WorldWideScience

Sample records for ares i-x launch

  1. Probabilistic Estimation of Critical Flaw Sizes in the Primary Structure Welds of the Ares I-X Launch Vehicle

    Science.gov (United States)

    Pai, Shantaram S.; Hoge, Peter A.; Patel, B. M.; Nagpal, Vinod K.

    2009-01-01

    The primary structure of the Ares I-X Upper Stage Simulator (USS) launch vehicle is constructed of welded mild steel plates. There is some concern over the possibility of structural failure due to welding flaws. It was considered critical to quantify the impact of uncertainties in residual stress, material porosity, applied loads, and material and crack growth properties on the reliability of the welds during its pre-flight and flight. A criterion--an existing maximum size crack at the weld toe must be smaller than the maximum allowable flaw size--was established to estimate the reliability of the welds. A spectrum of maximum allowable flaw sizes was developed for different possible combinations of all of the above listed variables by performing probabilistic crack growth analyses using the ANSYS finite element analysis code in conjunction with the NASGRO crack growth code. Two alternative methods were used to account for residual stresses: (1) The mean residual stress was assumed to be 41 ksi and a limit was set on the net section flow stress during crack propagation. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if this limit was exceeded during four complete flight cycles, and (2) The mean residual stress was assumed to be 49.6 ksi (the parent material s yield strength) and the net section flow stress limit was ignored. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if catastrophic crack growth occurred during four complete flight cycles. Both surface-crack models and through-crack models were utilized to characterize cracks in the weld toe.

  2. Ares I-X Ground Diagnostic Prototype

    Science.gov (United States)

    Schwabacher, Mark; Martin, Rodney; Waterman, Robert; Oostdyk, Rebecca; Ossenfort, John; Matthews, Bryan

    2010-01-01

    Automating prelaunch diagnostics for launch vehicles offers three potential benefits. First, it potentially improves safety by detecting faults that might otherwise have been missed so that they can be corrected before launch. Second, it potentially reduces launch delays by more quickly diagnosing the cause of anomalies that occur during prelaunch processing. Reducing launch delays will be critical to the success of NASA's planned future missions that require in-orbit rendezvous. Third, it potentially reduces costs by reducing both launch delays and the number of people needed to monitor the prelaunch process. NASA is currently developing the Ares I launch vehicle to bring the Orion capsule and its crew of four astronauts to low-earth orbit on their way to the moon. Ares I-X will be the first unmanned test flight of Ares I. It is scheduled to launch on October 27, 2009. The Ares I-X Ground Diagnostic Prototype is a prototype ground diagnostic system that will provide anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage thrust vector control (TVC) and for the associated ground hydraulics while it is in the Vehicle Assembly Building (VAB) at John F. Kennedy Space Center (KSC) and on the launch pad. It will serve as a prototype for a future operational ground diagnostic system for Ares I. The prototype combines three existing diagnostic tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool that is commercially produced by Qualtech Systems, Inc. It uses a qualitative model of failure propagation to perform fault isolation and diagnostics. We adapted an existing TEAMS model of the TVC to use for diagnostics and developed a TEAMS model of the ground hydraulics. The second tool, Spacecraft Health Inference Engine (SHINE), is a rule-based expert system developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification. The prototype

  3. Ares I-X Flight Test Philosophy

    Science.gov (United States)

    Davis, S. R.; Tuma, M. L.; Heitzman, K.

    2007-01-01

    In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.

  4. Ares I-X Ground Diagnostic Prototype

    Data.gov (United States)

    National Aeronautics and Space Administration — The automation of pre-launch diagnostics for launch vehicles offers three potential benefits: improving safety, reducing cost, and reducing launch delays. The Ares...

  5. The Development of the Ares I-X Flight Test

    Science.gov (United States)

    Ess, Robert H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Ares I Crew Launch Vehicle (CLV) and the Orion Crew Exploration Vehicle (CEV). Ares I-X was created as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight vehicle is an early operational model of Ares, with specific emphasis on Ares I and ground operation characteristics necessary to meet Ares I-X flight test objectives. Ares I-X will encompass the design and construction of an entire system that includes the Flight Test Vehicle (FTV) and associated operations. The FTV will be a test model based on the Ares I design. Select design features will be incorporated in the FTV design to emulate the operation of the CLV in order to meet the flight test objectives. The operations infrastructure and processes will be customized for Ares I-X, while still providing data to inform the developers of the launch processing system for Ares/Orion. The FTV is comprised of multiple elements and components that will be developed at different locations. The components will be delivered to the launch/assembly site, Kennedy Space Center (KSC), for assembly of the elements and components into an integrated, flight-ready, launch vehicle. The FTV will fly a prescribed trajectory in order to obtain the necessary data to meet the objectives. Ares I-X will not be commanded or controlled from the ground during flight, but the FTV will be equipped with telemetry systems, a data recording capability and a flight termination system (FTS). The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation representative of the CLV. The in-flight test also includes separation of the Upper Stage Simulator (USS) from the First Stage and recovery of the First Stage. The data retrieved from the flight test will be analyzed

  6. Ares I-X Flight Test--The Future Begins Here

    Science.gov (United States)

    Davis, Stephan R.; Tuma, Margaret L.; Heitzman, Keith

    2007-01-01

    In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for a 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission.

  7. Hardware and Programmatic Progress on the Ares I-X Flight Test

    Science.gov (United States)

    Davis, Stephan R.

    2008-01-01

    In less than two years, the National Aeronautics and Space Administration (NASA) will execute the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle; which, together with the Ares V cargo launch vehicle (Figure 1), will eventually send humans to the Moon, Mars, and beyond. As the countdown to this first Ares mission continues, personnel from across the Ares I-X Mission Management Office (MMO) are finalizing designs and, in some cases, already fabricating vehicle hardware in preparation for an April 2009 launch. This paper will discuss the hardware and programmatic progress of the Ares I-X mission.

  8. Ares I-X Flight Evaluation Tasks in Support of Ares I Development

    Science.gov (United States)

    Huebner, Lawrence D.; Richards, James S.; Coates, Ralph H., III; Cruit, Wendy D.; Ramsey, Matthew N.

    2010-01-01

    NASA s Constellation Program successfully launched the Ares I-X Flight Test Vehicle on October 28, 2009. The Ares I-X flight was a development flight test that offered a unique opportunity for early engineering data to impact the design and development of the Ares I crew launch vehicle. As the primary customer for flight data from the Ares I-X mission, the Ares Projects Office established a set of 33 flight evaluation tasks to correlate fight results with prospective design assumptions and models. Included within these tasks were direct comparisons of flight data with pre-flight predictions and post-flight assessments utilizing models and modeling techniques being applied to design and develop Ares I. A discussion of the similarities and differences in those comparisons and the need for discipline-level model updates based upon those comparisons form the substance of this paper. The benefits of development flight testing were made evident by implementing these tasks that used Ares I-X data to partially validate tools and methodologies in technical disciplines that will ultimately influence the design and development of Ares I and future launch vehicles. The areas in which partial validation from the flight test was most significant included flight control system algorithms to predict liftoff clearance, ascent, and stage separation; structural models from rollout to separation; thermal models that have been updated based on these data; pyroshock attenuation; and the ability to predict complex flow fields during time-varying conditions including plume interactions.

  9. Ares Launch Vehicles Lean Practices Case Study

    Science.gov (United States)

    Doreswamy, Rajiv, N.; Self, Timothy A.

    2008-01-01

    This viewgraph presentation describes test strategies and lean philisophies and practices that are applied to Ares Launch Vehicles. The topics include: 1) Testing strategy; 2) Lean Practices in Ares I-X; 3) Lean Practices Applied to Ares I-X Schedule; 4) Lean Event Results; 5) Lean, Six Sigma, and Kaizen Practices in the Ares Projects Office; 6) Lean and Kaizen Success Stories; and 7) Ares Six Sigma Practices.

  10. Ares I-X Best Estimated Trajectory Analysis and Results

    Science.gov (United States)

    Karlgaard, Christopher D.; Beck, Roger E.; Starr, Brett R.; Derry, Stephen D.; Brandon, Jay; Olds, Aaron D.

    2011-01-01

    The Ares I-X trajectory reconstruction produced best estimated trajectories of the flight test vehicle ascent through stage separation, and of the first and upper stage entries after separation. The trajectory reconstruction process combines on-board, ground-based, and atmospheric measurements to produce the trajectory estimates. The Ares I-X vehicle had a number of on-board and ground based sensors that were available, including inertial measurement units, radar, air-data, and weather balloons. However, due to problems with calibrations and/or data, not all of the sensor data were used. The trajectory estimate was generated using an Iterative Extended Kalman Filter algorithm, which is an industry standard processing algorithm for filtering and estimation applications. This paper describes the methodology and results of the trajectory reconstruction process, including flight data preprocessing and input uncertainties, trajectory estimation algorithms, output transformations, and comparisons with preflight predictions.

  11. Ares I-X Flight Test Development Challenges and Success Factors

    Science.gov (United States)

    Askins, Bruce; Davis, Steve; Olsen, Ronald; Taylor, James

    2010-01-01

    The NASA Constellation Program's Ares I-X rocket launched successfully on October 28, 2009 collecting valuable data and providing risk reduction for the Ares I project. The Ares I-X mission was formulated and implemented in less than four years commencing with the Exploration Systems Architecture Study in 2005. The test configuration was founded upon assets and processes from other rocket programs including Space Shuttle, Atlas, and Peacekeeper. For example, the test vehicle's propulsion element was a Shuttle Solid Rocket Motor. The Ares I-X rocket comprised a motor assembly, mass and outer mold line simulators of the Ares I Upper Stage, Orion Spacecraft and Launch Abort System, a roll control system, avionics, and other miscellaneous components. The vehicle was 327 feet tall and weighed approximately 1,800,000 pounds. During flight the rocket reached a maximum speed of Mach 4.8 and an altitude of 150,000 feet. The vehicle demonstrated staging at 130,000 feet, tested parachutes for recovery of the motor, and utilized approximately 900 sensors for data collection. Developing a new launch system and preparing for a safe flight presented many challenges. Specific challenges included designing a system to withstand the environments, manufacturing large structures, and re-qualifying heritage hardware. These and other challenges, if not mitigated, may have resulted in test cancellation. Ares I-X succeeded because the mission was founded on carefully derived objectives, led by decisive and flexible management, implemented by an exceptionally talented and dedicated workforce, and supported by a thorough independent review team. Other major success factors include the use of proven heritage hardware, a robust System Integration Laboratory, multi-NASA center and contractor team, concurrent operations, efficient vehicle assembly, effective risk management, and decentralized element development with a centralized control board. Ares I-X was a technically complex test that

  12. Ares I-X First Stage Internal Aft Skirt Re-Entry Heating Data and Modeling

    Science.gov (United States)

    Schmitz, Craig P.; Tashakkor, Scott B.

    2011-01-01

    The CLVSTATE engineering code is being used to predict Ares-I launch vehicle first stage reentry aerodynamic heating. An engineering analysis is developed which yields reasonable predictions for the timing of the first stage aft skirt thermal curtain failure and the resulting internal gas temperatures. The analysis is based on correlations of the Ares I-X internal aft skirt gas temperatures and has been implemented into CLVSTATE. Validation of the thermal curtain opening models has been accomplished using additional Ares I-X thermocouple, calorimeter and pressure flight data. In addition, a technique which accounts for radiation losses at high altitudes has been developed which improves the gas temperature measurements obtained by the gas temperature probes (GTP). Updates to the CLVSTATE models are shown to improve the accuracy of the internal aft skirt heating predictions which will result in increased confidence in future vehicle designs

  13. Comparison of Ares I-X Wind-Tunnel Derived Buffet Environment with Flight Data

    Science.gov (United States)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2011-01-01

    The Ares I-X Flight Test Vehicle (FTV), launched in October 2009, carried with it over 243 buffet verification pressure sensors and was one of the most heavily instrumented launch vehicle flight tests. This flight test represented a unique opportunity for NASA and its partners to compare the wind-tunnel derived buffet environment with that measured during the flight of Ares I-X. It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. Ares I-X buffet forcing functions were obtained via wind-tunnel testing of a rigid buffet model (RBM) instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. This paper discusses the comparison of RBM and FTV buffet environments, including fluctuating pressure coefficient and normalized sectional buffet forcing function root-mean-square magnitudes, frequency content of power-spectral density functions, and force magnitudes of an alternating flow phenomena. Comparison of wind-tunnel model and flight test vehicle buffet environments show very good agreement with root-mean-square magnitudes of buffet forcing functions at the majority of vehicle stations. Spectra proved a challenge to compare because of different wind-tunnel and flight test conditions and data acquisition rates. However, meaningful and promising comparisons of buffet spectra are presented. Lastly, the buffet loads resulting from the transition of subsonic separated flow to supersonic attached flow were significantly over-predicted by wind-tunnel results.

  14. Ares I-X Range Safety Simulation and Analysis IV and V

    Science.gov (United States)

    Merry, Carl M.; Brewer, Joan D.; Dulski, Matt B.; Gimenez, Adrian; Barron, Kyle; Tarpley, Ashley F.; Craig, A. Scott; Beaty, Jim R.; Starr, Brett R.

    2011-01-01

    NASA s Ares I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. NASA generated a Range Safety (RS) product data package to meet the RS trajectory data requirements defined in the Air Force Space Command Manual (AFSPCMAN) 91-710. Some products included were a nominal ascent trajectory, ascent flight envelopes, and malfunction turn data. These products are used by the Air Force s 45th Space Wing (45SW) to ensure public safety and to make flight termination decisions on launch day. Due to the criticality of the RS data, an independent validation and verification (IV&V) effort was undertaken to accompany the data generation analyses to ensure utmost data quality and correct adherence to requirements. As a result of the IV&V efforts, the RS product package was delivered with confidence that two independent organizations using separate simulation software generated data to meet the range requirements and yielded similar results. This document captures the Ares I-X RS product IV&V analysis, including the methodology used to verify inputs, simulation, and output data for certain RS products. Additionally a discussion of lessons learned is presented to capture advantages and disadvantages to the IV&V processes used.

  15. Ares I-X Range Safety Simulation Verification and Analysis IV and V

    Science.gov (United States)

    Tarpley, Ashley; Beaty, James; Starr, Brett

    2010-01-01

    NASA s ARES I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. NASA generated a Range Safety (RS) flight data package to meet the RS trajectory data requirements defined in the Air Force Space Command Manual 91-710. Some products included in the flight data package were a nominal ascent trajectory, ascent flight envelope trajectories, and malfunction turn trajectories. These data are used by the Air Force s 45th Space Wing (45SW) to ensure Eastern Range public safety and to make flight termination decisions on launch day. Due to the criticality of the RS data in regards to public safety and mission success, an independent validation and verification (IV&V) effort was undertaken to accompany the data generation analyses to ensure utmost data quality and correct adherence to requirements. Multiple NASA centers and contractor organizations were assigned specific products to IV&V. The data generation and IV&V work was coordinated through the Launch Constellation Range Safety Panel s Trajectory Working Group, which included members from the prime and IV&V organizations as well as the 45SW. As a result of the IV&V efforts, the RS product package was delivered with confidence that two independent organizations using separate simulation software generated data to meet the range requirements and yielded similar results. This document captures ARES I-X RS product IV&V analysis, including the methodology used to verify inputs, simulation, and output data for an RS product. Additionally a discussion of lessons learned is presented to capture advantages and disadvantages to the IV&V processes used.

  16. Ares I-X Upper Stage Simulator Compartment Pressure Comparisons During Ascent

    Science.gov (United States)

    Downs. William J.; Kirchner, Robert D.; McLachlan, Blair G.; Hand, Lawrence A.; Nelson, Stuart L.

    2011-01-01

    Predictions of internal compartment pressures are necessary in the design of interstage regions, systems tunnels, and protuberance covers of launch vehicles to assess potential burst and crush loading of the structure. History has proven that unexpected differential pressure loads can lead to catastrophic failure. Pressures measured in the Upper Stage Simulator (USS) compartment of Ares I-X during flight were compared to post-flight analytical predictions using the CHCHVENT chamber-to-chamber venting analysis computer program. The measured pressures were enveloped by the analytical predictions for most of the first minute of flight but were outside of the predictions thereafter. This paper summarizes the venting system for the USS, discusses the probable reasons for the discrepancies between the measured and predicted pressures, and provides recommendations for future flight vehicles.

  17. Ares Launch Vehicles Overview: Space Access Society

    Science.gov (United States)

    Cook, Steve

    2007-01-01

    Projects Office at the Marshall Space Flight Center manages the design, development, testing, and evaluation of both vehicles and serves as lead systems integrator. A little over a year after it was chartered, the Exploration Launch Projects team is testing engine components, refining vehicle designs, performing wind tunnel tests, and building hardware for the first flight test of Ares I-X, scheduled for spring 2009. The Exploration Launch Projects team conducted the Ares I System Requirements Review (SRR) at the end of 2006. In Ares' first year, extensive trade studies and evaluations were conducted to refine the design initially recommended by the Exploration Systems Architecture Study, conceptual designs were analyzed for fitness, and the contractual framework was assembled to enable a development effort unparalleled in American space flight since the Space Shuttle. Now, the project turns its focus to the Preliminary Design Review (PDR), scheduled for 2008. Taking into consideration the findings of the SRR, the design of the Ares I is being tightened and refined to meet the safety, operability, reliability, and affordability goals outlined by the Constellation Program. The Ares V is in the early design stage, focusing its activities on requirements validation and ways to develop this heavy-lift system so that synergistic hardware commonality between it and the Ares I can reduce the operational footprint and foster sustained exploration across the decades ahead.

  18. Ares I-X Best Estimated Trajectory and Comparison with Pre-Flight Predictions

    Science.gov (United States)

    Karlgaard, Christopher D.; Beck, Roger E.; Derry, Stephen D.; Brandon, Jay M.; Starr, Brett R.; Tartabini, Paul V.; Olds, Aaron D.

    2011-01-01

    The Ares I-X trajectory reconstruction produced best estimated trajectories of the flight test vehicle ascent through stage separation, and of the first and upper stage entries after separation. The trajectory reconstruction process combines on-board, ground-based, and atmospheric measurements to produce the trajectory estimates. The Ares I-X vehicle had a number of on-board and ground based sensors that were available, including inertial measurement units, radar, air- data, and weather balloons. However, due to problems with calibrations and/or data, not all of the sensor data were used. The trajectory estimate was generated using an Iterative Extended Kalman Filter algorithm, which is an industry standard processing algorithm for filtering and estimation applications. This paper describes the methodology and results of the trajectory reconstruction process, including flight data preprocessing and input uncertainties, trajectory estimation algorithms, output transformations, and comparisons with preflight predictions.

  19. The Application of Lean Thinking Principles and Kaizen Practices for the Successful Development and Implementation of the Ares I-X Flight Test Rocket and Mission

    Science.gov (United States)

    Askins, B. R.; Davis, S. R.; Heitzman, K. S.; Olsen, R. A.

    2011-01-01

    On October 28, 2009 the Ares I-X flight test rocket launched from Kennedy Space Center and flew its suborbital trajectory as designed. The mission was successfully completed as data from the test, and associated development activities were analyzed, transferred to stakeholders, and well documented. A positive lesson learned from Ares I-X was that the application of lean thinking principles and kaizen practices was very effective in streamlining development activities. Ares I-X, like other historical rocket development projects, was hampered by technical, cost, and schedule challenges and if not addressed boldly could have resulted in cancellation of the test. The mission management team conducted nine major meetings, referred to as lean events, across its elements to assess plans, procedures, processes, requirements, controls, culture, organization, use of resources, and anything that could be changed to optimize schedule or reduce risk. The preeminent aspect of the lean events was the focus on value added activities and the removal or at least reduction in non-value added activities. Trained Lean Six Sigma facilitators assisted the Ares I-X developers in conducting the lean events. They indirectly helped formulate the mission s own unique methodology for assessing schedule. A core team was selected to lead the events and report to the mission manager. Each activity leveraged specialized participants to analyze the subject matter and its related processes and then recommended alternatives and solutions. Stakeholders were the event champions. They empowered and encouraged the team to succeed. The keys to success were thorough preparation, honest dialog, small groups, adherence to the Ares I-X ground rules, and accountability through disciplined reporting and tracking of actions. This lean event formula was game-changing as demonstrated by Ares I-X. It is highly recommended as a management tool to help develop other complex systems efficiently. The key benefits for

  20. Wind Tunnel Investigation of Ground Wind Loads for Ares Launch Vehicle

    Science.gov (United States)

    Keller, Donald F.; Ivanco, Thomas G.

    2010-01-01

    A three year program was conducted at the NASA Langley Research Center (LaRC) Aeroelasticity Branch (AB) and Transonic Dynamics Tunnel (TDT) with the primary objective to acquire scaled steady and dynamic ground-wind loads (GWL) wind-tunnel data for rollout, on-pad stay, and on-pad launch configurations for the Ares I-X Flight Test Vehicle (FTV). The experimental effort was conducted to obtain an understanding of the coupling of aerodynamic and structural characteristics that can result in large sustained wind-induced oscillations (WIO) on such a tall and slender launch vehicle and to generate a unique database for development and evaluation of analytical methods for predicting steady and dynamic GWL, especially those caused by vortex shedding, and resulting in significant WIO. This paper summarizes the wind-tunnel test program that employed two dynamically-aeroelastically scaled GWL models based on the Ares I-X Flight Test Vehicle. The first model tested, the GWL Checkout Model (CM), was a relatively simple model with a secondary objective of restoration and development of processes and methods for design, fabrication, testing, and data analysis of a representative ground wind loads model. In addition, parametric variations in surface roughness, Reynolds number, and protuberances (on/off) were investigated to determine effects on GWL characteristics. The second windtunnel model, the Ares I-X GWL Model, was significantly more complex and representative of the Ares I-X FTV and included the addition of simplified rigid geometrically-scaled models of the Kennedy Space Center (KSC) Mobile Launch Platform (MLP) and Launch Complex 39B primary structures. Steady and dynamic base bending moment as well as model response and steady and unsteady pressure data was acquired during the testing of both models. During wind-tunnel testing of each model, flow conditions (speed and azimuth) where significant WIO occurred, were identified and thoroughly investigated. Scaled data from

  1. Ares I-X Management Office (MMO) Integrated Master Schedule (IMS)

    Science.gov (United States)

    Heintzman, Keith; Askins, Bruce

    2010-01-01

    Objectives: Demonstrate control of a dynamically similar, integrated Ares I/Orion, using Ares I relevant ascent control algorithms. Perform an in-flight separation/staging event between a Ares I-similar First Stage and a representative Upper Stage. Demonstrate assembly and recovery of a new Ares I-like First Stage element at KSC. Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics, and parachute performance. Characterize magnitude of integrated vehicle roll torque throughout First Stage flight.

  2. Rapid Trajectory Optimization for the ARES I Launch Vehicle

    Science.gov (United States)

    Dukeman, Greg A.; Hill, Ashley D.

    2008-01-01

    A simplified ascent trajectory optimization procedure has been developed with application to NASA's proposed Ares I launch vehicle. In the interest of minimizing bending loads and ensuring safe separation of the first-stage solid rocket motor, the vehicle is con- strained to follow a gravity-turn trajectory. This reduces the design space to just two free parameters, the pitch rate after a short vertical rise phase to clear the launch pad, and initial launch azimuth. The pitch rate primarily controls the in-plane parameters (altitude, speed, flight path angle) of the trajectory whereas the launch azimuth primarily controls the out-of-plane portion (velocity heading.) Thus, the optimization can be mechanized as two one-dimensional searches that converge quickly and reliably. The method is compared with POST-optimized trajectories to verify its optimality.

  3. Design for Safety - The Ares Launch Vehicles Paradigm Change

    Science.gov (United States)

    Safie, Fayssal M.; Maggio, Gaspare

    2010-01-01

    The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.

  4. NASA Ares I Crew Launch Vehicle Upper Stage Overview

    Science.gov (United States)

    Davis, Daniel J.

    2008-01-01

    By incorporating rigorous engineering practices, innovative manufacturing processes and test techniques, a unique multi-center government/contractor partnership, and a clean-sheet design developed around the primary requirements for the International Space Station (ISS) and Lunar missions, the Upper Stage Element of NASA's Crew Launch Vehicle (CLV), the "Ares I," is a vital part of the Constellation Program's transportation system. Constellation's exploration missions will include Ares I and Ares V launch vehicles required to place crew and cargo in low-Earth orbit (LEO), crew and cargo transportation systems required for human space travel, and transportation systems and scientific equipment required for human exploration of the Moon and Mars. Early Ares I configurations will support ISS re-supply missions. A self-supporting cylindrical structure, the Ares I Upper Stage will be approximately 84' long and 18' in diameter. The Upper Stage Element is being designed for increased supportability and increased reliability to meet human-rating requirements imposed by NASA standards. The design also incorporates state-of-the-art materials, hardware, design, and integrated logistics planning, thus facilitating a supportable, reliable, and operable system. With NASA retiring the Space Shuttle fleet in 2010, the success of the Ares I Project is essential to America's continued leadership in space. The first Ares I test flight, called Ares 1-X, is scheduled for 2009. Subsequent test flights will continue thereafter, with the first crewed flight of the Crew Exploration Vehicle (CEV), "Orion," planned for no later than 2015. Crew transportation to the ISS will follow within the same decade, and the first Lunar excursion is scheduled for the 2020 timeframe.

  5. Elastic-Plastic Fracture Mechanics Analysis of Critical Flaw Size in ARES I-X Flange-to-Skin Welds

    Science.gov (United States)

    Chell, G. Graham; Hudak, Stephen J., Jr.

    2008-01-01

    NASA's Ares 1 Upper Stage Simulator (USS) is being fabricated from welded A516 steel. In order to insure the structural integrity of these welds it is of interest to calculate the critical initial flaw size (CIFS) to establish rational inspection requirements. The CIFS is in turn dependent on the critical final flaw size (CFS), as well as fatigue flaw growth resulting from transportation, handling and service-induced loading. These calculations were made using linear elastic fracture mechanics (LEFM), which are thought to be conservative because they are based on a lower bound, so called elastic, fracture toughness determined from tests that displayed significant plasticity. Nevertheless, there was still concern that the yield magnitude stresses generated in the flange-to-skin weld by the combination of axial stresses due to axial forces, fit-up stresses, and weld residual stresses, could give rise to significant flaw-tip plasticity, which might render the LEFM results to be non-conservative. The objective of the present study was to employ Elastic Plastic Fracture Mechanics (EPFM) to determine CFS values, and then compare these values to CFS values evaluated using LEFM. CFS values were calculated for twelve cases involving surface and embedded flaws, EPFM analyses with and without plastic shakedown of the stresses, LEFM analyses, and various welding residual stress distributions. For the cases examined, the computed CFS values based on elastic analyses were the smallest in all instances where the failures were predicted to be controlled by the fracture toughness. However, in certain cases, the CFS values predicted by the elastic-plastic analyses were smaller than those predicted by the elastic analyses; in these cases the failure criteria were determined by a breakdown in stress intensity factor validity limits for deep flaws (a greater than 0.90t), rather than by the fracture toughness. Plastic relaxation of stresses accompanying shakedown always increases the

  6. NASA's Ares I and Ares V Launch Vehicles -- Effective Space Operations Through Efficient Ground Operations

    Science.gov (United States)

    Dumbacher, Daniel L.; Singer, Christopher E.; Onken, Jay F.

    2008-01-01

    The United States (U.S.) plans to return to the Moon by 2020, with the development of a new human-rated space transportation system to replace the Space Shuttle, which is due for retirement in 2010 after it completes its missions of building the International Space Station and servicing the Hubble Space Telescope. Powering the future of space-based scientific exploration will be the Ares I Crew Launch Vehicle, which will transport the Orion Crew Exploration Vehicle to orbit where it will rendezvous with the Lunar Lander. which will be delivered by the Ares V Cargo Launch Vehicle. This new transportation infrastructure, developed by the National Aeronautics and Space Administration (NASA), will allow astronauts to leave low-Earth orbit for extended lunar exploration and preparation for the first footprint on Mars. All space-based operations begin and are controlled from Earth. NASA's philosophy is to deliver safe, reliable, and cost-effective solutions to sustain a multi-billion-dollar program across several decades. Leveraging 50 years of lessons learned, NASA is partnering with private industry, while building on proven hardware experience. This paper will discuss how the Engineering Directorate at NASA's Marshall Space Flight Center is working with the Ares Projects Office to streamline ground operations concepts and reduce costs. Currently, NASA's budget is around $17 billion, which is less than 1 percent of the U.S. Federal budget. Of this amount, NASA invests approximately $4.5 billion each year in Space Shuttle operations, regardless of whether the spacecraft is flying or not. The affordability requirement is for the Ares I to reduce this expense by 50 percent, in order to allow NASA to invest more in space-based scientific operations. Focusing on this metric, the Engineering Directorate provides several solutions-oriented approaches, including Lean/Six Sigma practices and streamlined hardware testing and integration, such as assembling major hardware

  7. Ares V: A National Launch Asset for the 21st Century

    Science.gov (United States)

    Sumrall, Phil; Creech, Steve

    2009-01-01

    NASA is designing the Ares V as the cargo launch vehicle to carry NASA's exploration plans into the 21st century. The Ares V is the heavy-lift component of NASA's dual-launch architecture that will replace the current space shuttle fleet, complete the International Space Station, and establish a permanent human presence on the Moon as a stepping stone to destinations beyond. During extensive independent and internal architecture and vehicle trade studies as part of the Exploration Systems Architecture Study, NASA selected the Ares I crew launch vehicle and the Ares V to support future exploration. The smaller Ares I will launch the Orion crew exploration vehicle with four to six astronauts into orbit. The Ares V is designed to carry the Altair lunar lander into orbit, rendezvous with Orion, and send the mated spacecraft toward lunar orbit. The Ares V will be the largest and most powerful launch vehicle in history, providing unprecedented payload mass and volume to establish a permanent lunar outpost and explore significantly more of the lunar surface than was done during the Apollo missions. The Ares V also represents a national asset offering opportunities for new science, national security, and commercial missions of unmatched size and scope. Using the dual-launch Earth Orbit Rendezvous approach, the Ares I and Ares V together will be able to inject roughly 57percent more mass to the Moon than the Apollo-era Saturn V. Ares V alone will be able to send nearly 414,000 pounds into low Earth orbit (LEO) or more than 138,000 pounds directly to the Moon, compared with 262,000 pounds and 99,000 pounds, respectively for the Saturn V. Significant progress has been made on the Ares V to support a planned fiscal 2011 authority-to-proceed (ATP) milestone. This paper discusses recent progress on the Ares V and planned future activities.

  8. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Overview

    Science.gov (United States)

    Popp, Chris; Butt, Adam; Sharp, David; Pitts, Hank

    2008-01-01

    NASA's Ares I launch vehicle, consisting of a five segment solid rocket booster first stage and a liquid bi-propellant J-2X engine upper stage, is the vehicle that's been chosen to return humans to the moon, mars, and beyond. This paper provides an overview of the work that has taken place on the Ares I launch vehicle roll and reaction control systems. Reaction control systems are found on many launch vehicles and provide a vehicle with a three degree of freedom stabilization during the mission. The Ares I baseline configuration currently consists of a first stage roll control system that will provide the vehicle with a method of counteracting the roll torque that is expected during launch. An upper stage reaction control system will allow the upper stage three degrees of freedom control as needed. Design assessments and trade studies are being conducted on the roll and reaction control systems including: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Other vehicle considerations and issues include thruster plume impingement, thruster module aerothermal and aerodynamic effects, and system integration. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  9. Ensuring Safe Exploration: Ares Launch Vehicle Integrated Vehicle Ground Vibration Testing

    Science.gov (United States)

    Tuma, M. L.; Chenevert, D. J.

    2010-01-01

    Integrated vehicle ground vibration testing (IVGVT) will be a vital component for ensuring the safety of NASA's next generation of exploration vehicles to send human beings to the Moon and beyond. A ground vibration test (GVT) measures the fundamental dynamic characteristics of launch vehicles during various phases of flight. The Ares Flight & Integrated Test Office (FITO) will be leading the IVGVT for the Ares I crew launch vehicle at Marshall Space Flight Center (MSFC) from 2012 to 2014 using Test Stand (TS) 4550. MSFC conducted similar GVT for the Saturn V and Space Shuttle vehicles. FITO is responsible for performing the IVGVT on the Ares I crew launch vehicle, which will lift the Orion crew exploration vehicle to low Earth orbit, and the Ares V cargo launch vehicle, which can launch the lunar lander into orbit and send the combined Orionilander vehicles toward the Moon. Ares V consists of a six-engine core stage with two solid rocket boosters and an Earth departure stage (EDS). The same engine will power the EDS and the Ares I second stage. For the Ares IVGVT, the current plan is to test six configurations in three unique test positions inside TS 4550. Position 1 represents the entire launch stack at liftoff (using inert first stage segments). Position 2 consists of the entire launch stack at first stage burn-out (using empty first stage segments). Four Ares I second stage test configurations will be tested in Position 3, consisting of the Upper Stage and Orion crew module in four nominal conditions: J-2X engine ignition, post Launch Abort System (LAS) jettison, critical slosh mass, and J-2X burn-out. Because of long disuse, TS 4550 is being repaired and reactivated to conduct the Ares I IVGVT. The Shuttle-era platforms have been removed and are being replaced with mast climbers that provide ready access to the test articles and can be moved easily to support different positions within the test stand. The electrical power distribution system for TS 4550 was

  10. Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle

    Science.gov (United States)

    Du, Wei

    This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA's Ares-I reference model and the SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state-space model as well as a non-minimum-phase transfer function model (which is typical for flexible vehicles with non-collocated actuators and sensors) are validated for ascent flight control design and analysis. This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical "drift-minimum" and "load-minimum" control principles. It is shown that an additional feedback of angle-of-attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical "non-collocated actuator and sensor" control problem for large flexible launch vehicles, non-minimum-phase filtering of "unstably interacting" bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the framework of structured singular value (mu) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares-I CLV as another validation of the feasibility of the ascent flight control system design. Another important issue for a single main engine launch vehicle is

  11. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    Science.gov (United States)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  12. Preliminary Investigation on Battery Sizing Investigation for Thrust Vector Control on Ares I and Ares V Launch Vehicles

    Science.gov (United States)

    Miller, Thomas B.

    2011-01-01

    An investigation into the merits of battery powered Electro Hydrostatic Actuation (EHA) for Thrust Vector Control (TVC) of the Ares I and Ares V launch vehicles is described. A top level trade study was conducted to ascertain the technical merits of lithium-ion (Li-ion) and thermal battery performance to determine the preferred choice of an energy storage system chemistry that provides high power discharge capability for a relatively short duration.

  13. Building Operations Efficiencies into NASA's Ares I Crew Launch Vehicle Design

    Science.gov (United States)

    Dumbacher, Daniel L.; Davis, Stephan R.

    2007-01-01

    The U.S. Vision for Space Exploration guides the National Aeronautics and Space Administration's (NASA's) challenging missions that expand humanity's boundaries and open new routes to the space frontier. With the Agency's commitment to complete the International Space Station (ISS) and to retire the venerable Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in 2005 to analyze options for safe, simple, cost-efficient launch solutions that could deliver human-rated space transportation capabilities in a timely manner within fixed budget guidelines. The Exploration Launch Projects (ELP) Office, chartered by the Constellation Program in October 2005, has been conducting systems engineering studies and business planning to successively refine the design configurations and better align vehicle concepts with customer and stakeholder requirements, such as significantly reduced life-cycle costs. As the Agency begins the process of replacing the Shuttle with a new generation of spacecraft destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo launch systems for maximum operational efficiencies. To sustain the long-term exploration of space, it is imperative to reduce the $4 billion NASA typically spends on space transportation each year. This paper gives toplevel information about how the follow-on Ares I Crew Launch Vehicle (CLV) is being designed for improved safety and reliability, coupled with reduced operations costs. These methods include carefully developing operational requirements; conducting operability design and analysis; using the latest information technology tools to design and simulate the vehicle; and developing a learning culture across the workforce to ensure a smooth transition between Space Shuttle operations and Ares vehicle development.

  14. 关于满足I(x,y)=I(x,I(x,y))D-蕴涵的解%On D-implications solutions of equation I(x,y) =I(x,I(x,y))

    Institute of Scientific and Technical Information of China (English)

    李伟才; 商美娟; 覃锋; 曹锋

    2012-01-01

    In this paper, function equation Ⅰ(x,y)=Ⅰ(x,Ⅰ(x,y)) is discussed, where D-implication / is generated by a continuous t-norm T , a continuous t-conorm S, and a strong negation n , I.e. Ⅰ(x,y) = S(T(n(x), n(y)),y) .It proposes the solutions of the Ⅰ(x, y)=Ⅰ(x, Ⅰ(x, y)) which is satisfied.%研究了I(x,y)=I(x,y))方程,I为由连续三角模T、连续三角余模S和强否定n生成的D-蕴涵,即I(x,y)=S(T(n(x),n(y)),y),给出了满足方程I(x,y)=I(x,I(x,y))的解.

  15. Real-Time Hardware-in-the-Loop Simulation of Ares I Launch Vehicle

    Science.gov (United States)

    Tobbe, Patrick; Matras, Alex; Walker, David; Wilson, Heath; Fulton, Chris; Alday, Nathan; Betts, Kevin; Hughes, Ryan; Turbe, Michael

    2009-01-01

    The Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) has been developed for use by the Ares I launch vehicle System Integration Laboratory at the Marshall Space Flight Center. The primary purpose of the Ares System Integration Laboratory is to test the vehicle avionics hardware and software in a hardware - in-the-loop environment to certify that the integrated system is prepared for flight. ARTEMIS has been designed to be the real-time simulation backbone to stimulate all required Ares components for verification testing. ARTE_VIIS provides high -fidelity dynamics, actuator, and sensor models to simulate an accurate flight trajectory in order to ensure realistic test conditions. ARTEMIS has been designed to take advantage of the advances in underlying computational power now available to support hardware-in-the-loop testing to achieve real-time simulation with unprecedented model fidelity. A modular realtime design relying on a fully distributed computing architecture has been implemented.

  16. Predicting the Acoustic Environment Induced by the Launch of the Ares I Vehicle

    Science.gov (United States)

    2008-01-01

    The exhaust plumes of launch vehicles impose severe heating rates, pressures, and vibroacoustic loads on ground support equipment (GSE) on the Mobile Launcher (ML), as well as on the vehicle itself. The vibroacoustic environment must be predicted before the criteria for the acceptance and qualification testing of GSE components and their installations can be determined. This project updates launch noise modeling.

  17. Analytical Approach for Estimating Preliminary Mass of ARES I Crew Launch Vehicle Upper Stage Structural Components

    Science.gov (United States)

    Aggarwal, Pravin

    2007-01-01

    In January 2004, President Bush gave the National Aeronautics and Space Administration (NASA) a vision for Space Exploration by setting our sight on a bold new path to go back to the Moon, then to Mars and beyond. In response to this vision, NASA started the Constellation Program, which is a new exploration launch vehicle program. The primary mission for the Constellation Program is to carry out a series of human expeditions ranging from Low Earth Orbit to the surface of Mars and beyond for the purposes of conducting human exploration of space, as specified by the Vision for Space Exploration (VSE). The intent is that the information and technology developed by this program will provide the foundation for broader exploration activities as our operational experience grows. The ARES I Crew Launch Vehicle (CLV) has been designated as the launch vehicle that will be developed as a "first step" to facilitate the aforementioned human expeditions. The CLV Project is broken into four major elements: First Stage, Upper Stage Engine, Upper Stage (US), and the Crew Exploration Vehicle (CEV). NASA's Marshall Space Flight Center (MSFC) is responsible for the design of the CLV and has the prime responsibility to design the upper stage of the vehicle. The US is the second propulsive stage of the CLV and provides CEV insertion into low Earth orbit (LEO) after separation from the First Stage of the Crew Launch Vehicle. The fully integrated Upper Stage is a mix of modified existing heritage hardware (J-2X Engine) and new development (primary structure, subsystems, and avionics). The Upper Stage assembly is a structurally stabilized cylindrical structure, which is powered by a single J-2X engine which is developed as a separate Element of the CLV. The primary structure includes the load bearing liquid hydrogen (LH2) and liquid oxygen (LOX) propellant tanks, a Forward Skirt, the Intertank structure, the Aft Skirt and the Thrust Structure. A Systems Tunnel, which carries fluid and

  18. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    Science.gov (United States)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  19. Materials in NASA's Space Launch System: The Stuff Dreams are Made of

    Science.gov (United States)

    May, Todd A.

    2012-01-01

    Mr. Todd May, Program Manager for NASA's Space Launch System, will showcase plans and progress the nation s new super-heavy-lift launch vehicle, which is on track for a first flight to launch an Orion Multi-Purpose Crew Vehicle around the Moon in 2017. Mr. May s keynote address will share NASA's vision for future human and scientific space exploration and how SLS will advance those plans. Using new, in-development, and existing assets from the Space Shuttle and other programs, SLS will provide safe, affordable, and sustainable space launch capabilities for exploration payloads starting at 70 metric tons (t) and evolving through 130 t for entirely new deep-space missions. Mr. May will also highlight the impact of material selection, development, and manufacturing as they contribute to reducing risk and cost while simultaneously supporting the nation s exploration goals.

  20. Ares Launch Vehicles Development Awakens Historic Test Stands at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Dumbacher, Daniel L.; Burt, Richard K.

    2008-01-01

    This paper chronicles the rebirth of two national rocket testing assets located at NASA's Marshall Space Flight Center: the Dynamic Test Stand (also known as the Ground Vibration Test Stand) and the Static Test Stand (also known as the Main Propulsion Test Stand). It will touch on the historical significance of these special facilities, while introducing the requirements driving modifications for testing a new generation space transportation system, which is set to come on line after the Space Shuttle is retired in 2010. In many ways, America's journey to explore the Moon begins at the Marshall Center, which is developing the Ares I crew launch vehicle and the Ares V cargo launch vehicle, along with managing the Lunar Precursor Robotic Program and leading the Lunar Lander descent stage work, among other Constellation Program assignments. An important component of this work is housed in Marshall's Engineering Directorate, which manages more than 40 facilities capable of a full spectrum of rocket and space transportation technology testing - from small components to full-up engine systems. The engineers and technicians who operate these test facilities have more than a thousand years of combined experience in this highly specialized field. Marshall has one of the few government test groups in the United States with responsibility for the overall performance of a test program from conception to completion. The Test Laboratory has facilities dating back to the early 1960s, when the test stands needed for the Apollo Program and other scientific endeavors were commissioned and built along the Marshall Center's southern boundary, with logistics access by air, railroad, and barge or boat on the Tennessee River. NASA and its industry partners are designing and developing a new human-rated system based on the requirements for safe, reliable, and cost-effective transportation solutions. Given below are summaries of the Dynamic Test Stand and the Static Test Stand capabilities

  1. NASA Ares I Launch Vehicle First Stage Roll Control System Cold Flow Development Test Program Overview

    Science.gov (United States)

    Butt, Adam; Popp, Christopher G.; Holt, Kimberly A.; Pitts, Hank M.

    2010-01-01

    The Ares I launch vehicle is the selected design, chosen to return humans to the moon, Mars, and beyond. It is configured in two inline stages: the First Stage is a Space Shuttle derived five-segment Solid Rocket Booster and the Upper Stage is powered by a Saturn V derived J-2X engine. During launch, roll control for the First Stage (FS) is handled by a dedicated Roll Control System (RoCS) located on the connecting Interstage. That system will provide the Ares I with the ability to counteract induced roll torque while any induced yaw or pitch moments are handled by vectoring of the booster nozzle. This paper provides an overview of NASA s Ares I FS RoCS cold flow development test program including detailed test objectives, types of tests run to meet those objectives, an overview of the results, and applicable lessons learned. The test article was built and tested at the NASA Marshall Space Flight Center in Huntsville, AL. The FS RoCS System Development Test Article (SDTA) is a full scale, flight representative water flow test article whose primary objective was to obtain fluid system performance data to evaluate integrated system level performance characteristics and verify analytical models. Development testing and model correlation was deemed necessary as there is little historical precedent for similar large flow, pulsing systems such as the FS RoCS. The cold flow development test program consisted of flight-similar tanks, pressure regulators, and thruster valves, as well as plumbing simulating flight geometries, combined with other facility grade components and structure. Orifices downstream of the thruster valves were used to simulate the pressure drop through the thrusters. Additional primary objectives of this test program were to: evaluate system surge pressure (waterhammer) characteristics due to thruster valve operation over a range of mission duty cycles at various feed system pressures, evaluate temperature transients and heat transfer in the

  2. Evaluation of Separation Mechanism Design for the Orion/Ares Launch Vehicle

    Science.gov (United States)

    Konno, Kevin E.; Catalano, Daniel A.; Krivanek, Thomas M.

    2008-01-01

    As a part of the preliminary design work being performed for the Orion vehicle, the Orion to Spacecraft Adaptor (SA) separation mechanism mechanism was analyzed and sized, with findings presented here. Sizing is based on worst case abort condition as a result of an anomaly driving the launch vehicle engine thrust vector control hard-over causing a severe vehicle pitch over. This worst case scenario occurs just before Upper Stage Main Engine Cut-Off (MECO) when the vehicle is the lightest and the damping effect due to propellant slosh has been reduced to a minimum. To address this scenario and others, two modeling approaches were invoked. The first approach was a detailed Simulink model to quickly assess the Service Module Engine nozzle to SA clearance for a given separation mechanism. The second approach involved the generation of an Automatic Dynamic Analysis of Mechanical Systems (ADAMS) model to assess secondary effects due to mass centers of gravity that were slightly off the vehicle centerline. It also captured any interference between the Solar Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy are discussed. Most notably, incorporating a larger SA flange diameter allowed for a natural separation of the Orion and its engine nozzle even at relatively large pitch rates minimizing the kickoff force. Advantages and disadvantages of the Simulink model vs. a full geometric ADAMS model are discussed as well.

  3. Are You The One? COTTON USATTM Launches"Naturally in Love" Online Video Competition

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Following the great success of COTTON USA's"Natural World" online video competition earlier this year,the brand has launched a new competition as part of its latest campaign,themed "Naturally in Love".The new campaign,which comprises a nationwide multi-media advertising initiative,advocates that people can come together through a shared love of leading a natural life.

  4. Best Practices from the Design and Development of the Ares I Launch Vehicle Roll and Reaction Control Systems

    Science.gov (United States)

    Butt, Adam; Paseur, Lila F.; Pitts, Hank M.

    2012-01-01

    On April 15, 2010 President Barak Obama made the official announcement that the Constellation Program, which included the Ares I launch vehicle, would be canceled. NASA s Ares I launch vehicle was being designed to launch the Orion Crew Exploration Vehicle, returning humans to the moon, Mars, and beyond. It consisted of a First Stage (FS) five segment solid rocket booster and a liquid J-2X Upper Stage (US) engine. Roll control for the FS was planned to be handled by a dedicated Roll Control System (RoCS), located on the connecting interstage. Induced yaw or pitch moments experienced during FS ascent would have been handled by vectoring of the booster nozzle. After FS booster separation, the US Reaction Control System (ReCS) would have provided the US Element with three degrees of freedom control as needed. The best practices documented in this paper will be focused on the technical designs and producibility of both systems along with the partnership between NASA and Boeing, who was on contract to build the Ares I US Element, which included the FS RoCS and US ReCS. In regards to partnership, focus will be placed on integration along with technical work accomplished by Boeing. This will include detailed emphasis on task orders developed between NASA and Boeing that were used to direct specific work that needed to be accomplished. In summary, this paper attempts to capture key best practices that should be helpful in the development of future launch vehicle and spacecraft RCS designs.

  5. A Large-Scale Design Integration Approach Developed in Conjunction with the Ares Launch Vehicle Program

    Science.gov (United States)

    Redmon, John W.; Shirley, Michael C.; Kinard, Paul S.

    2012-01-01

    This paper presents a method for performing large-scale design integration, taking a classical 2D drawing envelope and interface approach and applying it to modern three dimensional computer aided design (3D CAD) systems. Today, the paradigm often used when performing design integration with 3D models involves a digital mockup of an overall vehicle, in the form of a massive, fully detailed, CAD assembly; therefore, adding unnecessary burden and overhead to design and product data management processes. While fully detailed data may yield a broad depth of design detail, pertinent integration features are often obscured under the excessive amounts of information, making them difficult to discern. In contrast, the envelope and interface method results in a reduction in both the amount and complexity of information necessary for design integration while yielding significant savings in time and effort when applied to today's complex design integration projects. This approach, combining classical and modern methods, proved advantageous during the complex design integration activities of the Ares I vehicle. Downstream processes, benefiting from this approach by reducing development and design cycle time, include: Creation of analysis models for the Aerodynamic discipline; Vehicle to ground interface development; Documentation development for the vehicle assembly.

  6. From Concept to Design: Progress on the J-2X Upper Stage Engine for the Ares Launch Vehicles

    Science.gov (United States)

    Byrd, Thomas

    2008-01-01

    In accordance with national policy and NASA's Global Exploration Strategy, the Ares Projects Office is embarking on development of a new launch vehicle fleet to fulfill the national goals of replacing the space shuttle fleet, returning to the moon, and exploring farther destinations like Mars. These goals are shaped by the decision to retire the shuttle fleet by 2010, budgetary constraints, and the requirement to create a new fleet that is safer, more reliable, operationally more efficient than the shuttle fleet, and capable of supporting long-range exploration goals. The present architecture for the Constellation Program is the result of extensive trades during the Exploration Systems Architecture Study and subsequent refinement by the Ares Projects Office at Marshall Space Flight Center.

  7. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Otte, Neil E.; Lyles, Garry; Reuter, James L.; Davis, Daniel J.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions. The technical personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo-era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. The Ares Projects Office, resident at Marshall, is managing the design and development of America's new space fleet, including the Ares I, which will loft the Orion crew capsule for its first test flight in the 2013 timeframe, as well as the heavy-lift Ares V, which will round out the capability to leave low-Earth orbit once again, when it delivers the Altair lunar lander to orbit late next decade. This paper provides information about the approach to integrating the Ares I stack and designing the upper stage in house, using unique facilities and an expert workforce to revitalize the nation

  8. Launching technological innovations

    DEFF Research Database (Denmark)

    Talke, Katrin; Salomo, Søren

    2009-01-01

    When conceptualising new product launch activities, most authors focused on activities aimed at overcoming customer resistance. As such a perspective neglects obstacles arising from the resistance of other stakeholders, this study proposes to explicitly consider stakeholder theory when developing...... in industrial markets. The launch strategy and tactics addressing resistance of customers, market players and parties from the broader firm environment are found to have a direct impact on market success. The launch strategy also drives both internally and externally directed launch tactics. For launch tactics...

  9. COSMOS Launch Services

    Science.gov (United States)

    Kalnins, Indulis

    2002-01-01

    COSMOS-3M is a two stage launcher with liquid propellant rocket engines. Since 1960's COSMOS has launched satellites of up to 1.500kg in both circular low Earth and elliptical orbits with high inclination. The direct SSO ascent is available from Plesetsk launch site. The very high number of 759 launches and the achieved success rate of 97,4% makes this space transportation system one of the most reliable and successful launchers in the world. The German small satellite company OHB System co-operates since 1994 with the COSMOS manufacturer POLYOT, Omsk, in Russia. They have created the joint venture COSMOS International and successfully launched five German and Italian satellites in 1999 and 2000. The next commercial launches are contracted for 2002 and 2003. In 2005 -2007 COSMOS will be also used for the new German reconnaissance satellite launches. This paper provides an overview of COSMOS-3M launcher: its heritage and performance, examples of scientific and commercial primary and piggyback payload launches, the launch service organization and international cooperation. The COSMOS launch service business strategy main points are depicted. The current and future position of COSMOS in the worldwide market of launch services is outlined.

  10. Single-Point Attachment Wind Damper for Launch Vehicle On-Pad Motion

    Science.gov (United States)

    Hrinda, Glenn A.

    2009-01-01

    A single-point-attachment wind-damper device is proposed to reduce on-pad motion of a cylindrical launch vehicle. The device is uniquely designed to attach at only one location along the vehicle and capable of damping out wind gusts from any lateral direction. The only source of damping is from two viscous dampers in the device. The effectiveness of the damper design in reducing vehicle displacements is determined from transient analysis results using an Ares I-X launch vehicle. Combinations of different spring stiffnesses and damping are used to show how the vehicle's displacement response is significantly reduced during a wind gust.

  11. First Foreign Law Degree Program Launched in Beijing IPR courses are among the core courses of the program

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    On August 1.1999.China University PoliticalScience & Law(FADA)and Temple University Schoolof Law jointly launched an advanced legal educationprogram.The program offers foreign master of lawsdegree to Chinese legal professionals.Approved by both the Degree Commission of theState Council of China and the American Bar Association(the ABA),the program is designed to educate the nextgeneration of Chinese lawyers for international practice.The first entering class of the program consists of judge,

  12. Launch Collision Probability

    Science.gov (United States)

    Bollenbacher, Gary; Guptill, James D.

    1999-01-01

    This report analyzes the probability of a launch vehicle colliding with one of the nearly 10,000 tracked objects orbiting the Earth, given that an object on a near-collision course with the launch vehicle has been identified. Knowledge of the probability of collision throughout the launch window can be used to avoid launching at times when the probability of collision is unacceptably high. The analysis in this report assumes that the positions of the orbiting objects and the launch vehicle can be predicted as a function of time and therefore that any tracked object which comes close to the launch vehicle can be identified. The analysis further assumes that the position uncertainty of the launch vehicle and the approaching space object can be described with position covariance matrices. With these and some additional simplifying assumptions, a closed-form solution is developed using two approaches. The solution shows that the probability of collision is a function of position uncertainties, the size of the two potentially colliding objects, and the nominal separation distance at the point of closest approach. ne impact of the simplifying assumptions on the accuracy of the final result is assessed and the application of the results to the Cassini mission, launched in October 1997, is described. Other factors that affect the probability of collision are also discussed. Finally, the report offers alternative approaches that can be used to evaluate the probability of collision.

