with PD (208.4; p caries status. Mixed-model analysis showed that plaque caries status is significantly associated with ADS activity despite children's age, caries status, and dentition (p caries.

  10. GABA Production in Lactococcus lactis Is Enhanced by Arginine and Co-addition of Malate.

    Science.gov (United States)

    Laroute, Valérie; Yasaro, Chonthicha; Narin, Waranya; Mazzoli, Roberto; Pessione, Enrica; Cocaign-Bousquet, Muriel; Loubière, Pascal

    2016-01-01

    Lactococcus lactis NCDO 2118 was previously selected for its ability to decarboxylate glutamate to γ-aminobutyric acid (GABA), an interesting nutritional supplement able to improve mood and relaxation. Amino acid decarboxylation is generally considered as among the biochemical systems allowing lactic acid bacteria to counteracting acidic stress and obtaining metabolic energy. These strategies also include arginine deiminase pathway and malolactic fermentation but little is known about their possible interactions of with GABA production. In the present study, the effects of glutamate, arginine, and malate (i.e., the substrates of these acid-resistance pathways) on L. lactis NCDO 2118 growth and GABA production performances were analyzed. Both malate and arginine supplementation resulted in an efficient reduction of acidity and improvement of bacterial biomass compared to glutamate supplementation. Glutamate decarboxylation was limited to narrow environmental conditions (pH < 5.1) and physiological state (stationary phase). However, some conditions were able to improve GABA production or activate glutamate decarboxylation system even outside of this compass. Arginine clearly stimulated glutamate decarboxylation: the highest GABA production (8.6 mM) was observed in cultures supplemented with both arginine and glutamate. The simultaneous addition of arginine, malate, and glutamate enabled earlier GABA production (i.e., during exponential growth) at relatively high pH (6.5). As far as we know, no previous study has reported GABA production in such conditions. Although further studies are needed to understand the molecular basis of these phenomena, these results represent important keys suitable of application in GABA production processes. PMID:27458444

  11. Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion.

    Directory of Open Access Journals (Sweden)

    Markus Munder

    Full Text Available Tumor-growth is often associated with the expansion of myeloid derived suppressor cells that lead to local or systemic arginine depletion via the enzyme arginase. It is generally assumed that this arginine deficiency induces a global shut-down of T cell activation with ensuing tumor immune escape. While the impact of arginine depletion on polyclonal T cell proliferation and cytokine secretion is well documented, its influence on chemotaxis, cytotoxicity and antigen specific activation of human T cells has not been demonstrated so far. We show here that chemotaxis and early calcium signaling of human T cells are unimpaired in the absence of arginine. We then analyzed CD8(+ T cell activation in a tumor peptide as well as a viral peptide antigen specific system: (i CD8(+ T cells with specificity against the MART-1aa26-35*A27L tumor antigen expanded with in vitro generated dendritic cells, and (ii clonal CMV pp65aa495-503 specific T cells and T cells retrovirally transduced with a CMV pp65aa495-503 specific T cell receptor were analyzed. Our data demonstrate that human CD8(+ T cell antigen specific cytotoxicity and perforin secretion are completely preserved in the absence of arginine, while antigen specific proliferation as well as IFN-γ and granzyme B secretion are severely compromised. These novel results highlight the complexity of antigen specific T cell activation and demonstrate that human T cells can preserve important activation-induced effector functions in the context of arginine deficiency.

  12. Potential protective effect of arginine against 4-nitrophenol-induced ovarian damage in rats.

    Science.gov (United States)

    Xu, Wei-Feng; Li, Yan-Sen; Dai, Peng-Yuan; Li, Chun-Mei

    2016-01-01

    4-nitrophenol (PNP) is generally regarded as a diesel exhaust particle (DEP). Arginine plays an important role as a new feed additive, possessing highly efficient antioxidant activities. Here we investigated the effects of dietary supplementation with arginine against ovarian damage induced by PNP in rats. A total of thirty-two female rats postnatal day 28 (PND 28) were randomly divided into four groups. Two groups were fed with basal diet or 13 g/kg arginine in diet for 4 weeks, respectively; the other two groups were given PNP (100 mg/kg b.w.) daily by subcutaneous injection for 2 weeks following pretreatment with either basal diet or arginine diet for 2 weeks. The values of body weight gain (BWG), average daily gain (ADG) and percentage weight gain (PWG) upon PNP treatment were significantly reduced than those in other groups. The relative liver weight in the PNP group was significantly decreased compared with the control group. Treatment with PNP significant reduced the number of corpora lutea, although serum 17β-estradiol (E2) and progesterone (P4) concentrations were unchanged. The morphology of the ovaries in PNP-treated rats displayed necrosis, follicular deformation and granulosa cells irregular arrangement. Moreover, exposure to PNP enhanced production of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and decreased the activities of total superoxide dismutase (T-SOD) and catalase (CAT), and the co-administration of arginine can attenuate the oxidative stress caused by PNP. These results suggest that arginine may have a protective effect against ovarian damage induced by PNP owing to its antioxidant capacity effect. PMID:27193729

  13. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents.

    Science.gov (United States)

    Mann, Anita; Shukla, Vasundhara; Khanduri, Richa; Dabral, Spoorti; Singh, Harpal; Ganguli, Munia

    2014-03-01

    The success of gene therapy relies on the development of safe and efficient multifunctional carriers of nucleic acids that can overcome extra- and intracellular barriers, protect the nucleic acid and mediate its release at the desired site allowing gene expression. Peptides bear unique properties that are indispensable for any carrier, e.g., they can mediate DNA condensation, cellular targeting, membrane translocation, endosomal escape and nuclear localization. In an effort to design a multifunctional peptide, we have modified an arginine homopeptide R16 by replacement of seven arginines with histidines and addition of one cysteine at each end respectively to impart endosomal escape property while maintaining the DNA condensation and release balance. Addition of histidines imparts endosomal escape property to arginine homopeptide, but their arrangement with respect to arginines is more critical in controlling DNA condensation, release and transfection efficiency. Intriguingly, R5H7R4 peptide where charge/arginine is distributed in blocks is preferred for strong condensation while more efficient transfection is seen in the variants R9H7 and H4R9H3, which exhibit weak condensation and strong release. Addition of cysteine to each of these peptides further fine-tuned the condensation-release balance without application of any oxidative procedure unlike other similar systems reported in the literature. This resulted in a large increase in the transfection efficiency in all of the histidine modified peptides irrespective of the arginine and histidine positions. This series of multifunctional peptides shows comparable transfection efficiency to commercially available transfection reagent Lipofectamine 2000 at low charge ratios, with simple preparative procedure and exhibits much less toxicity. PMID:24476132

  14. Effects of chronic oral L-arginine administration on the L-arginine/NO pathway in patients with peripheral arterial occlusive disease or coronary artery disease: L-Arginine prevents renal loss of nitrite, the major NO reservoir.

    Science.gov (United States)

    Schneider, Jessica Y; Rothmann, Sabine; Schröder, Frank; Langen, Jennifer; Lücke, Thomas; Mariotti, François; Huneau, Jean François; Frölich, Jürgen C; Tsikas, Dimitrios

    2015-09-01

    Despite saturation of nitric oxide (NO) synthase (NOS) by its substrate L-arginine (Arg), oral and intravenous supplementation of Arg may enhance NO synthesis, a phenomenon known as "The L-arginine paradox". Yet, Arg is not only a source of NO, but is also a source for guanidine-methylated (N (G)) arginine derivatives which are all inhibitors of NOS activity. Therefore, Arg supplementation may not always result in enhanced NO synthesis. Concomitant synthesis of N (G)-monomethyl arginine (MMA), N (G),N (G)-dimethylarginine (asymmetric dimethylarginine, ADMA) and N (G),N (G´)-dimethylarginine (symmetric dimethylarginine, SDMA) from supplemented Arg may outweigh and even outbalance the positive effects of Arg on NO. Another possible, yet little investigated effect of Arg supplementation may be alteration of renal function, notably the influence on the excretion of nitrite in the urine. Nitrite is the autoxidation product of NO and the major reservoir of NO in the circulation. Nitrite and Arg are reabsorbed in the proximal tubule of the nephron and this reabsorption is coupled, at least in part, to the renal carbonic anhydrase (CA) activity. In the present placebo-controlled studies, we investigated the effect of chronic oral Arg supplementation of 10 g/day for 3 or 6 months in patients suffering from peripheral arterial occlusive disease (PAOD) or coronary artery disease (CAD) on the urinary excretion of nitrite relative to nitrate. We determined the urinary nitrate-to-nitrite molar ratio (UNOxR), which is a measure of nitrite-dependent renal CA activity before and after oral intake of Arg or placebo by the patients. The UNOxR was also determined in 6 children who underwent the Arg test, i.e., intravenous infusion of Arg (0.5 g Arg/kg bodyweight) for 30 min. Arg was well tolerated by the patients of the three studies. Oral Arg supplementation increased Arg (plasma and urine) and ADMA (urine) concentrations. No appreciable changes were seen in NO (in PAOD and CAD) and

  15. Nonspecific blockade of vascular free radical signals by methylated arginine analogues

    OpenAIRE

    Pedro M.A.; Augusto O.; Barbeiro H.V.; Carvalho M.H.C.; da-Luz P.L.; Laurindo F.R.M.

    1998-01-01

    Methylated arginine analogues are often used as probes of the effect of nitric oxide; however, their specificity is unclear and seems to be frequently overestimated. This study analyzed the effects of NG-methyl-L-arginine (L-NMMA) on the endothelium-dependent release of vascular superoxide radicals triggered by increased flow. Plasma ascorbyl radical signals measured by direct electron paramagnetic resonance spectroscopy in 25 rabbits increased by 3.8 ± 0.7 nmol/l vs baseline (28.7 ± 1.4 nmol...

  16. Radiometric assay for determining the incorporation of L-canavanine or L-arginine into protein

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, G.A.; Thomas, D.A.

    1985-06-01

    Procedures for a radiometric assay of L-(guanidinooxy-/sup 14/C)canavanine were developed which provide a convenient and accurate measure of the incorporation of (/sup 14/C)canavanine into de novo-synthesized proteins. These methods are also applicable to determining (/sup 14/C)arginine incorporation into protein. These procedures have been employed to study the synthesis of L-(guanidinooxy-/sup 14/C)canavanine- and L-(guanidino-/sup 14/C)arginine-containing proteins from the hemolymph of Manduca sexta and Heliothis virescens, two highly destructive insect pests.

  17. The Role of Arginin and Uric Acid on Portulaca Grandiflora Growth under Saline Conditions.

    OpenAIRE

    Mahmoud Yagi

    2014-01-01

    Seeds of Portulaca grandiflora were soaked in distilled water, NaCl or NaCl with uric acid or arginine or in one of the amino acids. Treatment of seeds of Portulaca grandiflora with arginine and uric acid under saline conditions increased the percent of seed germination from 55% to 80%. Incorporation of these amino acids in the nutrient medium also significantly enhanced the dry weights as well as the contents of chlorophyll and ascorbic acid in the seedlings. Levels of both total amino acids...

  18. Efficacy L-Arginine In Patients With Nonalcoholic Steatohepatitis Associated With Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Oleksandr Fediv

    2015-01-01

    Full Text Available Abstract Background and Purpose Recent research in the field of hematology indicate that among the many pathogenic mechanisms of development and progression of nonalcoholic steatohepatitis NASH which occurs on the background of the metabolic syndrome an important role is played by endothelial dysfunction and violations of haemocoagulation. The aim of this research was to study the effectiveness of L-arginine as it corrects endothelial dysfunction and disorders of homeostasis haemocoagulation link in patients with NASH associated with the metabolic syndrome. Subjects and Methods 128 patients with nonalcoholic steatohepatitis associated with metabolic syndrome were examined. Some patients 63 persons received standard treatment according to national guidelines. To another group 65 patients on the background of basic therapy L-arginine hydrochloride followed by transition to oral form of L-arginine aspartate was administered. Blood levels of stable nitrogen monoxide metabolites nitrites nitrates endothelin-1 and plasma recalcification time prothrombin time thrombin time activated partial thromboplastin time fibrinogen plasma level activity of antithrombin III and coagulation factor XIII potential activity of plasminogen plasma fibrinolytic blood activity were studied. Results Originally significantly increased levels of endothelin-1 decreased after the therapy in all studied groups but more noticeable changes in the group with L-arginine appointment were observed p0.05. In the studied groups normalization of stable nitrogen monoxide metabolites after treatment was also noticed. Significant p0.05 increase in all haemocoagulation time characteristics and activities of antithrombin-III and factor XIII was found. The positive effect of L-arginine on blood fibrinolytic activity was noted. Discussion and Conclusion Combined therapy of nonalcoholic steatohepatitis associated with metabolic syndrome with a differentiated degreeal L-arginine assignment by

  19. Effect of L-arginine on neuromuscular transmission of the chick biventer cervicis muscle

    Directory of Open Access Journals (Sweden)

    B. Esfandiar

    2008-01-01

    Full Text Available biventer cervicis muscleD. Effect of L-arginine on neuromuscular transmission of the chick EsfandiarAbstractBackground and Purpose: NO is a short-lived gas molecule generated by degradation of L-arg to citrulline and by the activation of enzyme NOS Ca2+/calmodulin-dependent. There are multiple NOS isoforms that strongly are expressed in skeletal muscle, suggesting the crucial role of NO in regulating muscular metabolism and function. In this study, the effect of L-arginine was examined at the neuromuscular junction of the chick biventer cervicis muscle.Materials and Methods: Biventer cervicis muscle preparations from chick’s age of 3 weeks were set up in the organ bath. The organ bath had a vessel with volume of about 70 ml; it contained Tyrode solution aerated with oxygen and was kept at 37º C. NO levels was also measured in the chick biventer cervicis muscle homogenates, using spectrophotometer method for the direct detection of NO, nitrite and nitrate. Total nitrite (nitrite+nitrate was measured by a spectrophotometer at 540 nm after the conversion of nitrate to nitrite by copperized cadmium granules.Results: L-Arginine at 500 µg/ml, decreased twitch response to electrical stimulation, and produced rightward shift of the dose-response curve for acetylcholine or carbachol. L-arginine at 1000 µg/ml produced a strong shift to the right of the dose-response curve for acetylcholine or carbachol with a reduction in efficacy. The inhibitory effect of L-arginine on the twitch response was blocked by caffeine (200 µg/ml. NO levels were found to be significantly increased in concentrations 500 and 1000 µg/ml of L-arginine in comparison with the control group (p < 0.001.Conclusion: These findings indicate a possible role of increased NO levels in the suppressive action of L-arginie on the twitch response. In addition, the results indicate that the post-junctional antagonistic action of L-arginine is probably the result of impaired sarcoplasmic

  20. Arginine vasopressin stimulates phosphoinositide turnover in an enriched rat Leydig cell preparation

    DEFF Research Database (Denmark)

    Nielsen, J.R.; Hansen, Harald S.; Jensen, B.

    1989-01-01

    An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol and phosphatidyl......An enriched rat Leydig cell preparation was preincubated with [C]arachidonic acid. Stimulation of the cells with arginine vasopressin (AVP) (1 µM) for 2 min caused a significant increase in labelled phosphatidic acid and a significant fall in radioactivity in phosphatidylinositol and...

  1. Dietary l-Arginine Supplementation Protects Weanling Pigs from Deoxynivalenol-Induced Toxicity

    OpenAIRE

    Li Wu; Peng Liao; Liuqin He; Zemeng Feng; Wenkai Ren; Jie Yin; Jielin Duan; Tiejun Li; Yulong Yin

    2015-01-01

    This study was conducted to determine the positive effects of dietary supplementation with l-arginine (Arg) on piglets fed a deoxynivalenol (DON)-contaminated diet. A total of eighteen, 28-day-old healthy weanling pigs were randomly assigned into one of three groups: uncontaminated basal diet (control group), 6 mg/kg DON-contaminated diet (DON group) and 6 mg/kg DON + 1% l-arginine (DON + ARG group). After 21 days of Arg supplementation, piglets in the DON and DON + ARG groups were challenged...

  2. The human neonatal small intestine has the potential for arginine synthesis; developmental changes in the expression of arginine-synthesizing and -catabolizing enzymes

    Directory of Open Access Journals (Sweden)

    Ruijter Jan M

    2008-11-01

    Full Text Available Abstract Background Milk contains too little arginine for normal growth, but its precursors proline and glutamine are abundant; the small intestine of rodents and piglets produces arginine from proline during the suckling period; and parenterally fed premature human neonates frequently suffer from hypoargininemia. These findings raise the question whether the neonatal human small intestine also expresses the enzymes that enable the synthesis of arginine from proline and/or glutamine. Carbamoylphosphate synthetase (CPS, ornithine aminotransferase (OAT, argininosuccinate synthetase (ASS, arginase-1 (ARG1, arginase-2 (ARG2, and nitric-oxide synthase (NOS were visualized by semiquantitative immunohistochemistry in 89 small-intestinal specimens. Results Between 23 weeks of gestation and 3 years after birth, CPS- and ASS-protein content in enterocytes was high and then declined to reach adult levels at 5 years. OAT levels declined more gradually, whereas ARG-1 was not expressed. ARG-2 expression increased neonatally to adult levels. Neurons in the enteric plexus strongly expressed ASS, OAT, NOS1 and ARG2, while varicose nerve fibers in the circular layer of the muscularis propria stained for ASS and NOS1 only. The endothelium of small arterioles expressed ASS and NOS3, while their smooth-muscle layer expressed OAT and ARG2. Conclusion The human small intestine acquires the potential to produce arginine well before fetuses become viable outside the uterus. The perinatal human intestine therefore resembles that of rodents and pigs. Enteral ASS behaves as a typical suckling enzyme because its expression all but disappears in the putative weaning period of human infants.

  3. DNA strand break dependence on Tris and arginine scavenger concentrations under ultra-soft X-ray irradiation: the contribution of secondary arginine radicals.

    Science.gov (United States)

    Souici, Mounir; Khalil, Talat Tariq; Boulanouar, Omar; Belafrites, Abdelfettah; Mavon, Christophe; Fromm, Michel

    2016-05-01

    In this study, we used a bench-top cold-cathode ultra-soft X-ray (USX) generator to expose aqueous DNA plasmid solutions to low-LET radiation under various scavenging conditions. Single- and double-strand breaks were assessed using classic gel electrophoresis quantification of linear, circular and supercoiled plasmid DNA topologies. With their very low penetration range in water, USX can only interact with matter up to short distances, of the order of 50 μm. We validated a stirring procedure which makes it possible to expose 100 µL of aqueous samples (2 mm thick). The scavenging of OH radicals by Tris buffer was studied at ambient temperature under aerobic conditions and compared to data gathered in the literature. A very good agreement was found with the rare data dealing with DNA plasmid exposed to Al Kα photons at low temperature (T ≤ 277 K), which therefore validated the experimental procedure. The yields for DNA single-strand breaks determined during this study enabled the ratio of indirect to direct effects to be determined at 96.2%, in good agreement with the value of 97.7% stemming from a study based on γ-ray irradiation of frozen solutions of plasmid DNA. Then, arginine was used both to create a "biological-like" chemical environment around the DNA plasmids and as an OH radical scavenger, in vitro. Although arginine has a greater scavenging (protecting) power than Tris, surprisingly, it led to higher rates of strand breakage. Based on the specific binding modes of arginine to DNA, we suggest that the side effects observed are due to the presence of arginine near to, but also inside, the DNA double helix. PMID:26994994

  4. Functional variation in the arginine vasopressin 2 receptor as a modifier of human plasma von Willebrand factor levels

    DEFF Research Database (Denmark)

    Nossent, Anne Yaël; Robben, J H; Deen, P M T;

    2010-01-01

    SUMMARY OBJECTIVES: Stimulation of arginine vasopressin 2 receptor (V2R) with arginine vasopressin (AVP) results in a rise in von Willebrand factor (VWF) and factor VIII plasma levels. We hypothesized that gain-of-function variations in the V2R gene (AVPR2) would lead to higher plasma levels of V...

  5. Cationic amino acid transporters and Salmonella Typhimurium ArgT collectively regulate arginine availability towards intracellular Salmonella growth.

    Directory of Open Access Journals (Sweden)

    Priyanka Das

    Full Text Available Cationic amino acid transporters (mCAT1 and mCAT2B regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells.

  6. An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme

    NARCIS (Netherlands)

    Romagnoli, G.; Verhoeven, M.D.; Mans, R.; Fleury Rey, Y.; Bel-Rhlid, R.; Van den Broek, M.; Maleki Seifar, R.; Ten Pierick, A.; Thompson, M.; Müller, V.; Wahl, S.A.; Pronk, J.T.; Daran, J.M.

    2014-01-01

    Most available knowledge on fungal arginine metabolism is derived from studies on Saccharomyces cerevisiae, in which arginine catabolism is initiated by releasing urea via the arginase reaction. Orthologues of the S. cerevisiae genes encoding the first three enzymes in the arginase pathway were clon

  7. The microbiome, intestinal function, and arginine metabolism of healthy Indian women are different from those of American and Jamaican women

    Science.gov (United States)

    Indian women have slower arginine flux during pregnancy compared with American and Jamaican women. Arginine is a semi-essential amino acid that becomes essential during periods of rapid lean tissue deposition. It is synthesized only from citrulline, a nondietary amino acid produced mainly in the gut...

  8. The catechol-O-methyltransferase inhibitory potential of Z-vallesiachotamine by in silicoand in vitro approaches

    Directory of Open Access Journals (Sweden)

    Carolina dos Santos Passos

    2015-08-01

    Full Text Available AbstractZ-Vallesiachotamine is a monoterpene indole alkaloid that has a β-N-acrylate group in its structure. This class of compounds has already been described in different Psychotriaspecies. Our research group observed that E/Z-vallesiachotamine exhibits a multifunctional feature, being able to inhibit targets related to neurodegeneration, such as monoamine oxidase A, sirtuins 1 and 2, and butyrylcholinesterase enzymes. Aiming at better characterizing the multifunctional profile of this compound, its effect on cathecol-O-methyltransferase activity was investigated. The cathecol-O-methyltransferase activity was evaluated in vitro by a fluorescence-based method, using S-(5′-adenosyl-l-methionine as methyl donor and aesculetin as substrate. The assay optimization was performed varying the concentrations of methyl donor (S-(5′-adenosyl-l-methionine and enzyme. It was observed that the highest concentrations of both factors (2.25 U of the enzyme and 100 µM of S-(5′-adenosyl-l-methionine afforded the more reproducible results. The in vitro assay demonstrated that Z-vallesiachotamine was able to inhibit the cathecol-O-methyltransferase activity with an IC50 close to 200 µM. Molecular docking studies indicated that Z-vallesiachotamine can bind the catechol pocket of catechol-O-methyltransferase enzyme. The present work demonstrated for the first time the inhibitory properties of Z-vallesiachotamine on cathecol-O-methyltransferase enzyme, affording additional evidence regarding its multifunctional effects in targets related to neurodegenerative diseases.

  9. Application of Response Surface Methodology for Optimizing Arginine Deiminase Production Medium for Enterococcus faecium sp. GR7

    Directory of Open Access Journals (Sweden)

    Baljinder Kaur

    2013-01-01

    Full Text Available Arginine metabolism in Enterococcus faecium sp. GR7 was enhanced via arginine deiminase pathway. Process parameters including fermentation media and environmental conditions were optimized using independent experiments and response surface methodology (central composite design. Fermentation media (EAPM were optimized using independent experiments which resulted in 4-fold increase in arginine deiminase specific activity as compared to basal medium. To further enhance arginine deiminase activity in E. faecium sp. GR7 and biomass production including a five-level central composite design (CCD was employed to study the interactive effect of three-process variables. Response surface methodology suggested a quadratic model which was further validated experimentally where it showed approximately 15-fold increase in arginine metabolism (in terms of arginine deiminase specific activity over basal medium. By solving the regression equation and analyzing the response surface cartons, optimal concentrations of the media components (g/L were determined as arginine 20.0; tryptone 15.0; lactose 10.0; K2HPO4 3.0; NaCl 1.0, MnSO4 0.6 mM; Tween 80 1%; pH 6.0 for achieving specific arginine deiminase activity of 4.6 IU/mG with concomitant biomass production of 12.1 mg/L. The model is significant as the coefficient of determination (R2 was 0.87 to 0.90 for all responses. Enhanced arginine deiminase yield from E. faecium, a GRAS lactic acid bacterial strain, is desirable to explore in vitro therapeutic potential of the arginine metabolizing E. faecium sp. GR7.

