WorldWideScience

Sample records for ares i-x flight

  1. Ares I-X Flight Test Philosophy

    Science.gov (United States)

    Davis, S. R.; Tuma, M. L.; Heitzman, K.

    2007-01-01

    In response to the Vision for Space Exploration, the National Aeronautics and Space Administration (NASA) has defined a new space exploration architecture to return humans to the Moon and prepare for human exploration of Mars. One of the first new developments will be the Ares I Crew Launch Vehicle (CLV), which will carry the Orion Crew Exploration Vehicle (CEV), into Low Earth Orbit (LEO) to support International Space Station (ISS) missions and, later, support lunar missions. As part of Ares I development, NASA will perform a series of Ares I flight tests. The tests will provide data that will inform the engineering and design process and verify the flight hardware and software. The data gained from the flight tests will be used to certify the new Ares/Orion vehicle for human space flight. The primary objectives of this first flight test (Ares I-X) are the following: Demonstrate control of a dynamically similar integrated Ares CLV/Orion CEV using Ares CLV ascent control algorithms; Perform an in-flight separation/staging event between an Ares I-similar First Stage and a representative Upper Stage; Demonstrate assembly and recovery of a new Ares CLV-like First Stage element at Kennedy Space Center (KSC); Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics and parachute performance; and Characterize the magnitude of the integrated vehicle roll torque throughout the First Stage (powered) flight. This paper will provide an overview of the Ares I-X flight test process and details of the individual flight tests.

  2. The Development of the Ares I-X Flight Test

    Science.gov (United States)

    Ess, Robert H.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Ares I Crew Launch Vehicle (CLV) and the Orion Crew Exploration Vehicle (CEV). Ares I-X was created as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight vehicle is an early operational model of Ares, with specific emphasis on Ares I and ground operation characteristics necessary to meet Ares I-X flight test objectives. Ares I-X will encompass the design and construction of an entire system that includes the Flight Test Vehicle (FTV) and associated operations. The FTV will be a test model based on the Ares I design. Select design features will be incorporated in the FTV design to emulate the operation of the CLV in order to meet the flight test objectives. The operations infrastructure and processes will be customized for Ares I-X, while still providing data to inform the developers of the launch processing system for Ares/Orion. The FTV is comprised of multiple elements and components that will be developed at different locations. The components will be delivered to the launch/assembly site, Kennedy Space Center (KSC), for assembly of the elements and components into an integrated, flight-ready, launch vehicle. The FTV will fly a prescribed trajectory in order to obtain the necessary data to meet the objectives. Ares I-X will not be commanded or controlled from the ground during flight, but the FTV will be equipped with telemetry systems, a data recording capability and a flight termination system (FTS). The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation representative of the CLV. The in-flight test also includes separation of the Upper Stage Simulator (USS) from the First Stage and recovery of the First Stage. The data retrieved from the flight test will be analyzed

  3. Constellation's First Flight Test: Ares I-X

    Science.gov (United States)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.

  4. Ares I-X Flight Evaluation Tasks in Support of Ares I Development

    Science.gov (United States)

    Huebner, Lawrence D.; Richards, James S.; Coates, Ralph H., III; Cruit, Wendy D.; Ramsey, Matthew N.

    2010-01-01

    NASA s Constellation Program successfully launched the Ares I-X Flight Test Vehicle on October 28, 2009. The Ares I-X flight was a development flight test that offered a unique opportunity for early engineering data to impact the design and development of the Ares I crew launch vehicle. As the primary customer for flight data from the Ares I-X mission, the Ares Projects Office established a set of 33 flight evaluation tasks to correlate fight results with prospective design assumptions and models. Included within these tasks were direct comparisons of flight data with pre-flight predictions and post-flight assessments utilizing models and modeling techniques being applied to design and develop Ares I. A discussion of the similarities and differences in those comparisons and the need for discipline-level model updates based upon those comparisons form the substance of this paper. The benefits of development flight testing were made evident by implementing these tasks that used Ares I-X data to partially validate tools and methodologies in technical disciplines that will ultimately influence the design and development of Ares I and future launch vehicles. The areas in which partial validation from the flight test was most significant included flight control system algorithms to predict liftoff clearance, ascent, and stage separation; structural models from rollout to separation; thermal models that have been updated based on these data; pyroshock attenuation; and the ability to predict complex flow fields during time-varying conditions including plume interactions.

  5. Calibration and Flight Results for the Ares I-X 5-Hole Probe

    Science.gov (United States)

    Campbell, Joel F.; Brandon, Jay M.

    2011-01-01

    Flight and calibration results are presented for the Ares I-X 5-hole probe. The probe is calibrated by using a combination of wind tunnel, CFD, and other numerical modeling techniques. This is then applied to the probe flight data and comparisons are made between the vanes and 5-hole probe. Using this and other data it is shown the probe was corrupted by water rendering that measurement unreliable.

  6. Ares I-X Best Estimated Trajectory and Comparison with Pre-Flight Predictions

    Science.gov (United States)

    Karlgaard, Christopher D.; Beck, Roger E.; Derry, Stephen D.; Brandon, Jay M.; Starr, Brett R.; Tartabini, Paul V.; Olds, Aaron D.

    2011-01-01

    The Ares I-X trajectory reconstruction produced best estimated trajectories of the flight test vehicle ascent through stage separation, and of the first and upper stage entries after separation. The trajectory reconstruction process combines on-board, ground-based, and atmospheric measurements to produce the trajectory estimates. The Ares I-X vehicle had a number of on-board and ground based sensors that were available, including inertial measurement units, radar, air- data, and weather balloons. However, due to problems with calibrations and/or data, not all of the sensor data were used. The trajectory estimate was generated using an Iterative Extended Kalman Filter algorithm, which is an industry standard processing algorithm for filtering and estimation applications. This paper describes the methodology and results of the trajectory reconstruction process, including flight data preprocessing and input uncertainties, trajectory estimation algorithms, output transformations, and comparisons with preflight predictions.

  7. Ares I-X First Flight Loss of Vehicle Probability Analysis

    Science.gov (United States)

    Bigler, Mark A.; Cross, Robert B.; Osborn, John H.; Li, Yunnhon

    2011-01-01

    As part of the Constellation (Cx) Program development effort, several test flights were planned to prove concepts and operational capabilities of the new vehicles being developed. The first test, involving the Eastern Test Range, is the Ares I-X launched in 2009. As part of this test, the risk to the general public was addressed to ensure it is within Air Force requirements. This paper describes the methodology used to develop first flight estimates of overall loss of vehicle (LOV) failure probability, specifically for the Ares I-X. The method described in this report starts with the Air Force s generic failure probability estimate for first flight and adjusts the value based on the complexity of the vehicle as compared to the complexity of a generic vehicle. The results estimate a 1 in 9 probability of failure. The paper also describes traditional PRA methods used in this assessment, which were then combined with the updated first flight risk methodology to generate inputs required by the malfunction turn analysis to support estimate of casualty (Ec) calculations as part of the Final Flight Data Package (FFDP) delivered to the Eastern Range for Final Flight Plan Approval.

  8. Comparison of Ares I-X Wind-Tunnel Derived Buffet Environment with Flight Data

    Science.gov (United States)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2011-01-01

    The Ares I-X Flight Test Vehicle (FTV), launched in October 2009, carried with it over 243 buffet verification pressure sensors and was one of the most heavily instrumented launch vehicle flight tests. This flight test represented a unique opportunity for NASA and its partners to compare the wind-tunnel derived buffet environment with that measured during the flight of Ares I-X. It is necessary to define the launch vehicle buffet loads to ensure that structural components and vehicle subsystems possess adequate strength, stress, and fatigue margins when the vehicle structural dynamic response to buffet forcing functions are considered. Ares I-X buffet forcing functions were obtained via wind-tunnel testing of a rigid buffet model (RBM) instrumented with hundreds of unsteady pressure transducers designed to measure the buffet environment across the desired frequency range. This paper discusses the comparison of RBM and FTV buffet environments, including fluctuating pressure coefficient and normalized sectional buffet forcing function root-mean-square magnitudes, frequency content of power-spectral density functions, and force magnitudes of an alternating flow phenomena. Comparison of wind-tunnel model and flight test vehicle buffet environments show very good agreement with root-mean-square magnitudes of buffet forcing functions at the majority of vehicle stations. Spectra proved a challenge to compare because of different wind-tunnel and flight test conditions and data acquisition rates. However, meaningful and promising comparisons of buffet spectra are presented. Lastly, the buffet loads resulting from the transition of subsonic separated flow to supersonic attached flow were significantly over-predicted by wind-tunnel results.

  9. Ares I-X Flight Test Development Challenges and Success Factors

    Science.gov (United States)

    Askins, Bruce; Davis, Steve; Olsen, Ronald; Taylor, James

    2010-01-01

    The NASA Constellation Program's Ares I-X rocket launched successfully on October 28, 2009 collecting valuable data and providing risk reduction for the Ares I project. The Ares I-X mission was formulated and implemented in less than four years commencing with the Exploration Systems Architecture Study in 2005. The test configuration was founded upon assets and processes from other rocket programs including Space Shuttle, Atlas, and Peacekeeper. For example, the test vehicle's propulsion element was a Shuttle Solid Rocket Motor. The Ares I-X rocket comprised a motor assembly, mass and outer mold line simulators of the Ares I Upper Stage, Orion Spacecraft and Launch Abort System, a roll control system, avionics, and other miscellaneous components. The vehicle was 327 feet tall and weighed approximately 1,800,000 pounds. During flight the rocket reached a maximum speed of Mach 4.8 and an altitude of 150,000 feet. The vehicle demonstrated staging at 130,000 feet, tested parachutes for recovery of the motor, and utilized approximately 900 sensors for data collection. Developing a new launch system and preparing for a safe flight presented many challenges. Specific challenges included designing a system to withstand the environments, manufacturing large structures, and re-qualifying heritage hardware. These and other challenges, if not mitigated, may have resulted in test cancellation. Ares I-X succeeded because the mission was founded on carefully derived objectives, led by decisive and flexible management, implemented by an exceptionally talented and dedicated workforce, and supported by a thorough independent review team. Other major success factors include the use of proven heritage hardware, a robust System Integration Laboratory, multi-NASA center and contractor team, concurrent operations, efficient vehicle assembly, effective risk management, and decentralized element development with a centralized control board. Ares I-X was a technically complex test that

  10. NASA Aerosciences Perspective on Proposed De-Scope of Ares I-X Development Flight Instrumentation

    Science.gov (United States)

    Schuster, David M.

    2009-01-01

    This position paper is written as a result of a number of emails and a presentation that have recently been circulated concerning the potential reduction of Development Flight Instrumentation (DFI) to be included on the Ares I-X flight test vehicle. A reduction in instrumentation has been proposed presumably to reduce project costs and relieve project schedule pressures. This proposal has generated a significant amount of discussion on both sides of the issue, primarily from those within the project. The intention here is to provide a perspective on this issue from outside the mainline project.

  11. Operational Lessons Learned from the Ares I-X Flight Test

    Science.gov (United States)

    Davis, Stephan R.

    2010-01-01

    The Ares I-X flight test, launched in 2009, is the first test of the Ares I crew launch vehicle. This development flight test evaluated the flight dynamics, roll control, and separation events, but also provided early insights into logistical, stacking, launch, and recovery operations for Ares I. Operational lessons will be especially important for NASA as the agency makes the transition from the Space Shuttle to the Constellation Program, which is designed to be less labor-intensive. The mission team itself comprised only 700 individuals over the life of the project compared to the thousands involved in Shuttle and Apollo missions; while missions to and beyond low-Earth orbit obviously will require additional personnel, this lean approach will serve as a model for future Constellation missions. To prepare for Ares I-X, vehicle stacking and launch infrastructure had to be modified at Kennedy Space Center's Vehicle Assembly Building (VAB) as well as Launch Complex (LC) 39B. In the VAB, several platforms and other structures designed for the Shuttle s configuration had to be removed to accommodate the in-line, much taller Ares I-X. Vehicle preparation activities resulted in delays, but also in lessons learned for ground operations personnel, including hardware deliveries, cable routing, transferred work and custodial paperwork. Ares I-X also proved to be a resource challenge, as individuals and ground service equipment (GSE) supporting the mission also were required for Shuttle or Atlas V operations at LC 40/41 at Cape Canaveral Air Force Station. At LC 39B, several Shuttle-specific access arms were removed and others were added to accommodate the in-line Ares vehicle. Ground command, control, and communication (GC3) hardware was incorporated into the Mobile Launcher Platform (MLP). The lightning protection system at LC 39B was replaced by a trio of 600-foot-tall towers connected by a catenary wire to account for the much greater height of the vehicle. Like Shuttle

  12. The Application of Lean Thinking Principles and Kaizen Practices for the Successful Development and Implementation of the Ares I-X Flight Test Rocket and Mission

    Science.gov (United States)

    Askins, B. R.; Davis, S. R.; Heitzman, K. S.; Olsen, R. A.

    2011-01-01

    On October 28, 2009 the Ares I-X flight test rocket launched from Kennedy Space Center and flew its suborbital trajectory as designed. The mission was successfully completed as data from the test, and associated development activities were analyzed, transferred to stakeholders, and well documented. A positive lesson learned from Ares I-X was that the application of lean thinking principles and kaizen practices was very effective in streamlining development activities. Ares I-X, like other historical rocket development projects, was hampered by technical, cost, and schedule challenges and if not addressed boldly could have resulted in cancellation of the test. The mission management team conducted nine major meetings, referred to as lean events, across its elements to assess plans, procedures, processes, requirements, controls, culture, organization, use of resources, and anything that could be changed to optimize schedule or reduce risk. The preeminent aspect of the lean events was the focus on value added activities and the removal or at least reduction in non-value added activities. Trained Lean Six Sigma facilitators assisted the Ares I-X developers in conducting the lean events. They indirectly helped formulate the mission s own unique methodology for assessing schedule. A core team was selected to lead the events and report to the mission manager. Each activity leveraged specialized participants to analyze the subject matter and its related processes and then recommended alternatives and solutions. Stakeholders were the event champions. They empowered and encouraged the team to succeed. The keys to success were thorough preparation, honest dialog, small groups, adherence to the Ares I-X ground rules, and accountability through disciplined reporting and tracking of actions. This lean event formula was game-changing as demonstrated by Ares I-X. It is highly recommended as a management tool to help develop other complex systems efficiently. The key benefits for

  13. Ares I-X Best Estimated Trajectory Analysis and Results

    Science.gov (United States)

    Karlgaard, Christopher D.; Beck, Roger E.; Starr, Brett R.; Derry, Stephen D.; Brandon, Jay; Olds, Aaron D.

    2011-01-01

    The Ares I-X trajectory reconstruction produced best estimated trajectories of the flight test vehicle ascent through stage separation, and of the first and upper stage entries after separation. The trajectory reconstruction process combines on-board, ground-based, and atmospheric measurements to produce the trajectory estimates. The Ares I-X vehicle had a number of on-board and ground based sensors that were available, including inertial measurement units, radar, air-data, and weather balloons. However, due to problems with calibrations and/or data, not all of the sensor data were used. The trajectory estimate was generated using an Iterative Extended Kalman Filter algorithm, which is an industry standard processing algorithm for filtering and estimation applications. This paper describes the methodology and results of the trajectory reconstruction process, including flight data preprocessing and input uncertainties, trajectory estimation algorithms, output transformations, and comparisons with preflight predictions.

  14. Ares I-X Ground Diagnostic Prototype

    Data.gov (United States)

    National Aeronautics and Space Administration — The automation of pre-launch diagnostics for launch vehicles offers three potential benefits: improving safety, reducing cost, and reducing launch delays. The Ares...

  15. Ares I-X Roll Control System Development

    Science.gov (United States)

    Unger, Ronald J.; Massey, Edmund C.

    2009-01-01

    Project Managers often face challenging technical, schedule and budget issues. This presentation will explore how the Ares I-X Roll Control System Integrated Product Team (IPT) mitigated challenges such as concurrent engineering requirements and environments and evolving program processes, while successfully managing an aggressive project schedule and tight budget. IPT challenges also included communications and negotiations among inter- and intra-government agencies, including the US Air Force, NASA/MSFC Propulsion Engineering, LaRC, GRC, KSC, WSTF, and the Constellation Program. In order to successfully meet these challenges it was essential that the IPT define those items that most affected the schedule critical path, define early mitigation strategies to reduce technical, schedule, and budget risks, and maintain the end-product focus of an "unmanned test flight" context for the flight hardware. The makeup of the IPT and how it would function were also important considerations. The IPT consisted of NASA/MSFC (project management, engineering, and safety/quality) and contractors (Teledyne Brown Engineering and Pratt and Whitney Rocketdyne, who supplied heritage hardware experience). The early decision to have a small focused IPT working "badgelessly" across functional lines to eliminate functional stove-piping allowed for many more tasks to be done by fewer people. It also enhanced a sense of ownership of the products, while still being able to revert back to traditional roles in order to provide the required technical independence in design reviews and verification closures. This presentation will highlight several prominent issues and discuss how they were mitigated and the resulting Lessons Learned that might benefit other projects.

  16. Ares-I-X Vehicle Preliminary Range Safety Malfunction Turn Analysis

    Science.gov (United States)

    Beaty, James R.; Starr, Brett R.; Gowan, John W., Jr.

    2008-01-01

    Ares-I-X is the designation given to the flight test version of the Ares-I rocket (also known as the Crew Launch Vehicle - CLV) being developed by NASA. As part of the preliminary flight plan approval process for the test vehicle, a range safety malfunction turn analysis was performed to support the launch area risk assessment and vehicle destruct criteria development processes. Several vehicle failure scenarios were identified which could cause the vehicle trajectory to deviate from its normal flight path, and the effects of these failures were evaluated with an Ares-I-X 6 degrees-of-freedom (6-DOF) digital simulation, using the Program to Optimize Simulated Trajectories Version 2 (POST2) simulation framework. The Ares-I-X simulation analysis provides output files containing vehicle state information, which are used by other risk assessment and vehicle debris trajectory simulation tools to determine the risk to personnel and facilities in the vicinity of the launch area at Kennedy Space Center (KSC), and to develop the vehicle destruct criteria used by the flight test range safety officer. The simulation analysis approach used for this study is described, including descriptions of the failure modes which were considered and the underlying assumptions and ground rules of the study, and preliminary results are presented, determined by analysis of the trajectory deviation of the failure cases, compared with the expected vehicle trajectory.

  17. Ares I-X Upper Stage Simulator Compartment Pressure Comparisons During Ascent

    Science.gov (United States)

    Downs. William J.; Kirchner, Robert D.; McLachlan, Blair G.; Hand, Lawrence A.; Nelson, Stuart L.

    2011-01-01

    Predictions of internal compartment pressures are necessary in the design of interstage regions, systems tunnels, and protuberance covers of launch vehicles to assess potential burst and crush loading of the structure. History has proven that unexpected differential pressure loads can lead to catastrophic failure. Pressures measured in the Upper Stage Simulator (USS) compartment of Ares I-X during flight were compared to post-flight analytical predictions using the CHCHVENT chamber-to-chamber venting analysis computer program. The measured pressures were enveloped by the analytical predictions for most of the first minute of flight but were outside of the predictions thereafter. This paper summarizes the venting system for the USS, discusses the probable reasons for the discrepancies between the measured and predicted pressures, and provides recommendations for future flight vehicles.

  18. Ares I-X First Stage Internal Aft Skirt Re-Entry Heating Data and Modeling

    Science.gov (United States)

    Schmitz, Craig P.; Tashakkor, Scott B.

    2011-01-01

    The CLVSTATE engineering code is being used to predict Ares-I launch vehicle first stage reentry aerodynamic heating. An engineering analysis is developed which yields reasonable predictions for the timing of the first stage aft skirt thermal curtain failure and the resulting internal gas temperatures. The analysis is based on correlations of the Ares I-X internal aft skirt gas temperatures and has been implemented into CLVSTATE. Validation of the thermal curtain opening models has been accomplished using additional Ares I-X thermocouple, calorimeter and pressure flight data. In addition, a technique which accounts for radiation losses at high altitudes has been developed which improves the gas temperature measurements obtained by the gas temperature probes (GTP). Updates to the CLVSTATE models are shown to improve the accuracy of the internal aft skirt heating predictions which will result in increased confidence in future vehicle designs

  19. Ares I-X Range Safety Simulation and Analysis IV and V

    Science.gov (United States)

    Merry, Carl M.; Brewer, Joan D.; Dulski, Matt B.; Gimenez, Adrian; Barron, Kyle; Tarpley, Ashley F.; Craig, A. Scott; Beaty, Jim R.; Starr, Brett R.

    2011-01-01

    NASA s Ares I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. NASA generated a Range Safety (RS) product data package to meet the RS trajectory data requirements defined in the Air Force Space Command Manual (AFSPCMAN) 91-710. Some products included were a nominal ascent trajectory, ascent flight envelopes, and malfunction turn data. These products are used by the Air Force s 45th Space Wing (45SW) to ensure public safety and to make flight termination decisions on launch day. Due to the criticality of the RS data, an independent validation and verification (IV&V) effort was undertaken to accompany the data generation analyses to ensure utmost data quality and correct adherence to requirements. As a result of the IV&V efforts, the RS product package was delivered with confidence that two independent organizations using separate simulation software generated data to meet the range requirements and yielded similar results. This document captures the Ares I-X RS product IV&V analysis, including the methodology used to verify inputs, simulation, and output data for certain RS products. Additionally a discussion of lessons learned is presented to capture advantages and disadvantages to the IV&V processes used.

  20. Ares I-X Range Safety Simulation Verification and Analysis IV and V

    Science.gov (United States)

    Tarpley, Ashley; Beaty, James; Starr, Brett

    2010-01-01

    NASA s ARES I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. NASA generated a Range Safety (RS) flight data package to meet the RS trajectory data requirements defined in the Air Force Space Command Manual 91-710. Some products included in the flight data package were a nominal ascent trajectory, ascent flight envelope trajectories, and malfunction turn trajectories. These data are used by the Air Force s 45th Space Wing (45SW) to ensure Eastern Range public safety and to make flight termination decisions on launch day. Due to the criticality of the RS data in regards to public safety and mission success, an independent validation and verification (IV&V) effort was undertaken to accompany the data generation analyses to ensure utmost data quality and correct adherence to requirements. Multiple NASA centers and contractor organizations were assigned specific products to IV&V. The data generation and IV&V work was coordinated through the Launch Constellation Range Safety Panel s Trajectory Working Group, which included members from the prime and IV&V organizations as well as the 45SW. As a result of the IV&V efforts, the RS product package was delivered with confidence that two independent organizations using separate simulation software generated data to meet the range requirements and yielded similar results. This document captures ARES I-X RS product IV&V analysis, including the methodology used to verify inputs, simulation, and output data for an RS product. Additionally a discussion of lessons learned is presented to capture advantages and disadvantages to the IV&V processes used.

  1. Ares I-X Management Office (MMO) Integrated Master Schedule (IMS)

    Science.gov (United States)

    Heintzman, Keith; Askins, Bruce

    2010-01-01

    Objectives: Demonstrate control of a dynamically similar, integrated Ares I/Orion, using Ares I relevant ascent control algorithms. Perform an in-flight separation/staging event between a Ares I-similar First Stage and a representative Upper Stage. Demonstrate assembly and recovery of a new Ares I-like First Stage element at KSC. Demonstrate First Stage separation sequencing, and quantify First Stage atmospheric entry dynamics, and parachute performance. Characterize magnitude of integrated vehicle roll torque throughout First Stage flight.

  2. Ares 1X Hybrid Modeling with Comparisons to Flight Data

    Science.gov (United States)

    Niedermaier, Dan; Kaouk, Mo

    2010-01-01

    This slide presentation reviews the Ares 1X test flight and compares the resultant flight data with the results of modeled data from siumulations of the flight. It includes: (1) Ares 1X Flight Summary, (2) Ares 1X Data Summary (3) Model Descriptions (4) Model Comparisons to Flight Data in three areas: (a) Liftoff, (b) Transonic and (c) Roll Control Firings (RCS) Firings.

  3. Elastic-Plastic Fracture Mechanics Analysis of Critical Flaw Size in ARES I-X Flange-to-Skin Welds

    Science.gov (United States)

    Chell, G. Graham; Hudak, Stephen J., Jr.

    2008-01-01

    NASA's Ares 1 Upper Stage Simulator (USS) is being fabricated from welded A516 steel. In order to insure the structural integrity of these welds it is of interest to calculate the critical initial flaw size (CIFS) to establish rational inspection requirements. The CIFS is in turn dependent on the critical final flaw size (CFS), as well as fatigue flaw growth resulting from transportation, handling and service-induced loading. These calculations were made using linear elastic fracture mechanics (LEFM), which are thought to be conservative because they are based on a lower bound, so called elastic, fracture toughness determined from tests that displayed significant plasticity. Nevertheless, there was still concern that the yield magnitude stresses generated in the flange-to-skin weld by the combination of axial stresses due to axial forces, fit-up stresses, and weld residual stresses, could give rise to significant flaw-tip plasticity, which might render the LEFM results to be non-conservative. The objective of the present study was to employ Elastic Plastic Fracture Mechanics (EPFM) to determine CFS values, and then compare these values to CFS values evaluated using LEFM. CFS values were calculated for twelve cases involving surface and embedded flaws, EPFM analyses with and without plastic shakedown of the stresses, LEFM analyses, and various welding residual stress distributions. For the cases examined, the computed CFS values based on elastic analyses were the smallest in all instances where the failures were predicted to be controlled by the fracture toughness. However, in certain cases, the CFS values predicted by the elastic-plastic analyses were smaller than those predicted by the elastic analyses; in these cases the failure criteria were determined by a breakdown in stress intensity factor validity limits for deep flaws (a greater than 0.90t), rather than by the fracture toughness. Plastic relaxation of stresses accompanying shakedown always increases the

  4. 关于满足I(x,y)=I(x,I(x,y))D-蕴涵的解%On D-implications solutions of equation I(x,y) =I(x,I(x,y))

    Institute of Scientific and Technical Information of China (English)

    李伟才; 商美娟; 覃锋; 曹锋

    2012-01-01

    In this paper, function equation Ⅰ(x,y)=Ⅰ(x,Ⅰ(x,y)) is discussed, where D-implication / is generated by a continuous t-norm T , a continuous t-conorm S, and a strong negation n , I.e. Ⅰ(x,y) = S(T(n(x), n(y)),y) .It proposes the solutions of the Ⅰ(x, y)=Ⅰ(x, Ⅰ(x, y)) which is satisfied.%研究了I(x,y)=I(x,y))方程,I为由连续三角模T、连续三角余模S和强否定n生成的D-蕴涵,即I(x,y)=S(T(n(x),n(y)),y),给出了满足方程I(x,y)=I(x,I(x,y))的解.

  5. 14 CFR 61.431 - Are there special provisions for obtaining a flight instructor certificate with a sport pilot...

    Science.gov (United States)

    2010-01-01

    ... a flight instructor certificate with a sport pilot rating for persons who are registered ultralight..., FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.431 Are there special provisions for obtaining a flight instructor certificate with a sport pilot rating...

  6. 14 CFR 61.423 - What are the recordkeeping requirements for a flight instructor with a sport pilot rating?

    Science.gov (United States)

    2010-01-01

    ... a flight instructor with a sport pilot rating? 61.423 Section 61.423 Aeronautics and Space FEDERAL... INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.423 What are the recordkeeping requirements for a flight instructor with a sport pilot rating? (a) As a flight instructor with...

  7. Cassini Attitude Control Operations Flight Rules and How They are Enforced

    Science.gov (United States)

    Burk, Thomas; Bates, David

    2008-01-01

    The Cassini spacecraft was launched on October 15, 1997 and arrived at Saturn on June 30, 2004. It has performed detailed observations and remote sensing of Saturn, its rings, and its satellites since that time. Cassini deployed the European-built Huygens probe which descended through the Titan atmosphere and landed on its surface on January 14, 2005. Operating the Cassini spacecraft is a complex scientific, engineering, and management job. In order to safely operate the spacecraft, a large number of flight rules were developed. These flight rules must be enforced throughout the lifetime of the Cassini spacecraft. Flight rules are defined as any operational limitation imposed by the spacecraft system design, hardware, and software, violation of which would result in spacecraft damage, loss of consumables, loss of mission objectives, loss and/or degradation of science, and less than optimal performance. Flight rules require clear description and rationale. Detailed automated methods have been developed to insure the spacecraft is continuously operated within these flight rules. An overview of all the flight rules allocated to the Cassini Attitude Control and Articulation Subsystem and how they are enforced is presented in this paper.

  8. Pyroshock Simulation Systems: Are We Correctly Qualifying Flight Hardware for Pyroshock Environments?

    Science.gov (United States)

    Kolaini, Ali R.; Nayeri, Reza; Kern, Dennis L.

    2009-01-01

    There are several methods of shock testing that are commonly used by the aerospace industry to qualify flight hardware to pyroshock environments. In some cases the shock results and in particular the shock response spectra computed from these tests were interpreted in such a way as to satisfy the testing requirements and were often considered successful for flight hardware qualification. However, close scrutiny of these acquired shock data suggest gross violation of the pyroshock qualification requirements. There are several issues, both in terms of the shock generation mechanisms and the shock signature acquisition and analysis that have led to improper qualification of flight hardware. In this paper some factors contributing to the misinterpretation of the shock data are reviewed. First, issues with the hardware fixturing and instrumentation that may lead to incorrect shock testing are discussed. Second, issues facing the shock simulation systems and pyrotechnic testing are reviewed. Finally, issues pertaining to the data acquisition and analysis are briefly discussed.

  9. Optimal search patterns in honeybee orientation flights are robust against emerging infectious diseases.

    Science.gov (United States)

    Wolf, Stephan; Nicholls, Elizabeth; Reynolds, Andrew M; Wells, Patricia; Lim, Ka S; Paxton, Robert J; Osborne, Juliet L

    2016-01-01

    Lévy flights are scale-free (fractal) search patterns found in a wide range of animals. They can be an advantageous strategy promoting high encounter rates with rare cues that may indicate prey items, mating partners or navigational landmarks. The robustness of this behavioural strategy to ubiquitous threats to animal performance, such as pathogens, remains poorly understood. Using honeybees radar-tracked during their orientation flights in a novel landscape, we assess for the first time how two emerging infectious diseases (Nosema sp. and the Varroa-associated Deformed wing virus (DWV)) affect bees' behavioural performance and search strategy. Nosema infection, unlike DWV, affected the spatial scale of orientation flights, causing significantly shorter and more compact flights. However, in stark contrast to disease-dependent temporal fractals, we find the same prevalence of optimal Lévy flight characteristics (μ ≈ 2) in both healthy and infected bees. We discuss the ecological and evolutionary implications of these surprising insights, arguing that Lévy search patterns are an emergent property of fundamental characteristics of neuronal and sensory components of the decision-making process, making them robust against diverse physiological effects of pathogen infection and possibly other stressors. PMID:27615605

  10. 14 CFR 61.415 - What are the limits of a flight instructor certificate with a sport pilot rating?

    Science.gov (United States)

    2010-01-01

    ... certificate with a sport pilot rating? 61.415 Section 61.415 Aeronautics and Space FEDERAL AVIATION... GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.415 What are the limits of a flight instructor certificate with a sport pilot rating? If you hold a flight instructor certificate with a...

  11. How Common are Noise Sources on the Crash Arc of Malaysian Flight 370

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kunkle, Thomas David [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stead, Richard J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-21

    Malaysian Flight 370 disappeared nearly without a trace. Besides some communication handshakes to the INMASAT satellite, the Comprehensive Test Ban Treaty monitoring system could have heard the aircraft crash into the southern Indian Ocean. One noise event from Cape Leeuwin has been suggested by Stead as the crash and occurs within the crash location suggested by Kunkle at el. We analyze the hydrophone data from Cape Leeuwin to understand how common such noise events are on the arc of possible locations where Malaysian Flight 370 might have crashed. Few other noise sources were found on the arc. The noise event found by Stead is the strongest. No noise events are seen within the Australian Transportation Safety Board (ATSB) new search location until the 10th strongest event, an event which is very close to the noise level.

  12. 14 CFR 61.413 - What are the privileges of my flight instructor certificate with a sport pilot rating?

    Science.gov (United States)

    2010-01-01

    ... instructor certificate with a sport pilot rating? 61.413 Section 61.413 Aeronautics and Space FEDERAL... INSTRUCTORS, AND GROUND INSTRUCTORS Flight Instructors With a Sport Pilot Rating § 61.413 What are the privileges of my flight instructor certificate with a sport pilot rating? If you hold a fight...

  13. Species-specific flight styles of flies are reflected in the response dynamics of a homologue motion sensitive neuron

    Directory of Open Access Journals (Sweden)

    Bart eGeurten

    2012-03-01

    Full Text Available Hoverflies and blowflies have distinctly different flight styles. Yet, both species have been shown to structure their flight behaviour in a way that facilitates extraction of 3D information from the image flow on the retina (optic flow. Neuronal candidates to analyse the optic flow are the tangential cells in the third optical ganglion – the lobula complex. These neurons are directionally selective and integrate the optic flow over large parts of the visual field. Homologue tangential cells in hoverflies and blowflies have a similar morphology. Because blowflies and hoverflies have similar neuronal layout but distinctly different flight behaviours, they are an ideal substrate to pinpoint potential neuronal adaptations to the different flight styles.In this article we describe the relationship between locomotion behaviour and motion vision on three different levels:1.We compare the different flight styles based on the categorisation of flight behaviour into prototypical movements.2.We measure the species specific dynamics of the optic flow under naturalistic flight conditions. We found the translational optic flow of both species to be very different.3.We describe possible adaptations of a homologue motion sensitive neuron. We stimulate this cell in blowflies (Calliphora and hoverflies (Eristalis with naturalistic optic flow generated by both species during free flight. The characterized hoverfly tangential cell responds faster to transient changes in the optic flow than its blowfly homologue. It is discussed whether and how the different dynamical response properties aid optic flow analysis.

  14. Advanced Manufacturing at the Marshall Space Flight Center and Application to Ares I and Ares V Launch Vehicles

    Science.gov (United States)

    Carruth, Ralph

    2008-01-01

    There are various aspects of advanced manufacturing technology development at the field centers of the National Aeronautics and Space Administration (NASA). The Marshall Space Flight Center (MSFC) has been given the assignment to lead the National Center for Advanced Manufacturing (NCAM) at MSFC and pursue advanced development and coordination with other federal agencies for NASA. There are significant activities at the Marshall Center as well as at the Michoud Assembly Facility (MAF) in New Orleans which we operate in conjunction with the University of New Orleans. New manufacturing processes in metals processing, component development, welding operations, composite manufacturing and thermal protection system material and process development will be utilized in the manufacturing of the United States two new launch vehicles, the Ares I and the Ares V. An overview of NCAM will be presented as well as some of the development activities and manufacturing that are ongoing in Ares Upper Stage development. Some of the tools and equipment produced by Italian owned companies and their application in this work will be mentioned.

  15. Automated telemetry reveals age specific differences in flight duration and speed are driven by wind conditions in a migratory songbird

    OpenAIRE

    Greg W. Mitchell; Woodworth, Bradley K.; Taylor, Philip D.; Norris, D. Ryan

    2015-01-01

    Background Given that winds encountered on migration could theoretically double or half the energy expenditure of aerial migrants, there should be strong selection on behaviour in relation to wind conditions aloft. However, evidence suggests that juvenile songbirds are less choosy about wind conditions at departure relative to adults, potentially increasing energy expenditure during flight. To date, there has yet to be a direct comparison of flight efficiency between free-living adult and juv...

  16. Use of Flexible Body Coupled Loads in Assessment of Day of Launch Flight Loads

    Science.gov (United States)

    Starr, Brett R.; Yunis, Isam; Olds, Aaron D.

    2011-01-01

    A Day of Launch flight loads assessment technique that determines running loads calculated from flexible body coupled loads was developed for the Ares I-X Flight Test Vehicle. The technique was developed to quantify DOL flight loads in terms of structural load components rather than the typically used q-alpha metric to provide more insight into the DOL loads. In this technique, running loads in the primary structure are determined from the combination of quasi-static aerodynamic loads and dynamic loads. The aerodynamic loads are calculated as a function of time using trajectory parameters passed from the DOL trajectory simulation and are combined with precalculated dynamic loads using a load combination equation. The potential change in aerodynamic load due to wind variability during the countdown is included in the load combination. In the event of a load limit exceedance, the technique allows the identification of what load component is exceeded, a quantification of how much the load limit is exceeded, and where on the vehicle the exceedance occurs. This technique was used to clear the Ares I-X FTV for launch on October 28, 2009. This paper describes the use of coupled loads in the Ares I-X flight loads assessment and summarizes the Ares I-X load assessment results.

  17. Female Moth Calling and Flight Behavior Are Altered Hours Following Pheromone Autodetection: Possible Implications for Practical Management with Mating Disruption

    Directory of Open Access Journals (Sweden)

    Lukasz Stelinski

    2014-06-01

    Full Text Available Female moths are known to detect their own sex pheromone—a phenomenon called “autodetection”. Autodetection has various effects on female moth behavior, including altering natural circadian rhythm of calling behavior, inducing flight, and in some cases causing aggregations of conspecifics. A proposed hypothesis for the possible evolutionary benefits of autodetection is its possible role as a spacing mechanism to reduce female-female competition. Here, we explore autodetection in two species of tortricids (Grapholita molesta (Busck and Choristoneura rosaceana (Harris. We find that females of both species not only “autodetect,” but that learning (change in behavior following experience occurs, which affects behavior for at least 24 hours after pheromone pre-exposure. Specifically, female calling in both species is advanced at least 24 hours, but not 5 days, following pheromone pre-exposure. Also, the propensity of female moths to initiate flight and the duration of flights, as quantified by a laboratory flight mill, were advanced in pre-exposed females as compared with controls. Pheromone pre-exposure did not affect the proportion of mated moths when they were confined with males in small enclosures over 24 hours in laboratory assays. We discuss the possible implications of these results with respect to management of these known pest species with the use of pheromone-based mating disruption.

  18. Truncated Levy flights and agenda-based mobility are useful for the assessment of personal human exposure

    International Nuclear Information System (INIS)

    Receptor-oriented approaches can assess the individual-specific exposure to air pollution. In such an individual-based model we analyse the impact of human mobility to the personal exposure that is perceived by individuals simulated in an exemplified urban area. The mobility models comprise random walk (reference point mobility, RPM), truncated Levy flights (TLF), and agenda-based walk (RPMA). We describe and review the general concepts and provide an inter-comparison of these concepts. Stationary and ergodic behaviour are explained and applied as well as performance criteria for a comparative evaluation of the investigated algorithms. We find that none of the studied algorithm results in purely random trajectories. TLF and RPMA prove to be suitable for human mobility modelling, because they provide conditions for very individual-specific trajectories and exposure. Suggesting these models we demonstrate the plausibility of their results for exposure to air-borne benzene and the combined exposure to benzene and nonane. - Highlights: → Human exposure to air pollutants is influenced by a person's movement in the urban area. → We provide a simulation study of approaches to modelling personal exposure. → Agenda-based models and truncated Levy flights are recommended for exposure assessment. → The procedure is demonstrated for benzene exposure in an urban region. - Truncated Levy flights and agenda-based mobility are useful for the assessment of personal human exposure.

  19. MMW radar enhanced vision systems: the Helicopter Autonomous Landing System (HALS) and Radar-Enhanced Vision System (REVS) are rotary and fixed wing enhanced flight vision systems that enable safe flight operations in degraded visual environments

    Science.gov (United States)

    Cross, Jack; Schneider, John; Cariani, Pete

    2013-05-01

    Sierra Nevada Corporation (SNC) has developed rotary and fixed wing millimeter wave radar enhanced vision systems. The Helicopter Autonomous Landing System (HALS) is a rotary-wing enhanced vision system that enables multi-ship landing, takeoff, and enroute flight in Degraded Visual Environments (DVE). HALS has been successfully flight tested in a variety of scenarios, from brown-out DVE landings, to enroute flight over mountainous terrain, to wire/cable detection during low-level flight. The Radar Enhanced Vision Systems (REVS) is a fixed-wing Enhanced Flight Vision System (EFVS) undergoing prototype development testing. Both systems are based on a fast-scanning, threedimensional 94 GHz radar that produces real-time terrain and obstacle imagery. The radar imagery is fused with synthetic imagery of the surrounding terrain to form a long-range, wide field-of-view display. A symbology overlay is added to provide aircraft state information and, for HALS, approach and landing command guidance cuing. The combination of see-through imagery and symbology provides the key information a pilot needs to perform safe flight operations in DVE conditions. This paper discusses the HALS and REVS systems and technology, presents imagery, and summarizes the recent flight test results.

  20. High altitude journeys and flights are associated with an increased risk of flares in inflammatory bowel disease patients

    OpenAIRE

    Vavricka, Stephan R.; Rogler, Gerhard; Maetzler, Sandra; Misselwitz, Benjamin; Safroneeva, Ekaterina; Frei, Pascal; Manser, Christine N.; Biedermann, Luc; Fried, Michael; Higgins, Peter; Wojtal, Kacper A.; Schoepfer, Alain M.

    2014-01-01

    BACKGROUND AND AIMS: Hypoxia can induce inflammation in the gastrointestinal tract. However, the impact of hypoxia on the course of inflammatory bowel disease (IBD) is poorly understood. We aimed to evaluate whether flights and/or journeys to regions lying at an altitude of >2000m above the sea level are associated with flare-ups within 4weeks of the trip. METHODS: IBD patients with at least one flare-up during a 12-month observation period were compared to a group of patients in remission. ...

  1. Hydrogen-Triggered Type I X-ray Bursts in a Two-Zone Model

    OpenAIRE

    Cooper, Randall L.; Narayan, Ramesh

    2007-01-01

    We use the two-zone model of Cooper & Narayan to study the onset and time evolution of hydrogen-triggered type I X-ray bursts on accreting neutron stars. At the lowest accretion rates, thermally unstable hydrogen burning ignites helium as well and produces a mixed hydrogen and helium burst. For somewhat higher accretion rates, thermally unstable hydrogen burning does not ignite helium and thus triggers only a weak hydrogen flash. The peak luminosities of weak hydrogen flashes are typically mu...

  2. Dance type and flight parameters are associated with different mushroom body neural activities in worker honeybee brains.

    Directory of Open Access Journals (Sweden)

    Taketoshi Kiya

    Full Text Available BACKGROUND: Honeybee foragers can transmit the information concerning the location of food sources to their nestmates using dance communication. We previously used a novel immediate early gene, termed kakusei, to demonstrate that the neural activity of a specific mushroom body (MB neuron subtype is preferentially enhanced in the forager brain. The sensory information related to this MB neuron activity, however, remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used kakusei to analyze the relationship between MB neuron activity and types of foraging behavior. The number of kakusei-positive MB neurons was higher in the round dancers that had flown a short distance than in the waggle dancers that had flown a long distance. Furthermore, the amount of kakusei transcript in the MBs inversely related to the waggle-phase duration of the waggle dance, which correlates with the flight distance. Using a narrow tunnel whose inside was vertically or axially lined, we manipulated the pattern of visual input, which is received by the foragers during flight, and analysed kakusei expression. The amount of kakusei transcript in the MBs was related to the foraging frequency but not to the tunnel pattern. In contrast, the number of kakusei-positive MB neurons was affected by the tunnel patterns, but not related to foraging frequency. CONCLUSIONS/SIGNIFICANCE: These results suggest that the MB neuron activity depends on the foraging frequency, whereas the number of active MB neurons is related to the pattern of visual input received during foraging flight. Our results suggest that the foraging frequency and visual experience during foraging are associated with different MB neural activities.

  3. Advanced Resistive Exercise Device (ARED) Flight Software (FSW): A Unique Approach to Exercise in Long Duration Habitats

    Science.gov (United States)

    Mangieri, Mark

    2005-01-01

    ARED flight instrumentation software is associated with an overall custom designed resistive exercise system that will be deployed on the International Space Station (ISS). This innovative software application fuses together many diverse and new technologies into a robust and usable package. The software takes advantage of touchscreen user interface technology by providing a graphical user interface on a Windows based tablet PC, meeting a design constraint of keyboard-less interaction with flight crewmembers. The software interacts with modified commercial data acquisition (DAQ) hardware to acquire multiple channels of sensor measurment from the ARED device. This information is recorded on the tablet PC and made available, via International Space Station (ISS) Wireless LAN (WLAN) and telemetry subsystems, to ground based mission medics and trainers for analysis. The software includes a feature to accept electronically encoded prescriptions of exercises that guide crewmembers through a customized regimen of resistive weight training, based on personal analysis. These electronically encoded prescriptions are provided to the crew via ISS WLAN and telemetry subsystems. All personal data is securely associated with an individual crew member, based on a PIN ID mechanism.