  13. Peer Review of Launch Environments

    Science.gov (United States)

    Wilson, Timmy R.

    2011-01-01

    Catastrophic failures of launch vehicles during launch and ascent are currently modeled using equivalent trinitrotoluene (TNT) estimates. This approach tends to over-predict the blast effect with subsequent impact to launch vehicle and crew escape requirements. Bangham Engineering, located in Huntsville, Alabama, assembled a less-conservative model based on historical failure and test data coupled with physical models and estimates. This white paper summarizes NESC's peer review of the Bangham analytical work completed to date.

  14. DNA-Launched Alphavirus Replicons Encoding a Fusion of Mycobacterial Antigens Acr and Ag85B Are Immunogenic and Protective in a Murine Model of TB Infection.

    Directory of Open Access Journals (Sweden)

    Neha Dalmia

    Full Text Available There is an urgent need for effective prophylactic measures against Mycobacterium tuberculosis (Mtb infection, particularly given the highly variable efficacy of Bacille Calmette-Guerin (BCG, the only licensed vaccine against tuberculosis (TB. Most studies indicate that cell-mediated immune responses involving both CD4+ and CD8+ T cells are necessary for effective immunity against Mtb. Genetic vaccination induces humoral and cellular immune responses, including CD4+ and CD8+ T-cell responses, against a variety of bacterial, viral, parasitic and tumor antigens, and this strategy may therefore hold promise for the development of more effective TB vaccines. Novel formulations and delivery strategies to improve the immunogenicity of DNA-based vaccines have recently been evaluated, and have shown varying degrees of success. In the present study, we evaluated DNA-launched Venezuelan equine encephalitis replicons (Vrep encoding a novel fusion of the mycobacterial antigens α-crystallin (Acr and antigen 85B (Ag85B, termed Vrep-Acr/Ag85B, for their immunogenicity and protective efficacy in a murine model of pulmonary TB. Vrep-Acr/Ag85B generated antigen-specific CD4+ and CD8+ T cell responses that persisted for at least 10 wk post-immunization. Interestingly, parenterally administered Vrep-Acr/Ag85B also induced T cell responses in the lung tissues, the primary site of infection, and inhibited bacterial growth in both the lungs and spleens following aerosol challenge with Mtb. DNA-launched Vrep may, therefore, represent an effective approach to the development of gene-based vaccines against TB, particularly as components of heterologous prime-boost strategies or as BCG boosters.

  15. Hydrogen-Triggered Type I X-ray Bursts in a Two-Zone Model

    OpenAIRE

    Cooper, Randall L.; Narayan, Ramesh

    2007-01-01

    We use the two-zone model of Cooper & Narayan to study the onset and time evolution of hydrogen-triggered type I X-ray bursts on accreting neutron stars. At the lowest accretion rates, thermally unstable hydrogen burning ignites helium as well and produces a mixed hydrogen and helium burst. For somewhat higher accretion rates, thermally unstable hydrogen burning does not ignite helium and thus triggers only a weak hydrogen flash. The peak luminosities of weak hydrogen flashes are typically mu...

  16. Xichang Satellite Launch Center

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    Xichang Satellite Launch Center(XSLC) is mainly for geosynchronous orbit launches. The main purpose of XSLC is to launch spacecraft, such as broadcasting,communications and meteorological satellites, into geo-stationary orbit.Most of the commercial satellite launches of Long March vehicles have been from Xichang Satellite Launch Center. With 20 years' development,XSLC can launch 5 kinds of launch vehicles and send satellites into geostationary orbit and polar orbit. In the future, moon exploration satellites will also be launched from XSLC.

  17. Ares I and Ares V First Stage - Powering Exploration

    Science.gov (United States)

    Priskos, Alex S.; Williams, Thomas J.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the first stage propulsion system for the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Ares I and Ares V will provide the space launch capabilities needed to fulfill NASA' s exploration strategy of sending human beings to the Moon, Mars, and beyond. As primary propulsion for the Ares launch vehicles, the Space Shuttle-derived Reusable Solid Rocket Motor (RSRM) is one of the first and most important components to be tested. The first flight of Ares I, called Ares I-X, will occur in April 2009, with booster integration to begin at Kennedy Space Center (KSC) by autumn 2008. The Ares I-X flight will use a combination of flight and simulation hardware to obtain data on controlling the long and narrow crew launch vehicle configuration. The test will use a four-segment RSRM from the Shuttle inventory and a fifth spacer segment to simulate the size and weight of the operational five-segment motor to be used on later flights. The upper stage, Orion crew exploration vehicle, and launch abort system will all be replaced with simulator hardware. Manufacturing work has begun on the spacer segment, as well as the new forward hardware for the booster. Atlas V avionics will be adapted to control Ares I-X' s first stage. That hardware is undergoing hardware-in-the-loop testing in a contractor-provided systems integration laboratory (SIL); a critical design review (CDR) was completed in December 2007. Drogue and main parachute drop tests have also been conducted successfully at Yuma Proving Grounds, allowing the First Stage team to begin fabricating parachutes for Ares I-X. The Ares I-X flight test will be the first flight test for the parachutes. A series of preliminary design technical interchange meetings is being conducted prior to the Ares I-X CDR in January 2007 to ensure readiness for the flight. Much of the First

  18. Soviet launch vehicles - An overview

    Science.gov (United States)

    Clark, P. S.

    1982-02-01

    The different families of Soviet launch vehicles are described, along with a history of applications. The Sapwood family, which was used to launch the Moniya spacecraft, is the most often-used launch vehicle in the world. Like the Sapwood, the Sandal, Skean, and Scarp vehicles are all modifications of military rockets. Specific impulses, launch records, payloads, fuels, mass, length, and diameters are provided for launches in the period 1975-1981. The Proton series is the largest currently operational vehicle in the Soviet space program, although exact dimensions are not available. Manned space missions, space stations, and heavy satellites have been delegated to the Proton booster, which has also been used for the Luna 24 and Veneras 11 and 12 probes.

  19. Launch systems operations cost modeling

    Science.gov (United States)

    Jacobs, Mark K.

    1999-01-01

    This paper describes the launch systems operations modeling portion of a larger model development effort, NASA's Space Operations Cost Model (SOCM), led by NASA HQ. The SOCM study team, which includes cost and technical experts from each NASA Field Center and various contractors, has been tasked to model operations costs for all future NASA mission concepts including planetary and Earth orbiting science missions, space facilities, and launch systems. The launch systems operations modeling effort has near term significance for assessing affordability of our next generation launch vehicles and directing technology investments, although it provides only a part of the necessary inputs to assess life cycle costs for all elements that determine affordability for a launch system. Presented here is a methodology to estimate requirements associated with a launch facility infrastructure, or Spaceport, from start-up/initialization into steady-state operation. Included are descriptions of the reference data used, the unique estimating methodology that combines cost lookup tables, parametric relationships, and constructively-developed correlations of cost driver input values to collected reference data, and the output categories that can be used by economic and market models. Also, future plans to improve integration of launch vehicle development cost models, reliability and maintainability models, economic and market models, and this operations model to facilitate overall launch system life cycle performance simulations will be presented.

  20. Small Space Launch: Origins & Challenges

    Science.gov (United States)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket

  1. Iraq Radiosonde Launch Records

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Iraqi upper air records loaned to NCDC from the Air Force 14th Weather Squadron. Scanned notebooks containing upper air radiosonde launch records and data. Launches...

  2. Collateral patient doses in the Varian 21iX radiotherapy Linac

    International Nuclear Information System (INIS)

    Full text: The radiotherapy aim is to irradiate the patient tumor cells while the doses in healthy tissue remains as low as possible. Nevertheless, when high photon energy accelerators are used, collateral undesired photon and neutron doses are always implied during the treatments and became more important with the new accelerators and techniques as IMRT. To assess secondary cancer risk outside the treatment volume as a long-term medical consequence of treatments, the total doses received by each patient outside the primary field during his treatment must be estimated. To achieve this purpose photon and neutron dose equivalents Hp(10) and H*(10) has been measured in a new Varian 21iX with maximum photon energy of 15 MV placed recently in our radiotherapy department. Three devices: 1) a neutron dose rate meter BERTHOLD LB 4111 calibrated recently in the German PTB laboratory, 2) a calibrated environmental pressurized photon ionization chamber (IC) VICTOREEN 450-PI n/s 1020, and 3) a calibrated personal electronic photon dosimeter GAMMACOM 4200M, were placed above the treatment couch outside the primary field while the Varian 21iX reference test were done. In particular the photon and neutron doses in the couch were measured while a water phantom was irradiated during automatic beam data acquisition for a 15 MV beam. A complete set of measurements changing field size are made. These 15 MV results are compared with data measured previously by thermoluminescence and bubble dosimeters in the same facility for an Elekta Precise and a Siemens KDS both with maximum photon energy of 18 MV. From this the benefits in the patient collateral doses of decreasing the maximum treatment photon energy are discussed. The patient doses obtained in the Varian 21iX had values that go from 80 to 800 uSv per treatment Gray. As the Varian 21iX therapy Linac is operated in pulsed mode with short pulse length the discussion of the results includes: 1. The correction of dead time in the GM

  3. Long Type I X-ray Bursts and Neutron Star Interior Physics

    OpenAIRE

    Cumming, Andrew; Macbeth, Jared; Zand, J. J. M. in't; Page, Dany

    2005-01-01

    Superbursts are very energetic Type I X-ray bursts discovered in recent years by long term monitoring of X-ray bursters, believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. A number of "intermediate duration" bursts have also been observed, probably associated with ignition of a thick helium layer. We investigate the sensitivity of these long X-ray bursts to the thermal profile of the neutron star crust and core. We first compare cooling models of superbur...

  4. Classical novae and type I X-ray bursts: challenges for the 21st century

    CERN Document Server

    Parikh, A; Sala, G

    2014-01-01

    Classical nova explosions and type I X-ray bursts are the most frequent types of thermonuclear stellar explosions in the Galaxy. Both phenomena arise from thermonuclear ignition in the envelopes of accreting compact objects in close binary star systems. Detailed observations of these events have stimulated numerous studies in theoretical astrophysics and experimental nuclear physics. We discuss observational features of these phenomena and theoretical efforts to better understand the energy production and nucleosynthesis in these explosions. We also examine and summarize studies directed at identifying nuclear physics quantities with uncertainties that significantly affect model predictions.

  5. Classical novae and type I X-ray bursts: Challenges for the 21st century

    International Nuclear Information System (INIS)

    Classical nova explosions and type I X-ray bursts are the most frequent types of thermonuclear stellar explosions in the Galaxy. Both phenomena arise from thermonuclear ignition in the envelopes of accreting compact objects in close binary star systems. Detailed observations of these events have stimulated numerous studies in theoretical astrophysics and experimental nuclear physics. We discuss observational features of these phenomena and theoretical efforts to better understand the energy production and nucleosynthesis in these explosions. We also examine and summarize studies directed at identifying nuclear physics quantities with uncertainties that significantly affect model predictions

  6. Expendable launch vehicle studies

    Science.gov (United States)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to

  7. Reusable launch vehicle technology program

    Science.gov (United States)

    Freeman, Delma C.; Talay, Theodore A.; Austin, R. Eugene

    Industry/NASA reusable launch vehicle (RLV) technology program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the RLV technology program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.

  8. New Product Launching Ideas

    Science.gov (United States)

    Kiruthika, E.

    2012-09-01

    Launching a new product can be a tense time for a small or large business. There are those moments when you wonder if all of the work done to develop the product will pay off in revenue, but there are many things are can do to help increase the likelihood of a successful product launch. An open-minded consumer-oriented approach is imperative in todayís diverse global marketplace so a firm can identify and serve its target market, minimize dissatisfaction, and stay ahead of competitors. Final consumers purchase for personal, family, or household use. Finally, the kind of information that the marketing team needs to provide customers in different buying situations. In high-involvement decisions, the marketer needs to provide a good deal of information about the positive consequences of buying. The sales force may need to stress the important attributes of the product, the advantages compared with the competition; and maybe even encourage ìtrialî or ìsamplingî of the product in the hope of securing the sale. The final stage is the post-purchase evaluation of the decision. It is common for customers to experience concerns after making a purchase decision. This arises from a concept that is known as ìcognitive dissonance

  9. Observations of Type i X-Ray Bursts from GS 1826-238 with RXTE

    Science.gov (United States)

    Lewin, Walter

    Type I X-ray bursts are the result of thermonuclear flashes on the surface of accreting neutron stars. The spectral lines which are expected in the X-ray spectra of the bursts will allow for a direct measurement of the gravitational redshift from the surface of the neutron stars (one of the holy grails in physics). XMM-Newton has the potential of detecting such lines. We have been awarded 200 ksec observations with XMM-Newton of the X-ray burster GS 1826-238. During this time we expect to observe ten X-ray bursts and to accumulate about 40,000 high-spectral resolution burst counts with the RGS, and roughly 2 Mcounts with EPIC-PN. We are requesting simultaneous observations with RXTE to obtain essential information about the underlying continuum spectrum.

  10. The Scout Launch Vehicle program

    Science.gov (United States)

    Foster, L. R., Jr.; Urash, R. G.

    1981-01-01

    The Scout Launch Vehicle Program to utilize solid propellant rockets by the DOD and to provide a reliable, low cost vehicle for scientific and applications aircraft is discussed. The program's history is reviewed and a vehicle description is given. The Vandenberg Air Force Base and the San Marco launch sites are described, and capabilities such as payload weight, orbital inclinations, payload volume and mission integration time spans are discussed. Current and future plans for improvement, including larger heat shields and individual rocket motors are also reviewed.

  11. Artist's Concept- Ares I On Launchpad 39B

    Science.gov (United States)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This 'clean pad' approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  12. Recent advances in the modelling of classical novae and type I X-ray bursts

    International Nuclear Information System (INIS)

    Classical nova outbursts and type I X-ray bursts are thermonuclear stellar explosions driven by charged-particle reactions. Extensive numerical simulations of nova explosions have shown that the accreted envelopes attain peak temperatures between 0.1 and 0.4 GK, for about several hundred seconds, and therefore, their ejecta is expected to show signatures of significant nuclear activity. Indeed, it has been claimed that novae play some role in the enrichment of the interstellar medium through a number of intermediate-mass elements. This includes 17O, 15N, and 13C, systematically overproduced in huge amounts with respect to solar abundances, with a lower contribution to a number of species with A7Li, 19F, or 26Al. In this review, we present new 1-D hydrodynamic models of classical nova outbursts, from the onset of accretion up to the explosion and ejection phases. Special emphasis is put on their gross observational properties (including constraints from meteoritic presolar grains and potential gamma-ray signatures) and on their associated nucleosynthesis. Multidimensional models of mixing at the core-envelope interface during outbursts will also be presented. The impact of nuclear uncertainties on the final yields will be also outlined. Detailed analysis of the relevant reactions along the main nuclear path for type I X-ray bursts has only been scarcely addressed, mainly in the context of parameterized one-zone models. Here, we present a detailed study of the nucleosynthesis and nuclear processes powering type I X-ray bursts. The reported bursts have been computed by means of a spherically symmetric (1D), Lagrangian, hydrodynamic code, linked to a nuclear reaction network that contains 325 isotopes (from 1H to 107Te), and 1392 nuclear processes. These evolutionary sequences, followed from the onset of accretion up to the explosion and expansion stages, have been performed for two different metallicities to explore the dependence between the extension of the main

  13. Optimization of geometrical design of nested conical Wolter-I X-ray telescope

    Institute of Scientific and Technical Information of China (English)

    Baozhong Mu; Hongying Liu; Huijun Jin; Xiajun Yang; Fangfang Wang; Wenbin Li; Hong Chen; Zhanshan Wang

    2012-01-01

    Optical design of nested conical Wolter I X-ray telescope covering energy band from 1 to 30 keV is investigated systematically.Recurrence relation of the nested structure is deduced,and the impact of the initial parameters on the performance is analyzed.Due to the need for hard X-ray astronomical observations in China,the initial structure is presented,for which six groups of W/B4C aperiodic multilayer coatings between the innermost and the outermost shell of the mirror are designed.The effective area,resolution,and field of view are calculated in the simulation.The results show that the effective area can achieve 71 cm2 and the field of view can achieve 13' at 30 keV.The resolution is estimated to be ~10" in half-power diameter.

  14. Launch vehicle selection model

    Science.gov (United States)

    Montoya, Alex J.

    1990-01-01

    Over the next 50 years, humans will be heading for the Moon and Mars to build scientific bases to gain further knowledge about the universe and to develop rewarding space activities. These large scale projects will last many years and will require large amounts of mass to be delivered to Low Earth Orbit (LEO). It will take a great deal of planning to complete these missions in an efficient manner. The planning of a future Heavy Lift Launch Vehicle (HLLV) will significantly impact the overall multi-year launching cost for the vehicle fleet depending upon when the HLLV will be ready for use. It is desirable to develop a model in which many trade studies can be performed. In one sample multi-year space program analysis, the total launch vehicle cost of implementing the program reduced from 50 percent to 25 percent. This indicates how critical it is to reduce space logistics costs. A linear programming model has been developed to answer such questions. The model is now in its second phase of development, and this paper will address the capabilities of the model and its intended uses. The main emphasis over the past year was to make the model user friendly and to incorporate additional realistic constraints that are difficult to represent mathematically. We have developed a methodology in which the user has to be knowledgeable about the mission model and the requirements of the payloads. We have found a representation that will cut down the solution space of the problem by inserting some preliminary tests to eliminate some infeasible vehicle solutions. The paper will address the handling of these additional constraints and the methodology for incorporating new costing information utilizing learning curve theory. The paper will review several test cases that will explore the preferred vehicle characteristics and the preferred period of construction, i.e., within the next decade, or in the first decade of the next century. Finally, the paper will explore the interaction

  15. The development of China's launching vehicle

    Science.gov (United States)

    Cheng, Yongzeng

    1987-06-01

    A development history is presented for the Chinese space program, with attention to the Long March series of launch vehicles. The design and performance specifications of both currently available and planned Chinese launch vehicles are presented with a view to stimulating interest in foreign commercial and governmental use of these resources for satellite launch services. The circumstances of joint marketing ventures for such launch services with U.S. and/or West European companies are explored. Low earth orbit, geosynchronous transfer orbit, high earth orbit, and multiple satellite orbit insertion missions are discussed.

  16. Arianespace streamlines launch procedures

    Science.gov (United States)

    Lenorovitch, Jeffrey M.

    1992-06-01

    Ariane has entered a new operational phase in which launch procedures have been enhanced to reduce the length of launch campaigns, lower mission costs, and increase operational availability/flexibility of the three-stage vehicle. The V50 mission utilized the first vehicle from a 50-launcher production lot ordered by Arianespace, and was the initial flight with a stretched third stage that enhances Ariane's performance. New operational procedures were introduced gradually over more than a year, starting with the V42 launch in January 1991.

  17. Launch Services, a Proven Model

    Science.gov (United States)

    Trafton, W. C.; Simpson, J.

    2002-01-01

    From a commercial perspective, the ability to justify "leap frog" technology such as reusable systems has been difficult to justify because the estimated 5B to 10B investment is not supported in the current flat commercial market coupled with an oversupply of launch service suppliers. The market simply does not justify investment of that magnitude. Currently, next generation Expendable Launch Systems, including Boeing's Delta IV, Lockheed Martin's Atlas 5, Ariane V ESCA and RSC's H-IIA are being introduced into operations signifying that only upgrades to proven systems are planned to meet the changes in anticipated satellite demand (larger satellites, more lifetime, larger volumes, etc.) in the foreseeable future. We do not see a new fleet of ELVs emerging beyond that which is currently being introduced, only continuous upgrades of the fleet to meet the demands. To induce a radical change in the provision of launch services, a Multinational Government investment must be made and justified by World requirements. The commercial market alone cannot justify such an investment. And if an investment is made, we cannot afford to repeat previous mistakes by relying on one system such as shuttle for commercial deployment without having any back-up capability. Other issues that need to be considered are national science and security requirements, which to a large extent fuels the Japanese, Chinese, Indian, Former Soviet Union, European and United States space transportation entries. Additionally, this system must support or replace current Space Transportation Economies with across-the-board benefits. For the next 10 to 20 years, Multinational cooperation will be in the form of piecing together launch components and infrastructure to supplement existing launch systems and reducing the amount of non-recurring investment while meeting the future requirements of the End-User. Virtually all of the current systems have some form of multinational participation: Sea Launch

  18. Anchor Trial Launch

    Science.gov (United States)

    NCI has launched a multicenter phase III clinical trial called the ANCHOR Study -- Anal Cancer HSIL (High-grade Squamous Intraepithelial Lesion) Outcomes Research Study -- to determine if treatment of HSIL in HIV-infected individuals can prevent anal canc

  19. Genomic Data Commons launches

    Science.gov (United States)

    The Genomic Data Commons (GDC), a unified data system that promotes sharing of genomic and clinical data between researchers, launched today with a visit from Vice President Joe Biden to the operations center at the University of Chicago.

  20. Impact of Cross-Axis Structural Dynamics on Validation of Linear Models for Space Launch System

    Science.gov (United States)

    Pei, Jing; Derry, Stephen D.; Zhou Zhiqiang; Newsom, Jerry R.

    2014-01-01

    A feasibility study was performed to examine the advisability of incorporating a set of Programmed Test Inputs (PTIs) during the Space Launch System (SLS) vehicle flight. The intent of these inputs is to provide validation to the preflight models for control system stability margins, aerodynamics, and structural dynamics. During October 2009, Ares I-X program was successful in carrying out a series of PTI maneuvers which provided a significant amount of valuable data for post-flight analysis. The resulting data comparisons showed excellent agreement with the preflight linear models across the frequency spectrum of interest. However unlike Ares I-X, the structural dynamics associated with the SLS boost phase configuration are far more complex and highly coupled in all three axes. This presents a challenge when implementing this similar system identification technique to SLS. Preliminary simulation results show noticeable mismatches between PTI validation and analytical linear models in the frequency range of the structural dynamics. An alternate approach was examined which demonstrates the potential for better overall characterization of the system frequency response as well as robustness of the control design.

  1. IBF Launched in China

    Institute of Scientific and Technical Information of China (English)

    Guo Yan

    2009-01-01

    @@ The India Business Forum(IBF)organized by the Confederation of Indian Industry(CII)and the Indian Embassy to China was officially launched in Beijing,on April 16,2009.With the theme of"Impact of Global Economic Crisis:Challenges and Opportunities for India and China",IBF(China)was launched to provide a lobby to promote bilateral trade and economic cooperation between the two countries.

  2. Launch processing system concept to reality

    Science.gov (United States)

    Bailey, W. W.

    1985-01-01

    The Launch Processing System represents Kennedy Space Center's role in providing a major integrated hardware and software system for the test, checkout and launch of a new space vehicle. Past programs considered the active flight vehicle to ground interfaces as part of the flight systems and therefore the related ground system was provided by the Development Center. The major steps taken to transform the Launch Processing System from a concept to reality with the successful launches of the Shuttle Programs Space Transportation System are addressed.

  3. KOMPSAT Satellite Launch and Deployment Operations

    Science.gov (United States)

    Baek, Myung-Jin; Chang, Young-Keun; Lee, Jin-Ho

    1999-12-01

    In this paper, KOMPSAT satellite launch and deployment operations are discussed. The U.S. Taurus launch vehicle delivers KOMPSAT satellite into the mission orbit directly. Launch and deployment operations is monitored and controlled by several international ground stations including Korean Ground Station (KGS). After separation from launch vehicle, KOMPSAT spacecraft deploys solar array by on-board autonomous stored commands without ground inter-vention and stabilizes the satellite such that solar arrays point to the sun. Autonomous ground communication is designed for KOMPSAT for the early orbit ground contact. KOMPSAT space-craft has capability of handing contingency situation by on-board fault management design to retry deployment sequence.

  4. Urban poor program launched.

    Science.gov (United States)

    1991-01-01

    The government of the Philippines has launched a program to deal with the rapidly growing urban poor population. 60 cities (including Metro Manila) are expected to increase their bloated population by 3.8% over 1990 which would be 27.7 million for 1991. Currently there is an exodus of people from the rural areas and by 2000 half the urban population will be squatters and slum dwellers. Basic services like health and nutrition are not expected to be able to handle this type of volume without a loss in the quality of service. The basic strategy of the new program is to recruit private medical practitioners to fortify the health care delivery and nutrition services. Currently the doctor/urban dweller ration is 1:9000. The program will develop a system to pool the efforts of government and private physicians in servicing the target population. Barangay Escopa has been chosen as the pilot city because it typifies the conditions of a highly populated urban area. The projects has 2 objectives: 1) demonstrate the systematic delivery of health and nutrition services by the private sector through the coordination of the government, 2) reduce mortality and morbidity in the community, especially in the 0-6 age group as well as pregnant women and lactating mothers.

  5. China Launches Two Natural Disaster Monitoring Satellites

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ China launched two satellites, HJ-1A and HJ-1B, to monitor the environment and natural disasters at 11:25am on September 6 (Beijing time) from the Taiyuan Satellite Launch Center in Shanxi Province. The two satellites are expected to improve the country's ability in the rapid monitoring of environmental changes and reducing calamities.

  6. VENESAT-1 Successfully Launched

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Venezuelan first satellite VENESAT-1 (or Simon Bolivar) was sent to space from the Xichang Satellite Launch Center(XSLC) at 0:53 (Beijing time) on October 30 atop a LM-3B launch vehicle. About 12 minutes later, the satellite entered the preset GTO orbit at the altitude of 36,000km. After four maneuvers, the satellite was normally positioned at 78 degrees west longitude at 15:39 (Beijing time) on November 9,beaming the majority of Latin America and part of the Caribbean region.

  7. Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Science.gov (United States)

    Dirgayussa, I. Gde Eka; Yani, Sitti; Rhani, M. Fahdillah; Haryanto, Freddy

    2015-09-01

    Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDP and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good criteria of dose

  8. Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDP and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good

  9. Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dirgayussa, I Gde Eka, E-mail: ekadirgayussa@gmail.com; Yani, Sitti; Haryanto, Freddy, E-mail: freddy@fi.itb.ac.id [Institut Teknologi Bandung, Jl. Ganesha 10, 40132 (Indonesia); Rhani, M. Fahdillah [Tang Tock Seng Hospital (Singapore)

    2015-09-30

    Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDP and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good

  10. Athermal laser launch telescopes

    NARCIS (Netherlands)

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several o

  11. Accretion disk signatures in Type I X-ray Bursts: prospects for future missions

    CERN Document Server

    Keek, L; Ballantyne, D R

    2016-01-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will give insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, NICER, Athena, and LOFT. Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and through-put of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes $\\ge 10^{-7.5}$ erg cm$^{-2}$ s$^{-1}$, and also effectively constrain ...

  12. Fast and slow magnetic deflagration fronts in type I X-ray bursts

    Science.gov (United States)

    Cavecchi, Yuri; Levin, Yuri; Watts, Anna L.; Braithwaite, Jonathan

    2016-06-01

    Type I X-ray bursts are produced by thermonuclear runaways that develop on accreting neutron stars. Once one location ignites, the flame propagates across the surface of the star. Flame propagation is fundamental in order to understand burst properties like rise time and burst oscillations. Previous work quantified the effects of rotation on the front, showing that the flame propagates as a deflagration and that the front strongly resembles a hurricane. However, the effect of magnetic fields was not investigated, despite the fact that magnetic fields strong enough to have an effect on the propagating flame are expected to be present on many bursters. In this paper, we show how the coupling between fluid layers introduced by an initially vertical magnetic field plays a decisive role in determining the character of the fronts that are responsible for the type I bursts. In particular, on a star spinning at 450 Hz (typical among the bursters), we test seed magnetic fields of 107-1010 G and find that for the medium fields the magnetic stresses that develop during the burst can speed up the velocity of the burning front, bringing the simulated burst rise time close to the observed values. By contrast, in a magnetic slow rotator like IGR J17480-2446, spinning at 11 Hz, a seed field ≳109 G is required to allow localized ignition and the magnetic field plays an integral role in generating the burst oscillations observed during the bursts.

  13. Fast and slow magnetic deflagration fronts in Type I X-ray bursts

    CERN Document Server

    Cavecchi, Yuri; Watts, Anna L; Braithwaite, Jonathan

    2015-01-01

    Type I X-ray bursts are produced by thermonuclear runaways that develop on accreting neutron stars. Once one location ignites, the flame propagates across the surface of the star. Flame propagation is fundamental in order to understand burst properties like rise time and burst oscillations. Previous work quantified the effects of rotation on the front, showing that the flame propagates as a deflagration and that the front strongly resembles a hurricane. However the effect of magnetic fields was not investigated, despite the fact that magnetic fields strong enough to have an effect on the propagating flame are expected to be present on many bursters. In this paper we show how the coupling between fluid layers introduced by an initially vertical magnetic field plays a decisive role in determining the character of the fronts that are responsible for the Type I bursts. In particular, on a star spinning at 450 Hz (typical among the bursters) we test seed magnetic fields of $10^{7} - 10^{10}$ G and find that for th...

  14. Characterizing Epistemic Uncertainty for Launch Vehicle Designs

    Science.gov (United States)

    Novack, Steven D.; Rogers, Jim; Hark, Frank; Al Hassan, Mohammad

    2016-01-01

    NASA Probabilistic Risk Assessment (PRA) has the task of estimating the aleatory (randomness) and epistemic (lack of knowledge) uncertainty of launch vehicle loss of mission and crew risk and communicating the results. Launch vehicles are complex engineered systems designed with sophisticated subsystems that are built to work together to accomplish mission success. Some of these systems or subsystems are in the form of heritage equipment, while some have never been previously launched. For these cases, characterizing the epistemic uncertainty is of foremost importance, and it is anticipated that the epistemic uncertainty of a modified launch vehicle design versus a design of well understood heritage equipment would be greater. For reasons that will be discussed, standard uncertainty propagation methods using Monte Carlo simulation produce counter intuitive results and significantly underestimate epistemic uncertainty for launch vehicle models. Furthermore, standard PRA methods such as Uncertainty-Importance analyses used to identify components that are significant contributors to uncertainty are rendered obsolete since sensitivity to uncertainty changes are not reflected in propagation of uncertainty using Monte Carlo methods.This paper provides a basis of the uncertainty underestimation for complex systems and especially, due to nuances of launch vehicle logic, for launch vehicles. It then suggests several alternative methods for estimating uncertainty and provides examples of estimation results. Lastly, the paper shows how to implement an Uncertainty-Importance analysis using one alternative approach, describes the results, and suggests ways to reduce epistemic uncertainty by focusing on additional data or testing of selected components.

  15. Cassini launch contingency effort

    Science.gov (United States)

    Chang, Yale; O'Neil, John M.; McGrath, Brian E.; Heyler, Gene A.; Brenza, Pete T.

    2002-01-01

    On 15 October 1997 at 4:43 AM EDT, the Cassini spacecraft was successfully launched on a Titan IVB/Centaur on a mission to explore the Saturnian system. It carried three Radioisotope Thermoelectric Generators (RTGs) and 117 Light Weight Radioisotope Heater Units (LWRHUs). As part of the joint National Aeronautics and Space Administration (NASA)/U.S. Department of Energy (DoE) safety effort, a contingency plan was prepared to address the unlikely events of an accidental suborbital reentry or out-of-orbital reentry. The objective of the plan was to develop procedures to predict, within hours, the Earth impact footprints (EIFs) for the nuclear heat sources released during the atmospheric reentry. The footprint predictions would be used in subsequent notification and recovery efforts. As part of a multi-agency team, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had the responsibility to predict the EIFs of the heat sources after a reentry, given the heat sources' release conditions from the main spacecraft. (No ablation burn-through of the heat sources' aeroshells was expected, as a result of earlier testing.) JHU/APL's other role was to predict the time of reentry from a potential orbital decay. The tools used were a three degree-of-freedom trajectory code, a database of aerodynamic coefficients for the heat sources, secure links to obtain tracking data, and a high fidelity special perturbation orbit integrator code to predict time of spacecraft reentry from orbital decay. In the weeks and days prior to launch, all the codes and procedures were exercised. Notional EIFs were derived from hypothetical reentry conditions. EIFs predicted by JHU/APL were compared to those by JPL and US SPACECOM, and were found to be in good agreement. The reentry time from orbital decay for a booster rocket for the Russian Progress M-36 freighter, a cargo ship for the Mir space station, was predicted to within 5 minutes more than two hours before reentry. For the

  16. Neutron contamination of Varian Clinac iX 10 MV photon beam using Monte Carlo simulation

    Science.gov (United States)

    Yani, S.; Tursinah, R.; Rhani, M. F.; Soh, R. C. X.; Haryanto, F.; Arif, I.

    2016-03-01

    High energy medical accelerators are commonly used in radiotherapy to increase the effectiveness of treatments. As we know neutrons can be emitted from a medical accelerator if there is an incident of X-ray that hits any of its materials. This issue becomes a point of view of many researchers. The neutron contamination has caused many problems such as image resolution and radiation protection for patients and radio oncologists. This study concerns the simulation of neutron contamination emitted from Varian Clinac iX 10 MV using Monte Carlo code system. As neutron production process is very complex, Monte Carlo simulation with MCNPX code system was carried out to study this contamination. The design of this medical accelerator was modelled based on the actual materials and geometry. The maximum energy of photons and neutron in the scoring plane was 10.5 and 2.239 MeV, respectively. The number and energy of the particles produced depend on the depth and distance from beam axis. From these results, it is pointed out that the neutron produced by linac 10 MV photon beam in a typical treatment is not negligible.

  17. Long Type I X-ray Bursts and Neutron Star Interior Physics

    CERN Document Server

    Cumming, A; in 't Zand, J J M; Page, D; Cumming, Andrew; Macbeth, Jared; Page, Dany

    2005-01-01

    Superbursts are very energetic Type I X-ray bursts discovered in recent years by long term monitoring of X-ray bursters, believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. A number of "intermediate duration" bursts have also been observed, probably associated with ignition of a thick helium layer. We investigate the sensitivity of these long X-ray bursts to the thermal profile of the neutron star crust and core. We first compare cooling models of superburst lightcurves with observations, and derive constraints on the ignition mass and energy release, and then calculate ignition models for superbursts and pure helium bursts, and compare to observations. The superburst lightcurves and ignition models imply that the carbon mass fraction is approximately 20% or greater in the fuel layer, constraining models of carbon production. However, the most important result is that when Cooper pairing neutrino emission is included in the crust, the temperature is too low to support unst...

  18. Visits Service Launches New Seminar Series

    CERN Multimedia

    2001-01-01

    The CERN Visits Service is launching a new series of seminars for guides, and they are open to everyone. The series kicks off next week with a talk by Konrad Elsener on the CERN neutrinos to Gran Sasso, CNGS, project.

  19. FAME selected for MIDEX 2004 launch

    Science.gov (United States)

    Urban, S. E.; Seidelmann, P. K.; Germain, M.; Horner, S.; Greene, T.; Harris, F.; Johnson, M.; Johnston, K. J.; Monet, D.; Murrison, M.; Phillips, J.; Reasenberg, R.; Vassar, R.

    FAME, the Full-sky Astrometric Mapping Explorer, was selected for the MIDEX mission of NASA and is sheduled for a 2004 launch. Project goals and design, as well as data analysis and recent experiments are summarized.

  20. Accretion Disk Signatures in Type I X-Ray Bursts: Prospects for Future Missions

    Science.gov (United States)

    Keek, L.; Wolf, Z.; Ballantyne, D. R.

    2016-07-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will provide insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, Neutron Star Interior Composition Explorer (NICER), Athena, and Large Observatory For X-ray Timing (LOFT). Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and throughput of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes ≳10-7.5 erg cm-2 s-1 and also effectively constrain the reflection parameters for bright bursts with fluxes of ˜10-7 erg cm-2 s-1 in exposures of several seconds. Thus, these observatories will provide crucial new insight into the interaction of accretion flows and X-ray bursts. For sources with low line-of-sight absorption, the wide bandpass of these instruments allows for the detection of soft X-ray reflection features, which are sensitive to the disk metallicity and density. The large collecting area that is part of the LOFT design would revolutionize the field by tracing the evolution of the accretion geometry in detail throughout short bursts.

  1. Launch Stabilisation System for Vertical Launch of a Missile

    Directory of Open Access Journals (Sweden)

    K. Sreekumar

    2005-07-01

    Full Text Available The launch platform stabilisation control system is a roll-pitch stabilised platform for the vertical launch of a missile from a naval ship. Stabilisation of the launch platform is achievedwith the help of embedded controllers and electro-hydraulic servo control system. The launch platform is stabilised wrt true horizontal with a 2-axis (roll and pitch stabilisation systemconsisting of a gimbal and a set of three high-pressure servo hydraulic actuators. The control system uses rate gyro and tilt sensor feedbacks for stabilising the platform. This paper outlines the details of the launch platform stabilisation control system, results of digital simulation, and the performance during sea trials.

  2. CHINA LAUNCHES NEW SCIENTIFIC SATELLITE

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China on Sept. 27, 2004 launched a scientific satellite atop a Long March 2D carrier rocket from Jiuquan Satellite Launch Center in Gansu province. 10 minutes after the launch, the satellite entered a preset orbit and is running sound at the orbit. It is the 20th recoverable satellite for scientific and technological

  3. Athermal laser launch telescopes

    OpenAIRE

    Kamphues, F.G.; Henselmans, R.; Rijnveld, N.; Lemmen, M.H.J.; Doelman, N.J.; Nijkerk, M.D.

    2011-01-01

    ESO has developed a concept for a compact laser guide star unit for use in future Adaptive Optics (AO) systems. A small powerful laser is combined with a telescope that launches the beam, creating a single modular unit that can be mounted directly on a large telescope. This approach solves several of the stability problems experienced with a number of first generation laser guide star systems around the world. Four of these compact laser guide stars will be used for the new VLT 4LGSF Adaptive...

  4. STS-114: Discovery Launch Readiness Press Conference

    Science.gov (United States)

    2005-01-01

    Michael Griffin, NASA Administrator; Wayne Hale, Space Shuttle Deputy Program Manager; Mike Wetmore, Director of Shuttle Processing; and 1st Lieutenant Mindy Chavez, Launch Weather Officer-United States Air Force 45th Weather Squadron are in attendance for this STS-114 Discovery launch readiness press conference. The discussion begins with Wayne Hale bringing to the table a low level sensor device for everyone to view. He talks in detail about all of the extensive tests that were performed on these sensors and the completion of these ambient tests. Chavez presents her weather forecast for the launch day of July 26th 2005. Michael Griffin and Wayne Hale answer questions from the news media pertaining to the sensors and launch readiness. The video ends with footage of Pilot Jim Kelly and Commander Eileen Collins conducting test flights in a Shuttle Training Aircraft (STA) that simulates Space Shuttle landing.

  5. National Launch System comparative economic analysis

    Science.gov (United States)

    Prince, A.

    1992-01-01

    Results are presented from an analysis of economic benefits (or losses), in the form of the life cycle cost savings, resulting from the development of the National Launch System (NLS) family of launch vehicles. The analysis was carried out by comparing various NLS-based architectures with the current Shuttle/Titan IV fleet. The basic methodology behind this NLS analysis was to develop a set of annual payload requirements for the Space Station Freedom and LEO, to design launch vehicle architectures around these requirements, and to perform life-cycle cost analyses on all of the architectures. A SEI requirement was included. Launch failure costs were estimated and combined with the relative reliability assumptions to measure the effects of losses. Based on the analysis, a Shuttle/NLS architecture evolving into a pressurized-logistics-carrier/NLS architecture appears to offer the best long-term cost benefit.

  6. Closed End Launch Tube (CELT)

    Science.gov (United States)

    Lueck, Dale E.; Immer, Christopher D.

    2004-02-01

    A small-scale test apparatus has been built and tested for the CELT pneumatic launch assist concept presented at STAIF 2001. The 7.5 cm (3-inch) diameter × 305 M (1000 feet) long system accelerates and pneumatically brakes a 6.35 cm diameter projectile with variable weight (1.5 - 5 Kg). The acceleration and braking tube has been instrumented with optical sensors and pressure transducers at 14 stations to take data throughout the runs. Velocity and pressure profiles for runs with various accelerator pressures and projectile weights are given. This test apparatus can serve as an important experimental tool for verifying this concept.

  7. LHCb launches new website

    CERN Multimedia

    2008-01-01

    A new public website for the LHCb experiment was launched last Friday to coincide with CERN’s Open Day weekend. Designed to provide accessible information on all aspects of the experiment, the website contains images and key facts about the LHCb detector, its design and installation and the international team behind the project. "LHCb is going to be one of the most important b-physics experiments in the world when it starts taking data later this year", explains Roger Forty, the experiment’s deputy spokesperson. "We hope the website will be a valuable resource, enabling people to learn about this fascinating area of research." The new website can be found at: http://cern.ch/lhcb-public

  8. Synthesis of (Ga 1–<i>x Zn <i>x )(N 1–<i>x O <i>x ) with Enhanced Visible-Light Absorption and Reduced Defects by Suppressing Zn Volatilization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dennis P.; Skrabalak, Sara E.

    2016-04-18

    (Ga1–<i>x)(N1–<i>x O <i>x) (GZNO) particles with enhanced optical absorption were synthesized by topotactic transformation of Zn2+/Ga3+ layered double hydroxides. This outcome was achieved by suppressing Zn volatilization during nitridation by maintaining a low partial pressure of O2 (pO2). Zn-rich (x > 1/3) variants of GZNO were achieved and compared to those prepared by conventional ammonoylsis conditions. The optical absorption and structural properties of these samples were compared to those prepared in the absence of O2 by diffuse-reflectance spectroscopy and powder X-ray diffraction methods. Notably, suppression of Zn volatilization leads to smaller-band-gap materials (2.30 eV for x = 0.42 versus 2.71 eV for x = 0.21) and reduced structural defects. This synthetic route and set of characterizations provide useful structure–property studies of GZNO and potentially other oxynitrides of interest as photocatalysts.

  9. Launching facility constraints on the Space Exploration Initiative

    Science.gov (United States)

    Chan, Kadett; Montoya, Alex J.

    A quantitative tool is developed for envisioning, evaluating, and optimizing the ground and launch operations in order to meet Space Exploration Initiative (SEI) objectives. These objectives include the establishment and operation of the Space Station Freedom, lunar missions, and Mars missions. A Simulation of Logistics model (SIMLOG) is developed to assess which facilities and operations limit the maximum launch rate. This model produces the maximum achievable launch rate for each individual vehicle. The maximum launch rates are then input data for the Launch Vehicle Selection Model (LVSM), a linear integer programming model which selects the optimal number of each launch vehicle from a number of existing and proposed vehicles in order to minimize the overall multiyear launching cost of the SEI program. The simulation indicates that the SEI LEO requirement of 2.1 million lbs can be met with a mixed fleet consisting of current vehicles, a Shuttle C, and the proposed HLLV. Other results are also reported.

  10. Railgun launch of small bodies

    Energy Technology Data Exchange (ETDEWEB)

    Drobyshevski, E.M.; Zhukov, B.G.; Sakharov, V.A. [Russian Academy of Sciences, St. Petersburg (Russian Federation). Ioffe Physico-Technical Inst.

    1995-01-01

    The small body launching using gas or plasma faces the fundamental problem caused by excess energy loss due to great wall surface/volume of the barrel ratio. That is why the efficiency of the plasma armature (PA) railgun acceleration is maximum for 8--10 mm-size bodies and drops as their size decreases. For the nuclear fusion applications, where {number_sign}1--2 mm-size pellets at 5--10 km/s velocity are desirable, one is forced to search for compromise between the body size (3--4 mm) and its velocity (3 km/s). Under these conditions, EM launchers did not demonstrate an advantage over the light-gas guns. When elaborating the {number_sign}1 mm railgun, the authors made use of the ideology of the body launching at constant acceleration close to the body strength or the electrode skin-layer explosion limits. That shortened the barrel length sufficiently. The system becomes highly compact thus permitting rapid test of new operation modes and different modifications of the design including the magnetic field augmentation. As a result of these refinements, the difficulties caused by the catastrophic supply of mass ablated from the electrodes were overcome and regimes of {number_sign}1 mm body non-sabot speed-up to 4.5 km/s were found. Potentialities of the small system created are far from being exhausted.

  11. LM-4B Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    RenShufang

    2004-01-01

    The history of LM-4B traces back to the end of the 1970s. The feasibility study of LM-4 began in 1982 and the engineering development was initiated in the following year.Initially, the LM-4 served as a back-up launch vehicle for LM-3 to launch China's communications satellites. After the successful launch of China's first communications satellites by LM-3 in 1984, the main mission of the LM-4 was shifted to launch sun-synchronous orbit meteorological satellites.

  12. The Scout Launch Vehicle System

    OpenAIRE

    Tanck, Pamela; Williams, James

    1988-01-01

    SCOUT, a four-stage, solid-rocket launch vehicle originally developed by LTV Missiles and Electronics Group, is completing its third decade of service. NASA-Langley started the program in 1958 with the intent of providing a simple, low-cost, reliable launch vehicle for orbital, probe and re-entry missions. On July 1, 1960, the first SCOUT vehicle was launched. Since SCOUT became operational in 1963, there have been 88 launches of which 84 were successful, representing a reliability record of ...

  13. APME launches common method

    International Nuclear Information System (INIS)

    A common approach for carrying out ecological balances for commodity thermoplastics is due to be launched by the Association of Plastics Manufacturers in Europe (APME; Brussels) and its affiliate, The European Centre for Plastics in the Environment (PWMI) this week. The methodology report is the latest stage of a program started in 1990 that aims to describe all operations up to the production of polymer powder or granules at the plant gate. Information gathered will be made freely available to companies considering the use of polymers. An industry task force, headed by PWMI executive director Vince Matthews, has gathered information on the plastics production processes from oil to granule, and an independent panel of specialists, chaired by Ian Boustead of the U.K.'s Open University, devised the methodology and analysis. The methodology report stresses the need to define the system being analyzed and discusses how complex chemical processes can be analyzed in terms of consumption of fuels, energy, and raw materials, as well as solid, liquid, and gaseous emissions

  14. AMS ready for launch

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    On 29 April, the Alpha Magnetic Spectrometer (AMS) will complete its long expedition to the International Space Station on board the space shuttle Endeavour. The Endeavour is set to lift off from NASA’s Kennedy Space Station at 15:47 EST (21:47 CET).   Samuel Ting, principal investigator for the AMS project, and Rolf Heuer, CERN Director-General, visit the Kennedy Space Centre before the AMS launch.  Courtesy of NASA and Kennedy Space Center. AMS is a CERN recognised experiment, created by an internal collaboration of 56 institutes. It will be the first large magnetic spectrometer to be used in space, and has been designed to function as an external module on the ISS. AMS will measure cosmic rays without atmospheric interference, allowing researchers on the ground to continue their search for dark matter and antimatter in the Universe. Data collected by AMS will be analysed in CERN’s new AMS Control Centre in Building 946 (due for completion in June 2011). The End...

  15. Strategy of Khrunichev's Launch Vehicles Further Evolution

    Science.gov (United States)

    Medvedev, A. A.; Kuzin, A. I.; Karrask, V. K.

    2002-01-01

    vehicles and it is concerned with a further evolution of its launcher fleet in order to meet arising demands of their services customers. Continuing to provide an operation of current "Proton" heavy launch vehicle and "Rockot" small launch vehicle, Khrunichev is carrying out a permanent improvement of these launchers as well as is developing new advanced launch systems. Thus, the `Proton' just has the improved "Proton-M" version, which was successfully tested in a flight, while an improvement of the "Rockot" is provided by a permanent modernization of its "Breeze-KM" upper stage and a payload fairing. Enhancing of the "Proton/Proton-M's" lift capabilities and flexibility of operation is being provided by introduction of advanced upper stages, the "Breeze- M", which was just put into service, and KVRB being in the development. "Angara-1.1" small launcher is scheduled to a launch in 2003. A creation of this family foresees not only a range of small, medium and heavy launch vehicles based on a modular principle of design but also a construction of high-automated launch site at the Russian Plesetsk spaceport. An operation of the "Angara" family's launchers will allow to inject payloads of actually all classes from Russian national territory into all range of applicable orbits with high technical and economic indices. ecological safety of drop zones, Khrunichev is developing the "Baikal" fly-back reusable booster. This booster would replace expendable first stages of small "Angaras" and strap-ons of medium/heavy launchers, which exert a most influence on the Earth's environment. intercontinental ballistic missiles to current and advanced space launch vehicles of various classes. A succession of the gained experience and found technological solutions are shown.

  16. Launch Vehicle Dynamics Demonstrator Model

    Science.gov (United States)

    1963-01-01

    Launch Vehicle Dynamics Demonstrator Model. The effect of vibration on launch vehicle dynamics was studied. Conditions included three modes of instability. The film includes close up views of the simulator fuel tank with and without stability control. [Entire movie available on DVD from CASI as Doc ID 20070030984. Contact help@sti.nasa.gov

  17. Cost and Economics for Advanced Launch Vehicles

    Science.gov (United States)

    Whitfield, Jeff

    1998-01-01

    Market sensitivity and weight-based cost estimating relationships are key drivers in determining the financial viability of advanced space launch vehicle designs. Due to decreasing space transportation budgets and increasing foreign competition, it has become essential for financial assessments of prospective launch vehicles to be performed during the conceptual design phase. As part of this financial assessment, it is imperative to understand the relationship between market volatility, the uncertainty of weight estimates, and the economic viability of an advanced space launch vehicle program. This paper reports the results of a study that evaluated the economic risk inherent in market variability and the uncertainty of developing weight estimates for an advanced space launch vehicle program. The purpose of this study was to determine the sensitivity of a business case for advanced space flight design with respect to the changing nature of market conditions and the complexity of determining accurate weight estimations during the conceptual design phase. The expected uncertainty associated with these two factors drives the economic risk of the overall program. The study incorporates Monte Carlo simulation techniques to determine the probability of attaining specific levels of economic performance when the market and weight parameters are allowed to vary. This structured approach toward uncertainties allows for the assessment of risks associated with a launch vehicle program's economic performance. This results in the determination of the value of the additional risk placed on the project by these two factors.

  18. Quality function deployment in launch operations

    Science.gov (United States)

    Portanova, P. L.; Tomei, E. J., Jr.

    1990-11-01

    The goal of the Advanced Launch System (ALS) is a more efficient launch capability that provides a highly reliable and operable system at substantially lower cost than current launch systems. Total Quality Management (TQM) principles are being emphasized throughout the ALS program. A continuous improvement philosophy is directed toward satisfying users' and customer's requirements in terms of quality, performance, schedule, and cost. Quality Function Deployment (QFD) is interpreted as the voice of the customer (or user), and it is an important planning tool in translating these requirements throughout the whole process of design, development, manufacture, and operations. This report explores the application of QFD methodology to launch operations, including the modification and addition of events (operations planning) in the engineering development cycle, and presents an informal status of study results to date. QFD is a technique for systematically analyzing the customer's (Space Command) perceptions of what constitutes a highly reliable and operable system and functionally breaking down those attributes to identify the critical characteristics that determine an efficient launch system capability. In applying the principle of QFD, a series of matrices or charts are developed with emphasis on the one commonly known as the House of Quality (because of its roof-like format), which identifies and translates the most critical information.

  19. Millihertz Oscillation Frequency Drift Predicts the Occurrence of Type I X-ray Bursts

    CERN Document Server

    Altamirano, D; Wijnandsm, R; Cumming, A

    2007-01-01

    Millihertz quasi-periodic oscillations reported in three neutron-star low mass X-ray binaries have been suggested to be a mode of marginally stable nuclear burning on the neutron star surface. In this Letter, we show that close to the transition between the island and the banana state, 4U~1636--53 shows mHz QPOs whose frequency systematically decreases with time until the oscillations disappear and a Type I X-ray burst occurs. There is a strong correlation between the QPO frequency $\

  20. Effective launch package integration for electromagnetic guns

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, T.E. [Kaman Sciences Corp., Colorado Springs, CO (United States); Dethlefsen, R. [Maxwell Labs., Inc., San Diego, CA (United States); Price, J.H. [Univ. of Texas, Austin, TX (United States). Center for Electromechanics

    1995-01-01

    Many engineering disciplines must be considered when designing launch packages for electromagnetic guns. These include electromechanics, plasma physics, fluid dynamics, structures, materials science, aerodynamics, thermodynamics, flight dynamics, and terminal effects. Often, the requirements of one discipline will be in direct conflict with the requirements of another. Each discipline can claim to be of overriding importance, but all aspects of launch package design must be considered if the gun system is to succeed in its mission. Choices must be made regarding launch package configuration. Base-pushing or mid-riding solutions are possible with solid, hybrid or plasma armatures. Fully optimized launch package designs must be used in comparisons to find the actual optimal design point. The most effective design for one gun system will not necessarily be the most effective for another. This paper discusses the interplay among the various engineering disciplines involved in launch package design. Successful testing of integrated projectile/armature/sabot configurations from 90 mm EM guns is reviewed.

  1. Rockot Launch Vehicle Commercial Operations for Grace and Iridium Program

    Science.gov (United States)

    Viertel, Y.; Kinnersley, M.; Schumacher, I.

