WorldWideScience

Sample records for area x-ray camera

  1. Soft x-ray streak cameras

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1988-01-01

    This paper is a discussion of the development and of the current state of the art in picosecond soft x-ray streak camera technology. Accomplishments from a number of institutions are discussed. X-ray streak cameras vary from standard visible streak camera designs in the use of an x-ray transmitting window and an x-ray sensitive photocathode. The spectral sensitivity range of these instruments includes portions of the near UV and extends from the subkilovolt x- ray region to several tens of kilovolts. Attendant challenges encountered in the design and use of x-ray streak cameras include the accommodation of high-voltage and vacuum requirements, as well as manipulation of a photocathode structure which is often fragile. The x-ray transmitting window is generally too fragile to withstand atmospheric pressure, necessitating active vacuum pumping and a vacuum line of sight to the x-ray signal source. Because of the difficulty of manipulating x-ray beams with conventional optics, as is done with visible light, the size of the photocathode sensing area, access to the front of the tube, the ability to insert the streak tube into a vacuum chamber and the capability to trigger the sweep with very short internal delay times are issues uniquely relevant to x-ray streak camera use. The physics of electron imaging may place more stringent limitations on the temporal and spatial resolution obtainable with x-ray photocathodes than with the visible counterpart. Other issues which are common to the entire streak camera community also concern the x-ray streak camera users and manufacturers

  2. Performance of low-cost X-ray area detectors with consumer digital cameras

    International Nuclear Information System (INIS)

    Panna, A.; Gomella, A.A.; Harmon, K.J.; Chen, P.; Miao, H.; Bennett, E.E.; Wen, H.

    2015-01-01

    We constructed X-ray detectors using consumer-grade digital cameras coupled to commercial X-ray phosphors. Several detector configurations were tested against the Varian PaxScan 3024M (Varian 3024M) digital flat panel detector. These include consumer cameras (Nikon D800, Nikon D700, and Nikon D3X) coupled to a green emission phosphor in a back-lit, normal incidence geometry, and in a front-lit, oblique incidence geometry. We used the photon transfer method to evaluate detector sensitivity and dark noise, and the edge test method to evaluate their spatial resolution. The essential specifications provided by our evaluation include discrete charge events captured per mm 2 per unit exposure surface dose, dark noise in equivalents of charge events per pixel, and spatial resolution in terms of the full width at half maximum (FWHM) of the detector's line spread function (LSF). Measurements were performed using a tungsten anode X-ray tube at 50 kVp. The results show that the home-built detectors provide better sensitivity and lower noise than the commercial flat panel detector, and some have better spatial resolution. The trade-off is substantially smaller imaging areas. Given their much lower costs, these home-built detectors are attractive options for prototype development of low-dose imaging applications

  3. Application of X-ray CCD camera in X-ray spot diagnosis of rod-pinch diode

    International Nuclear Information System (INIS)

    Song Yan; Zhou Ming; Song Guzhou; Ma Jiming; Duan Baojun; Han Changcai; Yao Zhiming

    2015-01-01

    The pinhole imaging technique is widely used in the measurement of X-ray spot of rod-pinch diode. The X-ray CCD camera, which was composed of film, fiber optic taper and CCD camera, was employed to replace the imaging system based on scintillator, lens and CCD camera in the diagnosis of X-ray spot. The resolution of the X-ray CCD camera was studied. The resolution is restricted by the film and is 5 lp/mm in the test with Pb resolution chart. The frequency is 1.5 lp/mm when the MTF is 0.5 in the test with edge image. The resolution tests indicate that the X-ray CCD camera can meet the requirement of the diagnosis of X-ray spot whose scale is about 1.5 mm when the pinhole imaging magnification is 0.5. At last, the image of X-ray spot was gained and the restoration was implemented in the diagnosis of X-ray spot of rod-pinch diode. (authors)

  4. Ultra fast x-ray streak camera

    International Nuclear Information System (INIS)

    Coleman, L.W.; McConaghy, C.F.

    1975-01-01

    A unique ultrafast x-ray sensitive streak camera, with a time resolution of 50psec, has been built and operated. A 100A thick gold photocathode on a beryllium vacuum window is used in a modified commerical image converter tube. The X-ray streak camera has been used in experiments to observe time resolved emission from laser-produced plasmas. (author)

  5. Soft x-ray streak camera for laser fusion applications

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1981-04-01

    This thesis reviews the development and significance of the soft x-ray streak camera (SXRSC) in the context of inertial confinement fusion energy development. A brief introduction of laser fusion and laser fusion diagnostics is presented. The need for a soft x-ray streak camera as a laser fusion diagnostic is shown. Basic x-ray streak camera characteristics, design, and operation are reviewed. The SXRSC design criteria, the requirement for a subkilovolt x-ray transmitting window, and the resulting camera design are explained. Theory and design of reflector-filter pair combinations for three subkilovolt channels centered at 220 eV, 460 eV, and 620 eV are also presented. Calibration experiments are explained and data showing a dynamic range of 1000 and a sweep speed of 134 psec/mm are presented. Sensitivity modifications to the soft x-ray streak camera for a high-power target shot are described. A preliminary investigation, using a stepped cathode, of the thickness dependence of the gold photocathode response is discussed. Data from a typical Argus laser gold-disk target experiment are shown

  6. A wide field X-ray camera

    International Nuclear Information System (INIS)

    Sims, M.; Turner, M.J.L.; Willingale, R.

    1980-01-01

    A wide field of view X-ray camera based on the Dicke or Coded Mask principle is described. It is shown that this type of instrument is more sensitive than a pin-hole camera, or than a scanning survey of a given region of sky for all wide field conditions. The design of a practical camera is discussed and the sensitivity and performance of the chosen design are evaluated by means of computer simulations. The Wiener Filter and Maximum Entropy methods of deconvolution are described and these methods are compared with each other and cross-correlation using data from the computer simulations. It is shown that the analytic expressions for sensitivity used by other workers are confirmed by the simulations, and that ghost images caused by incomplete coding can be substantially eliminated by the use of the Wiener Filter and the Maximum Entropy Method, with some penalty in computer time for the latter. The cyclic mask configuration is compared with the simple mask camera. It is shown that when the diffuse X-ray background dominates, the simple system is more sensitive and has the better angular resolution. When sources dominate the simple system is less sensitive. It is concluded that the simple coded mask camera is the best instrument for wide field imaging of the X-ray sky. (orig.)

  7. A new X-ray pinhole camera for energy dispersive X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F.P., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Altana, C. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Cosentino, L.; Celona, L.; Gammino, S.; Mascali, D. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Pappalardo, L. [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy)

    2013-08-01

    A new X-ray pinhole camera for the Energy Dispersive X-ray Fluorescence (ED-XRF) imaging of materials with high-energy and high-spatial resolution, was designed and developed. It consists of a back-illuminated and deep depleted CCD detector (composed of 1024 × 1024 pixels with a lateral size of 13 μm) coupled to a 70 μm laser-drilled pinhole-collimator, positioned between the sample under analysis and the CCD. The X-ray pinhole camera works in a coaxial geometry allowing a wide range of magnification values. The characteristic X-ray fluorescence is induced on the samples by irradiation with an external X-ray tube working at a maximum power of 100 W (50 kV and 2 mA operating conditions). The spectroscopic capabilities of the X-ray pinhole camera were accurately investigated. Energy response and energy calibration of the CCD detector were determined by irradiating pure target-materials emitting characteristic X-rays in the energy working-domain of the system (between 3 keV and 30 keV). Measurements were performed by using a multi-frame acquisition in single-photon counting. The characteristic X-ray spectra were obtained by an automated processing of the acquired images. The energy resolution measured at the Fe–Kα line is 157 eV. The use of the X-ray pinhole camera for the 2D resolved elemental analysis was investigated by using reference-patterns of different materials and geometries. The possibility of the elemental mapping of samples up to an area of 3 × 3 cm{sup 2} was demonstrated. Finally, the spatial resolution of the pinhole camera was measured by analyzing the profile function of a sharp-edge. The spatial resolution determined at the magnification values of 3.2 × and 0.8 × (used as testing values) is about 90 μm and 190 μm respectively. - Highlights: • We developed an X-ray pinhole camera for the 2D X-ray fluorescence imaging. • X-ray spectra are obtained by a multi-frame acquisition in single photon mode. • The energy resolution in the X-ray

  8. Noise and sensitivity of x-ray framing cameras at Nike (abstract)

    Science.gov (United States)

    Pawley, C. J.; Deniz, A. V.; Lehecka, T.

    1999-01-01

    X-ray framing cameras are the most widely used tool for radiographing density distributions in laser and Z-pinch driven experiments. The x-ray framing cameras that were developed specifically for experiments on the Nike laser system are described. One of these cameras has been coupled to a CCD camera and was tested for resolution and image noise using both electrons and x rays. The largest source of noise in the images was found to be due to low quantum detection efficiency of x-ray photons.

  9. Characterization of X-ray streak cameras for use on Nova

    International Nuclear Information System (INIS)

    Kalantar, D.H.; Bell, P.M.; Costa, R.L.; Hammel, B.A.; Landen, O.L.; Orzechowski, T.J.; Hares, J.D.; Dymoke-Bradshaw, A.K.L.

    1996-09-01

    There are many different types of measurements that require a continuous time history of x-ray emission that can be provided with an x-ray streak camera. In order to properly analyze the images that are recorded with the x-ray streak cameras operated on Nova, it is important to account for the streak characterization of each camera. We have performed a number of calibrations of the streak cameras both on the bench as well as with Nova disk target shots where we use a time modulated laser intensity profile (self-beating of the laser) on the target to generate an x-ray comb. We have measured the streak camera sweep direction and spatial offset, curvature of the electron optics, sweep rate, and magnification and resolution of the electron optics

  10. Design and Construction of an X-ray Lightning Camera

    Science.gov (United States)

    Schaal, M.; Dwyer, J. R.; Rassoul, H. K.; Uman, M. A.; Jordan, D. M.; Hill, J. D.

    2010-12-01

    A pinhole-type camera was designed and built for the purpose of producing high-speed images of the x-ray emissions from rocket-and-wire-triggered lightning. The camera consists of 30 7.62-cm diameter NaI(Tl) scintillation detectors, each sampling at 10 million frames per second. The steel structure of the camera is encased in 1.27-cm thick lead, which blocks x-rays that are less than 400 keV, except through a 7.62-cm diameter “pinhole” aperture located at the front of the camera. The lead and steel structure is covered in 0.16-cm thick aluminum to block RF noise, water and light. All together, the camera weighs about 550-kg and is approximately 1.2-m x 0.6-m x 0.6-m. The image plane, which is adjustable, was placed 32-cm behind the pinhole aperture, giving a field of view of about ±38° in both the vertical and horizontal directions. The elevation of the camera is adjustable between 0 and 50° from horizontal and the camera may be pointed in any azimuthal direction. In its current configuration, the camera’s angular resolution is about 14°. During the summer of 2010, the x-ray camera was located 44-m from the rocket-launch tower at the UF/Florida Tech International Center for Lightning Research and Testing (ICLRT) at Camp Blanding, FL and several rocket-triggered lightning flashes were observed. In this presentation, I will discuss the design, construction and operation of this x-ray camera.

  11. Soft x-ray imaging by a commercial solid-state television camera

    International Nuclear Information System (INIS)

    Matsushima, I.; Koyama, K.; Tanimoto, M.; Yano, M.

    1987-01-01

    A commerical, solid-state television camera has been used to record images of soft x radiation (0.8--12 keV). The performance of the camera is theoretically analyzed and experimentally evaluated compared with an x-ray photographic film (Kodak direct exposure film). In the application, the camera has been used to provide image patterns of x rays from laser-produced plasmas. It is demonstrated that the camera has several advantages over x-ray photographic film

  12. ORNL 10-m small-angle X-ray scattering camera

    International Nuclear Information System (INIS)

    Hendricks, R.W.

    1979-12-01

    A new small-angle x-ray scattering camera utilizing a rotating anode x-ray source, crystal monochromatization of the incident beam, pinhole collimation, and a two-dimensional position-sensitive proportional counter was developed. The sample, and the resolution element of the detector are each approximately 1 x 1 mm 2 , the camera was designed so that the focal spot-to-sample and sample-to-detector distances may each be varied in 0.5-m increments up to 5 m to provide a system resolution in the range 0.5 to 4.0 mrad. A large, general-purpose specimen chamber has been provided into which a wide variety of special-purpose specimen holders can be mounted. The detector has an active area of 200 x 200 mm and has up to 200 x 200 resolution elements. The data are recorded in the memory of a minicomputer by a high-speed interface which uses a microprocessor to map the position of an incident photon into an absolute minicomputer memory address. The data recorded in the computer memory can be processed on-line by a variety of programs designed to enhance the user's interaction with the experiment. At the highest angular resolution (0.4 mrad), the flux incident on the specimen is 1.0 x 10 6 photons/s with the x-ray source operating at 45 kV and 100 mA. SAX and its associated programs OVF and MOT are high-priority, pre-queued, nonresident foreground tasks which run under the ModComp II MAX III operating system to provide complete user control of the ORNL 10-m small-angle x-ray scattering camera

  13. 21 CFR 892.1620 - Cine or spot fluorographic x-ray camera.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cine or spot fluorographic x-ray camera. 892.1620... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1620 Cine or spot fluorographic x-ray camera. (a) Identification. A cine or spot fluorographic x-ray camera is a device intended to photograph...

  14. Random On-Board Pixel Sampling (ROPS) X-Ray Camera

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos; Iaroshenko, O. [Los Alamos; Li, S. [Los Alamos; Liu, T. [Fermilab; Parab, N. [Argonne (main); Chen, W. W. [Purdue U.; Chu, P. [Los Alamos; Kenyon, G. [Los Alamos; Lipton, R. [Fermilab; Sun, K.-X. [Nevada U., Las Vegas

    2017-09-25

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.

  15. Picosecond x-ray streak cameras

    Science.gov (United States)

    Averin, V. I.; Bryukhnevich, Gennadii I.; Kolesov, G. V.; Lebedev, Vitaly B.; Miller, V. A.; Saulevich, S. V.; Shulika, A. N.

    1991-04-01

    The first multistage image converter with an X-ray photocathode (UMI-93 SR) was designed in VNIIOFI in 1974 [1]. The experiments carried out in IOFAN pointed out that X-ray electron-optical cameras using the tube provided temporal resolution up to 12 picoseconds [2]. The later work has developed into the creation of the separate streak and intensifying tubes. Thus, PV-003R tube has been built on base of UMI-93SR design, fibre optically connected to PMU-2V image intensifier carrying microchannel plate.

  16. 100ps UV/x-ray framing camera

    International Nuclear Information System (INIS)

    Eagles, R.T.; Freeman, N.J.; Allison, J.M.; Sibbett, W.; Sleat, W.E.; Walker, D.R.

    1988-01-01

    The requirement for a sensitive two-dimensional imaging diagnostic with picosecond time resolution, particularly in the study of laser-produced plasmas, has previously been discussed. A temporal sequence of framed images would provide useful supplementary information to that provided by time resolved streak images across a spectral region of interest from visible to x-ray. To fulfill this requirement the Picoframe camera system has been developed. Results pertaining to the operation of a camera having S20 photocathode sensitivity are reviewed and the characteristics of an UV/x-ray sensitive version of the Picoframe system are presented

  17. A compressed sensing X-ray camera with a multilayer architecture

    Science.gov (United States)

    Wang, Zhehui; Iaroshenko, O.; Li, S.; Liu, T.; Parab, N.; Chen, W. W.; Chu, P.; Kenyon, G. T.; Lipton, R.; Sun, K.-X.