  4. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Otte, Neil E.; Lyles, Garry; Reuter, James L.; Davis, Daniel J.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions. The technical personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo-era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. The Ares Projects Office, resident at Marshall, is managing the design and development of America's new space fleet, including the Ares I, which will loft the Orion crew capsule for its first test flight in the 2013 timeframe, as well as the heavy-lift Ares V, which will round out the capability to leave low-Earth orbit once again, when it delivers the Altair lunar lander to orbit late next decade. This paper provides information about the approach to integrating the Ares I stack and designing the upper stage in house, using unique facilities and an expert workforce to revitalize the nation

  5. Ares I and Ares V First Stage - Powering Exploration

    Science.gov (United States)

    Priskos, Alex S.; Williams, Thomas J.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) Ares Projects Office (APO) is continuing to make progress toward the final design of the first stage propulsion system for the Ares I crew launch vehicle and the Ares V cargo launch vehicle. Ares I and Ares V will provide the space launch capabilities needed to fulfill NASA' s exploration strategy of sending human beings to the Moon, Mars, and beyond. As primary propulsion for the Ares launch vehicles, the Space Shuttle-derived Reusable Solid Rocket Motor (RSRM) is one of the first and most important components to be tested. The first flight of Ares I, called Ares I-X, will occur in April 2009, with booster integration to begin at Kennedy Space Center (KSC) by autumn 2008. The Ares I-X flight will use a combination of flight and simulation hardware to obtain data on controlling the long and narrow crew launch vehicle configuration. The test will use a four-segment RSRM from the Shuttle inventory and a fifth spacer segment to simulate the size and weight of the operational five-segment motor to be used on later flights. The upper stage, Orion crew exploration vehicle, and launch abort system will all be replaced with simulator hardware. Manufacturing work has begun on the spacer segment, as well as the new forward hardware for the booster. Atlas V avionics will be adapted to control Ares I-X' s first stage. That hardware is undergoing hardware-in-the-loop testing in a contractor-provided systems integration laboratory (SIL); a critical design review (CDR) was completed in December 2007. Drogue and main parachute drop tests have also been conducted successfully at Yuma Proving Grounds, allowing the First Stage team to begin fabricating parachutes for Ares I-X. The Ares I-X flight test will be the first flight test for the parachutes. A series of preliminary design technical interchange meetings is being conducted prior to the Ares I-X CDR in January 2007 to ensure readiness for the flight. Much of the First

  6. Collateral patient doses in the Varian 21iX radiotherapy Linac

    International Nuclear Information System (INIS)

    Full text: The radiotherapy aim is to irradiate the patient tumor cells while the doses in healthy tissue remains as low as possible. Nevertheless, when high photon energy accelerators are used, collateral undesired photon and neutron doses are always implied during the treatments and became more important with the new accelerators and techniques as IMRT. To assess secondary cancer risk outside the treatment volume as a long-term medical consequence of treatments, the total doses received by each patient outside the primary field during his treatment must be estimated. To achieve this purpose photon and neutron dose equivalents Hp(10) and H*(10) has been measured in a new Varian 21iX with maximum photon energy of 15 MV placed recently in our radiotherapy department. Three devices: 1) a neutron dose rate meter BERTHOLD LB 4111 calibrated recently in the German PTB laboratory, 2) a calibrated environmental pressurized photon ionization chamber (IC) VICTOREEN 450-PI n/s 1020, and 3) a calibrated personal electronic photon dosimeter GAMMACOM 4200M, were placed above the treatment couch outside the primary field while the Varian 21iX reference test were done. In particular the photon and neutron doses in the couch were measured while a water phantom was irradiated during automatic beam data acquisition for a 15 MV beam. A complete set of measurements changing field size are made. These 15 MV results are compared with data measured previously by thermoluminescence and bubble dosimeters in the same facility for an Elekta Precise and a Siemens KDS both with maximum photon energy of 18 MV. From this the benefits in the patient collateral doses of decreasing the maximum treatment photon energy are discussed. The patient doses obtained in the Varian 21iX had values that go from 80 to 800 uSv per treatment Gray. As the Varian 21iX therapy Linac is operated in pulsed mode with short pulse length the discussion of the results includes: 1. The correction of dead time in the GM

  7. Long Type I X-ray Bursts and Neutron Star Interior Physics

    OpenAIRE

    Cumming, Andrew; Macbeth, Jared; Zand, J. J. M. in't; Page, Dany

    2005-01-01

    Superbursts are very energetic Type I X-ray bursts discovered in recent years by long term monitoring of X-ray bursters, believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. A number of "intermediate duration" bursts have also been observed, probably associated with ignition of a thick helium layer. We investigate the sensitivity of these long X-ray bursts to the thermal profile of the neutron star crust and core. We first compare cooling models of superbur...

  8. Classical novae and type I X-ray bursts: Challenges for the 21st century

    International Nuclear Information System (INIS)

    Classical nova explosions and type I X-ray bursts are the most frequent types of thermonuclear stellar explosions in the Galaxy. Both phenomena arise from thermonuclear ignition in the envelopes of accreting compact objects in close binary star systems. Detailed observations of these events have stimulated numerous studies in theoretical astrophysics and experimental nuclear physics. We discuss observational features of these phenomena and theoretical efforts to better understand the energy production and nucleosynthesis in these explosions. We also examine and summarize studies directed at identifying nuclear physics quantities with uncertainties that significantly affect model predictions

  9. Understanding Flight

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, David

    2001-01-31

    Through the years the explanation of flight has become mired in misconceptions that have become dogma. Wolfgang Langewiesche, the author of 'Stick and Rudder' (1944) got it right when he wrote: 'Forget Bernoulli's Theorem'. A wing develops lift by diverting (from above) a lot of air. This is the same way that a propeller produces thrust and a helicopter produces lift. Newton's three laws and a phenomenon called the Coanda effect explain most of it. With an understanding of the real physics of flight, many things become clear. Inverted flight, symmetric wings, and the flight of insects are obvious. It is easy to understand the power curve, high-speed stalls, and the effect of load and altitude on the power requirements for lift. The contribution of wing aspect ratio on the efficiency of a wing, and the true explanation of ground effect will also be discussed.

  10. Scaled Composites' Proteus and an F/A-18 Hornet from NASA's Dryden Flight Research Center are seen h

    Science.gov (United States)

    2002-01-01

    The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  11. Fertilization of sea urchin eggs and sperm motility are negatively impacted under low hypergravitational forces significant to space flight

    Science.gov (United States)

    Tash, J. S.; Kim, S.; Schuber, M.; Seibt, D.; Kinsey, W. H.

    2001-01-01

    Sperm and other flagellates swim faster in microgravity (microG) than in 1 G, raising the question of whether fertilization is altered under conditions of space travel. Such alterations have implications for reproduction of plant and animal food and for long-term space habitation by man. We previously demonstrated that microG accelerates protein phosphorylation during initiation of sperm motility but delays the sperm response to the egg chemotactic factor, speract. Thus sperm are sensitive to changes in gravitational force. New experiments using the NiZeMi centrifugal microscope examined whether low hypergravity (hyperG) causes effects opposite to microG on sperm motility, signal transduction, and fertilization. Sperm % motility and straight-line velocity were significantly inhibited by as little as 1.3 G. The phosphorylation states of FP130, an axonemal phosphoprotein, and FP160, a cAMP-dependent salt-extractable flagellar protein, both coupled to motility activation, showed a more rapid decline in hyperG. Most critically, hyperG caused an approximately 50% reduction in both the rate of sperm-egg binding and fertilization. The similar extent of inhibition of both fertilization parameters in hyperG suggests that the primary effect is on sperm rather than eggs. These results not only support our earlier microG data demonstrating that sperm are sensitive to small changes in gravitational forces but more importantly now show that this sensitivity affects the ability of sperm to fertilize eggs. Thus, more detailed studies on the impact of space flight on development should include studies of sperm function and fertilization.

  12. Are birds stressed during long-term flights? A wind-tunnel study on circulating corticosterone in the red knot

    NARCIS (Netherlands)

    Jenni-Eiermann, Susanne; Hasselquist, Dennis; Lindstrom, Ake; Koolhaas, Anita; Piersma, Theunis; Lindström, Åke

    2009-01-01

    During endurance flight most birds do not feed and have to rely on their body reserves. Fat and protein is catabolised to meet the high energetic demands. Even though the hormonal regulation of migration is complex and not yet fully understood. the adrenocortical hormone corticosterone crystallizes

  13. Designing the Ares I Crew Launch Vehicle Upper Stage Element and Integrating the Stack at NASA's Marshall Space Flight Center

    Science.gov (United States)

    Lyles, Garry; Otte, Neil E.

    2008-01-01

    Fielding an integrated launch vehicle system entails many challenges, not the least of which is the fact that it has been over 30 years since the United States has developed a human-rated vehicle - the venerable Space Shuttle. Over time, whole generations of rocket scientists have passed through the aerospace community without the opportunity to perform such exacting, demanding, and rewarding work. However, with almost 50 years of experience leading the design, development, and end-to-end systems engineering and integration of complex launch vehicles, NASA's Marshall Space Flight Center offers the in-house talent - both junior- and senior-level personnel - to shape a new national asset to meet the requirements for safe, reliable, and affordable space exploration solutions.' These personnel are housed primarily in Marshall's Engineering Directorate and are matrixed into the programs and projects that reside at the rocket center. Fortunately, many Apollo era and Shuttle engineers, as well as those who gained valuable hands-on experience in the 1990s by conducting technology demonstrator projects such as the Delta-Clipper Experimental Advanced, X-33, X-34, and X-37, as well as the short-lived Orbital Space Plane, work closely with industry partners to advance the nation's strategic capability for human access to space. Currently, only three spacefaring nations have this distinction, including the United States, Russia, and, more recently, China. The U.S. National Space Policy of2006 directs that NASA provide the means to travel to space, and the NASA Appropriations Act of2005 provided the initial funding to begin in earnest to replace the Shuttle after the International Space Station construction is complete in 20 IO? These and other strategic goals and objectives are documented in NASA's 2006 Strategic Plan.3 In 2005, a team of NASA aerospace experts conducted the Exploration Systems Architecture Study, which recommended a two-vehicle approach to America's next space

  14. Vision Changes after Space Flight Are Related to Alterations in Folate-Dependent One-Carbon Metabolism

    Science.gov (United States)

    Smith, Scott M.; Gibson, C. Robert; Mader, Thomas H.; Ericson, Karen; Ploutz-Snyder, Robert; Heer, Martina; Zwart, Sara R.

    2011-01-01

    About 20% of astronauts on International Space Station missions have developed measurable ophthalmic changes after flight. This study was conducted to determine whether the folate-dependent 1-carbon pathway is altered in these individuals. Data were modeled to evaluate differences between individuals with ophthalmic changes (n=5) and those without them (n=15). We also correlated mean preflight serum concentrations of the 1-carbon metabolites with changes in measured refraction after flight. Serum homocysteine (HCy), cystathionine, 2-methylcitric acid, and methylmalonic acid concentrations were 25%-45% higher (Pvision issues strongly suggests impairment of the folate-dependent 1-carbon transfer pathway. Impairment of this pathway, by polymorphisms, diet or other means, may interact with components of the microgravity environment to influence these pathophysiologic changes. This study was funded by the NASA Human Research Program.

  15. Putative excitatory and putative inhibitory inputs are localised in different dendritic domains in a Drosophila flight motoneuron.

    Science.gov (United States)

    Kuehn, Claudia; Duch, Carsten

    2013-03-01

    Input-output computations of individual neurons may be affected by the three-dimensional structure of their dendrites and by the location of input synapses on specific parts of their dendrites. However, only a few examples exist of dendritic architecture which can be related to behaviorally relevant computations of a neuron. By combining genetic, immunohistochemical and confocal laser scanning methods this study estimates the location of the spike-initiating zone and the dendritic distribution patterns of putative synaptic inputs on an individually identified Drosophila flight motorneuron, MN5. MN5 is a monopolar neuron with > 4,000 dendritic branches. The site of spike initiation was estimated by mapping sodium channel immunolabel onto geometric reconstructions of MN5. Maps of putative excitatory cholinergic and of putative inhibitory GABAergic inputs on MN5 dendrites were created by charting tagged Dα7 nicotinic acetylcholine receptors and Rdl GABAA receptors onto MN5 dendritic surface reconstructions. Although these methods provide only an estimate of putative input synapse distributions, the data indicate that inhibitory and excitatory synapses were located preferentially on different dendritic domains of MN5 and, thus, computed mostly separately. Most putative inhibitory inputs were close to spike initiation, which was consistent with sharp inhibition, as predicted previously based on recordings of motoneuron firing patterns during flight. By contrast, highest densities of putative excitatory inputs at more distant dendritic regions were consistent with the prediction that, in response to different power demands during flight, tonic excitatory drive to flight motoneuron dendrites must be smoothly translated into different tonic firing frequencies. PMID:23279094

  16. Flight Test Engineering

    Science.gov (United States)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  17. Recent advances in the modelling of classical novae and type I X-ray bursts

    International Nuclear Information System (INIS)

    Classical nova outbursts and type I X-ray bursts are thermonuclear stellar explosions driven by charged-particle reactions. Extensive numerical simulations of nova explosions have shown that the accreted envelopes attain peak temperatures between 0.1 and 0.4 GK, for about several hundred seconds, and therefore, their ejecta is expected to show signatures of significant nuclear activity. Indeed, it has been claimed that novae play some role in the enrichment of the interstellar medium through a number of intermediate-mass elements. This includes 17O, 15N, and 13C, systematically overproduced in huge amounts with respect to solar abundances, with a lower contribution to a number of species with A7Li, 19F, or 26Al. In this review, we present new 1-D hydrodynamic models of classical nova outbursts, from the onset of accretion up to the explosion and ejection phases. Special emphasis is put on their gross observational properties (including constraints from meteoritic presolar grains and potential gamma-ray signatures) and on their associated nucleosynthesis. Multidimensional models of mixing at the core-envelope interface during outbursts will also be presented. The impact of nuclear uncertainties on the final yields will be also outlined. Detailed analysis of the relevant reactions along the main nuclear path for type I X-ray bursts has only been scarcely addressed, mainly in the context of parameterized one-zone models. Here, we present a detailed study of the nucleosynthesis and nuclear processes powering type I X-ray bursts. The reported bursts have been computed by means of a spherically symmetric (1D), Lagrangian, hydrodynamic code, linked to a nuclear reaction network that contains 325 isotopes (from 1H to 107Te), and 1392 nuclear processes. These evolutionary sequences, followed from the onset of accretion up to the explosion and expansion stages, have been performed for two different metallicities to explore the dependence between the extension of the main

  18. Long migration flights of birds

    International Nuclear Information System (INIS)

    The extremely long migration flights of some birds are carried out in one hop, necessitating a substantial prior build-up of fat fuel. We summarize the basic elements of bird flight physics with a simple model, and show how the fat reserves influence flight distance, flight speed and the power expended by the bird during flight. (paper)

  19. Flight experience and executive functions predict unlike professional pilots who are limited by the FAA's age rule, no age limit is defined in general aviation (GA)

    OpenAIRE

    Causse, Mickael; Dehais, Frédéric; Pastor, Josette

    2010-01-01

    Unlike professional pilots who are limited by the FAA's age rule, no age limit is defined in general aviation (GA). Some studies revealed significant aging issues on accident rates but these results are criticized. Our overall goal is to study how the effect of age on executive functions (EFs), high level cognitive abilities, impacts on the flying performance in GA pilots. This study relies on three components: EFs assessment, pilot characteristics (age, flight experience), and the naviga...

  20. P.I.X.E. SPECTRA MEASURED WITH GOOD RESOLUTION

    OpenAIRE

    Folkmann, F.; Frederiksen, F.; Loft Nielsen, H.

    1987-01-01

    A spectrometer has been built with a curved crystal and a position sensitive detector to measure x rays in a limited region with good resolution and high efficiency. A collimated 55Fe source, electroplated onto a Pt wire, was used for checking the proportional detector. Geometrical considerations for optimating the instrument are discussed. Applications to Particle Induced X-ray Emission are considered, both for diagram lines excited by protons and heavy ion excited satellite lines.

  1. Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Science.gov (United States)

    Dirgayussa, I. Gde Eka; Yani, Sitti; Rhani, M. Fahdillah; Haryanto, Freddy

    2015-09-01

    Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDP and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good criteria of dose

  2. Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDP and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good

  3. Commissioning of a Varian Clinac iX 6 MV photon beam using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dirgayussa, I Gde Eka, E-mail: ekadirgayussa@gmail.com; Yani, Sitti; Haryanto, Freddy, E-mail: freddy@fi.itb.ac.id [Institut Teknologi Bandung, Jl. Ganesha 10, 40132 (Indonesia); Rhani, M. Fahdillah [Tang Tock Seng Hospital (Singapore)

    2015-09-30

    Monte Carlo modelling of a linear accelerator is the first and most important step in Monte Carlo dose calculations in radiotherapy. Monte Carlo is considered today to be the most accurate and detailed calculation method in different fields of medical physics. In this research, we developed a photon beam model for Varian Clinac iX 6 MV equipped with MilleniumMLC120 for dose calculation purposes using BEAMnrc/DOSXYZnrc Monte Carlo system based on the underlying EGSnrc particle transport code. Monte Carlo simulation for this commissioning head LINAC divided in two stages are design head Linac model using BEAMnrc, characterize this model using BEAMDP and analyze the difference between simulation and measurement data using DOSXYZnrc. In the first step, to reduce simulation time, a virtual treatment head LINAC was built in two parts (patient-dependent component and patient-independent component). The incident electron energy varied 6.1 MeV, 6.2 MeV and 6.3 MeV, 6.4 MeV, and 6.6 MeV and the FWHM (full width at half maximum) of source is 1 mm. Phase-space file from the virtual model characterized using BEAMDP. The results of MC calculations using DOSXYZnrc in water phantom are percent depth doses (PDDs) and beam profiles at depths 10 cm were compared with measurements. This process has been completed if the dose difference of measured and calculated relative depth-dose data along the central-axis and dose profile at depths 10 cm is ≤ 5%. The effect of beam width on percentage depth doses and beam profiles was studied. Results of the virtual model were in close agreement with measurements in incident energy electron 6.4 MeV. Our results showed that photon beam width could be tuned using large field beam profile at the depth of maximum dose. The Monte Carlo model developed in this study accurately represents the Varian Clinac iX with millennium MLC 120 leaf and can be used for reliable patient dose calculations. In this commissioning process, the good

  4. Exposing the Nuclear Burning Ashes of Radius Expansion Type I X-ray Bursts

    CERN Document Server

    Weinberg, N N; Schatz, H; Weinberg, Nevin N.; Bildsten, Lars; Schatz, Hendrik

    2006-01-01

    We solve for the evolution of the vertical extent of the convective region of a neutron star atmosphere during a Type I X-ray burst. The convective region is well-mixed with ashes of nuclear burning and its extent determines the rise time of the burst light curve. Using a full nuclear reaction network, we show that the maximum vertical extent of the convective region during photospheric radius expansion (RE) bursts can be sufficiently great that: (1) some ashes of burning are ejected by the radiation driven wind during the RE phase and, (2) some ashes of burning are exposed at the neutron star surface following the RE phase. We find that ashes with mass number A ~ 30 - 60 are mixed in with the ejected material. We calculate the expected column density of ejected and surface ashes in hydrogen-like states and determine the equivalent widths of the resulting photoionization edges from both the wind and neutron star surface. We find that these can exceed 100 eV and are potentially detectable. A detection would pr...

  5. Accretion disk signatures in Type I X-ray Bursts: prospects for future missions

    CERN Document Server

    Keek, L; Ballantyne, D R

    2016-01-01

    Type I X-ray bursts and superbursts from accreting neutron stars illuminate the accretion disk and produce a reflection signal that evolves as the burst fades. Examining the evolution of reflection features in the spectra will give insight into the burst-disk interaction, a potentially powerful probe of accretion disk physics. At present, reflection has been observed during only two bursts of exceptional duration. We investigate the detectability of reflection signatures with four of the latest well-studied X-ray observatory concepts: Hitomi, NICER, Athena, and LOFT. Burst spectra are modeled for different values for the flux, temperature, and the disk ionization parameter, which are representative for most known bursts and sources. The effective area and through-put of a Hitomi-like telescope are insufficient for characterizing burst reflection features. NICER and Athena will detect reflection signatures in Type I bursts with peak fluxes $\\ge 10^{-7.5}$ erg cm$^{-2}$ s$^{-1}$, and also effectively constrain ...

  6. Fast and slow magnetic deflagration fronts in Type I X-ray bursts

    CERN Document Server

    Cavecchi, Yuri; Watts, Anna L; Braithwaite, Jonathan

    2015-01-01

    Type I X-ray bursts are produced by thermonuclear runaways that develop on accreting neutron stars. Once one location ignites, the flame propagates across the surface of the star. Flame propagation is fundamental in order to understand burst properties like rise time and burst oscillations. Previous work quantified the effects of rotation on the front, showing that the flame propagates as a deflagration and that the front strongly resembles a hurricane. However the effect of magnetic fields was not investigated, despite the fact that magnetic fields strong enough to have an effect on the propagating flame are expected to be present on many bursters. In this paper we show how the coupling between fluid layers introduced by an initially vertical magnetic field plays a decisive role in determining the character of the fronts that are responsible for the Type I bursts. In particular, on a star spinning at 450 Hz (typical among the bursters) we test seed magnetic fields of $10^{7} - 10^{10}$ G and find that for th...

  7. Biomechanics of bird flight.

    Science.gov (United States)

    Tobalske, Bret W

    2007-09-01

    Power output is a unifying theme for bird flight and considerable progress has been accomplished recently in measuring muscular, metabolic and aerodynamic power in birds. The primary flight muscles of birds, the pectoralis and supracoracoideus, are designed for work and power output, with large stress (force per unit cross-sectional area) and strain (relative length change) per contraction. U-shaped curves describe how mechanical power output varies with flight speed, but the specific shapes and characteristic speeds of these curves differ according to morphology and flight style. New measures of induced, profile and parasite power should help to update existing mathematical models of flight. In turn, these improved models may serve to test behavioral and ecological processes. Unlike terrestrial locomotion that is generally characterized by discrete gaits, changes in wing kinematics and aerodynamics across flight speeds are gradual. Take-off flight performance scales with body size, but fully revealing the mechanisms responsible for this pattern awaits new study. Intermittent flight appears to reduce the power cost for flight, as some species flap-glide at slow speeds and flap-bound at fast speeds. It is vital to test the metabolic costs of intermittent flight to understand why some birds use intermittent bounds during slow flight. Maneuvering and stability are critical for flying birds, and design for maneuvering may impinge upon other aspects of flight performance. The tail contributes to lift and drag; it is also integral to maneuvering and stability. Recent studies have revealed that maneuvers are typically initiated during downstroke and involve bilateral asymmetry of force production in the pectoralis. Future study of maneuvering and stability should measure inertial and aerodynamic forces. It is critical for continued progress into the biomechanics of bird flight that experimental designs are developed in an ecological and evolutionary context. PMID:17766290

  8. Long Type I X-ray Bursts and Neutron Star Interior Physics

    CERN Document Server

    Cumming, A; in 't Zand, J J M; Page, D; Cumming, Andrew; Macbeth, Jared; Page, Dany

    2005-01-01

    Superbursts are very energetic Type I X-ray bursts discovered in recent years by long term monitoring of X-ray bursters, believed to be due to unstable ignition of carbon in the deep ocean of the neutron star. A number of "intermediate duration" bursts have also been observed, probably associated with ignition of a thick helium layer. We investigate the sensitivity of these long X-ray bursts to the thermal profile of the neutron star crust and core. We first compare cooling models of superburst lightcurves with observations, and derive constraints on the ignition mass and energy release, and then calculate ignition models for superbursts and pure helium bursts, and compare to observations. The superburst lightcurves and ignition models imply that the carbon mass fraction is approximately 20% or greater in the fuel layer, constraining models of carbon production. However, the most important result is that when Cooper pairing neutrino emission is included in the crust, the temperature is too low to support unst...

  9. Nearly Coherent Oscillations in Type I X-Ray Bursts from KS 1731-260

    CERN Document Server

    Muno, M P; Morgan, E H; Bildsten, L; Muno, Michael P.; Fox, Derek W.; Morgan, Edward H.; Bildsten, Lars

    2000-01-01

    We present an analysis of the nine type I X-ray bursts that were observed from KS 1731-260 with RXTE. We find that the bursts divide naturally into two populations: ``fast bursts'' occur on the Banana Branch when the accretion rate is high and exhibit short decay times, high peak fluxes, and radius expansion episodes. ``Slow bursts'' occur in the Island State at lower accretion rates, have lower peak fluxes, higher fluences, longer decay times, and show no evidence of radius expansion. All five of the fast bursts, and none of the four slow bursts, show coherent oscillations near 524 Hz. We perform in-burst phase connection of the burst pulsations, which allows us to unambiguously characterize their frequency evolution. That evolution exhibits a variety of behaviors, including a sharp spin-down during one burst. Applying our phase models, we find that the pulsations are spectrally harder than the burst emission, with the strength of the pulsations increasing monotonically with photon energy. Coherently summing...

  10. Neutron contamination of Varian Clinac iX 10 MV photon beam using Monte Carlo simulation

    Science.gov (United States)

    Yani, S.; Tursinah, R.; Rhani, M. F.; Soh, R. C. X.; Haryanto, F.; Arif, I.

    2016-03-01

    High energy medical accelerators are commonly used in radiotherapy to increase the effectiveness of treatments. As we know neutrons can be emitted from a medical accelerator if there is an incident of X-ray that hits any of its materials. This issue becomes a point of view of many researchers. The neutron contamination has caused many problems such as image resolution and radiation protection for patients and radio oncologists. This study concerns the simulation of neutron contamination emitted from Varian Clinac iX 10 MV using Monte Carlo code system. As neutron production process is very complex, Monte Carlo simulation with MCNPX code system was carried out to study this contamination. The design of this medical accelerator was modelled based on the actual materials and geometry. The maximum energy of photons and neutron in the scoring plane was 10.5 and 2.239 MeV, respectively. The number and energy of the particles produced depend on the depth and distance from beam axis. From these results, it is pointed out that the neutron produced by linac 10 MV photon beam in a typical treatment is not negligible.

  11. Flight Planning in the Cloud

    Science.gov (United States)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  12. Exposing the Nuclear Burning Ashes of Radius Expansion Type I X-Ray Bursts

    Science.gov (United States)

    Weinberg, Nevin N.; Bildsten, Lars; Schatz, Hendrik

    2006-03-01

    We solve for the evolution of the vertical extent of the convective region of a neutron star atmosphere during a type I X-ray burst. The convective region is well mixed with ashes of nuclear burning, and its extent determines the rise time of the burst light curve. Using a full nuclear reaction network, we show that the maximum vertical extent of the convective region during photospheric radius expansion (RE) bursts can be sufficiently great that (1) some ashes of burning are ejected by the radiation-driven wind during the RE phase and (2) some ashes of burning are exposed at the neutron star surface following the RE phase. We find that ashes with mass numbers in the range A~30-60 are mixed in with the ejected material. We calculate the expected column density of ejected and surface ashes in hydrogen-like states and determine the equivalent widths of the resulting photoionization edges from both the wind and the neutron star surface. We find that these can exceed 100 eV and are potentially detectable. A detection would probe the nuclear burning processes and might enable a measurement of the gravitational redshift of the neutron star. In addition, we find that in bursts with pure helium burning layers, protons from (α, p) reactions cause a rapid onset of the 12C(p, γ)13N(α, p)16O reaction sequence. The sequence bypasses the relatively slow 12C(α, γ)16O reaction and leads to a sudden surge in energy production that is directly observable as a rapid (~millisecond) increase in flux during burst rise.

  13. White flight or flight from poverty?

    CERN Document Server

    Jego, C; Jego, Charles; Roehner, Bertrand M.

    2006-01-01

    The phenomenon of White flight is often illustrated by the case of Detroit whose population dropped from 1.80 million to 0.95 million between 1950 and 2000 while at the same time its Black and Hispanic component grew from 30 percent to 85 percent. But is this case really representative? The present paper shows that the phenomenon of White flight is in fact essentially a flight from poverty. As a confirmation, we show that the changes in White or Black populations are highly correlated which means that White flight is always paralleled by Black flight (and Hispanic flight as well). This broader interpretation of White flight accounts not only for the case of northern cities such as Cincinnati, Cleveland or Detroit, but for all population changes at county level, provided the population density is higher than a threshold of about 50 per square-kilometer which corresponds to moderately urbanized areas (as can be found in states like Indiana or Virginia for instance).

  14. Exploring flight crew behaviour

    Science.gov (United States)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  15. Boeing flight deck design philosophy

    Science.gov (United States)

    Stoll, Harty

    1990-01-01

    Information relative to Boeing flight deck design philosophy is given in viewgraph form. Flight deck design rules, design considerations, functions allocated to the crew, redundancy and automation concerns, and examples of accident data that were reviewed are listed.

  16. Flight Simulation for Tomorrow's Aviation

    OpenAIRE

    Durak, Umut

    2016-01-01

    Flight simulators have been operated within the aeronautics community for human factor studies and flight systems development for the last half century. They are virtual test beds, to evaluate concepts, conduct pilot-in-the-loop experiments and collect valuable user experience data. The German Aerospace Center (DLR) Institute of Flight Systems is involved in developing and employing research flight simulators for more than 40 years. The first generation ground based simulator of DLR was built...

  17. Miracle Flights for Kids

    Science.gov (United States)

    ... today Saving Lives One Flight At A Time Miracle Flights provides free flights to distant specialized care and valuable second opinions. Miracle Flights Through June 2016 Flights Coordinated: 101,862 ...

  18. Millihertz Oscillation Frequency Drift Predicts the Occurrence of Type I X-ray Bursts

    CERN Document Server

    Altamirano, D; Wijnandsm, R; Cumming, A

    2007-01-01

    Millihertz quasi-periodic oscillations reported in three neutron-star low mass X-ray binaries have been suggested to be a mode of marginally stable nuclear burning on the neutron star surface. In this Letter, we show that close to the transition between the island and the banana state, 4U~1636--53 shows mHz QPOs whose frequency systematically decreases with time until the oscillations disappear and a Type I X-ray burst occurs. There is a strong correlation between the QPO frequency $\

  19. Yefet ben 'Ali's commentary on the Hebrew text of the Book of Job I-X

    OpenAIRE

    Hussain, Haider Abbas

    1987-01-01

    This thesis is a critical edition of the Judeo-Arabic commentary on the Hebrew text of the Book of Job by one of the greatest Karaites of his age (second half of the tenth century A. D.), Yefet Ben 'Ali the Karaite. An examination of the photocopies and microfilms of the original Manuscripts of Yefet Ben 'Ali written in the XIth, XIV-XVIIth, XVth and XVIth centuries resulted in a delimitation of the number of chapters in this edition i.e. chapters I-X. None of the four...

  20. Odor detection in Manduca sexta is optimized when odor stimuli are pulsed at a frequency matching the wing beat during flight.

    Directory of Open Access Journals (Sweden)

    Kevin C Daly

    Full Text Available Sensory systems sample the external world actively, within the context of self-motion induced disturbances. Mammals sample olfactory cues within the context of respiratory cycles and have adapted to process olfactory information within the time frame of a single sniff cycle. In plume tracking insects, it remains unknown whether olfactory processing is adapted to wing beating, which causes similar physical effects as sniffing. To explore this we first characterized the physical properties of our odor delivery system using hotwire anemometry and photo ionization detection, which confirmed that odor stimuli were temporally structured. Electroantennograms confirmed that pulse trains were tracked physiologically. Next, we quantified odor detection in moths in a series of psychophysical experiments to determine whether pulsing odor affected acuity. Moths were first conditioned to respond to a target odorant using Pavlovian olfactory conditioning. At 24 and 48 h after conditioning, moths were tested with a dilution series of the conditioned odor. On separate days odor was presented either continuously or as 20 Hz pulse trains to simulate wing beating effects. We varied pulse train duty cycle, olfactometer outflow velocity, pulsing method, and odor. Results of these studies, established that detection was enhanced when odors were pulsed. Higher velocity and briefer pulses also enhanced detection. Post hoc analysis indicated enhanced detection was the result of a significantly lower behavioral response to blank stimuli when presented as pulse trains. Since blank responses are a measure of false positive responses, this suggests that the olfactory system makes fewer errors (i.e. is more reliable when odors are experienced as pulse trains. We therefore postulate that the olfactory system of Manduca sexta may have evolved mechanisms to enhance odor detection during flight, where the effects of wing beating represent the norm. This system may even exploit

  1. Dynamic flight stability of a bumblebee in forward flight

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Mao Sun

    2008-01-01

    The longitudinal dynamic flight stability of a bumblebee in forward flight is studied.The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are employed for solving the equations of motion.The primary findings are as the following.The forward flight of the bumblebee is not dynamically stable due to the existence of one(or two)unstable or approximately neutrally stable natural modes of motion.At hovering to medium flight speed[flight speed ue=(0-3.5)m s-1;advance ratio J=0-0.44],the flight is weakly unstable or approximately neutrally stable;at high speed(ue=4.5 m s-1;J=0.57),the flight becomes strongly unstable(initial disturbance double its value in only 3.5 wingbeats).

  2. Adaptive structures flight experiments

    Science.gov (United States)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  3. Flight Crew Scheduling

    OpenAIRE

    Graves, Glenn W.; Richard D. McBride; Ira Gershkoff; Diane Anderson; Deepa Mahidhara

    1993-01-01

    A new crew scheduling optimization system has been developed for United Airlines. The system was developed to permit quick response to schedule changes and to reduce crew scheduling costs. It was designed to work efficiently for both the medium sized problems (300 flights daily) and the very large problems (1,700 flights daily) that United must solve. The system has two main components, a generator and an optimizer. The generator creates pairings (candidate crew trips) which are fed as variab...

  4. Ares Launch Vehicles Lean Practices Case Study

    Science.gov (United States)

    Doreswamy, Rajiv; Self, Timothy A.

    2007-01-01

    The Ares launch vehicles team, managed by the Ares Projects Office (APO) at NASA Marshall Space Flight Center, has completed the Ares I Crew Launch Vehicle System Requirements Review and System Definition Review and early design work for the Ares V Cargo Launch Vehicle. This paper provides examples of how Lean Manufacturing, Kaizen events, and Six Sigma practices are helping APO deliver a new space transportation capability on time and within budget, while still meeting stringent technical requirements. For example, Lean philosophies have been applied to numerous process definition efforts and existing process improvement activities, including the Ares I-X test flight Certificate of Flight Readiness (CoFR) process, risk management process, and review board organization and processes. Ares executives learned Lean practices firsthand, making the team "smart buyers" during proposal reviews and instilling the team with a sense of what is meant by "value-added" activities. Since the goal of the APO is to field launch vehicles at a reasonable cost and on an ambitious schedule, adopting Lean philosophies and practices will be crucial to the Ares Project's long-term SUCCESS.

  5. Lessons Learned in Building the Ares Projects

    Science.gov (United States)

    Sumrall, John Phil

    2010-01-01

    Since being established in 2005, the Ares Projects at Marshall Space Flight Center have been making steady progress designing, building, testing, and flying the next generation of exploration launch vehicles. Ares is committed to rebuilding crucial capabilities from the Apollo era that made the first human flights to the Moon possible, as well as incorporating the latest in computer technology and changes in management philosophy. One example of an Apollo-era practice has been giving NASA overall authority over vehicle integration activities, giving civil service engineers hands-on experience in developing rocket hardware. This knowledge and experience help make the agency a "smart buyer" of products and services. More modern practices have been added to the management tool belt to improve efficiency, cost effectiveness, and institutional knowledge, including knowledge management/capture to gain better insight into design and decision making; earned value management, where Ares won a NASA award for its practice and implementation; designing for operability; and Lean Six Sigma applications to identify and eliminate wasted time and effort. While it is important to learn technical lessons like how to fly and control unique rockets like the Ares I-X flight test vehicle, the Ares management team also has been learning important lessons about how to manage large, long-term projects.

  6. FLIGHT INFORMATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Check in With Singapore Airlines, Check out With Paypal Singapore Airlines customers in the United States, Singapore and five other Asia Pacific countries and territories can now pay for their flights with PayPal on singaporeair.com. This facility will progressively be made available to the airline’s customers in up to 17 countries, making this the largest collaboration between PayPal and an Asian carrier to date.

  7. Computational space flight mechanics

    CERN Document Server

    Weiland, Claus

    2010-01-01

    Computational Space Flight Mechanics presents numerical solutions for topics and problems within space flight mechanics. Topics include orbit determination, Lagrange's perturbation equations for disturbed Earth's orbits, the flight of a mass point in flight path coordinates, and more.

  8. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    Science.gov (United States)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  9. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  10. Analysis of Dynamic Flight Loads

    OpenAIRE

    Jansson, Natascha

    2012-01-01

    This thesis deals with the determination of loads on an aircraft struc- ture during flight. The focus is on flight conditions where the loads are significantly time-dependent. Analysis of flight loads is primarily motivated to ensure that structural failure is avoided. The ability to ac- curately determine the resulting structural loads which can occur during operation allows for a reduction of the safety margins in the structural design. Consequently it is then possible to decrease the aircr...

  11. Lessons from dragonfly flight

    Science.gov (United States)

    Wang, Z. Jane

    2005-11-01

    I will describe two lessons we learned from analyzing dragonfly flight using computers and table-top experiments. Part I: The role of drag in insect flight. Airplanes and helicopters are airborne via aerodynamic lift, not drag. However, it is not a priori clear that insects use only lift to fly. We find that dragonfly uses mainly drag to hover, which explains an anomalous factor of four in previous estimates of dragonfly lift coefficients, where drag was assumed to be negligible. Moreover, we show that the use of drag for flight is efficient at insect size. This suggests a re-consideration of the hovering efficiency of flapping flight, which is no longer described by the lift to drag ratio. Part II. Fore-hind wing interaction in dragonfly flight. A distinctive feature of dragonflies is their use of two pairs of wings which are driven by separate direct muscles. Dragonflies can actively modulate the phase delay between fore-hind wings during different maneuver. We compute the Navier-Stokes equation around two wings following the motion measured from our tethered dragonfly experiments, and find an explanation of the advantage of counter-stroking during hovering.

  12. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  13. Aerodynamics of bird flight

    Science.gov (United States)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  14. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  15. JACEE long duration balloon flights

    International Nuclear Information System (INIS)

    JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1-100A TeV. Experience with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed. 5 refs., 2 figs

  16. A Complex of Nuclear Factor I-X3 and STAT3 Regulates Astrocyte and Glioma Migration through the Secreted Glycoprotein YKL-40*

    OpenAIRE

    Singh, Sandeep K.; Bhardwaj, Reetika; Wilczynska, Katarzyna M.; Dumur, Catherine I.; Kordula, Tomasz

    2011-01-01

    Nuclear factor I-X3 (NFI-X3) is a newly identified splice variant of NFI-X that regulates expression of several astrocyte-specific markers, such as glial fibrillary acidic protein. Here, we identified a set of genes regulated by NFI-X3 that includes a gene encoding a secreted glycoprotein YKL-40. Although YKL-40 expression is up-regulated in glioblastoma multiforme, its regulation and functions in nontransformed cells of the central nervous system are widely unexplored. We find that expressio...

  17. Orion Pad Abort 1 Flight Test: Simulation Predictions Versus Flight Data

    Science.gov (United States)

    Stillwater, Ryan Allanque; Merritt, Deborah S.

    2011-01-01

    The presentation covers the pre-flight simulation predictions of the Orion Pad Abort 1. The pre-flight simulation predictions are compared to the Orion Pad Abort 1 flight test data. Finally the flight test data is compared to the updated simulation predictions, which show a ove rall improvement in the accuracy of the simulation predictions.

  18. Development of a Methodology to Conduct Usability Evaluation for Hand Tools that May Reduce the Amount of Small Parts that are Dropped During Installation while Processing Space Flight Hardware

    Science.gov (United States)

    Miller, Darcy

    2000-01-01

    Foreign object debris (FOD) is an important concern while processing space flight hardware. FOD can be defined as "The debris that is left in or around flight hardware, where it could cause damage to that flight hardware," (United Space Alliance, 2000). Just one small screw left unintentionally in the wrong place could delay a launch schedule while it is retrieved, increase the cost of processing, or cause a potentially fatal accident. At this time, there is not a single solution to help reduce the number of dropped parts such as screws, bolts, nuts, and washers during installation. Most of the effort is currently focused on training employees and on capturing the parts once they are dropped. Advances in ergonomics and hand tool design suggest that a solution may be possible, in the form of specialty hand tools, which secure the small parts while they are being handled. To assist in the development of these new advances, a test methodology was developed to conduct a usability evaluation of hand tools, while performing tasks with risk of creating FOD. The methodology also includes hardware in the form of a testing board and the small parts that can be installed onto the board during a test. The usability of new hand tools was determined based on efficiency and the number of dropped parts. To validate the methodology, participants were tested while performing a task that is representative of the type of work that may be done when processing space flight hardware. Test participants installed small parts using their hands and two commercially available tools. The participants were from three groups: (1) students, (2) engineers / managers and (3) technicians. The test was conducted to evaluate the differences in performance when using the three installation methods, as well as the difference in performance of the three participant groups.

  19. Time-of-flight mass spectrometry with desorption-ionization multiprobes (UV photons and KeV and MeV particles). Cluster atoms are used as projectiles

    International Nuclear Information System (INIS)

    A new time-of-flight mass spectrometer, Super-Depil, is used to study secondary ion emission from solid surfaces bombarded by various kinds of primary particles. Three different desorption probes were set up on this machine: a 252 californium source, providing by spontaneous fission about 1 MeV/u energy heavy ions, a 5 to 30 keV energy pulsed caesium ion gun and a pulsed nitrogen laser, which wavelength is 337 mm. A two stages electrostatic mirror was added to the spectrometer. The time spread due to the initial kinetic energy of secondary ions leaving the surface was minimized. The mass resolution is greater than 5000. The analysis of glycosidic terpenes showed the complementarity of the three probes. The study of such metastable ions, with the electrostatic mirror, showed that some fragment ions may conserve the memory of the stereochemistry of the neutral lost. Clusters ions were used as projectiles in the energy range 5-60 keV. A strong non linear enhancement was observed in the secondary ion yield from various targets

  20. Vision based flight procedure stereo display system

    Science.gov (United States)

    Shen, Xiaoyun; Wan, Di; Ma, Lan; He, Yuncheng

    2008-03-01

    A virtual reality flight procedure vision system is introduced in this paper. The digital flight map database is established based on the Geographic Information System (GIS) and high definitions satellite remote sensing photos. The flight approaching area database is established through computer 3D modeling system and GIS. The area texture is generated from the remote sensing photos and aerial photographs in various level of detail. According to the flight approaching procedure, the flight navigation information is linked to the database. The flight approaching area vision can be dynamic displayed according to the designed flight procedure. The flight approaching area images are rendered in 2 channels, one for left eye images and the others for right eye images. Through the polarized stereoscopic projection system, the pilots and aircrew can get the vivid 3D vision of the flight destination approaching area. Take the use of this system in pilots preflight preparation procedure, the aircrew can get more vivid information along the flight destination approaching area. This system can improve the aviator's self-confidence before he carries out the flight mission, accordingly, the flight safety is improved. This system is also useful in validate the visual flight procedure design, and it helps to the flight procedure design.

  1. In-flight Medical Emergencies

    Directory of Open Access Journals (Sweden)

    Amit Chandra

    2013-09-01

    Full Text Available Introduction: Research and data regarding in-flight medical emergencies during commercial air travel are lacking. Although volunteer medical professionals are often called upon to assist, there are no guidelines or best practices to guide their actions. This paper reviews the literature quantifying and categorizing in-flight medical incidents, discusses the unique challenges posed by the in-flight environment, evaluates the legal aspects of volunteering to provide care, and suggests an approach to managing specific conditions at 30,000 feet.Methods: We conducted a MEDLINE search using search terms relevant to aviation medical emergencies and flight physiology. The reference lists of selected articles were reviewed to identify additional studies.Results: While incidence studies were limited by data availability, syncope, gastrointestinal upset, and respiratory complaints were among the most common medical events reported. Chest pain and cardiovascular events were commonly associated with flight diversion.Conclusion: When in-flight medical emergencies occur, volunteer physicians should have knowledge about the most common in-flight medical incidents, know what is available in on-board emergency medical kits, coordinate their therapy with the flight crew and remote resources, and provide care within their scope of practice. [West J Emerg Med. 2013;14(5:499–504.

  2. Pegasus hypersonic flight research

    Science.gov (United States)

    Curry, Robert E.; Meyer, Robert R., Jr.; Budd, Gerald D.

    1992-01-01

    Hypersonic aeronautics research using the Pegasus air-launched space booster is described. Two areas are discussed in the paper: previously obtained results from Pegasus flights 1 and 2, and plans for future programs. Proposed future research includes boundary-layer transition studies on the airplane-like first stage and also use of the complete Pegasus launch system to boost a research vehicle to hypersonic speeds. Pegasus flight 1 and 2 measurements were used to evaluate the results of several analytical aerodynamic design tools applied during the development of the vehicle as well as to develop hypersonic flight-test techniques. These data indicated that the aerodynamic design approach for Pegasus was adequate and showed that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent. Near-term plans to conduct hypersonic boundary-layer transition studies are discussed. These plans involve the use of a smooth metallic glove at about the mid-span of the wing. Longer-term opportunities are proposed which identify advantages of the Pegasus launch system to boost large-scale research vehicles to the real-gas hypersonic flight regime.

  3. Do birds sleep in flight?

    Science.gov (United States)

    Rattenborg, Niels C.