    2002-01-01

    The GRACE mission and the IRIDIUM mission on ROCKOT launch vehicle are presented. Two identical GRACE satellites to measure in tandem the gravitational field of the earth with previously unattainable accuracy - it's called the Gravity Research and Climate Experiment, or and is a joint project of the U.S. space agency, NASA and the German Centre for Aeronautics and Space Flight, DLR. In order to send the GRACE twins into a 500x500 km , 89deg. orbit, the Rockot launch vehicle was selected. A dual launch of two Iridium satellites was scheduled for June 2002 using the ROCKOT launch vehicle from Plesetsk Cosmodrome in Northern Russia. This launch will inject two replacement satellites into a low earth orbit (LEO) to support the maintenance of the Iridium constellation. In September 2001, Eurockot successfully carried out a "Pathfinder Campaign" to simulate the entire Iridium mission cycle at Plesetsk. The campaign comprised the transport of simulators and related equipment to the Russian port-of-entry and launch site and also included the integration and encapsulation of the simulators with the actual Rockot launch vehicle at Eurockot's dedicated launch facilities at Plesetsk Cosmodrome. The pathfinder campaign lasted four weeks and was carried out by a joint team that also included Khrunichev, Russian Space Forces and Eurockot personnel on the contractors' side. The pathfinder mission confirmed the capability of Eurockot Launch Services to perform the Iridium launch on cost and on schedule at Plesetsk following Eurockot's major investment in international standard preparation, integration and launch facilities including customer facilities and a new hotel. In 2003, Eurockot will also launch the Japanese SERVI'S-1 satellite for USEF. The ROCKOT launch vehicle is a 3 stage liquid fuel rocket whose first 2 stages have been adapted from the Russian SS-19. A third stage, called "Breeze", can be repeatedly ignited and is extraordinarily capable of manoeuvre. Rockot can place

  2. The Falcon I Launch Vehicle

    OpenAIRE

    Koenigsmann, Hans; Musk, Elon; Shotwell, Gwynne; Chinnery, Anne

    2004-01-01

    Falcon I is the first in a family of launch vehicles designed by Space Exploration Technologies to facilitate low cost access to space. Falcon I is a mostly reusable, two stage, liquid oxygen and kerosene powered launch vehicle. The vehicle is designed above all for high reliability, followed by low cost and a benign flight environment. Launched from Vandenberg, a standard Falcon I can carry over 1000 lbs to sun-synchronous orbit and 1500 lbs due east to 100 NM. To minimize failure modes, the...

  3. The continuing challenge of electromagnetic launch

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, M.; Cnare, E.C.; Duggin, B.W.; Kaye, R.J.; Marder, B.M.; Shokair, I.R.

    1993-07-01

    Interest in launching payloads through the atmosphere to ever higher velocity is robust. For hundreds of years, guns and rockets have been improved for this purpose until they are now considered to be near to their performance limits. While the potential of electromagnetic technology to increase launch velocity has been known since late in the nineteenth century, it was not until about 1980 that a sustained and large-scale effort was started to exploit it. Electromagnetic launcher technology is restricted here to mean only that technology which establishes both a current density, J, and a magnetic field, B, within a part of the launch package, called the armature, so that J {times} B integrated over the volume of the armature is the launching force. Research and development activity was triggered by the discovery that high velocity can be produced with a simple railgun which uses an arc for its armature. This so called ``plasma-armature railgun`` has been the launcher technology upon which nearly all of the work has focused. Still, a relatively small parallel effort has also been made to explore the potential of electromagnetic launchers which do not use sliding contacts on stationary rails to establish current in the armature. One electromagnetic launcher of this type is called an induction coilgun because armature current is established by electromagnetic induction. In this paper, we first establish terminology which we will use not only to specify requirements for successful endoatmospheric launch but also to compare different launcher types. Then, we summarize the statuses of the railgun and induction coilgun technologies and discuss the issues which must be resolved before either of these launchers can offer substantial advantage for endoatomospheric launch.

  4. Persistant Launch Range Surveillance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Launch site infrastructure and space vehicle assets represent multi-billion dollar investments that must be protected. Additionally, personnel and equipment must be...

  5. Hewitt launches Research Councils UK

    CERN Multimedia

    2002-01-01

    "Trade and Industry Secretary Patricia Hewitt today launched 'Research Councils UK' - a new strategic partnership that will champion research in science, engineering and technology across the UK" (1 page).

  6. New Horizons Launch Contingency Effort

    Science.gov (United States)

    Chang, Yale; Lear, Matthew H.; McGrath, Brian E.; Heyler, Gene A.; Takashima, Naruhisa; Owings, W. Donald

    2007-01-01

    On 19 January 2006 at 2:00 PM EST, the NASA New Horizons spacecraft (SC) was launched from the Cape Canaveral Air Force Station (CCAFS), FL, onboard an Atlas V 551/Centaur/STAR™ 48B launch vehicle (LV) on a mission to explore the Pluto Charon planetary system and possibly other Kuiper Belt Objects. It carried a single Radioisotope Thermoelectric Generator (RTG). As part of the joint NASA/US Department of Energy (DOE) safety effort, contingency plans were prepared to address the unlikely events of launch accidents leading to a near-pad impact, a suborbital reentry, an orbital reentry, or a heliocentric orbit. As the implementing organization. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) had expanded roles in the New Horizons launch contingency effort over those for the Cassini mission and Mars Exploration Rovers missions. The expanded tasks included participation in the Radiological Control Center (RADCC) at the Kennedy Space Center (KSC), preparation of contingency plans, coordination of space tracking assets, improved aerodynamics characterization of the RTG's 18 General Purpose Heat Source (GPHS) modules, and development of spacecraft and RTG reentry breakup analysis tools. Other JHU/APL tasks were prediction of the Earth impact footprints (ElFs) for the GPHS modules released during the atmospheric reentry (for purposes of notification and recovery), prediction of the time of SC reentry from a potential orbital decay, pre-launch dissemination of ballistic coefficients of various possible reentry configurations, and launch support of an Emergency Operations Center (EOC) on the JHU/APL campus. For the New Horizons launch, JHU/APL personnel at the RADCC and at the EOC were ready to implement any real-time launch contingency activities. A successful New Horizons launch and interplanetary injection precluded any further contingency actions. The New Horizons launch contingency was an interagency effort by several organizations. This paper

  7. Airship-assisted space launch.

    OpenAIRE

    Guenov, Marin D.; Peyron, Vincent

    2004-01-01

    Introduction Being lighter-than-air, airships do not seem to be an obvious platform choice for dropping of heavy objects. We have challenged the idea and this paper presents the summary of a speculative concept which utilises airships as a reusable first stage of a space launch system. The inspiration behind the concept was that if not much cheaper, the airship-assisted space launch will be environmentally friendlier- an argument which is likely to become even more important...

  8. STS-53 Launch and Landing

    Science.gov (United States)

    1992-01-01

    Footage of various stages of the STS-53 Discovery launch is shown, including shots of the crew at breakfast, getting suited up, and departing to board the Orbiter. The launch is seen from many vantage points, as is the landing. On-orbit activities show the crew performing several medical experiments, such as taking a picture of the retina and measuring the pressure on the eyeball. One crewmember demonstrates how to use the rowing machine in an antigravity environment.

  9. CubeSat Launch Initiative

    Science.gov (United States)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.

  10. Scout launch vehicle, phases 4 and 5

    Science.gov (United States)

    Mccracken, D. C.; Leiss, A.; Horrocks, E. R.; Turpen, N. H.

    1974-01-01

    The historical data of the Scout launch vehicle program for Phases IV and V (vehicles 138 through 177) is presented for the FY 1966 through FY 1971 time period. Technical data and accounting information are detailed to provide a total picture of the program.

  11. Launching a world-class joint venture.

    Science.gov (United States)

    Bamford, James; Ernst, David; Fubini, David G

    2004-02-01

    More than 5,000 joint ventures, and many more contractual alliances, have been launched worldwide in the past five years. Companies are realizing that JVs and alliances can be lucrative vehicles for developing new products, moving into new markets, and increasing revenues. The problem is, the success rate for JVs and alliances is on a par with that for mergers and acquisitions--which is to say not very good. The authors, all McKinsey consultants, argue that JV success remains elusive for most companies because they don't pay enough attention to launch planning and execution. Most companies are highly disciplined about integrating the companies they target through M&A, but they rarely commit sufficient resources to launching similarly sized joint ventures or alliances. As a result, the parent companies experience strategic conflicts, governance gridlock, and missed operational synergies. Often, they walk away from the deal. The launch phase begins with the parent companies' signing of a memorandum of understanding and continues through the first 100 days of the JV or alliance's operation. During this period, it's critical for the parents to convene a team dedicated to exposing inherent tensions early. Specifically, the launch team must tackle four basic challenges. First, build and maintain strategic alignment across the separate corporate entities, each of which has its own goals, market pressures, and shareholders. Second, create a shared governance system for the two parent companies. Third, manage the economic interdependencies between the corporate parents and the JV. And fourth, build a cohesive, high-performing organization (the JV or alliance)--not a simple task, since most managers come from, will want to return to, and may even hold simultaneous positions in the parent companies. Using real-world examples, the authors offer their suggestions for meeting these challenges. PMID:14971273

  12. The Launch Systems Operations Cost Model

    Science.gov (United States)

    Prince, Frank A.; Hamaker, Joseph W. (Technical Monitor)

    2001-01-01

    One of NASA's primary missions is to reduce the cost of access to space while simultaneously increasing safety. A key component, and one of the least understood, is the recurring operations and support cost for reusable launch systems. In order to predict these costs, NASA, under the leadership of the Independent Program Assessment Office (IPAO), has commissioned the development of a Launch Systems Operations Cost Model (LSOCM). LSOCM is a tool to predict the operations & support (O&S) cost of new and modified reusable (and partially reusable) launch systems. The requirements are to predict the non-recurring cost for the ground infrastructure and the recurring cost of maintaining that infrastructure, performing vehicle logistics, and performing the O&S actions to return the vehicle to flight. In addition, the model must estimate the time required to cycle the vehicle through all of the ground processing activities. The current version of LSOCM is an amalgamation of existing tools, leveraging our understanding of shuttle operations cost with a means of predicting how the maintenance burden will change as the vehicle becomes more aircraft like. The use of the Conceptual Operations Manpower Estimating Tool/Operations Cost Model (COMET/OCM) provides a solid point of departure based on shuttle and expendable launch vehicle (ELV) experience. The incorporation of the Reliability and Maintainability Analysis Tool (RMAT) as expressed by a set of response surface model equations gives a method for estimating how changing launch system characteristics affects cost and cycle time as compared to today's shuttle system. Plans are being made to improve the model. The development team will be spending the next few months devising a structured methodology that will enable verified and validated algorithms to give accurate cost estimates. To assist in this endeavor the LSOCM team is part of an Agency wide effort to combine resources with other cost and operations professionals to

  13. Launching a world-class joint venture.

    Science.gov (United States)

    Bamford, James; Ernst, David; Fubini, David G

    2004-02-01

    More than 5,000 joint ventures, and many more contractual alliances, have been launched worldwide in the past five years. Companies are realizing that JVs and alliances can be lucrative vehicles for developing new products, moving into new markets, and increasing revenues. The problem is, the success rate for JVs and alliances is on a par with that for mergers and acquisitions--which is to say not very good. The authors, all McKinsey consultants, argue that JV success remains elusive for most companies because they don't pay enough attention to launch planning and execution. Most companies are highly disciplined about integrating the companies they target through M&A, but they rarely commit sufficient resources to launching similarly sized joint ventures or alliances. As a result, the parent companies experience strategic conflicts, governance gridlock, and missed operational synergies. Often, they walk away from the deal. The launch phase begins with the parent companies' signing of a memorandum of understanding and continues through the first 100 days of the JV or alliance's operation. During this period, it's critical for the parents to convene a team dedicated to exposing inherent tensions early. Specifically, the launch team must tackle four basic challenges. First, build and maintain strategic alignment across the separate corporate entities, each of which has its own goals, market pressures, and shareholders. Second, create a shared governance system for the two parent companies. Third, manage the economic interdependencies between the corporate parents and the JV. And fourth, build a cohesive, high-performing organization (the JV or alliance)--not a simple task, since most managers come from, will want to return to, and may even hold simultaneous positions in the parent companies. Using real-world examples, the authors offer their suggestions for meeting these challenges.

  14. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  15. NASA Exploration Launch Projects Overview: The Crew Launch Vehicle and the Cargo Launch Vehicle Systems

    Science.gov (United States)

    Snoddy, Jimmy R.; Dumbacher, Daniel L.; Cook, Stephen A.

    2006-01-01

    begins in 2008. Comprehensive reviews of engineering data and business assessments by both internal and independent reviewers serve as decision gates to ensure that systems can fully meet customer and stakeholder requirements. This paper provides the current CLV and CaLV configuration designs and gives examples of the progress being made during the first year of this significant effort. Safe, reliable, cost-effective space transportation systems are a foundational piece of America s future in space and the next step in realizing the plan for revitalizing lunar capabilities on the passageway to the human exploration of Mars. While building on legacy knowledge and heritage hardware for risk reduction, NASA will apply lessons learned from developing these new launch vehicles to the growth path for future missions. The elements for mission success and continued U.S. leadership in space have been assembled over the past year. As NASA designs and develops these two new systems over the next dozen years, visible progress, such as that reported in this paper, may sustain the national will to stay the course across political administrations and weather the inevitable trials that will be experienced during this challenging endeavor.

  16. Payloads for the N-launch vehicles

    Science.gov (United States)

    Hirai, M.; Iwata, T.

    Satellites launched by the National Space Development Agency of Japan are discussed. The HIMAWARI-2 meteorological satellite can photograph the earth in the visible and the infrared, and accumulates and distributes meteorological data. The CS-2a and CS-2b satellites, which form the first domestic operational satellite communications system in Japan, are discussed, and plans for the next generation are summarized. The planned satellite broadcasting system is also described, including the orbit and design. Japan's first earth observation satellite MOS-1 will be launched in 1986, its principal missions being the establishment of fundamental technologies common to both land and marine observation satellites, as well as observation of the state of the sea surface and atmosphere by use of visible, infrared, and microwave radiometers. Existing and planned engineering test satellites are discussed, including the systems and objectives of the latter.

  17. LM-2C Series Launch Vehicles

    Institute of Scientific and Technical Information of China (English)

    XueFuxing

    2004-01-01

    On December 30, 2003, a LM-2C/SM launch vehicle was launched from Xichang Satellite Launch Center (XSLC), successfully sending TC-1 satellite into orbit. The satellite is the first one of the two scientific satellites known as Double Star. The operation orbit of the satellite is the highest compared with China's other satellites ever launched.

  18. 14 CFR 415.121 - Launch schedule.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch schedule. 415.121 Section 415.121... From a Non-Federal Launch Site § 415.121 Launch schedule. An applicant's safety review document must contain a generic launch processing schedule that identifies each review, rehearsal, and safety...

  19. 14 CFR 415.109 - Launch description.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Launch description. 415.109 Section 415.109... From a Non-Federal Launch Site § 415.109 Launch description. An applicant's safety review document must contain the following information: (a) Launch site description. An applicant must identify the...

  20. Prospects For China's Expendable Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    Long Lehao; Wang Xiaojun; Rong Yi

    2009-01-01

    @@ The expendable launch vehicle ( ELV) is the major means for human beings to enter space. Up until April 2009, China's Long March (LM) series launch vehicle has conducted 117 launches, and realized 75 consecutive successful launches since October 1996, which marks China's ELV development has entered a new historical era. Based on the analysis of China's LM series launch vehicle development status, combining with the new generation launch vehicle development, this raises a development prospect for China's ELV to meet the demands for future launch vehicle technology development.

  1. The impact of acceleration on barrel/launch package design

    International Nuclear Information System (INIS)

    This paper discusses the impact of launch acceleration on the design of electromagnetic launcher barrels and on the design of associated launch packages. This is of particular interest because launch package size and mass directly affect the overall armament system size and mass. A common design approach is to use as the peak launch acceleration, the maximum acceleration which the projectile can be designed to withstand. While this approach will minimize barrel length, it may also yield an excessively large overall system size and mass, especially for the long, slender projectile configurations which are desired for high aero-thermal and terminal ballistics performance. An alternate design approach is described which balances the goals of reducing barrel length with reducing launch package mass. Results illustrate the benefits of this balanced design approach on overall armament system size and mass

  2. Potential Atmospheric Impact Generated by Space Launches Worldwide

    Science.gov (United States)

    Brady, B. B.; Desain, J. D.; Curtiss, T. J.

    2010-12-01

    This paper evaluates the exhaust products generated from launch vehicles worldwide. Information on atmospheric deposition of carbon dioxide, water vapor, nitrogen dioxide, sulfates, inorganic chlorine and alumina particulates due to launch vehicles is presented. The potential for environmental impact from ozone destruction and global climate change due to space launches from worldwide sources is discussed. The exhaust from launch vehicles contains many components that have the potential to effect atmospheric concentrations of greenhouse gases. These greenhouse gases absorb and emit radiation within the thermal infrared range. The loss or gain of greenhouse gases has the net effect of changing the total global radiative balance. Launch vehicles are different than many other anthropogenic sources of these exhaust components (primarily the burning of fossil fuels), because vehicles deposit these exhaust components at all levels of the Earth’s atmosphere rather than just the lower troposphere.

  3. STS-101 crew returns from Launch Pad 39A after launch was scrubbed

    Science.gov (United States)

    2000-01-01

    The STS-101 crew returns to the Operations and Checkout Building after the launch was scrubbed due to cross winds at the KSC Shuttle Landing Facility gusting above 20 knots. Flight rules require cross winds at the SLF to be no greater than 15 knots in case of a contingency Shuttle landing. Shown leaving the Astrovan are (left to right) Mission Specialists James S. Voss and Yuri Usachev of Russia; Pilot Scott J. Horowitz; and Commander James D. Halsell Jr. in the doorway. Weather conditions will be reevaluated for another launch try on April 25. The mission will take the crew to the International Space Station to deliver logistics and supplies and to prepare the Station for the arrival of the Zvezda Service Module, expected to be launched by Russia in July 2000. Also, the crew will conduct one space walk. This will be the third assembly flight to the Space Station. The mission is expected to last about 10 days.

  4. Sensitivity of Type I X-Ray Bursts to rp-Process Reaction Rates

    CERN Document Server

    Amthor, A M; Heger, A; Sakharuk, A; Schatz, H; Smith, K; Galaviz, Daniel; Heger, Alexander; Sakharuk, Alexander; Schatz, Hendrik; Smith, Karl

    2006-01-01

    First steps have been taken in a more comprehensive study of the dependence of observables in Type I X-ray bursts on uncertain (p,gamma) reaction rates along the rp-process path. We use the multizone hydrodynamics code KEPLER which implicitly couples a full nuclear reaction network of more than 1000 isotopes, as needed, to follow structure and evolution of the X-ray burst layer and its ashes. This allows us to incorporate the full rp-process network, including all relevant nuclear reactions, and individually study changes in the X-ray burst light curves when modifying selected key nuclear reaction rates. In this work we considered all possible proton captures to nuclei with 10 < Z < 28 and N <= Z. When varying individual reaction rates within a symmetric full width uncertainty of a factor of 10000, early results for some rates show changes in the burst light curve as large as 10 percent of peak luminosity. This is very large compared to the current sensitivity of X-ray observations. More precise reac...

  5. International research centre launched

    International Nuclear Information System (INIS)

    Full text: The first scientific research and educational institution to be set up on a completely international basis was officially inaugurated in Trieste on 5 October 1964 by the Director General of IAEA, Dr. Sigvard Eklund, when he opened the first seminar of the International Centre for Theoretical Physics. As evidence of the international nature of the institution he noted that the scientists who would work and teach there during the first year represented sixteen different countries. By the end of 1964, the Centre building was nearing completion and three of the five floors were occupied. A successful symposium had been held on the subject of plasma physics, and a score of professors and fellows were at work, from Bulgaria, Czechoslovakia, Greece, India, Japan, Jordan, the Netherlands, Norway, Pakistan, Poland, the United Kingdom, and the United States. A dozen scientific papers had been issued as preprints. The main purpose of the Centre is to foster the advancement of theoretical physics through training and research; at first the chief subject will be high-energy and elementary particle physics. Plasma physics, low energy physics and solid-state physics will also be dealt with. Special attention is paid to the needs of the developing countries. Of the 25 fellows selected for the academic year 1964-65, more than half are from South America, Africa and Asia. In conjunction with the Research Centre, there is an Advanced School for theoretical Physics to provide graduate training for fellows who need such preparation before they embark upon research. The Centre works under the guidance of a Scientific Council comprising the president, Prof. M. Sandoval-Vallarta (Nuclear Energy Commission of Mexico); Prof. A. Abragam (Saclay, France); Prof. R. Oppenheimer (Institute for Advanced Study, Princeton, USA); Dr. V. Soloviev (Dubna, USSR); Prof V.F. Weiskopf (Director General, CERN) ; Prof Abdus Salam (Imperial College, London) ; Prof. P. Budini (University of Trieste

  6. NASA's Space Launch System: Momentum Builds Toward First Launch

    Science.gov (United States)

    May, Todd A.; Lyles, Garry M.

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. It will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017. Its first crewed flight follows in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. The SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015. In the NASA project life cycle process, SLS has completed 50 percent of its major milestones toward first flight. Every SLS element manufactured development hardware for testing over the past year. Accomplishments during 2013/2014 included manufacture of core stage test articles, preparations for qualification testing the solid rocket boosters and the RS-25 main engines, and shipment of the first flight hardware in preparation for the Exploration Flight Test-1 (EFT-1) in 2014. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches

  7. Reusable launch vehicle facts and fantasies

    Science.gov (United States)

    Kaplan, Marshall H.

    2002-01-01

    Many people refuse to address many of the realities of reusable launch vehicle systems, technologies, operations and economics. Basic principles of physics, space flight operations, and business limitations are applied to the creation of a practical vision of future expectations. While reusable launcher concepts have been proposed for several decades, serious review of potential designs began in the mid-1990s, when NASA decided that a Space Shuttle replacement had to be pursued. A great deal of excitement and interest was quickly generated by the prospect of ``orders-of-magnitude'' reduction in launch costs. The potential for a vastly expanded space program motivated the entire space community. By the late-1990s, and after over one billion dollars were spent on the technology development and privately-funded concepts, it had become clear that there would be no new, near-term operational reusable vehicle. Many factors contributed to a very expensive and disappointing effort to create a new generation of launch vehicles. It began with overly optimistic projections of technology advancements and the belief that a greatly increased demand for satellite launches would be realized early in the 21st century. Contractors contributed to the perception of quickly reachable technology and business goals, thus, accelerating the enthusiasm and helping to create a ``gold rush'' euphoria. Cost, schedule and performance margins were all highly optimistic. Several entrepreneurs launched start up companies to take advantage of the excitement and the availability of investor capital. Millions were raised from private investors and venture capitalists, based on little more than flashy presentations and animations. Well over $500 million were raised by little-known start up groups to create reusable systems, which might complete for the coming market in launch services. By 1999, it was clear that market projections, made just two years earlier, were not going to be realized. Investors

  8. A Complex of Nuclear Factor I-X3 and STAT3 Regulates Astrocyte and Glioma Migration through the Secreted Glycoprotein YKL-40*

    OpenAIRE

    Singh, Sandeep K.; Bhardwaj, Reetika; Wilczynska, Katarzyna M.; Dumur, Catherine I.; Kordula, Tomasz

    2011-01-01

    Nuclear factor I-X3 (NFI-X3) is a newly identified splice variant of NFI-X that regulates expression of several astrocyte-specific markers, such as glial fibrillary acidic protein. Here, we identified a set of genes regulated by NFI-X3 that includes a gene encoding a secreted glycoprotein YKL-40. Although YKL-40 expression is up-regulated in glioblastoma multiforme, its regulation and functions in nontransformed cells of the central nervous system are widely unexplored. We find that expressio...

  9. Global trade in satellites and launch services

    Science.gov (United States)

    Hearing before the Subcommittee on Space of the Committee on Science, Space, and Technology of the House of Representatives is presented. Written testimony, submittals for the record, and responses to written questions are included. Topics concerning the global trade in satellites and launch services include foreign competition, the China and Russia trade agreements, Commerce licensing on international sales and export, trade control, technology transfer, satellite communications and the economy, satellites and the global information infrastructure, commercial space revenues, and enforcement of trade policies.

  10. Launching Nuoc Phan Lan brand in Vietnam

    OpenAIRE

    Pham, Huydong

    2015-01-01

    Environmental issues are emerging as another side of economic development in Vietnam. From Finland, through its strong network in South East Asia, Finnish Water Forum recognised the opportunity and the need of having a Finnish brand promoting Finnish water expertise in the environmental sector, especially water treatment in Vietnam. The research objective is to launch the brand successfully in Vietnam within 2014. In order to achieve that, this paper describes carefully the process of bu...

  11. X-33 Demonstrates Reusable Launch Vehicle Technologies

    Science.gov (United States)

    1998-01-01

    NASA is developing advanced technologies that will revolutionize America's space launch capabilities and unleash the commercial potential of space. The challenge is to develop advanced technologies for affordable reusble launch vehicles. NASA's goal is to reduce the payload cost of access to space by an order of magnitude, from $10,000 to $1,000 per pound, within 10 years, and by an additional order of magnitude, to $100's per pound within 25 years. This research is part of NASA's Aeronautics and Space Transportation Technology (ASTT) Enterprise's strategy to sustain U.S. leadership in aeronautics and space. The Enterprise has set bold goals that are grouped into Three Pillars: Global Civil Aviation, Revolutionary Technology Leaps and Access to Space.

  12. Integrated Entry Guidance for Reusable Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    NING Guo-dong; ZHANG Shu-guang; FANG Zhen-ping

    2007-01-01

    A method for the implementation of integrated three-degree-of-freedom constrained entry guidance for reusable launch vehicle is presented. Given any feasible entry conditions, terminal area energy management interface conditions, and the reference trajectory generated onboard then, the method can generate a longitudinal guidance profile rapidly, featuring linear quadratic regular method and a proportional-integral-derivative tracking law with time-varying gains, which satisfies all the entry corridor constraints and meets the requirements with high precision. Afterwards, by utilizing special features of crossrange parameter, establishing bank-reversal corridor,and determining bank-reversals according to dynamically adjusted method, the algorithm enables the lateral entry guidance system to fly a wide range of missions and provides reliable and good performance in the presence of significant aerodynamic modeling uncertainty.Fast trajectory guidance profiles and simulations with a reusable launch vehicle model for various missions and aerodynamic uncertainties are presented to demonstrate the capacity and reliability of this method.

  13. Offshore Space Center (offshore launch site)

    Science.gov (United States)

    Harvey, D. G.

    1980-07-01

    Any activity requiring the development of the HLLV can benefit by operations from an offshore space center (OSC) since operating near the equator provides a twenty percent increase in payload in an ecliptic plan orbit. Some OSC concepts considered include a moored floating (semisubmersible) design, a stationary design supported by fixed piles, and a combination of these two. The facility supports: a 15,000 foot long, 300 foot wide runway, designed to accommodate a two staged winged launch vehicle, with a one million pound payload capacity to low earth orbit; an industrial area for HLLV maintenance; an airport terminal, control and operation center, and observation tower; liquid hydrogen and liquid oxygen production and storage, and fuel storage platforms; a power generation station, docks with an unloading area; two separate launch sites; and living accommodations for 10,000 people. Potential sites include the Paramount Seamount in the Pacific Ocean off the north coast of South America. Cost estimates are considered.

  14. Dynamic Tow Maneuver Orbital Launch Technique

    Science.gov (United States)

    Rutan, Elbert L. (Inventor)

    2014-01-01

    An orbital launch system and its method of operation use a maneuver to improve the launch condition of a booster rocket and payload. A towed launch aircraft, to which the booster rocket is mounted, is towed to a predetermined elevation and airspeed. The towed launch aircraft begins the maneuver by increasing its lift, thereby increasing the flight path angle, which increases the tension on the towline connecting the towed launch aircraft to a towing aircraft. The increased tension accelerates the towed launch aircraft and booster rocket, while decreasing the speed (and thus the kinetic energy) of the towing aircraft, while increasing kinetic energy of the towed launch aircraft and booster rocket by transferring energy from the towing aircraft. The potential energy of the towed launch aircraft and booster rocket is also increased, due to the increased lift. The booster rocket is released and ignited, completing the launch.

  15. NASA's Space Launch System: Moving Toward the Launch Pad

    Science.gov (United States)

    Creech, Stephen D.; May, Todd

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. NASA is working to develop this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS program has made in the 2 years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen which combines the use and enhancement of legacy systems and technology with strategic new development projects that will evolve the capabilities of the launch vehicle. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved version of the vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight

  16. Study on Alternative Cargo Launch Options from the Lunar Surface

    Energy Technology Data Exchange (ETDEWEB)

    Cheryl A. Blomberg; Zamir A. Zulkefli; Spencer W. Rich; Steven D. Howe

    2013-07-01

    In the future, there will be a need for constant cargo launches from Earth to Mars in order to build, and then sustain, a Martian base. Currently, chemical rockets are used for space launches. These are expensive and heavy due to the amount of necessary propellant. Nuclear thermal rockets (NTRs) are the next step in rocket design. Another alternative is to create a launcher on the lunar surface that uses magnetic levitation to launch cargo to Mars in order to minimize the amount of necessary propellant per mission. This paper investigates using nuclear power for six different cargo launching alternatives, as well as the orbital mechanics involved in launching cargo to a Martian base from the moon. Each alternative is compared to the other alternative launchers, as well as compared to using an NTR instead. This comparison is done on the basis of mass that must be shipped from Earth, the amount of necessary propellant, and the number of equivalent NTR launches. Of the options, a lunar coil launcher had a ship mass that is 12.7% less than the next best option and 17 NTR equivalent launches, making it the best of the presented six options.

  17. A Methodology for Mapping Launch Vehicle Buffet Loads

    Science.gov (United States)

    Schwarz, Jordan B.

    2010-01-01

    Buffet loads represent the primary source of high frequency loading for launch vehicles during the ascent portion of flight. Currently, experimental techniques establish the nature of buffeting using a rigid scale model of the vehicle. The buffet forcing functions resulting from such tests are then applied to reduced finite-element models of the full-scale vehicle to determine the response and consequent loading. This paper discusses the techniques required to translate model-derived, empirical buffet forcing functions into responses for the full-scale launch vehicle, as used to determine the buffet loading for NASA's Ares I launch vehicle.

  18. NASA Space Launch System Operations Strategy

    Science.gov (United States)

    Singer, Joan A.; Cook, Jerry R.; Singer, Christer E.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is charged with delivering a new capability for human and scientific exploration beyond Earth orbit (BEO). The SLS may also provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle (MPCV) on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and Ground Systems Development and Operations (GSDO) programs are working together to create streamlined, affordable operations for sustainable exploration for decades to come.

  19. NASA Space Launch System Operations Strategy

    Science.gov (United States)

    Singer, Joan A.; Cook, Jerry R.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human and scientific exploration beyond Earth orbit. The SLS also will provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130 t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and 21st Century Ground Systems programs are working together to create streamlined, affordable operations for sustainable exploration.

  20. Launch Vehicle Demonstrator Using Shuttle Assets

    Science.gov (United States)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.

    2011-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center undertook a study to define candidate early heavy lift demonstration launch vehicle concepts derived from existing space shuttle assets. The objective was to determine the performance capabilities of these vehicles and characterize potential early demonstration test flights. Given the anticipated budgetary constraints that may affect America's civil space program, and a lapse in U.S. heavy launch capability with the retirement of the space shuttle, an early heavy lift launch vehicle demonstration flight would not only demonstrate capabilities that could be utilized for future space exploration missions, but also serve as a building block for the development of our nation s next heavy lift launch system. An early heavy lift demonstration could be utilized as a test platform, demonstrating capabilities of future space exploration systems such as the Multi Purpose Crew Vehicle. By using existing shuttle assets, including the RS-25D engine inventory, the shuttle equipment manufacturing and tooling base, and the segmented solid rocket booster industry, a demonstrator concept could expedite the design-to-flight schedule while retaining critical human skills and capital. In this study two types of vehicle designs are examined. The first utilizes a high margin/safety factor battleship structural design in order to minimize development time as well as monetary investment. Structural design optimization is performed on the second, as if an operational vehicle. Results indicate low earth orbit payload capability is more than sufficient to support various vehicle and vehicle systems test programs including Multi-Purpose Crew Vehicle articles. Furthermore, a shuttle-derived, hydrogen core vehicle configuration offers performance benefits when trading evolutionary paths to maximum capability.

  1. Risk Estimation Methodology for Launch Accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Daniel James; Lipinski, Ronald J.; Bechtel, Ryan D.

    2014-02-01

    As compact and light weight power sources with reliable, long lives, Radioisotope Power Systems (RPSs) have made space missions to explore the solar system possible. Due to the hazardous material that can be released during a launch accident, the potential health risk of an accident must be quantified, so that appropriate launch approval decisions can be made. One part of the risk estimation involves modeling the response of the RPS to potential accident environments. Due to the complexity of modeling the full RPS response deterministically on dynamic variables, the evaluation is performed in a stochastic manner with a Monte Carlo simulation. The potential consequences can be determined by modeling the transport of the hazardous material in the environment and in human biological pathways. The consequence analysis results are summed and weighted by appropriate likelihood values to give a collection of probabilistic results for the estimation of the potential health risk. This information is used to guide RPS designs, spacecraft designs, mission architecture, or launch procedures to potentially reduce the risk, as well as to inform decision makers of the potential health risks resulting from the use of RPSs for space missions.

  2. Voice command weapons launching system

    Science.gov (United States)

    Brown, H. E.

    1984-09-01

    This abstract discloses a voice-controlled weapons launching system for use by a pilot of an aircraft against a plurality of simultaneously appearing (i.e., existing) targets, such as two or more aggressor aircraft (or tanks, or the like) attacking more aggressor aircraft. The system includes, in combination, a voice controlled input device linked to and controlling a computer; apparatus (such as a television camera, receiver, and display), linked to and actuated by the computer by a voice command from the pilot, for acquiring and displaying an image of the multi-target area; a laser, linked to and actuated by the computer by a voice command from the pilot to point to (and to lock on to) any one of the plurality of targets, with the laser emitting a beam toward the designated (i.e., selected) target; and a plurality of laser beam-rider missiles, with a different missile being launched toward and attacking each different designated target by riding the laser beam to that target. Unlike the prior art, the system allows the pilot to use his hands full-time to fly and to control the aircraft, while also permitting him to launch each different missile in rapid sequence by giving a two-word spoken command after he has visually selected each target of the plurality of targets, thereby making it possible for the pilot of a single defender aircraft to prevail against the plurality of simultaneously attacking aircraft, or tanks, or the like.

  3. Modeling the Virtual Machine Launching Overhead under Fermicloud

    Energy Technology Data Exchange (ETDEWEB)

    Garzoglio, Gabriele [Fermilab; Wu, Hao [Fermilab; Ren, Shangping [IIT, Chicago; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Noh, Seo-Young [KISTI, Daejeon

    2014-11-12

    FermiCloud is a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows. The Cloud Bursting module of the FermiCloud enables the FermiCloud, when more computational resources are needed, to automatically launch virtual machines to available resources such as public clouds. One of the main challenges in developing the cloud bursting module is to decide when and where to launch a VM so that all resources are most effectively and efficiently utilized and the system performance is optimized. However, based on FermiCloud’s system operational data, the VM launching overhead is not a constant. It varies with physical resource (CPU, memory, I/O device) utilization at the time when a VM is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launch overhead reference model is needed. The paper is to develop a VM launch overhead reference model based on operational data we have obtained on FermiCloud and uses the reference model to guide the cloud bursting process.

  4. KSC facilities status and planned management operations. [for Shuttle launches

    Science.gov (United States)

    Gray, R. H.; Omalley, T. J.

    1979-01-01

    A status report is presented on facilities and planned operations at the Kennedy Space Center with reference to Space Shuttle launch activities. The facilities are essentially complete, with all new construction and modifications to existing buildings almost finished. Some activity is still in progress at Pad A and on the Mobile Launcher due to changes in requirements but is not expected to affect the launch schedule. The installation and testing of the ground checkout equipment that will be used to test the flight hardware is now in operation. The Launch Processing System is currently supporting the development of the applications software that will perform the testing of this flight hardware.

  5. Adaptive Attitude Control of the Crew Launch Vehicle

    Science.gov (United States)

    Muse, Jonathan

    2010-01-01

    An H(sub infinity)-NMA architecture for the Crew Launch Vehicle was developed in a state feedback setting. The minimal complexity adaptive law was shown to improve base line performance relative to a performance metric based on Crew Launch Vehicle design requirements for all most all of the Worst-on-Worst dispersion cases. The adaptive law was able to maintain stability for some dispersions that are unstable with the nominal control law. Due to the nature of the H(sub infinity)-NMA architecture, the augmented adaptive control signal has low bandwidth which is a great benefit for a manned launch vehicle.

  6. STS-112 M.S. Sellers suits up for launch

    Science.gov (United States)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - During suitup for launch, STS-112 Mission Specialist Piers Sellers smiles in anticipation of his first Shuttle flight. STS-112 is the 15th assembly flight to the International Space Station, carrying the S1 Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The CETA is the first of two human-powered carts that will ride along the ISS railway, providing mobile work platforms for future spacewalking astronauts. On the 11-day mission, three spacewalks are planned to attach the S1 truss to the Station. Launch is scheduled for 3:46 p.m. EDT from Launch Pad 39B.

  7. Use of DES Modeling for Determining Launch Availability for SLS

    Science.gov (United States)

    Staton, Eric; Cates, Grant; Finn, Ronald; Altino, Karen M.; Burns, K. Lee; Watson, Michael D.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing new capabilities for human and scientific exploration beyond Earth's orbit. This effort includes the Space Shuttle derived Space Launch System (SLS), the Orion Multi-Purpose Crew Vehicle (MPCV), and the Ground Systems Development and Operations (GSDO). There are several requirements and Technical Performance Measures (TPMs) that have been levied by the Exploration Systems Development (ESD) upon the SLS, Orion, and GSDO Programs including an integrated Launch Availability (LA) TPM. The LA TPM is used to drive into the SLS, Orion and GSDO designs a high confidence of successfully launching exploration missions that have narrow Earth departure windows. The LA TPM takes into consideration the reliability of the overall system (SLS, Orion and GSDO), natural environments, likelihood of a failure, and the time required to recover from an anomaly. A challenge with the LA TPM is the interrelationships between SLS, Orion, GSDO and the natural environments during launch countdown and launch delays that makes it impossible to develop an analytical solution for calculating the integrated launch probability. This paper provides an overview of how Discrete Event Simulation (DES) modeling was used to develop the LA TPM, how it was allocated down to the individual programs, and how the LA analysis is being used to inform and drive the SLS, Orion, and GSDO designs to ensure adequate launch availability for future human exploration.

  8. Fiber Optic Sensing Systems for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The FOSS project primary test objectives are to demonstrate by flying on an Antares launch vehicle, the ability of FOSS flight hardware to measure strain and...

  9. Enabling Technology for Small Satellite Launch Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Access to space for Small Satellites is enabled by the use of excess launch capacity on existing launch vehicles. A range of sizes, form factors and masses need to...

  10. Enabling Technology for Small Satellite Launch Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Access to space for Small Satellites is enabled by the use of excess launch capacity on existing launch vehicles. A range of sizes, form factors and masses of small...

  11. Firefly Alpha - A Mass Produced Small Launch Vehicle for the New Space Era

    OpenAIRE

    King, PJ; Weldon, Alex; Bradford, Andy

    2016-01-01

    The space industry is experiencing a revolution in the growth of small satellites, and yet adequate solutions to launch these new generations of small satellites are not yet available. With a focus on low cost and launching when the customer needs to launch, Firefly Space Systems have developed a new type of small satellite launch vehicle which has been designed with low cost and mass production as primary drivers. From materials selection, through technology selection to production processes...

  12. NASA's Space Launch System: Development and Progress

    Science.gov (United States)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS), supported by NASA's commercial partners, and robotic probes, are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) that will carry out a series of increasingly challenging missions that will eventually lead to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (t) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 t through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any rocket in history, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward first launch readiness of the Block 1 vehicle in 2018. Every major element of SLS continued to make significant progress in 2015. The Boosters element fired Qualification Motor 1 (QM-1) in March 2015, to test the 5-segment motor, including new insulation, joint, and propellant grain designs. The Stages element marked the completion of more than 70 major components of test article and flight core stage tanks. The Liquid Engines element conducted seven test firings of an RS-25 engine under SLS conditions. The Spacecraft

  13. Electromagnetic Cavity Effects from Transmitters Inside a Launch Vehicle Fairing

    Science.gov (United States)

    Trout, Dawn H.; Wahid, Parveen F.; Stanley, James E.

    2009-01-01

    This paper provides insight into the difficult analytical issue for launch vehicles and spacecraft that has applicability outside of the launch industry. Radiation from spacecraft or launch vehicle antennas located within enclosures in the launch vehicle generates an electromagnetic environment that is difficult to accurately predict. This paper discusses the test results of power levels produced by a transmitter within a representative scaled vehicle fairing model and provides preliminary modeling results at the low end of the frequency test range using a commercial tool. Initially, the walls of the fairing are aluminum and later, layered with materials to simulate acoustic blanketing structures that are typical in payload fairings. The effects of these blanketing materials on the power levels within the fairing are examined.

  14. THE HARBOUR DEFENCE MOTOR LAUNCHES

    Directory of Open Access Journals (Sweden)

    W.H. Rice

    2012-02-01

    Full Text Available One of the handiest small craft to emerge from the Second World War was the 72 fet Harbour Defence Motor Launch. It's purpose was to patrol harbours and their approaches and to guard against attack by swimmers or underwater vehicles such as 'chariots' or even submarines. For this task the craft was fitted with a small ASDIC outfit and carried eight depth charges. Surface armament comprised a three-pounder gun on the foredeck, twin Lewis guns on the bridge and a 20 mm Oerlikon aft.

  15. GRYPHON: Air launched space booster

    Science.gov (United States)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  16. Shape Memory Alloy (SMA)-Based Launch Lock

    Science.gov (United States)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  17. NASA Lewis Launch Collision Probability Model Developed and Analyzed

    Science.gov (United States)

    Bollenbacher, Gary; Guptill, James D

    1999-01-01

    There are nearly 10,000 tracked objects orbiting the earth. These objects encompass manned objects, active and decommissioned satellites, spent rocket bodies, and debris. They range from a few centimeters across to the size of the MIR space station. Anytime a new satellite is launched, the launch vehicle with its payload attached passes through an area of space in which these objects orbit. Although the population density of these objects is low, there always is a small but finite probability of collision between the launch vehicle and one or more of these space objects. Even though the probability of collision is very low, for some payloads even this small risk is unacceptable. To mitigate the small risk of collision associated with launching at an arbitrary time within the daily launch window, NASA performs a prelaunch mission assurance Collision Avoidance Analysis (or COLA). For the COLA of the Cassini spacecraft, the NASA Lewis Research Center conducted an in-house development and analysis of a model for launch collision probability. The model allows a minimum clearance criteria to be used with the COLA analysis to ensure an acceptably low probability of collision. If, for any given liftoff time, the nominal launch vehicle trajectory would pass a space object with less than the minimum required clearance, launch would not be attempted at that time. The model assumes that the nominal positions of the orbiting objects and of the launch vehicle can be predicted as a function of time, and therefore, that any tracked object that comes within close proximity of the launch vehicle can be identified. For any such pair, these nominal positions can be used to calculate a nominal miss distance. The actual miss distances may differ substantially from the nominal miss distance, due, in part, to the statistical uncertainty of the knowledge of the objects positions. The model further assumes that these position uncertainties can be described with position covariance matrices

  18. Nonlinear stability of E centers in Si1-<i>xGex: electronic structure calculations

    OpenAIRE

    Chroneos, A.; Bracht, H; Jiang, C; Uberuaga, B. P.

    2008-01-01

    Electronic structure calculations are used to investigate the binding energies of defect pairs composed of lattice vacancies and phosphorus or arsenic atoms (E centers) in silicon-germanium alloys. To describe the local environment surrounding the E center we have generated special quasirandom structures that represent random silicon-germanium alloys. It is predicted that the stability of E centers does not vary linearly with the composition of the silicon-germanium alloy. Interestingly, we p...

  19. COLD-SAT orbital experiment configured for Altas launch

    Science.gov (United States)

    Schuster, J. R.; Bennett, F. O.; Wachter, J. P.

    1990-01-01

    A study was done of the feasibility of conducting liquid hydrogen orbital storage, acquisition, and transfer experiments aboard a spacecraft launched by a commercial Atlas launch vehicle. Three hydrogen tanks are mated to a spacecraft bus that is similar to that used for three-axis-controlled satellites. The bus provides power, communications, and attitude control along with acceleration levels ranging from 10 exp -6 to 10 exp -4 g. At launch, all the liquid hydrogen is contained in the largest tank, which has an insulation system designed for both space operation and the short-term launch pad and ascent environment. This tank is much lighter and lower in cost than a vacuum-jacketed design, and is made possible by the experiment tanking options available due to the hydrogen-fueled Centaur upper stage of the Atlas I.

  20. Launched electrons in plasma opening switches

    International Nuclear Information System (INIS)

    Plasma opening switches have provided a means to improve the characteristics of super-power pulse generators. Recent advances involving plasma control with fast and slow magnetic fields have made these switches more versatile, allowing for improved switch uniformity, triggering, and opening current levels that are set by the level of auxiliary fields. Such switches necessarily involve breaks in the translational symmetry of the transmission line geometry and therefore affect the electron flow characteristics of the line. These symmetry breaks are the result of high electric field regions caused by plasma conductors remaining in the transmission line, ion beams crossing the line, or auxilliary magnetic field regions. Symmetry breaks cause the canonical momentum of the electrons to change, thereby moving them away from the cathode. Additional electrons are pulled from the cathode into the magnetically insulated flow, resulting in an excess of electron flow over that expected for the voltage and line current downstream of the switch. We call these electrons ''launched electrons''. Unless they are recaptured at the cathode or else are fed into the load and used beneficially, they cause a large power loss downstream. This paper will show examples of SuperMite and PBFA II data showing these losses, explain the tools we are using to study them, and discuss the mechanisms we will employ to mitigate the problem. The losses will be reduced primarily by reducing the amount of launched electron flow. 7 refs., 9 figs

  1. Rocket Propulsion Engineering Company Small Launch Vehicle

    OpenAIRE

    Grote, James; Pavia, Tom

    2000-01-01

    Rocket Propulsion Engineering (RPe) is developing the first in a family of two low-cost, two stage, small rocket vehicles suitable for target, suborbital, and small-sat orbital applications. The first of these two launch vehicles, the Prospect LV-1 will have an orbital payload of 300-400 lb. The larger vehicle, the Prospect LV-2, uses about 80% of the components and technology of the LV-1 and will orbit payloads of 1500-1700 lb. Two engines are being developed. A first stage 30,000 lbf class ...

  2. Lidar measurements of launch vehicle exhaust plumes

    Science.gov (United States)

    Dao, Phan D.; Curtis, David; Farley, Robert; Soletsky, Philip; Davidson, Gilbert; Gelbwachs, Jerry A.

    1997-10-01

    The Mobile Lidar Trailer (MLT) was developed and operated to characterize launch vehicle exhaust plume and its effects on the environment. Two recent applications of this facility are discussed in this paper. In the first application, the MLT was used to characterize plumes in the stratosphere up to 45 km in support of the Air Force Space and Missile Center's Rocket Impact on Stratospheric Ozone program. Solid rocket motors used by Titan IV and other heavy launch vehicles release large quantities of gaseous hydrochloric acid in the exhaust and cause concerns about a possible depletion of the ozone layer. The MLT was deployed to Cape Canaveral Air Station since October 1995 to monitor ozone and to investigate plume dynamics and properties. Six campaigns have been conducted and more are planned to provide unique data with the objective of addressing the environmental issues. The plume was observed to disperse rapidly into horizontally extended yet surprisingly thin layer with thickness recorded in over 700 lidar profiles to be less than 250 meters. MLT operates with the laser wavelengths of 532, 355 and 308 nm and a scanning receiving telescope. Data on particle backscattering at the three wavelengths suggest a consistent growth of particle size in the 2-3 hour observation sessions following the launch. In the second type of application, the MLT was used as a remote sensor of nitrogen dioxide, a caustic gaseous by-product of common liquid propellant oxidizer. Two campaigns were conducted at the Sol Se Mete Canyon test site in New Mexico in December 1996 an January 1997 to study the dispersion of nitrogen dioxide and rocket plume.

  3. Proceedings of the heavy lift launch vehicle tropospheric effects workshop

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    A workshop, sponsored by the Argonne National Laboratory, on Heavy Lift Launch Vehicle (HLLV) troposheric effects was held in Chicago, Illinois, on September 12, 13, and 14, 1978. Briefings were conducted on the latest HLLV congigurations, launch schedules, and proposed fuels. The geographical, environmental, and ecological background of three proposed launch sites were presented in brief. The sites discussed were launch pads near the Kennedy Space Center (KSC), a site in the southwestern United States near Animus, New Mexico, and an ocean site just north of the equator off the coast of Ecuador. A review of past efforts in atmospheric dynamics modeling, source term prediction, atmospheric effects, cloud rise modeling, and rainout/washout effects for the Space Shuttle tropospheric effects indicated that much of the progress made in these areas has direct applicability to the HLLV. The potential pollutants from the HLLV are different and their chymical interactions with the atmosphere are more complex, but the analytical techniques developed for the Space Shuttle can be applied, with the appropriate modification, to the HLLV. Reviews were presented of the ecological baseline monitoring being performed at KSC and the plant toxicology studies being conducted at North Carolina State. Based on the proposed launch sites, the latest HLLV configuration fuel, and launch schedule, the attendees developed a lit of possible environmental issues associated with the HLLV. In addition, a list of specific recommendations for short- and long-term research to investigate, understand, and possibly mitigate the HLLV environmental impacts was developed.

  4. The Exploration of Mars Launch and Assembly Simulation

    Science.gov (United States)

    Cates, Grant; Stromgren, Chel; Mattfeld, Bryan; Cirillo, William; Goodliff, Kandyce

    2016-01-01

    Advancing human exploration of space beyond Low Earth Orbit, and ultimately to Mars, is of great interest to NASA, other organizations, and space exploration advocates. Various strategies for getting to Mars have been proposed. These include NASA's Design Reference Architecture 5.0, a near-term flyby of Mars advocated by the group Inspiration Mars, and potential options developed for NASA's Evolvable Mars Campaign. Regardless of which approach is used to get to Mars, they all share a need to visualize and analyze their proposed campaign and evaluate the feasibility of the launch and on-orbit assembly segment of the campaign. The launch and assembly segment starts with flight hardware manufacturing and ends with final departure of a Mars Transfer Vehicle (MTV), or set of MTVs, from an assembly orbit near Earth. This paper describes a discrete event simulation based strategic visualization and analysis tool that can be used to evaluate the launch campaign reliability of any proposed strategy for exploration beyond low Earth orbit. The input to the simulation can be any manifest of multiple launches and their associated transit operations between Earth and the exploration destinations, including Earth orbit, lunar orbit, asteroids, moons of Mars, and ultimately Mars. The simulation output includes expected launch dates and ascent outcomes i.e., success or failure. Running 1,000 replications of the simulation provides the capability to perform launch campaign reliability analysis to determine the probability that all launches occur in a timely manner to support departure opportunities and to deliver their payloads to the intended orbit. This allows for quantitative comparisons between alternative scenarios, as well as the capability to analyze options for improving launch campaign reliability. Results are presented for representative strategies.

  5. CERN & Society launches donation portal

    CERN Multimedia

    Cian O'Luanaigh

    2014-01-01

    The CERN & Society programme brings together projects in the areas of education and outreach, innovation and knowledge exchange, and culture and arts, that spread the CERN spirit of scientific curiosity for the inspiration and benefit of society. Today, CERN & Society is launching its "giving" website – a portal to allow donors to contribute to various projects and forge new relationships with CERN.   "The CERN & Society initiative in its embryonic form began almost three years ago, with the feeling that the laboratory could play a bigger role for the benefit of society," says Matteo Castoldi, Head of the CERN Development Office, who, with his team, is seeking supporters and ambassadors for the CERN & Society initiative. "The concept is not completely new – in some sense it is embedded in CERN’s DNA, as the laboratory helps society by creating knowledge and new technologies – but we would like to d...

  6. Building and Leading the Next Generation of Exploration Launch Vehicles

    Science.gov (United States)

    Cook, Stephen A.; Vanhooser, Teresa

    2010-01-01

    NASA s Constellation Program is depending on the Ares Projects to deliver the crew and cargo launch capabilities needed to send human explorers to the Moon and beyond. Ares I and V will provide the core space launch capabilities needed to continue providing crew and cargo access to the International Space Station (ISS), and to build upon the U.S. history of human spaceflight to the Moon and beyond. Since 2005, Ares has made substantial progress on designing, developing, and testing the Ares I crew launch vehicle and has continued its in-depth studies of the Ares V cargo launch vehicle. In 2009, the Ares Projects plan to: conduct the first flight test of Ares I, test-fire the Ares I first stage solid rocket motor; build the first integrated Ares I upper stage; continue testing hardware for the J-2X upper stage engine, and continue refining the design of the Ares V cargo launch vehicle. These efforts come with serious challenges for the project leadership team as it continues to foster a culture of ownership and accountability, operate with limited funding, and works to maintain effective internal and external communications under intense external scrutiny.