    2018-01-01

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.

  18. X-ray streak and framing camera techniques

    International Nuclear Information System (INIS)

    Coleman, L.W.; Attwood, D.T.

    1975-01-01

    This paper reviews recent developments and applications of ultrafast diagnostic techniques for x-ray measurements. These techniques, based on applications of image converter devices, are already capable of significantly important resolution capabilities. Techniques capable of time resolution in the sub-nanosecond regime are being considered. Mechanical cameras are excluded from considerations as are devices using phosphors or fluors as x-ray converters

  19. Characterization results from several commercial soft X-ray streak cameras

    Science.gov (United States)

    Stradling, G. L.; Studebaker, J. K.; Cavailler, C.; Launspach, J.; Planes, J.

    The spatio-temporal performance of four soft X-ray streak cameras has been characterized. The objective in evaluating the performance capability of these instruments is to enable us to optimize experiment designs, to encourage quantitative analysis of streak data and to educate the ultra high speed photography and photonics community about the X-ray detector performance which is available. These measurements have been made collaboratively over the space of two years at the Forge pulsed X-ray source at Los Alamos and at the Ketjak laser facility an CEA Limeil-Valenton. The X-ray pulse lengths used for these measurements at these facilities were 150 psec and 50 psec respectively. The results are presented as dynamically-measured modulation transfer functions. Limiting temporal resolution values were also calculated. Emphasis is placed upon shot noise statistical limitations in the analysis of the data. Space charge repulsion in the streak tube limits the peak flux at ultra short experiments duration times. This limit results in a reduction of total signal and a decrease in signal to no ise ratio in the streak image. The four cameras perform well with 20 1p/mm resolution discernable in data from the French C650X, the Hadland X-Chron 540 and the Hamamatsu C1936X streak cameras. The Kentech X-ray streak camera has lower modulation and does not resolve below 10 1p/mm but has a longer photocathode.

  20. Picosecond X-ray streak camera dynamic range measurement

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.; Gontier, D.; Raimbourg, J.; Rubbelynck, C.; Trosseille, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Fronty, J.-P.; Goulmy, C. [Photonis SAS, Avenue Roger Roncier, BP 520, 19106 Brive Cedex (France)

    2016-09-15

    Streak cameras are widely used to record the spatio-temporal evolution of laser-induced plasma. A prototype of picosecond X-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to answer the Laser MegaJoule specific needs. The dynamic range of this instrument is measured with picosecond X-ray pulses generated by the interaction of a laser beam and a copper target. The required value of 100 is reached only in the configurations combining the slowest sweeping speed and optimization of the streak tube electron throughput by an appropriate choice of high voltages applied to its electrodes.

  1. Overview of the ARGOS X-ray framing camera for Laser MegaJoule

    Energy Technology Data Exchange (ETDEWEB)

    Trosseille, C., E-mail: clement.trosseille@cea.fr; Aubert, D.; Auger, L.; Bazzoli, S.; Brunel, P.; Burillo, M.; Chollet, C.; Jasmin, S.; Maruenda, P.; Moreau, I.; Oudot, G.; Raimbourg, J.; Soullié, G.; Stemmler, P.; Zuber, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Beck, T. [CEA, DEN, CADARACHE, F-13108 St Paul lez Durance (France); Gazave, J. [CEA, DAM, CESTA, F-33116 Le Barp (France)

    2014-11-15

    Commissariat à l’Énergie Atomique et aux Énergies Alternatives has developed the ARGOS X-ray framing camera to perform two-dimensional, high-timing resolution imaging of an imploding target on the French high-power laser facility Laser MegaJoule. The main features of this camera are: a microchannel plate gated X-ray detector, a spring-loaded CCD camera that maintains proximity focus in any orientation, and electronics packages that provide remotely-selectable high-voltages to modify the exposure-time of the camera. These components are integrated into an “air-box” that protects them from the harsh environmental conditions. A miniaturized X-ray generator is also part of the device for in situ self-testing purposes.

  2. X-ray framing cameras for > 5 keV imaging

    International Nuclear Information System (INIS)

    Landen, O.L.; Bell, P.M.; Costa, R.; Kalantar, D.H.; Bradley, D.K.

    1995-01-01

    Recent and proposed improvements in spatial resolution, temporal resolution, contrast, and detection efficiency for x-ray framing cameras are discussed in light of present and future laser-plasma diagnostic needs. In particular, improvements in image contrast above hard x-ray background levels is demonstrated by using high aspect ratio tapered pinholes

  3. New detection modules for gamma, beta and X-ray cameras

    International Nuclear Information System (INIS)

    Azman, S.; Bolle, E.; Dang, K.Q.; Dang, W.; Dietzel, K.I.; Froberg, T.; Gaarder, P.E.; Gjaerum, J.A.; Haugen, S.H.; Hellum, G.; Henriksen, J.R.; Johanson, T.M.; Kobbevik, A.; Maehlum, G.; Meier, D.; Mikkelsen, S.; Ninive, I.; Oya, P.; Pavlov, N.; Pettersen, D.M.; Sundal, B.M.; Talebi, J.; Yoshioka, K.

    2003-01-01

    Full text: Ideas ASA is developing new detection modules for gamma, beta and X-ray cameras. Recent developments focus on modules using various semi-conductor materials (CZT, HgI, Si). The development includes ASIC design, detector module development, and implementation in camera heads. In this presentation we describe the characteristics of important ASICs and its properties in terms of electronic noise, and the modes for measuring signals (switched current modes, sparsified modes, self triggered modes). The ASICs are specific for detectors and applications. We describe recent developments using various semi - conductor materials. We describe important design aspects for medical applications and in life science (SPECT, beta, X-ray cameras)

  4. Observation of X-ray shadings in synchrotron radiation-total reflection X-ray fluorescence using a color X-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, Ursula Elisabeth Adriane, E-mail: ursula.fittschen@chemie.uni-hamburg.de [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Menzel, Magnus [Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany); Scharf, Oliver [IfG Institute for Scientific Instruments GmbH, Berlin (Germany); Radtke, Martin; Reinholz, Uwe; Buzanich, Günther [BAM Federal Institute of Materials Research and Testing, Berlin (Germany); Lopez, Velma M.; McIntosh, Kathryn [Los Alamos National Laboratory, Los Alamos, NM (United States); Streli, Christina [Atominstitut, TU Wien, Vienna (Austria); Havrilla, George Joseph [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2014-09-01

    Absorption effects and the impact of specimen shape on TXRF analysis has been discussed intensively. Model calculations indicated that ring shaped specimens should give better results in terms of higher counts per mass signals than filled rectangle or circle shaped specimens. One major reason for the difference in signal is shading effects. Full field micro-XRF with a color X-ray camera (CXC) was used to investigate shading, which occurs when working with small angles of excitation as in TXRF. The device allows monitoring the illuminated parts of the sample and the shaded parts at the same time. It is expected that sample material hit first by the primary beam shade material behind it. Using the CXC shading could be directly visualized for the high concentration specimens. In order to compare the experimental results with calculation of the shading effect the generation of controlled specimens is crucial. This was achieved by “drop on demand” technology. It allows generating uniform, microscopic deposits of elements. The experimentally measured shadings match well with those expected from calculation. - Highlights: • Use of a color X-ray camera and drop on demand printing to diagnose X-ray shading • Specimens were obtained uniform and well-defined in shape and concentration by printing. • Direct visualization and determination of shading in such specimens using the camera.

  5. Observation of X-ray shadings in synchrotron radiation-total reflection X-ray fluorescence using a color X-ray camera

    International Nuclear Information System (INIS)

    Fittschen, Ursula Elisabeth Adriane; Menzel, Magnus; Scharf, Oliver; Radtke, Martin; Reinholz, Uwe; Buzanich, Günther; Lopez, Velma M.; McIntosh, Kathryn; Streli, Christina; Havrilla, George Joseph

    2014-01-01

    Absorption effects and the impact of specimen shape on TXRF analysis has been discussed intensively. Model calculations indicated that ring shaped specimens should give better results in terms of higher counts per mass signals than filled rectangle or circle shaped specimens. One major reason for the difference in signal is shading effects. Full field micro-XRF with a color X-ray camera (CXC) was used to investigate shading, which occurs when working with small angles of excitation as in TXRF. The device allows monitoring the illuminated parts of the sample and the shaded parts at the same time. It is expected that sample material hit first by the primary beam shade material behind it. Using the CXC shading could be directly visualized for the high concentration specimens. In order to compare the experimental results with calculation of the shading effect the generation of controlled specimens is crucial. This was achieved by “drop on demand” technology. It allows generating uniform, microscopic deposits of elements. The experimentally measured shadings match well with those expected from calculation. - Highlights: • Use of a color X-ray camera and drop on demand printing to diagnose X-ray shading • Specimens were obtained uniform and well-defined in shape and concentration by printing. • Direct visualization and determination of shading in such specimens using the camera

  6. X-ray powder diffraction camera for high-field experiments

    International Nuclear Information System (INIS)

    Koyama, K; Mitsui, Y; Takahashi, K; Watanabe, K

    2009-01-01

    We have designed a high-field X-ray diffraction (HF-XRD) camera which will be inserted into an experimental room temperature bore (100 mm) of a conventional solenoid-type cryocooled superconducting magnet (10T-CSM). Using the prototype camera that is same size of the HF-XRD camera, a XRD pattern of Si is taken at room temperature in a zero magnetic field. From the obtained results, the expected ability of the designed HF-XRD camera is presented.

  7. Development of X-ray CCD camera system with high readout rate using ASIC

    International Nuclear Information System (INIS)

    Nakajima, Hiroshi; Matsuura, Daisuke; Anabuki, Naohisa; Miyata, Emi; Tsunemi, Hiroshi; Doty, John P.; Ikeda, Hirokazu; Katayama, Haruyoshi

    2009-01-01

    We report on the development of an X-ray charge-coupled device (CCD) camera system with high readout rate using application-specific integrated circuit (ASIC) and Camera Link standard. The distinctive ΔΣ type analog-to-digital converter is introduced into the chip to achieve effective noise shaping and to obtain a high resolution with relatively simple circuits. The unit test proved moderately low equivalent input noise of 70μV with a high readout pixel rate of 625 kHz, while the entire chip consumes only 100 mW. The Camera Link standard was applied for the connectivity between the camera system and frame grabbers. In the initial test of the whole system, we adopted a P-channel CCD with a thick depletion layer developed for X-ray CCD camera onboard the next Japanese X-ray astronomical satellite. The characteristic X-rays from 109 Cd were successfully read out resulting in the energy resolution of 379(±7)eV (FWHM) at 22.1 keV, that is, ΔE/E=1.7% with a readout rate of 44 kHz.

  8. A high-resolution multiwire area detector for X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Faruqi, A R; Andrews, H [Medical Research Council, Cambridge (UK). Lab. of Molecular Biology

    1989-11-10

    A high-resolution multiwire area detector has been developed for recording X-ray scattering from biological specimens. The detector is 100x100 mm{sup 2} and, under the present operating conditions, has a spatial resolution of about 250 {mu}m in both directions. The detector is set up on a double-mirror focusing camera on a rotating anode X-ray generator and has been used in a number of small-angle experiments, two of which are described in this paper. (orig.).

  9. Miniature CCD X-Ray Imaging Camera Technology Final Report CRADA No. TC-773-94

    Energy Technology Data Exchange (ETDEWEB)

    Conder, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mummolo, F. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-19

    The goal of the project was to develop a compact, large active area, high spatial resolution, high dynamic range, charge-coupled device (CCD) camera to replace film for digital imaging of visible light, ultraviolet radiation, and soft to penetrating X-rays. The camera head and controller needed to be capable of operation within a vacuum environment and small enough to be fielded within the small vacuum target chambers at LLNL.

  10. Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera

    Science.gov (United States)

    Koppert, W. J. C.; van der Velden, S.; Steenbergen, J. H. L.; de Jong, H. W. A. M.

    2018-03-01

    In SPECT/CT systems x-ray and γ-ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high x-ray doses and deteriorate its functioning. We studied the NaI(Tl) response to x-ray pulses with a photodiode, PMT and gamma camera, respectively. First, we exposed a NaI(Tl)-photodiode assembly to x-ray pulses to investigate potential crystal afterglow. Next, we exposed a NaI(Tl)-PMT assembly to 10 ms LED pulses (mimicking x-ray pulses) and measured the response to flashing LED probe-pulses (mimicking γ-pulses). We then exposed the assembly to x-ray pulses, with detector entrance doses of up to 9 nGy/pulse, and analysed the response for γ-pulse variations. Finally, we studied the response of a Siemens Diacam gamma camera to γ-rays while exposed to x-ray pulses. X-ray exposure of the crystal, read out with a photodiode, revealed 15% afterglow fraction after 3 ms. The NaI(Tl)-PMT assembly showed disturbances up to 10 ms after 10 ms LED exposure. After x-ray exposure however, responses showed elevated baselines, with 60 ms decay-time. Both for x-ray and LED exposure and after baseline subtraction, probe-pulse analysis revealed disturbed pulse height measurements shortly after exposure. X-ray exposure of the Diacam corroborated the elementary experiments. Up to 50 ms after an x-ray pulse, no events are registered, followed by apparent energy elevations up to 100 ms after exposure. Limiting the dose to 0.02 nGy/pulse prevents detrimental effects. Conventional gamma cameras exhibit substantial dead-time and mis-registration of photon energies up to 100 ms after intense x-ray pulses. This is due PMT limitations and due to afterglow in the crystal. Using PMTs with modified circuitry, we show that deteriorative afterglow effects can be reduced without noticeable effects on the PMT performance, up to x-ray pulse doses of 1 nGy.

  11. Advances in x-ray framing cameras at the National Ignition Facility to improve quantitative precision in x-ray imaging.

    Science.gov (United States)

    Benedetti, L R; Holder, J P; Perkins, M; Brown, C G; Anderson, C S; Allen, F V; Petre, R B; Hargrove, D; Glenn, S M; Simanovskaia, N; Bradley, D K; Bell, P

    2016-02-01

    We describe an experimental method to measure the gate profile of an x-ray framing camera and to determine several important functional parameters: relative gain (between strips), relative gain droop (within each strip), gate propagation velocity, gate width, and actual inter-strip timing. Several of these parameters cannot be measured accurately by any other technique. This method is then used to document cross talk-induced gain variations and artifacts created by radiation that arrives before the framing camera is actively amplifying x-rays. Electromagnetic cross talk can cause relative gains to vary significantly as inter-strip timing is varied. This imposes a stringent requirement for gain calibration. If radiation arrives before a framing camera is triggered, it can cause an artifact that manifests as a high-intensity, spatially varying background signal. We have developed a device that can be added to the framing camera head to prevent these artifacts.