  10. Impaired nitric oxide production in children with MELAS syndrome and the effect of arginine and citrulline supplementation.

    Science.gov (United States)

    El-Hattab, Ayman W; Emrick, Lisa T; Hsu, Jean W; Chanprasert, Sirisak; Almannai, Mohammed; Craigen, William J; Jahoor, Farook; Scaglia, Fernando

    2016-04-01

    Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most frequent maternally inherited mitochondrial disorders. The pathogenesis of this syndrome is not fully understood and believed to result from several interacting mechanisms including impaired mitochondrial energy production, microvasculature angiopathy, and nitric oxide (NO) deficiency. NO deficiency in MELAS syndrome is likely to be multifactorial in origin with the decreased availability of the NO precursors, arginine and citrulline, playing a major role. In this study we used stable isotope infusion techniques to assess NO production in children with MELAS syndrome and healthy pediatric controls. We also assessed the effect of oral arginine and citrulline supplementations on NO production in children with MELAS syndrome. When compared to control subjects, children with MELAS syndrome were found to have lower NO production, arginine flux, plasma arginine, and citrulline flux. In children with MELAS syndrome, arginine supplementation resulted in increased NO production, arginine flux, and arginine concentration. Citrulline supplementation resulted in a greater increase of these parameters. Additionally, citrulline supplementation was associated with a robust increase in citrulline concentration and flux and de novo arginine synthesis rate. The greater effect of citrulline in increasing NO production is due to its greater ability to increase arginine availability particularly in the intracellular compartment in which NO synthesis takes place. This study, which is the first one to assess NO metabolism in children with mitochondrial diseases, adds more evidence to the notion that NO deficiency occurs in MELAS syndrome, suggests a better effect for citrulline because of its greater role as NO precursor, and indicates that impaired NO production occurs in children as well as adults with MELAS syndrome. Thus, the initiation of treatment with NO precursors may be

  11. Arginine appearance and nitric oxide synthesis in critically ill infants can be increased with a protein-energy-enriched enteral formula

    NARCIS (Netherlands)

    C.T. de Betue (Carlijn); K.F.M. Joosten (Koen); N.E.P. Deutz (Nicolaas); A.C.E. Vreugdenhil; D.A. van Waardenburg (Dick)

    2013-01-01

    textabstractBackground: Arginine is considered an essential amino acid during critical illness in children, and supplementation of arginine has been proposed to improve arginine availability to facilitate nitric oxide (NO) synthesis. Protein-energy-enriched enteral formulas (PE-formulas) can improve

  12. Arginine-vasopressin stimulates the formation of phosphatidic acid in rat Leydig cells

    DEFF Research Database (Denmark)

    Nielsen, J.R.; Hansen, Harald S.; Jensen, B.

    1987-01-01

    Arginine-vasopressin (AVP) stimulated the formation of labelled phosphatidic acid (PA) in [C]arachidonic acid-prelabelled rat Leydig cells. After addition of 10 M AVP [C]arachidonoylphosphatidic acid reached a maximum within 2 min. The increase was dose-dependent (10-10 M). No change in labelling...

  13. Arginine-based biodegradable ether-ester polymers with low cytotoxicity as potential gene carriers.

    Science.gov (United States)

    Memanishvili, Tamar; Zavradashvili, Nino; Kupatadze, Nino; Tugushi, David; Gverdtsiteli, Marekh; Torchilin, Vladimir P; Wandrey, Christine; Baldi, Lucia; Manoli, Sagar S; Katsarava, Ramaz

    2014-08-11

    The success of gene therapy depends on safe and effective gene carriers. Despite being widely used, synthetic vectors based on poly(ethylenimine) (PEI), poly(l-lysine) (PLL), or poly(l-arginine) (poly-Arg) are not yet fully satisfactory. Thus, both improvement of established carriers and creation of new synthetic vectors are necessary. A series of biodegradable arginine-based ether-ester polycations was developed, which consists of three main classes: amides, urethanes, and ureas. Compared to that of PEI, PLL, and poly-Arg, much lower cytotoxicity was achieved for the new cationic arginine-based ether-ester polymers. Even at polycation concentrations up to 2 mg/mL, no significant negative effect on cell viability was observed upon exposure of several cell lines (murine mammary carcinoma, human cervical adenocarcinoma, murine melanoma, and mouse fibroblast) to the new polymers. Interaction with plasmid DNA yielded compact and stable complexes. The results demonstrate the potential of arginine-based ether-ester polycations as nonviral carriers for gene therapy applications. PMID:24963693

  14. Evidence for a metabolic shift of arginine metabolism in sickle cell disease

    NARCIS (Netherlands)

    Schnog, JJB; Jager, EH; van der Dijs, FPL; Duits, AJ; Moshage, H; Muskiet, FD; Muskiet, FAJ

    2004-01-01

    Over the last few years, a pivotal role has been ascribed to reduced nitric oxide (NO) availability as a contributing factor to the vaso-occlusive process of sickle cell disease. We investigated whether arginine metabolism in sickle cell patients is different from healthy controls. Blood samples wer

  15. Glutamine supplementation, citrulline production, and de novo arginine synthesis: Is there a relation?

    Science.gov (United States)

    We would like to comment on the recent publications by Buijs et al. The authors hypothesized that a parenteral supplement of glutamine stimulates citrulline formation and enhances de novo arginine synthesis. To test this hypothesis, they conducted an experiment with stable isotopes in patients under...

  16. Conformationally Constrained Peptidomimetics as Inhibitors of the Protein Arginine Methyl Transferases

    DEFF Research Database (Denmark)

    Knuhtsen, Astrid; Legrand, Baptiste; Van der Poorten, Olivier;

    2016-01-01

    Protein arginine N-methyl transferases (PRMTs) belong to a family of enzymes that modulate the epigenetic code through modifications of histones. In the present study, peptides emerging from a phage display screening were modified in the search for PRMT inhibitors through substitution with non-pr...

  17. Watermelon enhances arginine availability in an animal model of type-II diabetes

    Science.gov (United States)

    Watermelon fruit contain lycopene, a red pigment known for its ability to scavenge free hydroxyl radicals. L-Citrulline, an amino acid that acts as a vasodilator and is a precursor of L-arginine, is found in all cucurbits, but is most plentiful in watermelon. In a study with Zucker diabetic fatty ...

  18. Reduced preabsorptive insulin response in aged rats : differential effects of amphetamine and arginine-vasopressin

    NARCIS (Netherlands)

    Buwalda, B.; Strubbe, J.H.; Bohus, B.

    1991-01-01

    The experiments presented here have been designed to investigate whether the age-related attenuation of the vagal reactivity to emotional stressors and its modulation by amphetamine (Amph) or arginine-vasopressin (AVP) can be generalized for other physiological response patterns. We therefore studie

  19. [Antioxidant effects of L-arginine in the rat heart in experimental rhabdomyolysis].

    Science.gov (United States)

    Filimonenko, V P; Nikitchenko, I V; Kaliman, P A

    2009-01-01

    The glycerol administration in a dose of 1 ml of 50% water solution/100 g b. w. was found to cause considerable accumulation of the total heme in the rat blood serum that is accompanied by an increase of TBA-reactive products and protein carbonyl derivates contents and by changes of protein level. Heme entering in the heart tissue is observed in the first hours after glycerol injection. The breaches of heart antioxidant-prooxidant balance are noted in twenty-four hours: TBA-reactive products and protein carbonyl derivates accumulation, heme oxygenase and catalase activation, superoxide dismutase activity lowering and reduction of glutathione content elevation. Pretreatment by L-arginine (0.5 h before glycerol administration) almost did not affect the blood serum changes caused by glycerol injection. However in the rat heart L-arginine administration prevents from TBA-reactive products and protein carbonyl derivates accumulation and the breaches of superoxide dismutase and catalase activities. Besides L-arginine causes the ealier heme oxygenase induction. Possible mechanisms of L-arginine protective action in the rat heart under experimental rhabdomyolysis are discussed. PMID:19877424

  20. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep.

    Science.gov (United States)

    Satterfield, M Carey; Dunlap, Kathrin A; Keisler, Duane H; Bazer, Fuller W; Wu, Guoyao

    2013-09-01

    Intrauterine growth restriction is a significant problem worldwide, resulting in increased rates of neonatal morbidity and mortality, as well as increased risks for metabolic and cardiovascular disease. The present study investigated the role of maternal undernutrition and L-arginine administration on fetal growth and development. Embryo transfer was utilized to generate genetically similar singleton pregnancies. On Day 35 of gestation, ewes were assigned to receive either 50 or 100% of their nutritional requirements. Ewes received i.v. injections of either saline or L-arginine three times daily from Day 100 to Day 125. Fetal growth was assessed at necropsy on Day 125. Maternal dietary manipulation altered circulating concentrations of leptin, progesterone, and amino acids in maternal plasma. Fetal weight was reduced in nutrient-restricted ewes on Day 125 compared with 100% fed ewes. Compared with saline-treated underfed ewes, maternal L-arginine administration did not affect fetal weight but increased weight of the fetal pancreas by 32% and fetal peri-renal brown adipose tissue mass by 48%. These results indicate that L-arginine administration enhanced fetal pancreatic and brown adipose tissue development. The postnatal effects of increased pancreatic and brown adipose tissue growth warrant further study.

  1. Levels of arginine-vasopressin in cerebrospinal fluid during passive avoidance behavior in rats

    NARCIS (Netherlands)

    Kloet, E.R. de; Laczi, F.; Gaffori, O.; Fekete, M.; Wied, D. de

    1984-01-01

    The concentration of immunoreactive arginine-vasopressin (IR-AVP) was measured in the cerebrospinal fluid (CSF) during acquisition and retention of passive avoidance behavior. IR-AVP level in CSF of male Wistar rats immediately after the learning trial was increased; the rate of which was related to

  2. Mapping the twin-arginine protein translocation network of Bacillus subtilis

    NARCIS (Netherlands)

    Monteferrante, Carmine G.; MacKichan, Calum; Marchadier, Elodie; Prejean, Maria-Victoria; Carballido-Lopez, Rut; van Dijl, Jan Maarten

    2013-01-01

    Bacteria employ twin-arginine translocation (Tat) pathways for the transport of folded proteins to extracytoplasmic destinations. In recent years, most studies on bacterial Tat pathways addressed the membrane-bound TatA(B)C subunits of the Tat translocase, and the specific interactions between this

  3. Genetic examination of SETD7 and SUV39H1/H2 methyltransferases and the risk of diabetes complications in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Syreeni, Anna; El-Osta, Assam; Forsblom, Carol;

    2011-01-01

    episodes of hyperglycemia. Epigenetic modifications mediated by histone methyltransferases are associated with gene-activating events that promote enhanced expression of key proinflammatory molecules implicated in vascular injury. In this study, we investigated genetic polymorphisms of the SETD7, SUV39H1......, and SUV39H2 methyltransferases as predictors of risk for micro- and macrovascular complications in type 1 diabetes....

  4. Effect of arginase inhibition on pulmonary L-arginine metabolism in murine Pseudomonas pneumonia.

    Directory of Open Access Journals (Sweden)

    Anne Mehl

    Full Text Available RATIONALE: Infection of the lung with Pseudomonas aeruginosa results in upregulation of nitric oxide synthases (NOS and arginase expression, and both enzymes compete for L-arginine as substrate. Nitric oxide (NO production may be regulated by arginase as it controls L-arginine availability for NOS. We here studied the effect of systemic arginase inhibition on pulmonary L-arginine metabolism in Pseudomonas pneumonia in the mouse. METHODS: Mice (C57BL/6, 8-10 weeks old, female underwent direct tracheal instillation of Pseudomonas (PAO-1-coated agar beads and were treated by repeated intra-peritoneal injections of the arginase inhibitor 2(S-amino-6-boronohexanoic acid (ABH or PBS until lungs were harvested on day 3 of the infection. L-arginine metabolites were quantified using liquid chromatography-tandem mass spectrometry, NO metabolites nitrate and nitrite by Griess reagent and cytokines by ELISA. RESULTS: NO metabolite concentrations (48.5±2.9 vs. 10.9±2.3 µM, p<0.0001, as well as L-ornithine (29.6±1.7 vs 2.3±0.4 µM, p<0.0001, the product of arginase activity, were increased in Pseudomonas infected lungs compared to naïve controls. Concentrations of the NOS inhibitor asymmetric dimethylarginine (ADMA were also increased (0.44±0.02 vs. 0.16±0.01 µM, p<0.0001. Arginase inhibition in the infected animals resulted in a significant decrease in L-ornithine (14.6±1.6 µM, p<0.0001 but increase in L-arginine concentration (p<0.001, L-arginine/ADMA ratio (p<0.001, L-arginine availability for NOS (p<0.001, and NO metabolite concentrations (67.3±5.7 µM, p<0.05. Arginase inhibitor treatment also resulted in an increase in NO metabolite levels in animals following intratracheal injection of LPS (p = 0.015. Arginase inhibition was not associated with an increase in inflammatory markers (IFN-γ, IL-1β, IL-6, MIP-2, KC or TNF-α in lung. Concentrations of the L-ornithine-dependent polyamines putrescine, spermidine and spermine were increased

  5. 2'-O methylation of internal adenosine by flavivirus NS5 methyltransferase.

    Directory of Open Access Journals (Sweden)

    Hongping Dong

    Full Text Available RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2'-O methyltransferase activities that are required for the formation of 5' type I cap (m(7GpppAm of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4 specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2'-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N⁶-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2'-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2'-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2'-O-methyladenosine. The 2'-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2'-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2'-O methylation of internal adenosine of

  6. Furanocoumarin biosynthesis in Ammi majus L. Cloning of bergaptol O-methyltransferase.

    Science.gov (United States)

    Hehmann, Marc; Lukacin, Richard; Ekiert, Halina; Matern, Ulrich

    2004-03-01

    Plants belonging to the Apiaceae or Rutaceae accumulate methoxylated psoralens, such as bergapten or xanthotoxin, as the final products of their furanocoumarin biosynthesis, and the rate of accumulation depends on environmental and other cues. Distinct O-methyltransferase activities had been reported to methylate bergaptol to bergapten and xanthotoxol to xanthotoxin, from induced cell cultures of Ruta graveolens, Petroselinum crispum and Ammi majus. Bergaptol 5-O-methyltransferase (BMT) cDNA was cloned from dark-grown Ammi majus L. cells treated with a crude fungal elicitor. The translated polypeptide of 38.7 kDa, composed of 354 amino acids, revealed considerable sequence similarity to heterologous caffeic acid 3-O-methyltransferases (COMTs). For homologous comparison, COMT was cloned from A. majus plants and shown to share 64% identity and about 79% similarity with the BMT sequence at the polypeptide level. Functional expression of both enzymes in Escherichia coli revealed that the BMT activity in the bacterial extracts was labile and rapidly lost on purification, whereas the COMT activity remained stable. Furthermore, the recombinant AmBMT, which was most active in potassium phosphate buffer of pH 8 at 42 degrees C, showed narrow substrate specificity for bergaptol (Km SAM 6.5 micro m; Km Bergaptol 2.8 micro m) when assayed with a variety of substrates, including xanthotoxol, while the AmCOMT accepted 5-hydroxyferulic acid, esculetin and other substrates. Dark-grown A. majus cells expressed significant BMT activity which nevertheless increased sevenfold within 8 h upon the addition of elicitor and reached a transient maximum at 8-11 h, whereas the COMT activity was rather low and did not respond to the elicitation. Complementary Northern blotting revealed that the BMT transcript abundance increased to a maximum at 7 h, while only a weak constitutive signal was observed for the COMT transcript. The AmBMT sequence thus represents a novel database accession

  7. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  8. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yuan [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); Wu, Keqiang [Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan (China); Dhaubhadel, Sangeeta [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada); An, Lizhe, E-mail: lizhean@lzu.edu.cn [Key Laboratory of Arid and Grassland Agroecology, Ministry of Education, School of Life Science, Lanzhou University, Lanzhou 730000 (China); Tian, Lining, E-mail: tianl@agr.gc.ca [Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON, Canada N5V4T3 (Canada)

    2010-05-28

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  9. Arabidopsis DNA methyltransferase AtDNMT2 associates with histone deacetylase AtHD2s activity

    International Nuclear Information System (INIS)

    DNA methyltransferase2 (DNMT2) is always deemed to be enigmatic, because it contains highly conserved DNA methyltransferase motifs but lacks the DNA methylation catalytic capability. Here we show that Arabidopsis DNA methyltransferase2 (AtDNMT2) is localized in nucleus and associates with histone deacetylation. Bimolecular fluorescence complementation and pull-down assays show AtDNMT2 interacts with type-2 histone deacetylases (AtHD2s), a unique type of histone deacetylase family in plants. Through analyzing the expression of AtDNMT2: ss-glucuronidase (GUS) fusion protein, we demonstrate that AtDNMT2 has the ability to repress gene expression at transcription level. Meanwhile, the expression of AtDNMT2 gene is altered in athd2c mutant plants. We propose that AtDNMT2 possibly involves in the activity of histone deacetylation and plant epigenetic regulatory network.

  10. Archease from Pyrococcus abyssi improves substrate specificity and solubility of a tRNA m5C methyltransferase

    DEFF Research Database (Denmark)

    Auxilien, Sylvie; El Khadali, Fatima; Rasmussen, Anette;

    2007-01-01

    Members of the archease superfamily of proteins are represented in all three domains of life. Archease genes are generally located adjacent to genes encoding proteins involved in DNA or RNA processing. Archease have therefore been predicted to play a modulator or chaperone role in selected steps...... of DNA or RNA metabolism, although the roles of archeases remain to be established experimentally. Here we report the function of one of these archeases from the hyperthermophile Pyrococcus abyssi. The corresponding gene (PAB1946) is located in a bicistronic operon immediately upstream from a second open...... reading frame (PAB1947), which is shown here to encode a tRNA m(5)C methyltransferase. In vitro, the purified recombinant methyltransferase catalyzes m(5)C formation at several cytosines within tRNAs with preference for C49. The specificity of the methyltransferase is increased by the archease...

  11. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri.

    Science.gov (United States)

    Teixeira, Januana S; Seeras, Arisha; Sanchez-Maldonado, Alma Fernanda; Zhang, Chonggang; Su, Marcia Shu-Wei; Gänzle, Michael G

    2014-09-01

    This study aimed to determine whether glutamine deamidation improves acid resistance of Lactobacillus reuteri, and to assess whether arginine, glutamine, and glutamate-mediated acid resistance are redundant or complementary mechanisms of acid resistance. Three putative glutaminase genes, gls1, gls2, and gls3, were identified in L. reuteri 100-23. All three genes were expressed during growth in mMRS and wheat sourdough. L. reuteri consistently over-expressed gls3 and the glutamate decarboxylase gadB. L. reuteri 100-23ΔgadB over-expressed gls3 and the arginine deiminase gene adi. Analysis of the survival of L. reuteri in acidic conditions revealed that arginine conversion is effective at pH of 3.5 while glutamine or glutamate conversion were effective at pH of 2.5. Arginine conversion increased the pHin but not ΔΨ; glutamate decarboxylation had only a minor effect on the pHin but increased the ΔΨ. This study demonstrates that glutamine deamidation increases the acid resistance of L. reuteri independent of glutamate decarboxylase activity. Arginine and glutamine/glutamate conversions confer resistance to lactate at pH of 3.5 and phosphate at pH of 2.5, respectively. Knowledge of L. reuteri's acid resistance improves the understanding of the adaptation of L. reuteri to intestinal ecosystems, and facilitates the selection of probiotic and starter cultures.

  12. Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis.

    Science.gov (United States)

    Lindgren, J K; Thomas, V C; Olson, M E; Chaudhari, S S; Nuxoll, A S; Schaeffer, C R; Lindgren, K E; Jones, J; Zimmerman, M C; Dunman, P M; Bayles, K W; Fey, P D

    2014-06-01

    Allelic replacement mutants were constructed within arginine deiminase (arcA1 and arcA2) to assess the function of the arginine deiminase (ADI) pathway in organic acid resistance and biofilm formation of Staphylococcus epidermidis 1457. A growth-dependent acidification assay (pH ∼5.0 to ∼5.2) determined that strain 1457 devoid of arginine deiminase activity (1457 ΔADI) was significantly less viable than the wild type following depletion of glucose and in the presence of arginine. However, no difference in viability was noted for individual 1457 ΔarcA1 (native) or ΔarcA2 (arginine catabolic mobile element [ACME]-derived) mutants, suggesting that the native and ACME-derived ADIs are compensatory in S. epidermidis. Furthermore, flow cytometry and electron paramagnetic resonance spectroscopy results suggested that organic acid stress resulted in oxidative stress that could be partially rescued by the iron chelator dipyridyl. Collectively, these results suggest that formation of hydroxyl radicals is partially responsible for cell death via organic acid stress and that ADI-derived ammonia functions to counteract this acid stress. Finally, static biofilm assays determined that viability, ammonia synthesis, and pH were reduced in strain 1457 ΔADI following 120 h of growth in comparison to strain 1457 and the arcA1 and arcA2 single mutants. It is hypothesized that ammonia synthesis via the ADI pathway is important to reduce pH stress in specific microniches that contain high concentrations of organic acids. PMID:24727224

  13. Converting the yeast arginine can1 permease to a lysine permease.

    Science.gov (United States)

    Ghaddar, Kassem; Krammer, Eva-Maria; Mihajlovic, Natalija; Brohée, Sylvain; André, Bruno; Prévost, Martine

    2014-03-01

    Amino acid uptake in yeast cells is mediated by about 16 plasma membrane permeases, most of which belong to the amino acid-polyamine-organocation (APC) transporter family. These proteins display various substrate specificity ranges. For instance, the general amino acid permease Gap1 transports all amino acids, whereas Can1 and Lyp1 catalyze specific uptake of arginine and lysine, respectively. Although Can1 and Lyp1 have different narrow substrate specificities, they are close homologs. Here we investigated the molecular rules determining the substrate specificity of the H(+)-driven arginine-specific permease Can1. Using a Can1-Lyp1 sequence alignment as a guideline and a three-dimensional Can1 structural model based on the crystal structure of the bacterial APC family arginine/agmatine antiporter, we introduced amino acid substitutions liable to alter Can1 substrate specificity. We show that the single substitution T456S results in a Can1 variant transporting lysine in addition to arginine and that the combined substitutions T456S and S176N convert Can1 to a Lyp1-like permease. Replacement of a highly conserved glutamate in the Can1 binding site leads to variants (E184Q and E184A) incapable of any amino acid transport, pointing to a potential role for this glutamate in H(+) coupling. Measurements of the kinetic parameters of arginine and lysine uptake by the wild-type and mutant Can1 permeases, together with docking calculations for each amino acid in their binding site, suggest a model in which residues at positions 176 and 456 confer substrate selectivity at the ligand-binding stage and/or in the course of conformational changes required for transport.

  14. The effect of L-Arginine on the brain tissue of stressed rats

    Directory of Open Access Journals (Sweden)

    Batoul Ebadi

    2010-01-01

    Full Text Available   Abstract  Introduction: This study was conducted to determine the possible beneficial results of L-arginine on prefrontal cortex of rats which impressed by immobilization stress to define the synchronous impression of stress and nitric oxide (NO on evolution of prefrontal cortex of rats after birth. Methods: Forty-eight one month, male Wistar rats were divided into two groups: stressed and non-stressed. L-Arginine (200 mg/kg as a NO synthase (NOS inducer and L-NAME (2O mg/kg were injected intraperitonealy (IP and 7- nitroindazde (25 mg/kg as non-specific was injected subcutaneously (S.C. for 4 weeks. The kind of stress was immobilization for 4 weeks, every other day. The brain was removed after this period and each brain divided into two parts in a coronal section manner. Anterior part used for histological studies with H&E staining and posterior part used for measurement of NO production using spectrophotometer at 540 nm wavelengh. Results: Statistical analysis of microscopic and light microscopic finding showed that thickness of prefrontal cortex and NO production were significantly decreased in stressed rats and especially in groups which received 7- nitroindazole and L-NAME and L-arginine could reverse these results. Discussion: According to this research, we could say that L-arginine decreases the cortical damages in stressed rats and 7-nitroindazole and L-NAME increase this damage in non-stressed group. Although in non stressed groups, L-arginine, L-NAME and 7- nitroindazole were all non-protective and damaging.