  7. NASA Space Launch System Operations Outlook

    Science.gov (United States)

    Hefner, William Keith; Matisak, Brian P.; McElyea, Mark; Kunz, Jennifer; Weber, Philip; Cummings, Nicholas; Parsons, Jeremy

    2014-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is working with the Ground Systems Development and Operations (GSDO) Program, based at the Kennedy Space Center (KSC), to deliver a new safe, affordable, and sustainable capability for human and scientific exploration beyond Earth's orbit (BEO). Larger than the Saturn V Moon rocket, SLS will provide 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The primary mission of the SLS rocket will be to launch astronauts to deep space destinations in the Orion Multi- Purpose Crew Vehicle (MPCV), also in development and managed by the Johnson Space Center. Several high-priority science missions also may benefit from the increased payload volume and reduced trip times offered by this powerful, versatile rocket. Reducing the lifecycle costs for NASA's space transportation flagship will maximize the exploration and scientific discovery returned from the taxpayer's investment. To that end, decisions made during development of SLS and associated systems will impact the nation's space exploration capabilities for decades. This paper will provide an update to the operations strategy presented at SpaceOps 2012. It will focus on: 1) Preparations to streamline the processing flow and infrastructure needed to produce and launch the world's largest rocket (i.e., through incorporation and modification of proven, heritage systems into the vehicle and ground systems); 2) Implementation of a lean approach to reach-back support of hardware manufacturing, green-run testing, and launch site processing and activities; and 3) Partnering between the vehicle design and operations communities on state-of-the-art predictive operations analysis techniques. An example of innovation is testing the integrated vehicle at the processing facility in parallel, rather than

  8. Mass stabilized projectile designs for electromagnetic launch

    International Nuclear Information System (INIS)

    A dual density Rodman cone, with l/d = 7, has been found to be attractive for electromagnetic launch and may have adequate terminal ballistic performance. Stable flight is achieved from the correct distribution of mass within the projectile body. The design provides some flexibility for the armature in that all the armature mass is used for aerodynamic stability. Furthermore, the acceleration can be supported by a simple one-piece armature. A bore rider, which is less than 10% of the total mass, is needed for in-bore stability and structural support at the tungsten/aluminum interface. Work to date has focused on small caliber applications, but substantial gains can be achieved when the bore size is increased to cannon caliber. General design principles are presented for a mass stabilized projectile. This paper addresses nearly all aspects of launch, flight, and terminal effects as a function of bore size. Flight and terminal effects are computed from curve fits to existing experimental data

  9. China Plans To Carry Out 15 Launch Missions In 2008

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ In 2007,China made 10 launch missions and achieved complete success,including the launch of Chang'e-1 satellite,in-orbit delivery of Nigcomsat-1 and 100th launch of Long March series launch vehicle.

  10. Near-term Horizontal Launch for Flexible Operations: Results of the DARPA/NASA Horizontal Launch Study

    Science.gov (United States)

    Bartolotta, Paul A.; Wilhite, Alan W.; Schaffer, Mark G.; Huebner, Lawrence D.; Voland, Randall T.; Voracek, David F.

    2012-01-01

    Horizontal launch has been investigated for 60 years by over 130 different studies. During this time only one concept, Pegasus, has ever been in operation. The attractiveness of horizontal launch is the capability to provide a "mobile launch pad" that can use existing aircraft runways, cruise above weather, loiter for mission instructions, and provide precise placement for orbital intercept, rendezvous, or reconnaissance. A jointly sponsored study by DARPA and NASA, completed in 2011, explored the trade space of horizontal launch system concepts which included an exhaustive literature review of the past 70 years. The Horizontal Launch Study identified potential near- and mid-term concepts capable of delivering 15,000 lb payloads to a 28.5 due East inclination, 100 nautical-mile low-Earth orbit. Results are presented for a range of near-term system concepts selected for their availability and relatively low design, development, test, and evaluation (DDT&E) costs. This study identified a viable low-cost development path forward to make a robust and resilient horizontal launch capability a reality.

  11. ROCKET LAUNCH FROM THE BOARD OF AIRPLANE

    OpenAIRE

    Makarov, I.A.; National aviation university, Kyiv

    2012-01-01

     Every respectable state which obtains the space branches of science and technology must have the space launching site. But Ukraine has not yet got such constructions. Naturally it is necessary to have such space launching site for being independent in cosmic exploration. This scientific project is proposed and initiated to solve the practically important problem of absence of the space launching site in our country.

  12. The launch of new-look Chishango.

    Science.gov (United States)

    Chavasse, D

    2002-09-01

    PSI/Malawi is a local affiliate of the non-profit NGO, Population Services International, which operates in over 50 countries worldwide. PSI/Malawi's mission is to "improve and sustain the health of all Malawians through cost-effective social marketing of needed and affordable health products". In this context, social marketing involves using a range of media channels to create demand for branded health products which are sold at subsidised prices through a wide range of distribution outlets (e.g. wholesalers/retailers, institutions, NGOs, the workplace, etc.). Chishango is PSI/Malawi's condom brand which was launched in 1994 to provide sexually active Malawians with an affordable means of protecting themselves and their partners from HIV transmission. In 2001, research indicated that the brand needed a 'face lift' to improve its relevance to modern Malawians and therefore lead to an increase in consistent condom use resulting in a further reduction in HIV transmission. The newly packaged and positioned Chishango was launched on the 13th May 2002. The speech below was given by the Resident Director of PSI/Malawi, Dr Desmond Chavasse at the relaunch of Chishango. PMID:27528941

  13. A Dual Launch Robotic and Human Lunar Mission Architecture

    Science.gov (United States)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.

  14. Missile launch detection electric field perturbation experiment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kane, R.J.; Rynne, T.M.

    1993-04-28

    The Lawrence Livermore National Laboratory and SARA Inc. participated in the ATMD missile launch activities that occurred at WSMR during January 1993. LLNL and SARA deployed sensors for monitoring of basic phenomena. An attempt was made to measure perturbations of the earth geo-potential during the launch of a Lance missile. The occurrence of the perturbation is expected from the conducting body of the missile and the exhaust plume. A set of voltage-probe antennas were used to monitor the local electric field perturbation from the launch at ranges of approximately 1 km. Examination of the data acquired during the launch period failed to show identifiable correlation of the field variations with the launch event. Three reasons are ascribed to this lack of event data: (1) The electric field potential variations have a limited spatial correlation length - the fields measured in one region have little correlation to measurements made at distances of a kilometer away. The potential variations are related to localized atmospheric disturbances and are generally unpredictable. A value for the spatial correlation length is also not known. (2) The conductivity of the plume and missile body are not adequate to produce a field perturbation of adequate magnitude. Phenomena related to the exhaust plume and missile may exist and be outside of the collection range of the equipment employed for these measurements. (3) The presence of 60 Hz power line noise was of sufficient magnitude to irreversibly contaminate measurements.

  15. Launch of technical training courses for programmers

    CERN Multimedia

    2015-01-01

    This autumn, two new technical training courses have been launched for scientists and engineers at CERN who undertake programming tasks, particularly in C and C++. Both courses are taught by Andrzej Nowak, an expert in next-generation and cutting-edge computing technology research.   The training courses are organised in cooperation with CERN openlab and are sponsored by the CERN IT department – there is only a nominal registration fee of 50 CHF. This is an opportunity not to be missed! Computer architecture and hardware-software interaction (2 days, 26-27 October) The architecture course offers a comprehensive overview of current topics in computer architecture and their consequences for the programmer, from the basic Von Neumann schema to its modern-day expansions. Understanding hardware-software interaction allows the programmer to make better use of all features of available computer hardware and compilers. Specific architectural ...

  16. Business intelligence modeling in launch operations

    Science.gov (United States)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-05-01

    The future of business intelligence in space exploration will focus on the intelligent system-of-systems real-time enterprise. In present business intelligence, a number of technologies that are most relevant to space exploration are experiencing the greatest change. Emerging patterns of set of processes rather than organizational units leading to end-to-end automation is becoming a major objective of enterprise information technology. The cost element is a leading factor of future exploration systems. This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations, process models, systems and environment models, and cost models as a comprehensive disciplined

  17. Business Intelligence Modeling in Launch Operations

    Science.gov (United States)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar; Davis, Rodney D.

    2005-01-01

    This technology project is to advance an integrated Planning and Management Simulation Model for evaluation of risks, costs, and reliability of launch systems from Earth to Orbit for Space Exploration. The approach builds on research done in the NASA ARC/KSC developed Virtual Test Bed (VTB) to integrate architectural, operations process, and mission simulations for the purpose of evaluating enterprise level strategies to reduce cost, improve systems operability, and reduce mission risks. The objectives are to understand the interdependency of architecture and process on recurring launch cost of operations, provide management a tool for assessing systems safety and dependability versus cost, and leverage lessons learned and empirical models from Shuttle and International Space Station to validate models applied to Exploration. The systems-of-systems concept is built to balance the conflicting objectives of safety, reliability, and process strategy in order to achieve long term sustainability. A planning and analysis test bed is needed for evaluation of enterprise level options and strategies for transit and launch systems as well as surface and orbital systems. This environment can also support agency simulation .based acquisition process objectives. The technology development approach is based on the collaborative effort set forth in the VTB's integrating operations. process models, systems and environment models, and cost models as a comprehensive disciplined enterprise analysis environment. Significant emphasis is being placed on adapting root cause from existing Shuttle operations to exploration. Technical challenges include cost model validation, integration of parametric models with discrete event process and systems simulations. and large-scale simulation integration. The enterprise architecture is required for coherent integration of systems models. It will also require a plan for evolution over the life of the program. The proposed technology will produce

  18. Design challenges for tomorrow's manned launch systems

    Science.gov (United States)

    Rowell, Lawrence F.

    1993-02-01

    This paper attempts to capture some of the technical and national challenges facing the design of America's next manned launch system (MLS). There are three basic paths for pursuing tomorrow's MLS; each with variations. Some characteristics that will be sought regardless of the concept selected include low development (or front-end) and life-cycle costs, safety, operability, availability, and a host of other 'ilities'. In order to discriminate among the concepts, a robust design environment and a variety of new and improved analysis tools are needed that produce critical metrics in a timely, efficient manner from a large study space. This paper presents some of the challenges in development, integration, and application of optimization, costing, operations modeling, and several engineering disciplinary tools including geometry modeling, structures, aerodynamics/aeroheating, and trajectory/performance.

  19. Pigeons' Discrimination of Michotte's Launching Effect

    Science.gov (United States)

    Young, Michael E.; Beckmann, Joshua S.; Wasserman, Edward A.

    2006-01-01

    We trained four pigeons to discriminate a Michotte launching animation from three other animations using a go/no-go task. The pigeons received food for pecking at one of the animations, but not for pecking at the others. The four animations featured two types of interactions among objects: causal (direct launching) and noncausal (delayed, distal,…

  20. First China-Europe Satellite Successfully Launched

    Institute of Scientific and Technical Information of China (English)

    HeYing

    2004-01-01

    On December 30, 2003 China successfully launched TC-1,the first of two scientific satellites known as Double Star, The mission,the first time that European instruments were integrated with Chinese satellites,was carried out by a Long March 2C/SM rocket at 3:06 am from the Xichang Satellite Launch Center in Sichuan province.

  1. CHINA LAUNCHES 2 SCIENTIFIC EXPERIMENT SATELLITES

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    China placed 2 scientific experiment satellites into preset orbits atop a LM-4B launch vehicle on Sept. 9, 2004. A LM-4B blasted off at 7:14 am from Taiyuan Satellite Launch Center in Shanxi Province. Sources from the Xi'an Satellite Monitor and Control Center said that one satellite,

  2. Guidance and dispersion studies of National Launch System ascent trajectories

    Science.gov (United States)

    Hanson, John M.; Shrader, M. W.; Chang, Hopen; Freeman, Scott E.

    1992-01-01

    The National Launch System (NLS) is a joint concept, between DoD and NASA, for building a family of new launch vehicles. Two of the many choices to be made are the trajectory shaping methods and the onboard guidance scheme. This paper presents results from some ongoing studies to address these issues. First, potential gains from new guidance concepts are listed. Next the paper gives a list of possible discriminators between different guidance schemes, lists a number of potential guidance schemes, and explains two in some detail. A reference scheme is tested to determine its performance versus the discriminators. Finally, results from some special studies using the reference guidance scheme are given, including the effects of closed-loop guidance initiation time, time of enforcement of sideslip, vehicle roll for engine out, time and location of an engine out, use of load relief control, and use of day of launch wind biasing.

  3. Calculation of wave and current loads on launching offshore jacket

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-fa; JI Zhuo-shang; LI Tie-li; LIN Yan

    2006-01-01

    It's very complicated to calculate and analyze the wave and current loads on naval architectures since the sea condition is uncertain and complicated and the determinants vary from different form types and dimensions. For calculating the wave and current loads on upright small-long-size pipe, the Morrison equation is practical and applied. Jacket platform is a kind of offshore space frame structure comprised of lots of poles that are circular cylinders with small diameter and in the oblique status relative to seabed. In this paper, based on Morrison equation, the specific method and procedure calculating the wave and current loads on launching jacket are given and applied on a typical launching jacket. The instance shows that the method and procedure are convenient and make the calculation and analysis in good agreement with actual launching.

  4. Intelligent launch and range operations virtual testbed (ILRO-VTB)

    Science.gov (United States)

    Bardina, Jorge; Rajkumar, Thirumalainambi

    2003-09-01

    Intelligent Launch and Range Operations Virtual Test Bed (ILRO-VTB) is a real-time web-based command and control, communication, and intelligent simulation environment of ground-vehicle, launch and range operation activities. ILRO-VTB consists of a variety of simulation models combined with commercial and indigenous software developments (NASA Ames). It creates a hybrid software/hardware environment suitable for testing various integrated control system components of launch and range. The dynamic interactions of the integrated simulated control systems are not well understood. Insight into such systems can only be achieved through simulation/emulation. For that reason, NASA has established a VTB where we can learn the actual control and dynamics of designs for future space programs, including testing and performance evaluation. The current implementation of the VTB simulates the operations of a sub-orbital vehicle of mission, control, ground-vehicle engineering, launch and range operations. The present development of the test bed simulates the operations of Space Shuttle Vehicle (SSV) at NASA Kennedy Space Center. The test bed supports a wide variety of shuttle missions with ancillary modeling capabilities like weather forecasting, lightning tracker, toxic gas dispersion model, debris dispersion model, telemetry, trajectory modeling, ground operations, payload models and etc. To achieve the simulations, all models are linked using Common Object Request Broker Architecture (CORBA). The test bed provides opportunities for government, universities, researchers and industries to do a real time of shuttle launch in cyber space.

  5. Flight Performance Feasibility Studies for the Max Launch Abort System

    Science.gov (United States)

    Tarabini, Paul V.; Gilbert, Michael G.; Beaty, James R.

    2013-01-01

    In 2007, the NASA Engineering and Safety Center (NESC) initiated the Max Launch Abort System Project to explore crew escape system concepts designed to be fully encapsulated within an aerodynamic fairing and smoothly integrated onto a launch vehicle. One objective of this design was to develop a more compact launch escape vehicle that eliminated the need for an escape tower, as was used in the Mercury and Apollo escape systems and what is planned for the Orion Multi-Purpose Crew Vehicle (MPCV). The benefits for the launch vehicle of eliminating a tower from the escape vehicle design include lower structural weights, reduced bending moments during atmospheric flight, and a decrease in induced aero-acoustic loads. This paper discusses the development of encapsulated, towerless launch escape vehicle concepts, especially as it pertains to the flight performance and systems analysis trade studies conducted to establish mission feasibility and assess system-level performance. Two different towerless escape vehicle designs are discussed in depth: one with allpropulsive control using liquid attitude control thrusters, and a second employing deployable aft swept grid fins to provide passive stability during coast. Simulation results are presented for a range of nominal and off-nominal escape conditions.

  6. Synthesis of β-phase Ag1-xCuxI (x = 0-0.5) solid solutions nanocrystals

    International Nuclear Information System (INIS)

    Research highlights: → Wet-chemical-chelating reaction processing has been used to synthesized A series of single β-phase nano-Ag1-xCuxI (x = 0-0.5) solid solutions powders. → Citric acid as complexing agent takes part in the process of chemical reaction and the chemical reactions can be described in this paper. → The lattice parameters have been ascertained by the results of XRD. → Crystalline sizes, which decrease with copper iodide concentration increasing, have been demonstrated by XRD and TEM. -- Abstract: A series of single β-phase nano-Ag1-xCuxI (x = 0-0.5) solid solutions powders were synthesized by wet-chemical-chelating reaction processing and citric acid used as complexing agent. The Ag1-xCuxI powders were determined by X-ray diffraction and transmission electron microscopy. It was demonstrated that the crystalline size and lattice parameter of the Ag1-xCuxI powders decrease with an increase in the amount of CuI substitution. The copper in the lattice of the Ag1-xCuxI can effectively prevent the crystalline growth of the Ag1-xCuxI powders and citrate used in the Ag1-xCuxI powders synthesized process can accelerate single β-phase crystalline structure formation.

  7. International Launch Vehicle Selection for Interplanetary Travel

    Science.gov (United States)

    Ferrone, Kristine; Nguyen, Lori T.

    2010-01-01

    In developing a mission strategy for interplanetary travel, the first step is to consider launch capabilities which provide the basis for fundamental parameters of the mission. This investigation focuses on the numerous launch vehicles of various characteristics available and in development internationally with respect to upmass, launch site, payload shroud size, fuel type, cost, and launch frequency. This presentation will describe launch vehicles available and in development worldwide, then carefully detail a selection process for choosing appropriate vehicles for interplanetary missions focusing on international collaboration, risk management, and minimization of cost. The vehicles that fit the established criteria will be discussed in detail with emphasis on the specifications and limitations related to interplanetary travel. The final menu of options will include recommendations for overall mission design and strategy.

  8. Response of Launch Pad Structures to Random Acoustic Excitation

    Directory of Open Access Journals (Sweden)

    Ravi N. Margasahayam

    1994-01-01

    Full Text Available The design of launch pad structures, particularly those having a large area-to-mass ratio, is governed by launch-induced acoustics, a relatively short transient with random pressure amplitudes having a non-Gaussian distribution. The factors influencing the acoustic excitation and resulting structural responses are numerous and cannot be predicted precisely. Two solutions (probabilistic and deterministic for the random vibration problem are presented in this article from the standpoint of their applicability to predict the response of ground structures exposed to rocket noise. Deficiencies of the probabilistic method, especially to predict response in the low-frequency range of launch transients (below 20 Hz, prompted the development of the deterministic analysis. The relationship between the two solutions is clarified for future implementation in a finite element method (FEM code.

  9. Discovery of a pseudobulge galaxy launching powerful relativistic jets

    CERN Document Server

    Kotilainen, J K; Olguin-Iglesias, A; Baes, M; Anorve, C; Chavushyan, V; Carrasco, L

    2016-01-01

    Supermassive black holes launching plasma jets at close to speed of light, producing gamma-rays, have ubiquitously been found to be hosted by massive elliptical galaxies. Since elliptical galaxies are generally believed to be built through galaxy mergers, active galactic nuclei (AGN) launching relativistic jets are associated to the latest stages of galaxy evolution. We have discovered a pseudo-bulge morphology in the host galaxy of the gamma-ray AGN PKS 2004-447. This is the first gamma-ray emitter radio loud AGN found to be launched from a system where both black hole and host galaxy have been actively growing via secular processes. This is evidence for an alternative black hole-galaxy co-evolutionary path to develop powerful relativistic jets that is not merger-driven.

  10. Failure to Launch: Structural Shift and the New Lost Generation

    Science.gov (United States)

    Carnevale, Anthony P.; Hanson, Andrew R.; Gulish, Artem

    2013-01-01

    The lockstep march from school to work and then on to retirement no longer applies for a growing share of Americans. Many young adults are launching their careers later, while older adults are working longer. As a result, the education and labor market institutions that were the foundation of a 20th century system are out of sync with the 21st…

  11. The CERN & Society programme launches its newsletter

    CERN Multimedia

    Matteo Castoldi

    2016-01-01

    The newsletter will be issued quarterly. Sign up to remain informed about the latest initiatives of the CERN & Society programme!    The CERN & Society programme encompasses projects in the areas of education and outreach, innovation and knowledge exchange, and culture and creativity that spread the CERN spirit of scientific curiosity for the inspiration and benefit of society. The programme is funded primarily by the CERN & Society Foundation, a charitable foundation established by CERN and supported by individuals, trusts, organisations and commercial companies. The projects are inspired or enabled by CERN but lie outside of the Laboratory’s specific research mandate. We especially want to help young talent from around the world to flourish in the future. The programme is now launching its newsletter, which will be issued quarterly. Everybody who wants to be informed about CERN & Society’s activities, stay up-to-date with its latest in...

  12. NASA's Student Launch Projects: A Government Education Program for Science and Engineering

    Science.gov (United States)

    Shepherd, Christena C.

    2009-01-01

    Among the many NASA education activities, the Student Launch projects are examples of how one agency has been working with students to inspire math, science and engineering interest. There are two Student Launch projects: Student Launch Initiative (SLI) for middle and high school students and the University Student Launch Initiative (USLI) for college students. The programs are described and website links are provided for further information. This document presents an example of how an agency can work with its unique resources in partnership with schools and communities to bring excitement to the classroom.

  13. Launching and Marketing a Mobile Game : Strategy and Consumer Perceptions

    OpenAIRE

    Rogers, Alexander

    2009-01-01

    As indicated by the title, the focus of this thesis is on both launching and marketing a mobile game. It aims to understand the consumer and its perceptions, the optimal marketing mix, and the most efficient way of launching a mobile game. All of this is applied in a real world setting, using the up-and-coming mobile gaming company Boomlagoon as an example. The marketing mix, consumer decision making process, lean startup method, and chasm are all concepts which are taken into consideratio...

  14. Application of statistical distribution theory to launch-on-time for space construction logistic support

    Science.gov (United States)

    Morgenthaler, George W.

    1989-01-01

    The ability to launch-on-time and to send payloads into space has progressed dramatically since the days of the earliest missile and space programs. Causes for delay during launch, i.e., unplanned 'holds', are attributable to several sources: weather, range activities, vehicle conditions, human performance, etc. Recent developments in space program, particularly the need for highly reliable logistic support of space construction and the subsequent planned operation of space stations, large unmanned space structures, lunar and Mars bases, and the necessity of providing 'guaranteed' commercial launches have placed increased emphasis on understanding and mastering every aspect of launch vehicle operations. The Center of Space Construction has acquired historical launch vehicle data and is applying these data to the analysis of space launch vehicle logistic support of space construction. This analysis will include development of a better understanding of launch-on-time capability and simulation of required support systems for vehicle assembly and launch which are necessary to support national space program construction schedules. In this paper, the author presents actual launch data on unscheduled 'hold' distributions of various launch vehicles. The data have been supplied by industrial associate companies of the Center for Space Construction. The paper seeks to determine suitable probability models which describe these historical data and that can be used for several purposes such as: inputs to broader simulations of launch vehicle logistic space construction support processes and the determination of which launch operations sources cause the majority of the unscheduled 'holds', and hence to suggest changes which might improve launch-on-time. In particular, the paper investigates the ability of a compound distribution probability model to fit actual data, versus alternative models, and recommends the most productive avenues for future statistical work.

  15. Energy impact assessment of NASA's past, present, and future space launch vehicles

    Science.gov (United States)

    Rice, E. E.

    1978-01-01

    An approach to analyze the total energy required for overall support of space launch vehicles is outlined along with some of the basic data required for such analyses. Selected results obtained by using this approach are presented for various past (some are already phased out), present, and future NASA launch vehicles, including an estimate of the total annual energy required to support one projected NASA launch vehicle traffic model. The material presented is expected to give a better insight into the details of an energy impact analysis. Major conclusions are that: (1) for expendable launch vehicle systems, the energy required to manufacture hardware and support launch operations is most significant; (2) for totally reusable systems, the energy required to process/manufacture propellants and fluids is by far the most significant contributor; and (3) up to 1991, the projected highest annual energy requirement for the NASA launch vehicles does not constitute a significant energy impact relative to the nation's total energy needs.

  16. PEGASUS - A Flexible Launch Solution for Small Satellites with Unique Requirements

    Science.gov (United States)

    Richards, B. R.; Ferguson, M.; Fenn, P. D.

    The financial advantages inherent in building small satellites are negligible if an equally low cost launch service is not available to deliver them to the orbit they require. The weight range of small satellites puts them within the capability of virtually all launch vehicles. Initially, this would appear to help drive down costs through competition since, by one estimate, there are roughly 75 active space launch vehicles around the world that either have an established flight record or are planning to make an inaugural launch within the year. When reliability, budget constraints, and other issues such as inclination access are factored in, this list of available launch vehicles is often times reduced to a very limited few, if any at all. This is especially true for small satellites with unusual or low inclination launch requirements where the cost of launching on the heavy-lift launchers that have the capacity to execute the necessary plane changes or meet the mission requirements can be prohibitive. For any small satellite, reducing launch costs by flying as a secondary or even tertiary payload is only advantageous in the event that a primary payload can be found that either requires or is passing through the same final orbit and has a launch date that is compatible. If the satellite is able to find a ride on a larger vehicle that is only passing through the correct orbit, the budget and technical capability must exist to incorporate a propulsive system on the satellite to modify the orbit to that required for the mission. For these customers a launch vehicle such as Pegasus provides a viable alternative due to its proven flight record, relatively low cost, self- contained launch infrastructure, and mobility. Pegasus supplements the existing world-wide launch capability by providing additional services to a targeted niche of payloads that benefit greatly from Pegasus' mobility and flexibility. Pegasus can provide standard services to satellites that do not

  17. Technology Requirements for Affordable Single-Stage Rocket Launch Vehicles

    Science.gov (United States)

    Stanley, Douglas O.; Piland, William M.

    2004-01-01

    A number of manned Earth-to-orbit (ETO) vehicle options for replacing or complementing the current Space Transportation System are being examined under the Advanced Manned Launch System (AMLS) study. The introduction of a reusable single-stage vehicle (SSV) into the U.S. launch vehicle fleet early in the next century could greatly reduce ETO launch costs. As a part of the AMLS study, the conceptual design of an SSV using a wide variety of enhancing technologies has recently been completed and is described in this paper. This paper also identifies the major enabling and enhancing technologies for a reusable rocket-powered SSV and provides examples of the mission payoff potential of a variety of important technologies. This paper also discusses the impact of technology advancements on vehicle margins, complexity, and risk, all of which influence the total system cost.

  18. Liquid propellant analogy technique in dynamic modeling of launch vehicle

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The coupling effects among lateral mode,longitudinal mode and torsional mode of a launch vehicle cannot be taken into account in traditional dynamic analysis using lateral beam model and longitudinal spring-mass model individually.To deal with the problem,propellant analogy methods based on beam model are proposed and coupled mass-matrix of liquid propellant is constructed through additional mass in the present study.Then an integrated model of launch vehicle for free vibration analysis is established,by which research on the interactions between longitudinal and lateral modes,longitudinal and torsional modes of the launch vehicle can be implemented.Numerical examples for tandem tanks validate the present method and its necessity.

  19. The Demeter micro satellite launch campaign

    Science.gov (United States)

    Dubourg, V.; Kainov, V.; Thoby, M.; Silkin, O.; Solovey, V.

    The CNES Micro satellite DEMETER is planned for launch by the end of June 2004 on a DNEPR launcher, from the Baíkonur cosmodrome. DEMETER will be the main payload among nine co-passengers. DEMETER, initiated by CNES in 1998, is the first model of the MYRIADE micro satellites line of product; at the time when this abstract is issued, the satellite is going through the final integration tests, as well as the last system validation phase. The space head module of the launcher has been developed by the Ukrainian YSDO company, and a successful fit check test campaign has been performed in December 2003 and January 2004 that allowed confirming the compatibility of the payloads with their launcher interface. The launch campaign is in process of preparation, implying a close partnership between the satellite team at CNES and Russian and Ukrainian launcher authorities: DEMETER is a pioneer not only for the satellite concept itself, but also for being the first satellite of this range (3 axis stabilized, including an hydrazine propulsion system and developed by a national space agency) being launched on a Russian space adapted intercontinental ballistic missile SS18. The launch service is contracted and managed by ISC Kosmotras, and it will also be the first sun synchronous orbit launch for DNEPR. Thus the launch preparation proved to be a very challenging endeavour providing all the actors with very rich human experience, as well as technical exchanges, in the fields of launcher technology and interfaces, facilities adaptation, logistics and project coordination. In the coming paper, a short presentation of the DEMETER satellite and of the DNEPR launcher will be made, but the main purpose is to present: the launch campaign preparation milestones, the launch campaign itself and related preliminary results and the lessons learnt from this first CNES/DNEPR experience to open the way to the future MYRIADE launches. A common CNES/KOSMOTRAS presentation is proposed at the

  20. Marketing and Launching a Video Game: Demon Core

    OpenAIRE

    Lopez Perez, Luis Gerardo

    2013-01-01

    The main focus of this thesis project revolves around the marketing and launching of a new video game, as indicated in the thesis title. In cooperation with Apex Games Ltd. the aims of this thesis are to determine the main strategic marketing decisions for the company’s new product, Demon Core. In order to define Demon Core’s strategic marketing needs a proposed strategic marketing model has been designed. Furthermore, to determine an efficient way of launching the video game, the new product...

  1. Single-impulse magnetic focusing of launched cold atoms

    CERN Document Server

    Pritchard, M J; Smith, D A; Hughes, I G; Pritchard, Matthew J; Arnold, Aidan S; Smith, David A; Hughes, Ifan G

    2004-01-01

    We have theoretically investigated the focusing of a launched cloud of cold atoms. Time-dependent spatially-varying magnetic fields are used to impart impulses leading to a three-dimensional focus of the launched cloud. We discuss possible coil arrangements for a new focusing regime: isotropic 3D focusing of atoms with a single-impulse magnetic lens. We investigate focusing aberrations and find that, for typical experimental parameters, the widely used assumption of a purely harmonic lens is often inaccurate. The baseball lens offers the best possibility for isotropically focusing a cloud of weak-field-seeking atoms in 3D.

  2. Marketing Strategy of New Product Launch on an Example of Honda Robotic Mower

    OpenAIRE

    Brož, Ondřej

    2011-01-01

    This thesis sets out to analyse marketing strategy of new product launch. Through review of relevant literature and papers it analyses approaches to new product launch onto an existing market from the marketing perspective. Marketing mix, diffusion of innovations and late entry into the market with dominant brand are at the core of the theoretical part. This theory is later applied at the specific case of Honda's first robotic mower and its European launch. Honda is a traditional Japanese man...

  3. The Role of Product Launch Strategy in the Creation of Sales Momentum : The Case of the Fragrance Industry

    OpenAIRE

    Mustafa, N.

    2008-01-01

    This thesis examines the strategic processes which can be employed to overcome the challenges of launching creative products that possess little or no tangible selling points. Launch decisions and their subsequent impact on the creation of sales momentum in the fragrance industry are analysed. A context specific model for product launch effectiveness is an initial contribution. Secondly, this study examines product launch activities through the dramaturgical lens. Primary qualitative data col...

  4. JPSS-1 VIIRS pre-launch radiometric performance

    Science.gov (United States)

    Oudrari, Hassan; McIntire, Jeff; Xiong, Xiaoxiong; Butler, James; Efremova, Boryana; Ji, Qiang; Lee, Shihyan; Schwarting, Tom

    2015-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument was designed to provide measurements of the globe twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 370 and 740 m at nadir for imaging and moderate bands, respectively. It covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands [0.412 μm to 12.01 μm]. VIIRS observations are used to generate 22 environmental data products (EDRs). This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the independent government team, to generate the at-launch baseline radiometric performance, and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field and stray light responses. A set of performance metrics generated during the pre-launch testing program will be compared to the SNPP VIIRS pre-launch performance.

  5. Three Dimensional Lightning Launch Commit Criteria Visualization Tool

    Science.gov (United States)

    Bauman, William H., III

    2014-01-01

    Lightning occurrence too close to a NASA LSP or future SLS program launch vehicle in flight would have disastrous results. The sensitive electronics on the vehicle could be damaged to the point of causing an anomalous flight path and ultimate destruction of the vehicle and payload.According to 45th Weather Squadron (45 WS) Lightning Launch Commit Criteria (LLCC), a vehicle cannot launch if lightning is within 10 NM of its pre-determined flight path. The 45 WS Launch Weather Officers (LWOs) evaluate this LLCC for their launch customers to ensure the safety of the vehicle in flight. Currently, the LWOs conduct a subjective analysis of the distance between lightning and the flight path using data from different display systems. A 3-D display in which the lightning data and flight path are together would greatly reduce the ambiguity in evaluating this LLCC. It would give the LWOs and launch directors more confidence in whether a GO or NO GO for launch should be issued. When lightning appears close to the path, the LWOs likely err on the side of conservatism and deem the lightning to be within 10 NM. This would cause a costly delay or scrub. If the LWOs can determine with a strong level of certainty that the lightning is beyond 10 NM, launch availability would increase without compromising safety of the vehicle, payload or, in the future, astronauts.The AMU was tasked to conduct a market research of commercial, government, and open source software that might be able to ingest and display the 3-D lightning data from the KSC Lightning Mapping Array (LMA), the 45th Space Wing Weather Surveillance Radar (WSR), the National Weather Service in Melbourne Weather Surveillance Radar 1988 Doppler (WSR-88D), and the vehicle flight path data so that all can be visualized together. To accomplish this, the AMU conducted Internet searches for potential software candidates and interviewed software developers.None of the available off-the-shelf software had a 3-D capability that could

  6. The results of physical rehabilitation of 0-I X-ray gonarthrosis stages.

    Directory of Open Access Journals (Sweden)

    Andriychuk O.Y.

    2012-01-01

    Full Text Available The results of comparative and longitudinal researches of change of indexes of the state of locomotorium for patients are resulted. In experiment took part 127 patients on osteoarthrosis of knee-joints. The program included a medical physical culture, massotherapy, mechanotherapy, physiotherapy. Programs of physical rehabilitation built on the basis of changes of index of mass body of patients, pain feelings, morning constraint, amplitude of motions, force of muscles. The dynamics of changes of basic objective and subjective indexes of the state of locomotorium is presented in the process of treatment and rehabilitation. The remote consequences of the conducted treatment and rehabilitation are reflected. The offered chart of rehabilitation in medical establishment and continuation of employments a medical physical culture and self-massage is in home terms.

  7. NATO-3C/Delta launch

    Science.gov (United States)

    1978-01-01

    NATO-3C, the third in a series of NATO defense-related communication satellites, is scheduled to be launched on a delta vehicle from the Eastern Test Range no earlier than November 15, 1978. NATO-3A and -3B were successfully launched by Delta vehicles in April 1976 and January 1977, respectively. The NATO-3C spacecraft will be capable of transmitting voice, data, facsimile, and telex messages among military ground stations. The launch vehicle for the NATO-3C mission will be the Delta 2914 configuration. The launch vehicle is to place the spacecraft in a synchronous transfer orbit. The spacecraft Apogee Kick motor is to be fired at fifth transfer orbit apogee to circularize its orbit at geosynchronous altitude of 35,900 km(22,260 miles) above the equator over the Atlantic Ocean somewhere between 45 and 50 degrees W longitude.

  8. Launching PPARC's five year strategy programme

    CERN Multimedia

    2003-01-01

    "Over one hundred delegates from Parliament, Whitehall and Industry attended a reception on Tuesday night (25 November) to mark the launch the Particle Physics and Astronomy Research Council's (PPARC) Five Year Plan" (1 page).

  9. Metric Tracking of Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs reliable, accurate navigation for launch vehicles and other missions. GPS is the best world-wide navigation system, but operates at low power making it...

  10. GPS Attitude Determination for Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Toyon Research Corporation proposes to develop a family of compact, low-cost GPS-based attitude (GPS/A) sensors for launch vehicles. In order to obtain 3-D attitude...

  11. Minimum Cost Nanosatellite Launch System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Delta Velocity Corporation proposes the development of a very low cost, highly responsive nanosat launch system. We propose to develop an integrated propulsion...

  12. Pigeons' Discrimination of Michotte's Launching Effect

    OpenAIRE

    Young, Michael E; Beckmann, Joshua S.; Wasserman, Edward A.

    2006-01-01

    We trained four pigeons to discriminate a Michotte launching animation from three other animations using a go/no-go task. The pigeons received food for pecking at one of the animations, but not for pecking at the others. The four animations featured two types of interactions among objects: causal (direct launching) and noncausal (delayed, distal, and distal & delayed). Two pigeons were reinforced for pecking at the causal interaction, but not at the noncausal interactions; two other pigeons w...

  13. Wireless Data Acquisition System for Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Sabooj Ray

    2013-03-01

    Full Text Available Present launch vehicle integration architecture for avionics uses wired link to transfer data between various sub-systems. Depending on system criticality and complexity, MIL1553 and RS485 are the common protocols that are adopted. These buses have their inherent complexity and failure issues due to harness defects or under adverse flight environments. To mitigate this problem, a prototype wireless, data acquisition system for telemetry applications has been developed and demonstrated. The wireless system simplifies the integration, while reducing weight and costs. Commercial applications of wireless systems are widespread. Few systems have recently been developed for complex and critical environments. Efforts have been underway to make such architectures operational in promising application scenarios. This paper discusses the system concept for adapting a wireless system to the existing bus topology. The protocol involved and the internal implementation of the different modules are described. The test results are presented; some of the issues faced are discussed and the; future course of action is identified.Defence Science Journal, 2013, 63(2, pp.186-191, DOI:http://dx.doi.org/10.14429/dsj.63.4262

  14. Lessons Learned in Building the Ares Projects

    Science.gov (United States)

    Sumrall, John Phil

    2010-01-01

    Since being established in 2005, the Ares Projects at Marshall Space Flight Center have been making steady progress designing, building, testing, and flying the next generation of exploration launch vehicles. Ares is committed to rebuilding crucial capabilities from the Apollo era that made the first human flights to the Moon possible, as well as incorporating the latest in computer technology and changes in management philosophy. One example of an Apollo-era practice has been giving NASA overall authority over vehicle integration activities, giving civil service engineers hands-on experience in developing rocket hardware. This knowledge and experience help make the agency a "smart buyer" of products and services. More modern practices have been added to the management tool belt to improve efficiency, cost effectiveness, and institutional knowledge, including knowledge management/capture to gain better insight into design and decision making; earned value management, where Ares won a NASA award for its practice and implementation; designing for operability; and Lean Six Sigma applications to identify and eliminate wasted time and effort. While it is important to learn technical lessons like how to fly and control unique rockets like the Ares I-X flight test vehicle, the Ares management team also has been learning important lessons about how to manage large, long-term projects.

  15. A Systematic Chandra study of Sgr A$^{\\star}$: I. X-ray flare detection

    CERN Document Server

    Yuan, Qiang

    2016-01-01

    Daily X-ray flaring represents an enigmatic phenomenon of Sgr A$^{\\star}$ --- the supermassive black hole at the center of our Galaxy. We report initial results from a systematic X-ray study of this phenomenon, based on extensive {\\it Chandra} observations obtained from 1999 to 2012, totaling about 4.5 Ms. We detect flares, using a combination of the maximum likelihood and Markov Chain Monte Carlo methods, which allow for a direct accounting for the pile-up effect in the modeling of the flare lightcurves and an optimal use of the data, as well as the measurements of flare parameters, including their uncertainties. A total of 82 flares are detected. About one third of them are relatively faint, which were not detected previously. The observation-to-observation variation of the quiescent emission has an average root-mean-square of $6\\%-14\\%$, including the Poisson statistical fluctuation of faint flares below our detection limits. We find no significant long-term variation in the quiescent emission and the flar...

  16. Obstacle avoidance and path planning for carrier aircraft launching

    Directory of Open Access Journals (Sweden)

    Wu Yu

    2015-06-01

    Full Text Available Launching safety and efficiency are important indexes to measure the fighting capacity of carrier. The study on path planning for taxi of carrier aircraft launching under actual deck environment is of great significance. In actual deck scheduling, manual command is applied to taxi of carrier aircraft, which has negative effects on the safety of staff and carrier aircraft launching. In consideration of both the safety and efficiency of carrier aircraft launching, the key elements of the problem are abstracted based on the analysis of deck environment, carrier aircraft maneuver performance and task requirements. According to the problem description, the mathematical model is established including various constraints. The carrier aircraft and the obstacles are reasonably simplified as circle and polygons respectively. What’s more, the proposed collision detection model reduces the calculations. Aimed at the features of model, the theory of model predictive control (MPC is applied to the path search. Then a dynamic weight heuristic function is designed and a dynamic multistep optimization algorithm is proposed. Taking the Nimitz-class aircraft carrier as an example, the paths from parking place to catapult are planned, which indicate the rationality of the model and the effectiveness of the algorithm by comparing the planning results under different simulation environments. The main contribution of research is the establishment of obstacle avoidance and path planning model. In addition, it provides the solution of model and technological foundations for comprehensive command and real-time decision-making of the carrier aircraft.

  17. 6 MV photon beam modeling for Varian Clinac iX using GEANT4 virtual jaw

    CERN Document Server

    Kim, Byung Yong; Kim, Dong Ho; Baek, Jong Geun; Moon, Su Ho; Rho, Gwang Won; Kang, Jeong Ku; Kim, Sung Kyu

    2015-01-01

    Most virtual source models (VSM) use beam modeling, with the exception of the patient-dependent secondary collimator (jaw). Unlike other components of the treatment head, the jaw absorbs many photons generated by the bremsstrahlung, which decreases the efficiency of the simulation. In the present study, a new method of beam modeling using a virtual jaw was applied to improve the calculation efficiency of VSM. The results for the percentage depth dose and profile of the virtual jaw VSM calculated in a homogeneous water phantom agreed with the measurement results for the CC13 cylinder type ion chamber within an error rate of 2%, and the 80 to 20% penumbra width agreed with the measurement results within an error of 0.6 mm. Compared with the existing VSM, in which a great number of photons are absorbed, the calculation efficiency of the VSM using the virtual jaw was expected to increase by approximately 67%.

  18. Mechanism of CO 2 Fixation by Ir I -X Bonds (X = OH, OR, N, C)

    KAUST Repository

    Vummaleti, Sai Vikrama Chaitanya

    2015-09-08

    Density functional theory calculations have been used to investigate the CO2 fixation mechanism proposed by Nolan et al. for the IrI complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that CO2 insertion is the rate-limiting step rather than the dimerization step. Additionally, in agreement with the experimental results, our results show that CO2 insertion into the Ir-OR1 (R1 = H, methyl, and phenyl) and Ir-N bonds is kinetically facile, and the calculated activation energies span a range of only 12.0-23.0 kcal/mol. Substantially higher values (35.0-50.0 kcal/mol) are reported for analogous Ir-C bonds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis

    Science.gov (United States)

    Gioia, I. M.; Maccacaro, T.; Schild, R. E.; Wolter, A.; Stocke, J. T.

    1990-01-01

    This paper presents the results of the analysis of the X-ray data and the optical identification for the Einstein Observatory Extended Medium-Sensitivity Survey (EMSS). The survey consists of 835 serendipitous sources detected at or above 4 times the rms level in 1435 imaging proportional counter fields with centers located away from the Galactic plane. Their limiting sensitivities are about (5-300) x 10 to the -14th ergs/sq cm sec in the 0.3-3.5-keV energy band. A total area of 778 square deg of the high-Galactic-latitude sky has been covered. The data have been analyzed using the REV1 processing system, which takes into account the nonuniformities of the detector. The resulting EMSS catalog of X-ray sources is a flux-limited and homogeneous sample of astronomical objects that can be used for statistical studies.

  20. New Opportunitie s for Small Satellite Programs Provided by the Falcon Family of Launch Vehicles

    Science.gov (United States)

    Dinardi, A.; Bjelde, B.; Insprucker, J.

    2008-08-01

    The Falcon family of launch vehicles, developed by Space Exploration Technologies Corporation (SpaceX), are designed to provide the world's lowest cost access to orbit. Highly reliable, low cost launch services offer considerable opportunities for risk reduction throughout the life cycle of satellite programs. The significantly lower costs of Falcon 1 and Falcon 9 as compared with other similar-class launch vehicles results in a number of new business case opportunities; which in turn presents the possibility for a paradigm shift in how the satellite industry thinks about launch services.

  1. The INTEGRAL/IBIS AGN catalogue I: X-ray absorption properties versus optical classification

    CERN Document Server

    Malizia, A; Bazzano, A; Bird, A J; Masetti, N; Panessa, F; Stephen, J B; Ubertini, P

    2012-01-01

    In this work we present the most comprehensive INTEGRAL AGN sample which lists 272 objects. Here we mainly use this sample to study the absorption properties of active galaxies, to probe new AGN classes and to test the AGN unification scheme. We find that half (48%) of the sample is absorbed while the fraction of Compton thick AGN is small (~7%). In line with our previous analysis, we have however shown that when the bias towards heavily absorbed objects which are lost if weak and at large distance is removed, as it is possible in the local Universe, the above fractions increase to become 80% and 17%. We also find that absorption is a function of source luminosity, which implies some evolution in the obscuration properties of AGN. Few peculiar classes, so far poorly studied in the hard X-ray band, have been detected and studied for the first time such as 5 XBONG, 5 type 2 QSOs and 11 LINERs. In terms of optical classification, our sample contains 57% of type 1 and 43% of type 2 AGN; this subdivision is simila...

  2. An XMM-Newton spectral survey of 12 micron selected galaxies. I. X-ray data

    CERN Document Server

    Brightman, Murray

    2010-01-01

    We present an X-ray spectral analysis of 126 galaxies of the 12 micron galaxy sample. We pay particular attention to Compton thick AGN with the help of new spectral fitting models that we have produced, which are based on Monte-Carlo simulations of X-ray radiative transfer, using both a spherical and torus geometry, and taking into account Compton scattering and Fe fluorescence. We use this data to show that with a torus geometry, unobscured sight lines can achieve a maximum EW of the Fe K\\alpha line of ~150 eV, originally shown by Ghisellini, Haardt & Matt (1994). In order for this to be exceeded, the line of sight must be obscured with N_H>10^23 cm^-2, as we show for one case, NGC 3690. We also calculate flux suppression factors from the simulated data, the main conclusion from which is that for N_H>10^25 cm^-2, the X-ray flux is suppressed by a factor of >10 in all X-ray bands and at all redshifts, revealing the biases present against these extremely heavily obscured systems inherent in all X-ray surve...

  3. Tuning Thermoelectric Properties of Type I Clathrate K 8–<i>x Ba <i>x Al 8+<i>x Si 38–<i>x through Barium Substitution

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Fan; Kauzlarich, Susan M.

    2016-05-10

    The thermal stability and thermoelectric properties of type I clathrate K8Al8Si38 up to 873 K are reported. K8Al8Si38 possesses a high absolute Seebeck coefficient value and high electrical resistivity in the temperature range of 323 to 873 K, which is consistent with previously reported low temperature thermoelectric properties. Samples with Ba partial substitution at the K guest atom sites were synthesized from metal hydride precursors. The samples with the nominal chemical formula of K8–xBaxAl8+xSi38–x (x = 1, 1.5, 2) possess type I clathrate structure (cubic, Pm3n), confirmed by X-ray diffraction. The guest atom site occupancies and thermal motions were investigated with Rietveld refinement of synchrotron powder X-ray diffraction. Transport properties of Ba-containing samples were characterized from 2 to 300 K. The K–Ba alloy phases showed low thermal conductivity and improved electrical conductivity compared to K8Al8Si38. Electrical resistivity and Seebeck coefficients were measured over the temperature range of 323 to 873 K. Thermal conductivity from 323 to 873 K was estimated from the Wiedemann–Franz relation and lattice thermal conductivity extrapolation from 300 to 873 K. K8–xBaxAl8+xSi38–x (x = 1, 1.5) synthesized with Al deficiency showed enhanced electrical conductivity, and the absolute Seebeck coefficients decrease with the increased carrier concentration. When x = 2, the Al content increases toward the electron balanced composition, and the electrical resistivity increases with the decreasing charge carrier concentration. Overall, K6.5Ba1.5Al9Si37 achieves an enhanced zT of 0.4 at 873 K.

  4. Thermomechanical Impact of Polyurethane Potting on Gun Launched Electronics

    Directory of Open Access Journals (Sweden)

    A. S. Haynes

    2013-01-01

    Full Text Available Electronics packages in precision guided munitions are used in guidance and control units, mission computers, and fuze-safe-and-arm devices. They are subjected to high g-loads during gun launch, pyrotechnic shocks during flight, and high g-loads upon impact with hard targets. To enhance survivability, many electronics packages are potted after assembly. The purpose of the potting is to provide additional structural support and shock damping. Researchers at the US Army recently completed a series of dynamic mechanical tests on a urethane-based potting material to assess its behavior in an electronics assembly during gun launch and under varying thermal launch conditions. This paper will discuss the thermomechanical properties of the potting material as well as simulation efforts to determine the suitability of this potting compound for gun launched electronics. Simulation results will compare stresses and displacements for a simplified electronics package with and without full potting. An evaluation of the advantages and consequences of potting electronics in munitions systems will also be discussed.

  5. Space Launch System Vibration Analysis Support

    Science.gov (United States)

    Johnson, Katie

    2016-01-01

    The ultimate goal for my efforts during this internship was to help prepare for the Space Launch System (SLS) integrated modal test (IMT) with Rodney Rocha. In 2018, the Structural Engineering Loads and Dynamics Team will have 10 days to perform the IMT on the SLS Integrated Launch Vehicle. After that 10 day period, we will have about two months to analyze the test data and determine whether the integrated vehicle modes/frequencies are adequate for launching the vehicle. Because of the time constraints, NASA must have newly developed post-test analysis methods proven well and with technical confidence before testing. NASA civil servants along with help from rotational interns are working with novel techniques developed and applied external to Johnson Space Center (JSC) to uncover issues in applying this technique to much larger scales than ever before. We intend to use modal decoupling methods to separate the entangled vibrations coming from the SLS and its support structure during the IMT. This new approach is still under development. The primary goal of my internship was to learn the basics of structural dynamics and physical vibrations. I was able to accomplish this by working on two experimental test set ups, the Simple Beam and TAURUS-T, and by doing some light analytical and post-processing work. Within the Simple Beam project, my role involves changing the data acquisition system, reconfiguration of the test set up, transducer calibration, data collection, data file recovery, and post-processing analysis. Within the TAURUS-T project, my duties included cataloging and removing the 30+ triaxial accelerometers, coordinating the removal of the structure from the current rolling cart to a sturdy billet for further testing, preparing the accelerometers for remounting, accurately calibrating, mounting, and mapping of all accelerometer channels, and some testing. Hammer and shaker tests will be performed to easily visualize mode shapes at low frequencies. Short

  6. Dynamic attack zone of air-to-air missile after being launched in random wind field

    Institute of Scientific and Technical Information of China (English)

    Hui Yaoluo; Nan Ying; Chen Shaodong; Ding Quanxin; Wu Shengliang

    2015-01-01

    A new concept is presented for air-to-air missile which is dynamic attack zone after being launched in random wind field. This new concept can be used to obtain the 4-dimensional (4-D) information regarding the dynamic envelope of an air-to-air missile at any flight time aimed at different flight targets considering influences of random wind, in the situation of flight fighters coop-erated with missiles fighting against each other. Based on an air-to-air missile model, some typical cases of dynamic attack zone after being launched in random wind field were numerically simulated. Compared with the simulation results of traditional dynamic envelope, the properties of dynamic attack zone after being launched are as follows. The 4-D dynamic attack zone after being launched is inside traditional maximum dynamic envelope, but its forane boundary is usually not inside tra-ditional no-escape dynamic envelope;Traditional dynamic attack zone can just be reliably used at launch time, while dynamic envelope after being launched can be reliably and accurately used dur-ing any flight antagonism time. Traditional envelope is a special case of dynamic envelope after being launched when the dynamic envelope is calculated at the launch time;the dynamic envelope after being launched can be influenced by the random wind field.

  7. Launch and Assembly Reliability Analysis for Mars Human Space Exploration Missions

    Science.gov (United States)

    Cates, Grant R.; Stromgren, Chel; Cirillo, William M.; Goodliff, Kandyce E.

    2013-01-01

    NASA s long-range goal is focused upon human exploration of Mars. Missions to Mars will require campaigns of multiple launches to assemble Mars Transfer Vehicles in Earth orbit. Launch campaigns are subject to delays, launch vehicles can fail to place their payloads into the required orbit, and spacecraft may fail during the assembly process or while loitering prior to the Trans-Mars Injection (TMI) burn. Additionally, missions to Mars have constrained departure windows lasting approximately sixty days that repeat approximately every two years. Ensuring high reliability of launching and assembling all required elements in time to support the TMI window will be a key enabler to mission success. This paper describes an integrated methodology for analyzing and improving the reliability of the launch and assembly campaign phase. A discrete event simulation involves several pertinent risk factors including, but not limited to: manufacturing completion; transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to TMI. The model accommodates varying numbers of launches, including the potential for spare launches. Having a spare launch capability provides significant improvement to mission success.

  8. First mover advantage in launch of platform based variants

    DEFF Research Database (Denmark)

    Chaudhuri, Atanu; Singh, Kashi N

    2015-01-01

    Product choice and pricing are critical decisions taken by firms while launching new products. Firms need to consider the effect of competition while taking the above decisions. Extensive literature is available for pricing, positioning and launch sequence determination of differentiated products...... approach generates interesting insights on the competitive behavior of firms and shows that leaders can indeed enjoy first-mover advantage under certain conditions. Key Words: choice of product line, pricing, static and dynamic games, upper bound on prices......Product choice and pricing are critical decisions taken by firms while launching new products. Firms need to consider the effect of competition while taking the above decisions. Extensive literature is available for pricing, positioning and launch sequence determination of differentiated products...... under competition. But, there is need to understand the leader-follower behaviour of firms with differentiated products. The classical game theoretic models do not consider bounds on prices. Hence, applying these models for product choice and pricing decisions in a real-life industrial setting may...