  12. Temporal resolution limit estimation of x-ray streak cameras using a CsI photocathode

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Gu, Li; Zong, Fangke; Zhang, Jingjin; Yang, Qinlao, E-mail: qlyang@szu.edu.cn [Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Optoelectronics, Shenzhen University, Shenzhen 518060 (China)

    2015-08-28

    A Monte Carlo model is developed and implemented to calculate the characteristics of x-ray induced secondary electron (SE) emission from a CsI photocathode used in an x-ray streak camera. Time distributions of emitted SEs are investigated with an incident x-ray energy range from 1 to 30 keV and a CsI thickness range from 100 to 1000 nm. Simulation results indicate that SE time distribution curves have little dependence on the incident x-ray energy and CsI thickness. The calculated time dispersion within the CsI photocathode is about 70 fs, which should be the temporal resolution limit of x-ray streak cameras that use CsI as the photocathode material.

  13. A pin diode x-ray camera for laser fusion diagnostic imaging: Final technical report

    International Nuclear Information System (INIS)

    Jernigan, J.G.

    1987-01-01

    An x-ray camera has been constructed and tested for diagnostic imaging of laser fusion targets at the Laboratory for Laser Energetics (LLE) of the University of Rochester. The imaging detector, developed by the Hughes Aircraft Company, is a germanium PIN diode array of 10 x 64 separate elements which are bump bonded to a silicon readout chip containing a separate low noise amplifier for each pixel element. The camera assembly consists of a pinhole alignment mechanism, liquid nitrogen cryostat with detector mount and a thin beryllium entrance window, and a shielded rack containing the analog and digital electronics for operations. This x-ray camera has been tested on the OMEGA laser target chamber, the primary laser target facility of LLE, and operated via an Ethernet link to a SUN Microsystems workstation. X-ray images of laser targets are presented. The successful operation of this particular x-ray camera is a demonstration of the viability of the hybrid detector technology for future imaging and spectroscopic applications. This work was funded by the Department of Energy (DOE) as a project of the National Laser Users Facility (NLUF)

  14. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Rácz, R., E-mail: rracz@atomki.hu; Biri, S.; Pálinkás, J. [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/C, H-4026 Debrecen (Hungary); Mascali, D.; Castro, G.; Caliri, C.; Gammino, S. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Romano, F. P. [Instituto Nazionale di Fisica Nucleare—Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy)

    2016-02-15

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  15. X-ray pinhole camera setups used in the Atomki ECR Laboratory for plasma diagnostics.

    Science.gov (United States)

    Rácz, R; Biri, S; Pálinkás, J; Mascali, D; Castro, G; Caliri, C; Romano, F P; Gammino, S

    2016-02-01

    Imaging of the electron cyclotron resonance (ECR) plasmas by using CCD camera in combination with a pinhole is a non-destructive diagnostics method to record the strongly inhomogeneous spatial density distribution of the X-ray emitted by the plasma and by the chamber walls. This method can provide information on the location of the collisions between warm electrons and multiple charged ions/atoms, opening the possibility to investigate the direct effect of the ion source tuning parameters to the plasma structure. The first successful experiment with a pinhole X-ray camera was carried out in the Atomki ECR Laboratory more than 10 years ago. The goal of that experiment was to make the first ECR X-ray photos and to carry out simple studies on the effect of some setting parameters (magnetic field, extraction, disc voltage, gas mixing, etc.). Recently, intensive efforts were taken to investigate now the effect of different RF resonant modes to the plasma structure. Comparing to the 2002 experiment, this campaign used wider instrumental stock: CCD camera with a lead pinhole was placed at the injection side allowing X-ray imaging and beam extraction simultaneously. Additionally, Silicon Drift Detector (SDD) and High Purity Germanium (HPGe) detectors were installed to characterize the volumetric X-ray emission rate caused by the warm and hot electron domains. In this paper, detailed comparison study on the two X-ray camera and detector setups and also on the technical and scientific goals of the experiments is presented.

  16. Development of a portable x-ray tv camera set

    International Nuclear Information System (INIS)

    Panityotai, J.

    1990-01-01

    A portable X-ray T V camera set was developed using a 24 V battery as a power supply unit. The development aims at a non-film X-radiographic technique with low exposure radiation. The machine is able to catch one X-radiographic frame at a time with a resolution of 256 X 256 pixels under 64 gray scales. The investigation shows a horizontal resolution of 0.6 lines per millimeter and a vertical resolution of 0.7 lines per mi/limiter

  17. Structured photocathodes for improved high-energy x-ray efficiency in streak cameras

    Energy Technology Data Exchange (ETDEWEB)

    Opachich, Y. P., E-mail: opachiyp@nv.doe.gov; Huffman, E.; Koch, J. A. [National Security Technologies, LLC, Livermore, California 94551 (United States); Bell, P. M.; Bradley, D. K.; Hatch, B.; Landen, O. L.; MacPhee, A. G.; Nagel, S. R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Chen, N.; Gopal, A.; Udin, S. [Nanoshift LLC, Emeryville, California 94608 (United States); Feng, J. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Hilsabeck, T. J. [General Atomics, San Diego, California 92121 (United States)

    2016-11-15

    We have designed and fabricated a structured streak camera photocathode to provide enhanced efficiency for high energy X-rays (1–12 keV). This gold coated photocathode was tested in a streak camera and compared side by side against a conventional flat thin film photocathode. Results show that the measured electron yield enhancement at energies ranging from 1 to 10 keV scales well with predictions, and that the total enhancement can be more than 3×. The spatial resolution of the streak camera does not show degradation in the structured region. We predict that the temporal resolution of the detector will also not be affected as it is currently dominated by the slit width. This demonstration with Au motivates exploration of comparable enhancements with CsI and may revolutionize X-ray streak camera photocathode design.

  18. Development of an ultra-fast X-ray camera using hybrid pixel detectors

    International Nuclear Information System (INIS)

    Dawiec, A.

    2011-05-01

    The aim of the project whose work described in this thesis is part, was to design a high-speed X-ray camera using hybrid pixels applied to biomedical imaging and for material science. As a matter of fact the hybrid pixel technology meets the requirements of these two research fields, particularly by providing energy selection and low dose imaging capabilities. In this thesis, high frame rate X-ray imaging based on the XPAD3-S photons counting chip is presented. Within a collaboration between CPPM, ESRF and SOLEIL, three XPAD3 cameras were built. Two of them are being operated at the beamline of the ESRF and SOLEIL synchrotron facilities and the third one is embedded in the PIXSCAN II irradiation setup of CPPM. The XPAD3 camera is a large surface X-ray detector composed of eight detection modules of seven XPAD3-S chips each with a high-speed data acquisition system. The readout architecture of the camera is based on the PCI Express interface and on programmable FPGA chips. The camera achieves a readout speed of 240 images/s, with maximum number of images limited by the RAM memory of the acquisition PC. The performance of the device was characterized by carrying out several high speed imaging experiments using the PIXSCAN II irradiation setup described in the last chapter of this thesis. (author)

  19. Total Reflection X-ray Fluorescence Analysis (TXRF) using the high flux SAXS camera

    CERN Document Server

    Wobrauschek, P; Pepponi, G; Bergmann, A; Glatter, O

    2002-01-01

    Combining the high photon flux from a rotating anode X-ray tube with an X-ray optical component to focus and monochromatize the X-ray beam is the most promising instrumentation for best detection limits in the modern XRF laboratory. This is realized by using the design of a high flux SAXS camera in combination with a 4 kW high brilliant rotating Cu anode X-ray tube with a graded elliptically bent multilayer and including a new designed module for excitation in total reflection geometry within the beam path. The system can be evacuated thus reducing absorption and scattering of air and removing the argon peak in the spectra. Another novelty is the use of a Peltier cooled drift detector with an energy resolution of 148 eV at 5.9 keV and 5 mm sup 2 area. For Co detection limits of about 300 fg determined by a single element standard have been achieved. Testing a real sample NIST 1643d led to detection limits in the range of 300 ng/l for the medium Z.

  20. X-ray image intensifier camera tubes and semiconductor targets

    International Nuclear Information System (INIS)

    1979-01-01

    A semiconductor target for use in an image intensifier camera tube and a camera using the target are described. The semiconductor wafer for converting an electron image onto electrical signal consists mainly of a collector region, preferably n-type silicon. It has one side for receiving the electron image and an opposite side for storing charge carriers generated in the collector region by high energy electrons forming a charge image. The first side comprises a highly doped surface layer covered with a metal buffer layer permeable to the incident electrons and thick enough to dissipate some of the incident electron energy thereby improving the signal-to-noise ratio. This layer comprises beryllium on niobium on the highly doped silicon surface zone. Low energy Kα X-ray radiation is generated in the first layer, the radiation generated in the second layer (mainly Lα radiation) is strongly absorbed in the silicon layer. A camera tube using such a target with a photocathode for converting an X-ray image into an electron image, means to project this image onto the first side of the semiconductor wafer and means to read out the charge pattern on the second side are also described. (U.K.)

  1. Impact of intense x-ray pulses on a NaI(Tl)-based gamma camera

    NARCIS (Netherlands)

    Koppert, Wilco J C; van der Velden, Sandra; Steenbergen, J H Leo; de Jong, Hugo W A M

    2018-01-01

    INTRODUCTION: In SPECT/CT systems X-ray and -ray imaging is performed sequentially. Simultaneous acquisition may have advantages, for instance in interventional settings. However, this may expose a gamma camera to relatively high X-ray doses and deteriorate its functioning. We studied the NaI(Tl)

  2. Lasers and laser applications. Imaging implosion dynamics: The x-ray pinhole/streak camera

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1976-01-01

    A Livermore-developed x-ray-sensitive streak camera was combined with a unique x-ray pinhole camera to make dynamic photographs of laser-irradiated fusion target implosions. These photographs show x radiation emitted from the imploding shell during its 100-ps implosion; they are the first continuous observations of an imploding laser-driven fusion capsule. The diagnostic system has a time resolution of 15 ps and a spatial resolution of about 6 μm. Results agree very well with those predicted by our LASNEX calculations, confirming that the essential physics are correctly described in the code and providing further confidence in the soundness of this approach to inertial confinement fusion

  3. Panoramic dental X-ray machine X-motion drive

    International Nuclear Information System (INIS)

    Cushman, R.H.; Flynn, J.J.

    1980-01-01

    A panoramic dental x-ray machine is described which provides continuous and discontinuous radiographic images of the dental arch area of a patient. The systems for moving the chair and the column which carries the x-ray source and camera are specified. (U.K.)

  4. The simulated spectrum of the OGRE X-ray EM-CCD camera system

    Science.gov (United States)

    Lewis, M.; Soman, M.; Holland, A.; Lumb, D.; Tutt, J.; McEntaffer, R.; Schultz, T.; Holland, K.

    2017-12-01

    The X-ray astronomical telescopes in use today, such as Chandra and XMM-Newton, use X-ray grating spectrometers to probe the high energy physics of the Universe. These instruments typically use reflective optics for focussing onto gratings that disperse incident X-rays across a detector, often a Charge-Coupled Device (CCD). The X-ray energy is determined from the position that it was detected on the CCD. Improved technology for the next generation of X-ray grating spectrometers has been developed and will be tested on a sounding rocket experiment known as the Off-plane Grating Rocket Experiment (OGRE). OGRE aims to capture the highest resolution soft X-ray spectrum of Capella, a well-known astronomical X-ray source, during an observation period lasting between 3 and 6 minutes whilst proving the performance and suitability of three key components. These three components consist of a telescope made from silicon mirrors, gold coated silicon X-ray diffraction gratings and a camera that comprises of four Electron-Multiplying (EM)-CCDs that will be arranged to observe the soft X-rays dispersed by the gratings. EM-CCDs have an architecture similar to standard CCDs, with the addition of an EM gain register where the electron signal is amplified so that the effective signal-to-noise ratio of the imager is improved. The devices also have incredibly favourable Quantum Efficiency values for detecting soft X-ray photons. On OGRE, this improved detector performance allows for easier identification of low energy X-rays and fast readouts due to the amplified signal charge making readout noise almost negligible. A simulation that applies the OGRE instrument performance to the Capella soft X-ray spectrum has been developed that allows the distribution of X-rays onto the EM-CCDs to be predicted. A proposed optical model is also discussed which would enable the missions minimum success criteria's photon count requirement to have a high chance of being met with the shortest possible

  5. Application of an EMCCD Camera for Calibration of Hard X-Ray Telescopes

    DEFF Research Database (Denmark)

    Vogel, Julia K.; Pivovaroff, M. J.; Nagarkar, V. V.

    2012-01-01

    has seen focusing optics developed for balloon experiments [1] and they will soon be implemented in approved space missions such as the Nuclear Spectroscopic Telescope Array (NuSTAR) [2] and ASTRO-H [3]. The full characterization of x-ray optics for astrophysical and solar imaging missions, including...... measurement of the point spread function (PSF) as well as scattering and reflectivity properties of substrate coatings, requires a very high spatial resolution, high sensitivity, photon counting and energy discriminating, large area detector. Novel back-thinned Electron Multiplying Charge-Coupled Devices...... high frame rates due to its controllable internal gain. Additionally, thick CsI(Tl) yields high detection efficiency for x-rays [6]. This type of detector has already proven to be a unique device very suitable for calibrations in astrophysics: such a camera was used to support the characterization...

  6. Performance of Laser Megajoule’s x-ray streak camera

    Energy Technology Data Exchange (ETDEWEB)

    Zuber, C., E-mail: celine.zuber@cea.fr; Bazzoli, S.; Brunel, P.; Burillo, M.; Gontier, D.; Moreau, I.; Oudot, G.; Rubbelynck, C.; Soullié, G.; Stemmler, P.; Trosseille, C. [CEA, DAM, DIF, F-91297 Arpajon (France); Fronty, J. P.; Goulmy, C. [Photonis France SAS, Avenue Roger Roncier, BP 520, 19106 Brive Cedex (France)

    2016-11-15

    A prototype of a picosecond x-ray streak camera has been developed and tested by Commissariat à l’Énergie Atomique et aux Énergies Alternatives to provide plasma-diagnostic support for the Laser Megajoule. We report on the measured performance of this streak camera, which almost fulfills the requirements: 50-μm spatial resolution over a 15-mm field in the photocathode plane, 17-ps temporal resolution in a 2-ns timebase, a detection threshold lower than 625 nJ/cm{sup 2} in the 0.05–15 keV spectral range, and a dynamic range greater than 100.

  7. X-ray area monitor

    International Nuclear Information System (INIS)

    Nintrakit, N.