    2006-09-01

    The following review examines the evidence for sleep in flying birds. The daily need to sleep in most animals has led to the common belief that birds, such as the common swift ( Apus apus), which spend the night on the wing, sleep in flight. The electroencephalogram (EEG) recordings required to detect sleep in flight have not been performed, however, rendering the evidence for sleep in flight circumstantial. The neurophysiology of sleep and flight suggests that some types of sleep might be compatible with flight. As in mammals, birds exhibit two types of sleep, slow-wave sleep (SWS) and rapid eye-movement (REM) sleep. Whereas, SWS can occur in one or both brain hemispheres at a time, REM sleep only occurs bihemispherically. During unihemispheric SWS, the eye connected to the awake hemisphere remains open, a state that may allow birds to visually navigate during sleep in flight. Bihemispheric SWS may also be possible during flight when constant visual monitoring of the environment is unnecessary. Nevertheless, the reduction in muscle tone that usually accompanies REM sleep makes it unlikely that birds enter this state in flight. Upon landing, birds may need to recover the components of sleep that are incompatible with flight. Periods of undisturbed postflight recovery sleep may be essential for maintaining adaptive brain function during wakefulness. The recent miniaturization of EEG recording devices now makes it possible to measure brain activity in flight. Determining if and how birds sleep in flight will contribute to our understanding of a largely unexplored aspect of avian behavior and may also provide insight into the function of sleep.

  4. How stressful are 105 days of isolation? Sleep EEG patterns and tonic cortisol in healthy volunteers simulating manned flight to Mars.

    Science.gov (United States)

    Gemignani, Angelo; Piarulli, Andrea; Menicucci, Danilo; Laurino, Marco; Rota, Giuseppina; Mastorci, Francesca; Gushin, Vadim; Shevchenko, Olga; Garbella, Erika; Pingitore, Alessandro; Sebastiani, Laura; Bergamasco, Massimo; L'Abbate, Antonio; Allegrini, Paolo; Bedini, Remo

    2014-08-01

    Spaceflights "environment" negatively affects sleep and its functions. Among the different causes promoting sleep alterations, such as circadian rhythms disruption and microgravity, stress is of great interest also for earth-based sleep medicine. This study aims to evaluate the relationships between stress related to social/environmental confinement and sleep in six healthy volunteers involved in the simulation of human flight to Mars (MARS500). Volunteers were sealed in a spaceship simulator for 105 days and studied at 5 specific time-points of the simulation period. Sleep EEG, urinary cortisol (24 h preceding sleep EEG recording) and subjectively perceived stress levels were collected. Cognitive abilities and emotional state were evaluated before and after the simulation. Sleep EEG parameters in the time (latency, duration) and frequency (power and hemispheric lateralization) domains were evaluated. Neither cognitive and emotional functions alterations nor abnormal stress levels were found. Higher cortisol levels were associated to: (i) decrease of sleep duration, increase of arousals, and shortening of REM latency; (ii) reduction of delta power and enhancement of sigma and beta in NREM N3; and (iii) left lateralization of delta activity (NREM and REM) and right lateralization of beta activity (NREM). Stressful conditions, even with cortisol fluctuations in the normal range, alter sleep structure and sleep EEG spectral content, mirroring pathological conditions such as primary insomnia or insomnia associated to depression. Correlations between cortisol fluctuations and sleep changes suggest a covert risk for developing allostatic load, and thus the need to develop ad-hoc countermeasures for preventing sleep alterations in long lasting manned space missions. PMID:24793641

  5. Bisphosphonate ISS Flight Experiment

    Science.gov (United States)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackleford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elizabeth; Ploutz-Snyder, Robert; Sibonga, Jean; Keyak, Joyce; Nakamura, Toshitaka; Kohri, Kenjiro; Ohshima, Hiroshi; Moralez, Gilbert

    2014-01-01

    The bisphosphonate study is a collaborative effort between the NASA and JAXA space agencies to investigate the potential for antiresorptive drugs to mitigate bone changes associated with long-duration spaceflight. Elevated bone resorption is a hallmark of human spaceflight and bed rest (common zero-G analog). We tested whether an antiresorptive drug in combination with in-flight exercise would ameliorate bone loss and hypercalcuria during longduration spaceflight. Measurements include DXA, QCT, pQCT, and urine and blood biomarkers. We have completed analysis of 7 crewmembers treated with alendronate during flight and the immediate postflight (R+<2 week) data collection in 5 of 10 controls without treatment. Both groups used the advanced resistive exercise device (ARED) during their missions. We previously reported the pre/postflight results of crew taking alendronate during flight (Osteoporosis Int. 24:2105-2114, 2013). The purpose of this report is to present the 12-month follow-up data in the treated astronauts and to compare these results with preliminary data from untreated crewmembers exercising with ARED (ARED control) or without ARED (Pre-ARED control). Results: the table presents DXA and QCT BMD expressed as percentage change from preflight in the control astronauts (18 Pre-ARED and the current 5 ARED-1-year data not yet available) and the 7 treated subjects. As shown previously the combination of exercise plus antiresorptive is effective in preventing bone loss during flight. Bone measures for treated subjects, 1 year after return from space remain at or near baseline values. Except in one region, the treated group maintained or gained bone 1 year after flight. Biomarker data are not currently available for either control group and therefore not presented. However, data from other studies with or without ARED show elevated bone resorption and urinary Ca excretion while bisphosphonate treated subjects show decreases during flight. Comparing the two control

  6. Flight selection at United Airlines

    Science.gov (United States)

    Traub, W.

    1980-01-01

    Airline pilot selection proceedures are discussed including psychogical and personality tests, psychomotor performance requirements, and flight skills evaluation. Necessary attitude and personality traits are described and an outline of computer selection, testing, and training techniques is given.

  7. Flight management concepts development for fuel conservation

    Science.gov (United States)

    Sorensen, J. A.; Morello, S. A.

    1983-01-01

    It is pointed out that increased airspace congestion will produce increased flight delay unless advanced flight management concepts are developed to compensate. It has been estimated that a 5 percent reduction in delay is approximately equivalent, in terms of direct operating costs, to a 5 percent reduction in drag. The present investigation regarding the development of the required flight management concepts is organized into three sections, related to background, current research, and future effort. In the background section, a summary is provided of past technical effort concerning flight management. The second section is concerned with on-going efforts to integrate flight management with ground-based flight planning, and with an advanced concepts simulator to test the new developments. In the third section, attention is given to research concerning airborne flight management integration with other flight functions.

  8. Nonlinear stability of E centers in Si1-<i>xGex: electronic structure calculations

    OpenAIRE

    Chroneos, A.; Bracht, H; Jiang, C; Uberuaga, B. P.

    2008-01-01

    Electronic structure calculations are used to investigate the binding energies of defect pairs composed of lattice vacancies and phosphorus or arsenic atoms (E centers) in silicon-germanium alloys. To describe the local environment surrounding the E center we have generated special quasirandom structures that represent random silicon-germanium alloys. It is predicted that the stability of E centers does not vary linearly with the composition of the silicon-germanium alloy. Interestingly, we p...

  9. Flight Data For Tail 680

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  10. Flight Data For Tail 668

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  11. Flight Data For Tail 666

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  12. Flight Data For Tail 682

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  13. Flight Data For Tail 687

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  14. Flight Data For Tail 674

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  15. Flight Data For Tail 655

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  16. Flight Data For Tail 656

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  17. Flight Data For Tail 670

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  18. Flight Data For Tail 660

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  19. Flight Data For Tail 684

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  20. Flight Data For Tail 685

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  1. Flight Data For Tail 663

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  2. Flight Data For Tail 676

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  3. Flight Data For Tail 662

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  4. Flight Data For Tail 683

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  5. Flight Data For Tail 658

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  6. Flight Data For Tail 672

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  7. Flight Data For Tail 653

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  8. Flight Data For Tail 667

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  9. Flight Data For Tail 669

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  10. Flight Data For Tail 657

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  11. Flight Data For Tail 652

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  12. Flight Data For Tail 654

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  13. Flight Data For Tail 673

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  14. Flight Data For Tail 665

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  15. Flight Data For Tail 678

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  16. Flight Data For Tail 677

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  17. Flight Data For Tail 681

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  18. Flight Data For Tail 686

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  19. Flight Data For Tail 659

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  20. Flight Data For Tail 661

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  1. Flight Data For Tail 664

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  2. Flight Data For Tail 671

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  3. Flight Data For Tail 675

    Data.gov (United States)

    National Aeronautics and Space Administration — The following zip files contain individual flight recorded data in Matlab file format. There are 186 parameters each with a data structure that contains the...

  4. Enclosure enhancement of flight performance

    KAUST Repository

    Ghommem, Mehdi

    2014-08-19

    We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  5. Bumblebee flight in heavy turbulence

    CERN Document Server

    Engels, T; Schneider, K; Lehmann, F -O; Sesterhenn, J

    2016-01-01

    High-resolution numerical simulations of a tethered model bumblebee in forward flight are performed superimposing homogeneous isotropic turbulent fluctuations to the uniform inflow. Despite tremendous variation in turbulence intensity, between 17% and 99% with respect to the mean flow, we do not find significant changes in cycle-averaged aerodynamic forces, moments or flight power when averaged over realizations, compared to laminar inflow conditions. The variance of aerodynamic measures, however, significantly increases with increasing turbulence intensity, which may explain flight instabilities observed in freely flying bees.

  6. Enclosure enhancement of flight performance

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  7. Flight Crew Health Maintenance

    Science.gov (United States)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  8. Immune responses in space flight

    Science.gov (United States)

    Sonnenfeld, G.

    1998-01-01

    Space flight has been shown to have profound effects on immunological parameters of humans, monkeys and rodents. These studies have been carried out by a number of different laboratories. Among the parameters affected are leukocyte blastogenesis, natural killer cell activity, leukocyte subset distribution, cytokine production - including interferons and interleukins, and macrophage maturation and activity. These changes start to occur only after a few days space flight, and some changes continue throughout long-term space flight. Antibody responses have received only very limited study, and total antibody levels have been shown to be increased after long-term space flight. Several factors could be involved in inducing these changes. These factors could include microgravity, lack of load-bearing, stress, acceleration forces, and radiation. The mechanism(s) for space flight-induced changes in immune responses remain(s) to be established. Certainly, there can be direct effects of microgravity, or other factors, on cells that play a fundamental role in immune responses. However, it is now clear that there are interactions between the immune system and other physiological systems that could play a major role. For example, changes occurring in calcium use in the musculoskeletal system induced by microgravity or lack of use could have great impact on the immune system. Most of the changes in immune responses have been observed using samples taken immediately after return from space flight. However, there have been two recent studies that have used in-flight testing. Delayed-type hypersensitivity responses to common recall antigens of astronauts and cosmonauts have been shown to be decreased when tested during space flights. Additionally, natural killer cell and blastogenic activities are inhibited in samples taken from rats during space flight. Therefore, it is now clear that events occurring during space flight itself can affect immune responses. The biological

  9. An informal analysis of flight control tasks

    Science.gov (United States)

    Andersen, George J.

    1991-01-01

    Issues important in rotorcraft flight control are discussed. A perceptual description is suggested of what is believed to be the major issues in flight control. When the task is considered of a pilot controlling a helicopter in flight, the task is decomposed in several subtasks. These subtasks include: (1) the control of altitude, (2) the control of speed, (3) the control of heading, (4) the control of orientation, (5) the control of flight over obstacles, and (6) the control of flight to specified positions in the world. The first four subtasks can be considered to be primary control tasks as they are not dependent on any other subtasks. However, the latter two subtasks can be considered hierarchical tasks as they are dependent on other subtasks. For example, the task of flight control over obstacles can be decomposed as a task requiring the control of speed, altitude, and heading. Thus, incorrect control of altitude should result in poor control of flight over an obstacle.

  10. Bird flight and airplane flight. [instruments to measure air currents and flight characteristics

    Science.gov (United States)

    Magnan, A.

    1980-01-01

    Research was based on a series of mechanical, electrical, and cinematographic instruments developed to measure various features of air current behavior as well as bird and airplane flight. Investigation of rising obstruction and thermal currents led to a theory of bird flight, especially of the gliding and soaring types. It was shown how a knowledge of bird flight can be applied to glider and ultimately motorized aircraft construction. The instruments and methods used in studying stress in airplanes and in comparing the lift to drag ratios of airplanes and birds are described.

  11. Propagation of Thermonuclear Flames on Rapidly Rotating Neutron Stars: Extreme Weather during Type I X-Ray Bursts

    Science.gov (United States)

    Spitkovsky, Anatoly; Levin, Yuri; Ushomirsky, Greg

    2002-02-01

    We analyze the global hydrodynamic flow in the ocean of an accreting, rapidly rotating, nonmagnetic neutron star in a low-mass X-ray binary during a type I X-ray burst. We use both analytical arguments and numerical simulations of simplified models for ocean burning. Our analysis extends previous work by taking into account the rapid rotation of the star and the lift-up of the burning ocean during the burst. We find a new regime for the spreading of a nuclear burning front, where the flame is carried along a coherent shear flow across the front. If turbulent viscosity is weak, the speed of flame propagation is vflame~(gh)1/2/ftn~20 km s-1, where h is the scale height of the burning ocean, g is the local gravitational acceleration, tn is the timescale for fast nuclear burning during the burst, and f is the Coriolis parameter, i.e., twice the local vertical component of the spin vector. If turbulent viscosity is dynamically important, the flame speed increases and reaches the maximum value, vmaxflame~(gh/ftn)1/2~300 km s-1, when the eddy overturn frequency is comparable to the Coriolis parameter f. We show that, as a result of rotationally reduced gravity, the thermonuclear runaway which ignites the ocean is likely to begin on the equator. The equatorial belt is ignited at the beginning of the burst, and the flame then propagates from the equator to the poles. Inhomogeneous cooling (equator first, poles second) of the hot ashes drives strong zonal currents which may be unstable to the formation of Jupiter-type vortices; we conjecture that these vortices are responsible for coherent modulation of X-ray flux in the tails of some bursts. We consider the effect of strong zonal currents on the frequency of modulation of the X-ray flux and show that the large values of the frequency drifts observed in some bursts can be accounted for within our model combined with the model of homogeneous radial expansion. Additionally, if vortices or other inhomogeneities are trapped in

  12. Flight Software Math Library

    Science.gov (United States)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  13. Ares Launch Vehicles Lean Practices Case Study

    Science.gov (United States)

    Doreswamy, Rajiv, N.; Self, Timothy A.

    2008-01-01

    This viewgraph presentation describes test strategies and lean philisophies and practices that are applied to Ares Launch Vehicles. The topics include: 1) Testing strategy; 2) Lean Practices in Ares I-X; 3) Lean Practices Applied to Ares I-X Schedule; 4) Lean Event Results; 5) Lean, Six Sigma, and Kaizen Practices in the Ares Projects Office; 6) Lean and Kaizen Success Stories; and 7) Ares Six Sigma Practices.

  14. The Simple Science of Flight

    Science.gov (United States)

    Tennekes, Henk

    1997-05-01

    From the smallest gnat to the largest aircraft, all things that fly obey the same aerodynamic principles. The Simple Science of Flight offers a leisurely introduction to the mechanics of flight and, beyond that, to the scientific attitude that finds wonder in simple calculations, forging connections between, say, the energy efficiency of a peanut butter sandwich and that of the kerosene that fuels a jumbo jet. It is the product of a lifetime of watching and investigating the way flight happens. The hero of the book is the Boeing 747, which Tennekes sees as the current pinnacle of human ingenuity in mastering the science of flight. Also covered are paper airplanes, kites, gliders, and human-powered flying machines as well as birds and insects. Tennekes explains concepts like lift, drag, wing loading, and cruising speed through many fascinating comparisons, anecdotes, and examples.

  15. Robust Decentralized Formation Flight Control

    Directory of Open Access Journals (Sweden)

    Zhao Weihua

    2011-01-01

    Full Text Available Motivated by the idea of multiplexed model predictive control (MMPC, this paper introduces a new framework for unmanned aerial vehicles (UAVs formation flight and coordination. Formulated using MMPC approach, the whole centralized formation flight system is considered as a linear periodic system with control inputs of each UAV subsystem as its periodic inputs. Divided into decentralized subsystems, the whole formation flight system is guaranteed stable if proper terminal cost and terminal constraints are added to each decentralized MPC formulation of the UAV subsystem. The decentralized robust MPC formulation for each UAV subsystem with bounded input disturbances and model uncertainties is also presented. Furthermore, an obstacle avoidance control scheme for any shape and size of obstacles, including the nonapriorily known ones, is integrated under the unified MPC framework. The results from simulations demonstrate that the proposed framework can successfully achieve robust collision-free formation flights.

  16. Quantum flights

    OpenAIRE

    Fateev, Evgeny G.

    2013-01-01

    The principles of quantum motors based on Casimir platforms (thin-film nanostructures are at issue) are discussed in plain language. The generation of quantum propulsion is caused by the noncompensated integral action of virtual photon momenta upon a configuration unit cell in the platform. The cells in a Casimir platform should be situated in a certain order with optimal geometric parameters. The evaluation of the quantum propulsion shows that, for example, ten square meters of ideal Casimir...

  17. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight...

  18. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  19. Quantum flights

    CERN Document Server

    Fateev, Evgeny G

    2013-01-01

    The principles of quantum motors based on Casimir platforms (thin-film nanostructures are at issue) are discussed in plain language. The generation of quantum propulsion is caused by the noncompensated integral action of virtual photon momenta upon a configuration unit cell in the platform. The cells in a Casimir platform should be situated in a certain order with optimal geometric parameters. The evaluation of the quantum propulsion shows that, for example, ten square meters of ideal Casimir platforms (it is a complex single-layer structure) could make Cheops pyramid move!

  20. Flight performance of Galileo and Ulysses RTGs

    International Nuclear Information System (INIS)

    Flight performance data of the GPHS-RTGs (General Purpose Heat Source---Radioisotope Thermoelectric Generators) on the Galileo and Ulysses spacecraft are reported. Comparison of the flight data with analytical predictions is preformed. Differences between actual flight telemetry data and analytical predictions are addressed including the degree of uncertainty associated with the telemetry data. End of mission power level predictions are included for both missions with an overall assessment of RTG mission performances

  1. Hummingbird flight

    OpenAIRE

    Warrick, Douglas; Hedrick, Tyson; Fernández, María José; Tobalske, Bret; Biewener, Andrew Austin

    2012-01-01

    Hummingbirds are very distinctive in their form and behavior, the evolution of which is tightly connected to the evolution of their primary source of energy — floral nectar. About forty million years ago, the practical use of this dense fuel, available only in widely-dispersed, insect-sized aliquots — it was originally intended for insect pollinators — presented a severe test to the avian bauplan. This selective pressure forced broad changes in form and function, affecting anatomical structur...

  2. In Flight, Online

    Science.gov (United States)

    Lucking, Robert A.; Wighting, Mervyn J.; Christmann, Edwin P.

    2005-01-01

    The concept of flight for human beings has always been closely tied to imagination. To fly like a bird requires a mind that also soars. Therefore, good teachers who want to teach the scientific principles of flight recognize that it is helpful to share stories of their search for the keys to flight. The authors share some of these with the reader,…

  3. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  4. Synthesis of β-phase Ag1-xCuxI (x = 0-0.5) solid solutions nanocrystals

    International Nuclear Information System (INIS)

    Research highlights: → Wet-chemical-chelating reaction processing has been used to synthesized A series of single β-phase nano-Ag1-xCuxI (x = 0-0.5) solid solutions powders. → Citric acid as complexing agent takes part in the process of chemical reaction and the chemical reactions can be described in this paper. → The lattice parameters have been ascertained by the results of XRD. → Crystalline sizes, which decrease with copper iodide concentration increasing, have been demonstrated by XRD and TEM. -- Abstract: A series of single β-phase nano-Ag1-xCuxI (x = 0-0.5) solid solutions powders were synthesized by wet-chemical-chelating reaction processing and citric acid used as complexing agent. The Ag1-xCuxI powders were determined by X-ray diffraction and transmission electron microscopy. It was demonstrated that the crystalline size and lattice parameter of the Ag1-xCuxI powders decrease with an increase in the amount of CuI substitution. The copper in the lattice of the Ag1-xCuxI can effectively prevent the crystalline growth of the Ag1-xCuxI powders and citrate used in the Ag1-xCuxI powders synthesized process can accelerate single β-phase crystalline structure formation.

  5. Flight Path Characteristics for Re entry Trajectories

    Directory of Open Access Journals (Sweden)

    S. K. Gurtu

    1972-07-01

    Full Text Available Approximate analytical solutions on velocity, range, deceleration, maximum deceleration, distance and time of flight, etc. are obtained for object entry in a planetary atmosphere when (i rate of change of velocity is proportional to the nth power of the velocity, and (ii rate of change of altitude is proportional to the pth power of the velocity. Loh's results for constant deceleration flight and constant rate of change of decent flight are obtained as particular cases. Finally, trajectory characteristics are obtained rate of change of range flight.

  6. Apollo 14 flight support and system performance

    Science.gov (United States)

    Rice, R. R.

    1971-01-01

    The Apollo 13 incident and subsequent oxygen tank redesign for Apollo 14 placed unique requirements on the flight support activity. A major part of this activity was the integration of the various analytical efforts into a single team function. Additionally, the first flight of the redesigned system without an orbital test required an extensive analytical base. The support team philosophy, objectives, and organization are presented. Various analytical tools that were used during the flight are discussed. Investigations made during the postflight period are considered and their impact upon subsequent flights shown.

  7. Wind-Tunnel/Flight Correlation, 1981

    Science.gov (United States)

    Mckinney, L. W. (Editor); Baals, D. D. (Editor)

    1982-01-01

    Wind-tunnel/flight correlation activities are reviewed to assure maximum effectiveness of the early experimental programs of the National Transonic Facility (NTF). Topics included a status report of the NTF, the role of tunnel-to-tunnel correlation, a review of past flight correlation research and the resulting data base, the correlation potential of future flight vehicles, and an assessment of the role of computational fluid dynamics.

  8. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  9. Flight assessment of a large supersonic drone aircraft for research use

    Science.gov (United States)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  10. Thermal energy storage flight experiments

    Science.gov (United States)

    Namkoong, D.

    1989-01-01

    Consideration is given to the development of an experimental program to study heat transfer, energy storage, fluid movement, and void location under microgravity. Plans for experimental flight packages containing Thermal Energy Storage (TES) material applicable for advanced solar heat receivers are discussed. Candidate materials for TES include fluoride salts, salt eutectics, silicides, and metals. The development of a three-dimensional computer program to describe TES material behavior undergoing melting and freezing under microgravity is also discussed. The TES experiment concept and plans for ground and flight tests are outlined.

  11. Flight to Egypt - The Flight of All Flights

    Czech Academy of Sciences Publication Activity Database

    Konečný, Lubomír

    Prague: The UN Refugee Agency, 2002 - (Raimanová, I.; Concolato, J.), s. 10-14 ISBN 80-238-8859-5 R&D Projects: GA AV ČR KSK9056118 Keywords : Flight to Egypt * iconography * literary sources Subject RIV: AL - Art, Architecture, Cultural Heritage

  12. Time Manager Software for a Flight Processor

    Science.gov (United States)

    Zoerne, Roger

    2012-01-01

    Data analysis is a process of inspecting, cleaning, transforming, and modeling data to highlight useful information and suggest conclusions. Accurate timestamps and a timeline of vehicle events are needed to analyze flight data. By moving the timekeeping to the flight processor, there is no longer a need for a redundant time source. If each flight processor is initially synchronized to GPS, they can freewheel and maintain a fairly accurate time throughout the flight with no additional GPS time messages received. How ever, additional GPS time messages will ensure an even greater accuracy. When a timestamp is required, a gettime function is called that immediately reads the time-base register.

  13. NASA - Human Space Flight

    Science.gov (United States)

    Davis, Jeffrey R.

    2006-01-01

    The presentation covers five main topical areas. The first is a description of how things work in the microgravity environment such as convection and sedimentation. The second part describes the effects of microgravity on human physiology. This is followed by a description of the hazards of space flight including the environment, the space craft, and the mission. An overview of biomedical research in space, both on shuttle and ISS is the fourth section of the presentation. The presentation concludes with a history of space flight from Ham to ISS. At CART students (11th and 12th graders from Fresno Unified and Clovis Unified) are actively involved in their education. They work in teams to research real world problems and discover original solutions. Students work on projects guided by academic instructors and business partners. They will have access to the latest technology and will be expected to expand their learning environment to include the community. They will focus their studies around a career area (Professional Sciences, Advanced Communications, Engineering and Product Development, or Global Issues).

  14. Flight of the dragonflies and damselflies.

    Science.gov (United States)

    Bomphrey, Richard J; Nakata, Toshiyuki; Henningsson, Per; Lin, Huai-Ti

    2016-09-26

    This work is a synthesis of our current understanding of the mechanics, aerodynamics and visually mediated control of dragonfly and damselfly flight, with the addition of new experimental and computational data in several key areas. These are: the diversity of dragonfly wing morphologies, the aerodynamics of gliding flight, force generation in flapping flight, aerodynamic efficiency, comparative flight performance and pursuit strategies during predatory and territorial flights. New data are set in context by brief reviews covering anatomy at several scales, insect aerodynamics, neuromechanics and behaviour. We achieve a new perspective by means of a diverse range of techniques, including laser-line mapping of wing topographies, computational fluid dynamics simulations of finely detailed wing geometries, quantitative imaging using particle image velocimetry of on-wing and wake flow patterns, classical aerodynamic theory, photography in the field, infrared motion capture and multi-camera optical tracking of free flight trajectories in laboratory environments. Our comprehensive approach enables a novel synthesis of datasets and subfields that integrates many aspects of flight from the neurobiology of the compound eye, through the aeromechanical interface with the surrounding fluid, to flight performance under cruising and higher-energy behavioural modes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528779

  15. Artist's Concept- Ares I On Launchpad 39B

    Science.gov (United States)

    2007-01-01

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This 'clean pad' approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  16. Molecular structure of (AgPO3)1-x (AgI)x glasses

    Science.gov (United States)

    Novita, D.

    2005-03-01

    Melt-quenched AgPO3 glasses were synthesized by dry ( Ag3PO4 + P2O5, prep. 1) and wet (NH4H2PO4 + AgNO3, prep. 2) routes. Glass transitions were examined in MDSC at a scan rate of 3^oC/min. Prep. 1 samples display bimodal glass transition temperatures, with Tg^low = 220^oC and Tg^high = 238^oC and with the Tg^low endotherm higher in strength than the Tg^high one. In contrast, prep. 2 samples show a single Tg = 203^oC that is significantly lower in temperature. These results are consistent with the notion that prep. 2 probably yields samples with bonded water while prep 1 gives pure AgPO3 glasses that are intrinsically phase separated. The nature of the two phases in the latter is less obvious at present, but we note that upon alloying AgI, the additive selectively bonds in the Tg^low phase at low x (0.20) a major structural reorganization occurs, and we observe the opening of a reversibility window in the 0.22 0.37 as floppy. A percolation threshold for electrical conduction occurs^1 near x ˜ 0.3 and falls in the reversibility window as expected. 1. M. Mangion and G.P. Johari, Phys. Rev. B36, 8845 (1987) Supported by NSF grant DMR 04-56472

  17. A Systematic Chandra study of Sgr A$^{\\star}$: I. X-ray flare detection

    CERN Document Server

    Yuan, Qiang

    2016-01-01

    Daily X-ray flaring represents an enigmatic phenomenon of Sgr A$^{\\star}$ --- the supermassive black hole at the center of our Galaxy. We report initial results from a systematic X-ray study of this phenomenon, based on extensive {\\it Chandra} observations obtained from 1999 to 2012, totaling about 4.5 Ms. We detect flares, using a combination of the maximum likelihood and Markov Chain Monte Carlo methods, which allow for a direct accounting for the pile-up effect in the modeling of the flare lightcurves and an optimal use of the data, as well as the measurements of flare parameters, including their uncertainties. A total of 82 flares are detected. About one third of them are relatively faint, which were not detected previously. The observation-to-observation variation of the quiescent emission has an average root-mean-square of $6\\%-14\\%$, including the Poisson statistical fluctuation of faint flares below our detection limits. We find no significant long-term variation in the quiescent emission and the flar...

  18. Effect of space flight on cytokine production

    Science.gov (United States)

    Sonnenfeld, Gerald

    Space flight has been shown to alter many immunological responses. Among those affected are the production of cytokines, Cytokines are the messengers of the immune system that facilitate communication among cells that allow the interaction among cells leading to the development of immune responses. Included among the cytokines are the interferons, interleukins, and colony stimulating factors. Cytokines also facilitate communication between the immune system and other body systems, such as the neuroendocrine and musculoskeletal systems. Some cytokines also have direct protective effects on the host, such as interferon, which can inhibit the replication of viruses. Studies in both humans and animals indicate that models of space flight as well as actual space flight alter the production and action of cytokines. Included among these changes are altered interferon production, altered responsiveness of bone marrow cells to granulocyte/monocyte-colony stimulating factor, but no alteration in the production of interleukin-3. This suggests that there are selective effects of space flight on immune responses, i.e. not all cytokines are affected in the same fashion by space flight. Tissue culture studies also suggest that there may be direct effects of space flight on the cells responsible for cytokine production and action. The results of the above study indicate that the effects of space flight on cytokines may be a fundamental mechanism by which space flight not only affects immune responses, but also other biological systems of the human.

  19. The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis

    Science.gov (United States)

    Gioia, I. M.; Maccacaro, T.; Schild, R. E.; Wolter, A.; Stocke, J. T.

    1990-01-01

    This paper presents the results of the analysis of the X-ray data and the optical identification for the Einstein Observatory Extended Medium-Sensitivity Survey (EMSS). The survey consists of 835 serendipitous sources detected at or above 4 times the rms level in 1435 imaging proportional counter fields with centers located away from the Galactic plane. Their limiting sensitivities are about (5-300) x 10 to the -14th ergs/sq cm sec in the 0.3-3.5-keV energy band. A total area of 778 square deg of the high-Galactic-latitude sky has been covered. The data have been analyzed using the REV1 processing system, which takes into account the nonuniformities of the detector. The resulting EMSS catalog of X-ray sources is a flux-limited and homogeneous sample of astronomical objects that can be used for statistical studies.

  20. 6 MV photon beam modeling for Varian Clinac iX using GEANT4 virtual jaw

    CERN Document Server

    Kim, Byung Yong; Kim, Dong Ho; Baek, Jong Geun; Moon, Su Ho; Rho, Gwang Won; Kang, Jeong Ku; Kim, Sung Kyu

    2015-01-01

    Most virtual source models (VSM) use beam modeling, with the exception of the patient-dependent secondary collimator (jaw). Unlike other components of the treatment head, the jaw absorbs many photons generated by the bremsstrahlung, which decreases the efficiency of the simulation. In the present study, a new method of beam modeling using a virtual jaw was applied to improve the calculation efficiency of VSM. The results for the percentage depth dose and profile of the virtual jaw VSM calculated in a homogeneous water phantom agreed with the measurement results for the CC13 cylinder type ion chamber within an error rate of 2%, and the 80 to 20% penumbra width agreed with the measurement results within an error of 0.6 mm. Compared with the existing VSM, in which a great number of photons are absorbed, the calculation efficiency of the VSM using the virtual jaw was expected to increase by approximately 67%.

  1. Mechanism of CO 2 Fixation by Ir I -X Bonds (X = OH, OR, N, C)

    KAUST Repository

    Vummaleti, Sai Vikrama Chaitanya

    2015-09-08

    Density functional theory calculations have been used to investigate the CO2 fixation mechanism proposed by Nolan et al. for the IrI complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that CO2 insertion is the rate-limiting step rather than the dimerization step. Additionally, in agreement with the experimental results, our results show that CO2 insertion into the Ir-OR1 (R1 = H, methyl, and phenyl) and Ir-N bonds is kinetically facile, and the calculated activation energies span a range of only 12.0-23.0 kcal/mol. Substantially higher values (35.0-50.0 kcal/mol) are reported for analogous Ir-C bonds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A systematic Chandra study of Sgr A⋆ - I. X-ray flare detection

    Science.gov (United States)

    Yuan, Qiang; Wang, Q. Daniel

    2016-02-01

    Daily X-ray flaring represents an enigmatic phenomenon of Sagittarius A⋆ (Sgr A⋆) - the supermassive black hole at the centre of our Galaxy. We report initial results from a systematic X-ray study of this phenomenon, based on extensive Chandra observations obtained from 1999 to 2012, totalling about 4.5 Ms. We detect flares, using a combination of the maximum likelihood and Markov Chain Monte Carlo methods, which allow for a direct accounting for the pileup effect in the modelling of the flare light curves and an optimal use of the data, as well as the measurements of flare parameters, including their uncertainties. A total of 82 flares are detected. About one third of them are relatively faint, which were not detected previously. The observation-to-observation variation of the quiescent emission has an average root-mean-square of 6-14 per cent, including the Poisson statistical fluctuation of faint flares below our detection limits. We find no significant long-term variation in the quiescent emission and the flare rate over the 14 years. In particular, we see no evidence of changing quiescent emission and flare rate around the pericentre passage of the S2 star around 2002. We show clear evidence of a short-term clustering for the Advanced CCD Imaging Spectrometer - Spectroscopy array/high energy transmission gratings 0th-order flares on time-scale of 20-70 ks. We further conduct detailed simulations to characterize the detection incompleteness and bias, which is critical to a comprehensive follow-up statistical analysis of flare properties. These studies together will help to establish Sgr A⋆ as a unique laboratory to understand the astrophysics of prevailing low-luminosity black holes in the Universe.

  3. An XMM-Newton spectral survey of 12 micron selected galaxies. I. X-ray data

    CERN Document Server

    Brightman, Murray

    2010-01-01

    We present an X-ray spectral analysis of 126 galaxies of the 12 micron galaxy sample. We pay particular attention to Compton thick AGN with the help of new spectral fitting models that we have produced, which are based on Monte-Carlo simulations of X-ray radiative transfer, using both a spherical and torus geometry, and taking into account Compton scattering and Fe fluorescence. We use this data to show that with a torus geometry, unobscured sight lines can achieve a maximum EW of the Fe K\\alpha line of ~150 eV, originally shown by Ghisellini, Haardt & Matt (1994). In order for this to be exceeded, the line of sight must be obscured with N_H>10^23 cm^-2, as we show for one case, NGC 3690. We also calculate flux suppression factors from the simulated data, the main conclusion from which is that for N_H>10^25 cm^-2, the X-ray flux is suppressed by a factor of >10 in all X-ray bands and at all redshifts, revealing the biases present against these extremely heavily obscured systems inherent in all X-ray surve...

  4. P.I.X.S.C.A.N.: a micro-CT scanner for small animal based on hybrid pixel detectors

    International Nuclear Information System (INIS)

    Since more than a dozen years, efforts were led in the field of X-ray tomography for small animals, principally for the improvement of spatial resolution and the diminution of the absorbed dose. The C.P.P.M. developed the micro-CT P.I.X.S.C.A.N. based on the hybrid pixel detector X.P.A.D.2. In this context, my thesis work consists in studying the demonstrator P.I.X.S.C.A.N./X.P.A.D.2 and the contribution of the hybrid pixels in the imaging of small animals. A fast analytical simulation, FastSimu, was developed. An extrapolation of the performance of the demonstrator P.I.X.S.C.A.N, as well as the validation of the results obtained with the measured data, were led by means of the analytical simulator FastSimu. The demonstrator P.I.X.S.C.A.N./X.P.A.D.2 allowed to obtain reconstructed images with a rather good quality for a relatively weak absorbed dose. Its spatial resolution is degraded by the high number of defective pixels of the detector X.P.A.D.2. Beyond this study, a new version of the demonstrator P.I.X.S.C.A.N./X.P.A.D.2 is under construction. This latter, characterized by two and a half times smaller pixels and about no defective pixels will bring a considerable improvement on spatial resolution. (author)

  5. Optimum Strategies for Selecting Descent Flight-Path Angles

    Science.gov (United States)

    Wu, Minghong G. (Inventor); Green, Steven M. (Inventor)

    2016-01-01

    An information processing system and method for adaptively selecting an aircraft descent flight path for an aircraft, are provided. The system receives flight adaptation parameters, including aircraft flight descent time period, aircraft flight descent airspace region, and aircraft flight descent flyability constraints. The system queries a plurality of flight data sources and retrieves flight information including any of winds and temperatures aloft data, airspace/navigation constraints, airspace traffic demand, and airspace arrival delay model. The system calculates a set of candidate descent profiles, each defined by at least one of a flight path angle and a descent rate, and each including an aggregated total fuel consumption value for the aircraft following a calculated trajectory, and a flyability constraints metric for the calculated trajectory. The system selects a best candidate descent profile having the least fuel consumption value while the fly ability constraints metric remains within aircraft flight descent flyability constraints.

  6. Cryogenic fluid management program flight concept definition

    Science.gov (United States)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  7. Design techniques for mutlivariable flight control systems

    Science.gov (United States)

    1981-01-01

    Techniques which address the multi-input closely coupled nature of advanced flight control applications and digital implementation issues are described and illustrated through flight control examples. The techniques described seek to exploit the advantages of traditional techniques in treating conventional feedback control design specifications and the simplicity of modern approaches for multivariable control system design.

  8. Java for flight software

    Science.gov (United States)

    Benowitz, E.; Niessner, A.

    2003-01-01

    This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.

  9. ALICE Time Of Flight Detector

    CERN Multimedia

    Alici, A

    2013-01-01

    Charged particles in the intermediate momentum range are identified in ALICE by the Time Of Flight (TOF) detector. The time measurement with the TOF, in conjunction with the momentum and track length measured by the tracking detector, is used to calculate the particle mass.

  10. Aerodynamic Simulation of Indoor Flight

    Science.gov (United States)

    De Leon, Nelson; De Leon, Matthew N.

    2007-01-01

    We develop a two-dimensional flight simulator for lightweight (less than 10 g) indoor planes. The simulator consists of four coupled time differential equations describing the plane CG, plane pitch and motor. The equations are integrated numerically with appropriate parameters and initial conditions for two planes: (1) Science Olympiad and (2)…

  11. Free flight of the mosquito Aedes aegypti

    CERN Document Server

    Iams, S M

    2012-01-01

    High speed video observations of free flying male Aedes aegypti mosquitoes, the dengue and yellow fever vector, along with custom measurement methods, enable measurement of wingbeat frequency, body position and body orientation of mosquitoes during flight. We find these mosquitoes flap their wings at approximately 850 Hz. We also generate body yaw, body pitch and wing deviation measurements with standard deviations of less than 1 degree and find that sideways velocity and acceleration are important components of mosquito motion. Rapid turns involving changes in flight direction often involve large sideways accelerations. These do not correspond to commensurate changes in body heading, and the insect's flight direction and body heading are decoupled during flight. These findings call in to question the role of yaw control in mosquito flight. In addition, using orientation data, we find that sideways accelerations are well explained by roll-based rotation of the lift vector. In contrast, the insect's body pitch...

  12. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    Science.gov (United States)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  13. Flight plan optimization

    Science.gov (United States)

    Dharmaseelan, Anoop; Adistambha, Keyne D.

    2015-05-01

    Fuel cost accounts for 40 percent of the operating cost of an airline. Fuel cost can be minimized by planning a flight on optimized routes. The routes can be optimized by searching best connections based on the cost function defined by the airline. The most common algorithm that used to optimize route search is Dijkstra's. Dijkstra's algorithm produces a static result and the time taken for the search is relatively long. This paper experiments a new algorithm to optimize route search which combines the principle of simulated annealing and genetic algorithm. The experimental results of route search, presented are shown to be computationally fast and accurate compared with timings from generic algorithm. The new algorithm is optimal for random routing feature that is highly sought by many regional operators.

  14. Stirling to Flight Initiative

    Science.gov (United States)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    Flight (S2F) initiative with the objective of developing a 100-500 We Stirling generator system. Additionally, a different approach is being devised for this initiative to avoid pitfalls of the past, and apply lessons learned from the recent ASRG experience. Two key aspects of this initiative are a Stirling System Technology Maturation Effort, and a Surrogate Mission Team (SMT) intended to provide clear mission pull and requirements context. The S2F project seeks to lead directly into a DOE flight system development of a new SRG. This paper will detail the proposed S2F initiative, and provide specifics on the key efforts designed to pave a forward path for bringing Stirling technology to flight.

  15. Multidimensional modeling of type I X-ray bursts. II. Two-dimensional convection in a mixed H/He accretor

    Energy Technology Data Exchange (ETDEWEB)

    Malone, C. M. [Department of Astronomy and Astrophysics, The University of California Santa Cruz, Santa Cruz, CA 95064 (United States); Zingale, M. [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Nonaka, A.; Almgren, A. S.; Bell, J. B., E-mail: malone@ucolick.org [Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-06-20

    Type I X-ray bursts are thermonuclear explosions of accreted material on the surface of neutron stars in low-mass X-ray binaries. Prior to the ignition of a subsonic burning front, runaway burning at the base of the accreted layer drives convection that mixes fuel and heavy-element ashes. In this paper, the second in a series, we explore the behavior of this low Mach number convection in mixed hydrogen/helium layers on the surface of a neutron star using two-dimensional simulations with the Maestro code. Maestro takes advantage of the highly subsonic flow field by filtering dynamically unimportant sound waves while retaining local compressibility effects, such as those due to stratification and energy release from nuclear reactions. In these preliminary calculations, we find that the rp-process approximate network creates a convective region that is split into two layers. While this splitting appears artificial due to the approximations of the network regarding nuclear flow out of the breakout reaction {sup 18}Ne(α, p){sup 21}Na, these calculations hint at further simplifications and improvements of the burning treatment for use in subsequent calculations in three dimensions for a future paper.

  16. Multidimensional Modeling of Type I X-ray Bursts. II. Two-Dimensional Convection in a Mixed H/He Accretor

    CERN Document Server

    Malone, C M; Nonaka, A; Almgren, A S; Bell, J B

    2014-01-01

    Type I X-ray Bursts (XRBs) are thermonuclear explosions of accreted material on the surfaces of a neutron stars in low mass X-ray binaries. Prior to the ignition of a subsonic burning front, runaway burning at the base of the accreted layer drives convection that mixes fuel and heavy-element ashes. In this second paper in a series, we explore the behavior of this low Mach number convection in mixed hydrogen/helium layers on the surface of a neutron star using two-dimensional simulations with the Maestro code. Maestro takes advantage of the highly subsonic flow field by filtering dynamically unimportant sound waves while retaining local compressibility effects, such as those due to stratification and energy release from nuclear reactions. In these preliminary calculations, we find that the rp-process approximate network creates a convective region that is split into two layers. While this splitting appears artificial due to the approximations of the network regarding nuclear flow out of the breakout reaction 1...

  17. Kilowatt isotope power system phase II plan. Volume II: flight System Conceptual Design (FSCD)

    International Nuclear Information System (INIS)

    The Kilowatt Isotope Power System (KIPS) Flight System Conceptual Design (FSCD) is described. Included are a background, a description of the flight system conceptual design, configuration of components, flight system performance, Ground Demonstration System test results, and advanced development tests

  18. Kilowatt isotope power system phase II plan. Volume II: flight System Conceptual Design (FSCD)

    Energy Technology Data Exchange (ETDEWEB)

    1978-03-01

    The Kilowatt Isotope Power System (KIPS) Flight System Conceptual Design (FSCD) is described. Included are a background, a description of the flight system conceptual design, configuration of components, flight system performance, Ground Demonstration System test results, and advanced development tests.

  19. The use of photogrammetry in aviation equipment flight testing

    Science.gov (United States)

    Albakian, Kira

    1990-08-01

    Information on the application of the photogrammetric (PG) method in the flight testing of aviation equipment is summarized. A variety of different approaches are discussed, with reference to specific flight experiment conditions, and special features, advantages, drawbacks, and accuracy characteristics. Results are presented of the repeated application of the PG method for evaluating the accuracy characteristics of various navigation systems and sensors, based on different physical principles. The efficiency of using the PG method in flight-navigation-equipment flight testing is shown.

  20. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in astronauts before, during, and after space missions, in 43 astronauts (34 male, 9 female) on 4-6 month space flight missions. We also studied individuals participating in a ground analog of space flight, (head-down tilt bed rest, n=27, 35 +/- 7 y). We evaluated serum concentration and 24-hour urinary excretion of magnesium along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-d space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4- to 6-month space missions.

  1. Propagation of thermonuclear flames on rapidly rotating neutron stars extreme weather during type I X-ray bursts

    CERN Document Server

    Spitkovsky, A; Ushomirsky, G; Spitkovsky, Anatoly; Levin, Yuri; Ushomirsky, Greg

    2002-01-01

    We analyze the global hydrodynamic flow in the ocean of an accreting, rapidly rotating, non-magnetic neutron star in an LMXB during a type I X-ray burst. Our analysis takes into account the rapid rotation of the star and the lift-up of the burning ocean during the burst. We find a new regime for spreading of a nuclear burning front, where the flame is carried along a coherent shear flow across the front. If turbulent viscosity is weak, the speed of flame propagation is ~20 km/s, while, if turbulent viscosity is dynamically important, the flame speed increases, and reaches the maximum value, ~300 km/s, when the eddy overturn frequency is comparable to the Coriolis parameter. We show that, due to rotationally reduced gravity, the thermonuclear runaway is likely to begin on the equator. The equatorial belt is ignited first, and the flame then propagates from the equator to the poles. Inhomogeneous cooling (equator first, poles second) drives strong zonal currents which may be unstable to formation of Jupiter-typ...