  15. Supplemental arginine above the requirement during suckling causes obesity and insulin resistance in rats.

    Science.gov (United States)

    Otani, Lila; Mori, Tomomi; Koyama, Ayaka; Takahashi, Shin-Ichiro; Kato, Hisanori

    2016-06-01

    Nutrition in early life is important in determining susceptibility to adult obesity, and arginine may promote growth acceleration in infants. We hypothesized that maternal arginine supplementation may promote growth in their pups and contribute to obesity and alteration of the metabolic system in later life. Dams and pups of Wistar rats were given a normal diet (15% protein) as a control (CN) or a normal diet with 2% arginine (ARG). Altered profiles of free amino acids in breast milk were observed in that the concentrations of threonine and glycine were lower in the ARG dams compared with the CN dams. The offspring of the CN and ARG dams were further subdivided into normal-diet (CN-CN and ARG-CN) groups and a high fat-diet groups (CN-HF and ARG-HF). In response to the high fat-diet feeding, the visceral fat deposits were significantly increased in the ARG-HF group (although not compared with the CN-HF group); no difference was observed between the CN-CN and ARG-CN groups. The blood glucose and insulin levels after glucose loading were significantly higher in the ARG-HF group compared with the CN-HF group. The results suggest that the offspring of dams supplemented with arginine during lactation acquired increased susceptibility to a high-fat diet, resulting in visceral obesity and insulin resistance. The lower supply of threonine and glycine to pups may be one of the contributing causes to the programming of lifelong obesity risk in offspring. Our findings also indicated that maternal arginine supplementation during suckling causes obesity and insulin resistance in rats. PMID:27188903

  16. Structural Basis for Binding of RNA and Cofactor by a KsgA Methyltransferase

    OpenAIRE

    Tu, Chao; Tropea, Joseph E.; Austin, Brian P; Court, Donald L.; Waugh, David S.; Ji, Xinhua

    2009-01-01

    Among methyltransferases, KsgA and the reaction it catalyzes are conserved throughout evolution. However, the specifics of substrate recognition by the enzyme remain unknown. Here, we report structures of Aquifex aeolicus KsgA, in its ligand-free form, in complex with RNA and in complex with both RNA and S-adenosylhomocysteine (SAH, reaction product of cofactor S-adenosylmethionine), providing the first pieces of structural information on KsgA-RNA and KsgA-SAH interactions. Moreover, the stru...

  17. Juvenile hormone acid methyltransferase: A key regulatory enzyme for insect metamorphosis

    OpenAIRE

    Shinoda, Tetsuro; Itoyama, Kyo

    2003-01-01

    Juvenile hormone (JH) acid methyltransferase (JHAMT) is an enzyme that converts JH acids or inactive precursors of JHs to active JHs at the final step of JH biosynthesis pathway in insects. By fluorescent mRNA differential display, we have cloned a cDNA encoding JHAMT from the corpora allata (CA) of the silkworm, Bombyx mori (BmJHAMT). The BmJHAMT cDNA encodes an ORF of 278 aa with a calculated molecular mass of 32,544 Da. The predicted amino acid sequence contains a conserved S-adenosyl-l-me...

  18. EmtA, a rRNA methyltransferase conferring high-level evernimicin resistance

    DEFF Research Database (Denmark)

    Mann, P. A.; Xiong, L.; Mankin, A. S.;

    2001-01-01

    Enterococcus faecium strain 9631355 was isolated from animal sources on the basis of its resistance to the growth promotant avilamycin. The strain also exhibited high-level resistance to evernimicin, a drug undergoing evaluation as a therapeutic agent in humans. Ribosomes from strain 9631355...... exhibited a dramatic reduction in evernimicin binding, shown by both cell-free translation assays and direct-binding assays. The resistance determinant was cloned from strain 9631355; sequence alignments suggested it was a methyltransferase and therefore it was designated emtA for evernimicin...

  19. O6-Methylguanine-DNA methyltransferase deficiency in developing brain: Implications for brain tumorigenesis

    OpenAIRE

    Bobola, Michael S.; Blank, A.; Berger, Mitchel S.; Silber, John R

    2007-01-01

    The DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) is a cardinal defense against the mutagenic and carcinogenic effects of alkylating agents. We have reported evidence that absence of detectable MGMT activity (MGMT− phenotype) in human brain is a predisposing factor for primary brain tumors that affects ca. 12% of individuals [J.R. Silber, et. al. Proc. Natl. Acad. Sci. USA 93 (1996) 6941–6946]. We report here that MGMT− phenotype in the brain of children and adults, and the...

  20. Verminderte Expression von O6-Methylguanin-DNA-Methyltransferase bei Gliomen durch Promotormethylierung

    OpenAIRE

    Nickolay, Carla

    2009-01-01

    Pro Jahr erkranken 10 von 100 000 Menschen an einem malignen Hirntumor. Die Prognose ist schlecht. Die Therapie schließt Chirurgie, Bestrahlung und Chemotherapie ein. Das DNA-Reparaturenzym O6-Methylguanin-DNA-Methyltransferase, MGMT, erkennt DNA-Schäden, die durch alkylierende Substanzen wie Temozolomid entstanden sind. Übermäßige Methylierung der Promotorregion von MGMT führt zum Funktionsverlust des Enzyms. Dieser kann zu einer erhöhten Sensibilität für Alkylanzien führen. In der Therapie ...

  1. The DmtA methyltransferase contributes to Aspergillus flavus conidiation, sclerotial production, aflatoxin biosynthesis and virulence

    OpenAIRE

    Kunlong Yang; Linlin Liang; Fanlei Ran; Yinghang Liu; Zhenguo Li; Huahui Lan; Peili Gao; Zhenhong Zhuang; Feng Zhang; Xinyi Nie; Shimuye Kalayu Yirga; Shihua Wang

    2016-01-01

    DNA methylation is essential for epigenetic regulation of gene transcription and development in many animals, plants and fungi. We investigated whether DNA methylation plays a role in the development and secondary metabolism of Aspergillus flavus, identified the DmtA methyltransferase from A. flavus, and produced a dmtA knock-out mutant by replacing the dmtA coding sequence with the pyrG selectable marker. The A. flavus dmtA null mutant lines produced white fluffy mycelium in liquid medium, a...

  2. Inhibition of SUV39H1 Methyltransferase Activity by DBC1*

    OpenAIRE

    Li, Zhenyu; Chen, Lihong; Kabra, Neha; Wang, Chuangui; Fang, Jia; Chen, Jiandong

    2009-01-01

    SUV39H1 is a histone H3K9-specific methyltransferase important for heterochromatin formation, regulation of gene expression, and induction of senescence in premalignant cells. SUV39H1 forms a complex with SirT1, and its activity is stimulated by SirT1 binding. Here we present evidence that the product of the DBC1 (deleted in breast cancer 1) gene disrupts the SUV39H1-SirT1 complex. Furthermore, DBC1 binds to the SUV39H1 catalytic domain and inhibits its ability to ...

  3. Histone methyltransferase Suv39h1 represses MyoD-stimulated myogenic differentiation

    OpenAIRE

    Mal, Asoke K.

    2006-01-01

    Suv39h1 is a histone H3 lysine-9 (H3-K9) specific methyltransferase (HMT) that is associated with gene silencing through chromatin modification. The transition from proliferation into differentiation of muscle cell is accompanied by transcriptional activation of previously silent muscle genes. I report Suv39h1 interaction with myogenic regulator MyoD in proliferating muscle cells and its HMT activity, which is associated with MyoD, diminishes as differentiation proceeds. The Suv39h1–MyoD comp...

  4. Crystal structure of phosphoethanolamine methyltransferase from Plasmodium falciparum in complex with amodiaquine

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soon Goo; Alpert, Tara D.; Jez, Joseph M. (WU)

    2012-07-17

    Phosphoethanolamine N-methyltransferase (PMT) is essential for phospholipid biogenesis in the malarial parasite Plasmodium falciparum. PfPMT catalyzes the triple methylation of phosphoethanolamine to produce phosphocholine, which is then used for phosphatidylcholine synthesis. Here we describe the 2.0 {angstrom} resolution X-ray crystal structure of PfPMT in complex with amodiaquine. To better characterize inhibition of PfPMT by amodiaquine, we determined the IC{sub 50} values of a series of aminoquinolines using a direct radiochemical assay. Both structural and functional analyses provide a possible approach for the development of new small molecule inhibitors of PfPMT.

  5. Queen pheromones modulate DNA methyltransferase activity in bee and ant workers.

    Science.gov (United States)

    Holman, Luke; Trontti, Kalevi; Helanterä, Heikki

    2016-01-01

    DNA methylation is emerging as an important regulator of polyphenism in the social insects. Research has concentrated on differences in methylation between queens and workers, though we hypothesized that methylation is involved in mediating other flexible phenotypes, including pheromone-dependent changes in worker behaviour and physiology. Here, we find that exposure to queen pheromone affects the expression of two DNA methyltransferase genes in Apis mellifera honeybees and in two species of Lasius ants, but not in Bombus terrestris bumblebees. These results suggest that queen pheromones influence the worker methylome, pointing to a novel proximate mechanism for these key social signals. PMID:26814223

  6. DNA Methyltransferase Gene dDnmt2 and Longevity of Drosophila

    Institute of Scientific and Technical Information of China (English)

    Meng-JauLin; Lin-YaTang; M.NarsaReddy; C.K.JamesShen

    2005-01-01

    The DNA methylation program of the fruit fly Drosophila melanogaster is carried out by the single DNA methyltransferase gene dDnmt2, the function of which is unknown before. We present evidence that intactness of the gene is required for maintenance of the normal life span of the fruit flies. In contrast, overexpression of dDnmt2 could extend Drosophila life span. The study links the Drosophila DNA methylation program with the small heatshock proteins and longevity/aging and has interesting implication on the eukaryotic DNA methyl-ation programs in general.

  7. Histone methyltransferase G9a contributes to H3K27 methylation in vivo

    Institute of Scientific and Technical Information of China (English)

    Hui Wu; Bing Zhu; Xiuzhen Chen; Jun Xiong; Yingfeng Li; Hong Li; Xiaojun Ding; Sheng Liu; She Chen; Shaorong Gao

    2011-01-01

    @@ Dear Editor, Histone modifications play a vital role in the conformation and function of their associated chromatin templates[1].Histone H3K27 methylation mediated by the PRC2 complex is critical for transcriptional regulation,Polycomb silencing,Drosophila segmentation,mammalian X inactivation and cancer[1].Interestingly,H3K27me1(H3 mono-methylated at residue K27)levels in vivo remain unaffected after PRC2 disruption[2,3],which is an indication for the existence of other contributing histone methyltransferase(s)to H3K27me1.

  8. DNA methyltransferase-dependent transcription of the phage Mu mom gene.

    OpenAIRE

    Hattman, S

    1982-01-01

    The phage Mu mom gene controls an unusual DNA modification. Expression of the mom function requires an active host (dam+) DNA adenine methylase [S-adenosyl-L-methionine:DNA (6-aminopurine)-methyltransferase]; in dam- hosts, Mu development is normal except that the viral DNA does not undergo the mom modification. The present communication compares transcription of the mom gene in dam+ versus dam- cells. 32P-labeled probes were prepared by nick-translation of a purified mom gene-containing rest...

  9. Discovery and development of DNA methyltransferase inhibitors using in silico approaches.

    Science.gov (United States)

    Medina-Franco, José L; Méndez-Lucio, Oscar; Dueñas-González, Alfonso; Yoo, Jakyung

    2015-05-01

    Multiple strategies have evolved during the past few years to advance epigenetic compounds targeting DNA methyltransferases (DNMTs). Significant progress has been made in HTS, lead optimization and determination of 3D structures of DNMTs. In light of the emerging concept of epi-informatics, computational approaches are employed to accelerate the development of DNMT inhibitors helping to screen chemical databases, mine the DNMT-relevant chemical space, uncover SAR and design focused libraries. Computational methods also synergize with natural-product-based drug discovery and drug repurposing. Herein, we survey the latest developments of in silico approaches to advance epigenetic drug and probe discovery targeting DNMTs.

  10. Crystal structure of TDRD3 and methyl-arginine binding characterization of TDRD3, SMN and SPF30.

    Directory of Open Access Journals (Sweden)

    Ke Liu

    Full Text Available SMN (Survival motor neuron protein was characterized as a dimethyl-arginine binding protein over ten years ago. TDRD3 (Tudor domain-containing protein 3 and SPF30 (Splicing factor 30 kDa were found to bind to various methyl-arginine proteins including Sm proteins as well later on. Recently, TDRD3 was shown to be a transcriptional coactivator, and its transcriptional activity is dependent on its ability to bind arginine-methylated histone marks. In this study, we systematically characterized the binding specificity and affinity of the Tudor domains of these three proteins quantitatively. Our results show that TDRD3 preferentially recognizes asymmetrical dimethylated arginine mark, and SMN is a very promiscuous effector molecule, which recognizes different arginine containing sequence motifs and preferentially binds symmetrical dimethylated arginine. SPF30 is the weakest methyl-arginine binder, which only binds the GAR motif sequences in our library. In addition, we also reported high-resolution crystal structures of the Tudor domain of TDRD3 in complex with two small molecules, which occupy the aromatic cage of TDRD3.

  11. Arginine methylation of REF/ALY promotes efficient handover of mRNA to TAP/NXF1.

    Science.gov (United States)

    Hung, Ming-Lung; Hautbergue, Guillaume M; Snijders, Ambrosius P L; Dickman, Mark J; Wilson, Stuart A

    2010-06-01

    The REF/ALY mRNA export adaptor binds TAP/NXF1 via an arginine-rich region, which overlaps with its RNA-binding domain. When TAP binds a REF:RNA complex, it triggers transfer of the RNA from REF to TAP. Here, we have examined the effects of arginine methylation on the activities of the REF protein in mRNA export. We have mapped the arginine methylation sites of REF using mass spectrometry and find that several arginines within the TAP and RNA binding domains are methylated in vivo. However, arginine methylation has no effect on the REF:TAP interaction. Instead, arginine methylation reduces the RNA-binding activity of REF in vitro and in vivo. The reduced RNA-binding activity of REF in its methylated state is essential for efficient displacement of RNA from REF by TAP in vivo. Therefore, arginine methylation fine-tunes the RNA-binding activity of REF such that the RNA-protein interaction can be readily disrupted by export factors further down the pathway.

  12. Preventive oral supplementation with glutamine and arginine has beneficial effects on the intestinal mucosa and inflammatory cytokines in endotoxemic rats.

    Science.gov (United States)

    Zhou, Xihong; Wu, Xin; Yin, Yulong; Zhang, Cui; He, Liuqin

    2012-08-01

    The objective of this study was to evaluate the effect of oral supplementation with a combination of arginine and glutamine on the intestinal mucosa and inflammatory cytokines of lipopolysaccharide (LPS)-induced adult rats. Fifty Sprague-Dawley rats (average weight of 185 ± 15 g) were randomly divided into five groups: control group A (CA) and control group B (CB), both orally supplemented with 0.9% saline; group Arg, supplemented with 300 mg/kg day(-1) arginine; group Gln, supplemented with 300 mg/kg day(-1) glutamine; group AG, supplemented with 150 mg/kg day(-1) arginine and 150 mg/kg day(-1) glutamine. The experiment lasted for 2 weeks. Food intake and body weight were measured during the experiment. At 10.00 h of day 15, animals were injected with 4 mg/kg LPS (group CB, Arg, Gln, and AG) or sterile saline (group CA) after supplementation. Then at 14.00 h, all animals were killed and blood and tissue collected. The results showed that compared with group CB, arginine concentration tended to be increased (P > 0.05) in group Arg and AG, while there was no significant difference in glutamine concentration among the groups challenged with LPS. Oral supplementation with arginine or/and glutamine mitigated morphology impairment (lower villus height, P Arginine only significantly decreased TNF-α mRNA abundance in the ileum, while glutamine significantly decreased both TNF-α and IL-10 mRNA in the ileum. A combination of arginine and glutamine significantly decreased TNF-α and IL-1β mRNA abundance in both the jejunum and ileum, while they also significantly decreased anti-inflammatory IL-10 in the ileum. These results revealed that an oral supply of combined arginine and glutamine had more favorable effects on the intestinal mucosa and inflammatory cytokines than a supply of arginine or glutamine alone.

  13. Effect of arginase II on L-arginine depletion and cell growth in murine cell lines of renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Patterson John R

    2008-09-01

    Full Text Available Abstract Background L-arginine is the common substrate for the two isoforms of arginase. Arginase I, highly expressed in the liver and arginase II mainly expressed in the kidney. Arginase I-producing myeloid derived suppressor cells have been shown to inhibit T-cell function by the depletion of L-arginine. On the other hand, arginase II has been detected in patients with cancer and is thought to metabolize L-arginine to L-ornithine needed to sustain rapid tumor growth; however its role in L-arginine depletion is unclear. Thus, in tumor biology, L-arginine metabolism may play a dual role in tumor growth and in the induction of T cell dysfunction. Therefore, we studied in murine renal cell carcinoma (RCC cell lines, the effect of arginase II on tumor cell proliferation and L-arginine depletion. The effect of arginase inhibitors on cell proliferation was also tested. Methods Three murine renal cell carcinoma (mRCC cell lines were tested for the presence of arginase. nor-NOHA, an arginase inhibitor was used to substantiate the effect of arginase on cell growth and L-arginine depletion. Amino acid levels were tested by HPLC. Results Our results show that mRCC cell lines express only arginase II and were able to deplete L-arginine from the medium. Cell growth was independent of the amount of arginase activity expressed by the cells. nor-NOHA significantly (P = 0.01 reduced arginase II activity and suppressed cell growth in cells exhibiting high arginase activity. The depletion of L-arginine by mRCC induced the decrease expression of CD3ζ a key element for T-cell function. Conclusion The results of this study show for the first time that arginase II produced by RCC cell lines depletes L-arginine resulting in decreased expression of CD3ζ. These results indicate that RCC cell lines expressing arginase II can modulate the L-arginine metabolic pathway to regulate both cell growth and T-cell function. Blocking arginase may lead to a decrease in RCC cell

  14. Inversion of allosteric effect of arginine on N-acetylglutamate synthase, a molecular marker for evolution of tetrapods

    Directory of Open Access Journals (Sweden)

    Cabrera-Luque Juan

    2008-09-01

    Full Text Available Abstract Background The efficient conversion of ammonia, a potent neurotoxin, into non-toxic metabolites was an essential adaptation that allowed animals to move from the aquatic to terrestrial biosphere. The urea cycle converts ammonia into urea in mammals, amphibians, turtles, snails, worms and many aquatic animals and requires N-acetylglutamate (NAG, an essential allosteric activator of carbamylphosphate synthetase I (CPSI in mammals and amphibians, and carbamylphosphate synthetase III (CPSIII in fish and invertebrates. NAG-dependent CPSI and CPSIII catalyze the formation of carbamylphosphate in the first and rate limiting step of ureagenesis. NAG is produced enzymatically by N-acetylglutamate synthase (NAGS, which is also found in bacteria and plants as the first enzyme of arginine biosynthesis. Arginine is an allosteric inhibitor of microbial and plant NAGS, and allosteric activator of mammalian NAGS. Results Information from mutagenesis studies of E. coli and P. aeruginosa NAGS was combined with structural information from the related bacterial N-acetylglutamate kinases to identify four residues in mammalian NAGS that interact with arginine. Substitutions of these four residues were engineered in mouse NAGS and into the vertebrate-like N-acetylglutamate synthase-kinase (NAGS-K of Xanthomonas campestris, which is inhibited by arginine. All mutations resulted in arginine losing the ability to activate mouse NAGS, and inhibit X. campestris NAGS-K. To examine at what point in evolution inversion of arginine effect on NAGS occur, we cloned NAGS from fish and frogs and examined the arginine response of their corresponding proteins. Fish NAGS were partially inhibited by arginine and frog NAGS were activated by arginine. Conclusion Difference in arginine effect on bacterial and mammalian NAGS most likely stems from the difference in the type of conformational change triggered by arginine binding to these proteins. The change from arginine

  15. Crystallization and preliminary X-ray crystallographic studies of O-methyltransferase from Anabaena PCC 7120

    International Nuclear Information System (INIS)

    The O-methyltransferase (OMT) from the Anabaena PCC 7120 has been overexpressed in a soluble form in E. coli, purified and crystallized. The crystals belonged to space group C2221 and diffracted to 2.4 Å resolution. O-Methyltransferase (OMT) is a ubiquitous enzyme that exists in bacteria, plants and humans and catalyzes a methyl-transfer reaction using S-adenosyl-l-methionine as a methyl donor and a wide range of phenolics as acceptors. To investigate the structure and function of OMTs, omt from Anabaena PCC 7120 was cloned into expression vector pET21a and expressed in a soluble form in Escherichia coli strain BL21 (DE3). The recombinant OMT protein was purified to homogeneity using a two-step strategy. Crystals of OMT that diffracted to a resolution of 2.4 Å were obtained using the hanging-drop vapour-diffusion method. The crystals belonged to space group C2221, with unit-cell parameters a = 131.620, b = 227.994, c = 150.777 Å, α = β = γ = 90°. There are eight molecules per asymmetric unit

  16. PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia.

    Science.gov (United States)

    Cole, Christopher B; Verdoni, Angela M; Ketkar, Shamika; Leight, Elizabeth R; Russler-Germain, David A; Lamprecht, Tamara L; Demeter, Ryan T; Magrini, Vincent; Ley, Timothy J

    2016-01-01

    The DNA methyltransferases DNMT3A and DNMT3B are primarily responsible for de novo methylation of specific cytosine residues in CpG dinucleotides during mammalian development. While loss-of-function mutations in DNMT3A are highly recurrent in acute myeloid leukemia (AML), DNMT3A mutations are almost never found in AML patients with translocations that create oncogenic fusion genes such as PML-RARA, RUNX1-RUNX1T1, and MLL-AF9. Here, we explored how DNMT3A is involved in the function of these fusion genes. We used retroviral vectors to express PML-RARA, RUNX1-RUNX1T1, or MLL-AF9 in bone marrow cells derived from WT or DNMT3A-deficient mice. Additionally, we examined the phenotypes of hematopoietic cells from Ctsg-PML-RARA mice, which express PML-RARA in early hematopoietic progenitors and myeloid precursors, with or without DNMT3A. We determined that the methyltransferase activity of DNMT3A, but not DNMT3B, is required for aberrant PML-RARA-driven self-renewal ex vivo and that DNMT3A is dispensable for RUNX1-RUNX1T1- and MLL-AF9-driven self-renewal. Furthermore, both the PML-RARA-driven competitive transplantation advantage and development of acute promyelocytic leukemia (APL) required DNMT3A. Together, these findings suggest that PML-RARA requires DNMT3A to initiate APL in mice. PMID:26595813

  17. X-ray crystal structure of N-6 adenine deoxyribose nucleic acid methyltransferase from Streptococcus pneumoniae

    Science.gov (United States)

    Tran, Phidung Hong

    X-ray diffraction by using resonant anomalous scattering has become a popular tool for solving crystal structures in the last ten years with the expanded availability of tunable synchrotron radiation for protein crystallography. Mercury atoms were used for phasing. The crystal structure of N-6 deoxyribose nucleic acid methyltransferase from Streptoccocus pneumoniae (DpnM) was solved by using the Multiple Anomalous Diffraction technique. The crystal structure reveals the formation of mercaptide between the mercury ion and the thiol group on the cysteine amino acid in a hydrophobic environment. The crystal structure contains the bound ligand, S- adenosyl-l-methionine on the surface of the concave opening. The direction of the β-strands on the beta sheets are identical to other solved methyltransferases. The highly conserved motifs, DPPY and the FxGxG, are found to be important in ligand binding and possibly in methyl group transfer. The structure has a concave cleft with an opening on the order of 30 Å that can accommodate a DNA duplex. By molecular modelling coupled to sequence alignment, two other highly conserved residues Arg21 and Gly19 are found to be important in catalysis.