    1983-01-01

    The X-ray area monitor is a nuclear electronic device that is essential in radiation protection in high radiation laboratories, e.g. in medical diagnosis using X-rays and in industrial X-radiography. Accidentally the level of X-radiator may arise above the safe permissible level and in such a case the alarm system of the area monitor will work and disconnect the ac power supply form the X-ray unit. Principally the device is a radiation counter using G.M.tube as radiation detector with high voltage supply variable form 200 to 2,000 volts. The maximum count rate of the scaler is 1.5 MHz and the total count is displayed on 4 digit LED's. A time base is used to control the counting time, the frequency multiplier, radiation safety limit, comparator and the radiation hazard warning signal. The reliability of the instrument is further enhanced through the addition of the random correction circuit, and it is applicable both in X- and γ -radiation

  8. Improvements in Off-Center Focusing in an X-ray Streak Camera

    International Nuclear Information System (INIS)

    McDonald, J W; Weber, F; Holder, J P; Bell, P M

    2003-01-01

    Due to the planar construction of present x-ray streak tubes significant off-center defocusing is observed in both static and dynamic images taken with one-dimensional resolution slits. Based on the streak tube geometry curved photocathodes with radii of curvature ranging from 3.5 to 18 inches have been fabricated. We report initial off-center focusing performance data on the evaluation of these ''improved'' photocathodes in an X-ray streak camera and an update on the theoretical simulations to predict the optimum cathode curvature

  9. X-ray image intensifier tube and radiographic camera incorporating same

    International Nuclear Information System (INIS)

    1981-01-01

    An X-ray sensitive image intensifier tube is described. It has an input window comprising at least one of iron, chromium and nickel for receiving an X-ray image. There is a flat scintillator screen adjacent for converting the X-ray image into a light pattern image. Adjacent to this is a flat photocathode layer for emitting photoelectrons in a pattern corresponding to the light pattern image. Parallel to this and spaced from it is a flat phosphor display screen. Electrostatic voltage is applied to the display screen and the photocathode layer to create an electric field between them to accelerate the photoelectrons towards the display screen. The paths of such parallel straight trajectories are governed solely by the electrostatic voltage applied, the image at the display screen being substantially equal in size to that of the X-ray image received at the input window. The tube envelope is preferably metallic to enable the basic components to be kept at a neutral potential and avoid spurious emissions. A radiographic camera with such an intensifier tube is also described. (U.K.)

  10. Projection-type X-ray microscope based on a spherical compound refractive X-ray lens

    OpenAIRE

    Dudchik, Yu. I.; Gary, C. K.; Park, H.; Pantell, R. H.; Piestrup, M. A.

    2007-01-01

    New projection- type X-ray microscope with a compound refractive lens as the optical element is presented. The microscope consists of an X-ray source that is 1-2 mm in diameter, compound X-ray lens and X-ray camera that are placed in-line to satisfy the lens formula. The lens forms an image of the X-ray source at camera sensitive plate. An object is placed between the X-ray source and the lens as close as possible to the source, and the camera shows a shadow image of the object. Spatial resol...

  11. Estimation of signal intensity for online measurement X-ray pinhole camera

    International Nuclear Information System (INIS)

    Dong Jianjun; Liu Shenye; Yang Guohong; Yu Yanning

    2009-01-01

    The signal intensity was estimated for on-line measurement X-ray pinhole camera with CCD as measurement equipment. The X-ray signal intensity counts after the attenuation of thickness-varied Be filters and different material flat mirrors respectively were estimated using the energy spectrum of certain laser prototype and the quantum efficiency curve of PI-SX1300 CCD camera. The calculated results indicate that Be filters no thicker than 200 μm can only reduce signal intensity by one order of magnitude, and so can Au flat mirror with 3 degree incident angle, Ni, C and Si flat mirrors with 5 degree incident angle,but the signal intensity counts for both attenuation methods are beyond the saturation counts of the CCD camera. We also calculated the attenuation of signal intensity for different thickness Be filters combined with flat mirrors, indicates that the combination of Be filters with the thickness between 20 and 40 μm and Au flat mirror with 3 degree incident angle or Ni flat mirror with 5 degree incident angle is a good choice for the attenuation of signal intensity. (authors)

  12. X-ray fluorescence camera for imaging of iodine media in vivo.

    Science.gov (United States)

    Matsukiyo, Hiroshi; Watanabe, Manabu; Sato, Eiichi; Osawa, Akihiro; Enomoto, Toshiyuki; Nagao, Jiro; Abderyim, Purkhet; Aizawa, Katsuo; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ehara, Shigeru; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2009-01-01

    X-ray fluorescence (XRF) analysis is useful for measuring density distributions of contrast media in vivo. An XRF camera was developed for carrying out mapping for iodine-based contrast media used in medical angiography. Objects are exposed by an X-ray beam from a cerium target. Cerium K-series X-rays are absorbed effectively by iodine media in objects, and iodine fluorescence is produced from the objects. Next, iodine Kalpha fluorescence is selected out by use of a 58-microm-thick stannum filter and is detected by a cadmium telluride (CdTe) detector. The Kalpha rays are discriminated out by a multichannel analyzer, and the number of photons is counted by a counter card. The objects are moved and scanned by an x-y stage in conjunction with a two-stage controller, and X-ray images obtained by iodine mapping are shown on a personal computer monitor. The scan pitch of the x and y axes was 2.5 mm, and the photon counting time per mapping point was 2.0 s. We carried out iodine mapping of non-living animals (phantoms), and iodine Kalpha fluorescence was produced from weakly remaining iodine elements in a rabbit skin cancer.

  13. Operational experience of a large area x-ray camera for protein crystallography

    International Nuclear Information System (INIS)

    Joachimiak, A.; Jorden, A. R.; Loeffen, P. W.; Naday, I.; Sanishvili, R.; Westbrook, E. M.

    1999-01-01

    After 3 years experience of operating very large area (210mm x 210mm) CCD-based detectors at the Advanced Photon Source, operational experience is reported. Four such detectors have been built, two for Structural Biology Center (APS-1 and SBC-2), one for Basic Energy Sciences Synchrotrons Radiation Center (Gold-2) at Argonne National Laboratory's Advanced Photon Source and one for Osaka University by Oxford Instruments, for use at Spring 8 (PX-21O). The detector is specifically designed as a high resolution and fast readout camera for macromolecular crystallography. Design trade-offs for speed and size are reviewed in light of operational experience and future requirements are considered. Operational data and examples of crystallography data are presented, together with plans for more development

  14. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi E-mail: momose@exp.t.u-tokyo.ac.jp; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-21

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mmx20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  15. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  16. X pinch a point x-ray source

    International Nuclear Information System (INIS)

    Garg, A.B.; Rout, R.K.; Shyam, A.; Srinivasan, M.

    1993-01-01

    X ray emission from an X pinch, a point x-ray source has been studied using a pin-hole camera by a 30 kV, 7.2 μ F capacitor bank. The wires of different material like W, Mo, Cu, S.S.(stainless steel) and Ti were used. Molybdenum pinch gives the most intense x-rays and stainless steel gives the minimum intensity x-rays for same bank energy (∼ 3.2 kJ). Point x-ray source of size (≤ 0.5 mm) was observed using pin hole camera. The size of the source is limited by the size of the pin hole camera. The peak current in the load is approximately 150 kA. The point x-ray source could be useful in many fields like micro lithography, medicine and to study the basic physics of high Z plasmas. (author). 4 refs., 3 figs

  17. X-Ray Powder Diffraction with Guinier - Haegg Focusing Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Allan

    1970-12-15

    The Guinier - Haegg focusing camera is discussed with reference to its use as an instrument for rapid phase analysis. An actual camera and the alignment procedure employed in its setting up are described. The results obtained with the instrument are compared with those obtained with Debye - Scherrer cameras and powder diffractometers. Exposure times of 15 - 30 minutes with compounds of simple structure are roughly one-sixth of those required for Debye - Scherrer patterns. Coupled with the lower background resulting from the use of a monochromatic X-ray beam, the shorter exposure time gives a ten-fold increase in sensitivity for the detection of minor phases as compared with the Debye - Scherrer camera. Attention is paid to the precautions taken to obtain reliable Bragg angles from Guinier - Haegg film measurements, with particular reference to calibration procedures. The evaluation of unit cell parameters from Guinier - Haegg data is discussed together with the application of tests for the presence of angle-dependent systematic errors. It is concluded that with proper calibration procedures and least squares treatment of the data, accuracies of the order of 0.005% are attainable. A compilation of diffraction data for a number of compounds examined in the Active Central Laboratory at Studsvik is presented to exemplify the scope of this type of powder camera.

  18. X-Ray Powder Diffraction with Guinier - Haegg Focusing Cameras

    International Nuclear Information System (INIS)

    Brown, Allan

    1970-12-01

    The Guinier - Haegg focusing camera is discussed with reference to its use as an instrument for rapid phase analysis. An actual camera and the alignment procedure employed in its setting up are described. The results obtained with the instrument are compared with those obtained with Debye - Scherrer cameras and powder diffractometers. Exposure times of 15 - 30 minutes with compounds of simple structure are roughly one-sixth of those required for Debye - Scherrer patterns. Coupled with the lower background resulting from the use of a monochromatic X-ray beam, the shorter exposure time gives a ten-fold increase in sensitivity for the detection of minor phases as compared with the Debye - Scherrer camera. Attention is paid to the precautions taken to obtain reliable Bragg angles from Guinier - Haegg film measurements, with particular reference to calibration procedures. The evaluation of unit cell parameters from Guinier - Haegg data is discussed together with the application of tests for the presence of angle-dependent systematic errors. It is concluded that with proper calibration procedures and least squares treatment of the data, accuracies of the order of 0.005% are attainable. A compilation of diffraction data for a number of compounds examined in the Active Central Laboratory at Studsvik is presented to exemplify the scope of this type of powder camera

  19. X-ray hot plasma diagnostics

    International Nuclear Information System (INIS)

    Cojocaru, E.

    1984-11-01

    X-ray plasma emission study is powerful diagnostic tool of hot plasmas. In this review article the main techniques of X-ray plasma emission measurement are shortly presented: X-ray spectrometry using absorbent filters, crystal and grating spectrometers, imaging techniques using pinhole cameras, X-ray microscopes and Fresnel zone plate cameras, X-ray plasma emission calorimetry. Advances in these techniques with examples for different hot plasma devices are also presentes. (author)

  20. Picosecond x-ray streak camera studies

    International Nuclear Information System (INIS)

    Kasyanov, Yu.S.; Malyutin, A.A.; Richardson, M.C.; Chevokin, V.K.

    1975-01-01

    Some initial results of direct measurement of picosecond x-ray emission from laser-produced plasmas are presented. A PIM-UMI 93 image converter tube, incorporating an x-ray sensitive photocathode, linear deflection, and three stages of image amplification was used to analyse the x-ray radiation emanating from plasmas produced from solid Ti targets by single high-intensity picosecond laser pulses. From such plasmas, the x-ray emission typically persisted for times of 60psec. However, it is shown that this detection system should be capable of resolving x-ray phenomena of much shorter duration. (author)

  1. X-ray diagnostic device with an X-ray image amplifier, whose output image is fed into a movie camera, as well as a brightness control

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, H

    1978-02-09

    The X-ray relief appearing behind a patient is immediately or with amplificating foils converted into a latent film image. By using a X-ray image amplifier the X-ray relief is then converted into a reduced and brighter optical image and fed into a photographic or movie camera and shot. To avoid a reduction in the image quality by quantum noise and a too large patient and physician dose a brightness control is provided for the X-ray diagnostic device. The control only dims as far as a brightness per image is produced that avoids quantum noise. On the other side it opens more by strongly beam absorbing patients or a smaller imaging ratio of the X-ray image amplifier to obtain a desired irradiation.

  2. Caliste 64, an innovative CdTe hard X-ray micro-camera

    International Nuclear Information System (INIS)

    Meuris, A.; Limousin, O.; Pinsard, F.; Le Mer, I.; Lugiez, F.; Gevin, O.; Delagnes, E.; Vassal, M.C.; Soufflet, F.; Bocage, R.

    2008-01-01

    A prototype 64 pixel miniature camera has been designed and tested for the Simbol-X hard X-ray observatory to be flown on the joint CNES-ASI space mission in 2014. This device is called Caliste 64. It is a high performance spectro-imager with event time-tagging capability, able to detect photons between 2 keV and 250 keV. Caliste 64 is the assembly of a 1 or 2 min thick CdTe detector mounted on top of a readout module. CdTe detectors equipped with Aluminum Schottky barrier contacts are used because of their very low dark current and excellent spectroscopic performance. Front-end electronics is a stack of four IDeF-X V1.1 ASICs, arranged perpendicular to the detection plane, to read out each pixel independently. The whole camera fits in a 10 * 10 * 20 mm 3 volume and is juxtaposable on its four sides. This allows the device to be used as an elementary unit in a larger array of Caliste 64 cameras. Noise performance resulted in an ENC better than 60 electrons rms in average. The first prototype camera is tested at -10 degrees C with a bias of -400 V. The spectrum summed across the 64 pixels results in a resolution of 697 eV FWHM at 13.9 keV and 808 eV FWFM at 59.54 keV. (authors)

  3. High-temperature x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Il' inskii, A G; Romanova, A V; Prikhod' ko, N P

    1974-03-25

    A high-temperature x-ray chamber for taking x-ray photographs of flat horizontally set samples in a vacuum or gas medium is described. The chamber is fitted out with a water-cooled vacuum closed hull with a window letting the x-rays pass, a centering mechanism and a device for heating the samples. To widen its functional abilities the chamber is provided with a goniometric device, fixed immovably to the body foundation by means of two stands. Bearings are mounted to the stands; one of them is equipped with a screw wheel and an endless screw with a limb in the ring; a traverse to which a counter for the x-ray radiation is installed is attached to the shafts of both the bearings. The centering mechanism has a cooled metalic rod, which is connected through a spiral screw thread with the limb fixable by a fork. The position of the shaft of rotation of the counter is adjusted with the help of a nit, extended through the plug openings, positioned on the stands. The chamber can be applied for x-ray structural analyses.

  4. X-ray imaging of JET. A design study for a streak camera application

    International Nuclear Information System (INIS)

    Bateman, J.E.; Hobby, M.G.

    1980-03-01

    A single dimensional imaging system is proposed which will image a strip of the JET plasma up to 320 times per shot with a time resolution of better than 50 μs using the bremsstrahlung X-rays. The images are obtained by means of a pinhole camera followed by an X-ray image intensifier system the output of which is in turn digitised by a photodiode array. The information is stored digitally in a fast memory and is immediately available for display or analysis. (author)

  5. Automation of a Guinier camera for X-ray diffraction

    International Nuclear Information System (INIS)

    Duijn, J.H.

    1988-01-01

    The automation of a Guinier X-ray diffraction camera is discussed. The photographic plate in the conventional setup has been replaced by a curved proportional counter (CPC) which has an electronic readout system. As a result the recording time has been reduced from a few hours to a few minutes. The construction and optimum dimensions of the CPC are discussed and the most essential parts of the readout electronics are highlighted. A linewidth of 200 μm FWHM and an accuracy of 30 μm are achieved. 45 refs.; 53 figs.; 4 tabs

  6. Note: Diagnosing femtosecond laser-solid interactions with monochromatic Kα imager and x-ray pinhole camera

    International Nuclear Information System (INIS)

    Lin, X. X.; Li, Y. T.; Liu, F.; Du, F.; Wang, S. J.; Chen, L. M.; Zhang, L.; Zheng, Y.; Liu, X.; Liu, X. L.; Wang, Z. H.; Ma, J. L.; Wei, Z. Y.; Liu, B. C.; Zhang, J.

    2011-01-01

    An x-ray pinhole camera and a monochromatic K α imager are used to measure the interactions of intense femtosecond laser pulses with Cu foil targets. The two diagnostics give different features in the spot size and the laser energy scaling, which are resulted from different physical processes. Under our experimental conditons, the K α emission is mainly excited by the fast electrons transporting inside the cold bulk target. In contrast, the x-ray pinhole signals are dominated by the broadband thermal x-ray emission from the hot plasma at the front target surface.