  2. Ranking different factors influencing flight delay

    Directory of Open Access Journals (Sweden)

    Meysam Kazemi Asfe

    2014-07-01

    Full Text Available Flight interruption is one of the most important issues in today’s airline industry. Every year, most airlines spend significant amount of money to compensate flight delays. Therefore, it is important to detect important factors influencing on flight delays. This paper presents an empirical investigation to determine important factors on this issue. The study also asks some decision makers to make pairwise comparison and ranks various factors using the art of analytical hierarchy process. The study determines that technical defects and delayed entry were among the most important factors to blame for flight delays. In addition, announcing the postponement, replacement aircraft and path replacement are among the most important decisions facing managers in the aviation industry during the disruption of the flight.

  3. Analysis of Maneuvering Flight of an Insect

    Institute of Scientific and Technical Information of China (English)

    Sunada S.; Wang H.; Zeng Lijiang; Kawachi K.

    2004-01-01

    Wing motion of a dragonfly in the maneuvering flight, which was measured by Wang et al. [1] was investigated. Equations of motion for a maneuvering flight of an insect were derived. These equations were applied for analyzing the maneuvering flight. Inertial forces and moments acting on a body and wings were estimated by using these equations and the measured motions of the body and the wings. The results indicated the following characteristics of this flight: (1) The phase difference in flapping motion between the two fore wings and two hind wings, and the phase difference between the flapping motion and the feathering motion of the four wings are equal to those in a steady forward flight with the maximum efficiency. (2)The camber change and the feathering motion were mainly controlled by muscles at the wing bases.

  4. Insect flight muscle metabolism

    OpenAIRE

    Horst, D.J. van der; Beenakkers, A.M.Th.; Marrewijk, W.J.A. van

    1984-01-01

    The flight of an insect is of a very complicated and extremely energy-demanding nature. Wingbeat frequency may differ between various species but values up to 1000 Hz have been measured. Consequently metabolic activity may be very high during flight and the transition from rest to flight is accompanied by an increase of 50-100-fold in metabolic rate. Small mammals running at maximal speed and flying birds achieve metabolic rates exceeding resting levels by only 7-14-fold. The exaggerated meta...

  5. ER-2 in flight

    Science.gov (United States)

    1996-01-01

    In this film clip, we see an ER-2 on its take off roll and climb as it departs from runway 22 at Edwards AFB, California. In 1981, NASA acquired its first ER-2 aircraft. The agency obtained a second ER-2 in 1989. These airplanes replaced two Lockheed U-2 aircraft, which NASA had used to collect scientific data since 1971. The U-2, and later the ER-2, were based at the Ames Research Center, Moffett Field, California, until 1997. In 1997, the ER-2 aircraft and their operations moved to NASA Dryden Flight Research Center, Edwards, California. Since the inaugural flight for this program, August 31, 1971, NASA U-2 and ER-2 aircraft have flown more than 4,000 data missions and test flights in support of scientific research conducted by scientists from NASA, other federal agencies, states, universities, and the private sector. NASA is currently using two ER-2 Airborne Science aircraft as flying laboratories. The aircraft, based at NASA Dryden, collect information about our surroundings, including Earth resources, celestial observations, atmospheric chemistry and dynamics, and oceanic processes. The aircraft also are used for electronic sensor research and development, satellite calibration, and satellite data validation. The ER-2 is a versatile aircraft well-suited to perform multiple mission tasks. It is 30 percent larger than the U-2 with a 20 feet longer wingspan and a considerably increased payload over the older airframe. The aircraft has four large pressurized experiment compartments and a high-capacity AC/DC electrical system, permitting it to carry a variety of payloads on a single mission. The modular design of the aircraft permits rapid installation or removal of payloads to meet changing mission requirements. The ER-2 has a range beyond 3,000 miles (4800 kilometers); is capable of long flight duration and can operate at altitudes up to 70,000 feet (21.3 kilometers) if required. Operating at an altitude of 65,000 feet (19.8 kilometers) the ER-2 acquires data

  6. Flight Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop the Flight System Monitor which will use non-intrusive electrical monitoring (NEMO). The electronic system health of...

  7. 14 CFR 1214.806 - Premature termination of Spacelab flights.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Premature termination of Spacelab flights... FLIGHT Reimbursement for Spacelab Services § 1214.806 Premature termination of Spacelab flights. If a... are, in NASA's judgment, adversely affected by such premature termination. The basis for...

  8. INSECT FLIGHT - BIOACOUSTICAL APPROACH

    OpenAIRE

    Gopala Krishna, G.; Krishna Shankar, B.; Ahmad, A.

    1990-01-01

    Insect aerodynamics is drawing the attention of a number of researchers belonging to different disciplines with a view to understand its aerodynamic capabilities so as to revolutionise the aircraft technology. It is possible to understand, to some extent, the insect aerodynamics by experimentally determining the frequency of wing beat in its fethered state of flight by using flight sound technique and computing rate of mass flow, velocity, acceleration and mass of air induced in downward dire...

  9. Electronic flight instrument system

    OpenAIRE

    Hauptman, Luka

    2009-01-01

    This thesis describes basic concepts in research and development of a simple electronic flight instrument system, which displays piston engine data to the pilot. The main purpose is to build a functional prototype and acquire knowledge, which will enable us to further develop the system. The second chapter presents fundamentals of electronic flight instrument systems used in large commercial aircrafts. A detailed description of basic approaches to system implementation used by two of the b...

  10. Interprofessional Flight Camp.

    Science.gov (United States)

    Alfes, Celeste M; Rowe, Amanda S

    2016-01-01

    The Dorothy Ebersbach Academic Center for Flight Nursing in Cleveland, OH, holds an annual flight camp designed for master's degree nursing students in the acute care nurse practitioner program, subspecializing in flight nursing at the Frances Payne Bolton School of Nursing at Case Western Reserve University. The weeklong interprofessional training is also open to any health care provider working in an acute care setting and focuses on critical care updates, trauma, and emergency care within the critical care transport environment. This year, 29 graduate nursing students enrolled in a master's degree program from Puerto Rico attended. Although the emergency department in Puerto Rico sees and cares for trauma patients, there is no formal trauma training program. Furthermore, the country only has 1 rotor wing air medical transport service located at the Puerto Rico Medical Center in San Juan. Flight faculty and graduate teaching assistants spent approximately 9 months planning for their participation in our 13th annual flight camp. Students from Puerto Rico were extremely pleased with the learning experiences at camp and expressed particular interest in having more training time within the helicopter flight simulator. PMID:27021671

  11. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  12. Flight simulation - A vital and expanding technology in aircraft development

    Science.gov (United States)

    Reynolds, P. A.; Hall, G. W.

    1978-01-01

    Flight simulation, both ground and in-flight, is experiencing major technological improvement and growth. The increased capabilities are providing new opportunities for support of the aircraft development process. The development of faster digital computers, improved visual displays, better motion systems and increased interest in simulation fidelity has improved the ground simulator to the point where it accomplishes a major portion of the aircraft development before work on the flight article begins. The efficiency of the ground simulator as a forecaster for the flight testing phase is becoming well established. In-flight simulation is properly being used to bridge the gap between the ground simulator and the flight test article. Simulation provides the vital link between analysis, aerodynamic tests, and subsystem tests and the flight test article. This paper describes the latest advances in flight simulation and its increasing role in the aircraft development process.

  13. UAV flight plan static validator

    OpenAIRE

    Ittel, Jonas

    2013-01-01

    Unmanned Aircraft Systems (UAS) have been successfully used for military purposes for several years. With advancing technology and improving acceptance UAS are expected to become increasingly important in the field of civil aviation. UAS can provide great value by performing missions such as environmental applications, participating in emergency situations and operating as communication relays. If UAS are foreseen to perform such missions in the future, current flight planning specification a...

  14. A real time scintillating fiber Time of Flight spectrometer for LINAC photoproduced neutrons

    Science.gov (United States)

    Maspero, M.; Berra, A.; Conti, V.; Giannini, G.; Ostinelli, A.; Prest, M.; Vallazza, E.

    2015-03-01

    The use of high-energy (> 8 MeV) LINear ACcelerators (LINACs) for medical cancer treatments causes the photoproduction of secondary neutrons, whose unwanted dose to the patient has to be calculated. The characterization of the neutron spectra is necessary to allow the dosimetric evaluation of the neutron beam contamination. The neutron spectrum in a hospital environment is usually measured with integrating detectors such as bubble dosimeters, Thermo Luminescent Dosimeters (TLDs) or Bonner Spheres, which integrate the information over a time interval and an energy one. This paper presents the development of a neutron spectrometer based on the Time of Flight (ToF) technique in order to perform a real time characterization of the neutron contamination. The detector measures the neutron spectrum exploiting the fact that the LINAC beams are pulsed and arranged in bunches with a rate of 100-300 Hz depending on the beam type and energy. The detector consists of boron loaded scintillating fibers readout by a MultiAnode PhotoMultiplier Tube (MAPMT). A detailed description of the detector and the acquisition system together with the results in terms of ToF spectra and number of neutrons with a Varian Clinac iX are presented.

  15. Diel flight pattern and flight performance of Cactoblastis cactorum (Lepidoptera: Pyralidae) measured on a flight mill: influence of age, gender, mating status, and body size.

    Science.gov (United States)

    Sarvary, Mark A; Bloem, Kenneth A; Bloem, Stephanie; Carpenter, James E; Hight, Stephen D; Dorn, Silvia

    2008-04-01

    Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae) is an invasive herbivore that poses a serious risk to Opuntia cacti in North America. Knowledge of the flight behavior of the cactus moth is crucial for a better understanding of natural dispersal, and for both monitoring and control. We used computer-linked flight mills to investigate diel flight activity and flight performance in relation to gender, age, mating status, and body size. Maximal flight activity for both mated and unmated moths occurred during twilight, whereas flight activity was low during photophase. The total distance flown and the number of initiated flights within a diel cycle were higher in both unmated and mated females than in males, but the longest single flight was similar in both genders. These findings suggest that pheromone trap captures of males likely indicate the simultaneous presence of females and that mated females might even be in areas where males are not detected yet. Flight performance heterogeneity was large, with a small portion of the population (both males and females) performing long unbroken flights, whereas the majority made short flights. Females had higher pupal and adult body size and shorter longevity than males. A few individuals, particularly young mated females, flying long distances may be important for active spread of a population and the colonization of new habitats. Implications of this study in the control of the cactus moth by using the sterile insect technique are discussed. PMID:18459394

  16. X-2 in flight

    Science.gov (United States)

    1956-01-01

    This inflight photograph of the X-2 (46-674) shows the twin set of shock-diamonds, characteristic of supersonic conditions in the exhaust plume from the two-chamber rocket engine. The Curtiss-Wright XLR-25 rocket engine caused one of several problems that delayed flight of the X-2. At one point, people in the project suggested its replacement. It was the first 'man-rated' (in the terminology of the day) rocket engine that was throttleable, and the technology was not yet mature. Other problems included the X-2's landing gear and the replacement of the planned electronic flight controls with a conventional hydromechanical system like that used in the F-86. The X-2 was a swept-wing, rocket-powered aircraft designed to fly faster than Mach 3 (three times the speed of sound). It was built for the U.S. Air Force by the Bell Aircraft Company, Buffalo, New York. The X-2 was flown to investigate the problems of aerodynamic heating as well as stability and control effectiveness at high altitudes and high speeds (in excess of Mach 3). Bell aircraft built two X-2 aircraft. These were constructed of K-monel (a copper and nickel alloy) for the fuselage and stainless steel for the swept wings and control surfaces. The aircraft had ejectable nose capsules instead of ejection seats because the development of ejection seats had not reached maturity at the time the X-2 was conceived. The X-2 ejection canopy was successfully tested using a German V-2 rocket. The X-2 used a skid-type landing gear to make room for more fuel. The airplane was air launched from a modified Boeing B-50 Superfortress Bomber. X-2 Number 1 made its first unpowered glide flight on Aug. 5, 1954, and made a total of 17 (4 glide and 13 powered) flights before it was lost Sept. 27, 1956. The pilot on Flight 17, Capt. Milburn Apt, had flown the aircraft to a record speed of Mach 3.2 (2,094 mph), thus becoming the first person to exceed Mach 3. During that last flight, inertial coupling occurred and the pilot was

  17. Experimental study of flight noise on AS350B2 helicopter

    Institute of Scientific and Technical Information of China (English)

    WANG Huaming; ZHANG Qiang; HU Zhangwei; BAO Jinsong

    2005-01-01

    A joint flight experiment is conducted by China Aviation Establishment and German Aerospace Center on an Aerospatiale AS350B2 helicopter to investigate rotorcraft flight acoustics at Pingfang airport, Harbing City, China. This paper briefly introduces the methodologies and facilities used in the flight tests. The flight exposure noise levels for ten test flight conditions are showed in the paper and harmonic spectrum and wavelet analysis methods are used for the noise test data processing, which are measured in the flight test in taking off, climbing, forward and descent flight conditions. Results show that the flight noise levels are relatively higher in the climbing and descending flight conditions. The flight noise comes mainly from the tail rotor for the climbing and from the main rotor due to the blade vortex interaction (BVI) for the descending flight conditions. The highest noise level occurs in the forward rotating blade side when the helicopter flys at moderate speed with about 6° descending slide angle.

  18. Distributed Flight Controls for UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel flight control actuation concepts for UAV applications are proposed for research and development, both of which incorporate shape memory alloy (SMA) wires...

  19. Distributed Flight Controls for UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel flight control actuation concepts for UAV applications are proposed for prototype development, both of which incorporate shape memory alloy (SMA) wires as...

  20. Neutron time-of-flight diffractometry

    International Nuclear Information System (INIS)

    Specific possibilities of neutron time-of-flight diffractometry for structural studies are considered. Special attention is paid to correlation neutron diffractometry, kinetic processes, applications of external electric and magnetic fields and high pressures. 133 refs., 20 figs., 5 tabs

  1. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  2. Clustering using Levy Flight Cuckoo Search

    OpenAIRE

    J Senthilnath; Das, Vipul; Omkar, SN; Mani, V

    2013-01-01

    In this paper, a comparative study is carried using three nature-inspired algorithms namely Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Cuckoo Search (CS) on clustering problem. Cuckoo search is used with levy flight. The heavy-tail property of levy flight is exploited here. These algorithms are used on three standard benchmark datasets and one real-time multi-spectral satellite dataset. The results are tabulated and analysed using various techniques. Finally we conclude tha...

  3. Evaluation of Small Unmanned Aircraft Flight Trajectory Accuracy

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis

    2014-12-01

    Full Text Available Today small unmanned aircraft are being more widely adapted for practical tasks. These tasks require high reliability and flight path accuracy. For such aircraft we have to deal with the chalenge how to compensate external factors and how to ensure the accuracy of the flight trajectory according to new regulations and standards. In this paper, new regulations for the flights of small unmanned aircraft in Lithuanian air space are discussed. Main factors, which affect errors of the autonomous flight path tracking, are discussed too. The emphasis is on the wind factor and the flight path of Dubbin’s trajectories. Research was performed with mathematical-dynamic model of UAV and it was compared with theoretical calculations. All calculations and experiments were accomplished for the circular part of Dubbin’s paths when the airplane was trimmed for circular trajectory flight in calm conditions. Further, for such flight the wind influence was analysed.

  4. NASA's Flight Opportunities Program: Matching Suborbital Research Payload Demand with Commercial Flight Supply

    Science.gov (United States)

    Mains, R.; Maclise, D.

    2012-12-01

    The Flight Opportunities Program (FOP) is designed to solicit, select and oversee the upgrade of research technology payloads to readiness status for integration onboard a range of commercial flight platforms including; parabolic aircraft, high-altitude balloons, and suborbital launch vehicles. Two key Program goals are: to identify, demonstrate and support research technology maturation of value to future NASA missions in space-like environments, and help stimulate the availability of new low-cost, frequent access to space by funding commercial flights. FOP is one of four key elements of a new suborbital endeavor that also includes: the research payload provider community, the flight service providers, and the spaceport service providers. Ongoing collaboration and coordination between them as well as within the FOP is essential, since there are 8 commercial flight providers on contract, with 5 of them now actively seeking flight payloads. The challenge of matching the readiness to fly of both payloads and flight platforms will be described and strategies for optimizing this presented. Ideally, a pipeline of payloads will be available to ensure that flight platforms can be optimally filled with compatible payloads. However, payloads need to fly soon after they are ready in order to conserve project resources and advance technologies. Several design and interface strategies will be described that can support efficient payload processing and help to optimize these matching challenges. The fundamental driver for payload proposal submission to the FOP is understandably the perceived return on investment to the research payload providers from participation. These projected benefits are most easily understood when a candidate researcher is able to review results from flight of a payload similar to what they might propose. To this end, an analysis of recent FOP research payload proposal categories will be presented along with top-level accomplishments from recent FOP

  5. Thermal biology of flight in a butterfly: genotype, flight metabolism, and environmental conditions.

    Science.gov (United States)

    Mattila, Anniina L K

    2015-12-01

    Knowledge of the effects of thermal conditions on animal movement and dispersal is necessary for a mechanistic understanding of the consequences of climate change and habitat fragmentation. In particular, the flight of ectothermic insects such as small butterflies is greatly influenced by ambient temperature. Here, variation in body temperature during flight is investigated in an ecological model species, the Glanville fritillary butterfly (Melitaea cinxia). Attention is paid on the effects of flight metabolism, genotypes at candidate loci, and environmental conditions. Measurements were made under a natural range of conditions using infrared thermal imaging. Heating of flight muscles by flight metabolism has been presumed to be negligible in small butterflies. However, the results demonstrate that Glanville fritillary males with high flight metabolic rate maintain elevated body temperature better during flight than males with a low rate of flight metabolism. This effect is likely to have a significant influence on the dispersal performance and fitness of butterflies and demonstrates the possible importance of intraspecific physiological variation on dispersal in other similar ectothermic insects. The results also suggest that individuals having an advantage in low ambient temperatures can be susceptible to overheating at high temperatures. Further, tolerance of high temperatures may be important for flight performance, as indicated by an association of heat-shock protein (Hsp70) genotype with flight metabolic rate and body temperature at takeoff. The dynamics of body temperature at flight and factors affecting it also differed significantly between female and male butterflies, indicating that thermal dynamics are governed by different mechanisms in the two sexes. This study contributes to knowledge about factors affecting intraspecific variation in dispersal-related thermal performance in butterflies and other insects. Such information is needed for predictive

  6. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke;

    2008-01-01

      In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  7. The relationship of certified flight instructors' emotional intelligence levels on flight student advancement

    Science.gov (United States)

    Hokeness, Mark Merrill

    Aviation researchers estimate airline companies will require nearly 500,000 pilots in the next 20 years. The role of a Certified Flight Instructor (CFI) is to move student pilots to professional pilots with training typically conducted in one-on-one student and instructor sessions. The knowledge of aviation, professionalism as a teacher, and the CFI’s interpersonal skills can directly affect the successes and advancement of a student pilot. A new and emerging assessment of people skills is known as emotional intelligence (EI). The EI of the CFI can and will affect a flight students’ learning experiences. With knowledge of emotional intelligence and its effect on flight training, student pilot dropouts from aviation may be reduced, thus helping to ensure an adequate supply of pilots. Without pilots, the growth of the commercial aviation industry will be restricted. This mixed method research study established the correlation between a CFI’s measured EI levels and the advancement of flight students. The elements contributing to a CFI’s EI level were not found to be teaching or flight-related experiences, suggesting other life factors are drawn upon by the CFI and are reflected in their emotional intelligence levels presented to flight students. Students respond positively to CFIs with higher levels of emotional intelligence. Awareness of EI skills by both the CFI and flight student contribute to flight student successes and advancement.

  8. Comparing Future Options for Human Space Flight

    Science.gov (United States)

    Sherwood, Brent

    2010-01-01

    The paper analyzes the "value proposition" for government-funded human space flight, a vexing question that persistently dogs efforts to justify its $10(exp 10)/year expense in the U.S. The original Mercury/Gemini/Apollo value proposition is not valid today. Neither was it the value proposition actually promoted by von Braun, which the post-Apollo 80% of human space flight history has persistently attempted to fulfill. Divergent potential objectives for human space flight are captured in four strategic options - Explore Mars; accelerate Space Passenger Travel; enable Space Power for Earth; and Settle the Moon - which are then analyzed for their Purpose, societal Myth, Legacy benefits, core Needs, and result as measured by the number and type of humans they would fly in space. This simple framework is proposed as a way to support productive dialogue with public and other stakeholders, to determine a sustainable value proposition for human space flight.

  9. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  10. Flight Software Design Choices Based on Criticality

    Science.gov (United States)

    Lee, Earl

    1999-01-01

    This slide presentation reviews the rationale behind flight software design as a function of criticality. The requirements of human rated systems implies a high criticality for the flight support software. Human life is dependent on correct operation of the software. Flexibility should be permitted when the consequences of software failure are not life threatening. This is also relevant for selecting Commercial Off the Shelf (COTS) software.

  11. Astronautics:the physics of space flight

    OpenAIRE

    McClintock, P. V. E.

    2012-01-01

    Space flight provides beautiful examples of the Newtonian dynamics that teachers of physics have always wanted to demonstrate for their students – the consequences of Newton’s Laws and gravitation writ large, and with the effect of dissipation also coming in at the launch of the spacecraft and (especially) duringmits re-entry into the Earth’s atmosphere. For physicists, the basic principles of space flight are self-evident, but how best to apply them is far less obvious.

  12. Importance of body rotation during the flight of a butterfly

    Science.gov (United States)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2016-03-01

    In nature the body motion of a butterfly is clearly observed to involve periodic rotation and varied flight modes. The maneuvers of a butterfly in flight are unique. Based on the flight motion of butterflies (Kallima inachus) recorded in free flight, a numerical model of a butterfly is created to study how its flight relates to body pose; the body motion in a simulation is prescribed and tested with varied initial body angle and rotational amplitude. A butterfly rotates its body to control the direction of the vortex rings generated during flapping flight; the flight modes are found to be closely related to the body motion of a butterfly. When the initial body angle increases, the forward displacement decreases, but the upward displacement increases within a stroke. With increased rotational amplitudes, the jet flows generated by a butterfly eject more downward and further enhance the generation of upward force, according to which a butterfly executes a vertical jump at the end of the downstroke. During this jumping stage, the air relative to the butterfly is moving downward; the butterfly pitches up its body to be parallel to the flow and to decrease the projected area so as to avoid further downward force generated. Our results indicate the importance of the body motion of a butterfly in flight. The inspiration of flight controlled with body motion from the flight of a butterfly might yield an alternative way to control future flight vehicles.

  13. Efficient flapping flight of pterosaurs

    Science.gov (United States)

    Strang, Karl Axel

    In the late eighteenth century, humans discovered the first pterosaur fossil remains and have been fascinated by their existence ever since. Pterosaurs exploited their membrane wings in a sophisticated manner for flight control and propulsion, and were likely the most efficient and effective flyers ever to inhabit our planet. The flapping gait is a complex combination of motions that sustains and propels an animal in the air. Because pterosaurs were so large with wingspans up to eleven meters, if they could have sustained flapping flight, they would have had to achieve high propulsive efficiencies. Identifying the wing motions that contribute the most to propulsive efficiency is key to understanding pterosaur flight, and therefore to shedding light on flapping flight in general and the design of efficient ornithopters. This study is based on published results for a very well-preserved specimen of Coloborhynchus robustus, for which the joints are well-known and thoroughly described in the literature. Simplifying assumptions are made to estimate the characteristics that can not be inferred directly from the fossil remains. For a given animal, maximizing efficiency is equivalent to minimizing power at a given thrust and speed. We therefore aim at finding the flapping gait, that is the joint motions, that minimize the required flapping power. The power is computed from the aerodynamic forces created during a given wing motion. We develop an unsteady three-dimensional code based on the vortex-lattice method, which correlates well with published results for unsteady motions of rectangular wings. In the aerodynamic model, the rigid pterosaur wing is defined by the position of the bones. In the aeroelastic model, we add the flexibility of the bones and of the wing membrane. The nonlinear structural behavior of the membrane is reduced to a linear modal decomposition, assuming small deflections about the reference wing geometry. The reference wing geometry is computed for

  14. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    Science.gov (United States)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  15. Network Topology of the Austrian Airline Flights

    CERN Document Server

    Han, D D; Qian, J H

    2007-01-01

    We analyze the directed, weighted and evolutionary Austrian airline flight network. It is shown that such a specific airline flight network displays features of small-world networks, namely large clustering coefficient and small average shortest-path length. We study the detailed flight information both in a week and on a whole. In both cases, the degree distributions reveal power law with exponent value of 2 $\\sim$ 3 for the small degree branch and a flat tail for the large degree branch. Similarly, the flight weight distributions have power-law for the small weight branch. The degree-degree correlation analysis shows the network has disassortative behavior, i.e. the large airports are likely to link to smaller airports.

  16. EPS analysis of nominal STS-1 flight

    Science.gov (United States)

    Wolfgram, D. F.; Pipher, M. D.

    1980-01-01

    The results of electrical power system (EPS) analysis of the planned Shuttle Transportation System Flight 1 mission are presented. The capability of the orbiter EPS to support the planned flight and to provide program tape information and supplementary data specifically requested by the flight operations directorate was assessed. The analysis was accomplished using the orbiter version of the spacecraft electrical power simulator program, operating from a modified version of orbiter electrical equipment utilization baseline revision four. The results indicate that the nominal flight, as analyzed, is within the capabilities of the orbiter power generation system, but that a brief, and minimal, current overload may exist between main distributor 1 and mid power controlled 1, and that inverter 9 may the overloaded for extended periods of time. A comparison of results with launch commit criteria also indicated that some of the presently existing launch redlines may be violated during the terminal countdown.

  17. Overbooking Airline Flights.

    Science.gov (United States)

    Austin, Joe Dan

    1982-01-01

    The problems involved in making reservations for airline flights is discussed in creating a mathematical model designed to maximize an airline's income. One issue not considered in the model is any public relations problem the airline may have. The model does take into account the issue of denied boarding compensation. (MP)

  18. The Orion Exploration Flight Test Post Flight Solid Particle Flight Environment Inspection and Analysis

    Science.gov (United States)

    Miller, Joshua E.

    2016-01-01

    Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.

  19. Merging Autopilot/Flight Control and Navigation-Flight Management Systems

    Directory of Open Access Journals (Sweden)

    Khaleel Qutbodin

    2010-01-01

    Full Text Available In this abstract the following commercial aircraft 3 avionics systems will be merged together: (1 Autopilot Flight Director System (APFDS, (2 Flight Control System (FCS and (3 Flight Management Systems (FMS. Problem statement: These systems perform functions that are dependant and related to each other, also they consists of similar hardware components. Each of these systems consists of at least one computer, control panel and displays that place on view the selection and aircraft response. They receive several similar sensor inputs, or outputs of one system are fed as input to the other system. By combining the three systems, repeated and related functions are reduced. Since these systems perform related functions, designers and programmers verify that conflict between these systems is not present. Combining the three systems will eliminate such possibility. Also used space, weight, wires and connections are decreased, consequently electrical consumption is reduced. To keep redundancy, the new system can be made of multiple channels. Approach: The new system (called Autopilot Navigation Management System, APNMS is more efficient and resolves the above mention drawbacks. Results: The APFDS system functions (as attitude-hold or heading-hold are merged with the FCS system main function which is controlling flight control surfaces as well as other functions as flight protection, Turn coordination and flight stability augmentation. Also the Flight Management system functions (as flight planning, aircraft flight performance/engine thrust management are merged in the new system. All this is done through combining all 3 systems logic software’s. Conclusion/Recommendations: The new APNMS system can be installed and tested on prototype aircraft in order to verify its benefits and fruits to the aviation industry.

  20. Evaluation of Night Route Network on Flight Efficiency in Europe

    Directory of Open Access Journals (Sweden)

    Tomislav Mihetec

    2011-09-01

    Full Text Available There are many different concepts and definitions for the flight efficiency, where every stakeholder involved in air transport has its own perception on flight efficiency. Flight efficiency concept is based on trade-offs between safety, airspace capacity, fuel consumption, flying distance, time distance, time cost, fuel cost etc. Flight time and flying distance which has impact to fuel burn and operation costs to airspace users are mainly generated by deviations from the optimum trajectories. According to the Performance Review Commission (PRC Report in 2009 average en-route extension in Europe was 47.6 km, with the year on year improvement of 1.2 km. The PRC Report emphasized that there is constant increase of medium/long haul flights operated by aircraft operators in Europe while short haul flights are decreasing. One of the issues, concerning flight efficiency in Europe, is that aircraft operators are not using night routes sufficient during flight planning process. This paper is presenting flight efficiency for the traffic demand using night route network and not using it at all. Flight inefficiency is expresses by the agreed performance indicators: distance difference (NM, duration difference (min, fuel combustion difference (kg and CO2 emission (t environmental indicator.

  1. Cardiovascular physiology in space flight

    Science.gov (United States)

    Charles, John B.; Bungo, Michael W.

    1991-01-01

    The effects of space flight on the cardiovascular system have been studied since the first manned flights. In several instances, the results from these investigations have directly contradicted the predictions based on established models. Results suggest associations between space flight's effects on other organ systems and those on the cardiovascular system. Such findings provide new insights into normal human physiology. They must also be considered when planning for the safety and efficiency of space flight crewmembers.

  2. Orbiter Auxiliary Power Unit Flight Support Plan

    Science.gov (United States)

    Guirl, Robert; Munroe, James; Scott, Walter

    1990-01-01

    This paper discussed the development of an integrated Orbiter Auxiliary Power Unit (APU) and Improved APU (IAPU) Flight Suuport Plan. The plan identifies hardware requirements for continued support of flight activities for the Space Shuttle Orbiter fleet. Each Orbiter vehicle has three APUs that provide power to the hydraulic system for flight control surface actuation, engine gimbaling, landing gear deployment, braking, and steering. The APUs contain hardware that has been found over the course of development and flight history to have operating time and on-vehicle exposure time limits. These APUs will be replaced by IAPUs with enhanced operating lives on a vehicle-by-vehicle basis during scheduled Orbiter modification periods. This Flight Support Plan is used by program management, engineering, logistics, contracts, and procurement groups to establish optimum use of available hardware and replacement quantities and delivery requirements for APUs until vehicle modifications and incorporation of IAPUs. Changes to the flight manifest and program delays are evaluated relative to their impact on hardware availability.

  3. Bayesian Network Assessment Method for Civil Aviation Safety Based on Flight Delays

    OpenAIRE

    Huawei Wang; Jun Gao

    2013-01-01

    Flight delays and safety are the principal contradictions in the sound development of civil aviation. Flight delays often come up and induce civil aviation safety risk simultaneously. Based on flight delays, the random characteristics of civil aviation safety risk are analyzed. Flight delays have been deemed to a potential safety hazard. The change rules and characteristics of civil aviation safety risk based on flight delays have been analyzed. Bayesian networks (BN) have been used to build ...

  4. Space station configuration and flight dynamics identification

    Science.gov (United States)

    Metter, E.; Milman, M. H.

    1985-01-01

    The Space Station will be assembled in low earth orbit by a combination of deployable and space erectable modules that are progressively integrated during successive flights of the Shuttle. The crew assisted space construction will result in a configuration which is a large scale composite of structural elements having connectivity with a wide range of possible end conditions and imprecisely known dynamic characteristics. The generic applications of Flight Dynamics Identification to the candidate Space Station configurations currently under consideration are described. Identification functions are categorized, and the various methods for extracting parameter estimates are correlated with the sensing of parameter estimates are correlated with the sensing of specific characteristics of interest to both engineering subsystems and users of the Station's commercial and scientific facilities. Onboard implementation architecture and constraints are discussed from the viewpoint of maximizing integration of the Identification process with the flight subsystem's data and signal flow.

  5. MARS Flight Engineering Status

    Energy Technology Data Exchange (ETDEWEB)

    Fast, James E.; Dorow, Kevin E.; Morris, Scott J.; Thompson, Robert C.; Willett, Jesse A.

    2010-04-06

    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09.

  6. Ordos Takes Flight

    Institute of Scientific and Technical Information of China (English)

    YAN WEI

    2010-01-01

    @@ China's vast hinterland has long conjured up images of rugged mountains and countrysides dotted by villages all but untouched by the hands of time. But after a recent one-hour flight west from Beijing,Anna Chennault,Chair of the Council for International Cooperation (CIC),a Washington,D.C.-based non-profit organization that helps promote development in China,found something altogether different-a city called Ordos.

  7. The Flight from Maturity

    OpenAIRE

    Gary B. Gorton; Andrew Metrick; Lei Xie

    2014-01-01

    Why did the failure of Lehman Brothers make the financial crisis dramatically worse? The financial crisis was a process of a build-up of risk during the crisis prior to the Lehman failure. Market participants tried to preserve an option or exit by shortening maturities - the "flight from maturity". With increasingly short maturities, lenders created the possibility of fast exit. The failure of Lehman Brothers was the tipping point of this build-up of systemic fragility. We produce a chronolog...

  8. The IBEX Flight Segment

    Science.gov (United States)

    Scherrer, J.; Carrico, J.; Crock, J.; Cross, W.; Delossantos, A.; Dunn, A.; Dunn, G.; Epperly, M.; Fields, B.; Fowler, E.; Gaio, T.; Gerhardus, J.; Grossman, W.; Hanley, J.; Hautamaki, B.; Hawes, D.; Holemans, W.; Kinaman, S.; Kirn, S.; Loeffler, C.; McComas, D. J.; Osovets, A.; Perry, T.; Peterson, M.; Phillips, M.; Pope, S.; Rahal, G.; Tapley, M.; Tyler, R.; Ungar, B.; Walter, E.; Wesley, S.; Wiegand, T.

    2009-08-01

    IBEX provides the observations needed for detailed modeling and in-depth understanding of the interstellar interaction (McComas et al. in Physics of the Outer Heliosphere, Third Annual IGPP Conference, pp. 162-181, 2004; Space Sci. Rev., 2009a, this issue). From mission design to launch and acquisition, this goal drove all flight system development. This paper describes the management, design, testing and integration of IBEX’s flight system, which successfully launched from Kwajalein Atoll on October 19, 2008. The payload is supported by a simple, Sun-pointing, spin-stabilized spacecraft with no deployables. The spacecraft bus consists of the following subsystems: attitude control, command and data handling, electrical power, hydrazine propulsion, RF, thermal, and structures. A novel 3-step orbit approach was employed to put IBEX in its highly elliptical, 8-day final orbit using a Solid Rocket Motor, which provided large delta-V after IBEX separated from the Pegasus launch vehicle; an adapter cone, which interfaced between the SRM and Pegasus; Motorized Lightbands, which performed separation from the Pegasus, ejection of the adapter cone, and separation of the spent SRM from the spacecraft; a ShockRing isolation system to lower expected launch loads; and the onboard Hydrazine Propulsion System. After orbit raising, IBEX transitioned from commissioning to nominal operations and science acquisition. At every phase of development, the Systems Engineering and Mission Assurance teams supervised the design, testing and integration of all IBEX flight elements.

  9. Space flight visual simulation.

    Science.gov (United States)

    Xu, L

    1985-01-01

    In this paper, based on the scenes of stars seen by astronauts in their orbital flights, we have studied the mathematical model which must be constructed for CGI system to realize the space flight visual simulation. Considering such factors as the revolution and rotation of the Earth, exact date, time and site of orbital injection of the spacecraft, as well as its orbital flight and attitude motion, etc., we first defined all the instantaneous lines of sight and visual fields of astronauts in space. Then, through a series of coordinate transforms, the pictures of the scenes of stars changing with time-space were photographed one by one mathematically. In the procedure, we have designed a method of three-times "mathematical cutting." Finally, we obtained each instantaneous picture of the scenes of stars observed by astronauts through the window of the cockpit. Also, the dynamic conditions shaded by the Earth in the varying pictures of scenes of stars could be displayed. PMID:11542842

  10. System-level flight test

    Energy Technology Data Exchange (ETDEWEB)

    Cornwall, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Dyson, F. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Eardley, D. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Happer, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; LeLevier, R. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Nierenberg, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Press, W. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Ruderman, M. [The MITRE Corporation, McLean, VA (US). JASON Program Office; Sullivan, J. [The MITRE Corporation, McLean, VA (US). JASON Program Office; York, H. [The MITRE Corporation, McLean, VA (US). JASON Program Office

    1999-11-23

    System-level flight tests are an important part of the overall effort by the United States to maintain confidence in the reliability, safety, and performance of its nuclear deterrent forces. This study of activities by the Department of Energy in support of operational tests by the Department of Defense was originally suggested by Dr. Rick Wayne, Director, National Security Programs, Sandia National Laboratory/Livermore, and undertaken at the request of the Department of Energy, Defense Programs Division. It follows two 1997 studies by JASON that focused on the Department of Energy's Enhanced Surveillance Program for the physics package — i.e. the nuclear warhead.

  11. The flight of uncontrolled rockets

    CERN Document Server

    Gantmakher, F R; Dryden, H L

    1964-01-01

    International Series of Monographs on Aeronautics and Astronautics, Division VII, Volume 5: The Flight of Uncontrolled Rockets focuses on external ballistics of uncontrolled rockets. The book first discusses the equations of motion of rockets. The rocket as a system of changing composition; application of solidification principle to rockets; rotational motion of rockets; and equations of motion of the center of mass of rockets are described. The text looks at the calculation of trajectory of rockets and the fundamentals of rocket dispersion. The selection further focuses on the dispersion of f

  12. Bronchoesophageal and related systems in space flight

    Science.gov (United States)

    Thornton, William

    1991-01-01

    A review is presented of the detrimental effects of space flight on the human bronchoesophageal system emphasizing related areas such as the gastric system. In-flight symptoms are listed including congestion, nasopharyngeal irritation, epigastric sensations, anorexia, and nausea. Particular attention is given to space-related effects on eating/drinking associated with the absence of hydrostatic pressure in the vascular system. The atmospheric characteristics of a typical space shuttle flight are given, and the reduced pressure and low humidity are related to bronchial, eye, and nose irritation. Earth and space versions of motion sickness are compared, and some critical differences are identified. It is proposed that more research is required to assess the effects of long-duration space travel on these related systems.

  13. Avian wing proportions and flight styles: first step towards predicting the flight modes of mesozoic birds.

    Directory of Open Access Journals (Sweden)

    Xia Wang

    Full Text Available We investigated the relationship between wing element proportions and flight mode in a dataset of living avian species to provide a framework for making basic estimates of the range of flight styles evolved by Mesozoic birds. Our results show that feather length (f(prim and total arm length (ta (sum of the humerus, ulna and manus length ratios differ significantly between four flight style groups defined and widely used for living birds and as a result are predictive for fossils. This was confirmed using multivariate ordination analyses, with four wing elements (humerus, ulna/radius, manus, primary feathers, that discriminate the four broad flight styles within living birds. Among the variables tested, manus length is closely correlated with wing size, yet is the poorest predictor for flight style, suggesting that the shape of the bones in the hand wing is most important in determining flight style. Wing bone thickness (shape must vary with wing beat strength, with weaker forces requiring less bone. Finally, we show that by incorporating data from Mesozoic birds, multivariate ordination analyses can be used to predict the flight styles of fossils.

  14. Acquisition of a Biomedical Database of Acute Responses to Space Flight during Commercial Personal Suborbital Flights

    Science.gov (United States)

    Charles, John B.; Richard, Elizabeth E.

    2010-01-01

    There is currently too little reproducible data for a scientifically valid understanding of the initial responses of a diverse human population to weightlessness and other space flight factors. Astronauts on orbital space flights to date have been extremely healthy and fit, unlike the general human population. Data collection opportunities during the earliest phases of space flights to date, when the most dynamic responses may occur in response to abrupt transitions in acceleration loads, have been limited by operational restrictions on our ability to encumber the astronauts with even minimal monitoring instrumentation. The era of commercial personal suborbital space flights promises the availability of a large (perhaps hundreds per year), diverse population of potential participants with a vested interest in their own responses to space flight factors, and a number of flight providers interested in documenting and demonstrating the attractiveness and safety of the experience they are offering. Voluntary participation by even a fraction of the flying population in a uniform set of unobtrusive biomedical data collections would provide a database enabling statistical analyses of a variety of acute responses to a standardized space flight environment. This will benefit both the space life sciences discipline and the general state of human knowledge.

  15. Operational efficiency: Automatic ascent flight design

    Science.gov (United States)

    1990-01-01

    The expected increase in launch vehicle operations to support Space Station Freedom and a Lunar/Mars exploration initiative will require a more efficient approach to ascent flight design and operations. A concept is presented of continuous improvement in ascent flight design through an evolutionary process beginning with today's vehicles and continuing into the next century with the Advanced Launch System (ALS) and Advanced Manned Launch System (AMLS). A pictorial view is given of the improvement path described. The detailed objectives necessary to obtain efficiency improvements are described. The technology milestones along this evolutionary path are outlined and the accomplishments to date are summarized. The technology issues are discussed which must be addressed.

  16. Pegasus Air-Launched Space Booster Flight Test Program

    Science.gov (United States)

    Elias, Antonio L.; Knutson, Martin A.

    1995-01-01

    Pegasus is a satellite-launching space rocket dropped from a B52 carrier aircraft instead of launching vertically from a ground pad. Its three-year, privately-funded accelerated development was carried out under a demanding design-to-nonrecurring cost methodology, which imposed unique requirements on its flight test program, such as the decision not to drop an inert model from the carrier aircraft; the number and type of captive and free-flight tests; the extent of envelope exploration; and the decision to combine test and operational orbital flights. The authors believe that Pegasus may be the first vehicle where constraints in the number and type of flight tests to be carried out actually influenced the design of the vehicle. During the period November 1989 to February of 1990 a total of three captive flight tests were conducted, starting with a flutter clearing flight and culminating in a complete drop rehearsal. Starting on April 5, 1990, two combination test/operational flights were conducted. A unique aspect of the program was the degree of involvement of flight test personnel in the early design of the vehicle and, conversely, of the design team in flight testing and early flight operations. Various lessons learned as a result of this process are discussed throughout this paper.

  17. Surface tension dominates insect flight on fluid interfaces.

    Science.gov (United States)

    Mukundarajan, Haripriya; Bardon, Thibaut C; Kim, Dong Hyun; Prakash, Manu

    2016-03-01

    Flight on the 2D air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary-gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air-water interface presents a radically modified force landscape for flapping wing flight compared with air. PMID:26936640

  18. Methods for Accurate Free Flight Measurement of Drag Coefficients

    CERN Document Server

    Courtney, Elya; Courtney, Michael

    2015-01-01

    This paper describes experimental methods for free flight measurement of drag coefficients to an accuracy of approximately 1%. There are two main methods of determining free flight drag coefficients, or equivalent ballistic coefficients: 1) measuring near and far velocities over a known distance and 2) measuring a near velocity and time of flight over a known distance. Atmospheric conditions must also be known and nearly constant over the flight path. A number of tradeoffs are important when designing experiments to accurately determine drag coefficients. The flight distance must be large enough so that the projectile's loss of velocity is significant compared with its initial velocity and much larger than the uncertainty in the near and/or far velocity measurements. On the other hand, since drag coefficients and ballistic coefficients both depend on velocity, the change in velocity over the flight path should be small enough that the average drag coefficient over the path (which is what is really determined)...