  18. Regulation of DNA replication and chromosomal polyploidy by the MLL-WDR5-RBBP5 methyltransferases

    Science.gov (United States)

    Lu, Fei; Wu, Xiaojun; Yin, Feng; Chia-Fang Lee, Christina; Yu, Min; Mihaylov, Ivailo S.; Yu, Jiekai; Sun, Hong

    2016-01-01

    ABSTRACT DNA replication licensing occurs on chromatin, but how the chromatin template is regulated for replication remains mostly unclear. Here, we have analyzed the requirement of histone methyltransferases for a specific type of replication: the DNA re-replication induced by the downregulation of either Geminin, an inhibitor of replication licensing protein CDT1, or the CRL4CDT2 ubiquitin E3 ligase. We found that siRNA-mediated reduction of essential components of the MLL-WDR5-RBBP5 methyltransferase complexes including WDR5 or RBBP5, which transfer methyl groups to histone H3 at K4 (H3K4), suppressed DNA re-replication and chromosomal polyploidy. Reduction of WDR5/RBBP5 also prevented the activation of H2AX checkpoint caused by re-replication, but not by ultraviolet or X-ray irradiation; and the components of MLL complexes co-localized with the origin recognition complex (ORC) and MCM2-7 replicative helicase complexes at replication origins to control the levels of methylated H3K4. Downregulation of WDR5 or RBBP5 reduced the methylated H3K4 and suppressed the recruitment of MCM2-7 complexes onto replication origins. Our studies indicate that the MLL complexes and H3K4 methylation are required for DNA replication but not for DNA damage repair. PMID:27744293

  19. Identification and expression profiling of DNA methyltransferases during development and stress conditions in Solanaceae.

    Science.gov (United States)

    Kumar, Rahul; Chauhan, Pankaj Kumar; Khurana, Ashima

    2016-09-01

    DNA methyltransferase (DMTase) enzymes contribute to plant development and stress responses by de novo establishment and subsequent maintenance of DNA methylation during replication. However, the molecular mechanism underlying this activity remains obscure, especially in crop species. Using DMTase homolog complement in six Solanaceae species, we demonstrated here that their number remained conserved in Solanum lineage, whereas it was expanded in both pepper and Nicotiana benthamiana. Non-synonymous vs synonymous (Ka/Ks) substitution ratio revealed that most of the Solanaceous DMTase homologs undergo purifying selection. The genomic sequences of tomato DMT homologs in its wild relative, Solanum pennellii, remained highly conserved in their exons and methyltransferase domains. Structure analysis further revealed highly similar folding of DMTase homologs and conservation in the residues participating in protein-protein interaction in Solanum lineage, whereas a considerable diversification was observed of pepper homologs. Transcript profiling of DMTases highlighted both similar and distinct expression patterns of tomato homologs in other species during fruit development and stress responses. Overall, our analysis provides a strong basis for in-depth exploration of both conserved as well as distinct functions of tomato DMTase homologs in other economically important Solanaceae species. PMID:27380018

  20. Improved radioenzymatic assay for plasma norepinephrine using purified phenylethanolamine n-methyltransferase

    International Nuclear Information System (INIS)

    Radioenzymatic assays have been developed for catecholamines using either catechol O-methyltransferase (COMT) or phenylethanolamine N-methyltransferase (PNMT). Assays using PNMT are specific for norepinephrine (NE) and require minimal manipulative effort but until now have been less sensitive than the more complex procedures using COMT. The authors report an improved purification scheme for bovine PNMT which has permitted development of an NE assay with dramatically improved sensitivity (0.5 pg), specificity and reproducibility (C.V. < 5%). PNMT was purified by sequential pH 5.0 treatment and dialysis and by column chromatographic procedures using DEAE-Sephacel, Sepharcryl S-200 and Phenyl-Boronate Agarose. Recovery of PNMT through the purification scheme was 50%, while blank recovery was <.001%. NE can be directly quantified in 25 ul of human plasma and an 80 tube assay can be completed within 4 h. The capillary to venous plasma NE gradient was examined in 8 normotensive male subjects. Capillary plasma (NE (211.2 +/- 61.3 pg/ml)) was lower than venous plasma NE (366.6 +/- 92.5 pg/ml) in all subjects (p < 0.005). This difference suggests that capillary (NE) may be a unique indicator of sympathetic nervous system activity in vivo. In conclusion, purification of PNMT has facilitated development of an improved radioenzymatic for NE with significantly improved sensitivity

  1. Thiopurine methyltransferase activity in the erythrocytes of adults and children: and HPLC-linked assay.

    Science.gov (United States)

    Micheli, V; Jacomelli, G; Fioravanti, A; Morozzi, G; Marcolongo, R; Pompucci, G

    1997-03-18

    A non-radioactive method that uses reverse-phase high performance liquid chromatography is described for the determination of thiopurine methyltransferase (E.C. 2.1.1.67) activity in human erythrocytes. The method is based on the direct quantitation of 6-methyl-mercaptopurine produced from 6-mercaptopurine by crude erythrocyte lysates. The method is accurate and reliable and suitable for diagnostic use. Activity values in control adults ranged from 5 to 32 pmol/h/mg haemoglobin. The activity in the erythrocytes of adult males was significantly higher compared to females (21 +/- 5 and 15 +/- 8 pmol/h/mg haemoglobin, respectively). The activity measured in the erythrocytes of children (22 +/- 5 pmol/h/mg haemoglobin) did not show any significant difference compared to adults. Thiopurine methyltransferase activity was measured in a female patient with systemic sclerosis who developed severe bone marrow depression after treatment with azathioprine and allopurinol. Activity (6.3 +/- 0.5 pmol/h/mg haemoglobin) was found in the lowest range of controls thus supporting the hypothesis that it could be responsible for increased azathioprine cytotoxicity. PMID:9086303

  2. Identification of the methyltransferase targeting C2499 in Deinococcus radiodurans 23S ribosomal RNA.

    Science.gov (United States)

    Mundus, Julie; Flyvbjerg, Karen Freund; Kirpekar, Finn

    2016-01-01

    The bacterium Deinococcus radiodurans-like all other organisms-introduces nucleotide modifications into its ribosomal RNA. We have previously found that the bacterium contains a Carbon-5 methylation on cytidine 2499 of its 23S ribosomal RNA, which is so far the only modified version of cytidine 2499 reported. Using homology search, we identified the open reading frame DR_0049 as the primary candidate gene for the methyltransferase that modifies cytidine 2499. Mass spectrometric analysis demonstrated that recombinantly expressed DR0049 protein methylates E. coli cytidine 2499 both in vitro and in vivo. We also inactivated the DR_0049 gene in D. radiodurans through insertion of a chloramphenicol resistance cassette. This resulted in complete absence of the cytidine 2499 methylation, which all together demonstrates that DR_0049 encodes the methyltransferase producing m(5)C2499 in D. radiodurans 23S rRNA. Growth experiments disclosed that inactivation of DR_0049 is associated with a severe growth defect, but available ribosome structures show that cytidine 2499 is positioned very similar in D. radiodurans harbouring the modification and E. coli without the modification. Hence there is no obvious structure-based explanation for the requirement for the C2499 posttranscriptional modification in D. radiodurans.

  3. Highly sensitive detection of M.SssI DNA methyltransferase activity using a personal glucose meter.

    Science.gov (United States)

    Deng, Huimin; Peng, Si Ying; Gao, Zhiqiang

    2016-08-01

    A simple method for highly sensitive and selective detection of M.SssI CpG methyltransferase (M.SssI MTase) activity is developed, leveraging on the portability and ease of use of a personal glucose meter (PGM). Briefly, DNA-invertase conjugates are hybridized with their complementary DNA strands pre-immobilized on magnetic beads. The 5'-CCGG-3' sequence present in the DNA duplexes serves as the recognition site for both Hpa II restriction enzyme and M.SssI MTase (5'-CG-3'). Hpa II restriction enzyme specifically cleaves at unmethylated 5'-CCGG-3' sequence, and the invertase that remains on the methylated DNA catalyzes the hydrolysis of sucrose to glucose and fructose. It is found that the amount of glucose is proportional to the M.SssI MTase methylation activity in the range of 0.5 to 80 U/mL with a detection limit of 0.37 U/mL. Due to the specific recognition sequence present in the DNA strands, this method also shows high selectivity for M.SssI MTase. In addition, inhibition studies with 5'-azacytidine demonstrate the capability of inhibition screening using this method. Graphical abstract Deteciton of M.SssI DNA methyltransferase activity by a personal glucose meter. PMID:27311957

  4. Anti-stress and Adaptogenic Activity of l-Arginine Supplementation

    Directory of Open Access Journals (Sweden)

    Vanita Gupta

    2005-01-01

    Full Text Available In the present study, oral supplementation of l-arginine in rats was evaluated for its anti-stress and adaptogenic activity using the cold (5°C–hypoxia (428 mmHg–restraint (C-H-R animal model. A dose-dependent study of l-arginine was carried out at doses of 12.5, 25.0, 50.0, 100.0, 200.0 and 500.0 mg/kg body weight, administered orally 30 min prior to C-H-R exposure. The time taken by the rat to attain a rectal temperature of 23°C (Trec 23°C during C-H-R exposure and its recovery to Trec 37°C at normal atmospheric pressure and 32 ± 1°C were used as biomarkers of anti-stress and adaptogenic activity. Biochemical parameters related to lipid peroxidation, anti-oxidants, cell membrane permeability, nitric oxide and stress, with and without administration of the least effective l-arginine dose, were measured in rats on attaining Trec 23°C and Trec 37°C. The least effective adaptogenic dose of l-arginine was 100.0 mg/kg body weight. The C-H-R exposure of control rats, on attaining Trec 23°C, resulted in a significant increase in plasma malondialdehyde (MDA, blood lactate dehydrogenase (LDH and a decrease in blood catalase (CAT and plasma testosterone levels. On recovery (Trec 37°C of control rats, there was a further decrease in CAT and plasma testosterone, and an increase in LDH. l-Arginine supplementation resulted in a significant decrease in plasma MDA, an increase in blood superoxide dismutase (SOD, CAT levels maintained at control values and a lower increase in LDH compared with controls (45.3 versus 58.5% and 21.5 versus 105.2% on attaining Trec 23°C during C-H-R exposure and on recovery to Trec 37°C. The results suggested that l-arginine possesses potent anti-stress activity during C-H-R exposure and recovery from C-H-R-induced hypothermia.

  5. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity

    Directory of Open Access Journals (Sweden)

    Sarker SR

    2013-04-01

    Full Text Available Satya Ranjan Sarker, Yumiko Aoshima, Ryosuke Hokama, Takafumi Inoue, Keitaro Sou, Shinji Takeoka Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University (TWIns, Tokyo, Japan Background: Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt in the arginine head group. Methods: Cationic lipids were hydrated in 4-(2-hydroxyethyl-1-piperazineethanesulfonic acid (HEPES buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results: We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the

  6. l-Arginine metabolism in cardiovascular and renal tissue from hyper- and hypothyroid rats

    Science.gov (United States)

    Moliz, Juan N; Quesada, Andrés; Montoro-Molina, Sebastian; Vargas-Tendero, Pablo; Osuna, Antonio; Wangensteen, Rosemary; Vargas, Félix

    2015-01-01

    This study assessed the effects of thyroid hormones on the enzymes involved in l-arginine metabolism and the metabolites generated by the different metabolic pathways. Compounds of l-arginine metabolism were measured in the kidney, heart, aorta, and liver of euthyroid, hyperthyroid, and hypothyroid rats after 6 weeks of treatment. Enzymes studied were NOS isoforms (neuronal [nNOS], inducible [iNOS], and endothelial [eNOS]), arginases I and II, ornithine decarboxylase (ODC), ornithine aminotransferase (OAT), and l-arginine decarboxylase (ADC). Metabolites studied were l-arginine, l-citrulline, spermidine, spermine, and l-proline. Kidney heart and aorta levels of eNOS and iNOS were augmented and reduced (P < 0.05, for each tissue and enzyme) in hyper- and hypothyroid rats, respectively. Arginase I abundance in aorta, heart, and kidney was increased (P < 0.05, for each tissue) in hyperthyroid rats and was decreased in kidney and aorta of hypothyroid rats (P < 0.05, for each tissue). Arginase II was augmented in aorta and kidney (P < 0.05, for each tissue) of hyperthyroid rats and remained unchanged in all organs of hypothyroid rats. The substrate for these enzymes, l-arginine, was reduced (P < 0.05, for all tissues) in hyperthyroid rats. Levels of ODC and spermidine, its product, were increased and decreased (P < 0.05) in hyper- and hypothyroid rats, respectively, in all organs studied. OAT and proline levels were positively modulated by thyroid hormones in liver but not in the other tissues. ADC protein levels were positively modulated by thyroid hormones in all tissues. According to these findings, thyroid hormone treatment positively modulates different l-arginine metabolic pathways. The changes recorded in the abundance of eNOS, arginases I and II, and ADC protein in renal and cardiovascular tissues may play a role in the hemodynamic and renal manifestations observed in thyroid disorders. Furthermore, the changes in ODC and spermidine might

  7. Insight on an arginine synthesis metabolon from the tetrameric structure of yeast acetylglutamate kinase.

    Directory of Open Access Journals (Sweden)

    Sergio de Cima

    Full Text Available N-acetyl-L-glutamate kinase (NAGK catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts, NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS, which catalyzes the first step and exists only within the metabolon. Yeast NAGK (yNAGK has, in addition to the amino acid kinase (AAK domain found in other NAGKs, a ~150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the -110° rotation of one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619 domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK. We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs.

  8. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Kouichi, E-mail: koumno@akita-pu.ac.jp [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Matsuzaki, Masahiro [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kanazawa, Shiho [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan); Tokiwano, Tetsuo; Yoshizawa, Yuko [Faculty of Bioresource Sciences, Akita Prefectural University, Akita City, Akita 010-0195 (Japan); Kato, Misako [Graduate School of Humanities and Sciences, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610 (Japan)

    2014-10-03

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-{sup 14}C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or

  9. Conversion of nicotinic acid to trigonelline is catalyzed by N-methyltransferase belonged to motif B′ methyltransferase family in Coffea arabica

    International Nuclear Information System (INIS)

    Graphical abstract: Trigonelline synthase catalyzes the conversion of nicotinic acid to trigonelline. We isolated and characterized trigonelline synthase gene(s) from Coffea arabica. - Highlights: • Trigonelline is a major compound in coffee been same as caffeine is. • We isolated and characterized trigonelline synthase gene. • Coffee trigonelline synthases are highly homologous with coffee caffeine synthases. • This study contributes the fully understanding of pyridine alkaloid metabolism. - Abstract: Trigonelline (N-methylnicotinate), a member of the pyridine alkaloids, accumulates in coffee beans along with caffeine. The biosynthetic pathway of trigonelline is not fully elucidated. While it is quite likely that the production of trigonelline from nicotinate is catalyzed by N-methyltransferase, as is caffeine synthase (CS), the enzyme(s) and gene(s) involved in N-methylation have not yet been characterized. It should be noted that, similar to caffeine, trigonelline accumulation is initiated during the development of coffee fruits. Interestingly, the expression profiles for two genes homologous to caffeine synthases were similar to the accumulation profile of trigonelline. We presumed that these two CS-homologous genes encoded trigonelline synthases. These genes were then expressed in Escherichiacoli, and the resulting recombinant enzymes that were obtained were characterized. Consequently, using the N-methyltransferase assay with S-adenosyl[methyl-14C]methionine, it was confirmed that these recombinant enzymes catalyzed the conversion of nicotinate to trigonelline, coffee trigonelline synthases (termed CTgS1 and CTgS2) were highly identical (over 95% identity) to each other. The sequence homology between the CTgSs and coffee CCS1 was 82%. The pH-dependent activity curve of CTgS1 and CTgS2 revealed optimum activity at pH 7.5. Nicotinate was the specific methyl acceptor for CTgSs, and no activity was detected with any other nicotinate derivatives, or with

  10. Burkholderia glumae ToxA Is a Dual-Specificity Methyltransferase That Catalyzes the Last Two Steps of Toxoflavin Biosynthesis.

    Science.gov (United States)

    Fenwick, Michael K; Philmus, Benjamin; Begley, Tadhg P; Ealick, Steven E

    2016-05-17

    Toxoflavin is a major virulence factor of the rice pathogen Burkholderia glumae. The tox operon of B. glumae contains five putative toxoflavin biosynthetic genes toxABCDE. ToxA is a predicted S-adenosylmethionine-dependent methyltransferase, and toxA knockouts of B. glumae are less virulent in plant infection models. In this study, we show that ToxA performs two consecutive methylations to convert the putative azapteridine intermediate, 1,6-didemethyltoxoflavin, to toxoflavin. In addition, we report a series of crystal structures of ToxA complexes that reveals the molecular basis of the dual methyltransferase activity. The results suggest sequential methylations with initial methylation at N6 of 1,6-didemethyltoxoflavin followed by methylation at N1. The two azapteridine orientations that position N6 or N1 for methylation are coplanar with a 140° rotation between them. The structure of ToxA contains a class I methyltransferase fold having an N-terminal extension that either closes over the active site or is largely disordered. The ordered conformation places Tyr7 at a position of a structurally conserved tyrosine site of unknown function in various methyltransferases. Crystal structures of ToxA-Y7F consistently show a closed active site, whereas structures of ToxA-Y7A consistently show an open active site, suggesting that the hydroxyl group of Tyr7 plays a role in opening and closing the active site during the multistep reaction. PMID:27070241

  11. Impaired Homocysteine Transmethylation and Protein-Methyltransferase Activity Reduce Expression of Selenoprotein P: Implications for Obesity and Metabolic Syndrome

    Science.gov (United States)

    Obesity causes Metabolic Syndrome and Type-II Diabetes, disrupting hepatic function, methionine (Met)/homocysteine (Hcy) transmethylation and methyltransferase (PRMT) activities. Selenoprotein P (SEPP1), exported from the liver, is the predominate form of plasma selenium (Se) and the physiological S...

  12. Thirteen new patients with guanidinoacetate methyltransferase deficiency and functional characterization of nineteen novel missense variants in the GAMT gene

    DEFF Research Database (Denmark)

    Mercimek-Mahmutoglu, Saadet; Ndika, Joseph; Kanhai, Warsha;

    2014-01-01

    Guanidinoacetate methyltransferase deficiency (GAMT-D) is an autosomal recessively inherited disorder of creatine biosynthesis. Creatine deficiency on cranial proton magnetic resonance spectroscopy, and elevated guanidinoacetate levels in body fluids are the biomarkers of GAMT-D. In 74 patients 5...

  13. The effect of Ecstasy on memory is moderated by a functional polymorphism in the cathechol-O-methyltransferase (COMT) gene

    NARCIS (Netherlands)

    T. Schilt; M.W.J. Koeter; M.M.L. de Win; J.R. Zinkstok; T.A. van Amelsvoort; B. Schmand; W. van den Brink

    2009-01-01

    There is ample evidence for decreased verbal memory in heavy Ecstasy users. However, findings on the presence of a dose-response relation are inconsistent, possibly due to individual differences in genetic vulnerability. Catechol-O-methyltransferase (COMT) is involved in the catabolism of Ecstasy. T

  14. No up-regulation of the phosphatidylethanolamine N-methyltransferase pathway and choline production by sex hormones in cats

    NARCIS (Netherlands)

    Valtolina, Chiara; Vaandrager, Arie B; Favier, Robert P; Robben, Joris H; Tuohetahuntila, Maidina; Kummeling, Anne; Jeusette, Isabelle; Rothuizen, Jan

    2015-01-01

    BACKGROUND: Feline hepatic lipidosis (FHL) is a common cholestatic disease affecting cats of any breed, age and sex. Both choline deficiency and low hepatic phosphatidylethanolamine N-methyltransferase (PEMT) activity are associated with hepatic lipidosis (HL) in humans, mice and rats. The PEMT expr

  15. Azathioprine-associated acute myeloid leukemia in a patient with Crohn's disease and thiopurine S-methyltransferase deficiency

    DEFF Research Database (Denmark)

    Yenson, P.R.; Forrest, D.; Schmiegelow, K.;

    2008-01-01

    Immunosuppressive thiopurines like azathioprine, 6-mercaptopurine, and thioguanine are commonly used in inflammatory and neoplastic disorders. A subset of these patients are genetically slow metabolizers due to point-mutations in enzyme thiopurine S-methyltransferase (TPMT), and are at a higher r...

  16. Current understanding of the interplay between catechol-O-methyltransferase genetic variants, sleep, brain development and cognitive performance in schizophrenia

    NARCIS (Netherlands)

    Tucci, Valter; Lassi, Glenda; Kas, Martien J

    2012-01-01

    Abnormal sleep is an endophenotype of schizophrenia. Here we provide an overview of the genetic mechanisms that link specific sleep physiological processes to schizophrenia-related cognitive defects. In particular, we will review the possible relationships between catechol-O-methyltransferase (COMT)

  17. Characterization of cytosine methylated regions and 5-cytosine DNA methyltransferase (Ehmeth) in the protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Fisher, Ohad; Siman-Tov, Rama; Ankri, Serge

    2004-01-01

    The DNA methylation status of the protozoan parasite Entamoeba histolytica was heretofore unknown. In the present study, we developed a new technique, based on the affinity of methylated DNA to 5-methylcytosine antibodies, to identify methylated DNA in this parasite. Ribosomal DNA and ribosomal DNA circles were isolated by this method and we confirmed the validity of our approach by sodium bisulfite sequencing. We also report the identification and the characterization of a gene, Ehmeth, encoding a DNA methyltransferase strongly homologous to the human DNA methyltransferase 2 (Dnmt2). Immunofluorescence microscopy using an antibody raised against a recombinant Ehmeth showed that Ehmeth is concentrated in the nuclei of trophozoites. The recombinant Ehmeth has a weak but significant methyltransferase activity when E.histolytica genomic DNA is used as substrate. 5-Azacytidine (5-AzaC), an inhibitor of DNA methyltransferase, was used to study in vivo the role of DNA methylation in E.histolytica. Genomic DNA of trophozoites grown with 5-AzaC (23 microM) was undermethylated and the ability of 5-AzaC-treated trophozoites to kill mammalian cells or to cause liver abscess in hamsters was strongly impaired.

  18. Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Brenner, Everton A; Zein, Imad; Chen, Yongsheng;

    2010-01-01

    Background OMT (O-methyltransferase) genes are involved in lignin biosynthesis, which relates to stover cell wall digestibility. Reduced lignin content is an important determinant of both forage quality and ethanol conversion efficiency of maize stover. Results Variation in genomic sequences codi...

  19. Vagus nerve contributes to the development of steatohepatitis and obesity in phosphatidylethanolamine N-methyltransferase deficient mice

    NARCIS (Netherlands)

    Gao, Xia; van der Veen, Jelske N.; Zhu, Linfu; Chaba, Todd; Ordonez, Marta; Lingrell, Susanne; Koonen, Debby P. Y.; Dyck, Jason R. B.; Gomez-Munoz, Antonio; Vance, Dennis E.; Jacobs, Rene L.