  7. X-ray diagnostic device with an X-ray image amplifier, whose output image is fed into a movie camera, as well as a brightness control

    International Nuclear Information System (INIS)

    Lutz, H.

    1978-01-01

    The X-ray relief appearing behind a patient is immediately or with amplificating foils converted into a latent film image. By using a X-ray image amplifier the X-ray relief is then converted into a reduced and brighter optical image and fed into a photographic or movie camera and shot. To avoid a reduction in the image quality by quantum noise and a too large patient and physician dose a brightness control is provided for the X-ray diagnostic device. The control only dims as far as a brightness per image is produced that avoids quantum noise. On the other side it opens more by strongly beam absorbing patients or a smaller imaging ratio of the X-ray image amplifier to obtain a desired irradiation. (DG) [de

  8. Measuring neutron fluences and gamma/x-ray fluxes with CCD cameras

    International Nuclear Information System (INIS)

    Yates, G.J.; Smith, G.W.; Zagarino, P.; Thomas, M.C.

    1991-01-01

    The capability to measure bursts of neutron fluences and gamma/x-ray fluxes directly with charge coupled device (CCD) cameras while being able to distinguish between the video signals produced by these two types of radiation, even when they occur simultaneously, has been demonstrated. Volume and area measurements of transient radiation-induced pixel charge in English Electric Valve (EEV) Frame Transfer (FT) charge coupled devices (CCDs) from irradiation with pulsed neutrons (14 MeV) and Bremsstrahlung photons (4--12 MeV endpoint) are utilized to calibrate the devices as radiometric imaging sensors capable of distinguishing between the two types of ionizing radiation. Measurements indicate ∼.05 V/rad responsivity with ≥1 rad required for saturation from photon irradiation. Neutron-generated localized charge centers or ''peaks'' binned by area and amplitude as functions of fluence in the 10 5 to 10 7 n/cm 2 range indicate smearing over ∼1 to 10% of CCD array with charge per pixel ranging between noise and saturation levels

  9. Caliste 64, an innovative CdTe hard X-ray micro-camera

    Energy Technology Data Exchange (ETDEWEB)

    Meuris, A.; Limousin, O.; Pinsard, F.; Le Mer, I. [CEA Saclay, DSM, DAPNIA, Serv. Astrophys., F-91191 Gif sur Yvette (France); Lugiez, F.; Gevin, O.; Delagnes, E. [CEA Saclay, DSM, DAPNIA, Serv. Electron., F-91191 Gif sur Yvette (France); Vassal, M.C.; Soufflet, F.; Bocage, R. [3D-plus Company, F-78532 Buc (France)

    2008-07-01

    A prototype 64 pixel miniature camera has been designed and tested for the Simbol-X hard X-ray observatory to be flown on the joint CNES-ASI space mission in 2014. This device is called Caliste 64. It is a high performance spectro-imager with event time-tagging capability, able to detect photons between 2 keV and 250 keV. Caliste 64 is the assembly of a 1 or 2 min thick CdTe detector mounted on top of a readout module. CdTe detectors equipped with Aluminum Schottky barrier contacts are used because of their very low dark current and excellent spectroscopic performance. Front-end electronics is a stack of four IDeF-X V1.1 ASICs, arranged perpendicular to the detection plane, to read out each pixel independently. The whole camera fits in a 10 * 10 * 20 mm{sup 3} volume and is juxtaposable on its four sides. This allows the device to be used as an elementary unit in a larger array of Caliste 64 cameras. Noise performance resulted in an ENC better than 60 electrons rms in average. The first prototype camera is tested at -10 degrees C with a bias of -400 V. The spectrum summed across the 64 pixels results in a resolution of 697 eV FWHM at 13.9 keV and 808 eV FWFM at 59.54 keV. (authors)

  10. Micro Hard-X Ray Camera: From Caliste 64 to Caliste 256

    International Nuclear Information System (INIS)

    Meuris, A.; Limousin, O.; Le Mer, I.; Pinsard, F.; Blondel, C.; Daly, F.; Lugiez, F.; Gevin, O.; Delagnes, E.; Chavassieux, M.; Vassal, M.C.; Bocage, R.; Soufflet, F.

    2009-01-01

    Caliste project aims at hybridizing 1 cm 2 Cd(Zn)Te detectors with low noise front-end electronics, in a single component standing in a 1 * 1 * 2 cm 3 volume. The micro-camera is a spectroscopic imager for X and gamma rays detection, with time-tagging capability. Hybridization consists in stacking full custom ASICs perpendicular to the detection surface. The first prototype Caliste 64 integrates a detector of 8 * 8 pixels of 1 mm pitch. Fabrication and characterizations of nine cameras units validate the design and the hybridization concept. Spectroscopic tests result in a mean energy resolution of ∼0.7 keV FWHM at 14 keV and ∼0.85 keV FWHM at 60 keV using 1 mm-thick Al Schottky CdTe detectors biased at -400 V and cooled down to 15 degrees C. The new prototype called Caliste 256 integrates 16 * 16 pixels of 580 m pitch in the same volume as Caliste 64. Electrical tests with the first sample fabricated without detector result in a mean equivalent noise charge of 64e - rms (9.6 μs, no leakage current). Caliste devices are 4-side buttable and can be used as elementary detection units of a large hard X-ray focal plane, as for the 64 cm 2 high energy detector of the Simbol-X astronomical space mission. (authors)

  11. X-ray backscatter radiography. Intrusive instead of penetrating, X-ray shadow phenomenon

    International Nuclear Information System (INIS)

    Wrobel, Norma; Kolkoori, Sanjeevareddy; Osterloh, Kurt; European Federation for Non-Destructive Testing

    2013-01-01

    Generally, the primary practical advantage of X-ray backscattering radiography is that there is no need to place a detector on the side of the specimen opposite to the source. Such a situation usually is encountered whenever the specimen is not only standing right in front of a wall or even inside a wall but also if the specimen is such big that radiography is not possible because of the layer thickness to be penetrated. The method used here differs fundamentally from the conventional method to interrogate the object with a scanning beam ('pencil beam') and to collect the whole backscattered radiation from the area. The object is fully illuminated by a (uncollimated) cone beam. Here, the image is recorded with a camera of absorbent material (tungsten, lead), which contains a matrix detector as the image receiver. The optical effect is generated by a special twisted slit collimator which operates according to an extended pinhole camera. The independent positioning of source and camera allows a variable irradiation geometry which causes different images as a result. As a consequence, a complex object in front of a backscattering wall appears completely different than standing alone. So X-ray backscatter images have to be interpreted according to their illumination with X-rays and their surroundings. (orig.)

  12. Novel energy resolving x-ray pinhole camera on Alcator C-Moda)

    Science.gov (United States)

    Pablant, N. A.; Delgado-Aparicio, L.; Bitter, M.; Brandstetter, S.; Eikenberry, E.; Ellis, R.; Hill, K. W.; Hofer, P.; Schneebeli, M.

    2012-10-01

    A new energy resolving x-ray pinhole camera has been recently installed on Alcator C-Mod. This diagnostic is capable of 1D or 2D imaging with a spatial resolution of ≈1 cm, an energy resolution of ≈1 keV in the range of 3.5-15 keV and a maximum time resolution of 5 ms. A novel use of a Pilatus 2 hybrid-pixel x-ray detector [P. Kraft et al., J. Synchrotron Rad. 16, 368 (2009), 10.1107/S0909049509009911] is employed in which the lower energy threshold of individual pixels is adjusted, allowing regions of a single detector to be sensitive to different x-ray energy ranges. Development of this new detector calibration technique was done as a collaboration between PPPL and Dectris Ltd. The calibration procedure is described, and the energy resolution of the detector is characterized. Initial data from this installation on Alcator C-Mod is presented. This diagnostic provides line-integrated measurements of impurity emission which can be used to determine impurity concentrations as well as the electron energy distribution.

  13. Soft x-ray camera for internal shape and current density measurements on a noncircular tokamak

    International Nuclear Information System (INIS)

    Fonck, R.J.; Jaehnig, K.P.; Powell, E.T.; Reusch, M.; Roney, P.; Simon, M.P.

    1988-05-01

    Soft x-ray measurements of the internal plasma flux surface shaped in principle allow a determination of the plasma current density distribution, and provide a necessary monitor of the degree of internal elongation of tokamak plasmas with a noncircular cross section. A two-dimensional, tangentially viewing, soft x-ray pinhole camera has been fabricated to provide internal shape measurements on the PBX-M tokamak. It consists of a scintillator at the focal plane of a foil-filtered pinhole camera, which is, in turn, fiber optically coupled to an intensified framing video camera (/DELTA/t />=/ 3 msec). Automated data acquisition is performed on a stand-alone image-processing system, and data archiving and retrieval takes place on an optical disk video recorder. The entire diagnostic is controlled via a PDP-11/73 microcomputer. The derivation of the polodial emission distribution from the measured image is done by fitting to model profiles. 10 refs., 4 figs

  14. High vacuum high temperature x-ray camera (1961)

    International Nuclear Information System (INIS)

    Baron, J.L.

    1961-01-01

    - This camera makes it possible to carry out X-ray studies on highly oxidisable materials, up to about 900 deg. C. Most of the existing models do not provide sufficient protection against the formation of surface oxide or carbide films on the sample. The present arrangement makes it possible to operate at very low pressures: 5 x 10 -8 to 10 -7 torr, thanks to an entirely metallic apparatus. The radiation heating system consists of an incandescent lamp, outside the evacuated portion, and a reflector which concentrates the energetic flux into the sample through a silica window. The heated parts have thus only a small thermal inertia. With the apparatus it has been possible to determine the phase parameters of uranium-α up to 650 deg. C with a precision of ± 0.0015 A. A similar study has been carried out on a uranium-chromium alloy in the β-phase up to 740 deg. C. (author) [fr

  15. Flat Field Anomalies in an X-ray CCD Camera Measured Using a Manson X-ray Source (HTPD 08 paper)

    International Nuclear Information System (INIS)

    Haugh, M; Schneider, M B

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. The intensity distribution taken by the SXI camera during a NIF shot is used to determine how accurately NIF can aim laser beams. This is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 (micro)m square pixels, and 15 (micro)m thick. A multi-anode Manson X-ray source, operating up to 10kV and 10W, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE ∼ 10. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation occurred at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was not observable below 4 keV. We were also able to observe debris, damage, and surface defects on the CCD chip. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager

  16. Small Field of View Scintimammography Gamma Camera Integrated to a Stereotactic Core Biopsy Digital X-ray System

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Weisenberger; Fernando Barbosa; T. D. Green; R. Hoefer; Cynthia Keppel; Brian Kross; Stanislaw Majewski; Vladimir Popov; Randolph Wojcik

    2002-10-01

    A small field of view gamma camera has been developed for integration with a commercial stereotactic core biopsy system. The goal is to develop and implement a dual-modality imaging system utilizing scintimammography and digital radiography to evaluate the reliability of scintimammography in predicting the malignancy of suspected breast lesions from conventional X-ray mammography. The scintimammography gamma camera is a custom-built mini gamma camera with an active area of 5.3 cm /spl times/ 5.3 cm and is based on a 2 /spl times/ 2 array of Hamamatsu R7600-C8 position-sensitive photomultiplier tubes. The spatial resolution of the gamma camera at the collimator surface is < 4 mm full-width at half-maximum and a sensitivity of /spl sim/ 4000 Hz/mCi. The system is also capable of acquiring dynamic scintimammographic data to allow for dynamic uptake studies. Sample images of preliminary clinical results are presented to demonstrate the performance of the system.

  17. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    International Nuclear Information System (INIS)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-01-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an 'area' detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors

  18. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.it [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Batignani, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Benkechkache, M.A. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017, Constantine (Algeria); Bettarini, S.; Casarosa, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Comotti, D. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Dalla Betta, G.-F. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); TIFPA INFN, I-38123 Trento (Italy); Fabris, L. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); Forti, F. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Grassi, M.; Lodola, L.; Malcovati, P. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Manghisoni, M. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); and others

    2016-07-11

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10{sup 4} photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  19. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Benkechkache, M.A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.

    2016-01-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10"4 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  20. A space-time tomography algorithm for the five-camera soft X-ray diagnostic at RTP

    Energy Technology Data Exchange (ETDEWEB)

    Lyadina, E.S.; Tanzi, C.P.; Cruz, D.F. da; Donne, A.J.H. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands)

    1993-12-31

    A five-camera soft x-ray with 80 detector channels has been installed on the RTP tokamak with the object of studying MHD processes with a relatively high poloidal mode number (m=4). Numerical tomographic reconstruction algorithms used to reconstruct the plasma emissivity profile are constrained by the characteristics of the system. Especially high poloidal harmonics, which can be resolved due to the high number of cameras, can be strongly distorted by stochastic and systematic errors. Furthermore, small uncertainties in the relative position of the cameras in a multiple camera system can lead to strong artefacts in the reconstruction. (author) 6 refs., 4 figs.

  1. In situ micro-focused X-ray beam characterization with a lensless camera using a hybrid pixel detector

    International Nuclear Information System (INIS)

    Kachatkou, Anton; Marchal, Julien; Silfhout, Roelof van

    2014-01-01

    Position and size measurements of a micro-focused X-ray beam, using an X-ray beam imaging device based on a lensless camera that collects radiation scattered from a thin foil placed in the path of the beam at an oblique angle, are reported. Results of studies on micro-focused X-ray beam diagnostics using an X-ray beam imaging (XBI) instrument based on the idea of recording radiation scattered from a thin foil of a low-Z material with a lensless camera are reported. The XBI instrument captures magnified images of the scattering region within the foil as illuminated by the incident beam. These images contain information about beam size, beam position and beam intensity that is extracted during dedicated signal processing steps. In this work the use of the device with beams for which the beam size is significantly smaller than that of a single detector pixel is explored. The performance of the XBI device equipped with a state-of-the-art hybrid pixel X-ray imaging sensor is analysed. Compared with traditional methods such as slit edge or wire scanners, the XBI micro-focused beam characterization is significantly faster and does not interfere with on-going experiments. The challenges associated with measuring micrometre-sized beams are described and ways of optimizing the resolution of beam position and size measurements of the XBI instrument are discussed

  2. X-ray imaging with compound refractive lens and microfocus X-ray tube

    OpenAIRE

    Pina, Ladislav; Dudchik, Yury; Jelinek, Vaclav; Sveda, Libor; Marsik, Jiri; Horvath, Martin; Petr, Ondrej

    2008-01-01

    Compound refractive lenses (CRL), consisting of a lot number in-line concave microlenses made of low-Z material were studied. Lenses with focal length 109 mm and 41 mm for 8-keV X-rays, microfocus X-ray tube and X-ray CCD camera were used in experiments. Obtained images show intensity distribution of magnified microfocus X-ray source focal spot. Within the experiments, one lens was also used as an objective lens of the X-ray microscope, where the copper anode X-ray microfocus tube served as a...

  3. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  4. In-flight characterization of the HETE soft X-ray CCD cameras

    International Nuclear Information System (INIS)

    Prigozhin, G.; Villasenor, J.; Vanderspek, R.; Doty, J.; Crew, G.; Ricker, G.; Jernigan, G.