  19. Assessing public and crew exposure in commercial flights in Brazil

    International Nuclear Information System (INIS)

    The exposure to cosmic radiation in aircraft travel is significantly higher than at ground level and varies with the route due to the effect of latitude, the altitude of flight, the flight time, and the year according to the solar cycle effects in galactic cosmic ray flux. The computer program CARI-6, developed by the U.S. Federal Aviation Administration, calculates the effective dose of galactic cosmic radiation received by an individual in an aircraft flying the shortest route between two airports of the world. The program takes into account changes in altitude and geographic location during the course of a flight. The aim of this project is to estimate the contribution of cosmic radiation exposure on commercial flights to the Brazilian population. A database, including about 4,000 domestic flights in Brazil, was implemented in Excel spreadsheets based on data flights information for November 2011. Main fields included on the database are the origin and destination of flights, time of departure and arrival, plane type, number of passengers, flight times (take-off, landing and cruse altitude times) and number of flights per year. This information was used to estimate individual and collective doses for crew and passengers. Doses for domestic flights in Brazil range from 1.8 to 8.8 μSv. Considering the occupational limit of 850 h of flight per year for crew members and numbers of flights for each route, average occupational dose would be about 0.76 mSv/y. Collective doses, for the total number of flights per year and airplane types were estimated to be 214 and 11 manSv/y for passengers and crew members, respectively. (authors)

  20. Energy scavenging from insect flight

    International Nuclear Information System (INIS)

    This paper reports the design, fabrication and testing of an energy scavenger that generates power from the wing motion of a Green June Beetle (Cotinis nitida) during its tethered flight. The generator utilizes non-resonant piezoelectric bimorphs operated in the d31 bending mode to convert mechanical vibrations of a beetle into electrical output. The available deflection, force, and power output from oscillatory movements at different locations on a beetle are measured with a meso-scale piezoelectric beam. This way, the optimum location to scavenge energy is determined, and up to ∼115 µW total power is generated from body movements. Two initial generator prototypes were fabricated, mounted on a beetle, and harvested 11.5 and 7.5 µW in device volumes of 11.0 and 5.6 mm3, respectively, from 85 to 100 Hz wing strokes during the beetle's tethered flight. A spiral generator was designed to maximize the power output by employing a compliant structure in a limited area. The necessary technology needed to fabricate this prototype was developed, including a process to machine high-aspect ratio devices from bulk piezoelectric substrates with minimum damage to the material using a femto-second laser. The fabricated lightweight spiral generators produced 18.5–22.5 µW on a bench-top test setup mimicking beetles' wing strokes. Placing two generators (one on each wing) can result in more than 45 µW of power per insect. A direct connection between the generator and the flight muscles of the insect is expected to increase the final power output by one order of magnitude

  1. Energy scavenging from insect flight

    Science.gov (United States)

    Erkan Aktakka, Ethem; Kim, Hanseup; Najafi, Khalil

    2011-09-01

    This paper reports the design, fabrication and testing of an energy scavenger that generates power from the wing motion of a Green June Beetle (Cotinis nitida) during its tethered flight. The generator utilizes non-resonant piezoelectric bimorphs operated in the d31 bending mode to convert mechanical vibrations of a beetle into electrical output. The available deflection, force, and power output from oscillatory movements at different locations on a beetle are measured with a meso-scale piezoelectric beam. This way, the optimum location to scavenge energy is determined, and up to ~115 µW total power is generated from body movements. Two initial generator prototypes were fabricated, mounted on a beetle, and harvested 11.5 and 7.5 µW in device volumes of 11.0 and 5.6 mm3, respectively, from 85 to 100 Hz wing strokes during the beetle's tethered flight. A spiral generator was designed to maximize the power output by employing a compliant structure in a limited area. The necessary technology needed to fabricate this prototype was developed, including a process to machine high-aspect ratio devices from bulk piezoelectric substrates with minimum damage to the material using a femto-second laser. The fabricated lightweight spiral generators produced 18.5-22.5 µW on a bench-top test setup mimicking beetles' wing strokes. Placing two generators (one on each wing) can result in more than 45 µW of power per insect. A direct connection between the generator and the flight muscles of the insect is expected to increase the final power output by one order of magnitude.

  2. Justification of permissible doses of radiation during prolonged space flights

    Science.gov (United States)

    Grigoryev, Y. G.; Abel, K.; Varteres, V.; Nilolov, N.; Karpfel, Z.; Prislichka, M.

    1974-01-01

    Maximum permissible radiation doses for astronauts are reported based on chronic radiation experiments with dogs and actual measurements during space flights. Observed were clinical conditions, peripheral blood and marrow, the state of the cardiovascular system, higher nervous activity, the state of the vestibular analyzer, the organ of vision, spermatogenic function and the ability to reproduce, the state of immunity and a number of biological indices in blood and tissues. The following maximum permissible doses are determined as preliminary values: 1 year of flight - 200 rem; 2 years of flight - 250 rem; 3 years of flight - 275 rem.

  3. Surface Tension dominates Insect Flight on Fluid Interfaces

    OpenAIRE

    Mukundarajan, Haripriya; Bardon, Thibaut C; Kim, Dong hyun; Prakash, Manu

    2014-01-01

    Flight on the two-dimensional air-water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in phylogenetically basal aquatic insects like stone flies, the biomechanics of interfacial flight has never been analyzed. Here, we report interfacial flight as an adapted behaviour in water-lily beetles (Galerucella nymphaeae, Linnaeus 1758) which are also dexterous ai...

  4. Product assurance policies and procedures for flight dynamics software development

    Science.gov (United States)

    Perry, Sandra; Jordan, Leon; Decker, William; Page, Gerald; Mcgarry, Frank E.; Valett, Jon

    1987-01-01

    The product assurance policies and procedures necessary to support flight dynamics software development projects for Goddard Space Flight Center are presented. The quality assurance and configuration management methods and tools for each phase of the software development life cycles are described, from requirements analysis through acceptance testing; maintenance and operation are not addressed.

  5. DAST Being Calibrated for Flight in Hangar

    Science.gov (United States)

    1982-01-01

    DAST-2, a modified BQM-34 Firebee II drone, undergoes calibration in a hangar at the NASA Dryden Flight Research Center. After the crash of the first DAST vehicle, project personnel fitted a second Firebee II (serial # 72-1558) with the rebuilt ARW-1 (ARW-1R) wing. The DAST-2 made a captive flight aboard the B-52 on October 29, 1982, followed by a free flight on November 3, 1982. During January and February of 1983, three launch attempts from the B-52 had to be aborted due to various problems. Following this, the project changed the launch aircraft to a DC-130A. Two captive flights occurred in May 1983. The first launch attempt from the DC-130 took place on June 1, 1983. The mothership released the DAST-2, but the recovery system immediately fired without being commanded. The parachute then disconnected from the vehicle, and the DAST-2 crashed into a farm field near Harper Dry Lake. Wags called this the 'Alfalfa Field Impact Test.' These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and

  6. Automated Flight Routing Using Stochastic Dynamic Programming

    Science.gov (United States)

    Ng, Hok K.; Morando, Alex; Grabbe, Shon

    2010-01-01

    Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.

  7. Dryden Flight Research Center: The World's Premiere Installation for Atmospheric Flight Research

    Science.gov (United States)

    Ratnayake, Nalin Asela

    2007-01-01

    This viewgraph presentation reviews NASA Dryden's capabilities, the work that Dryden has done for NASA, and its current research. Dryden's Mission is stated to advance technology and science through flight. The mission elements are: (1) Perform flight research and technology integration to revolutionize aviation and pioneer aerospace technology, (2) Validate space exploration concepts, (3) Conduct airborne remote sensing and science observations, (4) Support operations of the Space Shuttle and the ISS for NASA and the Nation.

  8. The Impact of Airline Flight Schedules on Flight Delays

    OpenAIRE

    Vinayak Deshpande; Mazhar Arıkan

    2012-01-01

    Airline flight delays have come under increased scrutiny lately in the popular press, with the Federal Aviation Administration data revealing that airline on-time performance was at its worst level in 13 years in 2007. Flight delays have been attributed to several causes such as weather conditions, airport congestion, airspace congestion, use of smaller aircraft by airlines, etc. In this paper, we examine the impact of the scheduled block time allocated for a flight, a factor controlled by ai...

  9. Development of Flight Path Planning for Multirotor Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Yi-Ju Tsai

    2015-04-01

    Full Text Available This study addresses the flight-path planning problem for multirotor aerial vehicles (AVs. We consider the specific features and requirements of real-time flight-path planning and develop a rapidly-exploring random tree (RRT algorithm to determine a preliminary flight path in three-dimensional space. Since the path obtained by the RRT may not be optimal due to the existence of redundant waypoints. To reduce the cost of energy during AV’s flight, the excessive waypoints need to be refined. We revise the A-star algorithm by adopting the heading of the AV as the key indices while calculating the cost. Bezier curves are finally proposed to smooth the flight path, making it applicable for real-world flight.

  10. Space flight experience with the Shuttle Orbiter control system

    Science.gov (United States)

    Cox, K. J.; Daly, K. C.; Hattis, P. D.

    1983-01-01

    Experience gained through the Shuttle Orbital Flight Test program has matured the engineering understanding of the Shuttle on-orbit control system. The geneology of the control systems (called digital autopilots, or DAPs, and used by the Shuttle for on-orbit operations) is reviewed, the flight experience gained during the flight test program is examined within the context of preflight analysis and test results, and issues for the operational phase of the Shuttle, including constraints upon both operations and analysis still required to increase confidence in the Shuttle's ability to handle capabilities not experienced during the flight test program are addressed. Two orbital autopilots have resulted from computer memory and time constraints on a flight control system, with many different, flight phase unique requirements. The transition DAP, used for insertion and deorbit, has more active sensors and redundancy but a less complex data processing scheme excluding state estimation with fewer choices of operational mode.

  11. Flight to America

    OpenAIRE

    Güneli Gün

    2011-01-01

    Güneli Gün’s memoir piece truly combines the excitement of the young traveler with the humor of the mature narrator. Born in Izmir, Turkey, she breaks her engagement to a young but conservative Turkish architect and overcomes her father’s concerns to eventually study at Hollins College, Virginia. Addressing topics such as breaking out of a traditional society, being torn between the home country and the imagined new home, and finding comfort in the arts, “Flight to America” compellingly refle...

  12. Rocket Flight Path

    OpenAIRE

    Jamie Waters

    2014-01-01

    This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Fl...

  13. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  14. Flight Mechanics Project

    Science.gov (United States)

    Steck, Daniel

    2009-01-01

    This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.

  15. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    Science.gov (United States)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  16. Astronaut Preflight Cardiovascular Variables Associated with Vascular Compliance are Highly Correlated with Post-Flight Eye Outcome Measures in the Visual Impairment Intracranial Pressure (VIIP) Syndrome Following Long Duration Spaceflight

    Science.gov (United States)

    Otto, Christian; Ploutz-Snyder, R.

    2015-01-01

    The detection of the first VIIP case occurred in 2005, and adequate eye outcome measures were available for 31 (67.4%) of the 46 long duration US crewmembers who had flown on the ISS since its first crewed mission in 2000. Therefore, this analysis is limited to a subgroup (22 males and 9 females). A "cardiovascular profile" for each astronaut was compiled by examining twelve individual parameters; eleven of these were preflight variables: systolic blood pressure, pulse pressure, body mass index, percentage body fat, LDL, HDL, triglycerides, use of anti-lipid medication, fasting serum glucose, and maximal oxygen uptake in ml/kg. Each of these variables was averaged across three preflight annual physical exams. Astronaut age prior to the long duration mission, and inflight salt intake was also included in the analysis. The group of cardiovascular variables for each crew member was compared with seven VIIP eye outcome variables collected during the immediate post-flight period: anterior-posterior axial length of the globe measured by ultrasound and optical biometry; optic nerve sheath diameter, optic nerve diameter, and optic nerve to sheath ratio- each measured by ultrasound and magnetic resonance imaging (MRI), intraocular pressure (IOP), change in manifest refraction, mean retinal nerve fiber layer (RNFL) on optical coherence tomography (OCT), and RNFL of the inferior and superior retinal quadrants. Since most of the VIIP eye outcome measures were added sequentially beginning in 2005, as knowledge of the syndrome improved, data were unavailable for 22.0% of the outcome measurements. To address the missing data, we employed multivariate multiple imputation techniques with predictive mean matching methods to accumulate 200 separate imputed datasets for analysis. We were able to impute data for the 22.0% of missing VIIP eye outcomes. We then applied Rubin's rules for collapsing the statistical results across our 200 multiply imputed data sets to assess the canonical

  17. STS flight operations - Concept versus reality

    Science.gov (United States)

    Kranz, E. F.

    1985-01-01

    The NASA Lyndon B. Johnson Space Center Mission Operations Directorate (MOD) has the responsibility for planning, training, and implementing of flight operations in support of the National Space Transportation System (STS) Program. In this role, MOD has responsibility for the operational interface with customers and the translation of customer requirements into operating plans to satisfy their objectives. The basic objectives of flight operations are to maximize mission success, to minimize risks to the Orbiter and the crew, to decrease operating costs, and to achieve an effective balance in the application of all operational resources. In the National STS Program, to date, 20 missions have been flown and the process for planning, training, and flight operations has been thoroughly exercised. In this paper, MOD's performance is assessed, and those areas in which our initial operating concepts have been successful as well as those in which significant additional work is required are identified.

  18. Kinematics of chiropteran shoulder girdle in flight.

    Science.gov (United States)

    Panyutina, A A; Kuznetsov, A N; Korzun, L P

    2013-03-01

    New data on the mechanisms of movements of the shoulder girdle and humerus of bats are described; potential mobility is compared to the movements actually used in flight. The study was performed on the basis of morphological and functional analysis of anatomical specimens of 15 species, high speed and high definition filming of two species and X-ray survey of Rousettus aegyptiacus flight. Our observations indicate that any excursions of the shoulder girdle in bats have relatively small input in the wing amplitude. Shoulder girdle movements resemble kinematics of a crank mechanism: clavicle plays the role of crank, and scapula-the role of connecting rod. Previously described osseous "locking mechanisms" in shoulder joint of advanced bats do not affect the movements, actually used in flight. The wing beats in bats are performed predominantly by movements of humerus relative to shoulder girdle, although these movements occupy the caudal-most sector of available shoulder mobility. PMID:23381941

  19. Free Flight vs. Centralized Air Traffic Management

    OpenAIRE

    Octavian Thor PLETER; Bogdan DONCIU

    2011-01-01

    The current Air Traffic Management system is subject to structural changes, which are expected over the next 20 years.These changes are required for a number of reasons:The current system inflicts delays and fuel inefficiencies to flights (as demonstrated by the historic Paris-Miami Air France flight in April 2010)The current system has structural and operational capacity limitationsUnder current system, the complexity of the Air Traffic Controller’s work increases steeply with trafficVoi...

  20. Cosmic radiation exposure to airline flight passenger

    International Nuclear Information System (INIS)

    At the high altitudes, airline flight passengers can be exposed to some levels of cosmic radiation. The purpose of this study was to quantify this radiation exposure. Cosmic radiation was measured during 5 flights using a personal dosimeter (PDM-102, Aloka). Cosmic radiation equivalent dose rates ranged from 0.7 to 1.43 microsieverts per hour, the average rate was 1.08. For the passenger who travels only occasionally, the cosmic radiation levels are well below occupational limits, and the risks are extremely small. (author)

  1. Cooperative random Levy flight searches and the flight patterns of honeybees

    International Nuclear Information System (INIS)

    The most efficient Levy flight (scale-free) searching strategy for N independent searchers to adopt when target sites are randomly and sparsely distributed is identified. For N=1, it is well known that the optimal searching strategy is attained when μ=2, where the exponent μ characterizes the Levy distribution, P(l)=l-μ, of flight-lengths. For N>1, the optimal searching strategy is attained as μ->1. It is suggested that the orientation flights of honeybees can be understood within the context of such an optimal cooperative random Levy flight searching strategy. Upon returning to their hive after surveying a landscape honeybees can exchange information about the locations of target sites through the waggle dance. In accordance with observations it is predicted that the waggle dance can be disrupted without noticeable influence on a hive's ability to maintain weight when forage is plentiful

  2. Douglas flight deck design philosophy

    Science.gov (United States)

    Oldale, Paul

    1990-01-01

    The systems experience gained from 17 years of DC-10 operation was used during the design of the MD-11 to automate system operation and reduce crew workload. All functions, from preflight to shutdown at the termination of flight, require little input from the crew. The MD-11 aircraft systems are monitored for proper operation by the Aircraft Systems Controllers (ASC). In most cases, system reconfiguration as a result of a malfunction is automated. Manual input is required for irreversible actions such as engine shutdown, fuel dump, fire agent discharge, or Integrated Drive Generator (IDG) disconnect. During normal operations, when the cockpit is configured for flight, all annunciators on the overhead panel will be extinguished. This Dark Cockpit immediately confirms to the crew that the panels are correctly configured and that no abnormalities are present. Primary systems annunciations are shown in text on the Alert Area of the Engine and Alert Display (EAD). This eliminates the need to scan the overhead. The MD-11 aircraft systems can be manually controlled from the overhead area of the cockpit. The center portion of the overhead panel is composed of the primary aircraft systems panels, which include FUEL, AIR, Electrical (ELEC) and Hydraulic (HYD) systems, which are easily accessible from both flight crew positions. Each Aircraft Systems Controller (ASC) has two automatic channels and a manual mode. All rectangular lights are annunciators. All square lights are combined switches and annunciators called switch/lights. Red switch/lights on the overhead (Level 3 alerts) are for conditions requiring immediate crew action. Amber (Level 2 or Level 1 alerts) indicates a fault or switch out of position requiring awareness or crew interaction. Overhead switches used in normal operating conditions will illuminate blue when in use (Level 0 alerts) such as WING ANTI-ICE - ON. An overhead switch/light with BLACK LETTERING on an amber or red background indicates a system

  3. Flight-service evaluation of composite structural components

    Science.gov (United States)

    Dexter, H. B.

    1973-01-01

    A review of programs aimed at flight-service evaluation of composite materials in various applications is presented. These flight-service programs are expected to continue for up to 5 years and include selective reinforcement of an airplane center wing box a helicopter tail cone, and composite replacements for commercial aircraft spoilers and fairings. These longtime flight-service programs will help provide the necessary information required by commercial airlines to commit advanced composites to aircraft structures with confidence. Results of these programs will provide information concerning the stability of composite materials when subjected to various flight environments.

  4. An Autonomous Flight Safety System

    Science.gov (United States)

    Bull, James B.; Lanzi, Raymond J.

    2007-01-01

    The Autonomous Flight Safety System (AFSS) being developed by NASA s Goddard Space Flight Center s Wallops Flight Facility and Kennedy Space Center has completed two successful developmental flights and is preparing for a third. AFSS has been demonstrated to be a viable architecture for implementation of a completely vehicle based system capable of protecting life and property in event of an errant vehicle by terminating the flight or initiating other actions. It is capable of replacing current human-in-the-loop systems or acting in parallel with them. AFSS is configured prior to flight in accordance with a specific rule set agreed upon by the range safety authority and the user to protect the public and assure mission success. This paper discusses the motivation for the project, describes the method of development, and presents an overview of the evolving architecture and the current status.

  5. New Theory of Flight

    Science.gov (United States)

    Hoffman, Johan; Jansson, Johan; Johnson, Claes

    2016-06-01

    We present a new mathematical theory explaining the fluid mechanics of subsonic flight, which is fundamentally different from the existing boundary layer-circulation theory by Prandtl-Kutta-Zhukovsky formed 100 year ago. The new theory is based on our new resolution of d'Alembert's paradox showing that slightly viscous bluff body flow can be viewed as zero-drag/lift potential flow modified by 3d rotational slip separation arising from a specific separation instability of potential flow, into turbulent flow with nonzero drag/lift. For a wing this separation mechanism maintains the large lift of potential flow generated at the leading edge at the price of small drag, resulting in a lift to drag quotient of size 15-20 for a small propeller plane at cruising speed with Reynolds number {Re≈ 107} and a jumbojet at take-off and landing with {Re≈ 108} , which allows flight at affordable power. The new mathematical theory is supported by computed turbulent solutions of the Navier-Stokes equations with a slip boundary condition as a model of observed small skin friction of a turbulent boundary layer always arising for {Re > 106} , in close accordance with experimental observations over the entire range of angle of attacks including stall using a few millions of mesh points for a full wing-body configuration.

  6. Space flight requires nuclear energy

    International Nuclear Information System (INIS)

    To be able to solve its future tasks, space flight needs nuclear energy: manned space flight to the Mars is almost unthinkable without nuclear propulsion, and orbital nuclear power plants will be required for the power supply of high-capacity satellites or large space stations. Nuclear energy needs space flight: a nuclear power plant on the moon does not bother man because of the high natural radiation exposure existing there, and could contribute to terrestrial power supply. (orig./HSCH)

  7. PSYCHOLOGY OF FLIGHT ATTENDANT'S PROFESSION

    OpenAIRE

    Tatyana V. Filipieva

    2012-01-01

    The profession of a flight attendant appeared in aviation in the 1920s. Professional community of flight attendants is constantly growing with the growth of complexity of aviation technology, professional standards of passenger service and safety. The psychological scientific research was carried out by a psychologist who worked as a flight attendant. The study revealed the psychological content, demands, peculiarities in cabin crews' labor. A job description was accomplished. Temporal and sp...

  8. Getting started with Twitter Flight

    CERN Document Server

    Hamshere, Tom

    2013-01-01

    Getting Started with Twitter Flight is written with the intention to educate the readers, helping them learn how to build modular powerful applications with Flight, Twitter's cutting-edge JavaScript framework.This book is for anyone with a foundation in JavaScript who wants to build web applications. Flight is quick and easy to learn, built on technologies you already understand such as the DOM, events, and jQuery.

  9. Correlation Time-of-flight Spectrometry of Ultracold Neutrons

    OpenAIRE

    Novopoltsev, M. I.; Pokotilovski, Yu. N.

    2010-01-01

    The fearures of the correlation method used in time-of-flight spectrometry of ultracold neutrons are analyzed. The time-of-flight spectrometer for the energy range of ultracold neutrons is described, and results of its testing by measuring spectra of neutrons passing through interference filters are presented.

  10. Qualification and Lessons Learned with Space Flight Fiber Optic Components

    Science.gov (United States)

    Ott, Melanie

    2007-01-01

    This presentation covers lessons learned during the design, development, manufacturing and qualification of space flight fiber optic components. Changes at NASA, including short-term projects and decreased budgets have brought about changes to vendors and parts. Most photonics for NASA needs are now commercial off the shelf (COTS) products. The COTS Tecnology Assurance approach for space flight and qualification plans are outlined.

  11. Overview With Results and Lessons Learned of the X-43A Mach 10 Flight

    Science.gov (United States)

    Marshall, Laurie A.; Bahm, Catherine; Corpening, Griffin P.; Sherrill, Robert

    2005-01-01

    This paper provides an overview of the final flight of the NASA X-43A project. The project consisted of three flights, two planned for Mach 7 and one for Mach 10. The third and final flight, November 16, 2004, was the first Mach 10 flight demonstration of an airframe-integrated, scramjet-powered, hypersonic vehicle. The goals and objectives for the project as well as those for the third flight are presented. The configuration of the Hyper-X stack including the X-43A, Hyper-X launch vehicle, and Hyper-X research vehicle adapter is discussed. The second flight of the X-43A was successfully conducted on March 27, 2004. Mission differences, vehicle modifications and lessons learned from the second flight as they applied to the third flight are also discussed. An overview of flight 3 results is presented.

  12. The FLP microsatellite platform flight operations manual

    CERN Document Server

    2016-01-01

    This book represents the Flight Operations Manual for a reusable microsatellite platform – the “Future Low-cost Platform” (FLP), developed at the University of Stuttgart, Germany. It provides a basic insight on the onboard software functions, the core data handling system and on the power, communications, attitude control and thermal subsystem of the platform. Onboard failure detection, isolation and recovery functions are treated in detail. The platform is suited for satellites in the 50-150 kg class and is baseline of the microsatellite “Flying Laptop” from the University. The book covers the essential information for ground operators to controls an FLP-based satellite applying international command and control standards (CCSDS and ECSS PUS). Furthermore it provides an overview on the Flight Control Center in Stuttgart and on the link to the German Space Agency DLR Ground Station which is used for early mission phases. Flight procedure and mission planning chapters complement the book. .

  13. The Flight of Birds and Other Animals

    Directory of Open Access Journals (Sweden)

    Colin J. Pennycuick

    2015-09-01

    Full Text Available Methods of observing birds in flight now include training them to fly under known conditions in wind tunnels, and fitting free-flying birds with data loggers, that are either retrieved or read remotely via satellite links. The performance that comes to light depends on the known limitations of the materials from which they are made, and the conditions in which the birds live. Bird glide polars can be obtained by training birds to glide in a tilting wind tunnel. Translating these curves to power required from the flight muscles in level flight requires drag coefficients to be measured, which unfortunately does not work with bird bodies, because the flow is always fully detached. The drag of bodies in level flight can be determined by observing wingbeat frequency, and shows CD values around 0.08 in small birds, down to 0.06 in small waders specialised for efficient migration. Lift coefficients are up to 1.6 in gliding, or 1.8 for short, temporary glides. In-flight measurements can be used to calculate power curves for birds in level flight, and this has been applied to migrating geese in detail. These typically achieve lift:drag ratios around 15, including allowances for stops, as against 19 for continuous powered flight. The same calculations, applied to Pacific Black-tailed Godwits which start with fat fractions up to 0.55 at departure, show that such birds not only cross the Pacific to New Zealand, but have enough fuel in hand to reach the South Pole if that were necessary. This performance depends on the “dual fuel” arrangements of these migrants, whereby they use fat as their main fuel, and supplement this by extra fuel from burning the engine (flight muscles, as less power is needed later in the flight. The accuracy of these power curves has never been checked, although provision for stopping the bird, and making these checks at regular intervals during a simulated flight was built into the original design of the Lund wind tunnel. The

  14. Introduction: Assessment of aerothermodynamic flight prediction tools through ground and flight experimentation

    Science.gov (United States)

    Schmisseur, John D.; Erbland, Peter

    2012-01-01

    This article provides an introduction and overview to the efforts of NATO Research and Technology Organization Task Group AVT-136, Assessment of Aerothermodynamic Flight Prediction Tools through Ground and Flight Experimentation. During the period of 2006-2010, AVT-136 coordinated international contributions to assess the state-of-the-art and research challenges for the prediction of critical aerothermodynamic flight phenomena based on the extrapolation of ground test and numerical simulation. To achieve this goal, efforts were organized around six scientific topic areas: (1) Noses and leading edges, (2) Shock Interactions and Control Surfaces, (3) Shock Layers and Radiation, (4) Boundary Layer Transition, (5) Gas-Surface Interactions, and (6) Base and Afterbody Flows. A key component of the AVT-136 strategy was comparison of state-of-the-art numerical simulations with data to be acquired from planned flight research programs. Although it was recognized from the onset of AVT-136 activities that reliance on flight research data yet to be collected posed a significant risk, the group concluded the substantial benefit to be derived from comparison of computational simulations with flight data warranted pursuit of such a program of work. Unfortunately, program delays and failures in the flight programs contributing to the AVT-136 effort prevented timely access to flight research data. Despite this setback, most of the scientific topic areas developed by the Task Group made significant progress in the assessment of current capabilities. Additionally, the activities of AVT-136 generated substantial interest within the international scientific research community and the work of the Task Group was prominently featured in a total of six invited sessions in European and American technical conferences. In addition to this overview, reviews of the state-of-the-art and research challenges identified by the six research thrusts of AVT-136 are also included in this special

  15. Data exchange protocols in flight simulators

    Science.gov (United States)

    Cifuentes, Jaime; Fernández, Ramón A.; Carriegos, Miguel V.

    2014-12-01

    Modeling and simulation are fundamental in early stages of engineering design and testing. That is the reason why aerospace engineering students need to learn those disciplines at the University. In particular, we propose the use of Simulink in combination with a X-Plane based flight simulator to improve the motivation of such students. Our approach suggests beginning with two simple lab assignments that help the students develop their very first models and simulation by acquiring some flight parameters and by sending commands to the aircraft.

  16. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    Directory of Open Access Journals (Sweden)

    Yu-Hsiang Lin

    2011-07-01

    Full Text Available This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS and the Flight Control System (FCS. The FPPS finds the shortest flight path by the A-Star (A* algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM.

  17. Effects of Flight on Gene Expression and Aging in the Honey Bee Brain and Flight Muscle

    Directory of Open Access Journals (Sweden)

    Michelle M. Elekonich

    2012-12-01

    Full Text Available Honey bees move through a series of in-hive tasks (e.g., “nursing” to outside tasks (e.g., “foraging” that are coincident with physiological changes and higher levels of metabolic activity. Social context can cause worker bees to speed up or slow down this process, and foragers may revert back to their earlier in-hive tasks accompanied by reversion to earlier physiological states. To investigate the effects of flight, behavioral state and age on gene expression, we used whole-genome microarrays and real-time PCR. Brain tissue and flight muscle exhibited different patterns of expression during behavioral transitions, with expression patterns in the brain reflecting both age and behavior, and expression patterns in flight muscle being primarily determined by age. Our data suggest that the transition from behaviors requiring little to no flight (nursing to those requiring prolonged flight bouts (foraging, rather than the amount of previous flight per se, has a major effect on gene expression. Following behavioral reversion there was a partial reversion in gene expression but some aspects of forager expression patterns, such as those for genes involved in immune function, remained. Combined with our real-time PCR data, these data suggest an epigenetic control and energy balance role in honey bee functional senescence.

  18. Bat flight and zoonotic viruses

    Science.gov (United States)

    O'Shea, Thomas; Cryan, Paul M.; Cunningham, Andrew A.; Fooks, Anthony R.; Hayman, David T.S.; Luis, Angela D.; Peel, Alison J.; Plowright, Raina K.; Wood, James L.N.

    2014-01-01

    Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. We hypothesize that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals. On an evolutionary scale, this host–virus interaction might have resulted in the large diversity of zoonotic viruses in bats, possibly through bat viruses adapting to be more tolerant of the fever response and less virulent to their natural hosts.

  19. The Cibola flight experiment

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Michael Paul [Los Alamos National Laboratory; Nelson, Anthony [Los Alamos National Laboratory; Salazar, Anthony [Los Alamos National Laboratory; Roussel - Dupre, Diane [Los Alamos National Laboratory; Katko, Kim [Los Alamos National Laboratory; Palmer, Joseph [ISE-3; Robinson, Scott [Los Alamos National Laboratory; Wirthlin, Michael [BRIGHAM YOUNG UNIV; Howes, William [BRIGHAM YOUNG UNIV; Richins, Daniel [BRIGHAM YOUNG UNIV

    2009-01-01

    The Cibola Flight Experiment (CFE) is an experimental small satellite carrying a reconfigurable processing instrument developed at the Los Alamos National Laboratory that demonstrates the feasibility of using FPGA-based high-performance computing for sensor processing in the space environment. The CFE satellite was launched on March 8, 2007 in low-earth orbit and has operated extremely well since its deployment. The nine Xilinx Virtex FPGAs used in the payload have been used for several high-throughput sensor processing applications and for single-event upset (SEU) monitoring and mitigation. This paper will describe the CFE system and summarize its operational results. In addition, this paper will describe the results from several SEU detection circuits that were performed on the spacecraft.

  20. Innovative use of global navigation satellite systems for flight inspection

    Science.gov (United States)

    Kim, Eui-Ho

    The International Civil Aviation Organization (ICAO) mandates flight inspection in every country to provide safety during flight operations. Among many criteria of flight inspection, airborne inspection of Instrument Landing Systems (ILS) is very important because the ILS is the primary landing guidance system worldwide. During flight inspection of the ILS, accuracy in ILS landing guidance is checked by using a Flight Inspection System (FIS). Therefore, a flight inspection system must have high accuracy in its positioning capability to detect any deviation so that accurate guidance of the ILS can be maintained. Currently, there are two Automated Flight Inspection Systems (AFIS). One is called Inertial-based AFIS, and the other one is called Differential GPS-based (DGPS-based) AFIS. The Inertial-based AFIS enables efficient flight inspection procedures, but its drawback is high cost because it requires a navigation-grade Inertial Navigation System (INS). On the other hand, the DGPS-based AFIS has relatively low cost, but flight inspection procedures require landing and setting up a reference receiver. Most countries use either one of the systems based on their own preferences. There are around 1200 ILS in the U.S., and each ILS must be inspected every 6 to 9 months. Therefore, it is important to manage the airborne inspection of the ILS in a very efficient manner. For this reason, the Federal Aviation Administration (FAA) mainly uses the Inertial-based AFIS, which has better efficiency than the DGPS-based AFIS in spite of its high cost. Obviously, the FAA spends tremendous resources on flight inspection. This thesis investigates the value of GPS and the FAA's augmentation to GPS for civil aviation called the Wide Area Augmentation System (or WAAS) for flight inspection. Because standard GPS or WAAS position outputs cannot meet the required accuracy for flight inspection, in this thesis, various algorithms are developed to improve the positioning ability of Flight

  1. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  2. 14 CFR 27.805 - Flight crew emergency exits.

    Science.gov (United States)

    2010-01-01

    ... emergency landing on water. This must be shown by test, demonstration, or analysis. ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight crew emergency exits. 27.805 Section... § 27.805 Flight crew emergency exits. (a) For rotorcraft with passenger emergency exits that are...

  3. 1998 Fuel Use and Emissions for Danish IFR Flights

    DEFF Research Database (Denmark)

    Winther, M.

    This report explains a city-pair fuel use and emission inventory made for all IFR (Instrumental Flight Rules) flights leaving Danish airports in 1998. Pollutants covered are CO, NOx, VOC, CO2 and SO2. The calculations have been made for domestic and international LTO (Landing and Take Off) and...

  4. Flight Test Guide (Part 61 Revised): Instrument Pilot: Helicopter.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The guide provides an outline of the skills required to pass the flight test for an Instrument Pilot Helicopter Rating under Part 61 (revised) of Federal Aviation Regulations. General procedures for flight tests are described and the following pilot operations outlined: maneuvering by reference to instruments, IFR navigation, instrument…

  5. System safety education focused on flight safety

    Science.gov (United States)

    Holt, E.

    1971-01-01

    The measures necessary for achieving higher levels of system safety are analyzed with an eye toward maintaining the combat capability of the Air Force. Several education courses were provided for personnel involved in safety management. Data include: (1) Flight Safety Officer Course, (2) Advanced Safety Program Management, (3) Fundamentals of System Safety, and (4) Quantitative Methods of Safety Analysis.

  6. Modular Infrastructure for Rapid Flight Software Development

    Science.gov (United States)

    Pires, Craig

    2010-01-01

    This slide presentation reviews the use of modular infrastructure to assist in the development of flight software. A feature of this program is the use of model based approach for application unique software. A review of two programs that this approach was use on are: the development of software for Hover Test Vehicle (HTV), and Lunar Atmosphere and Dust Environment Experiment (LADEE).

  7. Motion perception modelling in flight simulation

    NARCIS (Netherlands)

    Groen, E.L.; Hosman, R.J.A.W.; Bos, J.E.; Dominicus, J.W.

    2004-01-01

    Motion cueing algorithms are indispensable to transform aircraft motions into simulator motions. Usually, such algorithms apply to the whole flight envelope. Since a motion base should stay within its six degrees of freedom workspace, the parameter settings necessarily involve concessions, which may

  8. Social psychology on the flight deck

    Science.gov (United States)

    Helmreich, R. L.

    1980-01-01

    Social psychological and personality factors that can influence resource management on the flight deck are discussed. It is argued that personality and situational factors intersect to determine crew responses and that assessment of performance under full crew and mission conditions can provide the most valuable information about relevant factors. The possibility of training procedures to improve performance on these dimensions is discussed.

  9. Pilots and Flight Engineers. Aviation Careers Series.

    Science.gov (United States)

    Zaharevitz, Walter

    This booklet, one in a series on aviation careers, outlines the variety of careers available for airplane pilots and flight engineers. The first part of the booklet provides general information about careers for pilots and summarizes the information in a table. In the main part of the booklet, the following 11 job categories are outlined: flight…

  10. Thermal Energy Storage Flight Experiment in Microgravity

    Science.gov (United States)

    Namkoong, David

    1992-01-01

    The Thermal Energy Storage Flight Experiment was designed to characterize void shape and location in LiF-based phase change materials in different energy storage configurations representative of advanced solar dynamic systems. Experiment goals and payload design are described in outline and graphic form.

  11. Optimal Flight for Ground Noise Reduction in Helicopter Landing Approach: Optimal Altitude and Velocity Control

    Science.gov (United States)

    Tsuchiya, Takeshi; Ishii, Hirokazu; Uchida, Junichi; Gomi, Hiromi; Matayoshi, Naoki; Okuno, Yoshinori

    This study aims to obtain the optimal flights of a helicopter that reduce ground noise during landing approach with an optimization technique, and to conduct flight tests for confirming the effectiveness of the optimal solutions. Past experiments of Japan Aerospace Exploration Agency (JAXA) show that the noise of a helicopter varies significantly according to its flight conditions, especially depending on the flight path angle. We therefore build a simple noise model for a helicopter, in which the level of the noise generated from a point sound source is a function only of the flight path angle. Using equations of motion for flight in a vertical plane, we define optimal control problems for minimizing noise levels measured at points on the ground surface, and obtain optimal controls for specified initial altitudes, flight constraints, and wind conditions. The obtained optimal flights avoid the flight path angle which generates large noise and decrease the flight time, which are different from conventional flight. Finally, we verify the validity of the optimal flight patterns through flight experiments. The actual flights following the optimal paths resulted in noise reduction, which shows the effectiveness of the optimization.

  12. Optimal Flight for Ground Noise Reduction in Helicopter’s Landing Approach

    Science.gov (United States)

    Tsuchiya, Takeshi; Ishii, Hirokazu; Uchida, Junichi; Gomi, Hiromi; Matayoshi, Naoki; Okuno, Yoshinori

    This study aims to obtain the optimal flights of a helicopter that reduce ground noise in its landing approach with an optimization technique and to conduct flight tests for confirming the effectiveness of the optimal solutions. Past experiments of JAXA (Japan Aerospace Exploration Agency) shows the noise of the helicopter varies significantly according to its flight conditions, especially depending on the flight path angle. We therefore build a simple noise model of the helicopter, in which the level of the noise generated from a point sound source is a function only of the flight path angle. By using equations of motion for flight in a vertical plane, we define optimal control problems for minimizing noise levels measured at points on the ground surface, and obtain optimal controls for specified initial altitudes, flight constraints, and wind conditions. The obtained optimal flights avoid the flight path angle which generates the large noise and decrease the flight time, which are different from the conventional flight. Finally, we verify the validity of the optimal flight patterns by the flight experiments. The actual flights following the optimal ones also result in the noise reduction, which shows the effectiveness of the optimization.

  13. Echocardiography in the flight program

    Science.gov (United States)

    Charles, John B.; Bungo, Michael W.; Mulvagh, Sharon L.

    1991-01-01

    Observations on American and Soviet astronauts have documented the association of changes in cardiovascular function during orthostasis with space flight. A basic understanding of the cardiovascular changes occurring in astronauts requires the determination of cardiac output and total peripheral vascular resistance as a minimum. In 1982, we selected ultrasound echocardiography as our means of acquiring this information. Ultrasound offers a quick, non-invasive and accurate means of determining stroke volume which, when combined with the blood pressure and heart rate measurements of the stand test, allows calculation of changes in peripheral vascular resistance, the body's major response to orthostatic stress. The history of echocardiography in the Space Shuttle Program is discussed and the results are briefly presented.

  14. Aerodynamic map for soft and hard hypersonic level flight in near space

    Institute of Scientific and Technical Information of China (English)

    Ruifeng Hu; Ziniu Wu; Zhe Wu; Xiaoxin Wang; Zhongwei Tian

    2009-01-01

    In this note, we design a velocity-altitude map for hypersonic level flight in near space of altitude 20-100 km. This map displays aerodynamic-related parameters associated with near space level flight, schematically or quantitatively. Various physical conditions for the near-space level flight are then characterized, including laminar or turbulent flow, rarefaction or continuous flow, aerodynamic heating, as well as conditions for sustaining level flight with and without orbital effect. This map allows one to identify conditions to have soft flight or hard flight, and this identification would be helpful for making correct planning on detailed studies of aerodynamics or making initial design of near space vehicles.

  15. Human Factors in Space Flight

    Science.gov (United States)

    Woolford, Barbara J.; Mount, Frances

    2005-01-01

    After forty years of experience with human space flight (Table 1), the current emphasis is on the design of space vehicles, habitats, and missions to ensure mission success. What lessons have we learned that will affect the design of spacecraft for future space exploration, leading up to exploring Mars? This chapter addresses this issue in four sections: Anthropometry and Biomechanics; Environmental Factors; Habitability and Architecture; and Crew Personal Sustenance. This introductory section introduces factors unique to space flight. A unique consideration for design of a habitable volume in a space vehicle is the lack of gravity during a space flight, referred to as microgravity. This affects all aspects of life, and drives special features in the habitat, equipment, tools, and procedures. The difference in gravity during a space mission requires designing for posture and motion differences. In Earth s gravity, or even with partial gravity, orientation is not a variable because the direction in which gravity acts defines up and down. In a microgravity environment the working position is arbitrary; there is no gravity cue. Orientation is defined primarily through visual cues. The orientation within a particular crew station or work area is referred to as local vertical, and should be consistent within a module to increase crew productivity. Equipment was intentionally arranged in various orientations in one module on Skylab to assess the efficiency in use of space versus the effects of inconsistent layout. The effects of that arrangement were confusion on entering the module, time spent in re-orientation, and conflicts in crew space requirements when multiple crew members were in the module. Design of a space vehicle is constrained by the three major mission drivers: mass, volume and power. Each of these factors drives the cost of a mission. Mass and volume determine the size of the launch vehicle directly; they can limit consumables such as air, water, and

  16. Ambiguous Tilt and Translation Motion Cues after Space Flight and Otolith Assessment during Post-Flight Re-Adaptation

    Science.gov (United States)

    Wood, Scott J.; Clarke, A. H.; Harm, D. L.; Rupert, A. H.; Clement, G. R.

    2009-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation and perceptual illusions following Gtransitions. These studies are designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short duration space flights.

  17. Biosafety in manned space flight

    International Nuclear Information System (INIS)

    The main goal of manned exploration is to achieve a prolonged stay in space, for example in an orbital station (such as the International Space Station (ISS)) or in planetary bases on the Moon and/or Mars. It goes without saying that such missions can only be realized when the astronaut's health and well-being is secured. In this respect, the characterization of the microbiological contamination on board spacecraft and orbital stations and the influence of cosmic radiation and microgravity are of paramount importance. Microbial contamination may originate from different sources and includes the initial contamination of space flight materials during manufacturing and assembly, the delivery of supplies to the orbital station, the supplies themselves, secondary contamination during the lifetime of the orbital station, the crew and any other biological material on board e.g. animals, plants, micro-organisms used in scientific experiments. Although most microorganisms do not threaten human health, it has been reported that in a confined environment, such as a space cabin, microorganisms may produce adverse effects on the optimal performance of the space crew and the integrity of the spacecraft or habitat. These effects range from infections, allergies, and toxicities to degradation of air and water supplies. Biodegradation of critical materials may result in system failure and this may jeopardize the crew. The research aims at monitoring the biological airborne and surface contamination during manned space flight. The ISS has been selected as primary test bed for this study. The majority of the investigations are being done by the Russian Institute of Biomedical Problems (IBMP), which is responsible for monitoring the biological contamination in the habitable compartments of the ISS for safety and hygienic reasons. Within the frame of a collaboration between IBMP and the European Space Agency (ESA), SCK-CEN is able to participate in the analyses

  18. Designing Flight-Deck Procedures

    Science.gov (United States)

    Degani, Asaf; Wiener, L.; Shafto, Mike (Technical Monitor)

    1995-01-01

    A complex human-machine system consists of more than merely one or more human operators and a collection of hardware components. In order to operate a complex system successfully, the human-machine system must be supported by an organizational infrastructure of operating concepts, rules, guidelines, and documents. The coherency of such operating concepts, in terms of consistency and logic, is vitally important for the efficiency and safety of any complex system. In high-risk endeavors such as aircraft operations, space flight, nuclear power production, manufacturing process control, and military operations, it is essential that such support be flawless, as the price of operational error can be high. When operating rules are not adhered to, or the rules are inadequate for the task at hand, not only will the system's goals be thwarted, but there may also be tragic human and material consequences. To ensure safe and predictable operations, support to the operators, in this case flight crews, often comes in the form of standard operating procedures. These provide the crew with step-by-step guidance for carrying out their operations. Standard procedures do indeed promote uniformity, but they do so at the risk of reducing the role of human operators to a lower level. Management, however, must recognize the danger of over-procedurization, which fails to exploit one of the most valuable assets in the system, the intelligent operator who is "on the scene." The alert system designer and operations manager recognize that there cannot be a procedure for everything, and the time will come in which the operators of a complex system will face a situation for which there is no written procedure. Procedures, whether executed by humans or machines, have their place, but so does human cognition.

  19. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-14

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined.

  20. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    International Nuclear Information System (INIS)

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined

  1. Space transportation system flight 2 OSTA-1 scientific payload data management plan: Addendum

    Science.gov (United States)

    1982-01-01

    Flight events for the OSTA-1 scientific payload on the second flight of the Space Shuttle, STS-2 are described. Data acquisition is summarized. A discussion of problems encountered and a preliminary evaluation of data quality is also provided.

  2. Heuristic Optimization Applied to an Intrinsically Difficult Problem: Birds Formation Flight

    DEFF Research Database (Denmark)

    Filippone, Antonino

    1996-01-01

    The birds formation flight is studied by means oftheoretical aerodynamics, heuristic methods anddistributed systems. A simplified aerodynamic analog is presented, and calculations of drag savings and flight range are shown for sometypical cases, including the line abreast flightwith various...