  9. Changing law of launching pitching angular velocity of rotating missile

    Institute of Scientific and Technical Information of China (English)

    Liu Guang; Xu Bin; Jiao Xiaojuan; Zhen Tiesheng

    2014-01-01

    In order to provide accurate launching pitching angular velocity (LPAV) for the exterior trajectory optimization design, multi-flexible body dynamics (MFBD) technology is presented to study the changing law of LPAV of the rotating missile based on spiral guideway. An MFBD virtual prototype model of the rotating missile launching system is built using multi-body dynamics modeling technology based on the built flexible body models of key components and the special force model. The built model is verified with the frequency spectrum analysis. With the flexible body contact theory and nonlinear theory of MFBD technology, the research is conducted on the influence of a series of factors on LPAV, such as launching angle change, clearance between launching canister and missile, thrust change, thrust eccentricity and mass eccentricity, etc. Through this research, some useful values of the key design parameters which are difficult to be measured in physical tests are obtained. Finally, a simplified mathematical model of the changing law of LPAV is presented through fitting virtual test results using the linear regression method and verified by physical flight tests. The research results have important significance for the exterior trajectory optimization design.

  10. Changing law of launching pitching angular velocity of rotating missile

    Directory of Open Access Journals (Sweden)

    Liu Guang

    2014-10-01

    Full Text Available In order to provide accurate launching pitching angular velocity (LPAV for the exterior trajectory optimization design, multi-flexible body dynamics (MFBD technology is presented to study the changing law of LPAV of the rotating missile based on spiral guideway. An MFBD virtual prototype model of the rotating missile launching system is built using multi-body dynamics modeling technology based on the built flexible body models of key components and the special force model. The built model is verified with the frequency spectrum analysis. With the flexible body contact theory and nonlinear theory of MFBD technology, the research is conducted on the influence of a series of factors on LPAV, such as launching angle change, clearance between launching canister and missile, thrust change, thrust eccentricity and mass eccentricity, etc. Through this research, some useful values of the key design parameters which are difficult to be measured in physical tests are obtained. Finally, a simplified mathematical model of the changing law of LPAV is presented through fitting virtual test results using the linear regression method and verified by physical flight tests. The research results have important significance for the exterior trajectory optimization design.

  11. Exploring jet-launching conditions for SFXTs

    CERN Document Server

    García, Federico; Romero, Gustavo E

    2014-01-01

    In the magneto-centrifugal mechanism for jet formation, accreting neutron stars are assumed to produce relativistic jets only if their surface magnetic field is weak enough ($B \\sim 10^8$ G). However, the most common manifestation of neutron stars are pulsars, whose magnetic field distribution peaks at $B \\sim 10^{12}$ G. If the neutron star magnetic field has at least this strength at birth, it must decay considerably before jets can be launched in binary systems. We study the magnetic field evolution of a neutron star that accretes matter from the wind of a high-mass stellar companion so that we can constrain the accretion rate and the impurities in the crust, which are necessary conditions for jet formation. We solved the induction equation for the diffusion and convection of the neutron star magnetic field confined to the crust, assuming spherical accretion in a simpliflied one-dimensional treatment. We incorporated state-of-the-art microphysics, including consistent thermal evolution profiles, and assume...

  12. Follow the Mars Express launch from one of ESA's establishments

    Science.gov (United States)

    2003-05-01

    Europe’s first mission to the Red Planet will reach its target in December, after a six-month journey. Mars Express will help scientists answer questions about the Martian landscape, atmosphere and the origin of life that remain open, although a wealth of information is already available. Media representatives in Europe can follow the launch and initial orbital operations at ESA/Darmstadt (ESOC) in Germany, which will be acting as the main European press centre, or ESA/Noordwijk (ESTEC) in the Netherlands. ESA/Frascati (ESRIN) in Italy and the Italian Space Agency, ASI, are organising a joint event at the University of Rome. ESA/Villafranca (VILSPA) and the CDTI, the Spanish institution in charge of space issues, are organising a joint event in Spain at the Museo Principe Felipe de la Ciudad de las Artes y las Ciencias in Valencia. At each site ESA specialists will be available for interviews. Media representatives wishing to attend are requested to complete the attached reply form and fax it to the Communication Office at the establishment of their choice. The ESA TV Service will provide live televised coverage of the launch and initial orbital operations with English commentary, between 19:15 and 22:00 CEST. Satellite: Astra 2C at 19 degrees East Reception frequency: 10832 MHz Polarisation: Horizontal Symbol rate: 22 Msymb/s FEC: 5/6 Service ID: 61950 Service name: ESA TXT: none Details of the transmission schedule and satellite details for the various pre-launch Video News Releases can be found on http://television.esa.int. The launch can also be followed live on the internet at www.esa.int/marsexpresslaunch starting at 19:15 hrs. Here you can also find the launch diary, news, press releases, videos, images and more.

  13. Influence of nozzle random side loads on launch vehicle dynamics

    Science.gov (United States)

    Srivastava, Nilabh; Tkacik, Peter T.; Keanini, Russell G.

    2010-08-01

    It is well known that the dynamic performance of a rocket or launch vehicle is enhanced when the length of the divergent section of its nozzle is reduced or the nozzle exit area ratio is increased. However, there exists a significant performance trade-off in such rocket nozzle designs due to the presence of random side loads under overexpanded nozzle operating conditions. Flow separation and the associated side-load phenomena have been extensively investigated over the past five decades; however, not much has been reported on the effect of side loads on the attitude dynamics of rocket or launch vehicle. This paper presents a quantitative investigation on the influence of in-nozzle random side loads on the attitude dynamics of a launch vehicle. The attitude dynamics of launch vehicle motion is captured using variable-mass control-volume formulation on a cylindrical rigid sounding rocket model. A novel physics-based stochastic model of nozzle side-load force is developed and embedded in the rigid-body model of rocket. The mathematical model, computational scheme, and results corresponding to side loading scenario are subsequently discussed. The results highlight the influence of in-nozzle random side loads on the roll, pitch, yaw, and translational dynamics of a rigid-body rocket model.

  14. Long March-ID performance and possibility of providing launch service

    Science.gov (United States)

    Li, Yiming

    A review is presented of the Chinese Long March-ID (LM-ID), a three-stage vehicle to launch small payloads of several hundred kilograms into LEO. The principal advantages of the LM-ID are significant payload capability, proven reliability and reasonable costs. Attention is given to the design philosophy, configuration details, performance capability and launch service modes.

  15. Development of the Architectural Simulation Model for Future Launch Systems and its Application to an Existing Launch Fleet

    Science.gov (United States)

    Rabadi, Ghaith

    2005-01-01

    A significant portion of lifecycle costs for launch vehicles are generated during the operations phase. Research indicates that operations costs can account for a large percentage of the total life-cycle costs of reusable space transportation systems. These costs are largely determined by decisions made early during conceptual design. Therefore, operational considerations are an important part of vehicle design and concept analysis process that needs to be modeled and studied early in the design phase. However, this is a difficult and challenging task due to uncertainties of operations definitions, the dynamic and combinatorial nature of the processes, and lack of analytical models and the scarcity of historical data during the conceptual design phase. Ultimately, NASA would like to know the best mix of launch vehicle concepts that would meet the missions launch dates at the minimum cost. To answer this question, we first need to develop a model to estimate the total cost, including the operational cost, to accomplish this set of missions. In this project, we have developed and implemented a discrete-event simulation model using ARENA (a simulation modeling environment) to determine this cost assessment. Discrete-event simulation is widely used in modeling complex systems, including transportation systems, due to its flexibility, and ability to capture the dynamics of the system. The simulation model accepts manifest inputs including the set of missions that need to be accomplished over a period of time, the clients (e.g., NASA or DoD) who wish to transport the payload to space, the payload weights, and their destinations (e.g., International Space Station, LEO, or GEO). A user of the simulation model can define an architecture of reusable or expendable launch vehicles to achieve these missions. Launch vehicles may belong to different families where each family may have it own set of resources, processing times, and cost factors. The goal is to capture the required

  16. Experimental measurements of the O15(alpha,gamma)Ne19 reaction rate vs. observations of type I X-ray bursts

    CERN Document Server

    Fisker, J L; Görres, J; Wiescher, M; Cooper, R L; Fisker, Jacob Lund; Tan, Wanpeng; Goerres, Joachim; Wiescher, Michael; Cooper, Randall L.

    2007-01-01

    Neutron stars in close binary star systems often accrete matter from their companion stars. Thermonuclear ignition of the accreted material in the atmosphere of the neutron star leads to a thermonuclear explosion which is observed as an X-ray burst occurring periodically between hours and days depending on the accretion rate. The ignition conditions are characterized by a sensitive interplay between the continuously accreting fuel supply and depletion by nuclear burning via the hot CNO cycles. Therefore the ignition depends critically on the hot CNO breakout reaction O15(alpha,gamma)Ne19 that regulates the flow between the beta-limited hot CNO cycle and the rapid proton capture process. Until recently, the O15(alpha,gamma)Ne19 reaction rate was not known experimentally and the theoretical estimates carried significant uncertainties. In this paper we report on the astrophysical consequences of the first measurement of this reaction rate on the thermonuclear instability that leads to type I X-ray bursts on accr...

  17. Multidimensional Modeling of Type I X-ray Bursts. II. Two-Dimensional Convection in a Mixed H/He Accretor

    CERN Document Server

    Malone, C M; Nonaka, A; Almgren, A S; Bell, J B

    2014-01-01

    Type I X-ray Bursts (XRBs) are thermonuclear explosions of accreted material on the surfaces of a neutron stars in low mass X-ray binaries. Prior to the ignition of a subsonic burning front, runaway burning at the base of the accreted layer drives convection that mixes fuel and heavy-element ashes. In this second paper in a series, we explore the behavior of this low Mach number convection in mixed hydrogen/helium layers on the surface of a neutron star using two-dimensional simulations with the Maestro code. Maestro takes advantage of the highly subsonic flow field by filtering dynamically unimportant sound waves while retaining local compressibility effects, such as those due to stratification and energy release from nuclear reactions. In these preliminary calculations, we find that the rp-process approximate network creates a convective region that is split into two layers. While this splitting appears artificial due to the approximations of the network regarding nuclear flow out of the breakout reaction 1...

  18. Testing the TPF Interferometry Approach before Launch

    Science.gov (United States)

    Serabyn, Eugene; Mennesson, Bertrand

    2006-01-01

    One way to directly detect nearby extra-solar planets is via their thermal infrared emission, and with this goal in mind, both NASA and ESA are investigating cryogenic infrared interferometers. Common to both agencies' approaches to faint off-axis source detection near bright stars is the use of a rotating nulling interferometer, such as the Terrestrial Planet Finder interferometer (TPF-I), or Darwin. In this approach, the central star is nulled, while the emission from off-axis sources is transmitted and modulated by the rotation of the off-axis fringes. Because of the high contrasts involved, and the novelty of the measurement technique, it is essential to gain experience with this technique before launch. Here we describe a simple ground-based experiment that can test the essential aspects of the TPF signal measurement and image reconstruction approaches by generating a rotating interferometric baseline within the pupil of a large singleaperture telescope. This approach can mimic potential space-based interferometric configurations, and allow the extraction of signals from off-axis sources using the same algorithms proposed for the space-based missions. This approach should thus allow for testing of the applicability of proposed signal extraction algorithms for the detection of single and multiple near-neighbor companions...

  19. [CAEC launches an innovative IEC program].

    Science.gov (United States)

    Okigbo, C

    1996-01-01

    The African Council for Education in Communication (CAEC) has launched an innovative program for training in IEC, following long discussions with specialists in the US Agency for International Development, Johns Hopkins University, Family Health International/AIDSCAP, and other international development and UN agencies. The four social marketing study and training modules will examine principles and practice, research and evaluation, planning campaign strategies, and production of materials. Two of the modules were presented in 1996. 26 participants from UNICEF bureaus in Kenya, Nigeria, Sierra Leone, and Namibia attended a course in application and principles of social marketing and IEC in Nairobi in August 1996. The second course, on research and evaluation in social marketing and IEC, was held in Nairobi in late 1996. The remaining two modules will be presented in Nairobi in 1997, while the first two are to be presented in West Africa and South Africa. Several institutions in the 26 CAEC member countries have expressed interest in the courses. The second phase of development of this training project calls for studies of social marketing, promotion, and social mobilization. Programs in international development communication and other topics will be added for personnel of UNICEF and other UN agencies. PMID:12320947

  20. 76 FR 52694 - National Environmental Policy Act: Launch of NASA Routine Payloads on Expendable Launch Vehicles

    Science.gov (United States)

    2011-08-23

    ... launching on the Pegasus, Taurus, Atlas and Delta families of the vehicles from CCAFS and VAFB. The No... include the ] following: the Athena I and II, Atlas V family, the Delta family, the Falcon family, the... include short- term impacts on air quality within the exhaust cloud and near the launch pads, and...

  1. Mars Science Laboratory Launch-Arrival Space Study: A Pork Chop Plot Analysis

    Science.gov (United States)

    Cianciolo, Alicia Dwyer; Powell, Richard; Lockwood, Mary Kae

    2006-01-01

    Launch-Arrival, or "pork chop", plot analysis can provide mission designers with valuable information and insight into a specific launch and arrival space selected for a mission. The study begins with the array of entry states for each pair of selected Earth launch and Mars arrival dates, and nominal entry, descent and landing trajectories are simulated for each pair. Parameters of interest, such as maximum heat rate, are plotted in launch-arrival space. The plots help to quickly identify launch and arrival regions that are not feasible under current constraints or technology and also provide information as to what technologies may need to be developed to reach a desired region. This paper provides a discussion of the development, application, and results of a pork chop plot analysis to the Mars Science Laboratory mission. This technique is easily applicable to other missions at Mars and other destinations.

  2. Thermomechanical Impact of Polyurethane Potting on Gun Launched Electronics

    OpenAIRE

    Haynes, A. S.; Cordes, J. A.; Krug, J.

    2013-01-01

    Electronics packages in precision guided munitions are used in guidance and control units, mission computers, and fuze-safe-and-arm devices. They are subjected to high g-loads during gun launch, pyrotechnic shocks during flight, and high g-loads upon impact with hard targets. To enhance survivability, many electronics packages are potted after assembly. The purpose of the potting is to provide additional structural support and shock damping. Researchers at the US Army recently completed a ser...

  3. Operationally Responsive Space Launch for Space Situational Awareness Missions

    Science.gov (United States)

    Freeman, T.

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft and in the development of constellations of spacecraft. This position is founded upon continued government investment in research and development in space technology, which is clearly reflected in the Space Situational Awareness capabilities and the longevity of these missions. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by unresponsive and relatively expensive launchers in the Expandable, Expendable Launch Vehicles (EELV). The EELV systems require an average of six to eight months from positioning on the launch table until liftoff. Access to space requires maintaining a robust space transportation capability, founded on a rigorous industrial and technology base. To assure access to space, the United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. Under the Air Force Policy Directive, the Air Force will establish, organize, employ, and sustain space forces necessary to execute the mission and functions assigned including rapid response to the National Command Authorities and the conduct of military operations across the spectrum of conflict. Air Force Space Command executes the majority of spacelift operations for DoD satellites and other government and commercial agencies. The

  4. Integrated Vehicle Ground Vibration Testing in Support of Launch Vehicle Loads and Controls Analysis

    Science.gov (United States)

    Askins, Bruce R.; Davis, Susan R.; Salyer, Blaine H.; Tuma, Margaret L.

    2008-01-01

    All structural systems possess a basic set of physical characteristics unique to that system. These unique physical characteristics include items such as mass distribution and damping. When specified, they allow engineers to understand and predict how a structural system behaves under given loading conditions and different methods of control. These physical properties of launch vehicles may be predicted by analysis or measured by certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified by testing before the vehicle becomes operational. A ground vibration test (GVT) is intended to measure by test the fundamental dynamic characteristics of launch vehicles during various phases of flight. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and control systems analysis models for verifying analyses of the launch vehicle. NASA manned launch vehicles have undergone ground vibration testing leading to the development of successful launch vehicles. A GVT was not performed on the inaugural launch of the unmanned Delta III which was lost during launch. Subsequent analyses indicated had a GVT been performed, it would have identified instability issues avoiding loss of the vehicle. This discussion will address GVT planning, set-up, execution and analyses, for the Saturn and Shuttle programs, and will also focus on the current and on-going planning for the Ares I and V Integrated Vehicle Ground Vibration Test (IVGVT).

  5. The Standard Deviation of Launch Vehicle Environments

    Science.gov (United States)

    Yunis, Isam

    2005-01-01

    Statistical analysis is used in the development of the launch vehicle environments of acoustics, vibrations, and shock. The standard deviation of these environments is critical to accurate statistical extrema. However, often very little data exists to define the standard deviation and it is better to use a typical standard deviation than one derived from a few measurements. This paper uses Space Shuttle and expendable launch vehicle flight data to define a typical standard deviation for acoustics and vibrations. The results suggest that 3dB is a conservative and reasonable standard deviation for the source environment and the payload environment.

  6. Launching Low-Income Entrepreneurs

    Science.gov (United States)

    Laney, Kahliah

    2013-01-01

    With middle-income jobs in decline, entrepreneurship offers an increasingly promising pathway out of poverty; but few low-income New Yorkers are currently taking this route to economic self-sufficiency. This report provides the most comprehensive examination of low-income entrepreneurship in New York. The report documents current self-employment…

  7. The European launch vehicle Ariane: Its commercial status - Its evolution

    Science.gov (United States)

    Glavany, M.

    The status of the Ariane program is summarized. The shareholders and participating countries in the French private firm Arianespace are listed and the Ariane rocket is very briefly described, depicting the planned models and showing their anticipated performances and the types of fairing available to them, and comparing the available volume in Ariane 3 and 4 and foreign competitors. The current status of the Ariane program, including the development phase, promotional series, and commercial phase are briefly presented. The Guiana space center and second launch pad are described and the advantages of Arianespace's launch service and the vehicle are listed, along with Ariane's advantages over the Space Shuttle. The expected market share for Ariane is shown in comparison with that of the Shuttle and other nations.

  8. Aero-Assisted Pre-Stage for Ballistic and Aero-Assisted Launch Vehicles

    Science.gov (United States)

    Ustinov, Eugene A.

    2012-01-01

    A concept of an aero-assisted pre-stage is proposed, which enables launch of both ballistic and aero-assisted launch vehicles from conventional runways. The pre-stage can be implemented as a delta-wing with a suitable undercarriage, which is mated with the launch vehicle, so that their flight directions are coaligned. The ample wing area of the pre-stage combined with the thrust of the launch vehicle ensure prompt roll-out and take-off of the stack at airspeeds typical for a conventional jet airliner. The launch vehicle is separated from the pre-stage as soon as safe altitude is achieved, and the desired ascent trajectory is reached. Nominally, the pre-stage is non-powered. As an option, to save the propellant of the launch vehicle, the pre-stage may have its own short-burn propulsion system, whereas the propulsion system of the launch vehicle is activated at the separation point. A general non-dimensional analysis of performance of the pre-stage from roll-out to separation is carried out and applications to existing ballistic launch vehicle and hypothetical aero-assisted vehicles (spaceplanes) are considered.

  9. 14 CFR 420.55 - Scheduling of launch site operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Scheduling of launch site operations. 420... Licensee § 420.55 Scheduling of launch site operations. (a) A licensee shall develop and implement... the launch site. (b) A licensee shall provide its launch site scheduling requirements to each...

  10. The Virginia Space Flight Center model for an integrated federal/commercial launch range

    Science.gov (United States)

    Reed, Billie M.

    2000-01-01

    which pairs the strengths of the established NASA Test Range and the state-sponsored, commercial launch facility provider in an attempt to satisfy the needs for flexible, low-cost access to space. The continued viability of the VSFC and other commercial spaceports depend upon access to a space launch and re-entry range safety system that assures the public safety and is accepted by the public and government as authoritative and reliable. DoD and NASA budget problems have resulted in deteriorating services and reliability at federal ranges and has caused fear with respect to their ability to service the growing commercial market. Numerous high level studies have been conducted or are in progress that illuminate the deficiencies. No federal agency has been provided the necessary funding or authority to address the nations diminishing space launch capability. It is questionable as to whether the U.S. can continue to compete in the global space launch market unless these domestic space access problems are rapidly corrected. This paper discusses a potential solution to the lack of a coordinated response in the U.S. to the challenge presented by the global market for space launch facilities and services. .

  11. 20 Years Experience with using Low Cost Launch Opportunities for 20 Small Satellite Missions

    Science.gov (United States)

    Meerman, Maarten; Sweeting, Martin, , Sir

    To realise the full potential of modern low cost mini-micro-nano-satellite missions, regular and affordable launch opportunities are required. It is simply not economic to launch individual satellites of 5-300kg on single dedicated launchers costing typically 15-20M per launch. Whilst there have been periodic 'piggy-back' launches of small satellites on US launchers since the 1960's, these have been infrequent and often experienced significant delays due the vagaries of the main (paying!) payload. In 1989, Arianespace provided a critical catalyst to the microsatellite community when it imaginatively developed the ASAP platform on Ariane-4 providing, for the first time, a standard interface and affordable launch contracts for small payloads up to 50kg. During the 1990's, some 20 small satellites have been successfully launched on the Ariane-4 ASAP ring for international customers carrying out a range of operational, technology demonstration and training missions. However, most of these microsatellite missions seek low Earth orbit and especially sun-synchronous orbits, but the number of primary missions into these orbit has declined since 1996 and with it the availability of useful low cost launch opportunities for microsatellites. Whilst Ariane-5 has an enhanced capacity ASAP, it has yet to be widely used due both to the infrequent launches, higher costs, and the GTO orbit required by the majority of customers. China, Japan and India have also provided occasional secondary launches for small payloads, but not yet on a regular basis. Fortunately, the growing interest and demand for microsatellite missions coincided with the emergence of regular, low cost launch opportunities from the former Soviet Union (FSU) - both as secondary 'piggy-back' missions or as multiple microsatellite payloads on converted military ICBMs. Indeed, the FSU now supplies the only affordable means of launching minisatellites (200-500kg) into LEO as dedicated missions on converted missiles as

  12. Utility launches computer information service

    Energy Technology Data Exchange (ETDEWEB)

    Beaty, W. [ed.; Ordonez, B.

    1994-12-01

    Three employees at Lee County Electric Cooperative in North Fort Meyers, Fla., have developed InterLine, an on-line computer service designed specifically for the electric utility industry. Since introducing InterLine to the public, the development team has been looking at what areas of information would be most useful to subscribers. In the initial phase, system features include forums on electrical engineering, safety and health and transmission and distribution, a library of files and the Internet gateway. If InterLIne is embraced by the electric utility industry, long range plans are to take it internationls.

  13. Opportunities and threats for the launch of a smartphone app

    OpenAIRE

    Lopes, Eduardo Manuel Rosas Nobre Quinteiro

    2015-01-01

    Field lab: Entrepreneurial and innovative ventures The following work project illustrates the opportunities and threats of the industry for the launch of a smartphone app. In the first part, the technological and economic contextual drivers are analyzed in-depth through the study of key variables for the proliferation of the industry. In the second part, the characteristics of the market are exposed through a market assessment including an analysis of the industry rivalry and i...

  14. Product Launches and Buying Frenzies: A Dynamic Perspective

    OpenAIRE

    COURTY, Pascal; Nasiry, Javad

    2013-01-01

    Buying frenzies in which a firm intentionally undersupplies a product during its initial launch phase are a common practice within several industries such as electronics (cell phones, video games, game consoles), luxury cars, and fashion goods. We develop a dynamic model of buying frenzies that captures the production and sales of a product over time by the firm and then characterize the conditions under which frenzies are an optimal policy for the firm. We show that buying frenzies occur whe...

  15. Future Launch Vehicle Structures - Expendable and Reusable Elements

    Science.gov (United States)

    Obersteiner, M. H.; Borriello, G.

    2002-01-01

    Further evolution of existing expendable launch vehicles will be an obvious element influencing the future of space transportation. Besides this reusability might be the change with highest potential for essential improvement. The expected cost reduction and finally contributing to this, the improvement of reliability including safe mission abort capability are driving this idea. Although there are ideas of semi-reusable launch vehicles, typically two stages vehicles - reusable first stage or booster(s) and expendable second or upper stage - it should be kept in mind that the benefit of reusability will only overwhelm if there is a big enough share influencing the cost calculation. Today there is the understanding that additional technology preparation and verification will be necessary to master reusability and get enough benefits compared with existing launch vehicles. This understanding is based on several technology and system concepts preparation and verification programmes mainly done in the US but partially also in Europe and Japan. The major areas of necessary further activities are: - System concepts including business plan considerations - Sub-system or component technologies refinement - System design and operation know-how and capabilities - Verification and demonstration oriented towards future mission mastering: One of the most important aspects for the creation of those coming programmes and activities will be the iterative process of requirements definition derived from concepts analyses including economical considerations and the results achieved and verified within technology and verification programmes. It is the intention of this paper to provide major trends for those requirements focused on future launch vehicles structures. This will include the aspects of requirements only valid for reusable launch vehicles and those common for expendable, semi-reusable and reusable launch vehicles. Structures and materials is and will be one of the

  16. SATDA Real Estate Division Launches

    Institute of Scientific and Technical Information of China (English)

    Rob Emerick

    2008-01-01

    <正>Hello Readers, I am happy to announce the new real estate section for this magazine,called"America is For Sale".This section will focus on current and important issues regarding the real estate industry within the United States of America.There has been a great deal of interest in the American real estate market from Chinese investors lately.The weak US dollar and strong Chinese renminbi alone make the US market attractive to Chinese investors.Now,with the US in the bottom of a real estate cycle,property is amazingly inexpensive.Many foreign investors are buying as much as they can because the investors understand this is the best time to buy:at the bottom of a cycle.

  17. China Launches First Ever Nano-satellite

    Institute of Scientific and Technical Information of China (English)

    LiuJie

    2004-01-01

    China successfully launched two scientific satellites, including a nano-satellite for the first time, heralding a breakthrough in space technology. A LM-2C rocket carrying Nano-Satellite I (NS-1), which weighs just 25kg and an Experiment Satellite I, weighing 204kg blasted off at 11:59 p.m. on April 18,

  18. Pilot music program for Chatham's children launched

    OpenAIRE

    Felker, Susan B.

    2005-01-01

    Virginia Tech is launching the first program in its Outreach Community Fine Arts Initiative designed to help enhance economic development by improving quality of life through music education and performance in Southside and Southwest Virginia. The program's goal is to demonstrate the relationship of the fine arts and economic development and to reinforce the university's commitment to excellence in the arts.

  19. CAS Launches Website for Scientific Education

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ CAS member Wang Shouguan and SecretaryGeneral of the Ministry of Science and Technology Zhang Jing'an jointly push the button on August 26 in Beijing to launch a CAS website for scientific education (http ://www.fipse. cn/).

  20. Launching a Projectile into Deep Space

    Science.gov (United States)

    Maruszewski, Richard F., Jr.

    2004-01-01

    As part of the discussion about Newton's work in a history of mathematics course, one of the presentations calculated the amount of energy necessary to send a projectile into deep space. Afterwards, the students asked for a recalculation with two changes: First the launch under study consisted of a single stage, but the students desired to…

  1. DPJ Editorial: Launching the new journal

    Directory of Open Access Journals (Sweden)

    Eugene Matusov

    2013-01-01

    Full Text Available We welcome and invite new readers, authors, reviewers and editors to the new journal.  A short history of the journal foundation is given along with the reasons for launching this publication. A long, but not finished, list is provided of important and interesting themes and areas of interest for dialogic educational practice, research and theory.

  2. Pakistan launches media blitz on AIDS.

    Science.gov (United States)

    Lynn, W

    1994-01-01

    In March 1994, the National AIDS Prevention and Control Programme in Pakistan launched its media campaign. Staffers have had to work within Islamic principles to inform the public about the risk of HIV infection and to encourage the public to adopt behavior to prevent its transmission. The media messages are not sexually explicit. They call for Pakistanis to call a hotline for or to ask medical professionals about more detailed information on AIDS. The hotline number is memorable (123). The 2 hotlines in Islamabad receive 250-300 calls/day. These hotlines deliver a recorded message with information on the significance of condoms in AIDS prevention and allows callers an opportunity to leave a telephone number or address if they want information. Staff advise callers who are concerned that they may be infected with HIV to obtain a test at 1 of 30 sites and to attend the National Institute for Health in Islamabad for more testing and counseling if the first test is positive. The hotline system will soon expand to all other major Pakistani cities. The program receives 300-400 letters/week asking for specific information. The program had workshops for journalists as its first wave of increasing AIDS awareness. The journalists followed with thoughtful articles on AIDS. Program staff spent much energy to obtain support from Islamic leaders. More media professionals have joined efforts to disseminate information through various media forums to encourage people to seek treatment for sexually transmitted diseases. The program's goal is a 55% increase in the number of people who can name at least 2 correct ways to prevent HIV transmission and an increase in condom use from 1% to 70%. The program eventually would like to increase outreach efforts by working with nongovernmental organizations and by developing videos and short stories.

  3. Tracks for Eastern/Western European Future Launch Vehicles Cooperation

    Science.gov (United States)

    Eymar, Patrick; Bertschi, Markus

    2002-01-01

    exclusively upon Western European elements indigenously produced. Yet some private initiatives took place successfully in the second half of the nineties (Eurockot and Starsem) bringing together companies from Western and Eastern Europe. Evolution of these JV's are already envisioned. But these ventures relied mostly on already existing vehicles. broadening the bases in order to enlarge the reachable world market appears attractive, even if structural difficulties are complicating the process. had recently started to analyze, with KSRC counterparts how mixing Russian and Western European based elements would provide potential competitive edges. and RKA in the frame of the new ESA's Future Launch Preparatory Programme (FLPP). main technical which have been considered as the most promising (reusable LOx/Hydrocarbon engine, experimental reentry vehicles or demonstrators and reusable launch vehicle first stage or booster. international approach. 1 patrick.eymar@lanceurs.aeromatra.com 2

  4. Plug engine systems for future launch vehicle applications

    Science.gov (United States)

    Immich, H.; Parsley, R. C.

    1993-06-01

    Based on improved viability resulting from modern analysis techniques, plug nozzle rocket engines are once again being investigated with respect to advanced launch vehicle concepts. The advantage of these engines is the external expansion, which self-adapts to external pressure variation, as well as the short compact design for high expansion ratios. This paper describes feasible design options ranging from a plug nozzle engine with an annular combustion chamber to a segmented modular design, to the integration of a number of conventional engines around a common plug. The advantages and disadvantages of these options are discussed for a range of potential applications including single-stage-to-orbit (SSTO) vehicles, as well as upper stage vehicles such as the second stage of the SAeNGER HTOL launch vehicle concept. Also included is a discussion of how maturing computational fluid dynamic (CFD) modeling techniques could significantly reduce installed performance uncertainties, reducing plug engine development risk.

  5. Integrated Flight Performance Analysis of a Launch Abort System Concept

    Science.gov (United States)

    Tartabini, Paul V.

    2007-01-01

    This paper describes initial flight performance analyses conducted early in the Orion Project to support concept feasibility studies for the Crew Exploration Vehicle s Launch Abort System (LAS). Key performance requirements that significantly affect abort capability are presented. These requirements have implications on sizing the Abort Motor, tailoring its thrust profile to meet escape requirements for both launch pad and high drag/high dynamic pressure ascent aborts. Additional performance considerations are provided for the Attitude Control Motor, a key element of the Orion LAS design that eliminates the need for ballast and provides performance robustness over a passive control approach. Finally, performance of the LAS jettison function is discussed, along with implications on Jettison Motor sizing and the timing of the jettison event during a nominal mission. These studies provide an initial understanding of LAS performance that will continue to evolve as the Orion design is matured.

  6. Space Launch System Accelerated Booster Development Cycle

    Science.gov (United States)

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  7. Estimating Logistics Support of Reusable Launch Vehicles During Conceptual Design

    Science.gov (United States)

    Morris, W. D.; White, N. H.; Davies, W. T.; Ebeling, C. E.

    1997-01-01

    Methods exist to define the logistics support requirements for new aircraft concepts but are not directly applicable to new launch vehicle concepts. In order to define the support requirements and to discriminate among new technologies and processing choices for these systems, NASA Langley Research Center (LaRC) is developing new analysis methods. This paper describes several methods under development, gives their current status, and discusses the benefits and limitations associated with their use.

  8. NASA's Reusable Launch Vehicle Technologies: A Composite Materials Overview

    Science.gov (United States)

    Clinton, R. G., Jr.; Cook, Steve; Effinger, Mike; Smith, Dennis; Swint, Shayne

    1999-01-01

    A materials overview of the NASA's Earth-to-Orbit Space Transportation Program is presented. The topics discussed are: Earth-to-Orbit Goals and Challenges; Space Transportation Program Structure; Generations of Reusable Launch Vehicles; Space Transportation Derived Requirements; X 34 Demonstrator; Fastrac Engine System; Airframe Systems; Propulsion Systems; Cryotank Structures; Advanced Materials, Fabrication, Manufacturing, & Assembly; Hot and Cooled Airframe Structures; Ceramic Matrix Composites; Ultra-High Temp Polymer Matrix Composites; Metal Matrix Composites; and PMC Lines Ducts and Valves.

  9. Initiating Piloted Mars Expeditions with Medium-Lift Launch Systems

    Science.gov (United States)

    Bonin, G. R.

    A method of accomplishing manned expeditions to Mars with existing medium-lift launch systems is discussed. In this architecture, 20-tonne propulsion stages are placed individually in low-Earth orbit, where they are mated to Mars-bound payloads and ignited at successive perigees to execute trans-Mars injection. Spacecraft follow conjunction-class trajectories to the red planet and utilize aerobraking for orbital capture and descent. Return vehicles are fuelled with methane/oxygen bipropellant synthesized primarily from Martian resources. Dispatching expeditions from orbit with individual, high-energy stages - rather than directly from the Earth's surface - allows for the division of mission mass into more manageable components, which can be launched by vehicles that exist today. This plan does not require the development of heavy-lift launch technology: an effective yet costly proposition that may otherwise hinder current space exploration initiatives. Without the need for heavy-lift boosters, manned missions to Mars can be undertaken presently, and within the constraints of today's space exploration budgets. It is concluded that the mission design herein represents a less robust, though more economically viable method for initiating manned Mars exploration than proposals which require heavy-lift technology - an alternative method by which a new planet could be opened to humanity.

  10. Launch and Commissioning of the Deep Space Climate Observatory

    Science.gov (United States)

    Frey, Nicholas P.; Davis, Edward P.

    2016-01-01

    The Deep Space Climate Observatory (DSCOVR), formerly known as Triana, successfully launched on February 11th, 2015. To date, each of the five space-craft attitude control system (ACS) modes have been operating as expected and meeting all guidance, navigation, and control (GN&C) requirements, although since launch, several anomalies were encountered. While unplanned, these anomalies have proven to be invaluable in developing a deeper understanding of the ACS, and drove the design of three alterations to the ACS task of the flight software (FSW). An overview of the GN&C subsystem hardware, including re-furbishment, and ACS architecture are introduced, followed by a chronological discussion of key events, flight performance, as well as anomalies encountered by the GN&C team.

  11. INTEGRAL RCS : Launch Site Operations and In-orbit Behavior

    Science.gov (United States)

    Pessana, M.; Ravera, F.; Poidomani, G.; Gitins, M.; Lafranconi, R.

    2004-10-01

    The INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) Spacecraft was launched from Baikonur on October the 17th 2002. The Spacecraft Propulsion (RCS) is a monopropellant system, using anhydrous hydrazine and 20 N thrusters. It was loaded and pressurised at the Baikonur filling facilities prior the launch. The outcomes of this activity together with a correlation with the tanks loading procedure are given. During LEOP the behaviour of the RCS was recorded via the telemetry by the three Pressure Transducers, the TCS thermistors and by the thrusters thermocouples. The above parameters allow determining the proper status of the system and its functional behaviour. During the LEOP an anomalous temperature evolution was detected on a line spot downstream the tanks.

  12. Laser-launched flyers with organic working fluids

    Science.gov (United States)

    Mulford, Roberta; Swift, Damian

    2003-10-01

    The TRIDENT laser has been used to launch flyers by depositing IR energy in a thin layer of material - the working fluid - sandwiched between the flyer and a transparent substrate. We have investigated the use of working fluids based on organics, chosen as they are quite efficient absorbers of IR energy and should also convert heat to mechanical work more efficiently than materials such as carbon. A thermodynamically complete equation of state was developed for one of the fluids investigated experimentally - a carbohydrate solution - by chemical equilibrium calculations using the CHEETAH program. Continuum mechanics simulations were made of the flyer launch process, modeling the effect of the laser as energy deposition in the working fluid, and taking into account the compression and recoil of the substrate. We compare the simulations with a range of experiments and demonstrate the optimization of substrate and fluid thickness for a given flyer thickness and speed.

  13. Software Quality Assurance-Challenges in Launch Vehicle Projects

    Directory of Open Access Journals (Sweden)

    Poofa Gopalan

    2006-01-01

    Full Text Available Launch vehicle projects now depend on software, more than ever before, to ensure safetyand efficiency. Such critical software syfiems, which can lead to injury, destruction or loss ofvital equipment, human lives, and damage to environment, must be developed and verified withhigh level of quality and reliability. An overview of current quality practices pursued in launchvehicle projects is presented in this paper. These practices have played a vital role in the successfullaunch vehicle missions of Indian Space Research Organisation. As complexity of softwareincreases, the activity that gets affected is nothing but, software quality assurance (SQA. TheSQA team is facing a lot of challenges in current practices. This paper brings out such challengesin different phases of software life cycle. A set of key points to some techniques and tools, thatcould contribute to meet the software quality 'assurance challenges in launch vehicle projects,are also discussed.

  14. Hail Disrometer Array for Launch Systems Support

    Science.gov (United States)

    Lane, John E.; Sharp, David W.; Kasparis, Takis C.; Doesken, Nolan J.

    2008-01-01

    Prior to launch, the space shuttle might be described as a very large thermos bottle containing substantial quantities of cryogenic fuels. Because thermal insulation is a critical design requirement, the external wall of the launch vehicle fuel tank is covered with an insulating foam layer. This foam is fragile and can be damaged by very minor impacts, such as that from small- to medium-size hail, which may go unnoticed. In May 1999, hail damage to the top of the External Tank (ET) of STS-96 required a rollback from the launch pad to the Vehicle Assembly Building (VAB) for repair of the insulating foam. Because of the potential for hail damage to the ET while exposed to the weather, a vigilant hail sentry system using impact transducers was developed as a hail damage warning system and to record and quantify hail events. The Kennedy Space Center (KSC) Hail Monitor System, a joint effort of the NASA and University Affiliated Spaceport Technology Development Contract (USTDC) Physics Labs, was first deployed for operational testing in the fall of 2006. Volunteers from the Community Collaborative Rain. Hail, and Snow Network (CoCoRaHS) in conjunction with Colorado State University were and continue to be active in testing duplicate hail monitor systems at sites in the hail prone high plains of Colorado. The KSC Hail Monitor System (HMS), consisting of three stations positioned approximately 500 ft from the launch pad and forming an approximate equilateral triangle (see Figure 1), was deployed to Pad 39B for support of STS-115. Two months later, the HMS was deployed to Pad 39A for support of STS-116. During support of STS-117 in late February 2007, an unusual hail event occurred in the immediate vicinity of the exposed space shuttle and launch pad. Hail data of this event was collected by the HMS and analyzed. Support of STS-118 revealed another important application of the hail monitor system. Ground Instrumentation personnel check the hail monitors daily when a

  15. Project LAUNCH: Bringing Space into Math and Science Classrooms

    Science.gov (United States)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  16. FY-3A Launched Atop A LM-4C Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    Rain.L

    2008-01-01

    @@ FY-3A,the first satellite of China's new generation of polar-orbiting meteorological satellites,was launched into space atop a modified LM-4C launch vehicle.The satellite separated from the rocket 19 minutes after the takeoff.Flying at an altitude of 807km with an inclination of 98.8 degrees,the satellite circles in polar orbit 14 times everyday,covering the whole globe twice a day.

  17. Fluorescence methods (VistaCam iX proof and DIAGNODent pen) for the detection of occlusal carious lesions in teeth recovered from archaeological context.

    Science.gov (United States)

    Tomczyk, Jacek; Komarnitki, Julian; Zalewska, Marta; Lekszycki, Tomasz; Olczak-Kowalczyk, Dorota

    2014-08-01

    Diagnosis of occlusal enamel caries in archaeologically derived collections remains a controversial problem because the accumulation of contaminants in fissures can interfere with diagnosis. Certain novel light-induced fluorescence methods, such as the DIAGNODent pen 2190 (DD) and VistaCam iX Proof (VC), have been used to detect dental caries in clinical settings. In this study, the abilities of DD and VC to detect initial enamel caries in archaeologically derived material is determined and compared with those of other methods (visual inspection, X-ray, histology, and micro-CT). Dental material encompassing the remains of 58 individuals, including a total of 380 teeth from each of three historical periods: modern Islamic (AD 1850-1950), Islamic (AD 600-1200) and late Roman (AD 200-400), obtained from two archaeological sites (Terqa and Tell Masaikh) located in the Middle Euphrates valley (Syria), were analyzed. VC was found to have excellent sensitivity (98), while DD obtained lower sensitivity (76) in detecting dental caries in its early stages. The results obtained by VC and micro-CT, considered the most reliable imaging technique, were not statistically significant (P = 0.3068). By contrast, results obtained by DD and micro-CT results, and DD and VC results were statistically significant (P < 0.0001, P = 0.0015, respectively). However the presence of dirt, stain, calculus, and plaque in the pits and fissures of the occlusal surface compromise correct diagnosis of caries by VC and DD. Consequently, for teeth recovered from archaeological contexts where staining, calculus and plaque are present, the best solution remains micro-CT.

  18. Space debris proximity analysis in powered and orbital phases during satelitte launch

    Science.gov (United States)

    Bandyopadhyay, P.; Sharma, R.; Adimurthy, V.

    The need to protect a launch vehicle in its ascent phase as well as the payload upon injection in particular and to prevent generation of debris in general through collision has led to many recent developments in the methodologies of SPAce DEbris PROximity (SPADEPRO) analysis, which is required for COLlision Avoidance or COLA studies. SPADEPRO refers to assessment of collision risk between catalogued resident space objects and launch vehicle or satellite of interest. The detection of close approaches to satellites/launch vehicles during the launch and early post-deployment phase of their lifetimes is an important subset of the overall problem. Potential collisions during this period can usually be avoided by adjusting the time of launch within a specified launch window. In Ref- 1 a series of filters through which candidate objects have to pass before determining its close approach distances from either analytical propagators like SGP4/SDP4 or any numerical prediction package, has been described. Unfortunately, this detection technique cannot strictly be applied since assumption of orbital motion is violated when powered launch trajectories are considered. Ref- 2 has proposed an algorithm for determining launch window blackout intervals based on the avoidance of close approaches for trajectories, which are fixed relative to an Earth Centered Earth Fixed (ECEF) reference frame. In this paper, authors approximate the powered launch trajectory into a series of orbital trajectories so that those trajectories envelope the powered launch trajectory in position-velocity phase space. Following this, filters described in Ref- 1 have been utilized to find out potential candidates from resident space objects. In Ref- 2, 3 &4 the blackout period has been observed when the closest approach distance is below a certain threshold. Instead, in this paper authors use collision probability, considering dispersions in respective trajectories of resident space objects and launch vehicle

  19. A perfect launch viewed across Banana Creek

    Science.gov (United States)

    2000-01-01

    Space Shuttle Discovery seems to burst forth from a pillow of smoke as it lifts off from Launch Pad 39A on mission STS-92 to the International Space Station. The brilliant light from the solid rocket booster flames is reflected in nearby water. The perfect on-time liftoff occurred at 7:17 p.m. EDT, sending a crew of seven on the 100th launch in the history of the Shuttle program. Discovery carries a payload that includes the Integrated Truss Structure Z-1, first of 10 trusses that will form the backbone of the Space Station, and the third Pressurized Mating Adapter that will provide a Shuttle docking port for solar array installation on the sixth Station flight and Lab installation on the seventh Station flight. Discovery's landing is expected Oct. 22 at 2:10 p.m. EDT.

  20. NASA's Launch Propulsion Systems Technology Roadmap

    Science.gov (United States)

    McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.

    2012-01-01

    Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.

  1. Launch Lock Mechanism for Resource Prospector Rover

    Science.gov (United States)

    Tamasy, Gabor J.; Smith, Jonathan D.; Mueller, Robert P.; Townsend, Ivan I., III

    2016-01-01

    The Resource Prospector Rover is being designed to carry the RESOLVE (Regolith Environment Science, and Oxygen Lunar Volatile Extraction) payload on a mission to the Moon to prospect for water ice. This is a joint project between KSC Swamp Works UB-R1 and JSC. JSC is building the Resource Prospector 2015 (RP15) rover and KSC designed and fabricated a Launch-Lock (LL) hold down mechanism for the rover. The LL mechanism will attach and support the rover on a Lunar Lander during launch and transit to the moon, then release the RP15 rover after touchdown on the lunar surface. This report presents the design and development of the LL mechanism and its unique features which make it suitable for this lunar exploration mission. An EDU (engineering development unit) prototype of the LL has been built and tested at KSC which is the subject of this paper.

  2. Performance evaluation of multi-sensor data-fusion systems in launch vehicles

    Indian Academy of Sciences (India)

    B N Suresh; K Sivan

    2004-04-01

    In this paper, the utilization of multi-sensors of different types, their characteristics, and their data-fusion in launch vehicles to achieve the goal of injecting the satellite into a precise orbit is explained. Performance requirements of sensors and their redundancy management in a typical launch vehicle are also included. The role of an integrated system level-test bed for evaluating multi-sensors and mission performance in a typical launch vehicle mission is described. Some of the typical simulation results to evaluate the effect of the sensors on the overall system are highlighted.

  3. Australia and the new reusable launch vehicles

    Science.gov (United States)

    Stalker, R. J.

    The new generation of reusable launch vehicles represented by ESA's Hermes and HOTOL, NASA's National Aerospace Plane, and the DFVLR's Saenger, promises to radically alter the economic basis of space flight by allowing such operations as the on-orbit servicing of satellites. Attention is presently drawn to the opportunities that arise for Australia's aerospace industry from the availability in Australia of two wind tunnel facilities capable of furnishing the requisite hypersonic aerothermodynamics testing capabilities for these vehicles' development.

  4. Textile materials trading center formally launched online

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Textile materials trading center was formally launched online in Wuxi City,Jiangsu Province. This is the first third-party electronic trading platform for spot trading in China textile materials professional market. The project will strive to build the most influential textile materials trading center of East China,the whole country and even the whole world China textile materials trading center will be

  5. Sinopec Launches Shanghai Asphalt Sales Company

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Sinopec Shanghai Asphalt Sales Company was launched in Shanghai on September 22, marking Sinopec as the largest asphalt supplier in China integrated in famous brand,production, sales and research, and distribution network.This is another important initiative for Sinopec's asphalt segment, after Sinopec won the bid for construction of F 1 racing course, to grasp the market opportunities, further improve the product quality and the level of after-sales services, and further make its asphalt business larger and stronger.

  6. Features of infrasonic and ionospheric disturbances generated by launch vehicle

    International Nuclear Information System (INIS)

    In this paper we present a model, which describe the propagation of acoustic pulses through a model terrestrial atmosphere produced by launch vehicle, and effects of these pulses on the ionosphere above the launch vehicle. We show that acoustic pulses generate disturbances of electron density. The value of these disturbances is about 0.04-0.7% of background electron density. So such disturbances can not create serious noise-free during monitoring of explosions by ionospheric method. We calculated parameters of the blast wave generated at the ionospheric heights by launch vehicle. It was shown that the blast wave is intense and it can generates disturbance of electron density which 2.6 times as much then background electron density. This disturbance is 'cord' with diameter about 150-250 m whereas length of radio line is hundreds and thousand km. Duration of ionospheric disturbances are from 0.2 s to 3-5 s. Such values of duration can not be observed during underground and surface explosions. (author)

  7. Recent Advances in Launch Vehicle Toxic Hazard and Risk Analysis

    Science.gov (United States)

    Nyman, R. L.

    2012-01-01

    A number of widely used rocket propellants produce toxic combustion byproducts or are themselves toxic in their un-reacted state. In this paper we focus on the methodology used to evaluate early flight catastrophic failures and nominal launch emissions that release large amounts of propellant or combustion products into the planetary boundary layer that pose a potential risk to launch area personnel, spectators, or the general public. The United States has traditionally used the Rocket Exhaust Effluent Diffusion Model (REEDM) [1] to access the hazard zones associated with such releases. REEDM is a 1970's vintage Gaussian atmospheric dispersion model that is limited in its ability to accurately simulate certain aspects of the initial source geometry and dynamics of a vehicle breakup and propellant fragment dispersion. The Launch Area Toxic Risk Analysis 3-Dimensional (LATRA3D) [2] computer program has been developed that addresses many of REEDM's deficiencies. LATRA3D is a probabilistic risk analysis tool that simulates both nominal vehicle flight and in-flight failure emissions.

  8. Solar Dynamics Observatory Launch and Commissioning

    Science.gov (United States)

    O'Donnell, James R., Jr.; Kristin, D.; Bourkland, L.; Hsu, Oscar C.; Liu, Kuo-Chia; Mason, Paul A. C.; Morgenstern, Wendy M.; Russo, Angela M.; Starin, Scott R.; Vess, Melissa F.

    2011-01-01

    The Solar Dynamics Observatory (SDO) was launched on February 11, 2010. Over the next three months, the spacecraft was raised from its launch orbit into its final geosynchronous orbit and its systems and instruments were tested and calibrated in preparation for its desired ten year science mission studying the Sun. A great deal of activity during this time involved the spacecraft attitude control system (ACS); testing control modes, calibrating sensors and actuators, and using the ACS to help commission the spacecraft instruments and to control the propulsion system as the spacecraft was maneuvered into its final orbit. This paper will discuss the chronology of the SDO launch and commissioning, showing the ACS analysis work performed to diagnose propellant slosh transient and attitude oscillation anomalies that were seen during commissioning, and to determine how to overcome them. The simulations and tests devised to demonstrate correct operation of all onboard ACS modes and the activities in support of instrument calibration will be discussed and the final maneuver plan performed to bring SDO on station will be shown. In addition to detailing these commissioning and anomaly resolution activities, the unique set of tests performed to characterize SDO's on-orbit jitter performance will be discussed.

  9. Globe hosts launch of new processor

    CERN Document Server

    2006-01-01

    Launch of the quadecore processor chip at the Globe. On 14 November, in a series of major media events around the world, the chip-maker Intel launched its new 'quadcore' processor. For the regions of Europe, the Middle East and Africa, the day-long launch event took place in CERN's Globe of Science and Innovation, with over 30 journalists in attendance, coming from as far away as Johannesburg and Dubai. CERN was a significant choice for the event: the first tests of this new generation of processor in Europe had been made at CERN over the preceding months, as part of CERN openlab, a research partnership with leading IT companies such as Intel, HP and Oracle. The event also provided the opportunity for the journalists to visit ATLAS and the CERN Computer Centre. The strategy of putting multiple processor cores on the same chip, which has been pursued by Intel and other chip-makers in the last few years, represents an important departure from the more traditional improvements in the sheer speed of such chips. ...

  10. Overhead-Aware-Best-Fit (OABF) Resource Allocation Algorithm for Minimizing VM Launching Overhead

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [IIT; Garzoglio, Gabriele [Fermilab; Ren, Shangping [IIT, Chicago; Timm, Steven [Fermilab; Noh, Seo Young [KISTI, Daejeon

    2014-11-11

    FermiCloud is a private cloud developed in Fermi National Accelerator Laboratory to provide elastic and on-demand resources for different scientific research experiments. The design goal of the FermiCloud is to automatically allocate resources for different scientific applications so that the QoS required by these applications is met and the operational cost of the FermiCloud is minimized. Our earlier research shows that VM launching overhead has large variations. If such variations are not taken into consideration when making resource allocation decisions, it may lead to poor performance and resource waste. In this paper, we show how we may use an VM launching overhead reference model to minimize VM launching overhead. In particular, we first present a training algorithm that automatically tunes a given refer- ence model to accurately reflect FermiCloud environment. Based on the tuned reference model for virtual machine launching overhead, we develop an overhead-aware-best-fit resource allocation algorithm that decides where and when to allocate resources so that the average virtual machine launching overhead is minimized. The experimental results indicate that the developed overhead-aware-best-fit resource allocation algorithm can significantly improved the VM launching time when large number of VMs are simultaneously launched.

  11. Launch Vehicle Design Process Description and Training Formulation

    Science.gov (United States)

    Atherton, James; Morris, Charles; Settle, Gray; Teal, Marion; Schuerer, Paul; Blair, James; Ryan, Robert; Schutzenhofer, Luke

    1999-01-01

    A primary NASA priority is to reduce the cost and improve the effectiveness of launching payloads into space. As a consequence, significant improvements are being sought in the effectiveness, cost, and schedule of the launch vehicle design process. In order to provide a basis for understanding and improving the current design process, a model has been developed for this complex, interactive process, as reported in the references. This model requires further expansion in some specific design functions. Also, a training course for less-experienced engineers is needed to provide understanding of the process, to provide guidance for its effective implementation, and to provide a basis for major improvements in launch vehicle design process technology. The objective of this activity is to expand the description of the design process to include all pertinent design functions, and to develop a detailed outline of a training course on the design process for launch vehicles for use in educating engineers whose experience with the process has been minimal. Building on a previously-developed partial design process description, parallel sections have been written for the Avionics Design Function, the Materials Design Function, and the Manufacturing Design Function. Upon inclusion of these results, the total process description will be released as a NASA TP. The design function sections herein include descriptions of the design function responsibilities, interfaces, interactive processes, decisions (gates), and tasks. Associated figures include design function planes, gates, and tasks, along with other pertinent graphics. Also included is an expanded discussion of how the design process is divided, or compartmentalized, into manageable parts to achieve efficient and effective design. A detailed outline for an intensive two-day course on the launch vehicle design process has been developed herein, and is available for further expansion. The course is in an interactive lecture

  12. Deep Impact Delta II Launch Vehicle Cracked Thick Film Coating on Electronic Packages Technical Consultation Report

    Science.gov (United States)

    Cameron, Kenneth D.; Kichak, Robert A.; Piascik, Robert S.; Leidecker, Henning W.; Wilson, Timmy R.