    2003-01-01

    We have developed a set of software tools that allow to monitor the performance of the flight X-ray CCD cameras as soon as data arrive at MIT. An emission line at 5.9 keV from the on-board Fe-55 radioactive calibration source is clearly visible in the spectra and provides the means to measure the gain and the noise for each observation in each of the 4 CCD chips in operation. Both parameters can change with time, depending on the phase of the moon and the amount of light leaking into the system. Time vs. position scatter plots were found to be an extremely powerful tool in understanding of the device performance. They illustrate the evolution of the light leaks produced by the dark Earth at the beginning and the end of each orbit. With a bright X-ray source in the field of view the shadow of the mask projected on the surface of the CCD clearly shows the motions of the spacecraft

  5. The influence of distrubing effects on the performance of a wide field coded mask X-ray camera

    International Nuclear Information System (INIS)

    Sims, M.R.; Turner, M.J.L.; Willingale, R.

    1985-01-01

    The coded aperture telescope, or Dicke camera, is seen as an instrument suitable for many applications in X-ray and gamma ray imaging. In this paper the effects of a partially obscuring window mask support or collimator, a detector with limited spatial resolution, and motion of the camera during image integration are considered using a computer simulation of the performance of such a camera. Cross correlation and the Wiener filter are used to deconvolve the data. It is shown that while these effects cause a degradation in performance this is in no case catastrophic. Deterioration of the image is shown to be greatest where strong sources are present in the field of view and is quite small (proportional 10%) when diffuse background is the major element. A comparison between the cyclic mask camera and the single mask camera is made under various conditions and it is shown the single mask camera has a moderate advantage particularly when imaging a wide field of view. (orig.)

  6. Be Foil ''Filter Knee Imaging'' NSTX Plasma with Fast Soft X-ray Camera

    International Nuclear Information System (INIS)

    B.C. Stratton; S. von Goeler; D. Stutman; K. Tritz; L.E. Zakharov

    2005-01-01

    A fast soft x-ray (SXR) pinhole camera has been implemented on the National Spherical Torus Experiment (NSTX). This paper presents observations and describes the Be foil Filter Knee Imaging (FKI) technique for reconstructions of a m/n=1/1 mode on NSTX. The SXR camera has a wide-angle (28 o ) field of view of the plasma. The camera images nearly the entire diameter of the plasma and a comparable region in the vertical direction. SXR photons pass through a beryllium foil and are imaged by a pinhole onto a P47 scintillator deposited on a fiber optic faceplate. An electrostatic image intensifier demagnifies the visible image by 6:1 to match it to the size of the charge-coupled device (CCD) chip. A pair of lenses couples the image to the CCD chip

  7. Development of the focal plane PNCCD camera system for the X-ray space telescope eROSITA

    International Nuclear Information System (INIS)

    Meidinger, Norbert; Andritschke, Robert; Ebermayer, Stefanie; Elbs, Johannes; Haelker, Olaf; Hartmann, Robert; Herrmann, Sven; Kimmel, Nils; Schaechner, Gabriele; Schopper, Florian; Soltau, Heike; Strueder, Lothar; Weidenspointner, Georg

    2010-01-01

    A so-called PNCCD, a special type of CCD, was developed twenty years ago as focal plane detector for the XMM-Newton X-ray astronomy mission of the European Space Agency ESA. Based on this detector concept and taking into account the experience of almost ten years of operation in space, a new X-ray CCD type was designed by the 'MPI semiconductor laboratory' for an upcoming X-ray space telescope, called eROSITA (extended Roentgen survey with an imaging telescope array). This space telescope will be equipped with seven X-ray mirror systems of Wolter-I type and seven CCD cameras, placed in their foci. The instrumentation permits the exploration of the X-ray universe in the energy band from 0.3 up to 10 keV by spectroscopic measurements with a time resolution of 50 ms for a full image comprising 384x384 pixels. Main scientific goals are an all-sky survey and investigation of the mysterious 'Dark Energy'. The eROSITA space telescope, which is developed under the responsibility of the 'Max-Planck-Institute for extraterrestrial physics', is a scientific payload on the new Russian satellite 'Spectrum-Roentgen-Gamma' (SRG). The mission is already approved by the responsible Russian and German space agencies. After launch in 2012 the destination of the satellite is Lagrange point L2. The planned observational program takes about seven years. We describe the design of the eROSITA camera system and present important test results achieved recently with the eROSITA prototype PNCCD detector. This includes a comparison of the eROSITA detector with the XMM-Newton detector.

  8. X-ray fluorescence imaging with polycapillary X-ray optics

    International Nuclear Information System (INIS)

    Yonehara, Tasuku; Yamaguchi, Makoto; Tsuji, Kouichi

    2010-01-01

    X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.

  9. Gain uniformity, linearity, saturation and depletion in gated microchannel-plate x-ray framing cameras

    International Nuclear Information System (INIS)

    Landen, O.L.; Bell, P.M.; Satariano, J.J.; Oertel, J.A.; Bradley, D.K.

    1994-01-01

    The pulsed characteristics of gated, stripline configuration microchannel-plate (MCP) detectors used in X-ray framing cameras deployed on laser plasma experiments worldwide are examined in greater detail. The detectors are calibrated using short (20 ps) and long (500 ps) pulse X-ray irradiation and 3--60 ps, deep UV (202 and 213 nm), spatially-smoothed laser irradiation. Two-dimensional unsaturated gain profiles show 5 in irradiation and fitted using a discrete dynode model. Finally, a pump-probe experiment quantifying for the first time long-suspected gain depletion by strong localized irradiation was performed. The mechanism for the extra voltage and hence gain degradation is shown to be associated with intense MCP irradiation in the presence of the voltage pulse, at a fluence at least an order of magnitude above that necessary for saturation. Results obtained for both constant pump area and constant pump fluence are presented. The data are well modeled by calculating the instantaneous electrical energy loss due to the intense charge extraction at the pump site and then recalculating the gain downstream at the probe site given the pump-dependent degradation in voltage amplitude

  10. Characterisation of microfocused beam for synchrotron powder diffraction using a new X-ray camera

    International Nuclear Information System (INIS)

    Thomas, C; Potter, J; Tang, C C; Lennie, A R

    2012-01-01

    The powder diffraction beamline I11, Diamond Light Source, is being continually upgraded as requirements of the user community evolve. Intensities of X-rays from the I11 in-vacuum electron undulator in the 3 GeV synchrotron fall off at higher energies. By focusing higher energy X-rays, we can overcome flux limitations, and open up new diffraction experiments. Here, we describe characterisation of microfocusing using compound refractive lenses (CRL). For a relatively modest outlay, we have developed an experimental setup and a novel X-ray camera with good sensitivity and a resolution specification suitable for characterising these focusing optics. We show that vertical oscillations in the focused beam compromise resolution of the source imaged by the CRL. Nevertheless, we have measured CRL focusing properties, and demonstrate the use of energy scanning to determine lens alignment. Real benefits of the intensity gain are illustrated.

  11. Imaging plate, a new type of x-ray area detector

    International Nuclear Information System (INIS)

    Kamiya, Nobuo; Amemiya, Yoshiyuki; Miyahara, Junji.

    1986-01-01

    In respective fields of X-ray crystallography, for the purpose of the efficient collection of reciprocal space information, two-dimensional X-ray detectors such as multiwire proportional chambers and X-ray television sets have been used together with conventional X-ray films. X-ray films are characterized by uniform sensitivity and high positional resolution over a wide area, but the sensitivity is low, and the range of action and the linearity of the sensitivity is problematic. They require the development process, accordingly lack promptitude. The MWPCs and X-ray television sets are superior in the sensitivity, its linearity, the range of action and promptitude, but interior in the uniformity and resolution to the films. Imaging plate is a new X-ray area detector developed by Fuji Photo Film Co., Ltd., for digital X-ray medical image diagnosis. This detector is superior in all the above mentioned performances, and it seems very useful also for X-ray crystallography. In this paper, the system composed of an imaging plate and its reader is described, and the basic performance as an X-ray area detector and the results of having recorded the diffraction images of protein crystals as the example of applying it to X-ray crystallography are reported. The imaging plate is that the crystalline fluorescent powder of BaFBr doped with Eu 2+ ions is applied on plastic films. (Kako, I.)

  12. High-speed image converter x-ray studies

    International Nuclear Information System (INIS)

    Bryukhnevitch, G.I.; Kas'yanov, Yu.S.; Korobkin, V.V.; Prokhorov, A.M.; Stepanov, B.M.; Chevokin, V.K.; Schelev, M.Ya.

    1975-01-01

    Two X-ray high-speed image-converter cameras (ICC) have been developed. In the first one a soft X-ray radiation is converted into visible light with the aid of a 0.5ns response time, plastic scintillator. The second camera incorporates a photocathode which is sensitive to visible and X-ray radiation. Its calculated temporal resolution approaches 5 to 7ps. Both developed cameras were employed for studies of X-ray radiation emitted by laser plasma. For the smooth nanosecond excited laser pulses, a noticeable amplitude modulation was recorded in all laser pulses reflected by plasma as well as in each third pulse of X-ray plasma radiation. It was also observed that the duration of X-ray plasma radiation is 20 to 40% shorter than that of the incident nanosecond laser pulses and this duration being 3 to 6 times longer than that of the picosecond irradiating pulses. The half-width of the recorded X-ray plasma pulses was 30 to 60ps. (author)

  13. X-ray streak camera for observation of tightly pinched relativistic electron beams

    International Nuclear Information System (INIS)

    Johnson, D.J.

    1977-01-01

    A pinhole camera is coupled with a Pilot-B scintillator and image-intensified TRW streak camera to study pinched electron beam profiles via observation of anode target bremsstrahlung. Streak intensification is achieved with an EMI image intensifier operated at a gain of up to 10 6 which allows optimizing the pinhole configuration so that resolution is simultaneously limited by photon-counting statistics and pinhole geometry. The pinhole used is one-dimensional and is fabricated by inserting uranium shims with hyperbolic curved edges between two 5-cm-thick lead blocks. The loss of spatial resolution due to the x-ray transmission through the perimeter of the pinhole is calculated and a streak photograph of a Gamble I pinched beam interacting with a brass anode is presented

  14. Optimization of a collimator size for the pin-hole camera of X-rays, and proposal of a method to correct degradations of efficiencies in neighboring parts of the image

    International Nuclear Information System (INIS)

    Hayashi, Hiroaki; Nishihara, Sadamitsu; Taniuchi, Shou; Kamiya, Naotaka

    2012-01-01

    A visual image of the scattered X-ray distributions gives us useful information for beginners to study radiation physics. A pin-hole camera for X-rays can be made by use of simple materials as well as a two-dimensional X-ray detector (imaging plate: IP). In contrast with a pin-hole camera for the visible radiations, a pin-hole camera for X-rays uses a collimator, having a sufficient thickness to reduce X-rays. This design causes the following problem: in the case in which the X-rays are incident to the collimator from the diagonal direction, the some X-rays are absorbed by the wall of the collimator. Namely, the images in the surrounding part of the IP are underrepresented. The aim of this study is to suggest a correction method of the underrepresentation. We used a pin-hole camera (320 mm(long)×270 mm(wide)×300 mm(depth)) by means of the clinically applied IP (10×12 inch). In order to determine proper conditions for a size of collimators (pin-hole), experiments using medical X-ray equipments were carried out. The efficiencies and resolutions were experimentally determined for the collimator sizes of 2 to 8 mm φ . Then, images of scattered X-ray distributions were measured by the irradiation of a head phantom, and considerations were taken for a practical use of the pin-hole camera. Moreover, an exponential absorption of X-rays in the phantom was visualized by our camera in order to indicate a potential of quantitative analysis based on the image of scattered X-ray distributions. (author)

  15. X-ray imaging using digital cameras

    Science.gov (United States)

    Winch, Nicola M.; Edgar, Andrew

    2012-03-01

    The possibility of using the combination of a computed radiography (storage phosphor) cassette and a semiprofessional grade digital camera for medical or dental radiography is investigated. We compare the performance of (i) a Canon 5D Mk II single lens reflex camera with f1.4 lens and full-frame CMOS array sensor and (ii) a cooled CCD-based camera with a 1/3 frame sensor and the same lens system. Both systems are tested with 240 x 180 mm cassettes which are based on either powdered europium-doped barium fluoride bromide or needle structure europium-doped cesium bromide. The modulation transfer function for both systems has been determined and falls to a value of 0.2 at around 2 lp/mm, and is limited by light scattering of the emitted light from the storage phosphor rather than the optics or sensor pixelation. The modulation transfer function for the CsBr:Eu2+ plate is bimodal, with a high frequency wing which is attributed to the light-guiding behaviour of the needle structure. The detective quantum efficiency has been determined using a radioisotope source and is comparatively low at 0.017 for the CMOS camera and 0.006 for the CCD camera, attributed to the poor light harvesting by the lens. The primary advantages of the method are portability, robustness, digital imaging and low cost; the limitations are the low detective quantum efficiency and hence signal-to-noise ratio for medical doses, and restricted range of plate sizes. Representative images taken with medical doses are shown and illustrate the potential use for portable basic radiography.

  16. Small area silicon diffused junction x-ray detectors

    International Nuclear Information System (INIS)

    Walton, J.T.; Pehl, R.H.; Larsh, A.E.

    1981-10-01

    The low temperature performance of silicon diffused junction detectors in the measurement of low energy x-rays is reported. The detectors have an area of 0.04 cm 2 and a thickness of 100 μm. The spectral resolutions of these detectors were found to be in close agreement with expected values indicating that the defects introduced by the high temperature processing required in the device fabrication were not deleteriously affecting the detection of low energy x-rays. Device performance over a temperature range of 77 to 150 0 K is given. These detectors were designed to detect low energy x-rays in the presence of minimum ionizing electrons. The successful application of silicon diffused junction technology to x-ray detector fabrication may facilitate the development of other novel silicon x-ray detector designs

  17. Small area silicon diffused junction X-ray detectors

    Science.gov (United States)

    Walton, J. T.; Pehl, R. H.; Larsh, A. E.

    1982-01-01

    The low-temperature performance of silicon diffused junction detectors in the measurement of low energy X-rays is reported. The detectors have an area of 0.04 sq cm and a thickness of 100 microns. The spectral resolutions of these detectors were found to be in close agreement with expected values, indicating that the defects introduced by the high-temperature processing required in the device fabrication were not deleteriously affecting the detection of low-energy X-rays. Device performance over a temperature range of 77 K to 150 K is given. These detectors were designed to detect low-energy X-rays in the presence of minimum ionizing electrons. The successful application of silicon-diffused junction technology to X-ray detector fabrication may facilitate the development of other novel silicon X-ray detector designs.