  3. Synthesis of {beta}-phase Ag{sub 1-x}Cu{sub x}I (x = 0-0.5) solid solutions nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianli [Key Laboratory of Bionic Engineering, College of Biology and Agriculture Engineering, Jilin University, Nanling Campus, Changchun 130025 (China); Jilin Weather Modification Office, Changchun 130062 (China); Zhang, Jinghong [Key Laboratory of Automobile Materials, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun 130025 (China); Jilin Weather Modification Office, Changchun 130062 (China); Zhang, Guilan, E-mail: lxl5211@126.com [Key Laboratory of Bionic Engineering, College of Biology and Agriculture Engineering, Jilin University, Nanling Campus, Changchun 130025 (China); Jiang, Zhonghao [Key Laboratory of Automobile Materials, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun 130025 (China); Jin, Dezhen [Jilin Weather Modification Office, Changchun 130062 (China)

    2011-06-15

    Research highlights: {yields} Wet-chemical-chelating reaction processing has been used to synthesized A series of single {beta}-phase nano-Ag{sub 1-x}Cu{sub x}I (x = 0-0.5) solid solutions powders. {yields} Citric acid as complexing agent takes part in the process of chemical reaction and the chemical reactions can be described in this paper. {yields} The lattice parameters have been ascertained by the results of XRD. {yields} Crystalline sizes, which decrease with copper iodide concentration increasing, have been demonstrated by XRD and TEM. -- Abstract: A series of single {beta}-phase nano-Ag{sub 1-x}Cu{sub x}I (x = 0-0.5) solid solutions powders were synthesized by wet-chemical-chelating reaction processing and citric acid used as complexing agent. The Ag{sub 1-x}Cu{sub x}I powders were determined by X-ray diffraction and transmission electron microscopy. It was demonstrated that the crystalline size and lattice parameter of the Ag{sub 1-x}Cu{sub x}I powders decrease with an increase in the amount of CuI substitution. The copper in the lattice of the Ag{sub 1-x}Cu{sub x}I can effectively prevent the crystalline growth of the Ag{sub 1-x}Cu{sub x}I powders and citrate used in the Ag{sub 1-x}Cu{sub x}I powders synthesized process can accelerate single {beta}-phase crystalline structure formation.

  4. Cosmic radiation exposure assessment of commercial flight crew

    International Nuclear Information System (INIS)

    Flight crew are occupationally exposed to cosmic radiation at aircraft altitudes. Exposure estimates are needed for epidemiologic studies of flight crew and must be obtained from exposure models due to the infeasibility of measuring exposures directly on a large scale for prospective studies and the inability to address historical exposures for such studies. We measured cosmic radiation dose equivalent on 32 commercial flights using tissue-equivalent proportional counters and compared the measured doses to equivalent dose estimates for the same flights obtained from the U.S. Federal Aviation Administration computer model CARI version 4Q. The measured dose equivalents ranged from 0.69 to 65.4 μSv for flight times ranging from 49 to 851 minutes. The CARI-4Q model estimates of equivalent dose ranged from 11% to 61% lower than TEPC measurements of dose equivalent (n=32). In general less model bias was observed for low latitude and trans-equatorial flights than for high latitude flights. Differences in measured versus modeled data should be considered when estimating doses using a model for epidemiologic studies, and biases corrected where possible. These data will be used to correct CARI model estimates for our epidemiologic studies of flight crew. (author)

  5. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight simulators, flight training devices..., Aircraft, and Facilities Requirements § 141.41 Flight simulators, flight training devices, and training... that its flight simulators, flight training devices, training aids, and equipment meet the...

  6. The many classification range of flight situations

    Directory of Open Access Journals (Sweden)

    В.П. Харченко

    2008-04-01

    Full Text Available  The multivariate classification principle of flight situation range has been represented. Main parameters of classification flight situation by two parameters (horizontal and vertical deviation from flight planed trajectory has been estimated.

  7. The many classification range of flight situations

    OpenAIRE

    В.П. Харченко; І.В. Остроумов; Зайцев, Ю. В.

    2008-01-01

     The multivariate classification principle of flight situation range has been represented. Main parameters of classification flight situation by two parameters (horizontal and vertical deviation from flight planed trajectory) has been estimated.

  8. Hovering and intermittent flight in birds

    International Nuclear Information System (INIS)

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound (∼0.3 kg) and small birds with rounded wings do not use intermittent glides.

  9. Hovering and intermittent flight in birds

    Energy Technology Data Exchange (ETDEWEB)

    Tobalske, Bret W, E-mail: bret.tobalske@mso.umt.ed [Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812 (United States)

    2010-12-15

    Two styles of bird locomotion, hovering and intermittent flight, have great potential to inform future development of autonomous flying vehicles. Hummingbirds are the smallest flying vertebrates, and they are the only birds that can sustain hovering. Their ability to hover is due to their small size, high wingbeat frequency, relatively large margin of mass-specific power available for flight and a suite of anatomical features that include proportionally massive major flight muscles (pectoralis and supracoracoideus) and wing anatomy that enables them to leave their wings extended yet turned over (supinated) during upstroke so that they can generate lift to support their weight. Hummingbirds generate three times more lift during downstroke compared with upstroke, with the disparity due to wing twist during upstroke. Much like insects, hummingbirds exploit unsteady mechanisms during hovering including delayed stall during wing translation that is manifest as a leading-edge vortex (LEV) on the wing and rotational circulation at the end of each half stroke. Intermittent flight is common in small- and medium-sized birds and consists of pauses during which the wings are flexed (bound) or extended (glide). Flap-bounding appears to be an energy-saving style when flying relatively fast, with the production of lift by the body and tail critical to this saving. Flap-gliding is thought to be less costly than continuous flapping during flight at most speeds. Some species are known to shift from flap-gliding at slow speeds to flap-bounding at fast speeds, but there is an upper size limit for the ability to bound ({approx}0.3 kg) and small birds with rounded wings do not use intermittent glides.

  10. Evolution of avian flight: muscles and constraints on performance.

    Science.gov (United States)

    Tobalske, Bret W

    2016-09-26

    Competing hypotheses about evolutionary origins of flight are the 'fundamental wing-stroke' and 'directed aerial descent' hypotheses. Support for the fundamental wing-stroke hypothesis is that extant birds use flapping of their wings to climb even before they are able to fly; there are no reported examples of incrementally increasing use of wing movements in gliding transitioning to flapping. An open question is whether locomotor styles must evolve initially for efficiency or if they might instead arrive due to efficacy. The proximal muscles of the avian wing output work and power for flight, and new research is exploring functions of the distal muscles in relation to dynamic changes in wing shape. It will be useful to test the relative contributions of the muscles of the forearm compared with inertial and aerodynamic loading of the wing upon dynamic morphing. Body size has dramatic effects upon flight performance. New research has revealed that mass-specific muscle power declines with increasing body mass among species. This explains the constraints associated with being large. Hummingbirds are the only species that can sustain hovering. Their ability to generate force, work and power appears to be limited by time for activation and deactivation within their wingbeats of high frequency. Most small birds use flap-bounding flight, and this flight style may offer an energetic advantage over continuous flapping during fast flight or during flight into a headwind. The use of flap-bounding during slow flight remains enigmatic. Flap-bounding birds do not appear to be constrained to use their primary flight muscles in a fixed manner. To improve understanding of the functional significance of flap-bounding, the energetic costs and the relative use of alternative styles by a given species in nature merit study.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528773

  11. Discovery of three new RS Canum Venaticorum-like counterparts to HEAO I X-ray sources

    Science.gov (United States)

    Buckley, D. A. H.; Tuohy, I. R.; Remillard, R. A.; Bradt, H. V.; Schwartz, D. A.

    1987-01-01

    The identification of three high-latitude HEAO I Scanning Modulation Collimator X-ray sources with the chromospherically active RS CVn-like stars HD 113816, HD 146413, and HD 39576 is reported. Optical observations, including coude spectroscopy and broad-band and narrow band photoelectric photometry are presented. The Ca II emission strength of all three stars shows that they are chromospherically active. HD 146413 and HD 39576 exhibit variable X-ray emission in the 1-13 keV energy range, while HD 113816 is a softer and steadier source. The level of X-ray flux detected from these three stars is some one to two orders of magnitude higher than predicted empirically from the Ca II emission fluxes. It is proposed that this emission results from flarelike activity.

  12. Cosmic radiation algorithm utilizing flight time tables

    International Nuclear Information System (INIS)

    Cosmic radiation is considerably higher on cruising altitudes used in aviation than at ground level. Exposure to cosmic radiation may increase cancer risk among pilots and cabin crew. The International Commission on Radiation Protection (ICRP) has recommended that air crew should be classified as radiation workers. Quantification of cosmic radiation doses is necessary for assessment of potential health effects of such occupational exposure. For Finnair cabin crew (cabin attendants and stewards), flight history is not available for years prior to 1991 and therefore, other sources of information on number and type of flights have to be used. The lack of systematically recorded information is a problem for dose estimation for many other flight companies personnel as well. Several cosmic radiation dose estimations for cabin crew have been performed using different methods (e.g. 2-5), but they have suffered from various shortcomings. Retrospective exposure estimation is not possible with personal portable dosimeters. Methods that employ survey data for occupational dose assessment are prone to non-differential measurement error i.e. the cabin attendants do not remember correctly the number of past flights. Assessment procedures that utilize surrogate measurement methods i.e. the duration of employment, lack precision. The aim of the present study was to develop an assessment method for individual occupational exposure to cosmic radiation based on flight time tables. Our method provides an assessment method that does not require survey data or systematic recording of flight history, and it is rather quick, inexpensive, and possible to carry out in all other flight companies whose past time tables for the past periods exist. Dose assessment methods that employ survey data are prone to random error i.e. the cabin attendants do not remember correctly the number or types of routes that they have flown during the past. Our method avoids this since survey data are not needed

  13. Ares Launch Vehicles Overview: Space Access Society

    Science.gov (United States)

    Cook, Steve

    2007-01-01

    Projects Office at the Marshall Space Flight Center manages the design, development, testing, and evaluation of both vehicles and serves as lead systems integrator. A little over a year after it was chartered, the Exploration Launch Projects team is testing engine components, refining vehicle designs, performing wind tunnel tests, and building hardware for the first flight test of Ares I-X, scheduled for spring 2009. The Exploration Launch Projects team conducted the Ares I System Requirements Review (SRR) at the end of 2006. In Ares' first year, extensive trade studies and evaluations were conducted to refine the design initially recommended by the Exploration Systems Architecture Study, conceptual designs were analyzed for fitness, and the contractual framework was assembled to enable a development effort unparalleled in American space flight since the Space Shuttle. Now, the project turns its focus to the Preliminary Design Review (PDR), scheduled for 2008. Taking into consideration the findings of the SRR, the design of the Ares I is being tightened and refined to meet the safety, operability, reliability, and affordability goals outlined by the Constellation Program. The Ares V is in the early design stage, focusing its activities on requirements validation and ways to develop this heavy-lift system so that synergistic hardware commonality between it and the Ares I can reduce the operational footprint and foster sustained exploration across the decades ahead.

  14. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM

    Directory of Open Access Journals (Sweden)

    Liu Fan

    2015-02-01

    Full Text Available In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system (EFCS equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method (HQRM is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model, comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric turbulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness compliance of the airplane can be evaluated relying on the relevant regulations for handling qualities (HQ rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.

  15. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM

    Institute of Scientific and Technical Information of China (English)

    Liu Fan; Wang Lixin; Tan Xiangsheng

    2015-01-01

    In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system (EFCS) equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method (HQRM) is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model, comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric tur-bulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness com-pliance of the airplane can be evaluated relying on the relevant regulations for handling qualities (HQ) rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.

  16. Morphing Flight Control Surface for Advanced Flight Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, a new Morphing Flight Control Surface (MFCS) will be developed. The distinction of the research effort is that the SenAnTech team will employ...

  17. Digital Fly-By-Wire Flight Control Validation Experience

    Science.gov (United States)

    Szalai, K. J.; Jarvis, C. R.; Krier, G. E.; Megna, V. A.; Brock, L. D.; Odonnell, R. N.

    1978-01-01

    The experience gained in digital fly-by-wire technology through a flight test program being conducted by the NASA Dryden Flight Research Center in an F-8C aircraft is described. The system requirements are outlined, along with the requirements for flight qualification. The system is described, including the hardware components, the aircraft installation, and the system operation. The flight qualification experience is emphasized. The qualification process included the theoretical validation of the basic design, laboratory testing of the hardware and software elements, systems level testing, and flight testing. The most productive testing was performed on an iron bird aircraft, which used the actual electronic and hydraulic hardware and a simulation of the F-8 characteristics to provide the flight environment. The iron bird was used for sensor and system redundancy management testing, failure modes and effects testing, and stress testing in many cases with the pilot in the loop. The flight test program confirmed the quality of the validation process by achieving 50 flights without a known undetected failure and with no false alarms.

  18. A DEEP CHANDRA OBSERVATION OF THE GIANT H II REGION N11. I. X-RAY SOURCES IN THE FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Nazé, Yaël [GAPHE, Department AGO, Université de Liège, Allée du 6 Août 17 Bat. B5C, B-4000 Liège (Belgium); Wang, Q. Daniel [Department of Astronomy, B619E-LGRT, University of Massachusetts, Amherst, MA 01003 (United States); Chu, You-Hua; Gruendl, Robert [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Oskinova, Lida, E-mail: naze@astro.ulg.ac.be [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany)

    2014-08-01

    A very sensitive X-ray investigation of the giant H II region N11 in the Large Megallanic Cloud was performed using the Chandra X-ray Observatory. The 300 ks observation reveals X-ray sources with luminosities down to 10{sup 32} erg s{sup –1}, increasing the number of known point sources in the field by more than a factor of five. Among these detections are 13 massive stars (3 compact groups of massive stars, 9 O stars, and one early B star) with log (L {sub X}/L {sub BOL}) ∼–6.5 to –7, which may suggest that they are highly magnetic or colliding-wind systems. On the other hand, the stacked signal for regions corresponding to undetected O stars yields log (L {sub X}/L {sub BOL}) ∼–7.3, i.e., an emission level comparable to similar Galactic stars despite the lower metallicity. Other point sources coincide with 11 foreground stars, 6 late-B/A stars in N11, and many background objects. This observation also uncovers the extent and detailed spatial properties of the soft, diffuse emission regions, but the presence of some hotter plasma in their spectra suggests contamination by the unresolved stellar population.

  19. Knowledge-based system for flight information management. Thesis

    Science.gov (United States)

    Ricks, Wendell R.

    1990-01-01

    The use of knowledge-based system (KBS) architectures to manage information on the primary flight display (PFD) of commercial aircraft is described. The PFD information management strategy used tailored the information on the PFD to the tasks the pilot performed. The KBS design and implementation of the task-tailored PFD information management application is described. The knowledge acquisition and subsequent system design of a flight-phase-detection KBS is also described. The flight-phase output of this KBS was used as input to the task-tailored PFD information management KBS. The implementation and integration of this KBS with existing aircraft systems and the other KBS is described. The flight tests are examined of both KBS's, collectively called the Task-Tailored Flight Information Manager (TTFIM), which verified their implementation and integration, and validated the software engineering advantages of the KBS approach in an operational environment.

  20. Scales affect performance of Monarch butterfly forewings in autorotational flight

    Science.gov (United States)

    Demko, Anya; Lang, Amy

    2012-11-01

    Butterfly wings are characterized by rows of scales (approximately 100 microns in length) that create a shingle-like pattern of cavities over the entire surface. It is hypothesized that these cavities influence the airflow around the wing and increase aerodynamic performance. A forewing of the Monarch butterfly (Danus plexippus) naturally undergoes autorotational flight in the laminar regime. Autorotational flight is an accurate representation of insect flight because the rotation induces a velocity gradient similar to that found over a flapping wing. Drop test flights of 22 forewings before and after scale removal were recorded with a high-speed camera and flight behavior was quantified. It was found that removing the scales increased the descent speed and decreased the descent factor, a measure of aerodynamic efficacy, suggesting that scales increased the performance of the forewings. Funded by NSF REU Grant 1062611.

  1. Simulation to Flight Test for a UAV Controls Testbed

    Science.gov (United States)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  2. Korean Air Excellence in Flight

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Korean Air with a fleet of 119 aircraft, is one of the world's top 20 airlines, and oper-ates almost 400 flights everyday to 90 cities in 33 countries. The airline has about 50 flights per week between the US and Asia from nine US gateways: New York, Los Angeles, Washington,Chicago, Dallas, San Francisco, Atlanta, Anchorage and Honolulu.The carrier is a founding member of SkyTeam, the global airline alliance partnering AeroMexico, Air France, Alitalia, CSA Czech Airlines, Continental Airlines, Delta Air Lines, KLM and Northwest Airlines to provide customers with extensive worldwide destina-tions, flights and services.

  3. Aerodynamic effect of alula in avian flight

    Science.gov (United States)

    Lee, Sang-Im; Lee, Jaemyoung; Park, Hyungmin; Jablonski, Piotr; Choi, Haecheon

    2012-11-01

    Alula is a small structure located at the joint between handwing and armwing of birds and has been suggested to function as a leading-edge slot. In this study, we investigated the functional aspect of alula in bird flight with experimental conditions that reflect the flow characteristics used by birds in their actual flight using magpies as the model species. The presence of alula enabled the bird to perform steeper descending flights with greater lateral angle changes. Force measurements showed that alula presence increased the lift when the angle of attack was high (higher than 20-45 deg), which resulted in the stall delay by 5 deg. The wake width was significantly thinner when alula was present, suggesting that boundary layer separation is delayed when alula is used. This result was corroborated by PIV; accelerated streamwise velocity over the wing surface was recovered faster and separation point was pushed downstream when alula was present. To conclude, the lift enhancement and stall delay by alula are closely related to the downstream movement of separation point and faster recovery of accelerated flow over the wing surface, which endows greater flight maneuverability to the birds. This work was supported by the Korea Research Foundation Grants (2011-0030744, 2010-0009006, and 2012-K001368).

  4. The endocrine system in space flight

    Science.gov (United States)

    Leach, C. S.; Johnson, P. C.; Cintron, N. M.

    Hormones are important effectors of the body's response to microgravity in the areas of fluid and electrolyte metabolism, erythropoiesis, and calcium metabolism. For many years antidiuretic hormone, cortisol and aldosterone have been considered the hormones most important for regulation of body fluid volume and blood levels of electrolytes, but they cannot account totally for losses of fluid and electrolytes during space flight. We have now measured atrial natriuretic factor (ANF), a hormone recently shown to regulate sodium and water excretion, in blood specimens obtained during flight. After 30 or 42 h of weightlessness, mean ANF was elevated. After 175 or 180 h, ANF had decreased by 59%, and it changed little between that time and soon after landing. There is probably an increase in ANF early inflight associated with the fluid shift, followed by a compensatory decrease in blood volume. Increased renal blood flow may cause the later ANF decrease. Erythropoietin (Ep), a hormone involved in the control of red blood cell production, was measured in blood samples taken during the first Spacelab mission and was significantly decreased on the second day of flight, suggesting also an increase in renal blood flow. Spacelab-2 investigators report that the active vitamin D metabolite 1α, 25-dihydroxyvitamin D 3 increased early in the flight, indicating that a stimulus for increased bone resorption occurs by 30 h after launch.

  5. Testing the theory of colliding winds: the periastron passage of 9 Sagittarii. I. X-ray and optical spectroscopy

    Science.gov (United States)

    Rauw, G.; Blomme, R.; Nazé, Y.; Spano, M.; Mahy, L.; Gosset, E.; Volpi, D.; van Winckel, H.; Raskin, G.; Waelkens, C.

    2016-04-01

    Context. The long-period, highly eccentric O-star binary 9 Sgr, known for its non-thermal radio emission and its relatively bright X-ray emission, went through its periastron in 2013. Aims: Such an event can be used to observationally test the predictions of the theory of colliding stellar winds over a broad range of wavelengths. Methods: We conducted a multi-wavelength monitoring campaign of 9 Sgr around the 2013 periastron. In this paper, we focus on X-ray observations and optical spectroscopy. Results: The optical spectra allow us to revisit the orbital solution of 9 Sgr and to refine its orbital period to 9.1 years. The X-ray flux is maximum at periastron over all energy bands, but with clear differences as a function of energy. The largest variations are observed at energies above 2 keV, whilst the spectrum in the soft band (0.5-1.0 keV) remains mostly unchanged, indicating that it arises far from the collision region, in the inner winds of the individual components. The level of the hard emission at periastron clearly deviates from the 1 /r relation expected for an adiabatic wind-interaction zone, whilst this relation seems to hold at the other phases that are covered by our observations. The spectra taken at phase 0.946 reveal a clear Fe xxv line at 6.7 keV, but no such line is detected at periastron (φ = 0.000), although a simple model predicts a strong line that should be easily visible in the data. Conclusions: The peculiarities of the X-ray spectrum of 9 Sgr could reflect the effect of radiative inhibition as well as a phase-dependent efficiency of particle acceleration on the shock properties. Based on observations with XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member states and the USA (NASA). Also based on observations collected at the European Southern Observatory (La Silla, Chile) and with the Mercator Telescope operated on the island of La Palma by the Flemish Community, at the Spanish

  6. Testing the theory of colliding winds: the periastron passage of 9 Sagittarii. I. X-ray and optical spectroscopy

    Science.gov (United States)

    Rauw, G.; Blomme, R.; Nazé, Y.; Spano, M.; Mahy, L.; Gosset, E.; Volpi, D.; van Winckel, H.; Raskin, G.; Waelkens, C.

    2016-05-01

    Context. The long-period, highly eccentric O-star binary 9 Sgr, known for its non-thermal radio emission and its relatively bright X-ray emission, went through its periastron in 2013. Aims: Such an event can be used to observationally test the predictions of the theory of colliding stellar winds over a broad range of wavelengths. Methods: We conducted a multi-wavelength monitoring campaign of 9 Sgr around the 2013 periastron. In this paper, we focus on X-ray observations and optical spectroscopy. Results: The optical spectra allow us to revisit the orbital solution of 9 Sgr and to refine its orbital period to 9.1 years. The X-ray flux is maximum at periastron over all energy bands, but with clear differences as a function of energy. The largest variations are observed at energies above 2 keV, whilst the spectrum in the soft band (0.5-1.0 keV) remains mostly unchanged, indicating that it arises far from the collision region, in the inner winds of the individual components. The level of the hard emission at periastron clearly deviates from the 1 /r relation expected for an adiabatic wind-interaction zone, whilst this relation seems to hold at the other phases that are covered by our observations. The spectra taken at phase 0.946 reveal a clear Fe xxv line at 6.7 keV, but no such line is detected at periastron (φ = 0.000), although a simple model predicts a strong line that should be easily visible in the data. Conclusions: The peculiarities of the X-ray spectrum of 9 Sgr could reflect the effect of radiative inhibition as well as a phase-dependent efficiency of particle acceleration on the shock properties. Based on observations with XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member states and the USA (NASA). Also based on observations collected at the European Southern Observatory (La Silla, Chile) and with the Mercator Telescope operated on the island of La Palma by the Flemish Community, at the Spanish

  7. Flight Planning Branch Space Shuttle Lessons Learned

    Science.gov (United States)

    Price, Jennifer B.; Scott, Tracy A.; Hyde, Crystal M.

    2011-01-01

    Planning products and procedures that allow the mission flight control teams and the astronaut crews to plan, train and fly every Space Shuttle mission have been developed by the Flight Planning Branch at the NASA Johnson Space Center. As the Space Shuttle Program ends, lessons learned have been collected from each phase of the successful execution of these Shuttle missions. Specific examples of how roles and responsibilities of console positions that develop the crew and vehicle attitude timelines will be discussed, as well as techniques and methods used to solve complex spacecraft and instrument orientation problems. Additionally, the relationships and procedural hurdles experienced through international collaboration have molded operations. These facets will be explored and related to current and future operations with the International Space Station and future vehicles. Along with these important aspects, the evolution of technology and continual improvement of data transfer tools between the shuttle and ground team has also defined specific lessons used in the improving the control teams effectiveness. Methodologies to communicate and transmit messages, images, and files from Mission Control to the Orbiter evolved over several years. These lessons have been vital in shaping the effectiveness of safe and successful mission planning that have been applied to current mission planning work in addition to being incorporated into future space flight planning. The critical lessons from all aspects of previous plan, train, and fly phases of shuttle flight missions are not only documented in this paper, but are also discussed as how they pertain to changes in process and consideration for future space flight planning.

  8. The influence of accretion geometry on the spectral evolution during thermonuclear (type-I) X-ray bursts

    CERN Document Server

    Kajava, Jari J E; Latvala, Outi-Marja; Pursiainen, Miika; Poutanen, Juri; Suleimanov, Valery F; Revnivtsev, Mikhail G; Kuulkers, Erik; Galloway, Duncan K

    2014-01-01

    Neutron star (NS) masses and radii can be estimated from observations of photospheric radius-expansion X-ray bursts, provided the chemical composition of the photosphere, the spectral colour-correction factors in the observed luminosity range, and the emission area during the bursts are known. By analysing 246 X-ray bursts observed by the Rossi X-ray Timing Explorer from 11 low-mass X-ray binaries, we find a dependence between the persistent spectral properties and the time evolution of the black body normalisation during the bursts. All NS atmosphere models predict that the colour-correction factor decreases in the early cooling phase when the luminosity first drops below the limiting Eddington value, leading to a characteristic pattern of variability in the measured blackbody normalisation. However, the model predictions agree with the observations for most bursts occurring in hard, low-luminosity, 'island' spectral states, but rarely during soft, high-luminosity, 'banana' states. The observed behaviour may...

  9. 6-MV photon beam modeling for the Varian Clinac iX by using the Geant4 virtual jaw

    Science.gov (United States)

    Kim, Byung Yong; Kim, Hyung Dong; Kim, Dong Ho; Baek, Jong Geun; Moon, Su Ho; Rho, Gwang Won; Kang, Jeong Ku; Kim, Sung Kyu

    2015-07-01

    Most virtual source models (VSMs), with the exception of the patient-dependent secondary collimator (jaw), use beam modeling. Unlike other components of the treatment head, the jaw absorbs many photons generated by bremsstrahlung, which decreases the efficiency of the simulation. In the present study, a new method of beam modeling using a virtual jaw was applied to improve the calculation efficiency of VSM. This new method of beam modeling was designed so that the interaction was not generated in the jaw. The results for the percentage depth dose and the profile of the virtual jaw VSM calculated in a homogeneous water phantom agreed with the measurement results for the CC13 cylinder-type ion chamber to within an error of 2%, and the 80-20% penumbra width agreed with the measurement results to within an error of 0.6 mm. Compared with the existing VSM, in which a great number of photons are absorbed, the calculation efficiency of the VSM using the virtual jaw is expected to be increased by approximately 67%.

  10. P.I.X.S.C.A.N.: a micro-CT scanner for small animal based on hybrid pixel detectors; PIXSCAN: micro-tomodensitrometre a pixels hybrides pour le petit animal

    Energy Technology Data Exchange (ETDEWEB)

    Khoury, R

    2008-03-15

    Since more than a dozen years, efforts were led in the field of X-ray tomography for small animals, principally for the improvement of spatial resolution and the diminution of the absorbed dose. The C.P.P.M. developed the micro-CT P.I.X.S.C.A.N. based on the hybrid pixel detector X.P.A.D.2. In this context, my thesis work consists in studying the demonstrator P.I.X.S.C.A.N./X.P.A.D.2 and the contribution of the hybrid pixels in the imaging of small animals. A fast analytical simulation, FastSimu, was developed. An extrapolation of the performance of the demonstrator P.I.X.S.C.A.N, as well as the validation of the results obtained with the measured data, were led by means of the analytical simulator FastSimu. The demonstrator P.I.X.S.C.A.N./X.P.A.D.2 allowed to obtain reconstructed images with a rather good quality for a relatively weak absorbed dose. Its spatial resolution is degraded by the high number of defective pixels of the detector X.P.A.D.2. Beyond this study, a new version of the demonstrator P.I.X.S.C.A.N./X.P.A.D.2 is under construction. This latter, characterized by two and a half times smaller pixels and about no defective pixels will bring a considerable improvement on spatial resolution. (author)

  11. The operational flight and multi-crew scheduling problem

    Directory of Open Access Journals (Sweden)

    Stojković Mirela

    2005-01-01

    Full Text Available This paper introduces a new kind of operational multi-crew scheduling problem which consists in simultaneously modifying, as necessary, the existing flight departure times and planned individual work days (duties for the set of crew members, while respecting predefined aircraft itineraries. The splitting of a planned crew is allowed during a day of operations, where it is more important to cover a flight than to keep planned crew members together. The objective is to cover a maximum number of flights from a day of operations while minimizing changes in both the flight schedule and the next-day planned duties for the considered crew members. A new type of the same flight departure time constraints is introduced. They ensure that a flight which belongs to several personalized duties, where the number of duties is equal to the number of crew members assigned to the flight, will have the same departure time in each of these duties. Two variants of the problem are considered. The first variant allows covering of flights by less than the planned number of crew members, while the second one requires covering of flights by a complete crew. The problem is mathematically formulated as an integer nonlinear multi-commodity network flow model with time windows and supplementary constraints. The optimal solution approach is based on Dantzig-Wolfe decomposition/column generation embedded into a branch-and-bound scheme. The resulting computational times on commercial-size problems are very good. Our new simultaneous approach produces solutions whose quality is far better than that of the traditional sequential approach where the flight schedule has been changed first and then input as a fixed data to the crew scheduling problem.

  12. Flight tracks, Northern California TRACON

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains the records of all the flights in the Northern California TRACON. The data was provided by the aircraft noise abatement office...

  13. Traction member for flight conveyors

    Energy Technology Data Exchange (ETDEWEB)

    Gorlov, V.M.; Levin, A.G.; Spivak, I.V.

    1989-12-20

    A traction member of a flight conveyor, comprising successive flights connected through vertical studs with the straight portions of the vertical links of the respective vertically spaced chains forming closed loops in a horizontal plane, each said flight being detachably assembled from a central part and two yoke-shaped end parts, each said end part accommodating in the opening thereof the end portion of the central part of the flight and a portion of said vertical stud, this stud having heads at its opposite ends of a diameter greater than the width of said opening, one of said heads having a through slot for joining said stud with the straight portions of the respective vertical link of the respective one of said chains.

  14. What happens to the human heart in space? - Parabolic flights provide some answers

    Science.gov (United States)

    Aubert, André E.; Beckers, Frank; Verheyden, Bart; Plester, Vladimir

    2004-08-01

    Aircraft parabolic flights provide up to 20 seconds of reduced gravity repeatedly during ballistic flight manoeuvres. They are used to conduct short microgravity investigations in the physical- and life-sciences, to test instrumentation and to train astronauts for forthcoming space flights. The real value of parabolic flights lies, however, in the verification tests that can be conducted prior to taking experiments into space, in order to improve their quality and success rate.

  15. View the PDF document PC Based Flight Path Reconstruction Using UD Factorisation Filtering Algorithm .

    Directory of Open Access Journals (Sweden)

    Girija Gopalratnam

    1993-10-01

    Full Text Available The results of flight path reconstruction using UD factorisation-based Kalman filtering algorithm are presented. The algorithm was implemented using PC-MATLAB functions and validated for simulated as well as real flight data. It is of considerable relevance to analysis of aircraft accident data and general flight data for aerospace vehicles.

  16. In-flight measurement of upwind dynamic soaring in albatrosses

    Science.gov (United States)

    Sachs, Gottfried

    2016-03-01

    In-flight measurement results on upwind flight of albatrosses using dynamic soaring are presented. It is shown how the birds manage to make progress against the wind on the basis of small-scale dynamic soaring maneuvers. For this purpose, trajectory features, motion quantities and mechanical energy relationships as well as force characteristics are analyzed. The movement on a large-scale basis consists of a tacking type flight technique which is composed of dynamic soaring cycle sequences with alternating orientation to the left and right. It is shown how this is performed by the birds so that they can achieve a net upwind flight without a transversal large-scale movement and how this compares with downwind or across wind flight. Results on upwind dynamic soaring are presented for low and high wind speed cases. It is quantified how much the tacking trajectory length is increased when compared with the beeline distance. The presented results which are based on in-flight measurements of free flying albatrosses were achieved with an in-house developed GPS-signal tracking method yielding the required high precision for the small-scale dynamic soaring flight maneuvers.

  17. Advanced Free Flight Planner and Dispatcher's Workstation: Preliminary Design Specification

    Science.gov (United States)

    Wilson, J.; Wright, C.; Couluris, G. J.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) has implemented the Advanced Air Transportation Technology (AATT) program to investigate future improvements to the national and international air traffic management systems. This research, as part of the AATT program, developed preliminary design requirements for an advanced Airline Operations Control (AOC) dispatcher's workstation, with emphasis on flight planning. This design will support the implementation of an experimental workstation in NASA laboratories that would emulate AOC dispatch operations. The work developed an airline flight plan data base and specified requirements for: a computer tool for generation and evaluation of free flight, user preferred trajectories (UPT); the kernel of an advanced flight planning system to be incorporated into the UPT-generation tool; and an AOC workstation to house the UPT-generation tool and to provide a real-time testing environment. A prototype for the advanced flight plan optimization kernel was developed and demonstrated. The flight planner uses dynamic programming to search a four-dimensional wind and temperature grid to identify the optimal route, altitude and speed for successive segments of a flight. An iterative process is employed in which a series of trajectories are successively refined until the LTPT is identified. The flight planner is designed to function in the current operational environment as well as in free flight. The free flight environment would enable greater flexibility in UPT selection based on alleviation of current procedural constraints. The prototype also takes advantage of advanced computer processing capabilities to implement more powerful optimization routines than would be possible with older computer systems.

  18. Effective area calibration of the reflection grating spectrometers of XMM-Newton. I. X-ray spectroscopy of the Crab nebula

    NARCIS (Netherlands)

    Kaastra, J.S.; de Vries, C.P.; Costantini, E.; den Herder, J.W.A.

    2009-01-01

    Context. The Crab nebula and pulsar have been widely used as a calibration source for X-ray instruments. The in-flight effective area calibration of the Reflection Grating Spectrometers (RGS) of XMM-Newton depend upon the availability of reliable calibration sources. Aims. We investigate how the abs

  19. Making Personalised Flight Recommendations using Implicit Feedback

    OpenAIRE

    Coyle, Lorcan

    2004-01-01

    As e-commerce has become more popular, the problem of information overload has come to the fore. Recommender systems that reduce the information overload problem are becoming more common. However, the problem with many recommender systems is that they are associated with a high cost of learning customer preferences (in terms of cognitive load). We describe the Personal Travel Assistant (PTA), a flight recommender application that uses case-based reasoning (CBR) to overcome these problem...

  20. The JWST/NIRCam Coronagraph Flight Occulters

    Science.gov (United States)

    Krist, John E.; Balasubramanian, Kunjithapatham; Muller, Richard E.; Shaklan, Stuart B.; Kelly, Douglas M.; Wilson, Daniel W.; Beichman, Charles A.; Serabyn, Eugene; Mao, Yalan; Echternach, Pierre M.; Trauger, John T.; Liewer, Kurt M.

    2010-01-01

    The NIRCam instrument on the James Webb Space Telescope will have a Lyot coronagraph for high contrast imaging of extrasolar planets and circumstellar disks at lambda = 2 - 5 micrometers. Half-tone patterns are used to create graded-transmission image plane masks. These are generated using electron beam lithography and reactive ion etching of a metal layer on an antireflection coated sapphire substrate. We report here on the manufacture and evaluation of the flight occulters.

  1. The JWST/NIRCam coronagraph flight occulters

    Science.gov (United States)

    Krist, John E.; Balasubramanian, Kunjithapatham; Muller, Richard E.; Shaklan, Stuart B.; Kelly, Douglas M.; Wilson, Daniel W.; Beichman, Charles A.; Serabyn, Eugene; Mao, Yalan; Echternach, Pierre M.; Trauger, John T.; Liewer, Kurt M.

    2010-07-01

    The NIRCam instrument on the James Webb Space Telescope will have a Lyot coronagraph for high contrast imaging of extrasolar planets and circumstellar disks at λ=2 - 5 μm. Half-tone patterns are used to create graded-transmission image plane masks. These are generated using electron beam lithography and reactive ion etching of a metal layer on an antireflection coated sapphire substrate. We report here on the manufacture and evaluation of the flight occulters.

  2. Effects of the space flight environment on the immune system

    Science.gov (United States)

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  3. Lift and Power Requirements in Flight in a Dragonfly

    Science.gov (United States)

    Sun, Mao; Wang, Ji Kang

    The lift and power requirements of a model dragonfly in forward flight are studied, using the method of numerically solving the Navier-Stokes equations. The graph of power against flight speed is U-shaped, suggesting that a dragonfly might have a preferred cruising speed. Considerable variation in the relative phase between fore- and hindwings results in only very small change in power requirement. This suggests theat the forewing-hingwing interaction is weak and furthermore, might explain why phase angles ranging from to are employed by dragonflies in hovering and forward flight.

  4. Biologically Inspired Micro-Flight Research

    Science.gov (United States)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  5. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  6. STS-107 Flight Day 12 Highlights

    Science.gov (United States)

    2003-01-01

    This video shows the activities of the STS-107 crew (Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark, Mission Specialists; Ilan Ramon, Payload Specialist) during flight day 12 of the Columbia orbiter's final mission. The primary activities are spaceborne experiments in the SpaceHab RDM (Research Double Module). Experiments shown in the video include SOFBALL (Structure of Flame Balls at Low Lewis-Number), an experiment to grow cancer cells in microgravity, and the STARS (Space Technology and Research Students) experiments, including bees, ants, chemical gardens, fish, and spiders. Crew Members are shown working on MIST (Water Mist Fire Suppression), a commercial experiment. Red Team crew members (Husband, Chawla, Clark, Ramon) are shown conversing through a handset with the Expedition 6 crew (Kenneth Bowersox, Commander; Donald Pettit, Nikolai Budarin; Flight Engineers) of the ISS (International Space Station).

  7. Optimal flight altitude and flight routes with respect to environmental and economical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Nodorp, D.; Sausen, R.; Land, C. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Deidewig, F. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany). Inst. fuer Antriebstechnik

    1997-12-31

    A flight routing method is presented. In addition to conventional minimization of travel time and/or fuel consumption it also takes into account the environmental impact of the aircraft emissions on the climate system. In the process the ECHAM general circulation model is used to trace the pollutants after release, estimate their potential to cause damage and to weight this environmental relative to the economical aspect. Some case studies are presented for an Airbus A340 in the North Atlantic flight corridor. (author) 6 refs.

  8. The 747 primary flight control systems reliability and maintenance study

    Science.gov (United States)

    1979-01-01

    The major operational characteristics of the 747 Primary Flight Control Systems (PFCS) are described. Results of reliability analysis for separate control functions are presented. The analysis makes use of a NASA computer program which calculates reliability of redundant systems. Costs for maintaining the 747 PFCS in airline service are assessed. The reliabilities and cost will provide a baseline for use in trade studies of future flight control system design.

  9. 14 CFR 415.115 - Flight safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety. 415.115 Section 415.115... From a Non-Federal Launch Site § 415.115 Flight safety. (a) Flight safety analysis. An applicant's safety review document must describe each analysis method employed to meet the flight safety...

  10. 14 CFR 91.303 - Aerobatic flight.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aerobatic flight. 91.303 Section 91.303... AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Special Flight Operations § 91.303 Aerobatic flight. No person may operate an aircraft in aerobatic flight— (a) Over any congested area of...

  11. 14 CFR 61.56 - Flight review.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight review. 61.56 Section 61.56... CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS General § 61.56 Flight review. (a) Except as provided in paragraphs (b) and (f) of this section, a flight review consists of a minimum of 1 hour...

  12. Reaction rates of $^{64}$Ge($p,\\gamma$)$^{65}$As and $^{65}$As($p,\\gamma$)$^{66}$Se and the extent of nucleosynthesis in type I X-ray bursts

    CERN Document Server

    Lam, Y H; Parikh, A; Brown, B A; Wang, M; Guo, B; Zhang, Y H; Zhou, X H; Xu, H S

    2015-01-01

    The extent of nucleosynthesis in models of type I X-ray bursts and the associated impact on the energy released in these explosive events are sensitive to nuclear masses and reaction rates around the $^{64}$Ge waiting point. Using a recent high precision mass measurement of $^{65}$As along with large-scale shell model calculations, we have determined new thermonuclear rates of the $^{64}$Ge($p$,$\\gamma$)$^{65}$As and $^{65}$As($p$,$\\gamma$)$^{66}$Se reactions. We examine the impact of available rates for these two reactions through a representative one-zone X-ray burst model. We find that our recommended rates may strongly suppress the flow of abundances toward $A\\approx100$, in sharp contrast to recent work claiming that $^{64}$Ge is not a significant $rp$-process waiting point. Indeed, the summed mass fractions for species with $A > 70$ varies by about factors of 3 or 2 depending upon the adopted $^{64}$Ge($p$,$\\gamma$)$^{65}$As or $^{65}$As($p$,$\\gamma$)$^{66}$Se rates, respectively. Furthermore, the predi...

  13. 鸟类的飞翔%Bird flight

    Institute of Scientific and Technical Information of China (English)

    Ulla M.LINDHE NORBERG

    2004-01-01

    本文综述了目前对鸟类飞翔的研究,包括飞翔机制、运动学和形态适应等问题.首先讨论动力产生的基础包括翼型运动和气体旋涡以及飞翔需要的动力,而后论述振翅飞翔和姿势变换的运动学原理及量化飞翔强度,阐明了翼部和尾部外形对飞翔的重要作用,并分析了始祖鸟的飞翔能力[动物学报 50(6):921-935,2004].%The current states of knowledge concerning flight mechanics,kinematics and morphological adaptations for flight are reviewed. The basis for force generation,including airfoil action and vorticity,and the power required for flight,are discussed first,followed by the kinematics of flapping flight and gait changes,and scaling issues for flight.The importance of the shape of wing and tail for flight performance is elucidated,concluding with an analysis of the flight capability of Archaeopteryx[Acta Zoologica Sinica 50(6):921-935,2004].

  14. Hovering and forward flight energetics in Anna's and Allen's hummingbirds.

    Science.gov (United States)

    Clark, Christopher James; Dudley, Robert

    2010-01-01

    Aerodynamic theory predicts that the mechanical costs of flight are lowest at intermediate flight speeds; metabolic costs of flight should trend similarly if muscle efficiency is constant. We measured metabolic rates for nine Anna's hummingbirds (Calypte anna) and two male Allen's hummingbirds (Selasphorus sasin) feeding during flight from a free-standing mask over a range of airspeeds. Ten of 11 birds exhibited higher metabolic costs during hovering than during flight at intermediate airspeeds, whereas one individual exhibited comparable costs at hovering and during forward flight up to speeds of approximately 7 m s(-1). Flight costs of all hummingbirds increased at higher airspeeds. Relative to Anna's hummingbirds, Allen's hummingbirds exhibited deeper minima in the power curve, possibly due to higher wing loadings and greater associated costs of induced drag. Although feeding at a mask in an airstream may reduce body drag and, thus, the contributions of parasite power to overall metabolic expenditure, these results suggest that hummingbird power curves are characterized by energetic minima at intermediate speeds relative to hovering costs. PMID:20455711

  15. Biomechanics and biomimetics in insect-inspired flight systems.

    Science.gov (United States)

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-09-26

    Insect- and bird-size drones-micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10(4)-10(5) or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528780

  16. Investigation of periodontal tissue during a long space flights

    Science.gov (United States)

    Solovyeva, Zoya; Viacheslav, Ilyin; Skedina, Marina

    Previous studies conducted on the International Space Station found that upon completion of the space flight there are significant changes in the local immunity and periodontal microflora of astronauts. Also research in ground-based experiments that simulate space flight factors showed that prolonged hypokinesia antiorthostatic leads to impaired functional indicators of the periodontal vascular system, an unidirectional change from the microbiota and the immune system. That results in the appearance and progressive increase of the parodontial pathogenic bacteria and increase of the content of immunoglobulins in the oral fluid. All these changes are classified as risk factors for the development of inflammatory periodontal diseases in astronauts. However, the studies were unable to determine whether the changes result from a long space flight and the peculiarities of formation the local immunity and periodontal microbiota during the space flight, or they are one of the specific manifestations of the readaptationary post-flight condition of the body. In this regard, the planned research in a long space flight suggests: to use the means of microbial control, which can retain of the anaerobes periodontal microbiota sampling directly in the space flight; to assess the specificity of changes of the periodontal immune status under the influence of the space flight factors, and to assess the state of microcirculation of periodontal tissue in astronauts. A comprehensive study of the reaction of dentition during the space flight will make it possible to study the pathogenesis of changes for developing an adequate prevention aimed at optimizing the state of dentition of the astronauts.

  17. ROTEX: space telerobotic flight experiment

    Science.gov (United States)

    Hirzinger, Gerd; Landzettel, Klaus L.; Heindl, J.

    1993-12-01

    In early 1993 the space robot technology experiment ROTEX flew with the space-shuttle Columbia (spacelab mission D2 on flight STS-55 from April 26 to May 6). A multisensory robot on board the space-craft successfully worked in autonomous modes, teleoperated by astronauts, as well as in different telerobotic ground control modes. These include on-line teleoperation and tele-sensor-programming, a task-level oriented programming technique involving `learning by showing' concepts in a virtual environment. The robot's key features were its multisensory gripper and the local sensory feedback schemes which are the basis for shared autonomy. The corresponding man-machine interface concepts using a 6 dof non-force- reflecting control ball and visual feedback to the human operator are explained. Stereographic simulation on ground was used to predict not only the robot's free motion but even the sensor based path refinement on board; prototype tasks performed by this space robot were the assembly of a truss structure, connecting/disconnecting an electric plug (orbit replaceable unit exchange ORU), and grasping free-floating objects.

  18. Neural Networks for Flight Control

    Science.gov (United States)

    Jorgensen, Charles C.