    2009-01-01

    The Deep Impact spacecraft was launched on a Boeing Delta II rocket from Cape Canaveral Air Force Station (CCAFS) on January 12, 2005. Prior to the launch, the Director of the Office of Safety and Mission Assurance (OS&MA) requested the NASA Engineering and Safety Center (NESC) lead a team to render an independent opinion on the rationale for flight and the risk code assignments for the hazard of cracked Thick Film Assemblies (TFAs) in the E-packages of the Delta II launch vehicle for the Deep Impact Mission. The results of the evaluation are contained in this report.

  13. Space debris proximity analysis in powered and orbital phases during satellite launch

    Science.gov (United States)

    Bandyopadhyay, Priyankar; Sharma, R. K.; Adimurthy, V.

    2004-01-01

    This paper describes the methodology of the space debris proximity analysis in powered and orbital phase at the time of a satellite launch. The details of the SPADEPRO analysis package, developed for this purpose, are presented. It consists of modules which provide the functions related to ephemeris generation and reconstruction of primary object (launch vehicle or its payload upon insertion), determination of close approaches with resident space objects, computation of the state vector variance of the primary and the secondary objects to represent the knowledge uncertainty, and computation of the collision risk given the variance. This has been successfully applied during the recent launches of the Indian Space Research Organization.

  14. Experimental techniques for subnanosecond resolution of laser-launched plates and impact studies

    Energy Technology Data Exchange (ETDEWEB)

    Paisley, D.L.; Warnes, R.H.; Stahl, D.B. [Los Alamos National Lab., NM (United States). Dynamic Experimentation Div.

    1994-09-01

    Miniature laser-launched plates have applications in shock wave physics, studying dynamic properties of materials and can be used to generate experimental data in a manner similar to a laboratory gas gun for one-dimensional impact experiments. Laser-launched plates have the advantage of small size, low kinetic energy, and can be launched with ubiquitous laboratory lasers. Because of the small size and high accelerations (10{sup 7}--10{sup 10} g`s), improved temporal resolution and optical non-contact methods to collect data are required. Traditional mechanical in-situ gauges would significantly impair the data quality and do not have the required time response.

  15. Research on the Reliability Centered Maintenance Plan of a Launching System

    Institute of Scientific and Technical Information of China (English)

    XIE Chao; SUN Ming-fang; DU Jun-min

    2011-01-01

    Aiming at the shortcomings of the traditional maintenance plan of a launching system, an analysis was made on the development of the reliability centered maintenance methods (RCM) and the basic models for reliability centered maintenance of a launching system are presented in this paper. The common methods for functional impor- tant product determination, failure modes and effect analysis ( FMEA ) and logic decision analysis were illustrated and the basic methods for maintenance interval calculation models were studied based on availability. According to the research, the reliability centered maintenance plan of a certain launching system was given.

  16. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    CERN Document Server

    Lei, Zeyu

    2015-01-01

    We report the design and experimental realization of a kind of miniaturized devices for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two dimensional launching efficiency of about 51%, under the normal illumination of a 5-{\\mu}m waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel and Airy profiles are launched and imaged with leakage radiation microscopy.

  17. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    Science.gov (United States)

    Lei, Zeyu; Yang, Tian

    2016-04-01

    We report the design and experimental realization of a type of miniaturized device for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two-dimensional launching efficiency of about 51%, under the normal illumination of a 5-μm waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel, and Airy profiles are launched and imaged with leakage radiation microscopy.

  18. Launching Astronomy: Standards and STEM Integration (LASSI)

    Science.gov (United States)

    French, Debbie; Burrows, Andrea C.; Myers, Adam D.

    2015-01-01

    While astronomy is prevalent in the Next Generation Science Standards, it is often relegated to the '4th nine-weeks' in middle and high school curricula. I.e., it is taught at the end of the year, if time permits. However, astronomy ties in many core ideas from chemistry, earth science, physics, and even biology (with astrobiology being an up-and-coming specialization) and mathematics. Recent missions to Mars have captured students' attention and have added excitement to the fields of engineering and technology. Using astronomy as a vehicle to teach science, technology, engineering, and mathematics (STEM) connects these disciplines in an engaging way. The workshop entitled, 'Launching Astronomy: Standards and STEM Integration,' (LASSI) is a year-long professional development (PD) opportunity for teachers in grades K-12 to use astronomy as a vehicle to teach STEM and implement science standards through astronomy. Eight teachers participated in a two-week summer workshop and six follow-up sessions are scheduled during the 2014-2015 school year. Additional teachers plan to participate in the upcoming follow-up sessions. We evaluate the effectiveness of the LASSI PD to identify and confront teachers' misconceptions in astronomy, and discuss whether teachers identified topics for which astronomy can be used as a vehicle for standards-based STEM curricula. Teachers from around Wyoming were invited to participate. Participating teachers were surveyed on the quality of the workshop, their astronomy content knowledge before and after listening to talks given by experts in the field, conducting standards-based inquiry activities, developing their own lessons, and their level of engagement throughout the workshop. Two-thirds of teachers planned to incorporate LASSI activities into their classrooms in this school year. Teachers' misconceptions and requests for astronomy-based curriculum were identified in the summer session. These will be addressed during the follow-up session

  19. Vehicle Dynamics due to Magnetic Launch Propulsion

    Science.gov (United States)

    Galaboff, Zachary J.; Jacobs, William; West, Mark E.; Montenegro, Justino (Technical Monitor)

    2000-01-01

    The field of Magnetic Levitation Lind Propulsion (MagLev) has been around for over 30 years, primarily in high-speed rail service. In recent years, however, NASA has been looking closely at MagLev as a possible first stage propulsion system for spacecraft. This approach creates a variety of new problems that don't currently exist with the present MagLev trains around the world. NASA requires that a spacecraft of approximately 120,000 lbs be accelerated at two times the acceleration of gravity (2g's). This produces a greater demand on power over the normal MagLev trains that accelerate at around 0.1g. To be able to store and distribute up to 3,000 Mega Joules of energy in less than 10 seconds is a technical challenge. Another problem never addressed by the train industry and, peculiar only to NASA, is the control of a lifting body through the acceleration of and separation from the MagLev track. Very little is understood about how a lifting body will react with external forces, Such as wind gusts and ground effects, while being propelled along on soft springs such as magnetic levitators. Much study needs to be done to determine spacecraft control requirements as well as what control mechanisms and aero-surfaces should be placed on the carrier. Once the spacecraft has been propelled down the track another significant event takes place, the separation of the spacecraft from the carrier. The dynamics involved for both the carrier and the spacecraft are complex and coupled. Analysis of the reaction of the carrier after losing, a majority of its mass must be performed to insure control of the carrier is maintained and a safe separation of the spacecraft is achieved. The spacecraft angle of attack required for lift and how it will affect the carriage just prior to separation, along with the impacts of around effect and aerodynamic forces at ground level must be modeled and analyzed to define requirements on the launch vehicle design. Mechanisms, which can withstand the

  20. LV-IMLI: Integrated MLI/Aeroshell for Cryogenic Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic propellants have the highest energy density of any rocket fuel, and are used in most NASA and commercial launch vehicles to power their ascent. Cryogenic...

  1. Mary Tyler Moore Helps Launch NIH MedlinePlus Magazine

    Science.gov (United States)

    ... Issues Mary Tyler Moore Helps Launch NIH MedlinePlus Magazine Past Issues / Winter 2007 Table of Contents For ... Javascript on. Among those attending the NIH MedlinePlus magazine launch on Capitol Hill were (l-r) NIH ...

  2. NASA Space Technology Draft Roadmap Area 13: Ground and Launch Systems Processing

    Science.gov (United States)

    Clements, Greg

    2011-01-01

    This slide presentation reviews the technology development roadmap for the area of ground and launch systems processing. The scope of this technology area includes: (1) Assembly, integration, and processing of the launch vehicle, spacecraft, and payload hardware (2) Supply chain management (3) Transportation of hardware to the launch site (4) Transportation to and operations at the launch pad (5) Launch processing infrastructure and its ability to support future operations (6) Range, personnel, and facility safety capabilities (7) Launch and landing weather (8) Environmental impact mitigations for ground and launch operations (9) Launch control center operations and infrastructure (10) Mission integration and planning (11) Mission training for both ground and flight crew personnel (12) Mission control center operations and infrastructure (13) Telemetry and command processing and archiving (14) Recovery operations for flight crews, flight hardware, and returned samples. This technology roadmap also identifies ground, launch and mission technologies that will: (1) Dramatically transform future space operations, with significant improvement in life-cycle costs (2) Improve the quality of life on earth, while exploring in co-existence with the environment (3) Increase reliability and mission availability using low/zero maintenance materials and systems, comprehensive capabilities to ascertain and forecast system health/configuration, data integration, and the use of advanced/expert software systems (4) Enhance methods to assess safety and mission risk posture, which would allow for timely and better decision making. Several key technologies are identified, with a couple of slides devoted to one of these technologies (i.e., corrosion detection and prevention). Development of these technologies can enhance life on earth and have a major impact on how we can access space, eventually making routine commercial space access and improve building and manufacturing, and weather

  3. Fight Record Of Long March Series Of Launch Vehicles

    Institute of Scientific and Technical Information of China (English)

    He Ying

    2008-01-01

    @@ On June 1,2007,China launched SinoSat-3,a communications satellite,onboard a Long March(LM)-3A launch vehicle,marking the 100th flight of the Long March series of launch vehicles and the 58th consecutive success since October 1996 (at the end of 2007,the number of consecutive successes was further increased to 62).

  4. China Returning to International Commercial Launch Service Market

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2005-01-01

    China launched its first commercial mission after 6 years since July 1999. APStar 6, the communications satellite manufactured by Alcatel Space, lifted off from Xichang Satellite Launch Center and was put into preset orbit by the LM-3B launch vehicle on the evening of April 12, 2005.

  5. CNPC Launching Major Restructuring for Higher Efficiency

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    @@ China National Petroleum Corporation (CNPC) launched a major restructuring of the onshore oil industry in late November 1996 to accelerate the transition to a market economy. The onshore oil industry, created under a centrally planned system, has been for decades under one management operating within one budget. In accordance with market economy rules and international conventions,this restructuring is aimed at separating oil exploration and development from technical services and logistics, hospitals and schools and all other non-oil businesses, thus making the oil industry more efficient and flexible.

  6. Nano RE Energy-saving Lamp To Be Launched

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Revealed from Science Technology Bureau of Ha ErbinDongli District, nano RE energy-saving lamp, which belongs toNational "863 Plan" projects, will be launched to the marketat the beginning of next year. Rare earths are raw materialsfor nano energy-saving lamp. When they are roasted intonano powder, with some additives such as magnesium,powder for lamp will be produced. Compared with presentenergy-saving lamp, nano lamp will save energy by 30%, withservice life of 30,000 - 50,000 hours. Luminosity of the new...

  7. The development of American launch vehicles since 1945

    Science.gov (United States)

    Hallion, R. P.

    The V-2 and postwar American rocketry, the influence of the military on launch vehicle development, civilian efforts such as Scout and Saturn, and recent developments in production of more powerful boosters and upper stages are reviewed. Selected American rocketry programs for 1946-1958 are shown, as well as propulsion characteristics of selected missiles and boosters. The use of liquid fuels and associated problems in early rockets is discussed, and the development of numerous military programs such as Redstone, Jupiter, Vanguard, Atlas, Titan, and Thor for scientific uses is recounted. The continued use of throwaway rockets for research purposes, despite the development of the Space Shuttle, is pointed out.

  8. Study of launch site processing and facilities for future launch vehicles

    Science.gov (United States)

    Shaffer, Rex

    1995-03-01

    The purpose of this research is to provide innovative and creative approaches to assess the impact to the Kennedy Space Center and other launch sites for a range of candidate manned and unmanned space transportation systems. The general scope of the research includes the engineering activities, analyses, and evaluations defined in the four tasks below: (1) development of innovative approaches and computer aided tools; (2) operations analyses of launch vehicle concepts and designs; (3) assessment of ground operations impacts; and (4) development of methodologies to identify promising technologies.

  9. Launching prices for new pharmaceuticals in heavily regulated and subsidized markets

    OpenAIRE

    Puig, Jaume; Gonz??lez L??pez-Valc??rcel, Beatriz

    2012-01-01

    This paper provides empirical evidence on the explanatory factors affecting introductory prices of new pharmaceuticals in a heavily regulated and highly subsidized market. We collect a data set consisting of all new chemical entities launched in Spain between 1997 and 2005, and model launching prices. We found that, unlike in the US and Sweden, therapeutically "innovative" products are not overpriced relative to "imitative" ones. Price setting is mainly used as a mechanis...

  10. Predictability in space launch vehicle anomaly detection using intelligent neuro-fuzzy systems

    Science.gov (United States)

    Gulati, Sandeep; Toomarian, Nikzad; Barhen, Jacob; Maccalla, Ayanna; Tawel, Raoul; Thakoor, Anil; Daud, Taher

    1994-01-01

    Included in this viewgraph presentation on intelligent neuroprocessors for launch vehicle health management systems (HMS) are the following: where the flight failures have been in launch vehicles; cumulative delay time; breakdown of operations hours; failure of Mars Probe; vehicle health management (VHM) cost optimizing curve; target HMS-STS auxiliary power unit location; APU monitoring and diagnosis; and integration of neural networks and fuzzy logic.

  11. Feasibility of SCRAMJET technology for an intermediate propulsive stage of an expendable launch vehicle

    OpenAIRE

    Schafer, Michael D.

    2002-01-01

    Approved for public release; distribution is unlimited The single largest contributor to the cost of putting objects into space is that of the launch portion. The currently available chemical rockets are only capable of specific impulse (Isp) values on the average of 300-350 seconds, with a maximum of 450 seconds. In order to improve the performance of the current families of launch vehicles, it is necessary to increase the performance of the rocket motors, and conversely the amount of pro...

  12. Flight Record of the Long March Series of Launch Vehicles

    Institute of Scientific and Technical Information of China (English)

    He Ying

    2010-01-01

    @@ (Continued) THE 56TH LAUNCH The FY-1C meteorological satellite and the Shijian 5 (SJ-5) satellite were put into their predetermined orbits by a LM-4B launch vehicle on May 10,1999. Launch Site: Taiyuan Satellite Launch Center Launch Result: Success At 09:33 on May 10, a LM-4B lifted off with two satellites.749 seconds after the lift-off, the FY-1C satellite separated with the rocket, and the SJ-5 satellite separated with LM-4B 814 seconds after it was fired.The two satellites entered sun-synchronous orbit which is 870km above the Earth.

  13. Evaluation of Dual-Launch Lunar Architectures Using the Mission Assessment Post Processor

    Science.gov (United States)

    Stewart, Shaun M.; Senent, Juan; Williams, Jacob; Condon, Gerald L.; Lee, David E.

    2010-01-01

    The National Aeronautics and Space Administrations (NASA) Constellation Program is currently designing a new transportation system to replace the Space Shuttle, support human missions to both the International Space Station (ISS) and the Moon, and enable the eventual establishment of an outpost on the lunar surface. The present Constellation architecture is designed to meet nominal capability requirements and provide flexibility sufficient for handling a host of contingency scenarios including (but not limited to) launch delays at the Earth. This report summarizes a body of work performed in support of the Review of U.S. Human Space Flight Committee. It analyzes three lunar orbit rendezvous dual-launch architecture options which incorporate differing methodologies for mitigating the effects of launch delays at the Earth. NASA employed the recently-developed Mission Assessment Post Processor (MAPP) tool to quickly evaluate vehicle performance requirements for several candidate approaches for conducting human missions to the Moon. The MAPP tool enabled analysis of Earth perturbation effects and Earth-Moon geometry effects on the integrated vehicle performance as it varies over the 18.6-year lunar nodal cycle. Results are provided summarizing best-case and worst-case vehicle propellant requirements for each architecture option. Additionally, the associated vehicle payload mass requirements at launch are compared between each architecture and against those of the Constellation Program. The current Constellation Program architecture assumes that the Altair lunar lander and Earth Departure Stage (EDS) vehicles are launched on a heavy lift launch vehicle. The Orion Crew Exploration Vehicle (CEV) is separately launched on a smaller man-rated vehicle. This strategy relaxes man-rating requirements for the heavy lift launch vehicle and has the potential to significantly reduce the cost of the overall architecture over the operational lifetime of the program. The crew launch

  14. Contraception. Low-dose pill launched.

    Science.gov (United States)

    1993-01-01

    At a vibrant ceremony in Kampala, Uganda, the Minister of Women in Development, Youth and Culture launched the new low-dose oral contraceptive Pilplan which provides women more options for birth spacing. Diplomats, physicians, government officials, and business leaders attended the ceremony at the Sheraton Hotel Kampala. A dance group did an interpretation of "Women in Uganda: Gaining Momentum." The Minister considered the introduction of this new pill as a turning point for reproductive rights. A baseline survey among Ugandan women has shown that although almost all women were familiar with the pill, only 36% have ever used it and only 15% were currently using it. 80% thought that pill use was preferable to having an unplanned pregnancy. These findings convinced the Minister that ignorance and misconception keep women from using the pill. The government, health providers, and others need to educate women about Pilplan and how to use it correctly. A bilateral agreement between the Ministry of Health and USAID set in motion a social marketing project which has now launched two contraceptive methods: Pilplan in 1993 and the Protector condom in 1990. USAID vowed to continue to support Pilplan, particularly if men could also help in supporting birth spacing. A Uganda-based pharmaceutical firm will distribute Pilplan in Uganda through pharmacies, clinics, and health facilities. Pilplan targets all middle- to low-income women. PMID:12319754

  15. Solid Rocket Launch Vehicle Explosion Environments

    Science.gov (United States)

    Richardson, E. H.; Blackwood, J. M.; Hays, M. J.; Skinner, T.

    2014-01-01

    Empirical explosion data from full scale solid rocket launch vehicle accidents and tests were collected from all available literature from the 1950s to the present. In general data included peak blast overpressure, blast impulse, fragment size, fragment speed, and fragment dispersion. Most propellants were 1.1 explosives but a few were 1.3. Oftentimes the data from a single accident was disjointed and/or missing key aspects. Despite this fact, once the data as a whole was digitized, categorized, and plotted clear trends appeared. Particular emphasis was placed on tests or accidents that would be applicable to scenarios from which a crew might need to escape. Therefore, such tests where a large quantity of high explosive was used to initiate the solid rocket explosion were differentiated. Also, high speed ground impacts or tests used to simulate such were also culled. It was found that the explosions from all accidents and applicable tests could be described using only the pressurized gas energy stored in the chamber at the time of failure. Additionally, fragmentation trends were produced. Only one accident mentioned the elusive "small" propellant fragments, but upon further analysis it was found that these were most likely produced as secondary fragments when larger primary fragments impacted the ground. Finally, a brief discussion of how this data is used in a new launch vehicle explosion model for improving crew/payload survival is presented.

  16. The past, present, and future of super-heavy launch vehicles for research and exploration of the Moon and Mars

    Science.gov (United States)

    Daniluk, A. Yu.; Klyushnikov, V. Yu.; Kuznetsov, I. I.; Osadchenko, A. S.

    2015-12-01

    The article gives a retrospective review and comparison of the implemented and non-implemented projects of super-heavy launch vehicles in our country and in the United States. The basic features of the design-layouts are defined, and efficient ways of further development of super-heavy launch vehicles in Russia are offered.

  17. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    Science.gov (United States)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  18. Aerogel Insulation Applications for Liquid Hydrogen Launch Vehicle Tanks

    Science.gov (United States)

    Fesmire, J. E.; Sass, J.

    2007-01-01

    Aerogel based insulation systems for ambient pressure environments were developed for liquid hydrogen (LH2) tank applications. Solutions to thermal insulation problems were demonstrated for the Space Shuttle External Tank (ET) through extensive testing at the Cryogenics Test Laboratory. Demonstration testing was performed using a 1/10th scale ET LH2 intertank unit and liquid helium as the coolant to provide the 20 K cold boundary temperature. Cryopumping tests in the range of 20K were performed using both constant mass and constant pressure methods. Long-duration tests (up to 10 hours) showed that the nitrogen mass taken up inside the intertank is reduced by a factor of nearly three for the aerogel insulated case as compared to the un-insulated (bare metal flight configuration) case. Test results including thermal stabilization, heat transfer effectiveness, and cryopumping confirm that the aerogel system eliminates free liquid nitrogen within the intertank. Physisorption (or adsorption) of liquid nitrogen within the fine pore structure of aerogel materials was also investigated. Results of a mass uptake method show that the sorption ratio (liquid nitrogen to aerogel beads) is about 62 percent by volume. A novel liquid nitrogen production method of testing the liquid nitrogen physical adsorption capacity of aerogel beads was also performed to more closely approximate the actual launch vehicle cooldown and thermal stabilization effects within the aerogel material. The extraordinary insulating effectiveness of the aerogel material shows that cryopumping is not an open-cell mass transport issue but is strictly driven by thermal communication between warm and cold surfaces. The new aerogel insulation technology is useful to solve heat transfer problem areas and to augment existing thermal protection systems on launch vehicles. Examples are given and potential benefits for producing launch systems that are more reliable, robust, reusable, and efficient are outlined.

  19. Computation of launch vehicle system requirements using hybrid computer.

    Science.gov (United States)

    Ryan, R. S.; Ernsberger, G. R.; Long, G. S.

    1973-01-01

    Formulating an adequate statistical statement concerning space vehicle dynamic states requires the combination of the statistics of the environment and the vehicle's basic parameters. The basic ingredient of the environment for the Space Shuttle launch phase is the winds, which are represented by an ensemble of measured winds (150/month), which today constitute the best statistical representation. The problem treated in this paper then becomes twofold: (1) how can the vehicle response be analyzed using wind ensembles, and (2) how can the vehicle parameter variations be treated in conjunction with wind ensembles.

  20. Sustained small oscillations in nonlinear control systems. [launch vehicle dynamics

    Science.gov (United States)

    George, J. H.; Gunderson, R. W.; Hahn, H.

    1975-01-01

    Some results of bifurcation theory were used to study the existence of small-amplitude periodic behavior in launch vehicle dynamics, assuming that nonlinearity exists as a cubic term in the rudder response. The analysis follows closely Sattinger's (1973) approach to the theory of periodic bifurcations. The conditions under which a bifurcating branch of orbitally stable periodic solutions will exist are determined. It is shown that in more complicated cases, the conditions under which the system matrix has a pair of simple purely imaginary eigenvalues can be determined with the aid of linear stability techniques.

  1. Spray-on foam insulations for launch vehicle cryogenic tanks

    Science.gov (United States)

    Fesmire, J. E.; Coffman, B. E.; Meneghelli, B. J.; Heckle, K. W.

    2012-04-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex array of many variables starting with the large temperature difference of 200-260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the different

  2. Spray-On Foam Insulations for Launch Vehicle Cryogenic Tanks

    Science.gov (United States)

    Fesmire, J. E.; Cofman, B. E.; Menghelli, B. J.; Heckle, K. W.

    2011-01-01

    Spray-on foam insulation (SOFI) has been developed for use on the cryogenic tanks of space launch vehicles beginning in the 1960s with the Apollo program. The use of SOFI was further developed for the Space Shuttle program. The External Tank (ET) of the Space Shuttle, consisting of a forward liquid oxygen tank in line with an aft liquid hydrogen tank, requires thermal insulation over its outer surface to prevent ice formation and avoid in-flight damage to the ceramic tile thermal protection system on the adjacent Orbiter. The insulation also provides system control and stability with throughout the lengthy process of cooldown, loading, and replenishing the tank. There are two main types of SOFI used on the ET: acreage (with the rind) and closeout (machined surface). The thermal performance of the seemingly simple SOFI system is a complex of many variables starting with the large temperature difference of from 200 to 260 K through the typical 25-mm thickness. Environmental factors include air temperature and humidity, wind speed, solar exposure, and aging or weathering history. Additional factors include manufacturing details, launch processing operations, and number of cryogenic thermal cycles. The study of the cryogenic thermal performance of SOFI under large temperature differentials is the subject of this article. The amount of moisture taken into the foam during the cold soak phase, termed Cryogenic Moisture Uptake, must also be considered. The heat leakage rates through these foams were measured under representative conditions using laboratory standard liquid nitrogen boiloff apparatus. Test articles included baseline, aged, and weathered specimens. Testing was performed over the entire pressure range from high vacuum to ambient pressure. Values for apparent thermal conductivity and heat flux were calculated and compared with prior data. As the prior data of record was obtained for small temperature differentials on non-weathered foams, analysis of the

  3. POST-LAUNCHING MONITORING ACTIVITIES FOR NEW TRANSACTIONAL BANKING PRODUCTS ADDRESSED TO SMES (CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    Giuca Simona-Mihaela

    2014-07-01

    Full Text Available The current paper has the aim to provide guidelines for post-launching monitoring activities and steps related to new transactional banking products addressed to SMEs. While the pre-launching activities have the purpose of accurately defining the objectives, assumptions and estimations, the purpose of the post-launching plan is to identify: if the final objectives of a product launching have been met, on one hand, to analyze results in the sense of identifying an efficient action plan in order to overcome the lack of results (if case, but most important, to identify opportunities for optimizing the products and for communicating properly the value proposition. This paper also presents schemes for monitoring the results from a business case and for motivating the sales force, as an essential step in increasing the sales. Therefore, alternatives of incentive campaigns are presented, as sustainable campaigns with to purpose to achieve an expected success rate. As an additional support guideline for the sales force, some scenarios and post-sales actions are presented, together with an example of portfolio analysis considering potential per client. Considering the methods and details presented in the current paper, one can identify the importance and find out how to monitor the results after launching a new transactional product addressed to SMEs, can understand and design an incentive scheme and also define actions to be taken in order to increase revenues from a newly launched transactional product.

  4. NASA's Space Launch System: Affordability for Sustainability

    Science.gov (United States)

    May, Todd A.; Creech, Stephen D.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human exploration beyond Earth orbit in an austere economic climate. But the SLS value is clear and codified in United States (U.S.) budget law. The SLS Program knows that affordability is the key to sustainability and will provide an overview of initiatives designed to fit within the funding guidelines by using existing engine assets and hardware now in testing to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat, yet evolve the 70-tonne (t) initial lift capability to 130-t lift capability after the first two flights. To achieve the evolved configuration, advanced technologies must offer appropriate return on investment to be selected through the competitive process. For context, the SLS will be larger than the Saturn V that took 12 men on 6 trips for a total of 11 days on the lunar surface some 40 years ago. Astronauts train for long-duration voyages on platforms such as the International Space Station, but have not had transportation to go beyond Earth orbit in modern times, until now. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. In parallel with SLS concept studies, NASA is now refining its mission manifest, guided by U.S. space policy and the Global Exploration Roadmap, which reflects the mutual goals of a dozen member nations. This mission planning will converge with a flexible heavy-lift rocket that can carry international crews and the air, water, food, and equipment they need for extended trips to asteroids and Mars. In addition, the SLS capability will accommodate very large science instruments and other payloads, using a series of modular fairings and

  5. Mars Exploration Rovers Launch Contingency Efforts

    Science.gov (United States)

    McGrath, Brian E.; Frostbutter, David A.; Parthasarathy, Karungulam N.; Heyler, Gene A.; Chang, Yale

    2004-02-01

    On 10 June 2003 at 1:58 p.m. Eastern Daylight Time (EDT) and 7 July 2003 at 11:18 p.m. EDT, two separate spacecraft/rovers were successfully launched to Mars atop a Delta II 7925 and Delta II 7925H, respectively. Each spacecraft/rover carried eight Light Weight Radioisotope Heater Units (LWRHUs) for thermal conditioning of electronics during the cold Martian nights. As a part of the joint National Aeronautics and Space Administration/U. S. Department of Energy safety effort, a contingency plan was prepared to address the unlikely events of an accidental suborbital reentry or out-of-orbit reentry. The objective of the contingency plan was to develop and implement procedures to predict, within the first hour, the probable Earth Impact Footprints (EIFs) for the LWRHUs or other possible spacecraft debris after an accidental reentry. No ablation burn-through of the heat sources' aeroshells was expected, as a result of earlier testing. Any predictions would be used in subsequent notification and recovery efforts. The Johns Hopkins University Applied Physics Laboratory, as part of a multi-agency team, was responsible for prediction of the EIFs, and the time of reentry from a potential orbital decay. The tools used to predict the EIFs included a Three-Degree-of-Freedom (3DOF) trajectory simulation code, a Six-Degree-of-Freedom (6DOF) code, a database of aerodynamic coefficients for the LWRHUs and other spacecraft debris, secure links to obtain tracking data, and a high fidelity special perturbation orbit integrator code to predict time of spacecraft reentry from orbital decay. This paper will discuss the contingency plan and process, as well as highlight the improvements made to the analytical tools. Improvements to the 3DOF, aerodynamic database, and orbit integrator and inclusion of the 6DOF have significantly enhanced the prediction capabilities. In the days before launch, the trajectory simulation codes were exercised and predictions of hypothetical EIFs were produced

  6. Jets launched at magnetar birth cannot be ignored

    Science.gov (United States)

    Soker, Noam

    2016-08-01

    I question models for powering super energetic supernovae (SESNe) with a magnetar central engine that do not include jets that are expected to be launched by the magnetar progenitor. I show that under reasonable assumptions the outflow that is expected during the formation of a magnetar can carry an amount of energy that does not fall much below, and even surpasses, the energy that is stored in the newly born spinning neutron star (NS). The rapidly spinning NS and the strong magnetic fields attributed to magnetars require that the accreted mass onto the newly born NS possesses high specific angular momentum and strong magnetic fields. These ingredients are expected, as in many other astrophysical objects, to form collimated outflows/jets. I argue that the bipolar outflow in the pre-magnetar phase transfers a substantial amount of energy to the supernova (SN) ejecta, and it cannot be ignored in models that attribute SESNe to magnetars. I conclude that jets launched by accretion disks and accretion belts are more likely to power SESNe than magnetars are. This conclusion is compatible with the notion that jets might power all core collapse SNe (CCSNe).

  7. Launch Vehicle Failure Dynamics and Abort Triggering Analysis

    Science.gov (United States)

    Hanson, John M.; Hill, Ashely D.; Beard, Bernard B.

    2011-01-01

    Launch vehicle ascent is a time of high risk for an on-board crew. There are many types of failures that can kill the crew if the crew is still on-board when the failure becomes catastrophic. For some failure scenarios, there is plenty of time for the crew to be warned and to depart, whereas in some there is insufficient time for the crew to escape. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based primarily on data already available from the GN&C system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. Derivation of attitude and attitude rate abort triggers to ensure that abort occurs as quickly as possible when needed, but that false positives are avoided, forms a major portion of the paper. Some of the potential failure modes requiring use of these triggers are described, along with analysis used to determine the success rate of getting the crew off prior to vehicle demise.

  8. Design check of an S-Lay offshore pipeline launching using numerical methods

    Science.gov (United States)

    Stan, L. C.; Călimănescu, I.; Velcea, D. D.

    2016-08-01

    The production of oil and gas from offshore oil fields is, nowadays, more and more important. As a result of the increasing demand of oil, and being the shallow water reserves not enough, the industry is pushed forward to develop and exploit more difficult fields in deeper waters. The purpose of this paper is to determine the optimum launching parameters of a subsea pipeline in S-Lay system using the software OffPipe. The offshore pipelines designing is an intricate enterprise following very demanding designing codes since at stake is the integrity of multi-million dollars investments in offshore oil and gas exploitation facilities. The case study of this paper is taken on purpose to show how the numeric analysis may help to detect potential problems that might occur during pipe launching with S-Lay method. In the analysed case the launching process is under control since all the launching parameters and stresses are well below the critical ones. In any event the numeric modelling of the process was demonstrated to be a valuable tool in the design engineer hands in order to assess the feasibility of any launching subsea pipe launching.

  9. The DEMETER micro satellite launch campaign: A cheap access to space

    Science.gov (United States)

    Dubourg, Vincent; Kainov, Vladimir; Thoby, Michel; Silkin, Olexyi; Solovey, Vladislav

    The CNES micro satellite DEMETER has been successfully launched on June 29th 2004 by a DNEPR launcher, from the Baïkonur Cosmodrome. DEMETER was the main payload among eight co-passengers. Initiated by CNES in 1998, DEMETER is the first model of the MYRIADE micro satellites line of products; its objectives are both scientific and technological; the satellite has now been flying for science for almost one year. The space head module of the launcher has been developed by the Ukrainian company Yuzhnoye, and a complete fit check test campaign has been performed in December 2003 to confirm the compatibility of the payloads with their launcher interfaces. The launch campaign took place at Baïkonur Cosmodrome from the end of May to the end of June 2004, implying a close partnership between the CNES satellite team and the Russian and Ukrainian launcher authorities: DEMETER has been a pioneer not only for the concept itself, but also for being the first satellite of this range (three axis stabilized, including an hydrazine propulsion system and developed by a national space agency) to be launched on a former intercontinental ballistic missile SS18. The launch service was managed by ISC Kosmotras, and it was the first sun synchronous orbit launch for DNEPR. The present paper deals with the details of DEMETER satellite and its launch, and preliminary results.

  10. Safety campaigns. TIS Launches New Safety Information Campaign

    CERN Multimedia

    2001-01-01

    Need to start a new installation and worried about safety aspects? Or are you newly responsible for safety matters in a CERN building? Perhaps you're simply interested in how to make the working environment safer for yourself and your colleagues. Whatever the case, a new information campaign launched by TIS this week can help. The most visible aspects of the new campaign will be posters distributed around the Laboratory treating a different subject each month. The Web site - http://safety.cern.ch/ - which provides all safety related information. But these are not the only aspects of the new campaign. Members of the TIS/GS group, whose contact details can be found on the safety web site, are available to give information and advice on a one-to-one basis at any time. The campaign's launch has been timed to coincide with European Safety Week, organized by the European Agency for Safety and Health at Work and the subject treated in the first posters is safety inspection. This particular topic only concerns thos...

  11. Jets launched at magnetar birth cannot be ignored

    CERN Document Server

    Soker, Noam

    2016-01-01

    I question models for powering super energetic supernovae (SESNe) with a magnetar central engine that do not include jets that are expected to be launched by the magnetar progenitor. I show that under reasonable assumptions the outflow that is expected during the formation of a magnetar can carry an amount of energy that does not fall much below, and even surpasses, the energy that is stored in the newly born spinning neutron star (NS). The rapidly spinning NS and the strong magnetic fields attributed to magnetars require that the accreted mass onto the newly born NS possesses high specific angular momentum and strong magnetic fields. These ingredients are expected, as in many other astrophysical objects, to form collimated oputflows/jets. I argue that the bipolar outflow in the pre-magnetar phase transfers a substantial amount of energy to the supernova (SN) ejecta, and it cannot be ignored in models that attribute SESNe to magnetars. I conclude that jets launched by accretion disks and accretion belts are m...

  12. NASA's Space Launch System Progress Report

    Science.gov (United States)

    May, Todd A.; Singer, Joan A.; Cook, Jerry R.; Lyles, Garry M.; Beaman, David E.

    2012-01-01

    Exploration beyond Earth orbit will be an enduring legacy for future generations, as it provides a platform for science and exploration that will define new knowledge and redefine known boundaries. NASA s Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is responsible for designing and developing the first exploration-class rocket since the Apollo Program s Saturn V that sent Americans to the Moon in the 1960s and 1970s. The SLS offers a flexible design that may be configured for the Orion Multi-Purpose Crew Vehicle with associated life-support equipment and provisions for long journeys or may be outfitted with a payload fairing that will accommodate flagship science instruments and a variety of high-priority experiments. Building on legacy systems, facilities, and expertise, the SLS will have an initial lift capability of 70 tonnes (t) in 2017 and will be evolvable to 130 t after 2021. While commercial launch vehicle providers service the International Space Station market, this capability will surpass all vehicles, past and present, providing the means to do entirely new missions, such as human exploration of Mars. Building on the foundation laid by over 50 years of human and scientific space flight and on the lessons learned from the Apollo, Space Shuttle, and Constellation Programs the SLS team is delivering both technical trade studies and business case analyses to ensure that the SLS architecture will be safe, affordable, reliable, and sustainable. This panel will address the planning and progress being made by NASA s SLS Program.

  13. NASA's Space Launch Transitions: From Design to Production

    Science.gov (United States)

    Askins, Bruce; Robinson, Kimberly

    2016-01-01

    NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block I, SLS will a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). It can evolve to a 130 t payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility. Renovations to the B-2 test stand for stage green run testing were completed at NASA Stennis Space Center. Core stage test stands are rising at NASA Marshall Space Flight Center. The modified Pegasus barge for core stage transportation from manufacturing

  14. NASA's Space Launch System Transitions From Design To Production

    Science.gov (United States)

    Askins, Bruce R.; Robinson, Kimberly F.

    2016-01-01

    NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block 1, SLS will a minimum of 70 metric tons (t) (154,324 pounds) of payload to low Earth orbit (LEO). It will evolve to a 130 t (286,601 pound) payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test-fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility in New Orleans, Louisiana. Renovations to the B-2 test stand for stage green run testing were completed at NASA's Stennis Space Center (SSC), near Bay St. Louis, Mississippi. Core stage test stands are reaching completion

  15. DLR HABLEG- High Altitude Balloon Launched Experimental Glider

    Science.gov (United States)

    Wlach, S.; Schwarzbauch, M.; Laiacker, M.

    2015-09-01

    The group Flying Robots at the DLR Institute of Robotics and Mechatronics in Oberpfaffenhofen conducts research on solar powered high altitude aircrafts. Due to the high altitude and the almost infinite mission duration, these platforms are also denoted as High Altitude Pseudo-Satellites (HAPS). This paper highlights some aspects of the design, building, integration and testing of a flying experimental platform for high altitudes. This unmanned aircraft, with a wingspan of 3 m and a mass of less than 10 kg, is meant to be launched as a glider from a high altitude balloon in 20 km altitude and shall investigate technologies for future large HAPS platforms. The aerodynamic requirements for high altitude flight included the development of a launch method allowing for a safe transition to horizontal flight from free-fall with low control authority. Due to the harsh environmental conditions in the stratosphere, the integration of electronic components in the airframe is a major effort. For regulatory reasons a reliable and situation dependent flight termination system had to be implemented. In May 2015 a flight campaign was conducted. The mission was a full success demonstrating that stratospheric research flights are feasible with rather small aircrafts.

  16. Integrated Vehicle Ground Vibration Testing in Support of NASA Launch Vehicle Loads and Controls Analysis

    Science.gov (United States)

    Tuma, Margaret L.; Davis, Susan R.; Askins, Bruce R.; Salyer, Blaine H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the Ares I crew launch vehicle and Ares V cargo launch vehicle. Ares I and V will form the space launch capabilities necessary to fulfill NASA's exploration strategy of sending human beings to the Moon, Mars, and beyond. As with all new space vehicles there will be a number of tests to ensure the design can be Human Rated. One of these is the Integrated Vehicle Ground Vibration Test (IVGVT) that will be measuring responses of the Ares I as a system. All structural systems possess a basic set of physical characteristics unique to that system. These unique characteristics include items such as mass distribution, frequency and damping. When specified, they allow engineers to understand and predict how a structural system like the Ares I launch vehicle behaves under given loading conditions. These physical properties of launch vehicles may be predicted by analysis or measured through certain types of tests. Generally, these properties are predicted by analysis during the design phase of a launch vehicle and then verified through testing before the vehicle is Human Rated. The IVGVT is intended to measure by test the fundamental dynamic characteristics of Ares I during various phases of operational/flight. This testing includes excitations of the vehicle in lateral, longitudinal, and torsional directions at vehicle configurations representing different trajectory points. During the series of tests, properties such as natural frequencies, mode shapes, and transfer functions are measured directly. These data will then be used to calibrate loads and Guidance, Navigation, and Controls (GN&C) analysis models for verifying analyses of Ares I. NASA launch vehicles from Saturn to Shuttle have undergone Ground Vibration Tests (GVTs) leading to successful launch vehicles. A GVT was not performed on the unmanned Delta III. This vehicle was

  17. COLD-SAT orbital experiment configured for Atlas launch

    Science.gov (United States)

    Shuster, J. R.; Bennett, F. O.; Wachter, J. P.

    1989-01-01

    The design and requirements for the proposed cryogenic on-orbit liquid depot storage, acquisition, and transfer (COLD-SAT) satellite experiment, which is to be launched by Atlas I, are examined. The COLD-SAT experiments are categorized as class I and II; class I involves technology related to space transportation missions and class II represents alternative fluid management operations and data. The hardware for the COLD-SAT experiments consists of three hydrogen tanks contained in the experimental module; the experimental module is connected to a three-axis-controlled spacecraft bus, and thrusters are positioned on the forward and aft ends of the spacecraft and on the cylindrical portion of the experimental module. The components and systems of the experiment module and the types of experiments that can be conducted in each tank are described. Diagrams of the spacecraft configuration are provided.

  18. LM-3B/E will launch Apstar 7

    Institute of Scientific and Technical Information of China (English)

    Zong He

    2009-01-01

    @@ China Great Wall Industry Corporation (CGWlC), a subsidiary of China Aerospace Science and Technology Corporation (CASC), signed a launch services contract with Hong Kong APT Satellite Co., Ltd in Beijing on November 8. According to the contract, a Long March 3B enhanced launch vehicle (LM-3B/E) will launch a French Thales Alenia Space made APstar 7 communications satellite into space in the first half year of 2012.

  19. Method for Producing Launch/Landing Pads and Structures Project

    Science.gov (United States)

    Mueller, Robert P. (Compiler)

    2015-01-01

    Current plans for deep space exploration include building landing-launch pads capable of withstanding the rocket blast of much larger spacecraft that that of the Apollo days. The proposed concept will develop lightweight launch and landing pad materials from in-situ materials, utilizing regolith to produce controllable porous cast metallic foam brickstiles shapes. These shapes can be utilized to lay a landing launch platform, as a construction material or as more complex parts of mechanical assemblies.

  20. Launch Site Computer Simulation and its Application to Processes

    Science.gov (United States)

    Sham, Michael D.

    1995-01-01

    This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.

  1. Expandable External Payload Carrier for Existing Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerous existing launch vehicles have excess performance that is not being optimized. By taking advantage of excess, unused, performance, additional NASA...

  2. Flight Testing of Wireless Networking for Nanosat Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation proposed here addresses the testing and evaluation of wireless networking technologies for small launch vehicles by leveraging existing nanosat...

  3. Launch Period Development for the Juno Mission to Jupiter

    Science.gov (United States)

    Kowalkowski, Theresa D.; Johannesen, Jennie R.; Lam, Try

    2008-01-01

    The Juno mission to Jupiter is targeted to launch in 2011 and would reach the giant planet about five years later. The interplanetary trajectory is planned to include two large deep space maneuvers and an Earth gravity assist a little more than two years after launch. In this paper, we describe the development of a 21-day launch period for Juno with the objective of keeping overall launch energy and delta-V low while meeting constraints imposed on Earth departure, the deep space maneuvers' timing and geometry, and Jupiter arrival.

  4. Launch Options for Mars Network Missions using Small Spacecraft

    OpenAIRE

    Daniel, Walter

    1990-01-01

    The currently-planned Mars Global Network Mission calls for a Delta II launch to deploy spacecraft that will place small stations on the surface of the planet. This study of small launch vehicles revealed that the Taurus is more cost efficient than large launch vehicles such as the Delta II and Titan IV. The Taurus can launch 1092 lb into a Mars transfer orbit at a cost of $13,740/lb while the Delta 7925 can place 2350 Ib into the transfer orbit at $17,450/lb. Small vehicles such as the Scout...

  5. Dynamical Modeling and Control Simulation of a Large Flexible Launch Vehicle

    Science.gov (United States)

    Du, Wei; Wie, Bong; Whorton, Mark

    2008-01-01

    This paper presents dynamical models of a large flexible launch vehicle. A complete set of coupled dynamical models of propulsion, aerodynamics, guidance and control, structural dynamics, fuel sloshing, and thrust vector control dynamics are described. Such dynamical models are used to validate NASA s SAVANT Simulink-based program which is being used for the preliminary flight control systems analysis and design of NASA s Ares-1 Crew Launch Vehicle. SAVANT simulation results for validating the performance and stability of an ascent phase autopilot system of Ares-1 are also presented.

  6. Using Discrete Event Simulation to Model Integrated Commodities Consumption for a Launch Campaign of the Space Launch System

    Science.gov (United States)

    Leonard, Daniel; Parsons, Jeremy W.; Cates, Grant

    2014-01-01

    In May 2013, NASA's GSDO Program requested a study to develop a discrete event simulation (DES) model that analyzes the launch campaign process of the Space Launch System (SLS) from an integrated commodities perspective. The scope of the study includes launch countdown and scrub turnaround and focuses on four core launch commodities: hydrogen, oxygen, nitrogen, and helium. Previously, the commodities were only analyzed individually and deterministically for their launch support capability, but this study was the first to integrate them to examine the impact of their interactions on a launch campaign as well as the effects of process variability on commodity availability. The study produced a validated DES model with Rockwell Arena that showed that Kennedy Space Center's ground systems were capable of supporting a 48-hour scrub turnaround for the SLS. The model will be maintained and updated to provide commodity consumption analysis of future ground system and SLS configurations.

  7. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the

  8. Launch of the Space experiment PAMELA

    CERN Document Server

    Casolino, M; Altamura, F; Basili, A; De Simone, N; Di Felice, V; De Pascale, M P; Marcelli, L; Minori, M; Nagni, M; Sparvoli, R; Galper, A M; Mikhailov, V V; Runtso, M F; Voronov, S A; Yurkin, Y T; Zverev, V G; Castellini, G; Adriani, O; Bonechi, L; Bongi, M; Taddei, E; Vannuccini, E; Fedele, D; Papini, P; Ricciarini, S B; Spillantini, P; Ambriola, M; Cafagna, F; De Marzo, C; Barbarino, G C; Campana, D; De Rosa, G; Osteria, G; Russo, S; Bazilevskaja, G A; Kvashnin, A N; Maksumov, O; Misin, S; Stozhkov, Yu I; Bogomolov, E A; Krutkov, S Yu; Nikonov, N N; Bonvicini, V; Boezio, M; Lundqvist, J M; Mocchiutti, E; Vacchi, A; Zampa, G; Zampa, N; Bongiorno, L; Ricci, M; Carlson, P; Hofverberg, P; Lund, J; Orsi, S; Pearce, M; Menn, W; Simon, M

    2007-01-01

    PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antimatter with a precision of the order of 10^-8). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15, 2006 in a 350*600 km orbit with an inclination of 70 degrees. The detector is composed of a series of scintillator counters arranged at the extremities of a permanent magnet spectrometer to provide charge, Time-of-Flight and rigidity information. Lepton/hadron identification is performed by a Silicon-Tungsten calorimeter and a Neutron detector placed at the bottom of the device. An Anticounter system is used offline to reject false triggers coming from the satellite. In self-trigger mode the Calorimeter, the neutron detector and a shower tail...

  9. Global Precipitation Measurement Mission Launch and Commissioning

    Science.gov (United States)

    Davis, Nikesha; DeWeese, Keith; Vess, Melissa; O'Donnell, James R., Jr.; Welter, Gary

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation, and Control (GN&C) analysis team encountered four main on-orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GN&C engineers identified the anomalies and tracked down the root causes. Flight data and GN&C on-board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  10. HILAT: A pre-launch overview

    Science.gov (United States)

    Fremouw, E. J.

    1983-06-01

    Among the many nuclear-weapons effects that must be accounted for in the design of c3I systems is that of radiowave scintillation produced by scattering in high-altitude structured plasmas. Accordingly, the Defense Nuclear Agency (DNA) conducts a vigorous research program on the nature of such structure and the mechanisms for its production. Past results have indicated significant similarity between that nature and those mechanisms in nuclear-disturbed cases and in the case of the ambient ionosphere disturbed by geophysical process, the variety of which is greatest at high latitudes. To further DoD's knowledge of the three-dimensional spectrum of the scattering structures and its understanding of their production, evolution, and decay, DNA and the Air Force Geophysics Laboratory, along with their respective contractors, have joined together to prepare a multi-experiment satellite mission, called HiLat, to collect definitive data on those processes. In view of applications to any military or civilian system that must transmit radio signals through the disturbed high-latitude ionosphere, including for instance satellite-based search-and-rescue systems, cooperation also is being received from the National Research Council of Canada. The satellite designed to meet these diverse but highly complementary objectives, P83-1, is scheduled for launch from Vandenberg Air Force Base at 1530 Z on 27 June 1983.

  11. Explosion/Blast Dynamics for Constellation Launch Vehicles Assessment

    Science.gov (United States)

    Baer, Mel; Crawford, Dave; Hickox, Charles; Kipp, Marlin; Hertel, Gene; Morgan, Hal; Ratzel, Arthur; Cragg, Clinton H.

    2009-01-01

    An assessment methodology is developed to guide quantitative predictions of adverse physical environments and the subsequent effects on the Ares-1 crew launch vehicle associated with the loss of containment of cryogenic liquid propellants from the upper stage during ascent. Development of the methodology is led by a team at Sandia National Laboratories (SNL) with guidance and support from a number of National Aeronautics and Space Administration (NASA) personnel. The methodology is based on the current Ares-1 design and feasible accident scenarios. These scenarios address containment failure from debris impact or structural response to pressure or blast loading from an external source. Once containment is breached, the envisioned assessment methodology includes predictions for the sequence of physical processes stemming from cryogenic tank failure. The investigative techniques, analysis paths, and numerical simulations that comprise the proposed methodology are summarized and appropriate simulation software is identified in this report.

  12. Proposed techniques for launching instrumented balloons into tornadoes

    Science.gov (United States)

    Grant, F. C.

    1971-01-01

    A method is proposed to introduce instrumented balloons into tornadoes by means of the radial pressure gradient, which supplies a buoyancy force driving to the center. Presented are analytical expressions, verified by computer calculations, which show the possibility of introducing instrumented balloons into tornadoes at or below the cloud base. The times required to reach the center are small enough that a large fraction of tornadoes are suitable for the technique. An experimental procedure is outlined in which a research airplane puts an instrumented, self-inflating balloon on the track ahead of the tornado. The uninflated balloon waits until the tornado closes to, typically, 750 meters; then it quickly inflates and spirals up and into the core, taking roughly 3 minutes. Since the drive to the center is automatically produced by the radial pressure gradient, a proper launch radius is the only guidance requirement.

  13. Area V: A National Launch Asset for the 21st Century

    Science.gov (United States)

    Sumrall, Phil

    2009-01-01

    The goal of this presentation is to present an update on status and development of the Ares V launch vehicle. The Ares V is a heavy lift vehicle that is being designed to launch cargo into Low Earth Orbit and transfer Cargo and crews to the Moon. Slides show the commonalities between the Ares V, and the Ares I, and the Delta IV. The launch profile for a typical Lunar mission is reviewed. A timeline showing the progress from the Exploration Systems Architecture Study (ESAS) to the Lunar Capability Concept Review (LCCR) is presented. Other slides review the payload shroud, the payload vs altitude and inclination, the payload mass vs C3 Energy, projections of the performance for selected trajectories, and the planning calendar.

  14. Launch vehicle payload adapter design with vibration isolation features

    Science.gov (United States)

    Thomas, Gareth R.; Fadick, Cynthia M.; Fram, Bryan J.

    2005-05-01

    Payloads, such as satellites or spacecraft, which are mounted on launch vehicles, are subject to severe vibrations during flight. These vibrations are induced by multiple sources that occur between liftoff and the instant of final separation from the launch vehicle. A direct result of the severe vibrations is that fatigue damage and failure can be incurred by sensitive payload components. For this reason a payload adapter has been designed with special emphasis on its vibration isolation characteristics. The design consists of an annular plate that has top and bottom face sheets separated by radial ribs and close-out rings. These components are manufactured from graphite epoxy composites to ensure a high stiffness to weight ratio. The design is tuned to keep the frequency of the axial mode of vibration of the payload on the flexibility of the adapter to a low value. This is the main strategy adopted for isolating the payload from damaging vibrations in the intermediate to higher frequency range (45Hz-200Hz). A design challenge for this type of adapter is to keep the pitch frequency of the payload above a critical value in order to avoid dynamic interactions with the launch vehicle control system. This high frequency requirement conflicts with the low axial mode frequency requirement and this problem is overcome by innovative tuning of the directional stiffnesses of the composite parts. A second design strategy that is utilized to achieve good isolation characteristics is the use of constrained layer damping. This feature is particularly effective at keeping the responses to a minimum for one of the most important dynamic loading mechanisms. This mechanism consists of the almost-tonal vibratory load associated with the resonant burn condition present in any stage powered by a solid rocket motor. The frequency of such a load typically falls in the 45-75Hz range and this phenomenon drives the low frequency design of the adapter. Detailed finite element analysis is

  15. An Overview of the Launch Vehicle Blast Environments Development Efforts

    Science.gov (United States)

    Richardson, Erin; Bangham, Mike; Blackwood, James; Skinner, Troy; Hays, Michael; Jackson, Austin; Richman, Ben

    2014-01-01

    NASA has been funding an ongoing development program to characterize the explosive environments produced during a catastrophic launch vehicle accident. These studies and small-scale tests are focused on the near field environments that threaten the crew. The results indicate that these environments are unlikely to result in immediate destruction of the crew modules. The effort began as an independent assessment by NASA safety organizations, followed by the Ares program and NASA Engineering and Safety Center and now as a Space Launch Systems (SLS) focused effort. The development effort is using the test and accident data available from public or NASA sources as well as focused scaled tests that are examining the fundamental aspects of uncontained explosions of Hydrogen and air and Hydrogen and Oxygen. The primary risk to the crew appears to be the high-energy fragments and these are being characterized for the SLS. The development efforts will characterize the thermal environment of the explosions as well to ensure that the risk is well understood and to document the overall energy balance of an explosion. The effort is multi-path in that analytical, computational and focused testing is being used to develop the knowledge to understand potential SLS explosions. This is an ongoing program with plans that expand the development from fundamental testing at small-scale levels to large-scale tests that can be used to validate models for commercial programs. The ultimate goal is to develop a knowledge base that can be used by vehicle designers to maximize crew survival in an explosion.