  18. Development of a dual MCP framing camera for high energy x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, N., E-mail: izumi2@llnl.gov; Hall, G. N.; Carpenter, A. C.; Allen, F. V.; Cruz, J. G.; Felker, B.; Hargrove, D.; Holder, J.; Lumbard, A.; Montesanti, R.; Palmer, N. E.; Piston, K.; Stone, G.; Thao, M.; Vern, R.; Zacharias, R.; Landen, O. L.; Tommasini, R.; Bradley, D. K.; Bell, P. M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    Recently developed diagnostic techniques at LLNL require recording backlit images of extremely dense imploded plasmas using hard x-rays, and demand the detector to be sensitive to photons with energies higher than 50 keV [R. Tommasini et al., Phys. Phys. Plasmas 18, 056309 (2011); G. N. Hall et al., “AXIS: An instrument for imaging Compton radiographs using ARC on the NIF,” Rev. Sci. Instrum. (these proceedings)]. To increase the sensitivity in the high energy region, we propose to use a combination of two MCPs. The first MCP is operated in a low gain regime and works as a thick photocathode, and the second MCP works as a high gain electron multiplier. We tested the concept of this dual MCP configuration and succeeded in obtaining a detective quantum efficiency of 4.5% for 59 keV x-rays, 3 times larger than with a single plate of the thickness typically used in NIF framing cameras.

  19. X-ray imaging with sub-micron resolution using large-area photon counting detectors Timepix

    Science.gov (United States)

    Dudak, J.; Karch, J.; Holcova, K.; Zemlicka, J.

    2017-12-01

    As X-ray micro-CT became a popular tool for scientific purposes a number of commercially available CT systems have emerged on the market. Micro-CT systems have, therefore, become widely accessible and the number of research laboratories using them constantly increases. However, even when CT scans with spatial resolution of several micrometers can be performed routinely, data acquisition with sub-micron precision remains a complicated task. Issues come mostly from prolongation of the scan time inevitably connected with the use of nano-focus X-ray sources. Long exposure time increases the noise level in the CT projections. Furthermore, considering the sub-micron resolution even effects like source-spot drift, rotation stage wobble or thermal expansion become significant and can negatively affect the data. The use of dark-current free photon counting detectors as X-ray cameras for such applications can limit the issue of increased image noise in the data, however the mechanical stability of the whole system still remains a problem and has to be considered. In this work we evaluate the performance of a micro-CT system equipped with nano-focus X-ray tube and a large area photon counting detector Timepix for scans with effective pixel size bellow one micrometer.

  20. LabVIEW control software for scanning micro-beam X-ray fluorescence spectrometer.

    Science.gov (United States)

    Wrobel, Pawel; Czyzycki, Mateusz; Furman, Leszek; Kolasinski, Krzysztof; Lankosz, Marek; Mrenca, Alina; Samek, Lucyna; Wegrzynek, Dariusz

    2012-05-15

    Confocal micro-beam X-ray fluorescence microscope was constructed. The system was assembled from commercially available components - a low power X-ray tube source, polycapillary X-ray optics and silicon drift detector - controlled by an in-house developed LabVIEW software. A video camera coupled to optical microscope was utilized to display the area excited by X-ray beam. The camera image calibration and scan area definition software were also based entirely on LabVIEW code. Presently, the main area of application of the newly constructed spectrometer is 2-dimensional mapping of element distribution in environmental, biological and geological samples with micrometer spatial resolution. The hardware and the developed software can already handle volumetric 3-D confocal scans. In this work, a front panel graphical user interface as well as communication protocols between hardware components were described. Two applications of the spectrometer, to homogeneity testing of titanium layers and to imaging of various types of grains in air particulate matter collected on membrane filters, were presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. X-ray calibration facility for plasma diagnostics of the MegaJoule laser

    International Nuclear Information System (INIS)

    Hubert, S.; Prevot, V.

    2013-01-01

    The Laser MegaJoule (LMJ) located at CEA-CESTA will be equipped with x-ray plasma diagnostics using different kinds of x-ray components such as filters, mirrors, crystals, detectors and cameras. To guarantee LMJ measurements, detectors such as x-ray cameras need to be regularly calibrated. An x-ray laboratory is devoted to this task and performs absolute x-ray calibrations for similar x-ray cameras running on Laser Integration Line (LIL). This paper presents the x-ray calibration bench with its x-ray tube based High Energy x-ray Source (HEXS) and some calibration results. By mean of an ingenious transposition system under vacuum absolute x-ray calibration of x-ray cameras, like streak and stripline ones, can be carried out. Coupled to a new collimation system with micrometric accuracy on aperture sensitivity quantum efficiency measurements can be achieved with reduced uncertainties. (authors)

  2. Modeling of neutron induced backgrounds in x-ray framing cameras

    Energy Technology Data Exchange (ETDEWEB)

    Hagmann, C.; Izumi, N.; Bell, P.; Bradley, D.; Conder, A.; Eckart, M.; Khater, H.; Koch, J.; Moody, J.; Stone, G. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2010-10-15

    Fast neutrons from inertial confinement fusion implosions pose a severe background to conventional multichannel plate (MCP)-based x-ray framing cameras for deuterium-tritium yields >10{sup 13}. Nuclear reactions of neutrons in photosensitive elements (charge coupled device or film) cause some of the image noise. In addition, inelastic neutron collisions in the detector and nearby components create a large gamma pulse. The background from the resulting secondary charged particles is twofold: (1) production of light through the Cherenkov effect in optical components and by excitation of the MCP phosphor and (2) direct excitation of the photosensitive elements. We give theoretical estimates of the various contributions to the overall noise and present mitigation strategies for operating in high yield environments.

  3. Technology Requirements for a Square Meter, Arcsecond Resolution Telescope for X-Rays: The SMART-X Mission

    Science.gov (United States)

    Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay A.; Cotroneo, Vincenzo; Forman, William R.; Freeman, Mark D.; McMuldroch, Stuart; Reid, Paul B.; Tananbaum, Harvey; Vikhlinin, Alexey A.; hide

    2014-01-01

    Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first super-massive black holes. We have envisioned a mission, the Square Meter Arcsecond Resolution Telescope for X-rays (SMART-X), based on adjustable x-ray optics technology, incorporating mirrors with the required small ratio of mass to collecting area. We are pursuing technology which achieves sub-arcsecond resolution by on-orbit adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMART-X will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no requirements more stringent than those which are well understood and proven on the current Chandra X-ray Observatory.

  4. Time response characteristics of X-ray detector system on Silex-Ⅰ laser facility

    International Nuclear Information System (INIS)

    Yi Rongqing; He Xiao'an; Li Hang; Du Huabing; Zhang Haiying; Cao Zhurong

    2013-01-01

    On the Silex-Ⅰ laser facility, the time response characteristics of XRD detector were studied. A laser with a pulse of 32 fs and a wavelength of 800 nm was used to irradiate a plane Au target. X-ray calibrated method of time of exposure X-ray framing camera and time resolution of X-ray streak camera was explored. The time response characteristics of XRD detector and time process of X-ray emission were obtained from experiment. We obtained X-ray calibration method of time of exposure X-ray framing camera and time resolution of X-ray streak camera. (authors)

  5. Technology Requirements For a Square-Meter, Arcsecond-Resolution Telescope for X-Rays: The SMART-X Mission

    Science.gov (United States)

    Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay; Cotroneo, Vincenzo; Forman, William; Freeman, Mark; McMuldroch, Stuart; Reid, Paul; Tananbaum, Harvey; Vikhlinin, Alexey; hide

    2014-01-01

    Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first supermassive black holes. We have envisioned a mission based on adjustable x-ray optics technology, in order to achieve the required reduction of mass to collecting area for the mirrors. We are pursuing technology which effects this adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMARTX will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no more stringent requirements than those which are well understood and proven on the current Chandra X-ray Observatory.

  6. RI-60TK X-ray television introscope

    International Nuclear Information System (INIS)

    Zhdanov, A.V.; Shablov, S.V.; Morgunov, V.I.

    1985-01-01

    X-ray television introscope is briefly described. It is applied for remote viewing of welded joints and steel articles with up to 45 mm wall thickness, steel casting, articles of titanium and aluminium alloys. X-radiation penetrating the constrolled material is amplified by X-ray image converter and is passed to television camera tube. X-ray image is observed on the screen of picture monitor. Camera attachment is provided for document recording. The introscope possesses higher sensitivity and operates with lower dose rate of radiation as compared to earlier produced devices

  7. Equipment for x- and gamma ray radiography

    International Nuclear Information System (INIS)

    Abd Nasir Ibrahim; Azali Muhammad; Ab Razak Hamzah; Abd Aziz Mohamed; Mohammad Pauzi Ismail

    2004-01-01

    The following topics related to the equipment for x - and gamma ray radiography are discussed in this chapter. The topics are x-ray source for Industrial Radiography: properties of x-ray, generation of x-ray, mechanism of x-ray production, x-ray equipment, power supply, distribution of x-ray intensity along the tube: gamma ray source for Industrial Radiography: properties of gamma rays, gamma ray sources, gamma ray projectors on cameras, source changing. Care of Radiographic Equipments: Merits and Demerits of x and Gamma Rays

  8. Two New Types of Detector for X- or Gamma-Ray Cameras

    International Nuclear Information System (INIS)

    Kellershohn, C.; Desgrez, A.; Lansiart, A.

    1964-01-01

    X- or γ-ray cameras consist essentially of a hole-type or grid-type lens system together with a detector. The authors propose two kinds of detector quite different from the Anger device, which so far has been the only one in practical use. The first consists of a self-triggering spark chamber. This chamber, about 20 cm in diam. and filled with a rare gas (argon or xenon), forms a cathode and two grids. The cathode and the second grid are subjected to a potential difference of several kilovolts, somewhat lower than the breakdown voltage. The first cathode-grid space serves as an electron source under the action of the low-energy X- or γ-ray photons. The cathode can also be plated with a metal of high Z, or a crystal scintillator connected to a photocathode can be used. After suitable amplification, the sudden burst of charges due to electron multiplication in the Townsend avalanche produces a well localized spark with a delay of a fraction of a microsecond. The image is obtained with the aid of a camera whose shutter is permanently open. The second type of detector consists of a Csl (Tl) crystal connected to the photocathode of a Thomson tube, 20 cm in diam. and with electrostatic focusing. The image on the secondary screen of this tube is transferred by an optical device to the photocathode of a tube with parallel electric and magnetic field (manufactured by the English Electric Valve Company) and serving as shutter. Some of the light entering the optical device is received by a photomultiplier, which controls the opening of the shutter tube through an amplitude selector. This arrangement makes it possible to distinguish between the light due to the signal and that due to the noise of the Thomson tube. The shutter tube is opened only by the former. Since the shutter tube remains open for only an extremely short time, the signal-noise ratio of this detector arrangement is high enough to give an image on the end screen of the shutter tube using a permanently open

  9. Performance evaluation of X-ray CT using visible scintillation light

    International Nuclear Information System (INIS)

    Kodama, Kiyoyuki; Hamada, Minoru; Suzuki, Tamotsu; Hashimoto, Masatoshi; Hanada, Takashi; Ide, Tatsuya; Maruyama, Koichi

    2004-01-01

    We proposed a new method of performance evaluation for X-ray CT using visible scintillation light and examined its usefulness in this study. When we scanned a plastic scintillator disk in a gantry opening of the X-ray CT, we could observe visible scintillation light. The rotation of the light-emitting area of the disk corresponded to that of the X-ray tube. We were able to record the scintillation light by digital video camera. By analyzing the area of visible scintillation light, the rotation speed of the X-ray tube, angular spread of the X-ray beam, uniformity of the incident X-rays, and change in X-ray energy were measured. No other method is available to obtain the above parameters of X-ray CT during a single CT scan. In the measurements of the uniformity of incident X-rays and change of X-ray energy, our method showed good accuracy in detecting the attenuation caused by the couch between the X-ray tube and the plastic scintillator disc. The proposed method is inexpensive and easy-to-use. We conclude that the method is a useful tool for performance evaluation as well as a maintenance tool for X-ray CT. (author)

  10. High-speed X-ray topography

    International Nuclear Information System (INIS)

    Eckers, W.; Oppolzer, H.

    1977-01-01

    The investigation of lattice defects in semiconductor crystals by conventional X-ray diffraction topography is very time-consuming. Exposure times can be reduced by using high-intensity X-rays and X-ray image intensifiers. The described system comprises a high-power rotating-anode X-ray tube, a remote-controlled X-ray topography camera, and a television system operating with an X-ray sensing VIDICON. System performance is demonstrated with reference to exploratory examples. The exposure time for photographic plates is reduced to 1/20 and for the X-ray TV system (resolution of the order of 30 μm) to 1/100 relative to that required when using a conventional topography system. (orig.) [de

  11. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    International Nuclear Information System (INIS)

    Sun, Cheng-Jun; Brewe, Dale L.; Heald, Steve M.; Zhang, Bangmin; Chen, Jing-Sheng; Chow, G. M.; Venkatesan, T.

    2014-01-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr 0.67 Sr 0.33 MnO 3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam

  12. Applications for X-ray detectors in astrophysics

    International Nuclear Information System (INIS)

    Remillard, R.A.

    2003-01-01

    Full text: Position-sensitive X-Ray detectors continue to playa central role in high-energy astrophysics. The current science goals are reviewed with emphasis on requirements in terms of camera performance. Wide-field imaging techniques, including coded mask cameras, are an essential part of space programs because of the transient nature of high-priority targets, e.g. eruptions from black-hole binaries and cosmic explosions such as gamma ray bursts. Pointing X-ray telescopes are being planned with a wide range of photon energies and with collection designs that include both mirrors and coded masks. Requirements for high spectral resolution and high time resolution are driven by diverse types of X-ray sources such as msec pulsars, quasars with emission-line profiles shaped by general relativity, and X-ray binaries that exhibit quasi-periodic oscillations in the range of 40-1300 Hz. Many laboratories and universities are involved in space-qualification of new detector technologies, e.g. CZT cameras, X-ray calorimeters, new types of CCDs, and GEM detectors. Even X-ray interferometry is on the horizon of NASA's science roadmap. The difficulties in advancing new technologies for space science applications require careful coordinations between industry and science groups in order to solve science problems while minimizing risk

  13. X-ray emission characteristics of foam target plasmas

    International Nuclear Information System (INIS)

    Fronya, A.A.; Borisenko, N.G.; Chernodub, M.L.; Merkuliev, Yu.A.; Osipov, M.V.; Puzyrev, V.N.; Sahakyan, A.T.; Starodub, A.N.; Vasin, B.L.; Yakushev, O.F.

    2010-01-01

    Complete text of publication follows. Experimental results of laser radiation interaction with a foam targets are presented. The spatial, temporal and energy characteristics of x-ray plasma radiation have been investigated. The pinhole-camera and Schwarzschild objective have been used for the plasma image formation in different spectral ranges. The plasma image is registered by the Schwarzschild objective in a narrow spectral range 180 - 200 A. Spectral characteristics of x-ray radiation registered by pinhole-camera have been defined by means outer filters. The use of the filters with different transmission curves allowed one the determine the localization of x-ray radiation with fixed wavelength. Spatial resolution accounts 16 μm in the pinhole-camera diagnostic channel and 2.5 μm in the Schwarzschild objective diagnostic channel. The plasma images in the intrinsic x-ray radiation show that the emission area in the transverse direction with respect to the direction of the propagating heating radiation exceeds the focal spot size. This fact indicates that the target heating in the transverse direction is due to internal energy of the created plasma. The average value of plasma electron temperature is ∼ 0.4 - 1.4 keV. Acknowledgements. The work is partly supported by the Russian Foundation for Basic Researches, grant no. 10-02-00113 and by Federal Target Program 'Research and scientific-pedagogical cadres of Innovative Russia' (grant 2009-1.1-122-052-025).