    2015-01-01

    BACKGROUND & AIMS: Phosphatidylethanolamine N-methyltransferase (PEMT), a liver enriched enzyme, is responsible for approximately one third of hepatic phosphatidylcholine biosynthesis. When fed a high-fat diet (HFD), Pemt(-/-) mice are protected from HF-induced obesity; however, they develop steatoh

  20. One-Pot Green Synthesis and Bioapplication of l-Arginine-Capped Superparamagnetic Fe3O4 Nanoparticles

    Science.gov (United States)

    Lai, Yongchao; Yin, Weiwei; Liu, Jinting; Xi, Rimo; Zhan, Jinhua

    2010-02-01

    Water-soluble l-arginine-capped Fe3O4 nanoparticles were synthesized using a one-pot and green method. Nontoxic, renewable and inexpensive reagents including FeCl3, l-arginine, glycerol and water were chosen as raw materials. Fe3O4 nanoparticles show different dispersive states in acidic and alkaline solutions for the two distinct forms of surface binding l-arginine. Powder X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the structure of Fe3O4 nanocrystals. The products behave like superparamagnetism at room temperature with saturation magnetization of 49.9 emu g-1 and negligible remanence or coercivity. In the presence of 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride, the anti-chloramphenicol monoclonal antibodies were connected to the l-arginine-capped magnetite nanoparticles. The as-prepared conjugates could be used in immunomagnetic assay.

  1. Effects of a food supplement rich in arginine in patients with smear positive pulmonary tuberculosis--a randomised trial

    DEFF Research Database (Denmark)

    Schön, T; Idh, J; Westman, A;

    2011-01-01

    In tuberculosis (TB), the production of nitric oxide (NO) is confirmed but its importance in host defense is debated. Our aim was to investigate whether a food supplement rich in arginine could enhance clinical improvement in TB patients by increased NO production. Smear positive TB patients from.......39) or secondary outcomes. In the subgroup analysis according to HIV status, peanut supplemented HIV+/TB patients showed increased cure rate (83.8% (31/37) vs 53.1% (17/32), p ... Gondar, Ethiopia (n = 180) were randomized to a food supplementation rich in arginine (peanuts, equivalent to 1 g of arginine/day) or with a low arginine content (wheat crackers, locally called daboqolo) during four weeks. The primary outcome was cure rate according to the WHO classification...

  2. A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora.

    Science.gov (United States)

    Elleuche, Skander; Pöggeler, Stefanie

    2008-11-01

    Cyanase degrades toxic cyanate to NH3 and CO2 in a bicarbonate-dependent reaction. High concentrations of cyanate are fairly toxic to organisms. Here, we characterize a eukaryotic cyanase for the first time. We have isolated the cyn1 gene encoding a cyanase from the filamentous ascomycete Sordaria macrospora and functionally characterized the cyn1 product after heterologous expression in Escherichia coli. Site-directed mutagenesis confirmed a predicted catalytic centre of three conserved amino-acids. A Deltacyn1 knockout in S. macrospora was totally devoid of cyanase activity and showed an increased sensitivity to exogenously supplied cyanate in an arginine-depleted medium, defects in ascospore germination, but no other obvious morphological phenotype. By means of real-time PCR we have demonstrated that the transcriptional level of cyn1 is markedly elevated in the presence of cyanate and down-regulated by addition of arginine. The putative functions of cyanase in fungi are discussed.

  3. Atomic-Resolution Structure of an N(5) Flavin Adduct in D-Arginine Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Guoxing; Yuan, Hongling; Wang, Siming; Gadda, Giovanni; Weber, Irene T. (GSU)

    2011-09-06

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 {angstrom} atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct.

  4. Atomic-resolution structure of an N5 flavin adduct in D-arginine dehydrogenase.

    Science.gov (United States)

    Fu, Guoxing; Yuan, Hongling; Wang, Siming; Gadda, Giovanni; Weber, Irene T

    2011-07-26

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 Å atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct. PMID:21707047

  5. Influence of a Hydrophobic Environment on the Structure of Arginine-Carboxylate Salt Bridge

    Institute of Scientific and Technical Information of China (English)

    FENG,Yong(封勇); LIU,Lei(刘磊); MU,Ting-Wei(穆廷巍); GUO,Qing-Xiang(郭庆祥)

    2002-01-01

    The exact structure of an arginine-carboxylate salt bridge in different chemical environments remains a controversial problem. In the present work, the zwitterionic and neutral forms of arginine-carboxylate salt bridge were studied by the B3LYP/6-311G(d,p)//PM3 method. It turns out that the neutral forms are more stable than the zwitterionic counterparis in gas phase.However, when bound by c-cyclodextrin, the zwitterionic forms become more stable than the corresponding neutral ones.It is suggested that the hydrophobic environment provided by the cyclodextrin cavity leads to such behavior. Tnerefore, the salt bridge still could be in a zwitterionic form in the hydrophobic interior of the real proteins.

  6. Zinc induces unfolding and aggregation of dimeric arginine kinase by trapping reversible unfolding intermediate.

    Science.gov (United States)

    Liu, Taotao; Wang, Xicheng

    2010-11-01

    Arginine kinase plays an important role in the cellular energy metabolism of invertebrates. Dimeric arginine kinase (dAK) is unique in some marine invertebrates. The effects of Zn²(+) on the unfolding and aggregation of dAK from the sea cucumber Stichopus japonicus were investigated. Our results indicated that Zn²(+) caused dAK inactivation accompanied by conformational unfolding, the exposure of hydrophobic surface, and aggregation. Kinetic studies showed the inactivation and unfolding of dAK followed biphasic kinetic courses. Zn²(+) can affect unfolding and refolding of dAK by trapping the reversible intermediate. Our study provides important information regarding the effect of Zn²(+) on metabolic enzymes in marine invertebrates.

  7. Selection of Arginine-Rich Anti-Gold Antibodies Engineered for Plasmonic Colloid Self-Assembly

    CERN Document Server

    Jain, Purvi; Narayanan, S Shankara; Sharma, Jadab; Girard, Christian; Dujardin, Erik; Nizak, Clément

    2014-01-01

    Antibodies are affinity proteins with a wide spectrum of applications in analytical and therapeutic biology. Proteins showing specific recognition for a chosen molecular target can be isolated and their encoding sequence identified in vitro from a large and diverse library by phage display selection. In this work, we show that this standard biochemical technique rapidly yields a collection of antibody protein binders for an inorganic target of major technological importance: crystalline metallic gold surfaces. 21 distinct anti-gold antibody proteins emerged from a large random library of antibodies and were sequenced. The systematic statistical analysis of all the protein sequences reveals a strong occurrence of arginine in anti-gold antibodies, which corroborates recent molecular dynamics predictions on the crucial role of arginine in protein/gold interactions. Once tethered to small gold nanoparticles using histidine tag chemistry, the selected antibodies could drive the self-assembly of the colloids onto t...

  8. 157 nm Photodissociation of Dipeptide Ions Containing N-Terminal Arginine

    Science.gov (United States)

    Webber, Nathaniel; He, Yi; Reilly, James P.

    2013-12-01

    Twenty singly-charged dipeptide ions with N-terminal arginine were photodissociated using 157 nm light in both a linear ion-trap mass spectrometer and a MALDI-TOF-TOF mass spectrometer. Analogous to previous work on dipeptides containing C-terminal arginine, this set of samples enabled insights into the photofragmentation propensities associated with individual residues. In addition to familiar products such as a-, d-, and immonium ions, m2 and m2+13 ions were also observed. Certain side chains tended to cleave between their β and γ carbons without necessarily forming d- or w-type ions, and a few other ions were produced by the high-energy fragmentation of multiple bonds.

  9. Perioperative glutamine supplementation restores disturbed renal arginine synthesis after open aortic surgery: a randomized controlled clinical trial.

    Science.gov (United States)

    Brinkmann, Saskia J H; Buijs, Nikki; Vermeulen, Mechteld A R; Oosterink, Efraim; Schierbeek, Henk; Beishuizen, Albertus; de Vries, Jean-Paul P M; Wisselink, Willem; van Leeuwen, Paul A M

    2016-09-01

    Postoperative renal failure is a common complication after open repair of an abdominal aortic aneurysm. The amino acid arginine is formed in the kidneys from its precursor citrulline, and citrulline is formed from glutamine in the intestines. Arginine enhances the function of the immune and cardiovascular systems, which is important for recovery after surgery. We hypothesized that renal arginine production is diminished after ischemia-reperfusion injury caused by clamping of the aorta during open abdominal aortic surgery and that parenteral glutamine supplementation might compensate for this impaired arginine synthesis. This open-label clinical trial randomized patients who underwent clamping of the aorta during open abdominal aortic surgery to receive a perioperative supplement of intravenous alanyl-glutamine (0.5 g·kg(-1)·day(-1); group A, n = 5) or no supplement (group B, n = 5). One day after surgery, stable isotopes and tracer methods were used to analyze the metabolism and conversion of glutamine, citrulline, and arginine. Whole body plasma flux of glutamine, citrulline, and arginine was significantly higher in group A than in group B (glutamine: 391 ± 34 vs. 258 ± 19 μmol·kg(-1)·h(-1), citrulline: 5.7 ± 0.4 vs. 2.8 ± 0.4 μmol·kg(-1)·h(-1), and arginine: 50 ± 4 vs. 26 ± 2 μmol·kg(-1)·h(-1), P glutamine (4.8 ± 0.7 vs. 1.6 ± 0.3 μmol·kg(-1)·h(-1)), citrulline from arginine (2.3 ± 0.3 vs. 0.96 ± 0.1 μmol·kg(-1)·h(-1)), and arginine from glutamine (7.7 ± 0.4 vs. 2.8 ± 0.2 μmol·kg(-1)·h(-1)), respectively (P arginine is severely reduced after clamping during aortic surgery. This study shows that an intravenous supplement of glutamine increases the production of citrulline and arginine and compensates for the inhibitory effect of ischemia-reperfusion injury.

  10. Unique Photobleaching Phenomena of the Twin-Arginine Translocase Respiratory Enzyme Chaperone DmsD

    OpenAIRE

    Rivardo, Fabrizio; Leach, Thorin G.H.; Chan, Catherine S.; Winstone, Tara M.L.; Ladner, Carol L.; Sarfo, Kwabena J.; Turner, Raymond J.

    2014-01-01

    DmsD is a chaperone of the redox enzyme maturation protein family specifically required for biogenesis of DMSO reductase in Escherichia coli. It exists in multiple folding forms, all of which are capable of binding its known substrate, the twin-arginine leader sequence of the DmsA catalytic subunit. It is important for maturation of the reductase and targeting to the cytoplasmic membrane for translocation. Here, we demonstrate that DmsD exhibits an irreversible photobleaching phenomenon upon ...

  11. Enhancement of transfection efficiency for HeLa cells via incorporating arginine moiety into chitosan

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Arginine-rich peptides have attracted considerable attention due to their distinct internalization mechanism. It was reported that arginine and guanidino moieties were able to translocate through cell membranes and played a critical role in the process of membrane permeation. In this work, arginine was conjugated to the backbone of chitosan to form a novel chitosan derivative, arginine modified chitosan (Arg-CS). Arg-CS/DNA complexes were prepared according to the method of coacervation process. The physicochemical properties of Arg-CS and Arg-CS/DNA complexes were characterized and the transfection activity and efficiency mediated by Arg-CS/DNA complexes were investigated taking HeLa cells as target cells. Arg-CS was characterized by FTIR and 13C NMR. Arg-CS/DNA polyelectrolyte complexes were investigated by agarose gel retardation, dynamic light scattering (DLS) and atomic force microscopy (AFM). The results revealed that the Arg-CS/DNA complexes started to form at N/P ratio of 2:1, and the size of particles varied from 100 to 180 nm. The cytotoxicity of Arg-CS and their complexes with plasmid DNA were determined by MTT assay for HeLa cells, and the results suggested that Arg-CS/DNA complexes were slightly less toxic than Arg-CS. Moreover, the derivative alone and their complexes showed significantly lower toxicity than PEI and PEI/DNA complexes, respectively. Taking HeLa cells as target cells and using pGL3-control as reporter gene, the luciferase expression mediated by Arg-CS was greatly enhanced to about 100 folds compared with the luciferase expression mediated by chitosan at different pH media. These results suggest that Arg-CS is a promising candidate as a safe and efficient vector for gene delivery and transfection.

  12. Deprivation of arginine by recombinant human arginase in prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Hsueh Eddy C

    2012-04-01

    Full Text Available Abstract Background Recombinant human arginase (rhArg has been developed for arginine deprivation therapy in cancer, and is currently under clinical investigation. During pre-clinical evaluation, rhArg has exhibited significant anti-proliferative activity in cancer cells deficient in the expression of ornithine carbamoyl transferase (OCT. Interestingly, a variety of cancer cells such as melanoma and prostate cancer deficient in argininosuccinate synthetase (ASS are sensitive to arginine deprivation by arginine deiminase. In this study, we investigated levels of gene expression of OCT and ASS, and the effects of rhArg in human prostate cancer cells: LNCaP (androgen-dependent, PC-3 and DU-145 (both androgen-independent. Results Quantitative real-time PCR showed minimal to absent gene expression of OCT, but ample expression of ASS expression in all 3 cell lines. Cell viability assay after 72-h exposure of rhArg showed all 3 lines had half maximal inhibitory concentration less than or equal to 0.02 U/ml. Addition of ornithine to cell culture media failed to rescue these cells from rhArg-mediated cytotoxicity. Decreased phosphorylation of 4E-BP1, a downstream effector of mammalian target of rapamycin (mTOR, was noted in DU-145 and PC-3 after exposure to rhArg. Moreover, there was no significant apoptosis induction after arginine deprivation by rhArg in all 3 prostate cancer cell lines. Conclusion rhArg causes significant cytotoxicity in LNCaP, DU-145 and PC-3 prostate cancer cells which all demonstrate decreased OCT expression. Inhibition of mTOR manifested by hypophosphorylation of 4E-BP1 suggests autophagy is involved as alternative cell death mechanism. rhArg demonstrates a promising novel agent for prostate cancer treatment.

  13. Comparison of L-Arginine and Hydroxyurea Interactractions with Transitional Metal Ions.

    Directory of Open Access Journals (Sweden)

    Sangeeta Parab

    2015-11-01

    Full Text Available No* is a free radical with one free electron and as such it is very highly reactive and particularly it interacts with transitional metals. Nitric oxide, gas is an important signaling molecule in the body of mammals, including humans and is an extremely important intermediate in chemical industry In biological systems there are many enzymes, which contain transitional elements like iron, copper and manganese, which are the most probable sites for nitric oxide to react. Such type of interactions results in considerable mod ification of the enzyme functions resulting pathological and even genetic disorders. This needs a critical amount of nitric oxide in the system for proper functioning. To observe the effects of NO*, various NO* donor compounds are used. Hydroxyurea (HU is shown to increase the levels of NO*.L- arginine is one of the non - essential amino acids. In the body L- arginine is used to make nitric oxide, which reduces blood vessel stiffness, increases blood flow and improves blood vessel function. The visible spectra of some transitional metals Cu, Fe(II,Fe(III,Cr, Mn, Ni have been studied individually in presence of hydroxyurea (HU with varying amounts .The spectra are also studied for the effect of varying amounts of metal ion on hydroxyurea. To observe how arginine itself acts on transitional metal ions. Even effect of Hydroxyurea on metal - arginine binding is also studied. The evaluation of these spectra is carried out for its binding parameters with the help of scatchard plots. The work has revealed certain very significant and interesting data which can have a lot of bearing on many chemical, biological and environmental aspects.

  14. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster.

    Science.gov (United States)

    Koštál, Vladimír; Korbelová, Jaroslava; Poupardin, Rodolphe; Moos, Martin; Šimek, Petr

    2016-08-01

    The fruit fly Drosophila melanogaster is an insect of tropical origin. Its larval stage is evolutionarily adapted for rapid growth and development under warm conditions and shows high sensitivity to cold. In this study, we further developed an optimal acclimation and freezing protocol that significantly improves larval freeze tolerance (an ability to survive at -5°C when most of the freezable fraction of water is converted to ice). Using the optimal protocol, freeze survival to adult stage increased from 0.7% to 12.6% in the larvae fed standard diet (agar, sugar, yeast, cornmeal). Next, we fed the larvae diets augmented with 31 different amino compounds, administered in different concentrations, and observed their effects on larval metabolomic composition, viability, rate of development and freeze tolerance. While some diet additives were toxic, others showed positive effects on freeze tolerance. Statistical correlation revealed tight association between high freeze tolerance and high levels of amino compounds involved in arginine and proline metabolism. Proline- and arginine-augmented diets showed the highest potential, improving freeze survival to 42.1% and 50.6%, respectively. Two plausible mechanisms by which high concentrations of proline and arginine might stimulate high freeze tolerance are discussed: (i) proline, probably in combination with trehalose, could reduce partial unfolding of proteins and prevent membrane fusions in the larvae exposed to thermal stress (prior to freezing) or during freeze dehydration; (ii) both arginine and proline are exceptional among amino compounds in their ability to form supramolecular aggregates which probably bind partially unfolded proteins and inhibit their aggregation under increasing freeze dehydration. PMID:27489218

  15. L-(--(N-trans-Cinnamoyl-arginine, an Acylamino Acid from Glinus oppositifolius (L. Aug. DC.

    Directory of Open Access Journals (Sweden)

    Tripetch Kanchanapoom

    2010-09-01

    Full Text Available An amino acid derivative, L-(--(N-trans-cinnamoyl-arginine, was isolated from the whole plant of Glinus oppositifolius (L. Aug. DC. along with kaempferol 3-O-galactopyranoside, isorhamnetin 3-O-b-D-xylopyranosyl-(1®2-b-D-galactopyranoside, vitexin, vicenin-2, adenosine and L-phenylalanine. The structure determinations were based on analyses of chemical and spectroscopic methods.

  16. Arginine vasopressin versus norepinephrine: will the stronger one win the race?

    OpenAIRE

    Ertmer, Christian; Bone, Hans-Georg; Westphal, Martin

    2006-01-01

    In the current issue of Critical Care, Friesenecker and colleagues present a well-designed comparative study on the microvascular effects of arginine vasopressin (AVP) and norepinephrine (NE) in a physiological, unanesthetized hamster model. The authors clearly demonstrate that AVP, but not NE, has marked vasoconstrictive effects on large arterioles, whereas the impact on small arterioles is comparable for both vasopressors. However, it remains unclear if these results, per se, reflect a stro...

  17. Levels of arginine-vasopressin in cerebrospinal fluid during passive avoidance behavior in rats

    OpenAIRE

    Kloet, E.R. de; Laczi, F.; Gaffori, O.; Fekete, M.; Wied, D. de

    1984-01-01

    The concentration of immunoreactive arginine-vasopressin (IR-AVP) was measured in the cerebrospinal fluid (CSF) during acquisition and retention of passive avoidance behavior. IR-AVP level in CSF of male Wistar rats immediately after the learning trial was increased; the rate of which was related to the intensity of the electric footschock during the learning trial and the avoidance latency as measured 1 day after the learning trial. Immediately after the 24 h retention test IR-AVP levels wer...

  18. Arteriolar vasoconstrictive response: comparing the effects of arginine vasopressin and norepinephrine

    OpenAIRE

    Friesenecker, Barbara E; Tsai, Amy G; Martini, Judith; Ulmer, Hanno; Wenzel, Volker; Hasibeder, Walter R; Intaglietta, Marcos; Dünser, Martin W

    2006-01-01

    INTRODUCTION: This study was designed to examine differences in the arteriolar vasoconstrictive response between arginine vasopressin (AVP) and norepinephrine (NE) on the microcirculatory level in the hamster window chamber model in unanesthetized, normotonic hamsters using intravital microscopy. It is known from patients with advanced vasodilatory shock that AVP exerts strong additional vasoconstriction when incremental dosage increases of NE have no further effect on mean arterial blood pre...

  19. Effect of L- Arginine On Electrocardiographic Changes Induced By Hypercholesterolemia And Isoproterenol In Rabbits

    OpenAIRE

    Kumar, Pradeep; Goyal, Manish; Agarwal, J L

    2009-01-01

    Hypercholesterolemia, a well-known cardiovascular risk factor, is associated with prolonged action potential duration, longer QTc intervals (rate controlled QT interval), suggested that Hypercholesterolemia may have a direct effect on ventricular repolarization. Hypercholesterolemia was induced in rabbits and L-arginine was given orally to animals for sixteen weeks. The isoproterenol was injected in all the animals to produce electrocardiographic changes. ECG was recorded in lead II at start ...

  20. Utilization of ornithine and arginine as specific precursors of clavulanic acid.

    OpenAIRE

    Romero, J; Liras, P; Martín, J F

    1986-01-01

    Ornithine and arginine (5 to 20 mM), but not glutamic acid or proline, exerted a concentration-dependent stimulatory effect on the biosynthesis of clavulanic acid in both resting-cell cultures and long-term fermentations of Streptomyces clavuligerus. Ornithine strongly inhibited cephamycin biosynthesis in the same strain. [1-14C]-, [5-14C]-, or [U-14 C] ornithine was efficiently incorporated into clavulanic acid, whereas the incorporation of uniformly labeled glutamic acid was very poor. [U-1...

  1. Efficacy L-Arginine In Patients With Nonalcoholic Steatohepatitis Associated With Metabolic Syndrome

    OpenAIRE

    Oleksandr Fediv; Volodymyr Shevchuk; Oksana Olinyk

    2015-01-01

    Abstract Background and Purpose Recent research in the field of hematology indicate that among the many pathogenic mechanisms of development and progression of nonalcoholic steatohepatitis NASH which occurs on the background of the metabolic syndrome an important role is played by endothelial dysfunction and violations of haemocoagulation. The aim of this research was to study the effectiveness of L-arginine as it corrects endothelial dysfunction and disorders of homeostasis haemocoagulation ...

  2. Degradation of Arginine and Other Amino Acids by Eubacterium nodatum ATCC 33099

    OpenAIRE

    Uematsu, H.; Hoshino, E.

    2011-01-01

    The utilisation of a total of 20 amino acids by Eubacterium nodatum, a predominant asaccharolytic anaerobe isolated from human periodontal pockets, was studied. Washed cells of the microorganism produced substantial amounts of acetate, butyrate and ammonia from lysine, and butyrate and ammonia from arginine as main products under anaerobic conditions. They also produced a small amount of formate from histidine. Metabolic products were not detected from any of the other 17 amino acids. These r...

  3. A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy

    OpenAIRE

    Haghighi, Kobra; Kolokathis, Fotis; Gramolini, Anthony O.; Waggoner, Jason R.; Pater, Luke; Lynch, Roy A.; Fan, Guo-Chang; Tsiapras, Dimitris; Parekh, Rohan R.; Dorn, Gerald W., II; MacLennan, David H.; Kremastinos, Dimitrios Th; Kranias, Evangelia G.

    2006-01-01

    The sarcoplasmic reticulum Ca2+-cycling proteins are key regulators of cardiac contractility, and alterations in sarcoplasmic reticulum Ca2+-cycling properties have been shown to be causal of familial cardiomyopathies. Through genetic screening of dilated cardiomyopathy patients, we identified a previously uncharacterized deletion of arginine 14 (PLN-R14Del) in the coding region of the phospholamban (PLN) gene in a large family with hereditary heart failure. No homozygous individuals were ide...

  4. Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex

    OpenAIRE

    Tsurumura, Toshiharu; Tsumori, Yayoi; Qiu, Hao; Oda, Masataka; Sakurai, Jun; Nagahama, Masahiro; Tsuge, Hideaki

    2012-01-01

    Clostridium perfringens iota-toxin (Ia) mono-ADP ribosylates Arg177 of actin, leading to cytoskeletal disorganization and cell death. To fully understand the reaction mechanism of arginine-specific mono-ADP ribosyl transferase, the structure of the toxin-substrate protein complex must be characterized. Recently, we solved the crystal structure of Ia in complex with actin and the nonhydrolyzable NAD+ analog βTAD (thiazole-4-carboxamide adenine dinucleotide); however, the structures of the NAD+...

  5. The development of poly-L-arginine-coated liposomes for gene delivery

    OpenAIRE

    Opanasopit P; Tragulpakseerojn J; Apirakaramwong A; Ngawhirunpat T; Rojanarata T; Ruktanonchai U

    2011-01-01

    Praneet Opanasopit1, Jintana Tragulpakseerojn1, Auayporn Apirakaramwong1, Tanasait Ngawhirunpat1, Theerasak Rojanarata1, Uracha Ruktanonchai21Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; 2National Nanotechnology Center, Thailand Science Park, Pathumthani, Thailand Abstract: In this study, liposomes coated with cationic polymers, poly-L-arginine (PLA), were assessed as a promising gene transfer system in human cervical carcinoma (HeLa) cells and human h...