  16. Space Launch System Ascent Static Aerodynamic Database Development

    Science.gov (United States)

    Pinier, Jeremy T.; Bennett, David W.; Blevins, John A.; Erickson, Gary E.; Favaregh, Noah M.; Houlden, Heather P.; Tomek, William G.

    2014-01-01

    This paper describes the wind tunnel testing work and data analysis required to characterize the static aerodynamic environment of NASA's Space Launch System (SLS) ascent portion of flight. Scaled models of the SLS have been tested in transonic and supersonic wind tunnels to gather the high fidelity data that is used to build aerodynamic databases. A detailed description of the wind tunnel test that was conducted to produce the latest version of the database is presented, and a representative set of aerodynamic data is shown. The wind tunnel data quality remains very high, however some concerns with wall interference effects through transonic Mach numbers are also discussed. Post-processing and analysis of the wind tunnel dataset are crucial for the development of a formal ascent aerodynamics database.

  17. Variable Structure Control of a Hand-Launched Glider

    Science.gov (United States)

    Anderson, Mark R.; Waszak, Martin R.

    2005-01-01

    Variable structure control system design methods are applied to the problem of aircraft spin recovery. A variable structure control law typically has two phases of operation. The reaching mode phase uses a nonlinear relay control strategy to drive the system trajectory to a pre-defined switching surface within the motion state space. The sliding mode phase involves motion along the surface as the system moves toward an equilibrium or critical point. Analysis results presented in this paper reveal that the conventional method for spin recovery can be interpreted as a variable structure controller with a switching surface defined at zero yaw rate. Application of Lyapunov stability methods show that deflecting the ailerons in the direction of the spin helps to insure that this switching surface is stable. Flight test results, obtained using an instrumented hand-launched glider, are used to verify stability of the reaching mode dynamics.

  18. Adaptive Tracking Filter for Stabilizing a Flexible Launch Vehicle

    Institute of Scientific and Technical Information of China (English)

    ALIMohamed.s.Elmelhi; YASIR.Muhammad; JIANGYu-xiang

    2004-01-01

    The flight control system designer is increasingly concerned with the problem of providing adequate stability of the elastic modes of the flight vehicle. The problem of stabilizing bending modes can be solved by the use of different bending filters. But continuously changing behavior of the elastic modes frequencies makes it impossible to suppress the elastic modes. In this paper, adaptive tracking filter is used to solve this problem. Where it can track the frequency of predominant oscillatory component of its input signal and automatically adjust the shaping characteristics as a function of this frequency. Simulation results are presented to show the frequency tracking accuracy and response of the flight launch vehicle, which are based on the assumption that, only first bending mode is selected at a time. Comparison with the second order band pass filter is carried out in order to emphasis the effectiveness of this design methodology.

  19. 46 CFR 199.145 - Marine evacuation system launching arrangements.

    Science.gov (United States)

    2010-10-01

    ... from any projections of the vessel's structure or equipment. (4) The marine evacuation system's passage... 46 Shipping 7 2010-10-01 2010-10-01 false Marine evacuation system launching arrangements. 199.145....145 Marine evacuation system launching arrangements. (a) Arrangements. Each marine evacuation...

  20. 46 CFR 28.805 - Launching of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Launching of survival craft. 28.805 Section 28.805... FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.805 Launching of survival craft. In addition to the survival craft requirements in subpart B, each vessel must have a gate or other opening in...

  1. 46 CFR 28.310 - Launching of survival craft.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Launching of survival craft. 28.310 Section 28.310... Operate With More Than 16 Individuals on Board § 28.310 Launching of survival craft. A gate or other... each survival craft which weighs more than 110 pounds (489 Newtons), to allow the survival craft to...

  2. CGWIC S gned The Contract for Launching APStar 6B

    Institute of Scientific and Technical Information of China (English)

    SunQing

    2005-01-01

    Following the successful launch of APStar 6 on April 12, 2005,China Great Wall Industry Corporation (CGWIC), as the general contractor, will provide APStar 6B satellite and launch service with the LM-3B rocket for APT Satellite Holdings Ltd., Hong Kong (APT)

  3. SAS Launches Biometric Identification at Airports All Over Sweden

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Scandinavian Airlines is to launch a new biometric identification system throughout Sweden.When traveling, your fingerprint will be matched to your check-in baggage. This makes the check-in process easier and improves security. The new technology will be launched during November and December at almost all airports served by Scandinavian Airlines in Sweden.

  4. Alpha Channeling with High-field Launch of Lower Hybrid Waves

    CERN Document Server

    Ochs, Ian E; Fisch, Nathaniel J

    2015-01-01

    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and density regime consistent with a hot-ion-mode fusion reactor. These simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.

  5. Locating the Launching Region of T Tauri Winds: The Case of DG Tauri

    Science.gov (United States)

    Anderson, Jeffrey M.; Li, Zhi-Yun; Krasnopolsky, Ruben; Blandford, Roger D.

    2003-06-01

    It is widely believed that T Tauri winds are driven magnetocentrifugally from accretion disks close to the central stars. The exact launching conditions are uncertain. We show that a general relation exists between the poloidal and toroidal velocity components of a magnetocentrifugal wind at large distances and the rotation rate of the launching surface, independent of the uncertain launching conditions. We discuss the physical basis of this relation and verify it by using a set of numerically determined large-scale wind solutions. Both velocity components are in principle measurable from spatially resolved spectra, as has been done for the extended low-velocity component (LVC) of the DG Tauri wind by Bacciotti et al. For this particular source, we infer that the spatially resolved LVC originates from a region on the disk extending from ~0.3 to ~4.0 AU from the star, which is consistent with, and a refinement over, the rough estimate of Bacciotti et al.

  6. Launch Vehicle Abort Analysis for Failures Leading to Loss of Control

    Science.gov (United States)

    Hanson, John M.; Hill, Ashley D.; Beard, Bernard B.

    2013-01-01

    Launch vehicle ascent is a time of high risk for an onboard crew. There is a large fraction of possible failures for which time is of the essence and a successful abort is possible if the detection and action happens quickly enough. This paper focuses on abort determination based on data already available from the Guidance, Navigation, and Control system. This work is the result of failure analysis efforts performed during the Ares I launch vehicle development program. The two primary areas of focus are the derivation of abort triggers to ensure that abort occurs as quickly as possible when needed, but that false aborts are avoided, and evaluation of success in aborting off the failing launch vehicle.

  7. Recent progress on space-borne microwave sounder pre-launch calibration technologies in China

    Institute of Scientific and Technical Information of China (English)

    Nian Feng; Yang Yujie; Chen Yunmei; Xu Dezhong; Wang Wei

    2008-01-01

    The development processes and the application achievements of space-borne microwave sounder pre-launch calibration technologies in China are introduced briefly.Then,the general project plan for pre-launch calibration,the latest research achievements on the optimization and development of the microwave wide band calibration targets,emissivity measurement technologies and the system level uncertainty analysis of the laboratory,and the thermal/vacuum microwave sounder calibration system for"FY-3"meteorological satellite are reported,respectively.Finally,the key technological problems of the calibration technologies under researching are analyzed predictively.

  8. Type-I X-ray bursts reveal a fast co-evolving behavior of the corona in an X-ray binary

    CERN Document Server

    Chen, Yu-Peng; Zhang, Shuang-Nan; Li, Jian; Wang, Jian-Min

    2013-01-01

    The coronae in X-ray binaries (XRBs) still remain poorly understood, although they have been believed for a long time to play a key role in modeling the characteristic outbursts of XRBs. Type-I X-ray bursts, the thermonuclear flashes happening on the surface of a neutron star (NS), can be used as a probe to the innermost region of a NS XRB, where the corona is believed to be located very close to the NS. We report the discovery of a tiny life cycle of the corona that is promptly co-evolved with the type-I bursts superimposed on the outburst of the NS XRB IGR J17473$-$2721. This finding may serve as the first evidence of directly seeing the rapid disappearance and formation of a corona in an XRB with a cooling/heating timescale of less than a second, which can strongly constrain the accretion models in XRBs at work.

  9. Controlling surface-plasmon-polaritons launching with hot spot cylindrical waves in a metallic slit structure

    Science.gov (United States)

    Yao, Wenjie; Sun, Chengwei; Gong, Qihuang; Chen, Jianjun

    2016-09-01

    Plasmonic nanostructures, which are used to generate surface plasmon polaritons (SPPs), always involve sharp corners where the charges can accumulate. This can result in strong localized electromagnetic fields at the metallic corners, forming the hot spots. The influence of the hot spots on the propagating SPPs are investigated theoretically and experimentally in a metallic slit structure. It is found that the electromagnetic fields radiated from the hot spots, termed as the hot spot cylindrical wave (HSCW), can greatly manipulate the SPP launching in the slit structure. The physical mechanism behind the manipulation of the SPP launching with the HSCW is explicated by a semi-analytic model. By using the HSCW, unidirectional SPP launching is experimentally realized in an ultra-small metallic step-slit structure. The HSCW bridges the localized surface plasmons and the propagating surface plasmons in an integrated platform and thus may pave a new route to the design of plasmonic devices and circuits.

  10. STS-105 and Expedition Three crews pose for photo at Launch Pad 39A

    Science.gov (United States)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- The STS-105 and Expedition Three crews pose at Launch Pad 39A after training exercises. Pictured (left to right) are STS-105 Mission Specialists Patrick Forrester and Daniel Barry and Commander Scott Horowitz; Expedition Three Commander Frank Culbertson and cosmonauts Mikhail Tyurin and Vladimir Nikolaevich Dezhurov; and STS-105 Pilot Rick Sturckow. Both crews are at KSC to take part in Terminal Countdown Demonstration Test activities. The training includes emergency egress, a simulated launch countdown and familiarization with the payload. Mission STS-105 will be transporting the Expedition Three crew, several payloads and scientific experiments to the International Space Station aboard Space Shuttle Discovery, which is seen in the background. The current Expedition Two crew members on the Station will return to Earth on Discovery. Launch of Discovery is scheduled no earlier than Aug. 9, 2001.

  11. Development of Response Surface Models for Rapid Analysis and Multidisciplinary Optimization of Launch Vehicle Design Concepts

    Science.gov (United States)

    Unal, Resit

    1999-01-01

    Multidisciplinary design optimization (MDO) is an important step in the design and evaluation of launch vehicles, since it has a significant impact on performance and lifecycle cost. The objective in MDO is to search the design space to determine the values of design parameters that optimize the performance characteristics subject to system constraints. Vehicle Analysis Branch (VAB) at NASA Langley Research Center has computerized analysis tools in many of the disciplines required for the design and analysis of launch vehicles. Vehicle performance characteristics can be determined by the use of these computerized analysis tools. The next step is to optimize the system performance characteristics subject to multidisciplinary constraints. However, most of the complex sizing and performance evaluation codes used for launch vehicle design are stand-alone tools, operated by disciplinary experts. They are, in general, difficult to integrate and use directly for MDO.

  12. NTR-Enhanced Lunar-Base Supply using Existing Launch Fleet Capabilities

    International Nuclear Information System (INIS)

    During the summer of 2006, students at the Center for Space Nuclear Research sought to augment the current NASA lunar exploration architecture with a nuclear thermal rocket (NTR). An additional study investigated the possible use of an NTR with existing launch vehicles to provide 21 metric tons of supplies to the lunar surface in support of a lunar outpost. Current cost estimates show that the complete mission cost for an NTR-enhanced assembly of Delta-IV and Atlas V vehicles may cost 47-86% more than the estimated Ares V launch cost of $1.5B; however, development costs for the current NASA architecture have not been assessed. The additional cost of coordinating the rendezvous of four to six launch vehicles with an in-orbit assembly facility also needs more thorough analysis and review. Future trends in launch vehicle use will also significantly impact the results from this comparison. The utility of multiple launch vehicles allows for the development of a more robust and lower risk exploration architecture

  13. A competition for budding Spanish scientists is launched

    CERN Multimedia

    Antonella Del Rosso

    2013-01-01

    Drawing, video, photo and even a challenging news story category complete the range of options offered by the competition launched by CERN in collaboration with the “Prince of Asturias” foundation. Open to young and very young students in Spain, the first prize for six Spanish pupils of all ages will be a trip to CERN.   It's never too early to get into science. Since 1981, the Prince of Asturias Foundation has presented awards to eminent personalities in the fields of arts, communication and humanities, international cooperation, social sciences, concord, sports, literature, and technical and scientific research. CERN, Peter Higgs and François Englert are the laureates of the 2013 award in the scientific category “for the theoretical prediction and experimental detection of the Higgs boson”. CERN’s share of the prize-money associated with this prestigious prize will be partly used to run a competition for Spanish schoolch...

  14. Experimental single-impulse magnetic focusing of launched cold atoms

    CERN Document Server

    Smith, D A; Hughes, I G; Pritchard, M J; Arnold, Aidan S.; Hughes, Ifan G.; Pritchard, Matthew J.; Smith, David A.

    2007-01-01

    Three-dimensional magnetic focusing of cold atoms with a single magnetic impulse has been observed for the first time. We load 7x10^7 85-Rb atoms into a magneto-optical trap, precool the atoms with optical molasses, then use moving molasses to launch them vertically through 20.5cm to the apex of flight. In transit the atoms are optically pumped, prior to the single magnetic lens impulse that occurs 16.5cm above the MOT. Fluorescence images at the apex of flight characterise the widths of the focussed cloud. Results were obtained for four different configurations of the baseball lens, which tuned the relationship between the axial and radial frequencies of the lens. Compact focused clouds were seen for all four configurations.

  15. Synthesis of {beta}-phase Ag{sub 1-x}Cu{sub x}I (x = 0-0.5) solid solutions nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianli [Key Laboratory of Bionic Engineering, College of Biology and Agriculture Engineering, Jilin University, Nanling Campus, Changchun 130025 (China); Jilin Weather Modification Office, Changchun 130062 (China); Zhang, Jinghong [Key Laboratory of Automobile Materials, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun 130025 (China); Jilin Weather Modification Office, Changchun 130062 (China); Zhang, Guilan, E-mail: lxl5211@126.com [Key Laboratory of Bionic Engineering, College of Biology and Agriculture Engineering, Jilin University, Nanling Campus, Changchun 130025 (China); Jiang, Zhonghao [Key Laboratory of Automobile Materials, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun 130025 (China); Jin, Dezhen [Jilin Weather Modification Office, Changchun 130062 (China)

    2011-06-15

    Research highlights: {yields} Wet-chemical-chelating reaction processing has been used to synthesized A series of single {beta}-phase nano-Ag{sub 1-x}Cu{sub x}I (x = 0-0.5) solid solutions powders. {yields} Citric acid as complexing agent takes part in the process of chemical reaction and the chemical reactions can be described in this paper. {yields} The lattice parameters have been ascertained by the results of XRD. {yields} Crystalline sizes, which decrease with copper iodide concentration increasing, have been demonstrated by XRD and TEM. -- Abstract: A series of single {beta}-phase nano-Ag{sub 1-x}Cu{sub x}I (x = 0-0.5) solid solutions powders were synthesized by wet-chemical-chelating reaction processing and citric acid used as complexing agent. The Ag{sub 1-x}Cu{sub x}I powders were determined by X-ray diffraction and transmission electron microscopy. It was demonstrated that the crystalline size and lattice parameter of the Ag{sub 1-x}Cu{sub x}I powders decrease with an increase in the amount of CuI substitution. The copper in the lattice of the Ag{sub 1-x}Cu{sub x}I can effectively prevent the crystalline growth of the Ag{sub 1-x}Cu{sub x}I powders and citrate used in the Ag{sub 1-x}Cu{sub x}I powders synthesized process can accelerate single {beta}-phase crystalline structure formation.

  16. STS-54 crewmembers take a break from TCDT procedures on KSC launch tower

    Science.gov (United States)

    1993-01-01

    STS-54 Endeavour, Orbiter Vehicle (OV) 105, crewmembers, wearing launch and entry suits (LESs), take a break from terminal countdown demonstration test (TCDT) procedures at Kennedy Space Center (KSC). Standing on a launch tower platform are (left to right) Mission Specialist 3 (MS3) Susan J. Helms, Pilot Donald R. McMonagle, MS2 Gregory J. Harbaugh, Commander John H. Casper, and MS1 Mario Runco, Jr. In the background, the nose cones of the solid rocket booster (SRB) and the external tank (ET) are visible.

  17. Estimation of Launch and Impact Points of a Flight Trajectory using U-D Kalman Filter/Smoother

    Directory of Open Access Journals (Sweden)

    V.P.S. Naidu

    2006-10-01

    Full Text Available The launch and impact points of a flight trajectory are estimated using U-D Kalman filterand Rauch-Tung-Striebel (R-T-S smoother. Algorithms are implemented in PC MATLAB andvalidated using simulated data. The filter performance is evaluated in terms of state error,innovation sequence, and autocorrelation of residuals along with their theoretical bounds. TheR-T-S smoother was found to generate accurate state estimates, which led to better launch pointestimation. Launch and impact point prediction from real data of a guided target in ballistic modeis also evaluated.

  18. Discovery of three new RS Canum Venaticorum-like counterparts to HEAO I X-ray sources

    Science.gov (United States)

    Buckley, D. A. H.; Tuohy, I. R.; Remillard, R. A.; Bradt, H. V.; Schwartz, D. A.

    1987-01-01

    The identification of three high-latitude HEAO I Scanning Modulation Collimator X-ray sources with the chromospherically active RS CVn-like stars HD 113816, HD 146413, and HD 39576 is reported. Optical observations, including coude spectroscopy and broad-band and narrow band photoelectric photometry are presented. The Ca II emission strength of all three stars shows that they are chromospherically active. HD 146413 and HD 39576 exhibit variable X-ray emission in the 1-13 keV energy range, while HD 113816 is a softer and steadier source. The level of X-ray flux detected from these three stars is some one to two orders of magnitude higher than predicted empirically from the Ca II emission fluxes. It is proposed that this emission results from flarelike activity.

  19. Research on structural design and test technologies for a three-chamber launching device.

    Science.gov (United States)

    Jun, Wu; Qiushi, Yan; Ling, Xiao; Tieshuan, Zhuang; Chengyu, Yang

    2016-07-01

    A three-chamber launching device with improved acceleration is proposed and developed. As indicated by the damage generated during the pill and engineering protection tests, the proposed device is applicable as a high-speed launching platform for pills of different shapes and quality levels. Specifically, it can be used to investigate kinetic energy weapons and their highly destructive effects due to the resulting large bomb fragments. In the horizontal direction of the barrel, two auxiliary chambers are set at a certain distance from the main chamber. When the pill reaches the mouth of the auxiliary chambers, the charges in the auxiliary chambers are ignited by the high-temperature, high-pressure combustible gas trailing the pill. The combustible gas in the auxiliary chambers can resist the rear pressure of the pill and thus maintain the high pressure of the pill base. In this way, the required secondary acceleration of the pill is met. The proposed device features the advantage of launching a pill with high initial velocity under low bore pressure. Key techniques are proposed in the design of the device to address the problems related to the angle between the main chamber axis and the ancillary chamber axis, the overall design of a three-chamber barrel, the structural design of auxiliary propellant charge, the high-pressure combustible gas sealing technology, and the sabot and belt design. Results from the launching test verify the reasonable design of this device and its reliable structural sealing. Additionally, the stiffness and the strength of the barrel meet design requirements. Compared with the single-chamber launching device with the same caliber, the proposed device increases the average launching velocity by approximately 15% and the amount of muzzle kinetic energy by approximately 35%. Therefore, this equipment is capable of carrying out small-caliber, high-speed pill firing tests.

  20. Research on structural design and test technologies for a three-chamber launching device

    Science.gov (United States)

    Jun, Wu; Qiushi, Yan; Ling, Xiao; Tieshuan, Zhuang; Chengyu, Yang

    2016-07-01

    A three-chamber launching device with improved acceleration is proposed and developed. As indicated by the damage generated during the pill and engineering protection tests, the proposed device is applicable as a high-speed launching platform for pills of different shapes and quality levels. Specifically, it can be used to investigate kinetic energy weapons and their highly destructive effects due to the resulting large bomb fragments. In the horizontal direction of the barrel, two auxiliary chambers are set at a certain distance from the main chamber. When the pill reaches the mouth of the auxiliary chambers, the charges in the auxiliary chambers are ignited by the high-temperature, high-pressure combustible gas trailing the pill. The combustible gas in the auxiliary chambers can resist the rear pressure of the pill and thus maintain the high pressure of the pill base. In this way, the required secondary acceleration of the pill is met. The proposed device features the advantage of launching a pill with high initial velocity under low bore pressure. Key techniques are proposed in the design of the device to address the problems related to the angle between the main chamber axis and the ancillary chamber axis, the overall design of a three-chamber barrel, the structural design of auxiliary propellant charge, the high-pressure combustible gas sealing technology, and the sabot and belt design. Results from the launching test verify the reasonable design of this device and its reliable structural sealing. Additionally, the stiffness and the strength of the barrel meet design requirements. Compared with the single-chamber launching device with the same caliber, the proposed device increases the average launching velocity by approximately 15% and the amount of muzzle kinetic energy by approximately 35%. Therefore, this equipment is capable of carrying out small-caliber, high-speed pill firing tests.

  1. A DEEP CHANDRA OBSERVATION OF THE GIANT H II REGION N11. I. X-RAY SOURCES IN THE FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Nazé, Yaël [GAPHE, Department AGO, Université de Liège, Allée du 6 Août 17 Bat. B5C, B-4000 Liège (Belgium); Wang, Q. Daniel [Department of Astronomy, B619E-LGRT, University of Massachusetts, Amherst, MA 01003 (United States); Chu, You-Hua; Gruendl, Robert [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Oskinova, Lida, E-mail: naze@astro.ulg.ac.be [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany)

    2014-08-01

    A very sensitive X-ray investigation of the giant H II region N11 in the Large Megallanic Cloud was performed using the Chandra X-ray Observatory. The 300 ks observation reveals X-ray sources with luminosities down to 10{sup 32} erg s{sup –1}, increasing the number of known point sources in the field by more than a factor of five. Among these detections are 13 massive stars (3 compact groups of massive stars, 9 O stars, and one early B star) with log (L {sub X}/L {sub BOL}) ∼–6.5 to –7, which may suggest that they are highly magnetic or colliding-wind systems. On the other hand, the stacked signal for regions corresponding to undetected O stars yields log (L {sub X}/L {sub BOL}) ∼–7.3, i.e., an emission level comparable to similar Galactic stars despite the lower metallicity. Other point sources coincide with 11 foreground stars, 6 late-B/A stars in N11, and many background objects. This observation also uncovers the extent and detailed spatial properties of the soft, diffuse emission regions, but the presence of some hotter plasma in their spectra suggests contamination by the unresolved stellar population.

  2. A Multiconstrained Ascent Guidance Method for Solid Rocket-Powered Launch Vehicles

    Directory of Open Access Journals (Sweden)

    Si-Yuan Chen

    2016-01-01

    Full Text Available This study proposes a multiconstrained ascent guidance method for a solid rocket-powered launch vehicle, which uses a hypersonic glide vehicle (HGV as payload and shuts off by fuel exhaustion. First, pseudospectral method is used to analyze the two-stage launch vehicle ascent trajectory with different rocket ignition modes. Then, constraints, such as terminal height, velocity, flight path angle, and angle of attack, are converted into the constraints within height-time profile according to the second-stage rocket flight characteristics. The closed-loop guidance method is inferred by different spline curves given the different terminal constraints. Afterwards, a thrust bias energy management strategy is proposed to waste the excess energy of the solid rocket. Finally, the proposed method is verified through nominal and dispersion simulations. The simulation results show excellent applicability and robustness of this method, which can provide a valuable reference for the ascent guidance of solid rocket-powered launch vehicles.

  3. Assessing Upper-Level Winds on Day-of-Launch

    Science.gov (United States)

    Bauman, William H., III; Wheeler, Mark M.

    2012-01-01

    On the day-or-launch. the 45th Weather Squadron Launch Weather Officers (LWOS) monitor the upper-level winds for their launch customers to include NASA's Launch Services Program (LSP). During launch operations, the payload launch team sometimes asks the LWO if they expect the upper level winds to change during the countdown but the LWOs did not have the capability to quickly retrieve or display the upper-level observations and compare them to the numerical weather prediction model point forecasts. The LWOs requested the Applied Meteorology Unit (AMU) develop a capability in the form of a graphical user interface (GUI) that would allow them to plot upper-level wind speed and direction observations from the Kennedy Space Center Doppler Radar Wind Profilers and Cape Canaveral Air Force Station rawinsondes and then overlay model point forecast profiles on the observation profiles to assess the performance of these models and graphically display them to the launch team. The AMU developed an Excel-based capability for the LWOs to assess the model forecast upper-level winds and compare them to observations. They did so by creating a GUI in Excel that allows the LWOs to first initialize the models by comparing the O-hour model forecasts to the observations and then to display model forecasts in 3-hour intervals from the current time through 12 hours.

  4. Testing the theory of colliding winds: the periastron passage of 9 Sagittarii. I. X-ray and optical spectroscopy

    Science.gov (United States)

    Rauw, G.; Blomme, R.; Nazé, Y.; Spano, M.; Mahy, L.; Gosset, E.; Volpi, D.; van Winckel, H.; Raskin, G.; Waelkens, C.

    2016-05-01

    Context. The long-period, highly eccentric O-star binary 9 Sgr, known for its non-thermal radio emission and its relatively bright X-ray emission, went through its periastron in 2013. Aims: Such an event can be used to observationally test the predictions of the theory of colliding stellar winds over a broad range of wavelengths. Methods: We conducted a multi-wavelength monitoring campaign of 9 Sgr around the 2013 periastron. In this paper, we focus on X-ray observations and optical spectroscopy. Results: The optical spectra allow us to revisit the orbital solution of 9 Sgr and to refine its orbital period to 9.1 years. The X-ray flux is maximum at periastron over all energy bands, but with clear differences as a function of energy. The largest variations are observed at energies above 2 keV, whilst the spectrum in the soft band (0.5-1.0 keV) remains mostly unchanged, indicating that it arises far from the collision region, in the inner winds of the individual components. The level of the hard emission at periastron clearly deviates from the 1 /r relation expected for an adiabatic wind-interaction zone, whilst this relation seems to hold at the other phases that are covered by our observations. The spectra taken at phase 0.946 reveal a clear Fe xxv line at 6.7 keV, but no such line is detected at periastron (φ = 0.000), although a simple model predicts a strong line that should be easily visible in the data. Conclusions: The peculiarities of the X-ray spectrum of 9 Sgr could reflect the effect of radiative inhibition as well as a phase-dependent efficiency of particle acceleration on the shock properties. Based on observations with XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member states and the USA (NASA). Also based on observations collected at the European Southern Observatory (La Silla, Chile) and with the Mercator Telescope operated on the island of La Palma by the Flemish Community, at the Spanish

  5. The influence of accretion geometry on the spectral evolution during thermonuclear (type-I) X-ray bursts

    CERN Document Server

    Kajava, Jari J E; Latvala, Outi-Marja; Pursiainen, Miika; Poutanen, Juri; Suleimanov, Valery F; Revnivtsev, Mikhail G; Kuulkers, Erik; Galloway, Duncan K

    2014-01-01

    Neutron star (NS) masses and radii can be estimated from observations of photospheric radius-expansion X-ray bursts, provided the chemical composition of the photosphere, the spectral colour-correction factors in the observed luminosity range, and the emission area during the bursts are known. By analysing 246 X-ray bursts observed by the Rossi X-ray Timing Explorer from 11 low-mass X-ray binaries, we find a dependence between the persistent spectral properties and the time evolution of the black body normalisation during the bursts. All NS atmosphere models predict that the colour-correction factor decreases in the early cooling phase when the luminosity first drops below the limiting Eddington value, leading to a characteristic pattern of variability in the measured blackbody normalisation. However, the model predictions agree with the observations for most bursts occurring in hard, low-luminosity, 'island' spectral states, but rarely during soft, high-luminosity, 'banana' states. The observed behaviour may...

  6. 6-MV photon beam modeling for the Varian Clinac iX by using the Geant4 virtual jaw

    Science.gov (United States)

    Kim, Byung Yong; Kim, Hyung Dong; Kim, Dong Ho; Baek, Jong Geun; Moon, Su Ho; Rho, Gwang Won; Kang, Jeong Ku; Kim, Sung Kyu

    2015-07-01

    Most virtual source models (VSMs), with the exception of the patient-dependent secondary collimator (jaw), use beam modeling. Unlike other components of the treatment head, the jaw absorbs many photons generated by bremsstrahlung, which decreases the efficiency of the simulation. In the present study, a new method of beam modeling using a virtual jaw was applied to improve the calculation efficiency of VSM. This new method of beam modeling was designed so that the interaction was not generated in the jaw. The results for the percentage depth dose and the profile of the virtual jaw VSM calculated in a homogeneous water phantom agreed with the measurement results for the CC13 cylinder-type ion chamber to within an error of 2%, and the 80-20% penumbra width agreed with the measurement results to within an error of 0.6 mm. Compared with the existing VSM, in which a great number of photons are absorbed, the calculation efficiency of the VSM using the virtual jaw is expected to be increased by approximately 67%.

  7. X-ray behaviour of Circinus X-1 - I: X-ray Dips as a diagnostic of periodic behaviour

    CERN Document Server

    Clarkson, W I

    2004-01-01

    We examine the periodic nature of detailed structure (particularly dips) in the RXTE/ASM lightcurve of Circinus X-1. The significant phase wandering of the X-ray maxima suggests their identification with the response on a viscous timescale of the accretion disk to perturbation. We find that the X-ray dips provide a more accurate system clock than the maxima, and thus use these as indicators of the times of periastron passage. We fit a quadratic ephemeris to these dips, and find its predictive power for the X-ray lightcurve to be superior to ephemerides based on the radio flares and the full archival X-ray lightcurve. Under the hypothesis that the dips are tracers of the mass transfer rate from the donor, we use their occurrence rate as a function of orbital phase to explore the (as yet unconstrained) nature of the donor. The high $\\dot{P}$ term in the ephemeris provides another piece of evidence that Cir X-1 is in a state of dynamical evolution, and thus is a very young post-supernova system. We further sugge...

  8. Launch marketing communications planning guide : case: service industry franchise chain X

    OpenAIRE

    Kivinummi, Rosanna

    2016-01-01

    The thesis content and scope is built around the needs of the franchise chain X which had over 50 stores in Finland and a few stores in Europe and North America in late 2015. The internalization of the chain created new challenges for the launch marketing planning. The launch activities play always a crucial role in the future success of a store but are even more important for a franchise chain as the success or failure of one shop affects the image of the whole chain. The target of the thesi...

  9. StarTram: An Ultra Low Cost Launch System to Enable Large Scale Exploration of the Solar System

    Science.gov (United States)

    Powell, James; Maise, George; Paniagua, John

    2006-01-01

    StarTram is a new approach for low launch to space using Maglev technology. Spacecraft are magnetically levitated and accelerated without propellants to orbital speeds in an evacuated tunnel at ground level using only electrical energy. The cost of the electric energy for acceleration to 8 kilometers per second is only 60 cents per kilogram of payload. After reaching orbital speed, the StarTram spacecraft coast upwards inside an evacuated levitated launch tube to an altitude, of 10 kilometers or more, where they enter the low-pressure ambient atmosphere. The launch tube is magnetically levitated by the repulsive force between a set of high current superconducting cables on it and oppositely directed currents in a set of superconducting cables on the ground beneath. High strength Kevlar tethers anchor the launch tube against crosswinds and prevent it from moving laterally or vertically. A Magneto Hydro Dynamic (MHD) pump at the exit of the evacuated launch tube prevents air from entering the tube. Two StarTram systems are described, a high G (30G) system for cargo only launch and a moderate G (2.5 G) system for passenger/cargo spacecraft. StarTram's projected unit cost is $30 per kilogram of payload launched, including operating and amortization costs. A single StarTram facility could launch more than 100,000 tons of cargo per year and many thousands of passengers. StarTram would use existing superconductors and materials, together with Maglev technology similar to that now operating. The StarTram cargo launch system could be implemented by 2020 AD and the passenger system by 2030 AD.

  10. Hybrids - Best of both worlds. [liquid and solid propellants mated for safe reliable and low cost launch vehicles

    Science.gov (United States)

    Goldberg, Ben E.; Wiley, Dan R.

    1991-01-01

    An overview is presented of hybrid rocket propulsion systems whereby combining solids and liquids for launch vehicles could produce a safe, reliable, and low-cost product. The primary subsystems of a hybrid system consist of the oxidizer tank and feed system, an injector system, a solid fuel grain enclosed in a pressure vessel case, a mixing chamber, and a nozzle. The hybrid rocket has an inert grain, which reduces costs of development, transportation, manufacturing, and launch by avoiding many safety measures that must be taken when operating with solids. Other than their use in launch vehicles, hybrids are excellent for simulating the exhaust of solid rocket motors for material development.

  11. Enabling Science and Deep Space Exploration through Space Launch System (LSL) Secondary Payload Opportunities

    Science.gov (United States)

    Singer, Jody; Pelfrey, Joseph; Norris, George

    2016-01-01

    For the first time in almost 40 years, a NASA human-rated launch vehicle has completed its Critical Design Review (CDR). By reaching this milestone, NASA's Space Launch System (SLS) and Orion spacecraft are on the path to launch a new era of deep space exploration. NASA is making investments to expand science and exploration capability of the SLS by developing the capability to deploy small satellites during the trans-lunar phase of the mission trajectory. Exploration Mission 1 (EM-1), currently planned for launch no earlier than July 2018, will be the first mission to carry such payloads on the SLS. The EM-1 launch will include thirteen 6U Cubesat small satellites that will be deployed beyond low earth orbit. By providing an earth-escape trajectory, opportunities are created for advancement of small satellite subsystems, including deep space communications and in-space propulsion. This SLS capability also creates low-cost options for addressing existing Agency strategic knowledge gaps and affordable science missions. A new approach to payload integration and mission assurance is needed to ensure safety of the vehicle, while also maintaining reasonable costs for the small payload developer teams. SLS EM-1 will provide the framework and serve as a test flight, not only for vehicle systems, but also payload accommodations, ground processing, and on-orbit operations. Through developing the requirements and integration processes for EM-1, NASA is outlining the framework for the evolved configuration of secondary payloads on SLS Block upgrades. The lessons learned from the EM-1 mission will be applied to processes and products developed for future block upgrades. In the heavy-lift configuration of SLS, payload accommodations will increase for secondary opportunities including small satellites larger than the traditional Cubesat class payload. The payload mission concept of operations, proposed payload capacity of SLS, and the payload requirements for launch and

  12. Legislative and regulatory issues related to reusable launch systems

    Science.gov (United States)

    Peinemann, Manfred K. A.

    1996-03-01

    The development of reusable launch systems with private investment funds for primarily commercial launch services raises a number of novel legal and regulatory issues. The issues discussed include requirements for a whole new spectrum of safety and environmental issues; new certification rules, procedures and oversight organizations; liability and jurisdiction definitions, taxation treatments; government commitments and/or participation in commercial enterprises; and international legal and business issues. The satisfactory solution to all of these issues is a necessary condition for the development and operation of reusable launch vehicles to be a viable commercial enterprise.

  13. P.I.X.S.C.A.N.: a micro-CT scanner for small animal based on hybrid pixel detectors; PIXSCAN: micro-tomodensitrometre a pixels hybrides pour le petit animal

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, R

    2008-03-15

    Since more than a dozen years, efforts were led in the field of X-ray tomography for small animals, principally for the improvement of spatial resolution and the diminution of the absorbed dose. The C.P.P.M. developed the micro-CT P.I.X.S.C.A.N. based on the hybrid pixel detector X.P.A.D.2. In this context, my thesis work consists in studying the demonstrator P.I.X.S.C.A.N./X.P.A.D.2 and the contribution of the hybrid pixels in the imaging of small animals. A fast analytical simulation, FastSimu, was developed. An extrapolation of the performance of the demonstrator P.I.X.S.C.A.N, as well as the validation of the results obtained with the measured data, were led by means of the analytical simulator FastSimu. The demonstrator P.I.X.S.C.A.N./X.P.A.D.2 allowed to obtain reconstructed images with a rather good quality for a relatively weak absorbed dose. Its spatial resolution is degraded by the high number of defective pixels of the detector X.P.A.D.2. Beyond this study, a new version of the demonstrator P.I.X.S.C.A.N./X.P.A.D.2 is under construction. This latter, characterized by two and a half times smaller pixels and about no defective pixels will bring a considerable improvement on spatial resolution. (author)

  14. Flow noise from launching of underwater weapon%水下武器发射时流噪声研究

    Institute of Scientific and Technical Information of China (English)

    方媛嫒; 王国治

    2009-01-01

    The noise caused by the launch of the underwater torpedo is a special noise source of the submarine. This paper built the inner and outer flow field finite element model for the hydraulic balanced launch system to simulate the quiet launching process of torpedo. A numerical simulation, which included calculating the velocity field and pressure field of the launch process as well as the noise property caused by the flow field, is performed based on the dynamic mesh technique of the software FLUENT. The primary factors influencing on the noise of the underwater torpedo launching are discussed, including the launch velocity, launch pressure difference, speed of submarine or outer flow field, launch depth and other parameters under launch condition.%水下鱼雷武器发射噪声是潜艇的特殊噪声源.为直观详尽地描述发射系统内鱼雷出管的具体情况,本文建立了潜艇水下鱼雷安静发射普遍采用的液压平衡式发射装置内部及外部流场的有限元分析模型.基于FLUENT的动网格技术进行数值模拟,计算分析了发射过程的速度场和压力场,以及由此引起的发射流噪声特性.探讨了发射速度、发射管内外压力、潜艇航速或外部流场、水深等多种因素对鱼雷水下发射噪声的影响.

  15. The Space Launch System and Missions to the Outer Solar System

    Science.gov (United States)

    Klaus, Kurt K.; Post, Kevin

    2015-11-01

    Introduction: America’s heavy lift launch vehicle, the Space Launch System, enables a variety of planetary science missions. The SLS can be used for most, if not all, of the National Research Council’s Planetary Science Decadal Survey missions to the outer planets. The SLS performance enables larger payloads and faster travel times with reduced operational complexity.Europa Clipper: Our analysis shows that a launch on the SLS would shorten the Clipper mission travel time by more than four years over earlier mission concept studies.Jupiter Trojan Tour and Rendezvous: Our mission concept replaces Advanced Stirling Radioisotope Generators (ASRGs) in the original design with solar arrays. The SLS capability offers many more target opportunities.Comet Surface Sample Return: Although in our mission concept, the SLS launches later than the NRC mission study (November 2022 instead of the original launch date of January 2021), it reduces the total mission time, including sample return, by two years.Saturn Apmospheric Entry Probe: Though Saturn arrivial time remains the same in our concept as the arrival date in the NRC study (2034), launching on the SLS shortens the mission travel time by three years with a direct ballistic trajectory.Uranus Orbiter with Probes: The SLS shortens travel time for an Uranus mission by four years with a Jupiter swing-by trajectory. It removes the need for a solar electric propulsion (SEP) stage used in the NRC mission concept study.Other SLS Science Mission Candidates: Two other mission concepts we are investigating that may be of interest to this community are the Advanced Technology Large Aperature Space Telescope (ATLAST) and the Interstellar Explorer also referred to as the Interstellar Probe.Summary: The first launch of the SLS is scheduled for 2018 followed by the first human launch in 2021. The SLS in its evolving configurations will enable a broad range of exploration missions which will serve to recapture the enthusiasm and

  16. SpaceX - Continuing to Drive Launch Costs Down and Launch Opportunities Up for the Small Sat Community

    OpenAIRE

    Dreyer, Lauren; Bjelde, Brian; Doud, Dustin; Lord, Kimberly

    2011-01-01

    SpaceX is revolutionizing access to space for the satellite community by providing highly reliable, low cost launch services. To this end, SpaceX has developed a family of orbital transportation solutions and aims to reduce the price of launch services by an order of magnitude. The small satellite community is critical to the future of our industry. SpaceX is committed to providing reliable, timely, and cost-effective launch services and will continue to innovate in this capacity. An overview...

  17. Green Non-dyed Textile Innovation Alliance officially launched

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    June 29, the Green Non-dyed Textile Innovation Alliance was officially launched by the China Textile Information Center, Nationa Textile Product Development Center together with China Chemical Fiber Industry Association

  18. Launch of physics journals boosts open-access club

    CERN Multimedia

    2007-01-01

    "Open-access publisher BioMed Central is launching three new physics journals under the sister brand-name PhysMath Central. they will sit alongside the company's portfolio of 176 biomedical titles." (1/4 page)

  19. College of Natural Resources and Environment launches student Leadership Institute

    OpenAIRE

    Davis, Lynn

    2010-01-01

    Virginia Tech's College of Natural Resources and the Environment launched a new program to develop leadership abilities in some of its top students to help prepare them as future leaders in managing natural resources for sustainability and biodiversity.

  20. Engineering Next Generation Launch Systems for Supportability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In order to meet the challenges of high probability of mission success for space exploration, ground support system for various launch operations that responds...

  1. Platform Independent Launch Vehicle Avionics with GPS Metric Tracking Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For this award, Tyvak proposes to develop a complete suite of avionics for a Nano-Launch Vehicle (NLV) based on the architecture determinations performed during...

  2. Risk Considerations of Bird Strikes to Space Launch Vehicles

    Science.gov (United States)

    Hales, Christy; Ring, Robert

    2016-01-01

    Within seconds after liftoff of the Space Shuttle during mission STS-114, a turkey vulture impacted the vehicle's external tank. The contact caused no apparent damage to the Shuttle, but the incident led NASA to consider the potential consequences of bird strikes during a Shuttle launch. The environment at Kennedy Space Center provides unique bird strike challenges due to the Merritt Island National Wildlife Refuge and the Atlantic Flyway bird migration routes. NASA is currently refining risk assessment estimates for the probability of bird strike to space launch vehicles. This paper presents an approach for analyzing the risks of bird strikes to space launch vehicles and presents an example. The migration routes, types of birds present, altitudes of those birds, exposed area of the launch vehicle, and its capability to withstand impacts affect the risk due to bird strike. A summary of significant risk contributors is discussed.

  3. Homecoming Board launches 2009 Homecoming Theme call for proposals

    OpenAIRE

    Broughton, Sandra S.

    2009-01-01

    The Virginia Tech Homecoming Board has launched the 2009 Homecoming Theme Contest. Through May 1 students, faculty, staff, alumni, and community members will have the opportunity to submit their ideas for the 2009 homecoming theme.

  4. NE·TIGER Launches First Chinese Luxury Brand in Shanghai

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    November 6, 2010: Top Chinese luxury brand NE.TIGER launched a grand opening ceremony for its image store in Shanghai. The new store is located at Libao Square on Middle Huaihai Road, which has a commer-

  5. Nytrox Oxidizers for NanoSat Launch Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Space Propulsion Group, Inc. proposes to conduct systems studies to quantify the performance and cost advantages of Nytrox oxidizers for small launch vehicles. This...

  6. China-Japan-Korea Industrial Fair 2006 Launched

    Institute of Scientific and Technical Information of China (English)

    Zhang Yue

    2006-01-01

    @@ China-Japan-Korea Industrial Fair 2006 was launched in Qingdao city from March 20 to 23, Shandong province, according to the press release by China Council for the Promotion of International Trade(CCPIT).

  7. The DARPA / USAF Falcon Program Small Launch Vehicles

    OpenAIRE

    Weeks, David; Walker, Steven; Thompson, Tim; Sackheim, Robert; London III, John

    2006-01-01

    Earlier in this decade, the U.S. Air Force Space Command and the Defense Advanced Research Projects Agency (DARPA), in recognizing the need for low-cost responsive small launch vehicles, decided to partner in addressing this national shortcoming. Later, the National Aeronautics and Space Administration (NASA) joined in supporting this effort, dubbed the Falcon Program. The objectives of the Small Launch Vehicle (SLV) element of the DARPA / USAF Falcon Program include the development of a low-...

  8. Life Cycle Analysis of Dedicated Nano-Launch Technologies

    Science.gov (United States)

    Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc

    2014-01-01

    Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.

  9. Apollo 11 astronaut Buzz Aldrin appears relaxed before launch

    Science.gov (United States)

    1969-01-01

    Apollo 11 astronaut Edwin E. Aldrin Jr. appears to be relaxed during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A. Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  10. Changing law of launching pitching angular velocity of rotating missile

    OpenAIRE

    Liu Guang; Xu Bin; Jiao Xiaojuan; Zhen Tiesheng

    2014-01-01

    In order to provide accurate launching pitching angular velocity (LPAV) for the exterior trajectory optimization design, multi-flexible body dynamics (MFBD) technology is presented to study the changing law of LPAV of the rotating missile based on spiral guideway. An MFBD virtual prototype model of the rotating missile launching system is built using multi-body dynamics modeling technology based on the built flexible body models of key components and the special force model. The built model i...

  11. Apollo 11 astronaut Neil Armstrong suits up before launch

    Science.gov (United States)

    1969-01-01

    Apollo 11 Commander Neil Armstrong prepares to put on his helmet with the assistance of a spacesuit technician during suiting operations in the Manned Spacecraft Operations Building (MSOB) prior to the astronauts' departure to Launch Pad 39A. The three astronauts, Edwin E. Aldrin Jr., Neil A Armstrong and Michael Collins, will then board the Saturn V launch vehicle, scheduled for a 9:32 a.m. EDT liftoff, for the first manned lunar landing mission.

  12. Apollo 11 Cmdr Neil Armstrong watches STS-83 launch

    Science.gov (United States)

    1997-01-01

    Apollo 11 Commander Neil A. Armstrong and his wife, Carol, were among the many special NASA STS-83 launch guests who witnessed the liftoff of the Space Shuttle Columbia April 4 at the Banana Creek VIP Viewing Site at KSC. Columbia took off from Launch Pad 39A at 2:20:32 p.m. EST to begin the 16-day Microgravity Science Laboratory-1 (MSL-1) mission.

  13. Static stability and control effectiveness of a parametric launch vehicle

    Science.gov (United States)

    Ellis, R. R.; Gamble, M.

    1972-01-01

    An investigation is reported to determine the static aerodynamic characteristics of a space shuttle parametric launch configuration. The orbiter control surfaces were deflected to obtain the control effectiveness for use in launch vehicle control studies. Experimental data were obtained for Mach number from 0.6 to 4.96, angles of attack from minus 10 to plus 10 degrees and angles of sideslip from minus six to six degrees at zero degrees angle of attack.

  14. Effects of Launch Tube Curvature on Ballistics Accuracy

    OpenAIRE

    Mark L. Bundy

    1997-01-01

    It is possible for two different launch. platforms to produce centre of (shot) impacts (COIs), that differ in magnitude by several times the ammunition dispersion. It is difficult to discern what fraction of this variation is due to the launch tube alone, since changing tube alters both the mounting conditions and the occasion. A means has been devised to 'change tubes' without altering the mount or the occasion, by merely changing the shape of a given tube within the same mount. This ...

  15. Gain Scheduling for the Orion Launch Abort Vehicle Controller

    Science.gov (United States)

    McNamara, Sara J.; Restrepo, Carolina I.; Madsen, Jennifer M.; Medina, Edgar A.; Proud, Ryan W.; Whitley, Ryan J.

    2011-01-01

    One of NASAs challenges for the Orion vehicle is the control system design for the Launch Abort Vehicle (LAV), which is required to abort safely at any time during the atmospheric ascent portion of ight. The focus of this paper is the gain design and scheduling process for a controller that covers the wide range of vehicle configurations and flight conditions experienced during the full envelope of potential abort trajectories from the pad to exo-atmospheric flight. Several factors are taken into account in the automation process for tuning the gains including the abort effectors, the environmental changes and the autopilot modes. Gain scheduling is accomplished using a linear quadratic regulator (LQR) approach for the decoupled, simplified linear model throughout the operational envelope in time, altitude and Mach number. The derived gains are then implemented into the full linear model for controller requirement validation. Finally, the gains are tested and evaluated in a non-linear simulation using the vehicles ight software to ensure performance requirements are met. An overview of the LAV controller design and a description of the linear plant models are presented. Examples of the most significant challenges with the automation of the gain tuning process are then discussed. In conclusion, the paper will consider the lessons learned through out the process, especially in regards to automation, and examine the usefulness of the gain scheduling tool and process developed as applicable to non-Orion vehicles.

  16. System Engineering Processes at Kennedy Space Center for Development of the SLS and Orion Launch Systems

    Science.gov (United States)

    Schafer, Eric J.

    2012-01-01

    There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems developed at the Kennedy Space Center Engineering Directorate follow a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Paper describes this process and gives an example of where the process has been applied.

  17. Launching New Institutions: Solving the Chicken-or-Egg Problem in American Higher Education

    Science.gov (United States)

    Manning, Sylvia

    2014-01-01

    Currently, a US college or university must be accredited to be eligible to receive federal financial aid. To get accredited, an institution must have already been serving students, but most students are dependent on federal financial aid. As a result, in order to launch a new college or university, there is an insurmountable problem: having…

  18. Coherent nuclear wave packet dynamics of laurdan launched by intramolecular charge transfer

    Directory of Open Access Journals (Sweden)

    Kim S. Y.

    2013-03-01

    Full Text Available Coherent nuclear wave packets in the product state launched by the ultrafast intramolecular charge transfer are observed by time-resolved fluorescence with 40 fs time resolution. Direct information on reaction coordinates and structural changes can be obtained.

  19. Retirement Savings Advice for Teachers: Just for Teachers Website Launched by Securities and Exchange Commission

    Science.gov (United States)

    Curriculum Review, 2005

    2005-01-01

    The Securities and Exchange Commission has launched a "Just for Teachers" section on its Web site to assist public school teachers in grades K-12 evaluate and select appropriate investments for employer-sponsored 403(b) retirement savings plans and other savings vehicles. The functions of this site are briefly described in this article.

  20. Post Launch Monitoring of food products : what can be learned from pharmacovigilance

    NARCIS (Netherlands)

    van Puijenbroek, E P; Hepburn, P A; Herd, T M; van Grootheest, A C

    2007-01-01

    Post Launch Monitoring (PLM) is one of the new approaches that are used in assessing the safety of novel foods or ingredients. It shares a close resemblance with procedures applied in the field of medicines, where Post Marketing Surveillance (PMS) has been carried out since the beginning of the 1960

  1. The Change Alliance - Launch Event 2-3 December 2009 - Consolidated notes

    NARCIS (Netherlands)

    Vugt, van S.M.; Geene, van J.; Zevenbergen, L.C.

    2009-01-01

    The Change Alliance launch event was officially opened by Hettie Walters (ICCO and the chair woman of the foundation group of the Change Alliance) and Jim Woodhill (Wageningen UR – Centre for Development Innovation): “We are facing significant challenges like climate change, widespread poverty, limi

  2. The DARPA/USAF Falcon Program Small Launch Vehicles

    Science.gov (United States)

    Weeks, David J.; Walker, Steven H.; Thompson, Tim L.; Sackheim, Robert; London, John R., III

    2006-01-01

    Earlier in this decade, the U.S. Air Force Space Command and the Defense Advanced Research Projects Agency (DARPA), in recognizing the need for low-cost responsive small launch vehicles, decided to partner in addressing this national shortcoming. Later, the National Aeronautics and Space Administration (NASA) joined in supporting this effort, dubbed the Falcon Program. The objectives of the Small Launch Vehicle (SLV) element of the DARPA/USAF Falcon Program include the development of a low-cost small launch vehicle(s) that demonstrates responsive launch and has the potential for achieving a per mission cost of less than $5M when based on 20 launches per year for 10 years. This vehicle class can lift 1000 to 2000 lbm payloads to a reference low earth orbit. Responsive operations include launching the rocket within 48 hours of call up. A history of the program and the current status will be discussed with an emphasis on the potential impact on small satellites.