    1996-01-01

    Neural networks are being developed at NASA Ames Research Center to permit real-time adaptive control of time varying nonlinear systems, enhance the fault-tolerance of mission hardware, and permit online system reconfiguration. In general, the problem of controlling time varying nonlinear systems with unknown structures has not been solved. Adaptive neural control techniques show considerable promise and are being applied to technical challenges including automated docking of spacecraft, dynamic balancing of the space station centrifuge, online reconfiguration of damaged aircraft, and reducing cost of new air and spacecraft designs. Our experiences have shown that neural network algorithms solved certain problems that conventional control methods have been unable to effectively address. These include damage mitigation in nonlinear reconfiguration flight control, early performance estimation of new aircraft designs, compensation for damaged planetary mission hardware by using redundant manipulator capability, and space sensor platform stabilization. This presentation explored these developments in the context of neural network control theory. The discussion began with an overview of why neural control has proven attractive for NASA application domains. The more important issues in control system development were then discussed with references to significant technical advances in the literature. Examples of how these methods have been applied were given, followed by projections of emerging application needs and directions.

  19. STS-114 Flight Day 5 Highlights

    Science.gov (United States)

    2005-01-01

    Highlights of Day 5 of the STS-114 Return to Flight mission (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) include video coverage of an extravehiclular activity (EVA) by Noguchi and Robinson. The other crew members of Discovery are seen on the flight deck and mid-deck helping the astronauts to suit-up. The objectives of the EVA are to test repair techniques on sample tiles in the shuttle's payload bay, to repair electrical equipment for a gyroscope on the International Space Station (ISS), and to install a replacement GPS antenna on the ISS. Noguchi and Robinson use a caulk gun and a putty knife to repair the sample tiles. The video contains several Earth views, including one of Baja California.

  20. The ARGUS time-of-flight system

    International Nuclear Information System (INIS)

    The time-of-flight system of the ARGUS detector at the DORIS e+e- storage ring consists of 64 barrel scintillation counters covering 75% of 4π, and 2x48 end cap counters, covering 17% of 4π. The barrel counters are viewed by two phototubes each, while the end cap counters have one tube only. The time-of-flight system serves as a part of the fast trigger and identifies charged particles. The time resolution achieved during the first year of ARGUS operation is 210 ps for Bhabhas (which are used for the off-line monitoring of the system), and 220 ps for hadrons, both in barrel and end cap counters. This converts into a three standard deviation mass separation up to 700 MeV/c between pions and kaons and 1200 MeV/c between kaons and protons. Electrons can be separated from heavier particles up to 230 MeV/c. (orig.)

  1. Perception of stress among aviation flight students

    Science.gov (United States)

    Bhattacharya, Amrita

    There have been many studies related to stress among college students and the purpose of this research was to determine what causes stress among the student pilots enrolled in the Middle Tennessee State University (MTSU) flight program, also to find out what students think could be some possible ways to reduce their stress, and to compare the results with a previous study conducted by South Illinois University. The survey designed by Robertson and Ruiz (2010) was administered to MTSU students so that a comparison could be done between MTSU and SIU, as SIU used the same survey form. Results of the study showed that flight students are exposed to similar stress at both universities, but some of the factors that cause stress are different between MTSU and SIU students.

  2. STS-107 Flight Day 6 Highlights

    Science.gov (United States)

    2003-01-01

    This video shows the activities of the STS-107 crew on flight day 6 of the Columbia orbiter's final mission. The crew members include: Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark; Mission Specialists; Ilan Ramon, Payload Specialist. The primary activities of flight day 6 are spaceborne experiments, and a conversation between Israeli Prime Minister Ariel Sharon, accompanied by the Israeli Minister of Education, and Israeli astronaut Ilan Ramon. Both the Israelis and their interpreter are audible on the tape. The video also features a bioreactor used to grow cancer cells in microgravity, and footage taken by the Mediterranean Israeli Dust Experiment (MEIDEX) of sprites, lightning in the lower ionosphere. Mission Specialist Anderson is shown working on the Laminar Soot Processes (LSP-2) experiment. Pilot McCool answers two questions from the public, and a view of Panama is shown.

  3. Factors affecting the design of instrument flight procedures

    Directory of Open Access Journals (Sweden)

    Ivan FERENCZ

    2008-01-01

    Full Text Available The article highlights factors, which might affect the design of instrument flight procedures. Ishikawa diagram is used to distribute individual factors into classes, as are People, Methods, Regulations, Tools, Data and Environment.

  4. Treatment planning system commissioning of the eclipse PBC dose calculation algorithm for the Varian Clinac iX S/N 5052

    International Nuclear Information System (INIS)

    The commissioning of the Treatment Planning System (TPS) is an important part of the commissioning of a new linear accelerator (linac). In this work, we evaluated the performance of the Pencil Beam Convolution (PBC) algorithm configured for the new Varian Clinac iX (S/N 5052) at the University Clinic of Radiotherapy and Oncology in Skopje. The evaluation was performed in two stages. In the first stage, we used a workspace of the TPS itself, called “Beam Analysis”, in which the system itself calculates the depth dose and profile curves for a water phantom and compares them with those measured during the commissioning of the accelerator. In the second stage, we created, calculated and irradiated 9 test plans on a polystyrene phantom “OPERA” and measured the dose in a point with a system for absolute dosimetry and then compared the measurements with the calculations. In both stages, the results of the comparison were below 3%, in most clinically relevant cases below 2%, which indicates that the PBC algorithm can safely be commissioned for clinical use. (Author)

  5. Comparison of Topical Hemostatic Agents in a Swine Model of Extremity Arterial Hemorrhage: BloodSTOP iX Battle Matrix vs. QuikClot Combat Gauze

    Science.gov (United States)

    Li, Huixi; Wang, Lin; Alwaal, Amjad; Lee, Yung-Chin; Reed-Maldonado, Amanda; Spangler, Taylor A.; Banie, Lia; O’Hara, Reginald B.; Lin, Guiting

    2016-01-01

    BloodSTOP iX Battle Matrix (BM) and QuikClot Combat Gauze (CG) have both been used to treat traumatic bleeding. The purpose of this study was to examine the efficacy and initial safety of both products in a swine extremity arterial hemorrhage model, which mimics combat injury. Swine (37.13 ± 0.56 kg, NBM = 11, NCG = 9) were anesthetized and splenectomized. We then isolated the femoral arteries and performed a 6 mm arteriotomy. After 45 s of free bleeding, either BM or CG was applied. Fluid resuscitation was provided to maintain a mean arterial pressure of 65 mmHg. Animals were observed for three hours or until death. Fluoroscopic angiography and wound stability challenge tests were performed on survivors. Tissue samples were collected for histologic examination. Stable hemostasis was achieved in 11/11 BM and 5/9 CG subjects, with recovery of mean arterial pressure and animal survival for three hours (p Histologic evidence indicated no wound site, distal limb or major organ damage in either group. BM is more effective and portable in treating arterial hemorrhage compared to CG. There was no histologic evidence of further damage in either group. PMID:27077848

  6. Multiscale reference function analysis of the PT symmetry breaking solutions for the P2+iX3+iαX Hamiltonian

    International Nuclear Information System (INIS)

    The recent work of Delabaere and Trinh (Delabaere E. and Trinh D.T. 2000 J. Phys. A: Math. Gen. 33 8771) discovered the existence of PT symmetry breaking, complex energy, L2 solutions for the one-dimensional Hamiltonian, P2+iX3+iαX, in the asymptotic limit α→-∞. Their asymptotic analysis produced questionable results for moderate values of α. We can easily confirm the existence of PT symmetry breaking solutions by explicitly computing the low-lying states for vertical bar α vertical bar < O vertical bar (10). Our analysis makes use of the multiscale reference function (MRF) approach, developed by Tymczak et al (Tymczak C.J., Japaridze G.S., Handy C.R. and Wang Xiao-Qian 1998a Phys. Rev. Lett. 80 3678; 1998b Phys. Rev. A 58 2708). The MRF results can be validated by comparing them with the converging eigenenergy bounds generated through the eigenvalue moment method, as recently argued by Handy (2001a, b). Given the reliability of the MRF analysis, its fast numerical implementation, high accuracy and theoretical simplicity, the present formalism defines an effective and efficient procedure for analysing many related problems that have appeared in the recent literature. (author)

  7. The mechanical power requirements of avian flight

    OpenAIRE

    Askew, G. N.; Ellerby, D.J

    2007-01-01

    A major goal of flight research has been to establish the relationship between the mechanical power requirements of flight and flight speed. This relationship is central to our understanding of the ecology and evolution of bird flight behaviour. Current approaches to determining flight power have relied on a variety of indirect measurements and led to a controversy over the shape of the power–speed relationship and a lack of quantitative agreement between the different techniques. We have use...

  8. 14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (aircraft) and flight instructors (simulator). 91.1091 Section 91.1091 Aeronautics and Space FEDERAL... Qualifications: Flight instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or...

  9. 14 CFR 25.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fire protection of flight controls, engine mounts, and other flight structure. 25.865 Section 25.865 Aeronautics and Space FEDERAL AVIATION... other flight structure. Essential flight controls, engine mounts, and other flight structures located...

  10. 14 CFR 121.511 - Flight time limitations: Flight engineers: airplanes.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers... OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Supplemental Operations § 121.511 Flight time limitations: Flight engineers: airplanes. (a) In any operation in which...

  11. 14 CFR 93.305 - Flight-free zones and flight corridors.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight-free zones and flight corridors. 93... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.305 Flight-free zones and flight corridors. Except in...

  12. 14 CFR 437.53 - Pre-flight and post-flight operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Pre-flight and post-flight operations. 437...-flight and post-flight operations. A permittee must protect the public from adverse effects of hazardous operations and systems in preparing a reusable suborbital rocket for flight at a launch site in the...

  13. 14 CFR 125.373 - Original flight release or amendment of flight release.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Original flight release or amendment of flight release. 125.373 Section 125.373 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT... Flight Release Rules § 125.373 Original flight release or amendment of flight release. (a) A...

  14. Differences in Characteristics of Aviation Accidents during 1993-2012 Based on Flight Purpose

    Science.gov (United States)

    Evans, Joni K.

    2016-01-01

    Usually aviation accidents are categorized and analyzed within flight conduct rules (Part 121, Part 135, Part 91) because differences in accident rates within flight rules have been demonstrated. Even within a particular flight rule the flights have different purposes. For many, Part 121 flights are synonymous with scheduled passenger transport, and indeed this is the largest group of Part 121 accidents. But there are also non-scheduled (charter) passenger transport and cargo flights. The primary purpose of the analysis reported here is to examine the differences in aviation accidents based on the purpose of the flight. Some of the factors examined are the accident severity, aircraft characteristics and accident occurrence categories. Twenty consecutive years of data were available and utilized to complete this analysis.

  15. Secondary metabolism in simulated microgravity and space flight.

    Science.gov (United States)

    Gao, Hong; Liu, Zhiheng; Zhang, Lixin

    2011-11-01

    Space flight experiments have suggested that microgravity can affect cellular processes in microorganisms. To simulate the microgravity environment on earth, several models have been developed and applied to examine the effect of microgravity on secondary metabolism. In this paper, studies of effects of space flight on secondary metabolism are exemplified and reviewed along with the advantages and disadvantages of the current models used for simulating microgravity. This discussion is both significant and timely to researchers considering the use of simulated microgravity or space flight to explore effects of weightlessness on secondary metabolism. PMID:22180084

  16. The role of engineering in the flight equipment purchasing process

    Science.gov (United States)

    1977-01-01

    The role of the airline engineering department in the flight equipment acquisition process is examined. The data for the study was collected from six airlines. The principal findings of the study include: (1) engineering activities permeate, but do not dominate the airline flight equipment decision process. (2) The principal criterion for the flight equipment acquisition decision is return on investment. (3) The principal sources of information for the airline engineering departments in the monitoring process are the manufacturers of equipment. Subsidiary information sources include NASA publications and conferences, among others and (4) The engineering department is the principal communication channel for technical information.

  17. Flight performance of the largest volant bird

    OpenAIRE

    Ksepka, Daniel T.

    2014-01-01

    A fossil species of pelagornithid bird exhibits the largest known avian wingspan. Pelagornithids are an extinct group of birds known for bony tooth-like beak projections, large size, and highly modified wing bones that raise many questions about their ecology. At 6.4 m, the wingspan of this species was approximately two times that of the living Royal Albatross. Modeling of flight parameters in this species indicates that it was capable of highly efficient gliding and suggests that pelagornith...

  18. Multicore Considerations for Legacy Flight Software Migration

    Science.gov (United States)

    Vines, Kenneth; Day, Len

    2013-01-01

    In this paper we will discuss potential benefits and pitfalls when considering a migration from an existing single core code base to a multicore processor implementation. The results of this study present options that should be considered before migrating fault managers, device handlers and tasks with time-constrained requirements to a multicore flight software environment. Possible future multicore test bed demonstrations are also discussed.

  19. Time-of-Flight Microwave Camera

    OpenAIRE

    Charvat, Gregory; Temme, Andrew; Raskar, Ramesh; Feigin-Almon, Micha

    2015-01-01

    Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable “stealth” regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a dat...

  20. Flight Vehicle Control and Aerobiological Sampling Applications

    OpenAIRE

    Techy, Laszlo

    2009-01-01

    Aerobiological sampling using unmanned aerial vehicles (UAVs) is an exciting research field blending various scientific and engineering disciplines. The biological data collected using UAVs helps to better understand the atmospheric transport of microorganisms. Autopilot-equipped UAVs can accurately sample along pre-defined flight plans and precisely regulated altitudes. They can provide even greater utility when they are networked together in coordinated sampling missions: such measurements ...

  1. Effects of Music Tempos on Flight Performance

    OpenAIRE

    Kieta, Alexandra R.; Young, John P.; Stewart, Derek

    2013-01-01

    To date, research on how listening to music affects performance in high-cognitive demand environments has ranged from those working in information technology to everyday drivers. Some research asserts listening to music does have an effect on human task performance (whether positive or negative) and other research asserts there are no statistically significant effects. This research study focused on how varying music tempos affect pilot performance during certain flight maneuvers. With signif...

  2. Mobile communications satellite antenna flight experiment definition

    Science.gov (United States)

    Freeland, Robert E.

    1987-01-01

    Results of a NASA-sponsored study to determine the technical feasibility and cost of a Shuttle-based flight experiment specifically intended for the MSAT commercial user community are presented. The experiment will include demonstrations of technology in the areas of radio frequency, sensing and control, and structures. The results of the structural subsystem study summarized here include experiment objective and technical approach, experiment structural description, structure/environment interactions, structural characterization, thermal characterization, structural measurement system, and experiment functional description.

  3. Probabilistic Risk Assessment for Astronaut Post Flight Bone Fracture

    Science.gov (United States)

    Lewandowski, Beth; Myers, Jerry; Licata, Angelo

    2015-01-01

    Introduction: Space flight potentially reduces the loading that bone can resist before fracture. This reduction in bone integrity may result from a combination of factors, the most common reported as reduction in astronaut BMD. Although evaluating the condition of bones continues to be a critical aspect of understanding space flight fracture risk, defining the loading regime, whether on earth, in microgravity, or in reduced gravity on a planetary surface, remains a significant component of estimating the fracture risks to astronauts. This presentation summarizes the concepts, development, and application of NASA's Bone Fracture Risk Module (BFxRM) to understanding pre-, post, and in mission astronaut bone fracture risk. The overview includes an assessment of contributing factors utilized in the BFxRM and illustrates how new information, such as biomechanics of space suit design or better understanding of post flight activities may influence astronaut fracture risk. Opportunities for the bone mineral research community to contribute to future model development are also discussed. Methods: To investigate the conditions in which spaceflight induced changes to bone plays a critical role in post-flight fracture probability, we implement a modified version of the NASA Bone Fracture Risk Model (BFxRM). Modifications included incorporation of variations in physiological characteristics, post-flight recovery rate, and variations in lateral fall conditions within the probabilistic simulation parameter space. The modeled fracture probability estimates for different loading scenarios at preflight and at 0 and 365 days post-flight time periods are compared. Results: For simple lateral side falls, mean post-flight fracture probability is elevated over mean preflight fracture probability due to spaceflight induced BMD loss and is not fully recovered at 365 days post-flight. In the case of more energetic falls, such as from elevated heights or with the addition of lateral movement

  4. Assessing public exposure in commercial flights in Brazil

    International Nuclear Information System (INIS)

    The exposure to cosmic radiation in aircraft travel is higher than at ground level and varies with the year, the latitude, the altitude of flight and the flight time. The aim of this work was to estimate the contribution of cosmic radiation exposure on commercial flights to the Brazilian population. A database, including about 4000 domestic flights was implemented in Excel spreadsheet. The computer program CARI-6, developed by the U.S. Federal Aviation Administration, was used to calculate doses received in each route. Individual effective doses for commercial flights within Brazil ranged from 0.3 to 8.8 μSv, with a total collective annual dose of 312 man Sv. This value is low, about 5 % of the collective dose estimated for domestic flights in US and about 20 % of the collective doses from all flights in UK. This work shall serve as a baseline for future comparisons of exposures due to the growth of civil aviation in the country and open discussions on the concept of risk and its public acceptance, which are relevant aspects for defining radiological protection guidelines. (authors)

  5. UAV Flight Control System Based on an Intelligent BEL Algorithm

    Directory of Open Access Journals (Sweden)

    Huangzhong Pu

    2013-02-01

    Full Text Available A novel intelligent control strategy based on a brain emotional learning (BEL algorithm is investigated in the application of the attitude control of a small unmanned aerial vehicle (UAV in this study. The BEL model imitates the emotional learning process in the amygdala‐ orbitofrontal (A‐O system of mammalian brains. Here it is used to develop the flight control system of the UAV. The control laws of elevator, aileron and rudder manipulators adopt the forms of traditional flight control laws, and three BEL models are used in above three control loops, to on‐ line regulate the control gains of each controller. Obviously, a BEL intelligent control system is self‐learning and self‐adaptive, which is important for UAVs when flight conditions change, while traditional flight control systems remain unchanged after design. In simulation, the UAV is on a flat flight and suddenly a wind disturbs it making it depart from the equilibrium state. In order to make the UAV recover to the original equilibrium state, the BEL intelligent control system is adopted. The simulation results illustrate that the BEL‐based intelligent flight control system has characteristics of better adaptability and stronger robustness, when compared with the traditional flight control system.

  6. Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense.

    Directory of Open Access Journals (Sweden)

    Katherine M Sholtis

    Full Text Available Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics. These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare natural flight performance to earlier laboratory measurements of maximum flight speed, aerodynamic force generation and power estimates. During field observation, hummingbirds rarely approached the maximal flight speeds previously reported from wind tunnel tests and never did so during level flight. However, the accelerations and rates of change in kinetic and potential energy we recorded indicate that these hummingbirds likely operated near the maximum of their flight force and metabolic power capabilities during these competitive interactions. Furthermore, although birds departing from the feeder while chased did so faster than freely-departing birds, these speed gains were accomplished by modulating kinetic and potential energy gains (or losses rather than increasing overall power output, essentially trading altitude for speed during their evasive maneuver. Finally, the trajectories of defending birds were directed toward the position of the encroaching bird rather than the feeder.

  7. Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense.

    Science.gov (United States)

    Sholtis, Katherine M; Shelton, Ryan M; Hedrick, Tyson L

    2015-01-01

    Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics). These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare natural flight performance to earlier laboratory measurements of maximum flight speed, aerodynamic force generation and power estimates. During field observation, hummingbirds rarely approached the maximal flight speeds previously reported from wind tunnel tests and never did so during level flight. However, the accelerations and rates of change in kinetic and potential energy we recorded indicate that these hummingbirds likely operated near the maximum of their flight force and metabolic power capabilities during these competitive interactions. Furthermore, although birds departing from the feeder while chased did so faster than freely-departing birds, these speed gains were accomplished by modulating kinetic and potential energy gains (or losses) rather than increasing overall power output, essentially trading altitude for speed during their evasive maneuver. Finally, the trajectories of defending birds were directed toward the position of the encroaching bird rather than the feeder. PMID:26039101

  8. F-15 837 IFCS Intelligent Flight Control System Project

    Science.gov (United States)

    Bosworth, John T.

    2007-01-01

    This viewgraph presentation reviews the use of Intelligent Flight Control System (IFCS) for the F-15. The goals of the project are: (1) Demonstrate Revolutionary Control Approaches that can Efficiently Optimize Aircraft Performance in both Normal and Failure Conditions (2) Advance Neural Network-Based Flight Control Technology for New Aerospace Systems Designs. The motivation for the development are to reduce the chance and skill required for survival.

  9. High altitude aircraft flight tests

    Science.gov (United States)

    Helmken, Henry; Emmons, Peter; Homeyer, David

    1996-03-01

    In order to make low earth orbit L-band propagation measurements and test new voice communication concepts, a payload was proposed and accepted for flight aboard the COMET (now METEOR) spacecraft. This Low Earth Orbiting EXperiment payload (LEOEX) was designed and developed by Motorola Inc. and sponsored by the Space Communications Technology Center (SCTC), a NASA Center for the Commercial Development of Space (CCDS) located at Florida Atlantic University. In order to verify the LEOEX payload for satellite operation and obtain some preliminary propagation data, a series of 9 high altitude aircraft (SR-71 and ER-2) flight tests were conducted. These flights took place during a period of 7 months, from October 1993 to April 1994. This paper will summarize the operation of the LEOEX payload and the particular configuration used for these flights. The series of flyby tests were very successful and demonstrated how bi-directional, Time Division Multiple Access (TDMA) voice communication will work in space-to-ground L-band channels. The flight tests also acquired propagation data which will be representative of L-band Low Earth Orbiting (LEO) communication systems. In addition to verifying the LEOEX system operation, it also uncovered and ultimately aided the resolution of several key technical issues associated with the payload.

  10. Quasi-satellite dynamics in formation flight

    CERN Document Server

    Mikkola, Seppo

    2016-01-01

    The quasi-satellite (QS) phenomenon makes two celestial bodies to fly near each other (Mikkola et al. 2006) and that effect can be used also to make artificial satellites move in tandem. We consider formation flight of two or three satellites in low eccentricity near Earth orbits. With the help of weak ion thrusters it is possible to accomplish tandem flight. With ion thrusters it is also possible to mimic many kinds of mutual force laws between the satellites. We found that both a constant repulsive force or an attractive force that decreases with the distance are able to preserve the formation in which the eccentricities cause the actual relative motion and the weak thrusters keep the mean longitude difference small. Initial values are important for the formation flight but very exact adjustment of orbital elements is not important. Simplicity is one of our goals in this study and this result is achieved at least in the way that, when constant force thrusters are used, the satellites only need to detect the...

  11. Stabilization control of a bumblebee in hovering and forward flight

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Mao Sun

    2009-01-01

    Our previous study shows that the hovering and forward flight of a bumblebee do not have inherent stabil-ity (passive stability). But the bumblebees are observed to fly stably. Stabilization control must have been applied. In this study, we investigate the longitudinal stabilization con-trol of the bumblebee. The method of computational fluid dynamics is used to compute the control derivatives and the techniques of eigenvalue and eigenvector analysis and modal decomposition are used for solving the equations of motion. Controllability analysis shows that at all flight speeds consid-ered, although inherently unstable, the flight is controllable. By feedbacking the state variables, i.e. vertical and horizon-tal velocities, pitching rate and pitch angle (which can be measured by the sensory system of the insect), to produce changes in stroke angle and angle of attack of the wings, the flight can be stabilized, explaining why the bumblebees can fly stably even if they are passively unstable.

  12. Human factors quantification via boundary identification of flight performance margin

    Directory of Open Access Journals (Sweden)

    Yang Changpeng

    2014-08-01

    Full Text Available A systematic methodology including a computational pilot model and a pattern recognition method is presented to identify the boundary of the flight performance margin for quantifying the human factors. The pilot model is proposed to correlate a set of quantitative human factors which represent the attributes and characteristics of a group of pilots. Three information processing components which are influenced by human factors are modeled: information perception, decision making, and action execution. By treating the human factors as stochastic variables that follow appropriate probability density functions, the effects of human factors on flight performance can be investigated through Monte Carlo (MC simulation. Kernel density estimation algorithm is selected to find and rank the influential human factors. Subsequently, human factors are quantified through identifying the boundary of the flight performance margin by the k-nearest neighbor (k-NN classifier. Simulation-based analysis shows that flight performance can be dramatically improved with the quantitative human factors.

  13. Human factors quantification via boundary identification of flight performance margin

    Institute of Scientific and Technical Information of China (English)

    Yang Changpeng; Yin Tangwen; Zhao Weina; Huang Dan; Fu Shan

    2014-01-01

    A systematic methodology including a computational pilot model and a pattern recog-nition method is presented to identify the boundary of the flight performance margin for quantify-ing the human factors. The pilot model is proposed to correlate a set of quantitative human factors which represent the attributes and characteristics of a group of pilots. Three information processing components which are influenced by human factors are modeled:information perception, decision making, and action execution. By treating the human factors as stochastic variables that follow appropriate probability density functions, the effects of human factors on flight performance can be investigated through Monte Carlo (MC) simulation. Kernel density estimation algorithm is selected to find and rank the influential human factors. Subsequently, human factors are quantified through identifying the boundary of the flight performance margin by the k-nearest neighbor (k-NN) classifier. Simulation-based analysis shows that flight performance can be dramatically improved with the quantitative human factors.

  14. Simulation and experimental research on line throwing rocket with flight

    Directory of Open Access Journals (Sweden)

    Wen-bin Gu

    2014-06-01

    Full Text Available The finite segment method is used to model the line throwing rocket system. A dynamic model of line throwing rocket with flight motion based on Kane's method is presented by the kinematics description of the system and the consideration of the forces acting on the system. The experiment designed according to the parameters of the dynamic model is made. The simulation and experiment results, such as range, velocity and flight time, are compared and analyzed. The simulation results are basically agreed with the test data, which shows that the flight motion of the line throwing rocket can be predicted by the dynamic model. A theoretical model and guide for the further research on the disturbance of rope and the guidance, flight control of line throwing rocket are provided by the dynamic modeling.

  15. Feasibility of producing closed-cell metal foams in a zero-gravity environment from sputter deposited inert gas-bearing metals and alloys. Post-flight technical report, SPAR flight 2

    Science.gov (United States)

    Patten, J. W.; Greenwell, E. N.

    1976-01-01

    Metallography from experiment 24-10 obtained on the second space processing applications rocket (SPAR) flight is discussed. Results are considered along with results from the related experiments on the first SPAR flight. Conclusions are presented.

  16. AMTEC flight experiment progress and plans

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, M.L. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.; Dobbs, M.; Giglio, J. [Advanced Modular Power Systems, Ann Arbor, MI (United States)

    1997-12-31

    An experiment is being developed to validate the performance of AMTEC technology in the space microgravity environment. A group of AMTEC cells have been fabricated and assembled into an experiment module and instrumented for operation. The experiment is manifested as a Hitchhiker payload on STS-88 now planned for flight in July 1998. The AMTEC cells will be operated in space for up to ten days. The microgravity developed distribution of the sodium working fluid will be frozen in place before the cells are returned to Earth. Upon return the cells will be destructively evaluated to determine the location of the sodium and to assure that the sodium has been properly controlled by the sodium control elements. This paper describes the experiment purpose, status, and plans for the flight operations and data analysis. An overview of how this experiment fits into the overall AMTEC development is also provided.

  17. Calibration and flight qualification of FORTIS

    Science.gov (United States)

    Fleming, Brian T.; McCandliss, Stephan R.; Redwine, Keith; Kaiser, Mary Elizabeth; Kruk, Jeffery; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Moseley, S. H.; Siegmund, Oswald; Vallerga, John; Martin, Adrian

    2013-09-01

    The Johns Hopkins University sounding rocket group has completed the assembly and calibration of the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS); a sounding rocket borne multi-object spectro-telescope designed to provide spectral coverage of up to 43 separate targets in the 900 - 1800 Angstrom bandpass over a 30' x 30' field-of-view. FORTIS is capable of selecting the far-UV brightest regions of the target area by utilizing an autonomous targeting system. Medium resolution (R ~ 400) spectra are recorded in redundant dual-order spectroscopic channels with ~40 cm2 of effective area at 1216 Å. The maiden launch of FORTIS occurred on May 10, 2013 out of the White Sands Missile Range, targeting the extended spiral galaxy M61 and nearby companion NGC 4301. We report on the final flight calibrations of the instrument, as well as the flight results.

  18. Orion Exploration Flight Test-1 Post-Flight Navigation Performance Assessment Relative to the Best Estimated Trajectory

    Science.gov (United States)

    Gay, Robert S.; Holt, Greg N.; Zanetti, Renato

    2016-01-01

    This paper details the post-flight navigation performance assessment of the Orion Exploration Flight Test-1 (EFT-1). Results of each flight phase are presented: Ground Align, Ascent, Orbit, and Entry Descent and Landing. This study examines the on-board Kalman Filter uncertainty along with state deviations relative to the Best Estimated Trajectory (BET). Overall the results show that the Orion Navigation System performed as well or better than expected. Specifically, the Global Positioning System (GPS) measurement availability was significantly better than anticipated at high altitudes. In addition, attitude estimation via processing GPS measurements along with Inertial Measurement Unit (IMU) data performed very well and maintained good attitude throughout the mission.

  19. Recording and Analysis of Tsetse Flight Responses in Three Dimensions

    International Nuclear Information System (INIS)

    Recording and analysing three dimensional (3D) motions of tsetse flies in flight are technically challenging due to their speed of flight. However, video recording of tsetse fly flight responses has already been made in both wind tunnels and the field. The aim of our research was to study the way tsetse flies exploit host odours and visual targets during host searching. Such knowledge can help in the development of better trapping devices. We built a wind tunnel where it is possible to control environmental parameters, e.g. temperature, relative humidity and light. The flight of the flies was filmed from above with two high speed Linux-embedded cameras equipped with fish-eye objectives viewing at 60o from one another. The synchronized stereo images were used to reconstruct the trajectory of flies in 3D and in real time. Software permitted adjustment for parameters such as luminosity and size of the tsetse species being tracked. Interpolation permitted us to calculate flight coordinates and to measure modifications of flight parameters such as acceleration, velocity, rectitude, angular velocity and curvature according to the experimental conditions. Using this system we filmed the responses of Glossina brevipalpis Newstead obtained from a colony at the IAEA Entomology Unit, Seibersdorf, Austria to human breath presented with and without a visual target. Flights lasting up to 150 s duration and covering up to 153 m were recorded. G. brevipalpis flights to human breath were characterized by wide undulations along the course. When a visual target was placed in the plume of breath, flights of G. brevipalpis were more tightly controlled, i.e. slower and more directed. This showed that after multiple generations in a laboratory colony G. brevipalpis was still capable of complex behaviours during bloodmeal searching. (author)

  20. JetStar in flight

    Science.gov (United States)

    1981-01-01

    This 18-second movie clip shows the NASA Dryden Lockheed C-140 JetStar in flight with its pylon-mounted air-turbine-drive system used to gather information on the acoustic characteristics of subscale advanced design propellers. Data was gathered through 28 flush-mounted microphones on the skin of the aircraft. From 1976 to 1987 the NASA Lewis Research Center, Cleveland, Ohio -- today known as the Glenn Research Center -- engaged in research and development of an advanced turboprop concept in partnership with Hamilton Standard, Windsor Locks, Connecticut, the largest manufacturer of propellers in the United States. The Advanced Turboprop Project took its impetus from the energy crisis of the early 1970's and sought to produce swept propeller blades that would increase efficiency and reduce noise. As the project progressed, Pratt & Whitney, Allison Gas Turbine Division of General Motors, General Electric, Gulfstream, Rohr Industries, Boeing, Lockheed, and McDonnell Douglas, among others, also took part. NASA Lewis did the much of the ground research and marshaled the resources of these and other members of the aeronautical community. The team came to include the NASA Ames Research Center, Langley Research Center, and the Ames-Dryden Flight Research Facility (before and after that time, the Dryden Flight Research Center). Together, they brought the propeller to the flight research stage, and the team that worked on the project won the coveted Collier Trophy for its efforts in 1987. To test the acoustics of the propeller the team developed, it mounted propeller models on a C-140 JetStar aircraft fuselage at NASA Dryden. The JetStar was modified with the installation of an air-turbine-drive system. The drive motor, with a test propeller, was mounted on a pylon atop the JetStar. The JetStar was equipped with an array of 28 microphones flush-mounted in the fuselage of the aircraft beneath the propeller. Microphones mounted on the wings and on an accompanying Learjet chase

  1. Evolutionary flight and enabling smart actuator devices

    Science.gov (United States)

    Manzo, Justin; Garcia, Ephrahim

    2007-04-01

    Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.

  2. Inviscid Analysis of Extended Formation Flight

    Science.gov (United States)

    Kless, James; Aftosmis, Michael J.; Ning, Simeon Andrew; Nemec, Marian

    2012-01-01

    Flying airplanes in extended formations, with separation distances of tens of wingspans, significantly improves safety while maintaining most of the fuel savings achieved in close formations. The present study investigates the impact of roll trim and compressibility at fixed lift coefficient on the benefits of extended formation flight. An Euler solver with adjoint-based mesh refinement combined with a wake propagation model is used to analyze a two-body echelon formation at a separation distance of 30 spans. Two geometries are examined: a simple wing and a wing-body geometry. Energy savings, quantified by both formation drag fraction and span efficiency factor, are investigated at subsonic and transonic speeds for a matrix of vortex locations. The results show that at fixed lift and trimmed for roll, the optimal location of vortex impingement is about 10% inboard of the trailing airplane s wing-tip. Interestingly, early results show the variation in drag fraction reduction is small in the neighborhood of the optimal position. Over 90% of energy benefits can be obtained with a 5% variation in transverse and 10% variation in crossflow directions. Early results suggest control surface deflections required to achieve trim reduce the benefits of formation flight by 3-5% at subsonic speeds. The final paper will include transonic effects and trim on extended formation flight drag benefits.

  3. The TORCH time-of-flight detector

    Science.gov (United States)

    Harnew, N.; Brook, N.; Castillo García, L.; Cussans, D.; Föhl, K.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Piedigrossi, D.; Rademacker, J.; Ros Garcia, A.; van Dijk, M.

    2016-07-01

    The TORCH time-of-flight detector is being developed to provide particle identification between 2 and 10 GeV/c momentum over a flight distance of 10 m. TORCH is designed for large-area coverage, up to 30 m2, and has a DIRC-like construction. The goal is to achieve a 15 ps time-of-flight resolution per incident particle by combining arrival times from multiple Cherenkov photons produced within quartz radiator plates of 10 mm thickness. A four-year R&D programme is underway with an industrial partner (Photek, UK) to produce 53×53 mm2 Micro-Channel Plate (MCP) detectors for the TORCH application. The MCP-PMT will provide a timing accuracy of 40 ps per photon and it will have a lifetime of up to at least 5 Ccm-2 of integrated anode charge by utilizing an Atomic Layer Deposition (ALD) coating. The MCP will be read out using charge division with customised electronics incorporating the NINO chipset. Laboratory results on prototype MCPs are presented. The construction of a prototype TORCH module and its simulated performance are also described.

  4. Random flights in confining interfacial systems

    International Nuclear Information System (INIS)

    Porous materials, concentrated colloidal suspensions are examples of confining systems developing large specific surface and presenting a rich variety of shapes. Such an interfacial confinement strongly influences the molecular dynamics of embedded fluids and the diffusive motion of entrapped Brownian particles. An individual trajectory near the interface can be described as an alternate succession of adsorption steps and random flights in the bulk. Statistical properties of these random flights in various interfacial confining systems are needed as prerequisites in order to understand the full transport process. Related to first passage processes, these properties play a central role in numerous problems such as the mean first exit time in a bounded domain, heterogeneous catalytic reactivity and nuclear magnetic relaxation in complex and biological fluids. In the present work, we first consider the various possibilities of connecting two points of a smooth interface by a random flight in the bulk. Second, we analyse from the theoretical and experimental points of view a way to probe Brownian flight statistics. From the experimental point of view, we investigate the slow fluid dynamics near some colloidal interfaces by field-cycling NMR relaxometry. This is a way to follow slow dynamical correlations from 1 ns to 10 μs. This spectroscopy appears to be a good choice, considering that the algebraic nature of the probability of the first return to a surface builds a long-time memory. The experimental part confirms that the embedded fluid dynamics is sensitive to possible morphologic crossover and provides information about interface geometry. We also believe that such an approach can be used to probe interfacial dynamics by itself, for example in the case of a colloidal system undergoing a phase transition (dynamical arrest, rotational blockage,...)

  5. Minimum-fuel, three-dimensional flight paths for jet transports

    Science.gov (United States)

    Neuman, F.; Kreindler, E.

    1985-01-01

    A number of studies dealing with fuel minimization are concerned with three-dimensional flight. However, only Neuman and Kreindler (1982) consider cases involving commercial jet transports. In the latter study, only the climb-out and descent portions of complete long-range flight paths below 10,000 ft altitude have been investigated. The present investigation is concerned with the computation of minimum-fuel nonturning and turning flight paths for climb-outs from 2000 to 10,000 ft for long-range flights (greater than 50 n mi), and for complete flight paths of lengths between 5 and 50 n mi.

  6. Program of research in flight dynamics in the JIAFS at NASA-Langley Research Center

    Science.gov (United States)

    1992-01-01

    The program objectives are fully defined in the original proposal entitled 'Program of Research in Flight Dynamics in the Joint Institute for the Advancement of Flight Sciences (JIAFS) at NASA-Langley Research Center,' which was originated March 20, 1975 and in the renewal of the research program dated December 1, 1991. The program includes four major topics: (1) the improvement of existing methods and development of new methods for flight test data analysis; (2) the application of these methods to real flight test data obtained from advanced airplanes; (3) the correlation of flight results with wind tunnel measurements; and (4) the modeling, and control of aircraft, space structures, and spacecraft.

  7. Serotonergic neurons of the Drosophila air-puff-stimulated flight circuit

    Indian Academy of Sciences (India)

    Sufia Sadaf; Gaiti Hasan

    2014-09-01

    Monoaminergic modulation of insect flight is well documented. Recently, we demonstrated that synaptic activity is required in serotonergic neurons for Drosophila flight. This requirement is during early pupal development, when the flight circuit is formed, as well as in adults. Using a Ca2+-activity-based GFP reporter, here we show that serotonergic neurons in both prothoracic and mesothoracic segments are activated upon air-puff-stimulated flight. Moreover ectopic activation of the entire serotonergic system by TrpA1, a heat activated cation channel, induces flight, even in the absence of an air-puff stimulus.

  8. In-Flight Personalized Medication Management

    Science.gov (United States)

    Peletskaya, E.; Griko, Y. V.

    2016-01-01

    Current medication selection for treatment of astronauts during spaceflight missions is primarily dictated by the task of efficiently treating the widest possible range of physiological conditions and illnesses with a limited set of medications. Dosage and recommendations on the combination of drugs are based on the assumption of genetically equal drug sensitivity and unchanged metabolism. To our knowledge, there was no pre-flight drug sensitivity testing on a genetic level for any of the previous manned NASA space missions. Although many of the common, binary drug-drug interactions are, most likely, already considered in the ISS Medical kit composition, multi-drug and multi-drug-gene factors are not incorporated in the medication selection or prescription. Furthermore, due to the physiological changes occurring in microgravity environments, astronauts might be susceptible to potential increased drug toxicity as a result of decreased clearance of numerous drugs. In particular, perturbation of CYP450 enzymes which contribute to the hepatic metabolism of the majority of drugs may have significant effects on therapeutic efficacy and increase treatment-related toxicity5. The genes encoding the CYP450 enzymes are highly variable in humans. Inheritable variations of CYP450 hepatic metabolizer enzymes and transport proteins play a crucial role in the inter-individual variability of drug efficiency and risks of adverse drug reactions5. Additionally, there are some reports that document changes in the levels of production of drug-metabolizing enzymes in microgravity. These data can be extrapolated to provide reasonable assumptions of decreased levels of expression for most CYP450 enzymes in human body during prolonged space travel. If the prescribed medication regiment is not fully effective or causes undesirable side effects, the ability of the astronauts to function and maintain peak performance levels during space flight could be seriously compromised. Therefore

  9. A Review on Fish Swimming and Bird/Insect Flight

    CERN Document Server

    Wu, Theodore Yaotsu

    2010-01-01

    This expository review is devoted to fish swimming and bird/insect flight. (i) The simple waving motion of an elongated flexible ribbon plate of constant width, immersed in a fluid at rest, propagating a wave distally down the plate to swim forward is first considered to provide a fundamental concept on energy conservation. It is generalized to include variations in body width and thickness, vortex shedding from appended dorsal, ventral and caudal fins to closely simulate fish swimming for which a nonlinear theory is presented for large-amplitude propulsion. (ii) For bird flight, the pioneering studies on oscillating rigid wings are briefed, followed by presenting a nonlinear unsteady theory for flexible wing with arbitrary variations in shape and trajectory with a comparative study with experiments. (iii) For insect flight, more recent advances are reviewed under aerodynamic theory and modeling, computational methods, and experiments, on forward and hovering flights with producing leading-edge vortex to give...

  10. Secondary metabolism in simulated microgravity and space flight

    OpenAIRE

    Gao, Hong; Liu, Zhiheng; Zhang, Lixin

    2011-01-01

    Space flight experiments have suggested that microgravity can affect cellular processes in microorganisms. To simulate the microgravity environment on earth, several models have been developed and applied to examine the effect of microgravity on secondary metabolism. In this paper, studies of effects of space flight on secondary metabolism are exemplified and reviewed along with the advantages and disadvantages of the current models used for simulating microgravity. This discussion is both si...

  11. Recent Developments in the Remote Radio Control of Insect Flight

    Directory of Open Access Journals (Sweden)

    Hirotaka Sato

    2010-12-01

    Full Text Available The continuing miniaturization of digital circuits and the development of low power radio systems coupled with continuing studies into the neurophysiology and dynamics of insect flight are enabling a new class of implantable interfaces capable of controlling insects in free flight for extended periods. We provide context for these developments, review the state-of-the-art and discuss future directions in this field.

  12. Cognitive aging and flight performances in general aviation pilots

    OpenAIRE

    Causse, Mickael; Dehais, Frédéric; Arexis, Mahé; Pastor, Josette

    2011-01-01

    International audience Unlike professional pilots who are limited by the FAA's age rule, no age limit is defined in general aviation. Our overall goal was to examine how age-related cognitive decline impacts piloting performance and weather-related decision-making. This study relied on three components: cognitive assessment (in particular executive functioning), pilot characteristics (age and flight experience), and flight performance. The results suggest that in comparison to chronologica...

  13. Cortisol, insulin and leptin during space flight and bed rest

    Science.gov (United States)

    Stein, T. P.; Schluter, M. D.; Leskiw, M. J.

    1999-01-01

    Most ground based models for studying muscle atrophy and bone loss show reasonable fidelity to the space flight situation. However there are some differences. Investigation of the reasons for these differences can provide useful information about humans during space flight and aid in the refinement of ground based models. This report discusses three such differences, the relationships between: (i) cortisol and the protein loss, (ii) cortisol and ACTH and (iii) leptin, insulin and food intake.

  14. The Mars Science Laboratory Entry, Descent, and Landing Flight Software

    Science.gov (United States)

    Gostelow, Kim P.

    2013-01-01

    This paper describes the design, development, and testing of the EDL program from the perspective of the software engineer. We briefly cover the overall MSL flight software organization, and then the organization of EDL itself. We discuss the timeline, the structure of the GNC code (but not the algorithms as they are covered elsewhere in this conference) and the command and telemetry interfaces. Finally, we cover testing and the influence that testability had on the EDL flight software design.

  15. Time-of-flight spectroscopy: energy calibration and consistensy check

    Science.gov (United States)

    Stunault, A.; Andersen, K. H.; Blanc, Y.; Fåk, B.; Godfrin, H.; Guckelsberger, K.; Scherm, R.

    1992-06-01

    A method for calibration of the energy transfers at a time-of-flight (TOF) spectrometer is presented: flight pamths and wavelength are determined to 10 -3 using the arrival times of neutron pulses and prompt capture γs from the sample. We also developed a method to check the reproducibility of a series of TFO data sets, each with over 50 000 data points.

  16. Trajectory Correction Flight Control System using Pulsejeton an Artillery Rocket

    OpenAIRE

    S. K. Gupta; Saxena, S; Ankur Singhal; Ghosh, A. K.

    2008-01-01

    A trajectory correction flight control system is small and durable, and consists of a lateralpulsejet ring mounted on the rocket body. The pulsejet ring consists of a finite number of individualpulsejets. Each pulsejet on the ring imparts a single, short-duration, large force to the rocket inthe plane normal to the rocket axis of symmetry. Lateral pulsejets are used by flight controlsystem to assist the rocket to follow a pre-specified (command) trajectory. The trajectory-trackingflight contr...

  17. Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense

    OpenAIRE

    Sholtis, Katherine M.; Shelton, Ryan M.; Hedrick, Tyson L.

    2015-01-01

    Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics). These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare...

  18. Onboard intelligent flight control in a particular situation

    Directory of Open Access Journals (Sweden)

    В.М. Казак

    2008-04-01

    Full Text Available  Now new aviation tactics designing presumes development and application of the onboard intellectual control systems working in extra situation appeared in flight in a real-time mode for aircraft controllability provided. The principle of functioning onboard intellectual control systems based on logic–linguistic models and neural networks are considered in the article. The developed mathematical model of the task formation optimum variant flight in extra conditions is presented.