  6. Effect of L-arginine on renal blood flow in normal subjects and patients with hypoxic chronic obstructive pulmonary disease.

    OpenAIRE

    Howes, T. Q.; Keilty, S. E.; Maskrey, V. L.; Deane, C. R.; Baudouin, S. V.; Moxham, J

    1996-01-01

    BACKGROUND: L-arginine is the precursor of endothelium derived nitric oxide (NO) and increasing the available substrate may increase the production of NO. This has been shown by local infusion in peripheral vascular beds but there are few studies of the effects during systemic infusion. Renal vasoconstriction is known to be important in the pathogenesis of cor pulmonale in patients with hypoxic chronic obstructive pulmonary disease (COPD). The effects of a systemic infusion of L-arginine on r...

  7. Aerobic training and l-arginine supplementation promotes rat heart and hindleg muscles arteriogenesis after myocardial infarction.

    Science.gov (United States)

    Ranjbar, Kamal; Rahmani-Nia, Farhad; Shahabpour, Elham

    2016-09-01

    Arteriogenesis is a main defense mechanism to prevent heart and local tissues dysfunction in occlusive artery disease. TGF-β and angiostatin have a pivotal role in arteriogenesis. We tested the hypothesis that aerobic training and l-arginine supplementation promotes cardiac and skeletal muscles arteriogenesis after myocardial infarction (MI) parallel to upregulation of TGF-β and downregulation of angiostatin. For this purpose, 4 weeks after LAD occlusion, 50 male Wistar rats were randomly distributed into five groups: (1) sham surgery without MI (sham, n = 10), (2) control-MI (Con-MI, n = 10), (3) l-arginine-MI (La-MI, n = 10), (4) exercise training-MI (Ex-MI, n = 10), and (5) exercise and l-arginine-MI (Ex + La-MI). Exercise training groups running on a treadmill for 10 weeks with moderate intensity. Rats in the l-arginine-treated groups drank water containing 4 % l-arginine. Arteriolar density with different diameters (11-25, 26-50, 51-75, and 76-150 μm), TGF-β, and angiostatin gene expression were measured in cardiac (area at risk) and skeletal (soleus and gastrocnemius) muscles. Smaller arterioles decreased in cardiac after MI. Aerobic training and l-arginine increased the number of cardiac arterioles with 11-25 and 26-50 μm diameters parallel to TGF-β overexpression. In gastrocnemius muscle, the number of arterioles/mm(2) was only increased in the 11 to 25 μm in response to training with and without l-arginine parallel to angiostatin downregulation. Soleus arteriolar density with different size was not different between experimental groups. Results showed that 10 weeks aerobic exercise training and l-arginine supplementation promotes arteriogenesis of heart and gastrocnemius muscles parallel to overexpression of TGF-β and downregulation of angiostatin in MI rats.

  8. Acute L-arginine alpha ketoglutarate supplementation fails to improve muscular performance in resistance trained and untrained men

    OpenAIRE

    Wax Benjamin; Kavazis Andreas N; Webb Heather E; Brown Stanley P

    2012-01-01

    Abstract Background Dietary supplements containing L-arginine are marketed to improve exercise performance, but the efficacy of such supplements is not clear. Therefore, this study examined the efficacy of acute ingestion of L-arginine alpha-ketoglutarate (AAKG) muscular strength and endurance in resistance trained and untrained men. Methods Eight resistance trained and eight untrained healthy males ingested either 3000mg of AAKG or a placebo 45 minutes prior to a resistance exercise protocol...

  9. A novel virulence strategy for Pseudomonas aeruginosa mediated by an autotransporter with arginine-specific aminopeptidase activity

    OpenAIRE

    Luckett, Jeni C. A.; Owen Darch; Chase Watters; Manal Abuoun; Victoria Wright; Esteban Paredes-Osses; Jenny Ward; Hana Goto; Stephan Heeb; Stéphanie Pommier; Rumbaugh, Kendra P.; Miguel Cámara; Hardie, Kim R.

    2012-01-01

    Author Summary We present a new Pseudomonas aeruginosa virulence factor that promotes chronic skin wound infections. We propose the name AaaA for this cell-surface tethered autotransporter. This arginine-specific aminopeptidase confers a growth advantage upon P. aeruginosa, providing a fitness advantage by creating a supply of arginine in chronic wounds where oxygen availability is limited and biofilm formation is involved. To our knowledge, this is the first mechanistic evidence linking the ...

  10. Comparison of the effect of topical versus systemic L-arginine on wound healing in acute incisional diabetic rat model

    OpenAIRE

    Alireza Zandifar; Sima Seifabadi; Ehsan Zandifar; Sajedeh Sohrabi Beheshti; Abolfazl Aslani; Shaghayegh Haghjooy Javanmard

    2015-01-01

    Background: Diabetes is associated with endothelial dysfunction and impaired wound healing. The amino acid L-arginine is the only substrate for nitric oxide (NO) synthesis. The purpose of this study was to compare the topical versus systemic L-arginine treatment on total nitrite (NO x ) and vascular endothelial growth factor (VEGF) concentrations in wound fluid and rate of wound healing in an acute incisional diabetic wound model. Materials and Methods: A total of 56 Sprague-Dawley rats were ...

  11. A Selective V1A Receptor Agonist, Selepressin, Is Superior to Arginine Vasopressin and to Norepinephrine in Ovine Septic Shock*

    OpenAIRE

    He, Xinrong; Su, Fuhong; Taccone, Fabio Silvio; Laporte, Régent; Kjølbye, Anne Louise; Zhang, Jing; Xie, Keliang; Moussa, Mouhamed Djahoum; Reinheimer, Torsten Michael; Vincent, Jean-Louis

    2015-01-01

    Objective: Selective vasopressin V1A receptor agonists may have advantages over arginine vasopressin in the treatment of septic shock. We compared the effects of selepressin, a selective V1A receptor agonist, arginine vasopressin, and norepinephrine on hemodynamics, organ function, and survival in an ovine septic shock model. Design: Randomized animal study. Setting: University hospital animal research laboratory. Subjects: Forty-six adult female sheep. Interventions: Fecal peritonitis was in...

  12. Refolding of a fully functional flavivirus methyltransferase revealed that S-adenosyl methionine but not S-adenosyl homocysteine is copurified with flavivirus methyltransferase.

    Science.gov (United States)

    Brecher, Matthew B; Li, Zhong; Zhang, Jing; Chen, Hui; Lin, Qishan; Liu, Binbin; Li, Hongmin

    2015-01-01

    Methylation of flavivirus RNA is vital for its stability and translation in the infected host cell. This methylation is mediated by the flavivirus methyltransferase (MTase), which methylates the N7 and 2'-O positions of the viral RNA cap by using S-adenosyl-l-methionine (SAM) as a methyl donor. In this report, we demonstrate that SAM, in contrast to the reaction by-product S-adenosyl-l-homocysteine, which was assumed previously, is copurified with the Dengue (DNV) and West Nile virus MTases produced in Escherichia coli (E. coli). This endogenous SAM can be removed by denaturation and refolding of the MTase protein. The refolded MTase of DNV serotype 3 (DNV3) displays methylation activity comparable to native enzyme, and its crystal structure at 2.1 Å is almost identical to that of native MTase. We characterized the binding of Sinefungin (SIN), a previously described SAM-analog inhibitor of MTase function, to the native and refolded DNV3 MTase by isothermal titration calorimetry, and found that SIN binds to refolded MTase with more than 16 times the affinity of SIN binding to the MTase purified natively. Moreover, we show that SAM is also copurified with other flavivirus MTases, indicating that purification by refolding may be a generally applicable tool for studying flavivirus MTase inhibition.

  13. Methanol:coenzyme M methyltransferase from Methanosarcina barkeri. Zinc dependence and thermodynamics of the methanol:cob(I)alamin methyltransferase reaction.

    Science.gov (United States)

    Sauer, K; Thauer, R K

    1997-10-01

    In Methanosarcina barkeri, methanogenesis from methanol is initiated by the formation of methyl-coenzyme M from methanol and coenzyme M. This methyl transfer reaction is catalyzed by two enzymes, designated methyltransferases 1 (MT1) and 2 (MT2). Transferase MT1, which is composed of a 50-kDa subunit, MtaB, and a 27-kDa corrinoid-harbouring subunit, MtaC, has been shown recently to catalyze the methylation of free cob(I)alamin with methanol [Sauer, K., Harms, U. & Thauer, R. K. (1997) Eur. J. Biochem. 243, 670-677]. We report here that this reaction is catalyzed by subunit MtaB overproduced in Escherichia coli. MtaB also catalyzed the formation of methanol from methylcobalamin and H2O, the hydrolysis being associated with a free-energy change deltaG(o)' of approximately +7.0 kJ/mol. MtaB was found to contain 1 mol zinc, and its activity to be zinc dependent (pK(Zn2+) = 9.3). The zinc dependence of the MT2 (MtaA)-catalyzed reaction is also described (pK(Zn2+) = 9.6). PMID:9363780

  14. Kinetics for Cu(2+) induced Sepia pharaonis arginine kinase inactivation and aggregation.

    Science.gov (United States)

    Shi, Xiao-Yu; Zhang, Li-Li; Wu, Feng; Fu, Yang-Yong; Yin, Shang-Jun; Si, Yue-Xiu; Park, Yong-Doo

    2016-10-01

    Arginine kinase plays an important role in cellular energy metabolism and is closely related to the environmental stress response in marine invertebrates. We studied the Cu(2+)-mediated inhibition and aggregation of Sepia pharaonis arginine kinase (SPAK) and found that Cu(2+) markedly inhibited the SPAK activity along with mixed-type inhibition against the arginine substrate and noncompetitive inhibition against the ATP cofactor. Spectrofluorimetry results showed that Cu(2+) induced a tertiary structure change in SPAK, resulting in exposure of the hydrophobic surface and increased aggregation. Cu(2+)-mediated SPAK aggregation followed first-order kinetics consistent with monophasic and a biphasic processes. Addition of osmolytes, including glycine and proline, effectively blocked SPAK aggregation and restored SPAK activity. Our results demonstrated the effects of Cu(2+) on SPAK catalytic function, conformation, and aggregation, as well as the protective effects of osmolytes on SPAK folding. This study provided important insights into the role of Cu(2+) as a negative effector of the S. pharaonis metabolic enzyme AK and the possible responses of cephalopods to unfavorable environmental conditions. PMID:27318110

  15. Glucose Autoxidation Induces Functional Damage to Proteins via Modification of Critical Arginine Residues†

    Science.gov (United States)

    Chetyrkin, Sergei; Mathis, Missy; Pedchenko, Vadim; Sanchez, Otto A.; McDonald, W. Hayes; Hachey, David L.; Madu, Hartman; Stec, Donald; Hudson, Billy; Voziyan, Paul

    2011-01-01

    Non-enzymatic modification of proteins in hyperglycemia is a major mechanism causing diabetic complications. These modifications can have pathogenic consequences when they target active site residues, thus affecting protein function. In the present study, we examined the role of glucose autoxidation in functional protein damage using lysozyme and RGD-α3NC1 domain of collagen IV as model proteins in vitro. We demonstrated that glucose autoxidation induced inhibition of lysozyme activity as well as NC1 domain binding to αVβ3 integrin receptor via modification of critical arginine residues by reactive carbonyl species (RCS) glyoxal (GO) and methylglyoxal while non-oxidative glucose adduction to the protein did not affect protein function. The role of RCS in protein damage was confirmed using pyridoxamine which blocked glucose autoxidation and RCS production, thus protecting protein function, even in the presence of high concentrations of glucose. Glucose autoxidation may cause protein damage in vivo since increased levels of GO-derived modifications of arginine residues were detected within the assembly interface of collagen IV NC1 domains isolated from renal ECM of diabetic rats. Since arginine residues are frequently present within protein active sites, glucose autoxidation may be a common mechanism contributing to ECM protein functional damage in hyperglycemia and oxidative environment. Our data also point out the pitfalls in functional studies, particularly in cell culture experiments, that involve glucose treatment but do not take into account toxic effects of RCS derived from glucose autoxidation. PMID:21661747

  16. Glucose autoxidation induces functional damage to proteins via modification of critical arginine residues.

    Science.gov (United States)

    Chetyrkin, Sergei; Mathis, Missy; Pedchenko, Vadim; Sanchez, Otto A; McDonald, W Hayes; Hachey, David L; Madu, Hartman; Stec, Donald; Hudson, Billy; Voziyan, Paul

    2011-07-12

    Nonenzymatic modification of proteins in hyperglycemia is a major mechanism causing diabetic complications. These modifications can have pathogenic consequences when they target active site residues, thus affecting protein function. In the present study, we examined the role of glucose autoxidation in functional protein damage using lysozyme and RGD-α3NC1 domain of collagen IV as model proteins in vitro. We demonstrated that glucose autoxidation induced inhibition of lysozyme activity as well as NC1 domain binding to α(V)β(3) integrin receptor via modification of critical arginine residues by reactive carbonyl species (RCS) glyoxal (GO) and methylglyoxal while nonoxidative glucose adduction to the protein did not affect protein function. The role of RCS in protein damage was confirmed using pyridoxamine which blocked glucose autoxidation and RCS production, thus protecting protein function, even in the presence of high concentrations of glucose. Glucose autoxidation may cause protein damage in vivo since increased levels of GO-derived modifications of arginine residues were detected within the assembly interface of collagen IV NC1 domains isolated from renal ECM of diabetic rats. Since arginine residues are frequently present within protein active sites, glucose autoxidation may be a common mechanism contributing to ECM protein functional damage in hyperglycemia and oxidative environment. Our data also point out the pitfalls in functional studies, particularly in cell culture experiments, that involve glucose treatment but do not take into account toxic effects of RCS derived from glucose autoxidation.

  17. Lysozyme affects the microbial catabolism of free arginine in raw-milk hard cheeses.

    Science.gov (United States)

    D'Incecco, P; Gatti, M; Hogenboom, J A; Bottari, B; Rosi, V; Neviani, E; Pellegrino, L

    2016-08-01

    Lysozyme (LZ) is used in several cheese varieties to prevent late blowing which results from fermentation of lactate by Clostridium tyrobutyricum. Side effects of LZ on lactic acid bacteria population and free amino acid pattern were studied in 16 raw-milk hard cheeses produced in eight parallel cheese makings conducted at four different dairies using the same milk with (LZ+) or without (LZ-) addition of LZ. The LZ-cheeses were characterized by higher numbers of cultivable microbial population and lower amount of DNA arising from lysed bacterial cells with respect to LZ + cheeses. At both 9 and 16 months of ripening, Lactobacillus delbrueckii and Lactobacillus fermentum proved to be the species mostly affected by LZ. The total content of free amino acids indicated the proteolysis extent to be characteristic of the dairy, regardless to the presence of LZ. In contrast, the relative patterns showed the microbial degradation of arginine to be promoted in LZ + cheeses. The data demonstrated that the arginine-deiminase pathway was only partially adopted since citrulline represented the main product and only trace levels of ornithine were found. Differences in arginine degradation were considered for starter and non-starter lactic acid bacteria, at different cheese ripening stages. PMID:27052697

  18. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues.

    Science.gov (United States)

    Bitonti, A J; Casara, P J; McCann, P P; Bey, P

    1987-02-15

    Arginine decarboxylase (ADC) activity from Escherichia coli and two plant species (oats and barley) was inhibited by five new substrate (arginine) and product (agmatine) analogues. The five compounds, (E)-alpha-monofluoromethyldehydroarginine (delta-MFMA), alpha-monofluoromethylarginine (MFMA), alpha-monofluoromethylagatine (FMA), alpha-ethynylagmatine (EA) and alpha-allenylagmatine (AA), were all more potent inhibitors of ADC activity than was alpha-difluoromethylarginine (DFMA), the only irreversible inhibitor of this enzyme described previously. The inhibition caused by the five compounds was apparently enzyme-activated and irreversible, since the loss of enzyme activity followed pseudo-first-order kinetics, was time-dependent, the natural substrate of ADC (arginine) blocked the effects of the inhibitors, and the inhibition remained after chromatography of inhibited ADC on Sephadex G-25 or on overnight dialysis of the enzyme. DFMA, FMA, delta-MFMA and MFMA were effective at very low concentrations (10 nM-10 microM) at inhibiting ADC activity in growing E. coli. FMA was also shown to deplete putrescine effectively in E. coli, particularly when combined with an inhibitor of ornithine decarboxylase, alpha-monofluoromethyl-putrescine. The potential uses of the compounds for the study of the role of polyamine biosynthesis in bacteria and plants is discussed.

  19. A plant viral coat protein RNA binding consensus sequence contains a crucial arginine.

    Science.gov (United States)

    Ansel-McKinney, P; Scott, S W; Swanson, M; Ge, X; Gehrke, L

    1996-01-01

    A defining feature of alfalfa mosaic virus (AMV) and ilarviruses [type virus: tobacco streak virus (TSV)] is that, in addition to genomic RNAs, viral coat protein is required to establish infection in plants. AMV and TSV coat proteins, which share little primary amino acid sequence identity, are functionally interchangeable in RNA binding and initiation of infection. The lysine-rich amino-terminal RNA binding domain of the AMV coat protein lacks previously identified RNA binding motifs. Here, the AMV coat protein RNA binding domain is shown to contain a single arginine whose specific side chain and position are crucial for RNA binding. In addition, the putative RNA binding domain of two ilarvirus coat proteins, TSV and citrus variegation virus, is identified and also shown to contain a crucial arginine. AMV and ilarvirus coat protein sequence alignment centering on the key arginine revealed a new RNA binding consensus sequence. This consensus may explain in part why heterologous viral RNA-coat protein mixtures are infectious. Images PMID:8890181

  20. Mass spectrometry-based identification and characterisation of lysine and arginine methylation in the human proteome.

    Science.gov (United States)

    Bremang, Michael; Cuomo, Alessandro; Agresta, Anna Maria; Stugiewicz, Magdalena; Spadotto, Valeria; Bonaldi, Tiziana

    2013-09-01

    Protein methylation is a post-translational modification (PTM) by which a variable number of methyl groups are transferred to lysine and arginine residues within proteins. Despite increased interest in this modification due to its reversible nature and its emerging role in a diverse set of biological pathways beyond chromatin, global identification of protein methylation has remained an unachieved goal. To characterise sites of lysine and arginine methylation beyond histones, we employed an approach that combines heavy methyl stable isotope labelling by amino acids in cell culture (hmSILAC) with high-resolution mass spectrometry-based proteomics. Through a broad evaluation of immuno-affinity enrichment and the application of two classical protein separation techniques prior to mass spectrometry, to nucleosolic and cytosolic fractions separately, we identified a total of 501 different methylation types, on 397 distinct lysine and arginine sites, present on 139 unique proteins. Our results considerably extend the number of known in vivo methylation sites and indicate their significant presence on several protein complexes involved at all stages of gene expression, from chromatin remodelling and transcription to splicing and translation. In addition, we describe the potential of the hmSILAC approach for accurate relative quantification of methylation levels between distinct functional states. PMID:23748837

  1. Enzymatic Modification of Soluble Cyanophycin Using the Type II Peptidyl Arginine Deiminase from Oryctolagus cuniculus.

    Science.gov (United States)

    Wiefel, Lars; Steinbüchel, Alexander

    2016-07-01

    An increased structural variety expands the number of putative applications for cyanophycin (multi-l-arginyl-poly-[l-aspartic acid], CGP). Therefore, structural modifications of CGP are of major interest; these are commonly obtained by modification and optimization of the bacterial producing strain or by chemical modification. In this study, an enzymatic modification of arginine side chains from lysine-rich CGP is demonstrated using the peptidyl arginine deiminase from Oryctolagus cuniculus, purified from Escherichia coli after heterologous expression. About 10% of the arginine side chains are converted to citrulline which corresponds to 4% of the polymer's total side chains. An inhibition of the reaction in the presence of small amounts of l-citrulline is observed, thereby explaining the low conversion rate. CGP dipeptides can be modified with about 7.5 mol% of the Asp-Arg dipeptides being converted to Asp-Cit. These results show that the enzymatic modification of CGP is feasible, opening up a whole new area of possible CGP modifications for further research. PMID:26953800

  2. Relevance of arginines in the mode of binding of H1 histones to DNA.

    Science.gov (United States)

    Piscopo, Marina; Conte, Mariachiara; Di Paola, Flaviano; Conforti, Salvatore; Rana, Gina; De Petrocellis, Luciano; Fucci, Laura; Geraci, Giuseppe

    2010-07-01

    The mode of binding of sperm and somatic H1 histones to DNA has been investigated by analyzing the effect of their addition on the electrophoretic mobility of linear and circular plasmid molecules. Low concentrations of sperm histones do not appear to alter the electrophoretic mobility of DNA, whereas at increasing concentrations, an additional DNA band is observed near the migration origin. This band then becomes the only component at higher values. In contrast, somatic histones cause a gradual retardation in the mobility of the DNA band at low concentrations and aggregated structures are observed only at higher values. Experiments on the H1 globular domain obtained by limited proteolysis indicate that the mode of binding to DNA depends on the H1 globular domain. The arginine residues appear to be relevant for the different effects as indicated by experiments on sperm histone and on protamine with arginines deguanidinated to ornithines. The modified molecules influence DNA mobility like somatic H1s, indicating that the positive guanidino groups of arginines cannot be substituted by the positive amino groups of ornithines. Modifications of the amino groups of lysines show that these residues are necessary for the binding of H1 histones to DNA but they have no influence on the binding mode. PMID:20438368

  3. Study on mutual interactions and electronic structures of hyaluronan with Lysine, 6-Aminocaproic acid and Arginine.

    Science.gov (United States)

    Chytil, Martin; Trojan, Martin; Kovalenko, Alexander

    2016-05-20

    Interactions between polyelectrolytes and oppositely charged surfactants have been in a great interest for several decades, yet the conventional surfactants may cause a problem in medical applications. Interactivity between polysaccharide hyaluronan (HA) and amino acids Lysine, 6-Aminocaproic acid (6-AcA), and Arginine as an alternative system is reported. The interactions were investigated by means of rheology and electric conductance and the electronic structures were explored by the density functional theory (DFT). Lysine exhibits the strongest interaction of all, which was manifested, e.g. by nearly 6-time drop of the initial viscosity comparing with only 1.3-time lower value in the case of 6-AcA. Arginine interaction with HA was surprisingly weaker in terms of viscosity than that of Lysine due to a lower and delocalized charge density on its guanidine group. According to the DFT calculations, the binding of Lysine to HA was found to be more flexible, while Arginine creates more rigid structure with HA. PMID:26917367

  4. Caries-free subjects have high levels of urease and arginine deiminase activity

    Directory of Open Access Journals (Sweden)

    Evelyn REYES

    2014-06-01

    Full Text Available Objectives: This study investigated the relationship between urease and arginine deiminase system (ADS activities and dental caries through a cross-sectional study. Material and Methods: Urease and ADS activities were measured in saliva and plaque samples from 10 caries-free subjects and 13 caries-active. Urease activity was obtained from the ammonia produced by incubation of plaque and saliva samples in urea. ADS activity was obtained from the ammonia generated by the arginine-HCl and Tris-maleate buffer. Specific activity was defined as micromoles of ammonia per minute per milligram of protein. Shapiro-Wilk statistical test was used to analyze the distribution of the data, and Mann-Whitney test was used to determine the significance of the data. Results: The specific urease activity in saliva and plaque was significantly higher in individuals with low DMFT scores. ADS activity in saliva (6.050 vs 1.350, p=0.0154 and plaque (8.830 vs 1.210, p=0.025 was also higher in individuals with low DMFT scores. Conclusions: Caries-free subjects had a higher ammonia generation activity by urease and arginine deiminase system for both saliva and plaque samples than low caries-active subjects. High levels of alkali production in oral environment were related to caries-free subjects.