  3. Launch Will Create a Radio Telescope Larger than Earth

    Science.gov (United States)

    NASA and the National Radio Astronomy Observatory are joining with an international consortium of space agencies to support the launch of a Japanese satellite next week that will create the largest astronomical "instrument" ever built -- a radio telescope more than two-and-a-half times the diameter of the Earth that will give astronomers their sharpest view yet of the universe. The launch of the Very Long Baseline Interferometry (VLBI) Space Observatory Program (VSOP) satellite by Japan's Institute of Space and Astronautical Science (ISAS) is scheduled for Feb. 10 at 11:50 p.m. EST (1:50 p.m. Feb. 11, Japan time.) The satellite is part of an international collaboration led by ISAS and backed by Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL), Pasadena, CA; the National Science Foundation's National Radio Astronomy Observatory (NRAO), Socorro, NM; the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. Very long baseline interferometry is a technique used by radio astronomers to electronically link widely separated radio telescopes together so they work as if they were a single instrument with extraordinarily sharp "vision," or resolving power. The wider the distance between telescopes, the greater the resolving power. By taking this technique into space for the first time, astronomers will approximately triple the resolving power previously available with only ground-based telescopes. The satellite system will have resolving power almost 1,000 times greater than the Hubble Space Telescope at optical wavelengths. The satellite's resolving power is equivalent to being able to see a grain of rice in Tokyo from Los Angeles. "Using space VLBI, we can probe the cores of quasars and active galaxies, believed to be powered by super massive black holes," said Dr. Robert Preston, project scientist for the U.S. Space Very Long

  4. Reaction rates of $^{64}$Ge($p,\\gamma$)$^{65}$As and $^{65}$As($p,\\gamma$)$^{66}$Se and the extent of nucleosynthesis in type I X-ray bursts

    CERN Document Server

    Lam, Y H; Parikh, A; Brown, B A; Wang, M; Guo, B; Zhang, Y H; Zhou, X H; Xu, H S

    2015-01-01

    The extent of nucleosynthesis in models of type I X-ray bursts and the associated impact on the energy released in these explosive events are sensitive to nuclear masses and reaction rates around the $^{64}$Ge waiting point. Using a recent high precision mass measurement of $^{65}$As along with large-scale shell model calculations, we have determined new thermonuclear rates of the $^{64}$Ge($p$,$\\gamma$)$^{65}$As and $^{65}$As($p$,$\\gamma$)$^{66}$Se reactions. We examine the impact of available rates for these two reactions through a representative one-zone X-ray burst model. We find that our recommended rates may strongly suppress the flow of abundances toward $A\\approx100$, in sharp contrast to recent work claiming that $^{64}$Ge is not a significant $rp$-process waiting point. Indeed, the summed mass fractions for species with $A > 70$ varies by about factors of 3 or 2 depending upon the adopted $^{64}$Ge($p$,$\\gamma$)$^{65}$As or $^{65}$As($p$,$\\gamma$)$^{66}$Se rates, respectively. Furthermore, the predi...

  5. Development of computational methods for heavy lift launch vehicles

    Science.gov (United States)

    Yoon, Seokkwan; Ryan, James S.

    1993-01-01

    The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.

  6. Global brand launch in a local subsidiary. Case: Professional hair cosmetic brand in Finland

    OpenAIRE

    Ervelius, Hanna

    2010-01-01

    Objectives of the study The significance of the launch stage as a part of new product development is indisputable. In a global launch, a company’s foreign subsidiaries have an important role in executing a launch locally. The purpose of this study is to investigate a global brand launch in a Finnish subsidiary. This includes examining the launch process, identifying the key marketing decisions that drive the implementation, and analyzing the local subsidiary’s role during the launch. M...

  7. Examination of the role of the $^{14}$O($\\alpha$,$p$)$^{17}$F reaction rate in type I x-ray bursts

    CERN Document Server

    Hu, J; Parikh, A; Xu, S W; Yamaguchi, H; Kahl, D; Ma, P; Su, J; Wang, H W; Nakao, T; Wakabayashi, Y; Teranishi, T; Hahn, K I; Moon, J Y; Jung, H S; Hashimoto, T; Chen, A A; Irvine, D; Lee, C S; Kubono, S

    2014-01-01

    The $^{14}$O($\\alpha$,$p$)$^{17}$F reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type I x-ray bursts (XRBs). The resonant properties in the compound nucleus $^{18}$Ne have been investigated through resonant elastic scattering of $^{17}$F+$p$. The radioactive $^{17}$F beam was separated by the CNS Radioactive Ion Beam separator (CRIB) and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by three ${\\Delta}$E-E silicon telescopes at laboratory angles of $\\theta$$_{lab}$$\\approx$3$^\\circ$, 10$^\\circ$ and 18$^\\circ$, respectively. Five resonances at $E_{x}$=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions, and their spin-parities have been determined based on an $R$-matrix analysis. In particular, $J^{\\pi}$=1$^-$ was firmly assigned to the 6.15-MeV state which dominates the thermonuclear $^{14}$O($\\alpha$,$p$)$^{17}$F rate below 2 GK. As well, a possible new excited state in $...

  8. Properties of resonant states in 18Ne relevant to key 14O(alpha,p)17F breakout reaction in type I x-ray bursts

    CERN Document Server

    Hu, J; Parikh, A; Xu, S W; Yamaguchi, H; Kahl, D; Ma, P; Su, J; Wang, H W; Nakao, T; Wakabayashi, Y; Teranishi, T; Hahn, K I; Moon, J Y; Sung, H S; Hashimoto, T; Chen, A A; Irvine, D; Lee, C S; Kubono, S

    2014-01-01

    The $^{14}$O($\\alpha$,$p$)$^{17}$F reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type I x-ray bursts. The resonant properties in the compound nucleus $^{18}$Ne have been investigated through resonant elastic scattering of $^{17}$F+$p$. The radioactive $^{17}$F beam was separated by the CNS Radioactive Ion Beam separator (CRIB) and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by using three ${\\Delta}$E-E silicon telescopes at laboratory angles of $\\theta$$_{lab}$$\\approx$3$^\\circ$, 10$^\\circ$ and 18$^\\circ$, respectively. Five resonances at $E_{x}$=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions. Based on an $R$-matrix analysis, $J^{\\pi}$=1$^-$ was firmly assigned to the 6.15-MeV state. This state dominates the thermonuclear $^{14}$O($\\alpha$,$p$)$^{17}$F rate below 1 GK. We have also confirmed the existence and spin-parities of three states between 6.1 and 6.4 MeV. A...

  9. Treatment planning system commissioning of the eclipse PBC dose calculation algorithm for the Varian Clinac iX S/N 5052

    International Nuclear Information System (INIS)

    The commissioning of the Treatment Planning System (TPS) is an important part of the commissioning of a new linear accelerator (linac). In this work, we evaluated the performance of the Pencil Beam Convolution (PBC) algorithm configured for the new Varian Clinac iX (S/N 5052) at the University Clinic of Radiotherapy and Oncology in Skopje. The evaluation was performed in two stages. In the first stage, we used a workspace of the TPS itself, called “Beam Analysis”, in which the system itself calculates the depth dose and profile curves for a water phantom and compares them with those measured during the commissioning of the accelerator. In the second stage, we created, calculated and irradiated 9 test plans on a polystyrene phantom “OPERA” and measured the dose in a point with a system for absolute dosimetry and then compared the measurements with the calculations. In both stages, the results of the comparison were below 3%, in most clinically relevant cases below 2%, which indicates that the PBC algorithm can safely be commissioned for clinical use. (Author)

  10. Simulation Study on the Feasibility of Gun-Launched Missile Against Attack Helicopters

    Institute of Scientific and Technical Information of China (English)

    王狂飙; 张天桥

    2001-01-01

    The feasibility of providing the tank a limited anti-helicopterability with gun-launched missile is studied. A type of simulation model of gun-launched missile against attack helicopters is established. The simulation and the parameter optimization of missile control system under various circumstances are done. The gun-launched missile can directly hit the helicopters in the typical tracks, all the missdistances are less than 1 m and the maximum overload is less than available overload. Gun-launched missile is a feasible choice for tanks against attack helicopters.%研究通过炮射反坦克导弹赋予坦克有限反武装直升机能力的可行性.建立了一种炮射导弹与武装直升机对抗的仿真模型,并在各种情况下进行了系统仿真与导弹控制系统参数优化.经参数优化的炮射导弹在给定的武装直升机各种航迹下,均可直接命中,脱靶量均小于1m,最大过载不超过可用过载.仿真结果表明炮射导弹是坦克对抗武装直升机的一种可行的选择.

  11. LQG controller designs from reduced order models for a launch vehicle

    Indian Academy of Sciences (India)

    Ashwin Dhabale; R N Banavar; M V Dhekane

    2008-02-01

    The suppression of liquid fuel slosh motion is critical in a launch vehicle (LV). In particular, during certain stages of the launch, the dynamics of the fuel interacts adversely with the rigid body dynamics of the LV and the feedback controller must attentuate these effects. This paper describes the effort of a multivariable control approach applied to the Geosynchronous Satellite Launch Vehicle (GSLV) of the Indian Space Research Organization (ISRO) during a certain stage of its launch. The fuel slosh dynamics are modelled using a pendulum model analogy. We describe two design methodologies using the Linear-Quadratic Gaussian (LQG) technique. The novelty of the technique is that we apply the LQG design for models that are reduced in order through inspection alone. This is possible from a perspective that the LV could be viewed as many small systems attached to a main body and the interactions of some of these smaller systems could be neglected at the controller design stage provided sufficient robustness is ensured by the controller. The first LQG design is carried out without the actuator dynamics incorporated at the design stage and for the second design we neglect the slosh dynamics as well.

  12. Launching Science: Science Opportunities Provided by NASA's Constellation System

    Science.gov (United States)

    Committee On Science Opportunities Enabled By NASA's Constellation System National Research Board

    In January 2004 NASA was given a new policy direction known as the Vision for Space Exploration. That plan, now renamed the United States Space Exploration Policy, called for sending human and robotic missions to the Moon, Mars, and beyond. In 2005 NASA outlined how to conduct the first steps in implementing this policy and began the development of a new human-carrying spacecraft known as Orion, the lunar lander known as Altair, and the launch vehicles Ares I and Ares V. Collectively, these are called the Constellation System. In November 2007 NASA asked the National Research Council (NRC) to evaluate the potential for new science opportunities enabled by the Constellation System of rockets and spacecraft. The NRC committee evaluated a total of 17 mission concepts for future space science missions. Of those, the committee determined that 12 would benefit from the Constellation System and five would not. This book presents the committee's findings and recommendations, including cost estimates, a review of the technical feasibility of each mission, and identification of the missions most deserving of future study.

  13. 'Project launch': from research finding to therapeutic product.

    Science.gov (United States)

    Cevc, Gregor

    2014-01-23

    Only 0.1-0.5% of new therapy candidates gains marketing approval; just 10-20% of the approved ones ultimately recoup the ~0.6-0.9$USbn invested into their R&D until marketing authorisation. One reason is the high inherent risk of new therapeutic products development. Further reasons are suboptimal decisions during R&D and, too often, lack of adequate experience. To bridge the latter gap, this article succinctly reviews identification of new product opportunities and their patent protection, the resulting commercial opportunity and portfolio valuation, planning and conduct of the ensuing preclinical and clinical tests, as well as therapeutic product registration and price reimbursement, covering risk management as an aside. The article also clarifies the key terms, identifies the main pit falls, highlights the essential requirements for and the goals of different product development steps, to facilitate communication between researchers and developers. By combining public information with personal experience and recommendations the article aims at informing more broadly those who are familiar mainly with some of the (strictly regulated) activities involved in design, development and launch of new therapeutic products, be it that they are medicinal products or medical devices. Taken together, this should support initiation and evolution of new therapeutic products and assist researchers in finding-and better and more smoothly co-operating with-consultants or partners in development and marketing.

  14. Louisiana Marinas and Boat Launches, Geographic NAD83, LOSCO (2004) [marinas_LOSCO_2004

    Data.gov (United States)

    Louisiana Geographic Information Center — The dataset defines the location and supplemental information for marinas and boat launches in southern Louisiana. The boat launch database includes public and...

  15. Aerodynamic flight control to increase payload capability of future launch vehicles

    Science.gov (United States)

    Cochran, John E., Jr.; Cheng, Y.-M.; Leleux, Todd; Bigelow, Scott; Hasbrook, William

    1993-01-01

    In this report, we provide some examples of French, Russian, Chinese, and Japanese launch vehicles that have utilized fins in their designs. Next, the aerodynamic design of the fins is considered in Section 3. Some comments on basic static stability and control theory are followed by a brief description of an aerodynamic characteristics prediction code that was used to estimate the characteristics of a modified NLS 1.5 Stage vehicle. Alternative fin designs are proposed and some estimated aerodynamic characteristics presented and discussed. Also included in Section 3 is a discussion of possible methods of enhancement of the aerodynamic efficiency of fins, such as vortex generators and jet flaps. We consider the construction of fins for launch vehicles in Section 4 and offer an assessment of the state-of-the-art in the use of composites for aerodynamic control surfaces on high speed vehicles. We also comment on the use of smart materials for launch vehicle fins. The dynamic stability and control of a launch vehicle that utilizes both thrust vector control (engine nozzle gimballing) and movable fins is the subject addressed in Section 5. We give a short derivation of equations of motion for a launch vehicle moving in a vertical plane above a spherical earth, discuss the use of a gravity-turn nominal trajectory, and give the form of the period equations linearized about such a nominal. We then consider feedback control of vehicle attitude using both engine gimballing and fin deflection. Conclusions are stated and recommendations made in Section 6. An appendix contains aerodynamic data in tabular and graphical formats.

  16. Collaborative Sounding Rocket launch in Alaska and Development of Hybrid Rockets

    Science.gov (United States)

    Ono, Tomohisa; Tsutsumi, Akimasa; Ito, Toshiyuki; Kan, Yuji; Tohyama, Fumio; Nakashino, Kyouichi; Hawkins, Joseph

    Tokai University student rocket project (TSRP) was established in 1995 for a purpose of the space science and engineering hands-on education, consisting of two space programs; the one is sounding rocket experiment collaboration with University of Alaska Fairbanks and the other is development and launch of small hybrid rockets. In January of 2000 and March 2002, two collaborative sounding rockets were successfully launched at Poker Flat Research Range in Alaska. In 2001, the first Tokai hybrid rocket was successfully launched at Alaska. After that, 11 hybrid rockets were launched to the level of 180-1,000 m high at Hokkaido and Akita in Japan. Currently, Tokai students design and build all parts of the rockets. In addition, they are running the organization and development of the project under the tight budget control. This program has proven to be very effective in providing students with practical, real-engineering design experience and this program also allows students to participate in all phases of a sounding rocket mission. Also students learn scientific, engineering subjects, public affairs and system management through experiences of cooperative teamwork. In this report, we summarize the TSRP's hybrid rocket program and discuss the effectiveness of the program in terms of educational aspects.

  17. FastIO: Eliminating the Deserialization Overhead in Launching Web Applications

    Directory of Open Access Journals (Sweden)

    Jaemin Jung

    2015-09-01

    Full Text Available Web applications are launched by Webkit engine. Dominant fraction of launch latency is spent on serializing the resource file. Webkit engine loads the HTML format based resources from the storage device, and converts them to memory representation creating DOM (Document Object Model tree and render tree. The overhead of this deserialization is excessive and the modern web applications suffers from tens of a second in application launch latency. We develop a new software layer FastIO. FastIO maps a file system region to memory and uses this memory region to persistently store the tree representation, e.g., DOM tree and render tree, of the resources directly to the storage device. The FastIO layer eliminates the overhead of serializing and deserializing the HTML based resources; parsing the documents, and creating DOM tree and render tree. We implement FastIO layer in commodity PC and adopted FastIO on the Webkit engine. With FastIO, the speed of launching an application increases by 44.8x, 7.9x, and 2.9x when the resource files reside in ramdisk, SSD, and eMMC, respectively.

  18. Orion Launch Abort Vehicle Attitude Control Motor Testing

    Science.gov (United States)

    Murphy, Kelly J.; Brauckmann, Gregory J.; Paschal, Keith B.; Chan, David T.; Walker, Eric L.; Foley, Robert; Mayfield, David; Cross, Jared

    2011-01-01

    Current Orion Launch Abort Vehicle (LAV) configurations use an eight-jet, solid-fueled Attitude Control Motor (ACM) to provide required vehicle control for all proposed abort trajectories. Due to the forward position of the ACM on the LAV, it is necessary to assess the effects of jet-interactions (JI) between the various ACM nozzle plumes and the external flow along the outside surfaces of the vehicle. These JI-induced changes in flight control characteristics must be accounted for in developing ACM operations and LAV flight characteristics. A test program to generate jet interaction aerodynamic increment data for multiple LAV configurations was conducted in the NASA Ames and NASA Langley Unitary Plan Wind Tunnels from August 2007 through December 2009. Using cold air as the simulant gas, powered subscale models were used to generate interaction data at subsonic, transonic, and supersonic test conditions. This paper presents an overview of the complete ACM JI experimental test program for Orion LAV configurations, highlighting ACM system modeling, nozzle scaling assumptions, experimental test techniques, and data reduction methodologies. Lessons learned are discussed, and sample jet interaction data are shown. These data, in conjunction with computational predictions, were used to create the ACM JI increments for all relevant flight databases.

  19. Occurrence of potentially hazardous GRBs launched in globular clusters

    CERN Document Server

    Domainko, Wilfried F

    2011-01-01

    Nearby, Galactic gamma-ray bursts (GRBs) may affect the terrestrial biota if their radiation is beamed towards the Earth. Compact stellar binary mergers are possible central engines of short GRBs and their rate could be boosted in globular clusters. Globular cluster typically follow well defined orbits around the galactic center. Therefore their position relative to the solar system can be calculated back in time. This fact is used to demonstrate that globular cluster - solar system encounters define possible points in time when a nearby GRB could have exploded. Additionally, potential terrestrial signatures in the geological record connected to such an event are discussed. Assuming rates of GRBs launched in globular cluster found from the redshift distribution of short burst and adopting the current globular cluster space-density around the solar system it is found that the expected minimal distance d_min for such a GRB in the last Gyr is in the range d_min ~ 1 - 3.5 kpc. From the average gamma-ray luminosit...

  20. Procurement Service launches new eLearning module

    CERN Multimedia

    2015-01-01

    The Procurement Service has launched a training module covering “Procurement of supplies at CERN up to 200,000 CHF” in the form of an eLearning, accessible to all users involved in the procurement process. A long version (30 minutes) and a short version (10 minutes) are now available via this link.   The objectives of this eLearning module are as follows: To improve users' knowledge of the Procurement Rules to facilitate the successful completion of a DAI. This will ensure their DAI is processed as quickly as possible; To decrease the number of single tender requests and to avoid non compliant procurement practices such as the fragmentation of requirements into smaller orders. The eLearning module in its short version covers a range of topics, including the role of the technical officer, estimation of order amount (and the subsequent procedure to follow) and preparation and completion of the DAI form. The longer version also includes useful informati...

  1. Chunk projectile launch using the Sandia Hypervelocity Launcher Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chhabildas, L.C.; Trucano, T.G.; Reinhart, W.D.; Hall, C.A.

    1994-07-01

    An experimental technique is described to launch an intact ``chunk,`` i.e. a 0.3 cm thick by 0.6 cm diameter cylindrical titanium alloy (Ti-6Al-4V) flyer, to 10.2 km/s. The ability to launch fragments having such an aspect ratio is important for hypervelocity impact phenomenology studies. The experimental techniques used to accomplish this launch were similar but not identical to techniques developed for the Sandia HyperVelocity Launcher (HVL). A confined barrel impact is crucial in preventing the two-dimensional effects from dominating the loading response of the projectile chunk. The length to diameter ratio of the metallic chunk that is launched to 10.2 km/s is 0.5 and is an order of magnitude larger than those accomplished using the conventional hypervelocity launcher. The multi-dimensional, finite-difference (finite-volume), hydrodynamic code CTH was used to evaluate and assess the acceleration characteristics i.e., the in-bore ballistics of the chunky projectile launch. A critical analysis of the CTH calculational results led to the final design and the experimental conditions that were used in this study. However, the predicted velocity of the projectile chunk based on CTH calculations was {approximately} 6% lower than the measured velocity of {approximately}10.2 km/S.

  2. Improving Application Launch Performance on Solid State Drives

    Institute of Scientific and Technical Information of China (English)

    Yongsoo Joo; Junhee Ryu; Sangsoo Park; Kang G.Shin

    2012-01-01

    Application launch performance is of great importance to system platform developers and vendors as it greatly affects the degree of users' satisfaction.The single most effective way to improve application launch performance is to replace a hard disk drive (HDD) with a solid state drive (SSD),which has recently become affordable and popular.A natural question is then whether or not to replace the traditional HDD-aware application launchers with a new SSD-aware optimizer.We address this question by analyzing the inefficiency of the HDD-aware application launchers on SSDs and then proposing a new SSD-aware application prefetching scheme,called the Fast Application STarter (FAST).The key idea of FAST is to overlap the computation (CPU) time with the SSD access (I/O) time during an application launch.FAST is composed of a set of user-level components and system debugging tools provided by Linux OS (operating system).Hence,FAST can be easily deployed in any recent Linux versions without kernel recompilation.We implement FAST on a desktop PC with an SSD running Linux 2.6.32 OS and evaluate it by launching a set of widely-used applications,demonstrating an average of 28% reduction of application launch time as compared to PC without a prefetcher.

  3. Overview of the Pegasus Air-Launched Space Booster

    Science.gov (United States)

    Lindberg, Robert E.

    1989-09-01

    The Pegasus Air-Launched Space Booster is an innovative new space launch vehicle now under full-scale development in a privately-funded joint venture by Orbital Sciences Corporation (OSC) and Hercules Aerospace Company. Pegasus is a three-stage, solid-propellant, inertially-guided, all-composite winged vehicle that is launched at an altitude of 40,000 ft from its carrier aircraft. The 41,000 lb vehicle can deliver payloads as massive as 900 lb to low earth orbit. This status report on the Pegasus developemt program first details the advantages of the airborne launch concept, then describes the design and performance of the Pegasus vehicle and conlcludes with a review of the progress of the program from its conception in April 1987 through September 1989. First launch of Pegasus is scheduled for October 31, 1989, under contract to the Defense Advanced Research Projects Agency (DARPA). The second flight under the DARPA contract will be held several months later.

  4. 导弹水下发射筒口气泡特性研究%Research on the Outlet Cavity Features during the Launch of Submarine Launched Missile

    Institute of Scientific and Technical Information of China (English)

    王亚东; 袁绪龙; 覃东升

    2011-01-01

    潜射导弹通常采用燃气—蒸汽弹射装置发射,弹尾离筒阶段筒口发生强烈的水-气交互作用,形成筒口气泡,该气泡的发展过程对发射平台会造成不利影响.采用CFD软件FLUENT对导弹离筒过程筒口气泡的发展及其对发射平台的影响进行了数值模拟.然后,给出了艇体不同位置压力脉动规律及其受发射深度的影响规律.仿真结果表明,压力监测数据与实验测量结果吻合良好,验证了研究方法的有效性.%Submarine launched missiles are usually ejected by a gas-steam ejection system. In the separating process of missile tail and canister outlet, there is a strong interaction between water and gas, and a cavity is formed in front of the canister outlet. The cavity' s development affects the launch platform.CFD software FLUENT was used to simulate the process of cavity development and its effect on the launch platform. The pressure pulsations on the different places of the submarine surface and their effect on launch deep were affected by depth were investigated. The simulated result shows that the simulated data is agreement with the experiment data, and the investigation method is valid.

  5. Implementing planetary protection on the Atlas V fairing and ground systems used to launch the Mars Science Laboratory.

    Science.gov (United States)

    Benardini, James N; La Duc, Myron T; Ballou, David; Koukol, Robert

    2014-01-01

    On November 26, 2011, the Mars Science Laboratory (MSL) launched from Florida's Cape Canaveral Air Force Station aboard an Atlas V 541 rocket, taking its first step toward exploring the past habitability of Mars' Gale Crater. Because microbial contamination could profoundly impact the integrity of the mission, and compliance with international treaty was a necessity, planetary protection measures were implemented on all MSL hardware to verify that bioburden levels complied with NASA regulations. The cleanliness of the Atlas V payload fairing (PLF) and associated ground support systems used to launch MSL were also evaluated. By applying proper recontamination countermeasures early and often in the encapsulation process, the PLF was kept extremely clean and was shown to pose little threat of recontaminating the enclosed MSL flight system upon launch. Contrary to prelaunch estimates that assumed that the interior PLF spore burden ranged from 500 to 1000 spores/m², the interior surfaces of the Atlas V PLF were extremely clean, housing a mere 4.65 spores/m². Reported here are the practices and results of the campaign to implement and verify planetary protection measures on the Atlas V launch vehicle and associated ground support systems used to launch MSL. All these facilities and systems were very well kept and exceeded the levels of cleanliness and rigor required in launching the MSL payload.

  6. NASA's Space Launch System: A New Opportunity for CubeSats

    Science.gov (United States)

    Robinson, Kimberly F.; Hitt, David; Creech, Stephen D.

    2016-01-01

    Designed for human exploration missions into deep space, NASA's Space Launch System (SLS) represents a new spaceflight infrastructure asset, enabling a wide variety of unique utilization opportunities. Together with the Orion crew vehicle and ground operations at NASA's Kennedy Space Center in Florida, SLS is a foundational capability for NASA's Journey to Mars. From the beginning of the SLS flight program, utilization of the vehicle will also include launching secondary payloads, including CubeSats, to deep-space destinations. Currently, SLS is making rapid progress toward readiness for its first launch in 2018, using the initial configuration of the vehicle, which is capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO). On its first flight, Exploration Mission-1, SLS will launch an uncrewed test flight of the Orion spacecraft into distant retrograde orbit around the moon. Accompanying Orion on SLS will be 13 CubeSats, which will deploy in cislunar space. These CubeSats will include not only NASA research, but also spacecraft from industry and international partners and potentially academia. Following its first flight and potentially as early as its second, which will launch a crewed Orion spacecraft into cislunar space, SLS will evolve into a more powerful configuration with a larger upper stage. This configuration will initially be able to deliver 105 t to LEO and will continue to be upgraded to a performance of greater than 130 t to LEO. While the addition of the more powerful upper stage will mean a change to the secondary payload accommodations from Block 1, the SLS Program is already evaluating options for future secondary payload opportunities. Early discussions are also already underway for the use of SLS to launch spacecraft on interplanetary trajectories, which could open additional opportunities for CubeSats. This presentation will include an overview of the SLS vehicle and its capabilities, including the current status of progress toward

  7. Robust adaptive backstepping control for reentry reusable launch vehicles

    Science.gov (United States)

    Wang, Zhen; Wu, Zhong; Du, Yijiang

    2016-09-01

    During the reentry process of reusable launch vehicles (RLVs), the large range of flight envelope will not only result in high nonlinearities, strong coupling and fast time-varying characteristics of the attitude dynamics, but also result in great uncertainties in the atmospheric density, aerodynamic coefficients and environmental disturbances, etc. In order to attenuate the effects of these problems on the control performance of the reentry process, a robust adaptive backstepping control (RABC) strategy is proposed for RLV in this paper. This strategy consists of two-loop controllers designed via backstepping method. Both the outer and the inner loop adopt a robust adaptive controller, which can deal with the disturbances and uncertainties by the variable-structure term with the estimation of their bounds. The outer loop can track the desired attitude by the design of virtual control-the desired angular velocity, while the inner one can track the desired angular velocity by the design of control torque. Theoretical analysis indicates that the closed-loop system under the proposed control strategy is globally asymptotically stable. Even if the boundaries of the disturbances and uncertainties are unknown, the attitude can track the desired value accurately. Simulation results of a certain RLV demonstrate the effectiveness of the control strategy.

  8. A 16 MJ compact pulsed power system for electromagnetic launch.

    Science.gov (United States)

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided. PMID:26233401

  9. Hybrid propulsion for launch vehicle boosters: A program status update

    Science.gov (United States)

    Carpenter, R. L.; Boardman, T. A.; Claflin, S. E.; Harwell, R. J.

    1995-01-01

    Results obtained in studying the origin and suppression of large-amplitude pressure oscillations in a 24 in. diameter hybrid motor using a liquid oxygen/hydroxylterminated polybutadiene/polycyclopentadiene propellant system are discussed. Tests conducted with liquid oxygen flow rates varying from 10 to 40 lbm/sec were designed to gauge the effectiveness of various vaporization chamber flow fields, injector designs, and levels of heat addition in suppressing high-frequency longitudinal mode oscillations. Longitudinal acoustic modes did not arise in any tests. However, initial testing revealed the presence of high-amplitude, sinusoidal, nonacoustic oscillations persisting throughout the burn durations. Analysis showed this to be analogous to chug mode instability in liquid rocket engines brought about by a coupling of motor combustion processes and the liquid oxygen feed system. Analytical models were developed and verified by test data to predict the amplitude and frequency of feed-system-coupled combustion pressure oscillations. Subsequent testing showed that increasing the feed system impedance eliminated the bulk mode instability. This paper documents the work completed to date in performance of the Hybrid Propulsion Technology for Launch Vehicle Boosters Program (NAS8-39942) sponsored by NASA's George C. Marshall Space Flight Center.

  10. POF hydrogen detection sensor systems for launch vehicles applications

    Science.gov (United States)

    Kazemi, Alex A.; Larson, David B.; Wuestling, Mark D.

    2011-06-01

    This paper describes the first successful Plastic Optical Fiber (POF) cable and glass fiber hydrogen detection sensor systems developed for Delta IV Launch Vehicle. Hydrogen detection in space application is very challenging; the hydrogen detection is priority for rocket industry and every transport device or any application where hydrogen is involved. H2 sensors are necessary to monitor the detection possible leak to avoid explosion, which can be highly dangerous. The hydrogen sensors had to perform in temperatures between -18° C to 60° C (0° F to 140° F). The response of the sensor in this temperature regime was characterized to ensure proper response of the sensors to fugitive hydrogen leakage during vehicle ground operations. We developed the first 75 m combination of POF and glass fiber H2 sensors. Performed detail investigation of POF-glass cables for attenuation loss, thermal, humidity, temperature, shock, accelerate testing for life expectancy. Also evaluated absorption, operating and high/low temperatures, and harsh environmental for glass-POF cables connectors. The same test procedures were performed for glass multi mode fiber part of the H2 and O2 sensors. A new optical waveguides was designed and developed to decrease the impact of both noise and long term drift of sensor. A field testing of sensors was performed at NASA Stennis on the Aerospike X-33 to quantify the element of the sensor package that was responsible for hydrogen detection and temperature.

  11. The Launch Region of the SVS13 Outflow

    Science.gov (United States)

    Hodapp, Klaus

    2013-07-01

    We present the results of Keck Telescope laser adaptive optics integral field spectroscopy with OSIRIS of the innermost regions of the NGC1333 SVS13 jet that drives the system of Herbig-Haro objects 7-11. We find a 0.4" long micro-jet traced by the emission of shock-excited [FeII]. Beyond the extent of this jet, we find a series of near-spherical bubbles traced in the lower excitation H 2 1-0 S(1) line. While this most recent outflow activity is directed almost precisely (PA 170°) to the south of SVS13, the older bubbles show a different direction of motion and orientation more towards the south-east, connecting the recent outflow activity to the well-known, poorly collimated HH 7-11 system of Herbig-Haro objects. We postulate that the creation of a series of bubbles and the changes in outflow direction are indicative of a precessing disk. Our velocity-resolved observations of the microjet in the [FeII] emission line at 1.644μm, as well as the HI12-4 and 13-4 (Brackett series) emission lines originating from the accretion disk or jet launch region clearly show the kinematic signature of disk and jet rotation.

  12. First Soviet Sea-Launched Ballistic Rockets

    Directory of Open Access Journals (Sweden)

    Yuri F. Katorin

    2013-03-01

    Full Text Available In the article it is told about the creation of the first generation of Soviet ballistic missiles for the armament of submarines. The basic stages of their development, tests and adoption for the armament are described. Are cited the data about the people, is most which actively participated in these processes.

  13. Towards Hybrid Overset Grid Simulations of the Launch Environment

    Science.gov (United States)

    Moini-Yekta, Shayan

    A hybrid overset grid approach has been developed for the design and analysis of launch vehicles and facilities in the launch environment. The motivation for the hybrid grid methodology is to reduce the turn-around time of computational fluid dynamic simulations and improve the ability to handle complex geometry and flow physics. The LAVA (Launch Ascent and Vehicle Aerodynamics) hybrid overset grid scheme consists of two components: an off-body immersed-boundary Cartesian solver with block-structured adaptive mesh refinement and a near-body unstructured body-fitted solver. Two-way coupling is achieved through overset connectivity between the off-body and near-body grids. This work highlights verification using code-to-code comparisons and validation using experimental data for the individual and hybrid solver. The hybrid overset grid methodology is applied to representative unsteady 2D trench and 3D generic rocket test cases.

  14. Design of advanced turbopump drive turbines for National Launch System application

    Science.gov (United States)

    Huber, F. W.; Johnson, P. D.; Montesdeoca, X. A.; Rowey, R. J.; Griffin, L. W.

    1992-01-01

    The aerodynamic design of advanced fuel and oxidizer pump drive turbine systems being developed for application in the main propulsion system of the National Launch System are discussed. The detail design process is presented along with the final baseline fuel and oxidizer turbine configurations. Computed airfoil surface static pressure distributions and flow characteristics are shown. Both turbine configurations employ unconventional high turning blading (approximately 160 deg) and are expected to provide significant cost and performance benefits in comparison with traditional configurations.

  15. Artificial modification of the ionosphere by launches of rockets which insert space vehicles into orbit

    Science.gov (United States)

    Nagorskii, P. M.; Tarashchuk, Yu. E.

    1993-10-01

    Results are presented from vertical (ionogram) and inclined (frequency and signal strength variations of reference shortwave stations) probing of artificial ionospheric disturbances (AIDs) formed by powerful rockets during the active portion of their flight. Experimental data obtained over the course of several dozen rocket launches are generalized. The processes of evolution of an AID initiated by shock-acoustic waves are studied theoretically and experimentally, together with questions of shortwave radio scattering on such disturbances.

  16. Overview of C/C-SiC Composite Development for the Orion Launch Abort System

    Science.gov (United States)

    Allen, Lee R.; Valentine, Peter G.; Schofield, Elizabeth S.; Beshears, Ronald D.; Coston, James E.

    2012-01-01

    Past and present efforts by the authors to further understanding of the ceramic matrix composite (CMC) material used in the valve components of the Orion Launch Abort System (LAS) Attitude Control Motor (ACM) will be presented. The LAS is designed to quickly lift the Orion Crew Exploration Vehicle (CEV) away from its launch vehicle in emergency abort scenarios. The ACM is a solid rocket motor which utilizes eight throttleable nozzles to maintain proper orientation of the CEV during abort operations. Launch abort systems have not been available for use by NASA on manned launches since the last Apollo ]Saturn launch in 1975. The CMC material, carbon-carbon/silicon-carbide (C/C-SiC), is manufactured by Fiber Materials, Inc. and consists of a rigid 4-directional carbon-fiber tow weave reinforced with a mixed carbon plus SiC matrix. Several valve and full system (8-valve) static motor tests have been conducted by the motor vendor. The culmination of these tests was the successful flight test of the Orion LAS Pad Abort One (PA ]1) vehicle on May 6, 2010. Due to the fast pace of the LAS development program, NASA Marshall Space Flight Center assisted the LAS community by performing a series of material and component evaluations using fired hardware from valve and full ]system development motor tests, and from the PA-1 flight ACM motor. Information will be presented on the structure of the C/C-SiC material, as well as the efficacy of various non ]destructive evaluation (NDE) techniques, including but not limited to: radiography, computed tomography, nanofocus computed tomography, and X-ray transmission microscopy. Examinations of the microstructure of the material via scanning electron microscopy and energy dispersive spectroscopy will also be discussed. The findings resulting from the subject effort are assisting the LAS Project in risk assessments and in possible modifications to the final ACM operational design.

  17. NASA'S Space Launch System Mission Capabilities for Exploration

    Science.gov (United States)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA’s Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA’s future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency’s Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle’s potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle’s evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to

  18. NASA's Space Launch System: Building a New Capability for Discovery

    Science.gov (United States)

    Creech, Stephen D.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. The initial configuration will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As this paper will explain, SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust space launch capability to deliver sustainable solutions for exploration.

  19. Information Flow in the Launch Vehicle Design/Analysis Process

    Science.gov (United States)

    Humphries, W. R., Sr.; Holland, W.; Bishop, R.

    1999-01-01

    This paper describes the results of a team effort aimed at defining the information flow between disciplines at the Marshall Space Flight Center (MSFC) engaged in the design of space launch vehicles. The information flow is modeled at a first level and is described using three types of templates: an N x N diagram, discipline flow diagrams, and discipline task descriptions. It is intended to provide engineers with an understanding of the connections between what they do and where it fits in the overall design process of the project. It is also intended to provide design managers with a better understanding of information flow in the launch vehicle design cycle.

  20. Launch vehicle tracking enhancement through Global Positioning System Metric Tracking

    Science.gov (United States)

    Moore, T. C.; Li, Hanchu; Gray, T.; Doran, A.

    United Launch Alliance (ULA) initiated operational flights of both the Atlas V and Delta IV launch vehicle families in 2002. The Atlas V and Delta IV launch vehicles were developed jointly with the US Air Force (USAF) as part of the Evolved Expendable Launch Vehicle (EELV) program. Both Launch Vehicle (LV) families have provided 100% mission success since their respective inaugural launches and demonstrated launch capability from both Vandenberg Air Force Base (VAFB) on the Western Test Range and Cape Canaveral Air Force Station (CCAFS) on the Eastern Test Range. However, the current EELV fleet communications, tracking, & control architecture & technology, which date back to the origins of the space launch business, require support by a large and high cost ground footprint. The USAF has embarked on an initiative known as Future Flight Safety System (FFSS) that will significantly reduce Test Range Operations and Maintenance (O& M) cost by closing facilities and decommissioning ground assets. In support of the FFSS, a Global Positioning System Metric Tracking (GPS MT) System based on the Global Positioning System (GPS) satellite constellation has been developed for EELV which will allow both Ranges to divest some of their radar assets. The Air Force, ULA and Space Vector have flown the first 2 Atlas Certification vehicles demonstrating the successful operation of the GPS MT System. The first Atlas V certification flight was completed in February 2012 from CCAFS, the second Atlas V certification flight from VAFB was completed in September 2012 and the third certification flight on a Delta IV was completed October 2012 from CCAFS. The GPS MT System will provide precise LV position, velocity and timing information that can replace ground radar tracking resource functionality. The GPS MT system will provide an independent position/velocity S-Band telemetry downlink to support the current man-in-the-loop ground-based commanded destruct of an anomalous flight- The system

  1. Expendable Launch Vehicles Briefing and Basic Rocketry Physics

    Science.gov (United States)

    Delgado, Luis G.

    2010-01-01

    This slide presentation is composed of two parts. The first part shows pictures of launch vehicles and lift offs or in the case of the Pegasus launch vehicle separations. The second part discusses the basic physics of rocketry, starting with Newton's three physical laws that form the basis for classical mechanics. It includes a review of the basic equations that define the physics of rocket science, such as total impulse, specific impulse, effective exhaust velocity, mass ratio, propellant mass fraction, and the equations that combine to arrive at the thrust of the rocket. The effect of atmospheric pressure is reviewed, as is the effect of propellant mix on specific impulse.

  2. Status of the Scorpius Low Cost Launch Services Program

    OpenAIRE

    Bauer, Thomas; Conger, Robert; Keith, Edward; Wertz, James

    1996-01-01

    Scorpius is a Microcosm program to develop an entirely new launch vehicle family with the objective of reducing overall launch system cost by a factor of 10. This paper reports on the progress and problems since the program was publicly introduced at the 9th AIAA/USU Conference. Substantial technical progress has occurred. The 5,000 lb. thrust engine that was created on the day of last year's presentation was successfully test fired for 200 continuous sec on Nov. 28, 1995, with an estimated 1...

  3. On Using Ray-Launching Method for Modeling Rotational Spectrometer

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2008-06-01

    Full Text Available In this paper the ray-launching method is developed and used for the modeling of a rotational spectrometer. Since the electrical size of the spectrometer is several thousands times longer compared to the wavelength, the presented approach is much suitable for the analysis of such huge devices than the classical numerical exact methods such as the fast integral methods. The accuracy of the developed approach is verified on an analysis of a spectrometer component - a lens. Firstly, the lens is analyzed in CST Microwave Studio, and secondly, by the developed ray-launching method. Comparisons show that the accuracy of the developed approach is good.

  4. Launching of Active Galactic Nuclei Jets

    Science.gov (United States)

    Tchekhovskoy, Alexander

    As black holes accrete gas, they often produce relativistic, collimated outflows, or jets. Jets are expected to form in the vicinity of a black hole, making them powerful probes of strong-field gravity. However, how jet properties (e.g., jet power) connect to those of the accretion flow (e.g., mass accretion rate) and the black hole (e.g., black hole spin) remains an area of active research. This is because what determines a crucial parameter that controls jet properties—the strength of large-scale magnetic flux threading the black hole—remains largely unknown. First-principles computer simulations show that due to this, even if black hole spin and mass accretion rate are held constant, the simulated jet powers span a wide range, with no clear winner. This limits our ability to use jets as a quantitative diagnostic tool of accreting black holes. Recent advances in computer simulations demonstrated that accretion disks can accumulate large-scale magnetic flux on the black hole, until the magnetic flux becomes so strong that it obstructs gas infall and leads to a magnetically-arrested disk (MAD). Recent evidence suggests that central black holes in jetted active galactic nuclei and tidal disruptions are surrounded by MADs. Since in MADs both the black hole magnetic flux and the jet power are at their maximum, well-defined values, this opens up a new vista in the measurements of black hole masses and spins and quantitative tests of accretion and jet theory.

  5. Man Launches Multimedia Search for Liver

    Institute of Scientific and Technical Information of China (English)

    CNN International Edition; 张琳

    2004-01-01

    @@ Todd Krampitz's message to the world is simple: He needs a liver to save his life. But the methods he is using to deliver his plea① are unique, employing all the characteristics of a multimedia advertising blitz②, including billboards③, a Web site, a toll-free number④ and media interviews.

  6. DSMC Grid Methodologies for Computing Low-Density, Hypersonic Flows About Reusable Launch Vehicles

    Science.gov (United States)

    Wilmoth, Richard G.; LeBeau, Gerald J.; Carlson, Ann B.

    1996-01-01

    Two different grid methodologies are studied for application to DSMC simulations about reusable launch vehicles. One method uses an unstructured, tetrahedral grid while the other uses a structured, variable-resolution Cartesian grid. The relative merits of each method are discussed in terms of accuracy, computational efficiency, and overall ease of use. Both methods are applied to the computation of a low-density, hypersonic flow about a winged single-stage-to-orbit reusable launch vehicle concept at conditions corresponding to an altitude of 120 km. Both methods are shown to give comparable results for both surface and flowfield quantities as well as for the overall aerodynamic behavior. For the conditions simulated, the flowfield about the vehicle is very rarefied but the DSMC simulations show significant departure from free-molecular predictions for the surface friction and heat transfer as well as certain aerodynamic quantities.

  7. Launch vouchers for space science research

    Science.gov (United States)

    Macauley, Molly K.

    1989-01-01

    Consideration is given to the proposed use of space transportation vouchers for space science payloads. The vouchers would be financially backed by the government, and would be issued to researches for redemption on any mode of space transportation. The possible impact of vouchers on the pace of space science and developments in space transportation are examined, focusing on the costs and benefits of vouchers and strategies for designing a voucher program.

  8. 78 FR 52998 - Waiver to Space Exploration Technologies Corporation of Acceptable Risk Limit for Launch

    Science.gov (United States)

    2013-08-27

    ... launch vehicle will launch from VAFB and place the Cassiope satellite into a near-polar orbit. The launch... anticipated time of launch increase the far field blast overpressure risk. The presence of inversion layers at... inversion layer. Chances of advantageous weather conditions during the day in September that would allow...

  9. CIMT 2003 users service work launched

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ China Machine Tool & Tool Builders' Association (CMTBA), host of the China International Machine Tool Show, deeply believes that high- quality users are the important basis for success of the exhibition and therefore emphasizes highly quality services to users. For a long period of time, CMTBA has established a sound cooperation relationship with the administrative organizations of various customers, representatives from different industries and largesized enterprise groups and corporations. Through providing the customers with consulting services covering various sectors, CMTBA learns, on time, the latest investment plans and purchase targets of the customers. This, in turn, becomes the most efficient means for CMTBA to better serve the exhibitors.

  10. System Engineering Processes at Kennedy Space Center for Development of SLS and Orion Launch Systems

    Science.gov (United States)

    Schafer, Eric; Stambolian, Damon; Henderson, Gena

    2013-01-01

    There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems are developed at the Kennedy Space Center Engineering Directorate. The Engineering Directorate at Kennedy Space Center follows a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Presentation describes this process with examples of where the process has been applied.

  11. DUKSUP: A Computer Program for High Thrust Launch Vehicle Trajectory Design and Optimization

    Science.gov (United States)

    Spurlock, O. Frank; Williams, Craig H.

    2015-01-01

    From the late 1960s through 1997, the leadership of NASAs Intermediate and Large class unmanned expendable launch vehicle projects resided at the NASA Lewis (now Glenn) Research Center (LeRC). One of LeRCs primary responsibilities --- trajectory design and performance analysis --- was accomplished by an internally-developed analytic three dimensional computer program called DUKSUP. Because of its Calculus of Variations-based optimization routine, this code was generally more capable of finding optimal solutions than its contemporaries. A derivation of optimal control using the Calculus of Variations is summarized including transversality, intermediate, and final conditions. The two point boundary value problem is explained. A brief summary of the codes operation is provided, including iteration via the Newton-Raphson scheme and integration of variational and motion equations via a 4th order Runge-Kutta scheme. Main subroutines are discussed. The history of the LeRC trajectory design efforts in the early 1960s is explained within the context of supporting the Centaur upper stage program. How the code was constructed based on the operation of the AtlasCentaur launch vehicle, the limits of the computers of that era, the limits of the computer programming languages, and the missions it supported are discussed. The vehicles DUKSUP supported (AtlasCentaur, TitanCentaur, and ShuttleCentaur) are briefly described. The types of missions, including Earth orbital and interplanetary, are described. The roles of flight constraints and their impact on launch operations are detailed (such as jettisoning hardware on heating, Range Safety, ground station tracking, and elliptical parking orbits). The computer main frames on which the code was hosted are described. The applications of the code are detailed, including independent check of contractor analysis, benchmarking, leading edge analysis, and vehicle performance improvement assessments. Several of DUKSUPs many major impacts on

  12. The Face that Launched a Thousand Slips

    Science.gov (United States)

    Moore, J. M.; Howard, A. D.; Schenk, P.; Thomas, P. C.

    2013-01-01

    Helene, (approximately 17.6 kilometers mean radius) is an L4 Trojan co-orbital of Saturn's moon Dione. Its hemisphere features an unusual morphology consisting of broad depressions and a generally smooth surface patterned with streaks and grooves. The streaks appear to be oriented down-gradient, as are the grooves. This pattern suggests intensive mass-wasting as a dominant process on the leading hemisphere. Kilometer-scale impact craters are very sparse on the leading hemisphere other than the degraded kilometer-scale basins defining the overall satellite shape, and many small craters have a diffuse appearance suggesting ongoing mass wasting. Thus mass wasting must dominate surface-modifying processes at present. In fact, the mass wasting appears to have been sufficient in magnitude to narrow the divides between adjacent basins to narrow septa, similar, but in lower relief, to the honeycomb pattern of Hyperion. The prominent groves occur primarily near topographic divides and appear have cut into a broad, slightly lower albedo surface largely conforming to the present topography but elevated a few meters above the smooth surfaces undergoing mass wasting flow. Low ridges and albedo markings on the surface suggest surface flow of materials traveling up to several kilometers. Diffusive mass wasting produces smooth surfaces - such a pattern characterizes most of the low-lying surfaces. The grooves, however, imply that the transport process is advective at those locations where they occur, that is, erosion tends to concentrate along linear pathways separated by divides. In fact, in many places grooves have a fairly regular spacing of 125-160 meters, defining a characteristic erosional scale. Several questions are prompted by the unusual morphology of Helene: 1) What is the nature of the surface materials? 2) Are the transport processes gradual or catastrophic motion from one or a few events? 3) What mechanisms drive mass wasting and groove development? 4) Have the

  13. Launching of Poynting Jets from Accretion Disks

    CERN Document Server

    Lovelace, R V E

    2009-01-01

    The jets observed to emanate from many compact accreting objects may arise from the twisting of the magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic outflows, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting outflows, where the mass flux is negligible and energy and angular momentum are carried predominantly by the electromagnetic field. We describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks and new relativistic, fully-electromagnetic, particle-in-cell simulations of the formation of jets from accretion disks.

  14. Experiment and simulation of launching process of a small-diameter steel cartridge case

    Institute of Scientific and Technical Information of China (English)

    Han-dong ZHAO; Jia-qing XIE; Zhi-peng LI; Hui-suo ZHANG

    2014-01-01

    In order to explore the rules of the deformation force during the launching of a small-diameter steel cartridge, the semi-closed bomb test method is used to test the greatest strains on chamber outer wall under the different chamber pressures. The pressure curves of cartridge chamber are measured in experiment, and the tensile test data of cartridge are loaded into the numerical calculation to compare with the experimental data. The conclusion was obtained that the calculated results match better with the experimental results by considering strain rate bilinear kinematic hardening material constitutive model. The forces on the various parts of the cartridge during launching and their deformation rules are achieved, in which the equivalent plastic strain decreases and the cylinder ring withstands the maximum equivalent stress when the cartridge case clings to the bore from the mouth to the bottom.

  15. An Optimal Angle of Launching a Point Mass in a Medium with Quadratic Drag Force

    CERN Document Server

    Chudinov, P

    2005-01-01

    A classic problem of the motion of a point mass (projectile) thrown at an angle to the horizon is reviewed. The air drag force is taken into account with the drag factor assumed to be constant. Analytic approach is used for investigation. The problem of finding an optimal angle of launching a point mass in a medium with quadratic drag force is considered. An equation for determining a value of this angle is obtained. After finding the optimal angle of launching, eight main parameters of the point mass motion are analytically determined. These parameters are used to construct analytically six main functional relationships of the problem. Simple analytic formulas are used to solve two problems of optimization aimed to maximize the flight range of a point mass and minimize the initial speed of the point mass for getting to the given point on the plane. The motion of a baseball is presented as an example.

  16. Experiment and simulation of launching process of a small-diameter steel cartridge case

    Directory of Open Access Journals (Sweden)

    Han-dong Zhao

    2014-12-01

    Full Text Available In order to explore the rules of the deformation force during the launching of a small-diameter steel cartridge, the semi-closed bomb test method is used to test the greatest strains on chamber outer wall under the different chamber pressures. The pressure curves of cartridge chamber are measured in experiment, and the tensile test data of cartridge are loaded into the numerical calculation to compare with the experimental data. The conclusion was obtained that the calculated results match better with the experimental results by considering strain rate bilinear kinematic hardening material constitutive model. The forces on the various parts of the cartridge during launching and their deformation rules are achieved, in which the equivalent plastic strain decreases and the cylinder ring withstands the maximum equivalent stress when the cartridge case clings to the bore from the mouth to the bottom.

  17. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    Science.gov (United States)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  18. Lunar exploration phase III: Launch window and trajectory design for a lunar lander

    Science.gov (United States)

    Li, Jingyang; Yang, Hongwei; Baoyin, Hexi

    2015-09-01

    The lunar exploration phase III mission is a part of the China Aerospace Science and Technology Corporation's lunar exploration program that will perform a soft-landing and sample return from the Moon to test the key technologies that are required for human lunar missions. This paper focuses primarily on the trajectory design and orbital launch window generation for a lunar probe that are consistent with the constraints imposed by third phase of lunar exploration. Two categories of trajectories are explored: Earth-to-Moon and Moon-to-Earth. With the patched conic technique, the analytical and modified analytical models of the transfer trajectories are developed. The requirement of high-latitude landing for the return phase trajectory is considered in the modified model. By varying the initial input conditions and with a fast convergence iteration scheme, different characteristics of the transfer trajectory are generated. The orbital launch windows are established to study the mission sensitivities to time and fuel consumption and to provide a launch timetable that is compatible with this mission's requirements. The lunar surface stay time is analyzed for different conditions. The high-fidelity gravitational model is introduced to demonstrate the accuracy and convergence behavior of the analytical solution. The design method can also be used as a basis for the future human lunar missions.

  19. A shadowgraph study of the National Launch System's 1 1/2 stage vehicle configuration and Heavy Lift Launch Vehicle configuration. [Using the Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel

    Science.gov (United States)

    Pokora, Darlene C.; Springer, Anthony M.

    1994-01-01

    A shadowgraph study of the National Launch System's (NLS's) 1 1/2 stage and heavy lift launch vehicle (HLLV) configurations is presented. Shadowgraphs are shown for the range of Mach numbers from Mach 0.6 to 5.0 at various angles-of-attack and roll angles. Since the 1 1/2 stage configuration is generally symmetric, no shadowgraphs of any roll angle are shown for this configuration. The major flow field phenomena over the NLS 1 1/2 stage and HLLV configurations are shown in the shadowgraphs. These shadowgraphs are used in the aerothermodynamic analysis of the external flow conditions the launch vehicle would encounter during the ascent stage of flight. The shadowgraphs presented in this study were obtained from configurations tested in the Marshall Space Flight Center's 14-Inch Trisonic Wind Tunnel during 1992.

  20. An analysis of three post launch evasion strategies

    OpenAIRE

    Forrest, R. N.

    1984-01-01

    The report addresses three post launch evasion strategies, velocity distribution which results in a uniform position between two concentric circles at any time is derived in an appendix. Prepared for: Strategic Systems Projects Office, Arlington, VA http://archive.org/details/analysisofthreep00forr N0003033AF31319 NA