  19. Integrated Test and Evaluation Flight Test 3 Flight Test Plan

    Science.gov (United States)

    Marston, Michael Lawrence

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  20. NASA Space Flight Vehicle Fault Isolation Challenges

    Science.gov (United States)

    Bramon, Christopher; Inman, Sharon K.; Neeley, James R.; Jones, James V.; Tuttle, Loraine

    2016-01-01

    The Space Launch System (SLS) is the new NASA heavy lift launch vehicle and is scheduled for its first mission in 2017. The goal of the first mission, which will be uncrewed, is to demonstrate the integrated system performance of the SLS rocket and spacecraft before a crewed flight in 2021. SLS has many of the same logistics challenges as any other large scale program. Common logistics concerns for SLS include integration of discrete programs geographically separated, multiple prime contractors with distinct and different goals, schedule pressures and funding constraints. However, SLS also faces unique challenges. The new program is a confluence of new hardware and heritage, with heritage hardware constituting seventy-five percent of the program. This unique approach to design makes logistics concerns such as testability of the integrated flight vehicle especially problematic. The cost of fully automated diagnostics can be completely justified for a large fleet, but not so for a single flight vehicle. Fault detection is mandatory to assure the vehicle is capable of a safe launch, but fault isolation is another issue. SLS has considered various methods for fault isolation which can provide a reasonable balance between adequacy, timeliness and cost. This paper will address the analyses and decisions the NASA Logistics engineers are making to mitigate risk while providing a reasonable testability solution for fault isolation.

  1. Medical Operation KC-135 Familiarization Flight

    Science.gov (United States)

    Dawson, Chris; Stoner, Paul; Arenare, Brian; Strickland, Angie; Rudge, Fredrick; Lowdermilk, Greg

    1999-01-01

    As new personnel join the Medical Operations Branch, it is critical that they understand the effects of microgravity on medical procedures, hardware, and supplies. The familiarization flight provided new personnel with a better understanding of the effects of microgravity on (1) medical procedures, (2) patient and rescuer restraint, (3) medical fluids, and (4) medical training for space flight. The flight process also provided experience in flight proposal preparation, flight test plan preparation and execution, and final report preparation. In addition, first time flyers gained insight on their performance level in microgravity for future flights.

  2. Basic flight mechanics a simple approach without equations

    CERN Document Server

    Tewari, Ashish

    2016-01-01

    This book presents flight mechanics of aircraft, spacecraft, and rockets to technical and non-technical readers in simple terms and based purely on physical principles. Adapting an accessible and lucid writing style, the book retains the scientific authority and conceptual substance of an engineering textbook without requiring a background in physics or engineering mathematics. Professor Tewari explains relevant physical principles of flight by straightforward examples and meticulous diagrams and figures. Important aspects of both atmospheric and space flight mechanics are covered, including performance, stability and control, aeroelasticity, orbital mechanics, and altitude control. The book describes airplanes, gliders, rotary wing and flapping wing flight vehicles, rockets, and spacecraft and visualizes the essential principles using detailed illustration. It is an ideal resource for managers and technicians in the aerospace industry without engineering degrees, pilots, and anyone interested in the mechanic...

  3. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  4. Bone Density Following Long Duration Space Flight and Recovery

    Science.gov (United States)

    Amin, Shreyasee; Achenbach, Sara J.; Atkinson, Elizabeth J.; Melton, L. Joseph; Khosla, Sundeep; Sibonga, Jean

    2010-01-01

    At approx.12 months, Bone Mineral Density (BMD) at most sites in men remained lower than would be predicted, raising concerns for long-term bone health consequences following space flight. Additional analyses based on longer follow-up are being conducted. Although the N is too small for definitive conclusions, women had lower rates of loss at load-bearing sites of the hip and spine immediately post-flight relative to men and smaller differences between observed vs. predicted BMD at most sites, both immediately and 12 months post-flight, relative to men. The role of other exposures/risk factors need to be explored to further understand these possible gender differences in BMD loss and recovery following long-duration space flight.

  5. Flight tests of IFR landing approach systems for helicopters

    Science.gov (United States)

    Bull, J. S.; Hegarty, D. M.; Peach, L. L.; Phillips, J. D.; Anderson, D. J.; Dugan, D. C.; Ross, V. L.

    1981-01-01

    Joint NASA/FAA helicopter flight tests were conducted to investigate airborne radar approaches (ARA) and microwave landing system (MLS) approaches. Flight-test results were utilized to prove NASA with a data base to be used as a performance measure for advanced guidance and navigation concepts, and to provide FAA with data for establishment of TERPS criteria. The first flight-test investigation consisted of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico, using weather/mapping radar, operational pilots, and a Bell 212 helicopter. The second flight-test investigation consisted of IFR MLS approaches at Crows Landing (near Ames Research Center), with a Bell UH-1H helicopter, using NASA, FAA, and operational industry pilots. Tests are described and results discussed.

  6. WAYPOINT FLIGHT PARAMETER COMPARISON OF AN AUTONOMOUS UAV

    Directory of Open Access Journals (Sweden)

    Nils Gageik

    2013-05-01

    Full Text Available The present paper compares the effect of different waypoint parameters on the flight performance of a special autonomous indoor UAV (unmanned aerial vehicle fusing ultrasonic, inertial, pressure and optical sensors for 3D positioning and controlling. The investigated parameters are the acceptance threshold for reaching a waypoint as well as the maximal waypoint step size or block size. The effect of these parameters on the flight time and accuracy of the flight path is investigated. Therefore the paper addresses how the acceptance threshold and step size influence the speed and accuracy of the autonomous flight and thus influence the performance of the presented autonomous quadrocopter under real indoor navigation circumstances. Furthermore the paper demonstrates a drawback of the standard potential field method for navigation of such autonomous quadrocopters and points to an improvement.

  7. Controlled flight of a biologically inspired, insect-scale robot.

    Science.gov (United States)

    Ma, Kevin Y; Chirarattananon, Pakpong; Fuller, Sawyer B; Wood, Robert J

    2013-05-01

    Flies are among the most agile flying creatures on Earth. To mimic this aerial prowess in a similarly sized robot requires tiny, high-efficiency mechanical components that pose miniaturization challenges governed by force-scaling laws, suggesting unconventional solutions for propulsion, actuation, and manufacturing. To this end, we developed high-power-density piezoelectric flight muscles and a manufacturing methodology capable of rapidly prototyping articulated, flexure-based sub-millimeter mechanisms. We built an 80-milligram, insect-scale, flapping-wing robot modeled loosely on the morphology of flies. Using a modular approach to flight control that relies on limited information about the robot's dynamics, we demonstrated tethered but unconstrained stable hovering and basic controlled flight maneuvers. The result validates a sufficient suite of innovations for achieving artificial, insect-like flight. PMID:23641114

  8. Development of Enhanced Avionics Flight Hardware Selection Process

    Science.gov (United States)

    Smith, K.; Watson, G. L.

    2003-01-01

    The primary objective of this research was to determine the processes and feasibility of using commercial off-the-shelf PC104 hardware for flight applications. This would lead to a faster, better, and cheaper approach to low-budget programs as opposed to the design, procurement. and fabrication of space flight hardware. This effort will provide experimental evaluation with results of flight environmental testing. Also, a method and/or suggestion used to bring test hardware up to flight standards will be given. Several microgravity programs, such as the Equiaxed Dendritic Solidification Experiment, Self-Diffusion in Liquid Elements, and various other programs, are interested in PC104 environmental testing to establish the limits of this technology.

  9. Navigation systems requirement analysis for the Aeroassist Flight Experiment (AFE)

    Science.gov (United States)

    Huang, K. H.; Chang, Ho-Pen; Wells, Eugene M.

    1990-01-01

    Navigation requirements for Aeroassist Flight Experiment (AFE) spacecraft passing through the earth's atmosphere have been studied using a 6-DOF dynamics model, an Inertial Measurement Unit model, a baseline AFE aeropass flight guidance logic, and a baseline AFE aeropass control model. The goal of this study is to determine, in a statistical sense, how much flight path angle error can be tolerated at Entry Interface (EI) and still have acceptable delta-V requirements at exit to position the AFE spacecraft for recovery. Assuming there is fuel available to produce 370 ft/sec of delta-V at atmospheric exit, a 3-sigma standard deviation in flight path angle error of 0.04 degree at EI would result in a 98 percent probability of mission success. In addition to the required delta-V at exit, other aeropass parameters such as maximum aeroheating rate, fuel consumption, and the science requirements affecting mission success are also investigated.

  10. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    Science.gov (United States)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  11. Bat Flight and Zoonotic Viruses

    Centers for Disease Control (CDC) Podcasts

    2014-05-30

    Reginald Tucker reads an abridged version of the EID perspective Bat Flight and Zoonotic Viruses.  Created: 5/30/2014 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 6/2/2014.

  12. Cost Estimation and Control for Flight Systems

    Science.gov (United States)

    Hammond, Walter E.; Vanhook, Michael E. (Technical Monitor)

    2002-01-01

    Good program management practices, cost analysis, cost estimation, and cost control for aerospace flight systems are interrelated and depend upon each other. The best cost control process cannot overcome poor design or poor systems trades that lead to the wrong approach. The project needs robust Technical, Schedule, Cost, Risk, and Cost Risk practices before it can incorporate adequate Cost Control. Cost analysis both precedes and follows cost estimation -- the two are closely coupled with each other and with Risk analysis. Parametric cost estimating relationships and computerized models are most often used. NASA has learned some valuable lessons in controlling cost problems, and recommends use of a summary Project Manager's checklist as shown here.

  13. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing

    Directory of Open Access Journals (Sweden)

    Chulwoo Park

    2015-07-01

    Full Text Available To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system.

  14. An assessment of space shuttle flight software development processes

    Science.gov (United States)

    1993-01-01

    In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.

  15. Extraction of Modal Parameters from Spacecraft Flight Data

    Science.gov (United States)

    James, George H.; Cao, Timothy T.; Fogt, Vincent A.; Wilson, Robert L.; Bartkowicz, Theodore J.

    2010-01-01

    The modeled response of spacecraft systems must be validated using flight data as ground tests cannot adequately represent the flight. Tools from the field of operational modal analysis would typically be brought to bear on such structures. However, spacecraft systems have several complicated issues: 1. High amplitudes of loads; 2. Compressive loads on the vehicle in flight; 3. Lack of generous time-synchronized flight data; 4. Changing properties during the flight; and 5. Major vehicle changes due to staging. A particularly vexing parameter to extract is modal damping. Damping estimation has become a more critical issue as new mass-driven vehicle designs seek to use the highest damping value possible. The paper will focus on recent efforts to utilize spacecraft flight data to extract system parameters, with a special interest on modal damping. This work utilizes the analysis of correlation functions derived from a sliding window technique applied to the time record. Four different case studies are reported in the sequence that drove the authors understanding. The insights derived from these four exercises are preliminary conclusions for the general state-of-the-art, but may be of specific utility to similar problems approached with similar tools.

  16. Developing a Model for Solving the Flight Perturbation Problem

    Directory of Open Access Journals (Sweden)

    Amirreza Nickkar

    2015-02-01

    Full Text Available Purpose: In the aviation and airline industry, crew costs are the second largest direct operating cost next to the fuel costs. But unlike the fuel costs, a considerable portion of the crew costs can be saved through optimized utilization of the internal resources of an airline company. Therefore, solving the flight perturbation scheduling problem, in order to provide an optimized schedule in a comprehensive manner that covered all problem dimensions simultaneously, is very important. In this paper, we defined an integrated recovery model as that which is able to recover aircraft and crew dimensions simultaneously in order to produce more economical solutions and create fewer incompatibilities between the decisions. Design/methodology/approach: Current research is performed based on the development of one of the flight rescheduling models with disruption management approach wherein two solution strategies for flight perturbation problem are presented: Dantzig-Wolfe decomposition and Lagrangian heuristic. Findings: According to the results of this research, Lagrangian heuristic approach for the DW-MP solved the problem optimally in all known cases. Also, this strategy based on the Dantig-Wolfe decomposition manage to produce a solution within an acceptable time (Under 1 Sec. Originality/value: This model will support the decisions of the flight controllers in the operation centers for the airlines. When the flight network faces a problem the flight controllers achieve a set of ranked answers using this model thus, applying crew’s conditions in the proposed model caused this model to be closer to actual conditions.

  17. Formation Flight of Multiple UAVs via Onboard Sensor Information Sharing.

    Science.gov (United States)

    Park, Chulwoo; Cho, Namhoon; Lee, Kyunghyun; Kim, Youdan

    2015-01-01

    To monitor large areas or simultaneously measure multiple points, multiple unmanned aerial vehicles (UAVs) must be flown in formation. To perform such flights, sensor information generated by each UAV should be shared via communications. Although a variety of studies have focused on the algorithms for formation flight, these studies have mainly demonstrated the performance of formation flight using numerical simulations or ground robots, which do not reflect the dynamic characteristics of UAVs. In this study, an onboard sensor information sharing system and formation flight algorithms for multiple UAVs are proposed. The communication delays of radiofrequency (RF) telemetry are analyzed to enable the implementation of the onboard sensor information sharing system. Using the sensor information sharing, the formation guidance law for multiple UAVs, which includes both a circular and close formation, is designed. The hardware system, which includes avionics and an airframe, is constructed for the proposed multi-UAV platform. A numerical simulation is performed to demonstrate the performance of the formation flight guidance and control system for multiple UAVs. Finally, a flight test is conducted to verify the proposed algorithm for the multi-UAV system. PMID:26193281

  18. The Biological Flight Research Facility

    Science.gov (United States)

    Johnson, Catherine C.

    1993-01-01

    NASA Ames Research Center (ARC) is building a research facility, the Biological Flight Research Facility (BFRF), to meet the needs of life scientists to study the long-term effects of variable gravity on living systems. The facility will be housed on Space Station Freedom and is anticipated to operate for the lifetime of the station, approximately thirty years. It will allow plant and animal biologists to study the role of gravity, or its absence, at varying gravity intensities for varying periods of time and with various organisms. The principal difference between current Spacelab missions and those on Space Station Freedom, other than length of mission, will be the capability to perform on-orbit science procedures and the capability to simulate earth gravity. Initially the facility will house plants and rodents in habitats which can be maintained at microgravity or can be placed on a 2.5 meter diameter centrifuge. However, the facility is also being designed to accommodate future habitats for small primates, avian, and aquatic specimens. The centrifuge will provide 1 g for controls and will also be able to provide gravity from 0.01 to 2.0 g for threshold gravity studies as well as hypergravity studies. Included in the facility are a service unit for providing clean chambers for the specimens and a glovebox for manipulating the plant and animal specimens and for performing experimental protocols. The BFRF will provide the means to conduct basic experiments to gain an understanding of the effects of microgravity on the structure and function of plants and animals, as well as investigate the role of gravity as a potential countermeasure for the physiological changes observed in microgravity.

  19. Real-Time Flight Trajectory Generation Applicable to Emergency Landing Approach

    Science.gov (United States)

    Miwa, Masahiro; Tsuchiya, Takeshi; Yonezawa, Satoshi; Yokoyama, Nobuhiro; Suzuki, Shinji

    Flight management systems have greatly reduced cockpit workloads, but are not capable of calculating new flight plans in real time when flight characteristics vary or when flight trajectories become nonstationary. This paper presents a real-time flight trajectory generator (R-FTG) applicable to emergency landing approaches. First, the R-FTG calculates a preliminary flight path, which consists of an initial turn, a straight-line flight, and a terminal turn. The R-FTG then optimizes the preliminary flight path by using a direct collocation method. In order to give the direct collocation method real-time performance, an idea called stage division is incorporated. Combining the direct collocation and stage division enables real-time generation of near optimal flight trajectories. Additionally, wind effects are considered in the generating process. The R-FTG is evaluated by numerical simulations; calculation results of the R-FTG are compared with those of an offline optimization method, and the calculation results under different bank angle constraints are examined. The calculations for the wind effects are also studied. These results show the effectiveness of the proposed real-time flight trajectory generator.

  20. Long-term environmental effects and flight service evaluation of composite materials

    Science.gov (United States)

    Dexter, H. Benson

    1987-01-01

    Results of a NASA-Langley sponsored research program to establish the long term effects of realistic flight environments and ground based exposure on advanced composite materials are presented. The effects of moisture, ultraviolet radiation, aircraft fuels and fluids, sustained stress, and fatigue loading are reported. Residual strength and stiffness as a function of exposure time and exposure location are reported for seven different material systems after 10 years of worldwide outdoor exposure. Flight service results of over 300 composite components installed on rotorcraft and transport aircraft are included. Over 4 million total component flight hours were accumulated on various aircraft since initiation of flight service in 1973. Service performance, maintenance characteristics, and residual strength of numerous composite components installed on commercial and military aircraft are reported as a function of flight hours and years in service. Residual strength test results of graphite/epoxy spoilers with 10 years of worldwide service and over 28,000 flight hours are reported.

  1. Tips for Travel and Aircraft Flight

    Science.gov (United States)

    ... Knowledge and support Tips for Travel and Aircraft Flight Category: FAQ's Tags: Risks Archives Breast Cancer Survivors ... limb carefully) and apply pressure as needed. DURING FLIGHT Keep your seat belt loosely fastened so that ...

  2. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    Science.gov (United States)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  3. Exposure to the atmospheric ionizing radiation environment: a study on Italian civilian aviation flight personnel

    International Nuclear Information System (INIS)

    A study of the effects of high-LET, low-dose and low-dose-rate ionizing radiation and associated risk analysis is underway. This study involves analyzing the atmospheric ionizing radiation exposure (including high-energy neutrons) and associated effects for members of civilian aviation flight personnel, in an attempt to better understand low-dose long-term radiation effects on human subjects. The study population includes all Italian civilian airline flight personnel, both cockpit and cabin crew members, whose work history records and actual flights (route, aircraft type, and date for each individual flight for each person where possible) are available. The dose calculations are performed along specific flight legs, taking into account the actual flight profiles for all different routes and the variations with time of solar and geomagnetic parameters. Dose values for each flight are applied to the flight history of study participants in order to estimate the individual annual and lifetime occupational radiation dose. An update of the study of the physical atmospheric ionizing radiation exposure is given here, in terms of environmental modeling, flight routes, radiation dose evaluation along different flight paths, and exposure matrix construction. The exposure analysis is still in progress, and the first results are expected soon

  4. Capital flight from resource rich developing countries

    OpenAIRE

    Kazue Demachi

    2014-01-01

    This paper analyzes the magnitude and determinants of capital flight from resource-rich developing countries (RRDCs) using macro-panel data from 21 countries from 1990 to 2011. Calculations reveal that capital flight from RRDCs was less serious than that experienced by some Latin American countries during the 1980s. In addition, capital flight was more episodic than chronic during the period studied. Econometric analysis indicates a linkage between natural resource revenues and capital flight...

  5. Bumblebee flight performance in environments of different proximity.

    Science.gov (United States)

    Linander, Nellie; Baird, Emily; Dacke, Marie

    2016-02-01

    Flying animals are capable of navigating through environments of different complexity with high precision. To control their flight when negotiating narrow tunnels, bees and birds use the magnitude of apparent image motion (known as optic flow) generated by the walls. In their natural habitat, however, these animals would encounter both cluttered and open environments. Here, we investigate how large changes in the proximity of nearby surfaces affect optic flow-based flight control strategies. We trained bumblebees to fly along a flight and recorded how the distance between the walls--from 60 cm to 240 cm--affected their flight control. Our results reveal that, as tunnel width increases, both lateral position and ground speed become increasingly variable. We also find that optic flow information from the ground has an increasing influence on flight control, suggesting that bumblebees measure optic flow flexibly over a large lateral and ventral field of view, depending on where the highest magnitude of optic flow occurs. A consequence of this strategy is that, when flying in narrow spaces, bumblebees use optic flow information from the nearby obstacles to control flight, while in more open spaces they rely primarily on optic flow cues from the ground. PMID:26614094

  6. Flight Dynamics Mission Support and Quality Assurance Process

    Science.gov (United States)

    Oh, InHwan

    1996-01-01

    This paper summarizes the method of the Computer Sciences Corporation Flight Dynamics Operation (FDO) quality assurance approach to support the National Aeronautics and Space Administration Goddard Space Flight Center Flight Dynamics Support Branch. Historically, a strong need has existed for developing systematic quality assurance using methods that account for the unique nature and environment of satellite Flight Dynamics mission support. Over the past few years FDO has developed and implemented proactive quality assurance processes applied to each of the six phases of the Flight Dynamics mission support life cycle: systems and operations concept, system requirements and specifications, software development support, operations planing and training, launch support, and on-orbit mission operations. Rather than performing quality assurance as a final step after work is completed, quality assurance has been built in as work progresses in the form of process assurance. Process assurance activities occur throughout the Flight Dynamics mission support life cycle. The FDO Product Assurance Office developed process checklists for prephase process reviews, mission team orientations, in-progress reviews, and end-of-phase audits. This paper will outline the evolving history of FDO quality assurance approaches, discuss the tailoring of Computer Science Corporations's process assurance cycle procedures, describe some of the quality assurance approaches that have been or are being developed, and present some of the successful results.

  7. Implications of Responsive Space on the Flight Software Architecture

    Science.gov (United States)

    Wilmot, Jonathan

    2006-01-01

    The Responsive Space initiative has several implications for flight software that need to be addressed not only within the run-time element, but the development infrastructure and software life-cycle process elements as well. The runtime element must at a minimum support Plug & Play, while the development and process elements need to incorporate methods to quickly generate the needed documentation, code, tests, and all of the artifacts required of flight quality software. Very rapid response times go even further, and imply little or no new software development, requiring instead, using only predeveloped and certified software modules that can be integrated and tested through automated methods. These elements have typically been addressed individually with significant benefits, but it is when they are combined that they can have the greatest impact to Responsive Space. The Flight Software Branch at NASA's Goddard Space Flight Center has been developing the runtime, infrastructure and process elements needed for rapid integration with the Core Flight software System (CFS) architecture. The CFS architecture consists of three main components; the core Flight Executive (cFE), the component catalog, and the Integrated Development Environment (DE). This paper will discuss the design of the components, how they facilitate rapid integration, and lessons learned as the architecture is utilized for an upcoming spacecraft.

  8. Assessing public exposure in commercial flights in Brazil

    International Nuclear Information System (INIS)

    The exposure to cosmic radiation from air traveling is significantly higher than that at ground level, varying according to the route due to the effect of latitude and flight time, to the flight altitude, due to the type of airplane and to the year, due to the effect of solar cycle on the galactic cosmic rays flux. The computer code CARI-6, developed by the U.S. Federal Aviation Administration, is aimed to calculate the effective dose of galactic cosmic radiation received by an individual in an airplane, flying the shortest route between two airports in the world. The objective of this work is to estimate the contribution of the exposure to cosmic radiation on domestic commercial flights for the Brazilian customers. The work shall serve as a baseline for future comparisons of the growth of civil aviation in the country. It shall also open perspectives for discussions on the concept of risk and its public acceptance, relevant to the establishment of radiological protection guidelines. Average effective doses for individual flights ranged from 0.2 to 8.8 μSv. This is a very small contribution to average overall exposure to natural background radiation (2.4 mSv/y). Doses for the most frequent flight routes in the country have been assessed. These include flights to and from Rio de Janeiro, Sao Paulo and Brasilia. Doses for frequent flyers and collective doses are discussed in perspective of other exposure sources. (author)

  9. Assessing public exposure in commercial flights in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Vanusa A.; Rochedo, Elaine R.R.; Damasceno, Nadya M.P., E-mail: vanusa_abreu@ymail.com, E-mail: elainerochedo@gmail.com, E-mail: nadya@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Silva, Diogo N.G., E-mail: diogongs@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    The exposure to cosmic radiation from air traveling is significantly higher than that at ground level, varying according to the route due to the effect of latitude and flight time, to the flight altitude, due to the type of airplane and to the year, due to the effect of solar cycle on the galactic cosmic rays flux. The computer code CARI-6, developed by the U.S. Federal Aviation Administration, is aimed to calculate the effective dose of galactic cosmic radiation received by an individual in an airplane, flying the shortest route between two airports in the world. The objective of this work is to estimate the contribution of the exposure to cosmic radiation on domestic commercial flights for the Brazilian customers. The work shall serve as a baseline for future comparisons of the growth of civil aviation in the country. It shall also open perspectives for discussions on the concept of risk and its public acceptance, relevant to the establishment of radiological protection guidelines. Average effective doses for individual flights ranged from 0.2 to 8.8 μSv. This is a very small contribution to average overall exposure to natural background radiation (2.4 mSv/y). Doses for the most frequent flight routes in the country have been assessed. These include flights to and from Rio de Janeiro, Sao Paulo and Brasilia. Doses for frequent flyers and collective doses are discussed in perspective of other exposure sources. (author)

  10. Into rude air: hummingbird flight performance in variable aerial environments.

    Science.gov (United States)

    Ortega-Jimenez, V M; Badger, M; Wang, H; Dudley, R

    2016-09-26

    Hummingbirds are well known for their ability to sustain hovering flight, but many other remarkable features of manoeuvrability characterize the more than 330 species of trochilid. Most research on hummingbird flight has been focused on either forward flight or hovering in otherwise non-perturbed air. In nature, however, hummingbirds fly through and must compensate for substantial environmental perturbation, including heavy rain, unpredictable updraughts and turbulent eddies. Here, we review recent studies on hummingbirds flying within challenging aerial environments, and discuss both the direct and indirect effects of unsteady environmental flows such as rain and von Kármán vortex streets. Both perturbation intensity and the spatio-temporal scale of disturbance (expressed with respect to characteristic body size) will influence mechanical responses of volant taxa. Most features of hummingbird manoeuvrability remain undescribed, as do evolutionary patterns of flight-related adaptation within the lineage. Trochilid flight performance under natural conditions far exceeds that of microair vehicles at similar scales, and the group as a whole presents many research opportunities for understanding aerial manoeuvrability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528777

  11. Flight Qualified Micro Sun Sensor

    Science.gov (United States)

    Liebe, Carl Christian; Mobasser, Sohrab; Wrigley, Chris; Schroeder, Jeffrey; Bae, Youngsam; Naegle, James; Katanyoutanant, Sunant; Jerebets, Sergei; Schatzel, Donald; Lee, Choonsup

    2007-01-01

    A prototype small, lightweight micro Sun sensor (MSS) has been flight qualified as part of the attitude-determination system of a spacecraft or for Mars surface operations. The MSS has previously been reported at a very early stage of development in NASA Tech Briefs, Vol. 28, No. 1 (January 2004). An MSS is essentially a miniature multiple-pinhole electronic camera combined with digital processing electronics that functions analogously to a sundial. A micromachined mask containing a number of microscopic pinholes is mounted in front of an active-pixel sensor (APS). Electronic circuits for controlling the operation of the APS, readout from the pixel photodetectors, and analog-to-digital conversion are all integrated onto the same chip along with the APS. The digital processing includes computation of the centroids of the pinhole Sun images on the APS. The spacecraft computer has the task of converting the Sun centroids into Sun angles utilizing a calibration polynomial. The micromachined mask comprises a 500-micron-thick silicon wafer, onto which is deposited a 57-nm-thick chromium adhesion- promotion layer followed by a 200-nm-thick gold light-absorption layer. The pinholes, 50 microns in diameter, are formed in the gold layer by photolithography. The chromium layer is thin enough to be penetrable by an amount of Sunlight adequate to form measurable pinhole images. A spacer frame between the mask and the APS maintains a gap of .1 mm between the pinhole plane and the photodetector plane of the APS. To minimize data volume, mass, and power consumption, the digital processing of the APS readouts takes place in a single field-programmable gate array (FPGA). The particular FPGA is a radiation- tolerant unit that contains .32,000 gates. No external memory is used so the FPGA calculates the centroids in real time as pixels are read off the APS with minimal internal memory. To enable the MSS to fit into a small package, the APS, the FPGA, and other components are mounted

  12. 14 CFR 417.107 - Flight safety.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight safety. 417.107 Section 417.107... TRANSPORTATION LICENSING LAUNCH SAFETY Launch Safety Responsibilities § 417.107 Flight safety. (a) Flight safety system. For each launch vehicle, vehicle component, and payload, a launch operator must use a...

  13. 14 CFR 437.71 - Flight rules.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight rules. 437.71 Section 437.71... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.71 Flight rules. (a) Before initiating rocket-powered flight, a permittee must confirm that all systems and operations necessary to ensure...

  14. 14 CFR 437.39 - Flight rules.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Flight rules. 437.39 Section 437.39 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Documentation § 437.39 Flight rules. An applicant must provide flight rules as required by § 437.71....

  15. 14 CFR 93.323 - Flight plans.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight plans. 93.323 Section 93.323... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial...

  16. 14 CFR 21.35 - Flight tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flight tests. 21.35 Section 21.35... PROCEDURES FOR PRODUCTS AND PARTS Type Certificates § 21.35 Flight tests. (a) Each applicant for an aircraft...) That the aircraft conforms with the type design; and (4) That the Administrator received a flight...

  17. Flight Avionics Hardware Roadmap

    Science.gov (United States)

    Some, Raphael; Goforth, Monte; Chen, Yuan; Powell, Wes; Paulick, Paul; Vitalpur, Sharada; Buscher, Deborah; Wade, Ray; West, John; Redifer, Matt; Partridge, Harry; Sherman, Aaron; McCabe, Mary

    2014-01-01

    The Avionics Technology Roadmap takes an 80% approach to technology investment in spacecraft avionics. It delineates a suite of technologies covering foundational, component, and subsystem-levels, which directly support 80% of future NASA space mission needs. The roadmap eschews high cost, limited utility technologies in favor of lower cost, and broadly applicable technologies with high return on investment. The roadmap is also phased to support future NASA mission needs and desires, with a view towards creating an optimized investment portfolio that matures specific, high impact technologies on a schedule that matches optimum insertion points of these technologies into NASA missions. The roadmap looks out over 15+ years and covers some 114 technologies, 58 of which are targeted for TRL6 within 5 years, with 23 additional technologies to be at TRL6 by 2020. Of that number, only a few are recommended for near term investment: 1. Rad Hard High Performance Computing 2. Extreme temperature capable electronics and packaging 3. RFID/SAW-based spacecraft sensors and instruments 4. Lightweight, low power 2D displays suitable for crewed missions 5. Radiation tolerant Graphics Processing Unit to drive crew displays 6. Distributed/reconfigurable, extreme temperature and radiation tolerant, spacecraft sensor controller and sensor modules 7. Spacecraft to spacecraft, long link data communication protocols 8. High performance and extreme temperature capable C&DH subsystem In addition, the roadmap team recommends several other activities that it believes are necessary to advance avionics technology across NASA: center dot Engage the OCT roadmap teams to coordinate avionics technology advances and infusion into these roadmaps and their mission set center dot Charter a team to develop a set of use cases for future avionics capabilities in order to decouple this roadmap from specific missions center dot Partner with the Software Steering Committee to coordinate computing hardware

  18. Business of high flight

    International Nuclear Information System (INIS)

    The external sales of refined products as the fuel for aviation of US$700 millions will overcome in 2002. Few tourists in the Airport of Miami, knows that the airplane fuel that they took them from return to your house was produced in a refinery of Colombia. They would be surprised when knowing that the exports of turbo fuel, or jet TO-1, are one of those of more growth in Colombia, like twenty years ago were of coffee. The article shows figures of exports of turbo-fuel and the exports of products of ECOPETROL, among other topics treaties

  19. 14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (aircraft) and flight instructors (simulator). 135.338 Section 135.338 Aeronautics and Space FEDERAL... instructors (aircraft) and flight instructors (simulator). (a) For the purposes of this section and § 135.340... flight simulator, or in a flight training device for a particular type, class, or category aircraft....

  20. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is...

  1. 14 CFR 23.865 - Fire protection of flight controls, engine mounts, and other flight structure.

    Science.gov (United States)

    2010-01-01

    ... mounts, and other flight structure. 23.865 Section 23.865 Aeronautics and Space FEDERAL AVIATION... controls, engine mounts, and other flight structure. Flight controls, engine mounts, and other flight structure located in designated fire zones, or in adjacent areas that would be subjected to the effects...

  2. 14 CFR 121.426 - Flight navigators: Initial and transition flight training.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition...

  3. 14 CFR 437.27 - Pre-flight and post-flight operations.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Pre-flight and post-flight operations. 437.27 Section 437.27 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION... Experimental Permit Operational Safety Documentation § 437.27 Pre-flight and post-flight operations....

  4. 14 CFR 121.425 - Flight engineers: Initial and transition flight training.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition...

  5. 14 CFR 125.405 - Disposition of load manifest, flight release, and flight plans.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Disposition of load manifest, flight release, and flight plans. 125.405 Section 125.405 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AIRCRAFT Records and Reports § 125.405 Disposition of load manifest, flight release, and flight plans....

  6. Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies.

    Science.gov (United States)

    Devries, P J; Penz, Carla M; Hill, Ryan I

    2010-09-01

    1. Flight is a key innovation in the evolution of insects that is crucial to their dispersal, migration, territoriality, courtship and predator avoidance. Male butterflies have characteristic territoriality and courtship flight behaviours, and females use a characteristic flight behaviour when searching for host plants. This implies that selection acts on wing morphology to maximize flight performance for conducting important behaviours among sexes. 2. Butterflies in the genus Morpho are obvious components of neotropical forests, and many observations indicate that they show two broad categories of flight behaviour and flight height. Although species can be categorized as using gliding or flapping flight, and flying at either canopy or understorey height, the association of flight behaviour and flight height with wing shape evolution has never been explored. 3. Two clades within Morpho differ in flight behaviour and height. Males and females of one clade inhabit the forest understorey and use flapping flight, whereas in the other clade, males use gliding flight at canopy level and females use flapping flight in both canopy and understorey. 4. We used independent contrasts to answer whether wing shape is associated with flight behaviour and height. Given a single switch to canopy habitation and gliding flight, we compared contrasts for the node at which the switch to canopy flight occurred with the distribution of values in the two focal clades. We found significant changes in wing shape at the transition to canopy flight only in males, and no change in size for either sex. A second node within the canopy clade suggests that other factors may also be involved in wing shape evolution. Our results reinforce the hypothesis that natural selection acts differently on male and female butterfly wing shape and indicate that the transition to canopy flight cannot explain all wing shape diversity in Morpho. 5. This study provides a starting point for characterizing evolution

  7. Cold Stowage Flight Systems

    Science.gov (United States)

    Campana, Sharon E.; Melendez, David T.

    2011-01-01

    The International Space Station (ISS) provides a test bed for researchers to perform science experiments in a variety of fields, including human research, life sciences, and space medicine. Many of the experiments being conducted today require science samples to be stored and transported in a temperature controlled environment. NASA provides several systems which aid researchers in preserving their science. On orbit systems provided by NASA include the Minus Eighty Laboratory freezer for ISS (MELFI), Microgravity Experiment Research Locker Incubator (MERLIN), and Glacier. These freezers use different technologies to provide rapid cooling and cold stowage at different temperature levels on board ISS. Systems available to researchers during transportation to and from ISS are MERLIN, Glacier, and Coldbag. Coldbag is a passive cold stowage system that uses phase change materials to maintain temperature. Details of these current technologies are provided along with operational experience gained to date. This paper discusses the capability of the current cold stowage hardware and how it may continue to support NASA s mission on ISS and in future exploration missions.

  8. Micro air vehicle-motivated computational biomechanics in bio-flights: aerodynamics, flight dynamics and maneuvering stability

    Science.gov (United States)

    Liu, Hao; Nakata, Toshiyuki; Gao, Na; Maeda, Masateru; Aono, Hikaru; Shyy, Wei

    2010-12-01

    Aiming at developing an effective tool to unveil key mechanisms in bio-flight as well as to provide guidelines for bio-inspired micro air vehicles (MAVs) design, we propose a comprehensive computational framework, which integrates aerodynamics, flight dynamics, vehicle stability and maneuverability. This framework consists of (1) a Navier-Stokes unsteady aerodynamic model; (2) a linear finite element model for structural dynamics; (3) a fluid-structure interaction (FSI) model for coupled flexible wing aerodynamics aeroelasticity; (4) a free-flying rigid body dynamic (RBD) model utilizing the Newtonian-Euler equations of 6DoF motion; and (5) flight simulator accounting for realistic wing-body morphology, flapping-wing and body kinematics, and a coupling model accounting for the nonlinear 6DoF flight dynamics and stability of insect flapping flight. Results are presented based on hovering aerodynamics with rigid and flexible wings of hawkmoth and fruitfly. The present approach can support systematic analyses of bio- and bio-inspired flight.

  9. Challenges of Human Space Flight

    Science.gov (United States)

    Davis, Jeffrey R.; Charles, John B.

    2006-01-01

    The presentations will be given during the X-Prize symposium, exploring the multi-faceted dimensions of spaceflight ranging from the technical developments necessary to achieve safe routine flight to and from and through space to the new personal business opportunities and economic benefits that will open in space and here on Earth. The symposium will delve into the technical, regulatory, market and financial needs and challenges that must be met in charting and executing the incremental developments leading to Personal Spaceflight and the opening of a Place Called Space. The presentation covers facets of human space flight including descriptions of life in space, the challenges of delivering medical care in space, and the preparations needed for safe and productive human travel to the moon and Mars.

  10. Integrative Model of Drosophila Flight

    OpenAIRE

    Dickson, William B.; Andrew D Straw; Dickinson, Michael H

    2008-01-01

    This paper presents a framework for simulating the flight dynamics and control strategies of the fruit fly Drosophila melanogaster. The framework consists of five main components: an articulated rigid-body simulation, a model of the aerodynamic forces and moments, a sensory systems model, a control model, and an environment model. In the rigid-body simulation the fly is represented by a system of three rigid bodies connected by a pair of actuated ball joints. At each instant of th...

  11. Low Speed Avian Maneuvering Flight

    OpenAIRE

    Ros, Ivo

    2013-01-01

    Low speed avian maneuvering flight is an ecologically crucial behavior that has contributed to the explosive diversification of several avian taxa by allowing access to complex spatial environments. Negotiating a sharp aerial turn requires finely tuned interactions between an animal's sensory-motor system and its environment. My thesis work focuses on how aerodynamic forces, wing and body dynamics, and sensory feedback interact during aerial turning in the pigeon (Columba livea).

  12. F-16 AFTI in flight

    Science.gov (United States)

    1980-01-01

    This 27-second movie clip shows the F-16 Advanced Fighter Technology Integration aircraft in formation flight with another F-16. Note the lower forward-mounted canards just behind the engine intake, which in a dogfight, would be used for 'selective fuselage pointing' to quickly acquire and target the opponent. The AFTI (Advanced Fighter Technology Integration) /F-16 program has been a joint NASA/USAF effort evaluating advanced digital flight controls, automated maneuvering, voice-activated controls, sensors, and close-air support attack systems on a modified F-16. Research and test results could be applied to existing or future aircraft. Originally conceived as a program to explore flight control technology as well as various maneuvering concepts, this program has flown at Edwards Air Force Base continuously from 1982 through the late 1990s (as of this writing). This flight research aircraft was one of the original six F-16A airplanes that since has been modified extensively and repeatedly to study the feasibility of advanced technologies. For instance, it has demonstrated the operational value of voice command and automated ground collision avoidance systems, an automated maneuvering system for all aspects of air and ground combat, an automated threat avoidance and terrain following system, and a night vision helmet with a dual forward-looking infrared capability that was pointed by movement of the pilot's head. All of these systems served to reduce the pilot's workload in the demanding and dangerous role of close-air support. These systems would help ensure that a pilot was more effective in his first pass over a low-level target in a battle area. One of the most important technology spinoffs from the AFTI program has been the incorporation of an Enhanced Ground Proximity Warning System (EGPWS) on all commercial airliner traffic. This system has been accepted industry, as well as world-wide, and is currently being installed on all commercial aircraft.

  13. Cuckoo Search via Levy Flights

    CERN Document Server

    Yang, Xin-She

    2010-01-01

    In this paper, we intend to formulate a new metaheuristic algorithm, called Cuckoo Search (CS), for solving optimization problems. This algorithm is based on the obligate brood parasitic behaviour of some cuckoo species in combination with the Levy flight behaviour of some birds and fruit flies. We validate the proposed algorithm against test functions and then compare its performance with those of genetic algorithms and particle swarm optimization. Finally, we discuss the implication of the results and suggestion for further research.

  14. Cuckoo Search via Levy Flights

    OpenAIRE

    Yang, Xin-She; Deb, Suash

    2010-01-01

    In this paper, we intend to formulate a new metaheuristic algorithm, called Cuckoo Search (CS), for solving optimization problems. This algorithm is based on the obligate brood parasitic behaviour of some cuckoo species in combination with the Levy flight behaviour of some birds and fruit flies. We validate the proposed algorithm against test functions and then compare its performance with those of genetic algorithms and particle swarm optimization. Finally, we discuss the implication of the ...

  15. Re-entry flight clearance

    OpenAIRE

    Juliana, S.

    2006-01-01

    The objective of the research was to identify and evaluate promising mathematical techniques for re-entry flight clearance. To fulfil this objective, two mathematical methods were investigated and developed: μ analysis for linear models and interval analysis for both linear and non-linear models. The stability of re-entry vehicles in the presence of model uncertainties was chosen as the clearance criterion, which is represented by two mathematical criteria: worst-case eigenvalues (linear...

  16. Vortex lift and insect flight

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Rudolf

    Prague: Institute of Thermomechanics AS CR, v. v. i., 2011 - (Příhoda, J.; Kozel, K.), s. 25-28 ISBN 978-80-87012-32-1. [Topical Problems of Fluid Mechanics 2011. Praha (CZ), 16.02.2011-17.02.2011] R&D Projects: GA ČR(CZ) GAP101/10/1329 Institutional research plan: CEZ:AV0Z20760514 Keywords : vortex lift * insect flight * micro-air-vehiclesvortex lift Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts

  17. Orion Launch Abort System Performance on Exploration Flight Test 1

    Science.gov (United States)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. A number of flight tests have been conducted and are planned to demonstrate the performance and enable certification of the Orion Spacecraft. Exploration Flight Test 1, the first flight test of the Orion spacecraft, was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. Orion's first flight was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety, such as heat shield performance, separation events, avionics and software performance, attitude control and guidance, parachute deployment and recovery operations. One of the key separation events tested during this flight was the nominal jettison of the LAS. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. The LAS nominal jettison event on Exploration Flight Test 1 occurred at six minutes and twenty seconds after liftoff (See Fig. 3). The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. A suite of developmental flight instrumentation was included on the flight test to provide data on spacecraft subsystems and separation events. This paper will focus on the flight test objectives and performance of the LAS during ascent and nominal jettison. Selected LAS subsystem flight test data will be presented and discussed in the paper. Exploration Flight Test -1 will provide critical data that will enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The lessons learned from Exploration Flight Test 1 and the other Flight Test

  18. Flight Planning and Procedures

    Science.gov (United States)

    Rich, Allison C.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) was founded in 1958 by President Eisenhower as a civilian lead United States federal agency designed to advance the science of space. Over the years, NASA has grown with a vision to "reach for new heights and reveal the unknown for the benefit of humankind" (About NASA). Mercury, Gemini, Apollo, Skylab, and Space Shuttle are just a few of the programs that NASA has led to advance our understanding of the universe. Each of the eleven main NASA space centers located across the United States plays a unique role in accomplishing that vision. Since 1961, Johnson Space Center (JSC) has led the effort for manned spaceflight missions. JSC has a mission to "provide and apply the preeminent capabilities to develop, operate, and integrate human exploration missions spanning commercial, academic, international, and US government partners" (Co-op Orientation). To do that, JSC is currently focused on two main programs, Orion and the International Space Station (ISS). Orion is the exploration vehicle that will take astronauts to Mars; a vessel comparable to the Apollo capsule. The International Space Station (ISS) is a space research facility designed to expand our knowledge of science in microgravity. The first piece of the ISS was launched in November of 1998 and has been in a continuous low earth orbit ever since. Recently, two sub-programs have been developed to resupply the ISS. The Commercial Cargo program is currently flying cargo and payloads to the ISS; the Commercial Crew program will begin flying astronauts to the ISS in a few years.

  19. Flight mechanisms; Hiko no mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, A. [The University of Tokyo, Tokyo (Japan)

    1999-12-05

    This paper outlines flight of bats. Unlike large land birds, bats have membrane wings. Judging from the wingspan, wing area and weight that affect flight performance, bats seem to fly at slower speed and with a smaller turning radius than birds. This performance differs by the species of bats and is explainable from the aspect ratio and the wing loading. Researches have been made including the clarification by photography of the reason for making hovering possible, studies on the driving force and the lift in the advancing flight, and studies on the change in frequency and stroke plane inclination at the time of acceleration. With examples lacking in the measurement of change in the feathering angle which is vital in a flapping of wings, no change in the angle of incidence of a blade element nor the aerodynamic force is determinable. The momentum theory proves that the sum of a required power, guiding power and a parasite power shows a U-shaped change against speed. The effective power, which is imparted by the muscles used for the flapping, is in proportion to the mass of the muscles. If the effective power is larger than the required power, hovering is made possible. An output per mass of muscle unit is large in the case of bats. (NEDO)

  20. Flight Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.