  5. Identification of an S-adenosylmethionine (SAM) dependent arsenic methyltransferase in Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Hamdi, Mohamad [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States); Yoshinaga, Masafumi; Packianathan, Charles; Qin, Jie [Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, FL33199 (United States); Hallauer, Janell; McDermott, Joseph R. [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States); Yang, Hung-Chi [Department of Medical Biotechnology and Laboratory Sciences, Chang-Gung University, Tao-Yuan, Kwei-San 333, Taiwan (China); Tsai, Kan-Jen [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Liu, Zijuan, E-mail: liu2345@oakland.edu [Department of Biological Sciences, Oakland University, Rochester, MI 48309 (United States)

    2012-07-15

    Arsenic methylation is an important cellular metabolic process that modulates arsenic toxicity and carcinogenicity. Biomethylation of arsenic produces a series of mono-, di- and tri-methylated arsenic metabolites that can be detected in tissues and excretions. Here we report that zebrafish exposed to arsenite (As{sup III}) produces organic arsenicals, including MMA{sup III}, MMA{sup V} and DMA{sup V} with characteristic tissue ratios, demonstrating that an arsenic methylation pathway exists in zebrafish. In mammals, cellular inorganic arsenic is methylated by a SAM-dependent arsenic methyltransferase, AS3MT. A zebrafish arsenic methyltransferase homolog, As3mt, was identified by sequence alignment. Western blotting analysis showed that As3mt was universally expressed in zebrafish tissues. Prominent expression in liver and intestine correlated with methylated arsenic metabolites detected in those tissues. As3mt was expressed in and purified from Escherichia coli for in vitro functional studies. Our results demonstrated that As3mt methylated As{sup III} to DMA{sup V} as an end product and produced MMA{sup III} and MMA{sup V} as intermediates. The activity of As3mt was inhibited by elevated concentrations of the substrate As{sup III} as well as the metalloid selenite, which is a well-known antagonistic micronutrient of arsenic toxicity. The activity As3mt was abolished by substitution of either Cys160 or Cys210, which corresponds to conserved cysteine residues in AS3MT homologs, suggesting that they are involved in catalysis. Expression in zebrafish of an enzyme that has a similar function to human and rodent orthologs in catalyzing intracellular arsenic biomethylation validates the applicability of zebrafish as a valuable vertebrate model for understanding arsenic-associated diseases in humans. -- Highlights: ► Zebrafish methylated As{sup III} to MMA{sup III}, MMA{sup V} and DMA{sup V}. ► A zebrafish arsenic methyltransferase (As3mt) was purified in E. coli.

  6. Effects of Arginine Supplementation on Amino Acid Profiles in Blood and Tissues in Fed and Overnight-Fasted Rats

    Directory of Open Access Journals (Sweden)

    Milan Holecek

    2016-04-01

    Full Text Available Chronic arginine intake is believed to have favorable effects on the body. However, it might be hypothesized that excessive consumption of an individual amino acid exerts adverse effects on distribution and metabolism of other amino acids. We evaluated the effect of chronic intake of arginine on amino acid concentrations in blood plasma, liver, kidneys, and soleus and extensor digitorum longus muscles. Rats were fed a standard diet or a high-arginine diet (HAD for two months. Half of the animals in each group were sacrificed in the fed state, and the other half after fasting overnight. HAD increased blood plasma concentrations of urea, creatinine, arginine, and ornithine and decreased most other amino acids. Arginine and ornithine also increased in muscles and kidneys; an increase of lysine was observed in both muscle types. Methionine, phenylalanine, threonine, asparagine, glycine, serine, and taurine decreased in most tissues of HAD fed animals. Most of the effects of HAD disappeared after overnight fasting. It is concluded that (i enhanced dietary arginine intake alters distribution of almost all amino acids; and (ii to attain a better assessment of the effects of various nutritional interventions, an appropriate number of biochemical measurements must be performed in both postprandial and postabsorptive states.

  7. The Sakaguchi reaction product quenches phycobilisome fluorescence, allowing determination of the arginine concentration in cells of Anabaena strain PCC 7120.

    Science.gov (United States)

    Ke, Shan; Haselkorn, Robert

    2013-01-01

    The filamentous cyanobacterium Anabaena fixes nitrogen in specialized cells called heterocysts. The immediate product of fixation, ammonia, is known to be assimilated by addition to glutamate to make glutamine. How fixed nitrogen is transported along the filament to the 10 to 20 vegetative cells that separate heterocysts is unknown. N-fixing heterocysts accumulate an insoluble polymer containing aspartate and arginine at the cell poles. Lockau's group has proposed that the polymer is degraded at the poles to provide a mobile carrier, arginine, to the vegetative cells (R. Richter, M. Hejazi, R. Kraft, K. Ziegler, and W. Lockau, Eur. J. Biochem. 263:163-169, 1999). We wished to use the Sakaguchi reaction for arginine to determine the relative cellular concentration of arginine along the filament. At present, the methods for measuring absorption of the Sakaguchi reaction product at 520 nm are insufficiently sensitive for that purpose. However, that product quenches the fluorescence of phycobiliproteins, which we have adapted to a determination of arginine. Our results are consistent with the proposal that arginine is a principal nitrogen carrier from heterocysts to vegetative cells in Anabaena.

  8. The 2007 ESPEN Sir David Cuthbertson Lecture: amino acids between and within organs. The glutamate-glutamine-citrulline-arginine pathway.

    Science.gov (United States)

    Deutz, Nicolaas E P

    2008-06-01

    In daily practice, the plasma concentration of amino acids is usually viewed as a parameter of production. However, both a high production and/or a reduced disposal capacity can result in an increased plasma concentration. In this presentation, I will discuss my research on interorgan relationships of the amino acids glutamate, glutamine, citrulline and arginine to explain the regulation of the plasma arginine level. The reduced glutamine disposal during liver failure is related to enhanced plasma glutamine level without any change in muscle and gut production or consumption rate. In contrast during sepsis, a small reduction in plasma glutamine is related to a substantially enhanced organ glutamate and glutamine production or consumption rate. These observations are a good example that plasma levels are directly related to production or consumption rates. Because glutamine breakdown in the gut produces citrulline, there is a good relation between the amount of metabolically active gut tissue and gut and whole body citrulline production. Arginine is produces from citrulline in the kidney and a reduced gut glutamine to citrulline conversion during sepsis explains the reduced de novo arginine production that is related to the reduced plasma arginine level. The interorgan route between muscle, gut, liver and kidney of the amino acids glutamate, glutamine, citrulline and arginine is a very good example of how complicated the regulation of plasma amino acid levels can be. However, in-depth research is necessary and will give us important clues to new nutritional strategies.

  9. Influence of phenolic compounds on the growth and arginine deiminase system in a wine lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    María R. Alberto

    2012-03-01

    Full Text Available The influence of seven phenolic compounds, normally present in wine, on the growth and arginine deiminase system (ADI of Lactobacillus hilgardii X1B, a wine lactic acid bacterium, was established. This system provides energy for bacterial growth and produces citrulline that reacts with ethanol forming the carcinogen ethyl carbamate (EC, found in some wines. The influence of phenolic compounds on bacterial growth was compound dependent. Growth and final pH values increased in presence of arginine. Arginine consumption decreased in presence of protocatechuic and gallic acids (31 and 17%, respectively and increased in presence of quercetin, rutin, catechin and the caffeic and vanillic phenolic acids (between 10 and 13%, respectively. ADI enzyme activities varied in presence of phenolic compounds. Rutin, quercetin and caffeic and vanillic acids stimulated the enzyme arginine deiminase about 37-40%. Amounts of 200 mg/L gallic and protocatechuic acids inhibited the arginine deiminase enzyme between 53 and 100%, respectively. Ornithine transcarbamylase activity was not modified at all concentrations of phenolic compounds. As gallic and protocatechuic acids inhibited the arginine deiminase enzyme that produces citrulline, precursor of EC, these results are important considering the formation of toxic compounds.

  10. Noncanonical Myo9b-RhoGAP Accelerates RhoA GTP Hydrolysis by a Dual-Arginine-Finger Mechanism.

    Science.gov (United States)

    Yi, Fengshuang; Kong, Ruirui; Ren, Jinqi; Zhu, Li; Lou, Jizhong; Wu, Jane Y; Feng, Wei

    2016-07-31

    The GTP hydrolysis activities of Rho GTPases are stimulated by GTPase-activating proteins (GAPs), which contain a RhoGAP domain equipped with a characteristic arginine finger and an auxiliary asparagine for catalysis. However, the auxiliary asparagine is missing in the RhoGAP domain of Myo9b (Myo9b-RhoGAP), a unique motorized RhoGAP that specifically targets RhoA for controlling cell motility. Here, we determined the structure of Myo9b-RhoGAP in complex with GDP-bound RhoA and magnesium fluoride. Unexpectedly, Myo9b-RhoGAP contains two arginine fingers at its catalytic site. The first arginine finger resembles the one within the canonical RhoGAP domains and inserts into the nucleotide-binding pocket of RhoA, whereas the second arginine finger anchors the Switch I loop of RhoA and interacts with the nucleotide, stabilizing the transition state of GTP hydrolysis and compensating for the lack of the asparagine. Mutating either of the two arginine fingers impaired the catalytic activity of Myo9b-RhoGAP and affected the Myo9b-mediated cell migration. Our data indicate that Myo9b-RhoGAP accelerates RhoA GTP hydrolysis by a previously unknown dual-arginine-finger mechanism, which may be shared by other noncanonical RhoGAP domains lacking the auxiliary asparagine. PMID:27363609

  11. Interaction of arginine with protein during refolding process probed by amide H/D exchange mass spectrometry and isothermal titration calorimetry.

    Science.gov (United States)

    Zhao, Dawei; Liu, Yongdong; Zhang, Guifeng; Zhang, Chun; Li, Xiunan; Wang, Qingqing; Shi, Hong; Su, Zhiguo

    2015-01-01

    Arginine has been widely used as low molecular weight additive to promote protein refolding by suppressing aggregate formation. However, methods to investigate the role of arginine in protein refolding are often limited on protein's global conformational properties. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was used to study the effects of arginine on recombinant human granulocyte colony-stimulating factor (rhG-CSF) refolding at the scale of peptide mapping. It was found that deuteration levels of rhG-CSF refolded with arginine was higher than that without arginine during the whole refolding process, but they became almost the same when the refolding reached equilibrium. This phenomenon indicated that arginine could protect some amide deuterium atoms from being exchanged with hydrogen, but the protection diminished gradually along with refolding proceeding. Enzymatic digestion revealed six particular peptides of 16-47, 72-84, 84-93, 114-124, 145-153 and 154-162 were mainly responsible for the deuteration, and all of them dominantly located in protein's α-helix domain. Furthermore, thermodynamics analysis by isothermal titration calorimetry provided direct evidence that arginine could only react with denatured and partially refolded rhG-CSF. Taking all of the results together, we suggest that arginine suppresses protein aggregation by a reversible combination. At the initial refolding stage, arginine could combine with the denatured protein mainly through hydrogen bonding. Subsequently, arginine is gradually excluded from protein with protein's native conformation recovering.

  12. Prevention of muscle fibers atrophy during gravitational unloading: The effect of L-arginine administration

    Science.gov (United States)

    Kartashkina, N.; Lomonosova, Y.; Shevchenko, T. F.; Bugrova, A. E.; Turtikova, O. V.; Kalamkarov, G. R.; Nemirovskaya, T. L.

    2011-05-01

    Gravitational unloading results in pronounced atrophy of m.soleus. Probably, the output of NO is controlled by the muscle activity. We hypothesized that NO may be involved in the protein metabolism and increase of its concentration in muscle can prevent atrophic changes induced by gravitational unloading. In order to test the hypothesis we applied NO donor L-arginine during gravitational unloading. 2.5-month-old male Wistar rats weighing 220-230g were divided into sedentary control group (CTR, n=7), 14-day hindlimb suspension (HS, n=7), 14 days of hindlimb suspension+ L-arginine (HSL, n=7) (with a daily supplementation of 500 mg/kg wt L-arginine) and 14 days of hindlimb suspension+ L-NAME (HSN, n=7) (90 mg/kg wt during 14 days). Cross sectional area (CSA) of slow twitch (ST) and fast twitch (FT) soleus muscle fibers decreased by 45% and 28% in the HS group ( pHSL group in comparison with the HS group ( pHSL group was completely prevented since FT fiber CSA had no significant differences from the CTR group. In HS group, the percentage of fibers revealing either gaps/disruption of the dystrophin layer of the myofiber surface membrane increased by 27% and 17%, respectively, as compared to the controls (CTR group, pHSL group. NO concentration decreased by 60% in the HS group (as well as HSN group) and at the same time no changes were detectable in the HSL group. This fact indicates the compensation of NO content in the unloaded muscle under L-arginine administration. The levels of atrogin-1 mRNA were considerably altered in suspended animals (HS group: plus 27%, HSL group: minus 13%) as compared to the control level. Conclusion: L-arginine administration allows maintaining NO concentration in m.soleus at the level of cage control group, prevents from dystrophin layer destruction, decreases the atrogin mRNA concentration in the muscle and atrophy level under gravitational unloading.

  13. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva.

    Science.gov (United States)

    Kolderman, Ethan; Bettampadi, Deepti; Samarian, Derek; Dowd, Scot E; Foxman, Betsy; Jakubovics, Nicholas S; Rickard, Alexander H

    2015-01-01

    The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS) in pooled filter-sterilized cell-free saliva (CFS) at 37° C. The addition of pH neutral L-arginine monohydrochloride (LAHCl) to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (μm(3)/μm(2)) developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC), an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl moderates multi

  14. Structural Basis for Binding of RNA and Cofactor by a KsgA Methyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Chao; Tropea, Joseph E.; Austin, Brian P.; Court, Donald L.; Waugh, David S.; Ji, Xinhua; (NCI)

    2009-03-27

    Among methyltransferases, KsgA and the reaction it catalyzes are conserved throughout evolution. However, the specifics of substrate recognition by the enzyme remain unknown. Here we report structures of Aquifex aeolicus KsgA, in its ligand-free form, in complex with RNA, and in complex with both RNA and S-adenosylhomocysteine (SAH, reaction product of cofactor S-adenosylmethionine), revealing critical structural information on KsgA-RNA and KsgA-SAH interactions. Moreover, the structures show how conformational changes that occur upon RNA binding create the cofactor-binding site. There are nine conserved functional motifs (motifs IVIII and X) in KsgA. Prior to RNA binding, motifs I and VIII are flexible, each exhibiting two distinct conformations. Upon RNA binding, the two motifs become stabilized in one of these conformations, which is compatible with the binding of SAH. Motif X, which is also stabilized upon RNA binding, is directly involved in the binding of SAH.

  15. Brain Histamine N-Methyltransferase As a Possible Target of Treatment for Methamphetamine Overdose

    Science.gov (United States)

    Kitanaka, Junichi; Kitanaka, Nobue; Hall, F. Scott; Uhl, George R.; Takemura, Motohiko

    2016-01-01

    Stereotypical behaviors induced by methamphetamine (METH) overdose are one of the overt symptoms of METH abuse, which can be easily assessed in animal models. Currently, there is no successful treatment for METH overdose. There is increasing evidence that elevated levels of brain histamine can attenuate METH-induced behavioral abnormalities, which might therefore constitute a novel therapeutic treatment for METH abuse and METH overdose. In mammals, histamine N-methyltransferase (HMT) is the sole enzyme responsible for degrading histamine in the brain. Metoprine, one of the most potent HMT inhibitors, can cross the blood–brain barrier and increase brain histamine levels by inhibiting HMT. Consequently, this compound can be a candidate for a prototype of drugs for the treatment of METH overdose. PMID:26966348

  16. Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus

    DEFF Research Database (Denmark)

    Demirci, Hasan; Larsen, Line H G; Hansen, Trine;

    2010-01-01

    Cells devote a significant effort toward the production of multiple modified nucleotides in rRNAs, which fine tune the ribosome function. Here, we report that two methyltransferases, RsmB and RsmF, are responsible for all four 5-methylcytidine (m(5)C) modifications in 16S rRNA of Thermus...... thermophilus. Like Escherichia coli RsmB, T. thermophilus RsmB produces m(5)C967. In contrast to E. coli RsmF, which introduces a single m(5)C1407 modification, T. thermophilus RsmF modifies three positions, generating m(5)C1400 and m(5)C1404 in addition to m(5)C1407. These three residues are clustered near...

  17. Strategy to target the substrate binding site of SET domain protein methyltransferases.

    Science.gov (United States)

    Nguyen, Kong T; Li, Fengling; Poda, Gennadiy; Smil, David; Vedadi, Masoud; Schapira, Matthieu

    2013-03-25

    Protein methyltransferases (PMTs) are a novel gene family of therapeutic relevance involved in chromatin-mediated signaling and other biological mechanisms. Most PMTs are organized around the structurally conserved SET domain that catalyzes the methylation of a substrate lysine. A few potent chemical inhibitors compete with the protein substrate, and all are anchored in the channel recruiting the methyl-accepting lysine. We propose a novel strategy to design focused chemical libraries targeting the substrate binding site, where a limited number of warheads each occupying the lysine-channel of multiple enzymes would be decorated by different substituents. A variety of sequence and structure-based approaches used to analyze the diversity of the lysine channel of SET domain PMTs support the relevance of this strategy. We show that chemical fragments derived from published inhibitors are valid warheads that can be used in the design of novel focused libraries targeting other PMTs.

  18. Molecular basis for oncohistone H3 recognition by SETD2 methyltransferase.

    Science.gov (United States)

    Yang, Shuang; Zheng, Xiangdong; Lu, Chao; Li, Guo-Min; Allis, C David; Li, Haitao

    2016-07-15

    High-frequency point mutations of genes encoding histones have been identified recently as novel drivers in a number of tumors. Specifically, the H3K36M/I mutations were shown to be oncogenic in chondroblastomas and undifferentiated sarcomas by inhibiting H3K36 methyltransferases, including SETD2. Here we report the crystal structures of the SETD2 catalytic domain bound to H3K36M or H3K36I peptides with SAH (S-adenosylhomocysteine). In the complex structure, the catalytic domain adopts an open conformation, with the K36M/I peptide snuggly positioned in a newly formed substrate channel. Our structural and biochemical data reveal the molecular basis underying oncohistone recognition by and inhibition of SETD2. PMID:27474439

  19. Cancer stem cell overexpression of nicotinamide N-methyltransferase enhances cellular radiation resistance

    DEFF Research Database (Denmark)

    D’Andrea, Filippo P.; Safwat, Akmal; Kassem, Moustapha;

    2011-01-01

    found the genes involved in cancer, proliferation, DNA repair and cell death. ConclusionsThe higher radiation resistance in clone CE8 is likely due to NNMT overexpression. The higher levels of NNMT could affect the cellular damage resistance through depletion of the accessible amounts of nicotinamide...... that could explain cancer stem cell radiation resistance. MethodsTumorigenic mesenchymal cancer stem cell clones BB3 and CE8 were irradiated at varying doses and assayed for clonogenic surviving fraction. Altered gene expression before and after 2Gy was assessed by Affymetric exon chip analysis and further...... validated with q-RT-PCR using TaqMan probes. ResultsThe CE8 clone was more radiation resistant than the BB3 clone. From a pool of 15 validated genes with altered expression in the CE8 clone, we found the enzyme nicotinamide N-methyltransferase (NNMT) more than 5-fold upregulated. In-depth pathway analysis...

  20. Minimal Substrate Features for Erm Methyltransferases Defined by Using a Combinatorial Oligonucleotide Library

    DEFF Research Database (Denmark)

    Hansen, Lykke H; Lobedanz, Sune; Douthwaite, Stephen;

    2011-01-01

    Erm methyltransferases are prevalent in pathogenic bacteria and confer resistance to macrolide, lincosamide, and streptogramin B antibiotics by specifically methylating the 23S ribosomal RNA at nucleotide A2058. We have identified motifs within the rRNA substrate that are required for methylation...... by Erm. Substrate molecules were constructed in a combinatorial manner from two separate sets (top and bottom strands) of short RNA sequences. Modifications, including LNA monomers with locked sugar residues, were incorporated into the substrates to stabilize their structures. In functional substrates......, the A2058 methylation target (on the 13- to 19-nucleotide top strand) was displayed in an unpaired sequence immediately following a conserved irregular helix, and these are the specific structural features recognized by Erm. Erm methylation was enhanced by stabilizing the top-strand conformation...

  1. Mechanistic and biological significance of DNA methyltransferase 1 upregulated by growth factors in human hepatocellular carcinoma.

    Science.gov (United States)

    Fang, Qin-Liang; Yin, Yi-Rui; Xie, Cheng-Rong; Zhang, Sheng; Zhao, Wen-Xiu; Pan, Chao; Wang, Xiao-Min; Yin, Zhen-Yu

    2015-02-01

    Dysregulation of growth factor signaling plays a pivotal role in controlling the malignancy phenotype and progression of hepatocellular carcinoma (HCC). However, the precise oncogenic mechanisms underlying transcription regulation of certain tumor suppressor genes (TSGs) by growth factors are poorly understood. In the present study, we report a novel insulin-like growth factor 1 (IGF1) pathway that mediates de novo DNA methylation and TSG (such as DLC1 and CHD5) silencing by upregulation of the DNA methyltransferase 1 (DNMT1) via an AKT/β-transducin repeat-containing protein (βTrCP)-mediated ubiquitin-proteasome pathway in HCC. Analysis of DNA methylation in CpG islands of target genes revealed high co-localization of DNMT1 and DNMT3B on the promoters of TSGs associated with enhanced CpG hypermethylation. Our results point to a novel epigenetic mechanism for growth factor-mediated repression of TSG transcription that involves DNA methylation. PMID:25420499

  2. Rationalization of Activity Cliffs of a Sulfonamide Inhibitor of DNA Methyltransferases with Induced-Fit Docking

    Directory of Open Access Journals (Sweden)

    José L. Medina-Franco

    2014-02-01

    Full Text Available Inhibitors of human DNA methyltransferases (DNMT are of increasing interest to develop novel epi-drugs for the treatment of cancer and other diseases. As the number of compounds with reported DNMT inhibition is increasing, molecular docking is shedding light to elucidate their mechanism of action and further interpret structure–activity relationships. Herein, we present a structure-based rationalization of the activity of SW155246, a distinct sulfonamide compound recently reported as an inhibitor of human DNMT1 obtained from high-throughput screening. We used flexible and induce-fit docking to develop a binding model of SW155246 with a crystallographic structure of human DNMT1. Results were in excellent agreement with experimental information providing a three-dimensional structural interpretation of ‘activity cliffs’, e.g., analogues of SW155246 with a high structural similarity to the sulfonamide compound, but with no activity in the enzymatic assay.

  3. Miniaturization of High-Throughput Epigenetic Methyltransferase Assays with Acoustic Liquid Handling.

    Science.gov (United States)

    Edwards, Bonnie; Lesnick, John; Wang, Jing; Tang, Nga; Peters, Carl

    2016-02-01

    Epigenetics continues to emerge as an important target class for drug discovery and cancer research. As programs scale to evaluate many new targets related to epigenetic expression, new tools and techniques are required to enable efficient and reproducible high-throughput epigenetic screening. Assay miniaturization increases screening throughput and reduces operating costs. Echo liquid handlers can transfer compounds, samples, reagents, and beads in submicroliter volumes to high-density assay formats using only acoustic energy-no contact or tips required. This eliminates tip costs and reduces the risk of reagent carryover. In this study, we demonstrate the miniaturization of a methyltransferase assay using Echo liquid handlers and two different assay technologies: AlphaLISA from PerkinElmer and EPIgeneous HTRF from Cisbio.

  4. Characterisation of the histone methyltransferase SET8 in cell cycle progression and the DNA damage response

    DEFF Research Database (Denmark)

    Jørgensen, Stine

    2008-01-01

    Histone modifications and their catalysing enzymes have within the last few years proven to be essential players in many biological processes. Due to their ability to modulate chromatin structure and affect signalling pathways they are found to affect diverse processes such as transcription, DNA...... recombination and repair. I therefore initiated a mass spectrometry based study to identify changes in histone modifications after DNA damage. By using SILAC labelling of cells to quantatively measure the changes in histone modifications, we observed a marked reduction in the level of monomethylated Histone H4...... lysine 20 (H4K20me1) after damage. H4K20me1 is catalysed by the histone methyltransferase SET8 (aka PR-SET7), and functional studies of this enzyme revealed that SET8 is important for S phase progression. We also showed that depletion of SET8 in several different cancer cell lines results in accumulation...

  5. Histone methyltransferases and demethylases:regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Peng Deng; Qian-Ming Chen; Christine Hong; Cun-Yu Wang

    2015-01-01

    Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-based regenerative medicine, such as craniofacial bone regeneration, and in new treatments for metabolic bone diseases, such as osteoporosis. In recent years, histone modification has been a growing topic in the field of MSC lineage specification, in which the Su(var)3–9, enhancer-of-zeste, trithorax (SET) domain-containing family and the Jumonji C (JmjC) domain-containing family represent the major histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), respectively. In this review, we summarize the current understanding of the epigenetic mechanisms by which SET domain-containing KMTs and JmjC domain-containing KDMs balance the osteogenic and adipogenic differentiation of MSCs.

  6. Ash2 acts as an ecdysone receptor coactivator by stabilizing the histone methyltransferase Trr.

    Science.gov (United States)

    Carbonell, Albert; Mazo, Alexander; Serras, Florenci; Corominas, Montserrat

    2013-02-01

    The molting hormone ecdysone triggers chromatin changes via histone modifications that are important for gene regulation. On hormone activation, the ecdysone receptor (EcR) binds to the SET domain-containing histone H3 methyltransferase trithorax-related protein (Trr). Methylation of histone H3 at lysine 4 (H3K4me), which is associated with transcriptional activation, requires several cofactors, including Ash2. We find that ash2 mutants have severe defects in pupariation and metamorphosis due to a lack of activation of ecdysone-responsive genes. This transcriptional defect is caused by the absence of the H3K4me3 marks set by Trr in these genes. We present evidence that Ash2 interacts with Trr and is required for its stabilization. Thus we propose that Ash2 functions together with Trr as an ecdysone receptor coactivator.

  7. Imatinib causes epigenetic alterations of PTEN gene via upregulation of DNA methyltransferases and polycomb group proteins

    International Nuclear Information System (INIS)

    We have recently reported the possible imatinib-resistant mechanism; long-term exposure of leukemia cells to imatinib downregulated levels of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) via hypermethylation of its promoter region (Leukemia 2010; 24: 1631). The present study explored the molecular mechanisms by which imatinib caused methylation on the promoter region of this tumor suppressor gene in leukemia cells. Real-time reverse transcription PCR found that long-term exposure of chronic eosinophilic leukemia EOL-1 cells expressing FIP1L1/platelet-derived growth factor receptor-α to imatinib induced expression of DNA methyltransferase 3A (DNMT3A) and histone-methyltransferase enhancer of zeste homolog 2 (EZH2), a family of polycomb group, thereby increasing methylation of the gene. Immunoprecipitation assay found the increased complex formation of DNMT3A and EZH2 proteins in these cells. Moreover, chromatin immunoprecipitation assay showed that amounts of both DNMT3A and EZH2 proteins bound around the promoter region of PTEN gene were increased in EOL-1 cells after exposure to imatinib. Furthermore, we found that levels of DNMT3A and EZH2 were strikingly increased in leukemia cells isolated from individuals with chronic myelogenous leukemia (n=1) and Philadelphia chromosome-positive acute lymphoblastic leukemia (n=2), who relapsed after treatment with imatinib compared with those isolated at their initial presentation. Taken together, imatinib could cause drug-resistance via recruitment of polycomb gene complex to the promoter region of the PTEN and downregulation of this gene's transcripts in leukemia patients

  8. Characterization of three O-methyltransferases involved in noscapine biosynthesis in opium poppy.

    Science.gov (United States)

    Dang, Thu-Thuy T; Facchini, Peter J

    2012-06-01

    Noscapine is a benzylisoquinoline alkaloid produced in opium poppy (Papaver somniferum) and other members of the Papaveraceae. It has been used as a cough suppressant and more recently was shown to possess anticancer activity. However, the biosynthesis of noscapine in opium poppy has not been established. A proposed pathway leading from (S)-reticuline to noscapine includes (S)-scoulerine, (S)-canadine, and (S)-N-methylcanadine as intermediates. Stem cDNA libraries and latex extracts of eight opium poppy cultivars displaying different alkaloid profiles were subjected to massively parallel pyrosequencing and liquid chromatography-tandem mass spectrometry, respectively. Comparative transcript and metabolite profiling revealed the occurrence of three cDNAs encoding O-methyltransferases designated as SOMT1, SOMT2, and SOMT3 that correlated with the accumulation of noscapine in the eight cultivars. SOMT transcripts were detected in all opium poppy organs but were most abundant in aerial organs, where noscapine primarily accumulates. SOMT2 and SOMT3 showed strict substrate specificity and regiospecificity as 9-O-methyltransferases targeting (S)-scoulerine. In contrast, SOMT1 was able to sequentially 9- and 2-O-methylate (S)-scoulerine, yielding (S)-tetrahydropalmatine. SOMT1 also sequentially 3'- and 7-O-methylated both (S)-norreticuline and (S)-reticuline with relatively high substrate affinity, yielding (S)-tetrahydropapaverine and (S)-laudanosine, respectively. The metabolic functions of SOMT1, SOMT2, and SOMT3 were investigated in planta using virus-induced gene silencing. Reduction of SOMT1 or SOMT2 transcript levels resulted in a significant decrease in noscapine accumulation. Reduced SOMT1 transcript levels also caused a decrease in papaverine accumulation, confirming the selective roles for these enzymes in the biosynthesis of both alkaloids in opium poppy. PMID:22535422

  9. Computational Investigation of the Interplay of Substrate Positioning and Reactivity in Catechol O-Methyltransferase.

    Science.gov (United States)

    Patra, Niladri; Ioannidis, Efthymios I; Kulik, Heather J

    2016-01-01

    Catechol O-methyltransferase (COMT) is a SAM- and Mg2+-dependent methyltransferase that regulates neurotransmitters through methylation. Simulations and experiments have identified divergent catecholamine substrate orientations in the COMT active site: molecular dynamics simulations have favored a monodentate coordination of catecholate substrates to the active site Mg2+, and crystal structures instead preserve bidentate coordination along with short (2.65 Å) methyl donor-acceptor distances. We carry out longer dynamics (up to 350 ns) to quantify interconversion between bidentate and monodentate binding poses. We provide a systematic determination of the relative free energy of the monodentate and bidentate structures in order to identify whether structural differences alter the nature of the methyl transfer mechanism and source of enzymatic rate enhancement. We demonstrate that the bidentate and monodentate binding modes are close in energy but separated by a 7 kcal/mol free energy barrier. Analysis of interactions in the two binding modes reveals that the driving force for monodentate catecholate orientations in classical molecular dynamics simulations is derived from stronger electrostatic stabilization afforded by alternate Mg2+ coordination with strongly charged active site carboxylates. Mixed semi-empirical-classical (SQM/MM) substrate C-O distances (2.7 Å) for the bidentate case are in excellent agreement with COMT X-ray crystal structures, as long as charge transfer between the substrates, Mg2+, and surrounding ligands is permitted. SQM/MM free energy barriers for methyl transfer from bidentate and monodentate catecholate configurations are comparable at around 21-22 kcal/mol, in good agreement with experiment (18-19 kcal/mol). Overall, the work suggests that both binding poses are viable for methyl transfer, and accurate descriptions of charge transfer and electrostatics are needed to provide balanced relative barriers when multiple binding poses are

  10. Functional characterisation of three o-methyltransferases involved in the biosynthesis of phenolglycolipids in Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Roxane Simeone

    Full Text Available Phenolic glycolipids are produced by a very limited number of slow-growing mycobacterial species, most of which are pathogen for humans. In Mycobacterium tuberculosis, the etiologic agent of tuberculosis, these molecules play a role in the pathogenicity by modulating the host immune response during infection. The major variant of phenolic glycolipids produced by M. tuberculosis, named PGL-tb, consists of a large lipid core terminated by a glycosylated aromatic nucleus. The carbohydrate part is composed of three sugar residues, two rhamnosyl units and a terminal fucosyl residue, which is per-O-methylated, and seems to be important for pathogenicity. While most of the genes responsible for the synthesis of the lipid core domain and the saccharide appendage of PGL-tb have been characterized, the enzymes involved in the O-methylation of the fucosyl residue of PGL-tb remain unknown. In this study we report the identification and characterization of the methyltransferases required for the O-methylation of the terminal fucosyl residue of PGL-tb. These enzymes are encoded by genes Rv2954c, Rv2955c and Rv2956. Mutants of M. tuberculosis harboring deletion within these genes were constructed. Purification and analysis of the phenolglycolipids produced by these strains, using a combination of mass spectrometry and NMR spectroscopy, revealed that Rv2954c, Rv2955c and Rv2956 encode the methyltransferases that respectively catalysed the O-methylation of the hydroxyl groups located at positions 3, 4 and 2 of the terminal fucosyl residue of PGL-tb. Our data also suggest that methylation at these positions is a sequential process, starting with position 2, followed by positions 4 and 3.

  11. Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa)

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Nan [ORNL; Yao, Jianzhuang [University of Tennessee, Knoxville (UTK); Chaiprasongsuk, Minta [University of Tennessee, Knoxville (UTK); Li, Guanglin [University of Tennessee, Knoxville (UTK); Guan, Ju [University of Tennessee, Knoxville (UTK); Tschaplinski, Timothy J [ORNL; Guo, Hong [University of Tennessee, Knoxville (UTK); Chen, Feng [University of Tennessee, Knoxville (UTK)

    2013-01-01

    Methyl jasmonate is a metabolite known to be produced by many plants and has roles in diverse biological processes. It is biosynthesized by the action of S-adenosyl-L-methionine:jasmonic acid carboxyl methyltransferase (JMT), which belongs to the SABATH family of methyltransferases. Herein is reported the isolation and biochemical characterization of a JMT gene from black cottonwood (Populus trichocarpa). The genome of P. trichocarpa contains 28 SABATH genes (PtSABATH1 to PtSABATH28). Recombinant PtSABATH3 expressed in Escherichia coli showed the highest level of activity with jasmonic acid (JA) among carboxylic acids tested. It was therefore renamed PtJMT1. PtJMT1 also displayed activity with benzoic acid (BA), with which the activity was about 22% of that with JA. PtSABATH2 and PtSABATH4 were most similar to PtJMT1 among all PtSABATHs. However, neither of them had activity with JA. The apparent Km values of PtJMT1 using JA and BA as substrate were 175 lM and 341 lM, respectively. Mutation of Ser-153 and Asn-361, two residues in the active site of PtJMT1, to Tyr and Ser respectively, led to higher specific activity with BA than with JA. Homology-based structural modeling indicated that substrate alignment, in which Asn-361 is involved, plays a role in determining the substrate specificity of PtJMT1. In the leaves of young seedlings of black cottonwood, the expression of PtJMT1 was induced by plant defense signal molecules methyl jasmonate and salicylic acid and a fungal elicitor alamethicin, suggesting that PtJMT1 may have a role in plant defense against biotic stresses. Phylogenetic analysis suggests that PtJMT1 shares a common ancestor with the Arabidopsis JMT, and functional divergence of these two apparent JMT orthologs has occurred since the split of poplar and Arabidopsis lineages.

  12. Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode.

    Science.gov (United States)

    Lin, Jingyu; Mazarei, Mitra; Zhao, Nan; Zhu, Junwei J; Zhuang, Xiaofeng; Liu, Wusheng; Pantalone, Vincent R; Arelli, Prakash R; Stewart, Charles N; Chen, Feng

    2013-12-01

    Salicylic acid plays a critical role in activating plant defence responses after pathogen attack. Salicylic acid methyltransferase (SAMT) modulates the level of salicylic acid by converting salicylic acid to methyl salicylate. Here, we report that a SAMT gene from soybean (GmSAMT1) plays a role in soybean defence against soybean cyst nematode (Heterodera glycines Ichinohe, SCN). GmSAMT1 was identified as a candidate SCN defence-related gene in our previous analysis of soybean defence against SCN using GeneChip microarray experiments. The current study started with the isolation of the full-length cDNAs of GmSAMT1 from a SCN-resistant soybean line and from a SCN-susceptible soybean line. The two cDNAs encode proteins of identical sequences. The GmSAMT1 cDNA was expressed in Escherichia coli. Using in vitro enzyme assays, E. coli-expressed GmSAMT1 was confirmed to function as salicylic acid methyltransferase. The apparent Km value of GmSAMT1 for salicylic acid was approximately 46 μM. To determine the role of GmSAMT1 in soybean defence against SCN, transgenic hairy roots overexpressing GmSAMT1 were produced and tested for SCN resistance. Overexpression of GmSAMT1 in SCN-susceptible backgrounds significantly reduced the development of SCN, indicating that overexpression of GmSAMT1 in the transgenic hairy root system could confer resistance to SCN. Overexpression of GmSAMT1 in transgenic hairy roots was also found to affect the expression of selected genes involved in salicylic acid biosynthesis and salicylic acid signal transduction.

  13. Discovery and characterization of new O-methyltransferase from the genome of the lignin-degrading fungus Phanerochaete chrysosporium for enhanced lignin degradation.

    Science.gov (United States)

    Thanh Mai Pham, Le; Kim, Yong Hwan

    2016-01-01

    Using bioinformatic homology search tools, this study utilized sequence phylogeny, gene organization and conserved motifs to identify members of the family of O-methyltransferases from lignin-degrading fungus Phanerochaete chrysosporium. The heterologous expression and characterization of O-methyltransferases from P. chrysosporium were studied. The expressed protein utilized S-(5'-adenosyl)-L-methionine p-toluenesulfonate salt (SAM) and methylated various free-hydroxyl phenolic compounds at both meta and para site. In the same motif, O-methyltransferases were also identified in other white-rot fungi including Bjerkandera adusta, Ceriporiopsis (Gelatoporia) subvermispora B, and Trametes versicolor. As free-hydroxyl phenolic compounds have been known as inhibitors for lignin peroxidase, the presence of O-methyltransferases in white-rot fungi suggested their biological functions in accelerating lignin degradation in white-rot basidiomycetes by converting those inhibitory groups into non-toxic methylated phenolic ones. PMID:26672450

  14. Diverse Effects of L-arginine on Cardiac Function of Rats Subjected to Myocardial Ischemia and Reperfusion in vivo

    Institute of Scientific and Technical Information of China (English)

    Xiaoliang WANG; Feng LIANG; Xiangying JIAO; Lei LIU; Xiaojie BAI; Meixia LI; Jianmin ZHI; Huirong LIU

    2007-01-01

    In vivo administration of L-arginine at different time points during the course of myocardial ischemia and reperfusion (MI/R) has been shown to differentially regulate postischemic apoptosis.Cardiac function is one of the most important indexes used to judge the degree of myocardial injury.The present study attempted to determine whether in vivo administration of L-arginine at different stages of MI/R has a diverse influence on cardiac function of ischemic reperfused hearts and,if So,to investigate the mechanisms involved.Male adult rats were subjected to 30 min myocardial ischemia followed by 5 h reperfusion.An intravenous L-arginine bolus was given either 10 min before and 50 min after reperfusion (early treatment) or 3 h and 4 h after reperfusion (late treatment).Early treatment with L-arginine markedly increased the left ventricular systolic pressure (LVSP) and dP/dtmax,and decreased myocardial nitrotyrosine content.In strict contrast,late treatment with L-arginine resulted in a significant decrease in LVSP and dP/dtmx from 4 h to 5h after reperfusion,and increase in toxic peroxynitrite formation as measured by nitrotyrosine.These results suggest that the administration of L-arginine at different time points during the course of MI/R leads to diverse effects on cardiac dysfunction.Early supplementation decreased the nitrative stress and improved left ventricular function.However,late treatment with L-arginine increased the formation of peroxynitrite and aggravated cardiac functional injury.

  15. Release of arginine, glutamate and glutamine in the hippocampus of freely moving rats: Involvement of nitric oxide.

    Science.gov (United States)

    Watts, Jo; Fowler, Leslie; Whitton, Peter S; Pearce, Brian

    2005-05-30

    Using in vivo microdialysis, we have monitored the release of three amino acids (arginine, glutamate and glutamine) in the hippocampus of freely moving rats in response to various drugs. In response to N-methyl-d-aspartate (NMDA) infusion, extracellular glutamate was increased, glutamine was decreased and arginine remained unchanged. By contrast, alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) elicited an increase in arginine release but had no effect on either glutamate or glutamine. When S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, was infused into the hippocampus, an increase in glutamate, a decrease in glutamine and no change in arginine were recorded. The effect of SNAP on extracellular glutamine levels was reversed by prior infusion of the guanylate cyclase inhibitor oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), however its effect on glutamate release was unchanged. Interestingly, SNAP was found to promote the release of arginine in the presence of ODQ. We also assessed the effect of two nitric oxide synthase inhibitors, N-nitro-l-arginine methylester (l-NAME) and 7-nitroindazole (7-NI), on the release of these amino acids. l-NAME was found to increase arginine and glutamate levels but decrease those of glutamine. In contrast, 7-NI reduced the release of all three amino acids. The results presented here confirm some but not all of the findings previously obtained using in vitro preparations. In addition, they suggest that complex relationships exist between the release of these amino acids, and that endogenous NO plays an important role in regulating their release.

  16. A direct screen for c-di-GMP modulators reveals a Salmonella Typhimurium periplasmic ʟ-arginine-sensing pathway.

    Science.gov (United States)

    Mills, Erez; Petersen, Erik; Kulasekara, Bridget R; Miller, Samuel I

    2015-06-01

    Cyclic-di-GMP (c-di-GMP) is a bacterial second messenger that transduces internal and external signals and regulates bacterial motility and biofilm formation. Some organisms encode more than 100 c-di-GMP-modulating enzymes, but only for a few has a signal been defined that modulates their activity. We developed and applied a high-throughput, real-time flow cytometry method that uses a fluorescence resonance energy transfer (FRET)-based biosensor of free c-di-GMP to screen for signals that modulate its concentration within Salmonella Typhimurium. We identified multiple compounds, including glucose, N-acetyl-d-glucosamine, salicylic acid, and ʟ-arginine, that modulated the FRET signal and therefore the free c-di-GMP concentration. By screening a library of mutants, we identified proteins required for the c-di-GMP response to each compound. Furthermore, low micromolar concentrations of ʟ-arginine induced a rapid translation-independent increase in c-di-GMP concentrations and c-di-GMP-dependent cellulose synthesis, responses that required the regulatory periplasmic domain of the diguanylate cyclase STM1987. ʟ-Arginine signaling also required the periplasmic putative ʟ-arginine-binding protein ArtI, implying that ʟ-arginine sensing occurred in the periplasm. Among the 20 commonly used amino acids, S. Typhimurium specifically responded to ʟ-arginine with an increase in c-di-GMP, suggesting that ʟ-arginine may serve as a signal during S. Typhimurium infection. Our results demonstrate that a second-messenger biosensor can be used to identify environmental signals and define pathways that alter microbial behavior.

  17. Arginase treatment prevents the recovery of canine lymphoma and osteosarcoma cells resistant to the toxic effects of prolonged arginine deprivation.

    Directory of Open Access Journals (Sweden)

    James W Wells

    Full Text Available Rapidly growing tumor cells require a nutrient-rich environment in order to thrive, therefore, restricting access to certain key amino acids, such as arginine, often results in the death of malignant cells, which frequently display defective cell cycle check-point control. Healthy cells, by contrast, become quiescent and remain viable under arginine restriction, displaying full recovery upon return to arginine-rich conditions. The use of arginase therapy to restrict available arginine for selectively targeting malignant cells is currently under investigation in human clinical trials. However, the suitability of this approach for veterinary uses is unexplored. As a prelude to in vivo studies in canine malignancies, we examined the in vitro effects of arginine-deprivation on canine lymphoid and osteosarcoma cell lines. Two lymphoid and 2 osteosarcoma cell lines were unable to recover following 6 days of arginine deprivation, but all remaining cell lines displayed full recovery upon return to arginine-rich culture conditions. These remaining cell lines all proved susceptible to cell death following the addition of arginase to the cultures. The lymphoid lines were particularly sensitive to arginase, becoming unrecoverable after just 3 days of treatment. Two of the osteosarcoma lines were also susceptible over this time-frame; however the other 3 lines required 6-8 days of arginase treatment to prevent recovery. In contrast, adult progenitor cells from the bone marrow of a healthy dog were able to recover fully following 9 days of culture in arginase. Over 3 days in culture, arginase was more effective than asparaginase in inducing the death of lymphoid lines. These results strongly suggest that short-term arginase treatment warrants further investigation as a therapy for lymphoid malignancies and osteosarcomas in dogs.

  18. Large-Scale, Protection-Free Synthesis of Se-Adenosyl-l-selenomethionine Analogues and Their Application as Cofactor Surrogates of Methyltransferases

    OpenAIRE

    Bothwell, Ian R.; Luo, Minkui

    2014-01-01

    S-Adenosyl-l-methionine (SAM) analogues have previously demonstrated their utility as chemical reporters of methyltransferases. Here we describe the facile, large-scale synthesis of Se-alkyl Se-adenosyl-l-selenomethionine (SeAM) analogues and their precursor, Se-adenosyl-l-selenohomocysteine (SeAH). Comparison of SeAM analogues with their equivalent SAM analogues suggests that sulfonium-to-selenonium substitution can enhance their compatibility with certain protein methyltransferases, favorin...

  19. O6-Methylguanine-DNA Methyltransferase (MGMT) mRNA Expression Predicts Outcome in Malignant Glioma Independent of MGMT Promoter Methylation

    OpenAIRE

    Simone Kreth; Niklas Thon; Sabina Eigenbrod; Juergen Lutz; Carola Ledderose; Rupert Egensperger; Tonn, Joerg C.; Kretzschmar, Hans A.; Ludwig C Hinske; Kreth, Friedrich W.

    2011-01-01

    Background: We analyzed prospectively whether MGMT (O(6)-methylguanine-DNA methyltransferase) mRNA expression gains prognostic/predictive impact independent of MGMT promoter methylation in malignant glioma patients undergoing radiotherapy with concomitant and adjuvant temozolomide or temozolomide alone. As DNA-methyltransferases (DNMTs) are the enzymes responsible for setting up and maintaining DNA methylation patterns in eukaryotic cells, we analyzed further, whether MGMT promoter methylatio...

  20. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.

    Science.gov (United States)

    Stärtzel, Peter; Gieseler, Henning; Gieseler, Margit; Abdul-Fattah, Ahmad M; Adler, Michael; Mahler, Hanns-Christian; Goldbach, Pierre

    2015-12-01

    We recently reported that the presence of chloride counter ions in freeze-dried l-arginine/sucrose formulations provided the greatest protein stability, but led to low collapse temperatures and glass transition temperatures of the freeze concentrates. The objectives of this study were to identify l-arginine chloride-based formulations and optimize freeze-drying process conditions to deliver a freeze-dried product with good physical quality attributes (including cake appearance, residual moisture, and reconstitution time). Additional properties were tested such as thermal properties, cake microstructure, and protein physical stability. Excipient concentrations were varied with and without a model protein (bovine serum albumin, BSA). Formulations were frozen with and without annealing or with and without controlled nucleation. Primary drying was conducted at high and low shelf temperature. Cakes with least defects and optimum physical attributes were achieved when protein to excipient ratios were high. Controlled nucleation led to elegant cakes for most systems at a low shelf temperature. Replacing BSA by a monoclonal antibody showed that protein (physical) stability was slightly improved under stress storage temperature (i.e., 40°C) in the presence of a low concentration of l-arginine in a sucrose-based formulation. At higher l-arginine concentrations, cake defects increased. Using optimized formulation design, addition of l-arginine chloride to a sucrose-based formulation provided elegant cakes and benefits for protein stability.