  14. Multi-keV X-ray area source intensity at SGII laser facility

    Science.gov (United States)

    Wang, Rui-rong; An, Hong-hai; Xie, Zhi-yong; Wang, Wei

    2018-05-01

    Experiments for investigating the feasibility of multi-keV backlighters for several different metallic foil targets were performed at the Shenguang II (SGII) laser facility in China. Emission spectra in the energy range of 1.65-7.0 keV were measured with an elliptically bent crystal spectrometer, and the X-ray source size was measured with a pinhole camera. The X-ray intensity near 4.75 keV and the X-ray source size for titanium targets at different laser intensity irradiances were studied. By adjusting the total laser energy at a fixed focal spot size, laser intensity in the range of 1.5-5.0 × 1015 W/cm2, was achieved. The results show that the line emission intensity near 4.75 keV and the X-ray source size are dependent on the laser intensity and increase as the laser intensity increases. However, an observed "peak" in the X-ray intensity near 4.75 keV occurs at an irradiance of 4.0 × 1015 W/cm2. For the employed experimental conditions, it was confirmed that the laser intensity could play a significant role in the development of an efficient multi-keV X-ray source. The experimental results for titanium indicate that the production of a large (˜350 μm in diameter) intense backlighter source of multi-keV X-rays is feasible at the SGII facility.

  15. Caliste 64, a new CdTe micro-camera for hard X-ray spectro-imaging

    Science.gov (United States)

    Meuris, A.; Limousin, O.; Lugiez, F.; Gevin, O.; Blondel, C.; Pinsard, F.; Vassal, M. C.; Soufflet, F.; Le Mer, I.

    2009-10-01

    In the frame of the Simbol-X mission of hard X-ray astrophysics, a prototype of micro-camera with 64 pixels called Caliste 64 has been designed and several samples have been tested. The device integrates ultra-low-noise IDeF-X V1.1 ASICs from CEA and a 1 cm 2 Al Schottky CdTe detector from Acrorad because of its high uniformity and spectroscopic performance. The process of hybridization, mastered by the 3D Plus company, respects space applications standards. The camera is a spectro-imager with time-tagging capability. Each photon interacting in the semiconductor is tagged with a time, a position and an energy. Time resolution is better than 100 ns rms for energy deposits greater than 20 keV, taking into account electronic noise and technological dispersal of the front-end electronics. The spectrum summed across the 64 pixels results in an energy resolution of 664 eV fwhm at 13.94 keV and 842 eV fwhm at 59.54 keV, when the detector is cooled down to -10 °C and biased at -500 V.

  16. Caliste 64, a new CdTe micro-camera for hard X-ray spectro-imaging

    International Nuclear Information System (INIS)

    Meuris, A.; Limousin, O.; Lugiez, F.; Gevin, O.; Blondel, C.; Pinsard, F.; Vassal, M.C.; Soufflet, F.; Le Mer, I.

    2009-01-01

    In the frame of the Simbol-X mission of hard X-ray astrophysics, a prototype of micro-camera with 64 pixels called Caliste 64 has been designed and several samples have been tested. The device integrates ultra-low-noise IDeF-X V1.1 ASICs from CEA and a 1 cm 2 Al Schottky CdTe detector from Acrorad because of its high uniformity and spectroscopic performance. The process of hybridization, mastered by the 3D Plus company, respects space applications standards. The camera is a spectro-imager with time-tagging capability. Each photon interacting in the semiconductor is tagged with a time, a position and an energy. Time resolution is better than 100 ns rms for energy deposits greater than 20 keV, taking into account electronic noise and technological dispersal of the front-end electronics. The spectrum summed across the 64 pixels results in an energy resolution of 664 eV fwhm at 13.94 keV and 842 eV fwhm at 59.54 keV, when the detector is cooled down to -10 deg. C and biased at -500 V.

  17. Caliste 64, a new CdTe micro-camera for hard X-ray spectro-imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meuris, A. [CEA, Irfu, Service d' Astrophysique, Bat. 709, Orme des Merisiers, F-91191 Gif-sur-Yvette (France)], E-mail: aline.meuris@cea.fr; Limousin, O. [CEA, Irfu, Service d' Astrophysique, Bat. 709, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Lugiez, F.; Gevin, O. [CEA, Irfu, Service d' Electronique, de Detecteurs et d' Informatique, F-91191 Gif-sur-Yvette (France); Blondel, C.; Pinsard, F. [CEA, Irfu, Service d' Astrophysique, Bat. 709, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Vassal, M.C.; Soufflet, F. [3D Plus, 641 rue Helene Boucher, F-78532 Buc (France); Le Mer, I. [CEA, Irfu, Service d' Astrophysique, Bat. 709, Orme des Merisiers, F-91191 Gif-sur-Yvette (France)

    2009-10-21

    In the frame of the Simbol-X mission of hard X-ray astrophysics, a prototype of micro-camera with 64 pixels called Caliste 64 has been designed and several samples have been tested. The device integrates ultra-low-noise IDeF-X V1.1 ASICs from CEA and a 1 cm{sup 2} Al Schottky CdTe detector from Acrorad because of its high uniformity and spectroscopic performance. The process of hybridization, mastered by the 3D Plus company, respects space applications standards. The camera is a spectro-imager with time-tagging capability. Each photon interacting in the semiconductor is tagged with a time, a position and an energy. Time resolution is better than 100 ns rms for energy deposits greater than 20 keV, taking into account electronic noise and technological dispersal of the front-end electronics. The spectrum summed across the 64 pixels results in an energy resolution of 664 eV fwhm at 13.94 keV and 842 eV fwhm at 59.54 keV, when the detector is cooled down to -10 deg. C and biased at -500 V.

  18. A compact low cost “master–slave” double crystal monochromator for x-ray cameras calibration of the Laser MégaJoule Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, S., E-mail: sebastien.hubert@cea.fr; Prévot, V.

    2014-12-21

    The Alternative Energies and Atomic Energy Commission (CEA-CESTA, France) built a specific double crystal monochromator (DCM) to perform calibration of x-ray cameras (CCD, streak and gated cameras) by means of a multiple anode diode type x-ray source for the MégaJoule Laser Facility. This DCM, based on pantograph geometry, was specifically modeled to respond to relevant engineering constraints and requirements. The major benefits are mechanical drive of the second crystal on the first one, through a single drive motor, as well as compactness of the entire device. Designed for flat beryl or Ge crystals, this DCM covers the 0.9–10 keV range of our High Energy X-ray Source. In this paper we present the mechanical design of the DCM, its features quantitatively measured and its calibration to finally provide monochromatized spectra displaying spectral purities better than 98%.

  19. Large area x-ray detectors for cargo radiography

    Science.gov (United States)

    Bueno, C.; Albagli, D.; Bendahan, J.; Castleberry, D.; Gordon, C.; Hopkins, F.; Ross, W.

    2007-04-01

    Large area x-ray detectors based on phosphors coupled to flat panel amorphous silicon diode technology offer significant advances for cargo radiologic imaging. Flat panel area detectors provide large object coverage offering high throughput inspections to meet the high flow rate of container commerce. These detectors provide excellent spatial resolution when needed, and enhanced SNR through low noise electronics. If the resolution is reduced through pixel binning, further advances in SNR are achievable. Extended exposure imaging and frame averaging enables improved x-ray penetration of ultra-thick objects, or "select-your-own" contrast sensitivity at a rate many times faster than LDAs. The areal coverage of flat panel technology provides inherent volumetric imaging with the appropriate scanning methods. Flat panel area detectors have flexible designs in terms of electronic control, scintillator selection, pixel pitch, and frame rates. Their cost is becoming more competitive as production ramps up for the healthcare, nondestructive testing (NDT), and homeland protection industries. Typically used medical and industrial polycrystalline phosphor materials such as Gd2O2S:Tb (GOS) can be applied to megavolt applications if the phosphor layer is sufficiently thick to enhance x-ray absorption, and if a metal radiator is used to augment the quantum detection efficiency and reduce x-ray scatter. Phosphor layers ranging from 0.2-mm to 1-mm can be "sandwiched" between amorphous silicon flat panel diode arrays and metal radiators. Metal plates consisting of W, Pb or Cu, with thicknesses ranging from 0.25-mm to well over 1-mm can be used by covering the entire area of the phosphor plate. In some combinations of high density metal and phosphor layers, the metal plate provides an intensification of 25% in signal due to electron emission from the plate and subsequent excitation within the phosphor material. This further improves the SNR of the system.

  20. X-ray filter for chest x-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    Filter for use in medical x-ray apparatus to permit higher intensity x-ray exposure in the heart and mediastinum area while maintaining a normal level of x-ray exposure in other areas of the body, particlarly in the lung area. The filter comprises a sheet of radiation absorbing material having an opening therein, said opening corresponding to the spine and central portion of the heart. Accordingly, the upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter

  1. X ray sensitive area detection device

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Witherow, William K. (Inventor); Pusey, Marc L. (Inventor); Yost, Vaughn H. (Inventor)

    1990-01-01

    A radiation sensitive area detection device is disclosed which comprises a phosphor-containing film capable of receiving and storing an image formed by a pattern of incoming x rays, UV, or other radiation falling on the film. The device is capable of fluorescing in response to stimulation by a light source in a manner directly proportional to the stored radiation pattern. The device includes: (1) a light source capable of projecting light or other appropriate electromagnetic wave on the film so as to cause it to fluoresce; (2) a means to focus the fluoresced light coming from the phosphor-containing film after light stimulation; and (3) at least one charged coupled detector or other detecting element capable of receiving and digitizing the pattern of fluoresced light coming from the phosphor-containing film. The device will be able to generate superior x ray images of high resolution from a crystal or other sample and will be particularly advantageous in that instantaneous near-real-time images of rapidly deteriorating samples can be obtained. Furthermore, the device can be made compact and sturdy, thus capable of carrying out x ray or other radiation imaging under a variety of conditions, including those experienced in space.

  2. Application of a one-dimensional position-sensitive detector to a Kratky small-angle x-ray camera

    International Nuclear Information System (INIS)

    Russell, T.P.; Stein, R.S.; Kopp, M.K.; Zedler, R.E.; Hendricks, R.W.; Lin, J.S.

    1979-01-01

    A conventional Kratky small-angle collimation system has been modified to allow the use of a one-dimensional position-sensitive x-ray detector. The detector was designed specifically for use with a long-slit camera and has uniform sensitivity over the entire beam in the slit-length direction. Procedures for alignment of the collimation system are given, and a variety of tests of the performance of the system are presented. Among the latter are measurements of electronic noise and parasitic scattering as well as comparisons against samples which were also measured on other cameras. The good agreement of these comparisons demonstrates the success of the use of a position-sensitive detector with the Kratky collimation system

  3. Application of a one-dimensional position-sensitive detector to a Kratky small-angle x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Russell, T.P.; Stein, R.S.; Kopp, M.K.; Zedler, R.E.; Hendricks, R.W.; Lin, J.S.

    1979-01-01

    A conventional Kratky small-angle collimation system has been modified to allow the use of a one-dimensional position-sensitive x-ray detector. The detector was designed specifically for use with a long-slit camera and has uniform sensitivity over the entire beam in the slit-length direction. Procedures for alignment of the collimation system are given, and a variety of tests of the performance of the system are presented. Among the latter are measurements of electronic noise and parasitic scattering as well as comparisons against samples which were also measured on other cameras. The good agreement of these comparisons demonstrates the success of the use of a position-sensitive detector with the Kratky collimation system.

  4. Design and initial operation of a two-color soft x-ray camera system on the Compact Toroidal Hybrid experiment

    International Nuclear Information System (INIS)

    Herfindal, J. L.; Dawson, J. D.; Ennis, D. A.; Hartwell, G. J.; Loch, S. D.; Maurer, D. A.

    2014-01-01

    A multi-camera soft x-ray diagnostic has been developed to measure the equilibrium electron temperature profile and temperature fluctuations due to magnetohydrodynamic activity on the Compact Toroidal Hybrid experiment. The diagnostic consists of three separate cameras each employing two 20-channel diode arrays that view the same plasma region through different beryllium filter thicknesses of 1.8 μm and 3.0 μm allowing electron temperature measurements between 50 eV and 200 eV. The Compact Toroidal Hybrid is a five-field period current-carrying stellarator, in which the presence of plasma current strongly modifies the rotational transform and degree of asymmetry of the equilibrium. Details of the soft x-ray emission, effects of plasma asymmetry, and impurity line radiation on the design and measurement of the two-color diagnostic are discussed. Preliminary estimates of the temperature perturbation due to sawtooth oscillations observed in these hybrid discharges are given

  5. The Soft X-ray Imager (SXI) for the ASTRO-H Mission

    Science.gov (United States)

    Tanaka, Takaaki; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi G.; Dotani, Tadayasu; Nakajima, Hiroshi; Anabuki, Naohisa; Nagino, Ryo; Uchida, Hiroyuki; Nobukawa, Masayoshi; Ozaki, Masanobu; Natsukari, Chikara; Tomida, Hiroshi; Ueda, Shutaro; Kimura, Masashi; Hiraga, Junko S.; Kohmura, Takayoshi; Murakami, Hiroshi; Mori, Koji; Yamauchi, Makoto; Hatsukade, Isamu; Nishioka, Yusuke; Bamba, Aya; Doty, John P.

    2015-09-01

    The Soft X-ray Imager (SXI) is an X-ray CCD camera onboard the ASTRO-H X-ray observatory. The CCD chip used is a P-channel back-illuminated type, and has a 200-µm thick depletion layer, with which the SXI covers the energy range between 0.4 keV and 12 keV. Its imaging area has a size of 31 mm x 31 mm. We arrange four of the CCD chips in a 2 by 2 grid so that we can cover a large field-of-view of 38' x 38'. We cool the CCDs to -120 °C with a single-stage Stirling cooler. As was done for the CCD camera of the Suzaku satellite, XIS, artificial charges are injected to selected rows in order to recover charge transfer inefficiency due to radiation damage caused by in-orbit cosmic rays. We completed fabrication of flight models of the SXI and installed them into the satellite. We verified the performance of the SXI in a series of satellite tests. On-ground calibrations were also carried out and detailed studies are ongoing.

  6. Gas scintillation glass GEM detector for high-resolution X-ray imaging and CT

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, T., E-mail: fujiwara-t@aist.go.jp [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Mitsuya, Y. [Nuclear Professional School, The University of Tokyo, Tokai, Naka, Ibaraki 319-1188 (Japan); Fushie, T. [Radiment Lab. Inc., Setagaya, Tokyo 156-0044 (Japan); Murata, K.; Kawamura, A.; Koishikawa, A. [XIT Co., Naruse, Machida, Tokyo 194-0045 (Japan); Toyokawa, H. [Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568 (Japan); Takahashi, H. [Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8654 (Japan)

    2017-04-01

    A high-spatial-resolution X-ray-imaging gaseous detector has been developed with a single high-gas-gain glass gas electron multiplier (G-GEM), scintillation gas, and optical camera. High-resolution X-ray imaging of soft elements is performed with a spatial resolution of 281 µm rms and an effective area of 100×100 mm. In addition, high-resolution X-ray 3D computed tomography (CT) is successfully demonstrated with the gaseous detector. It shows high sensitivity to low-energy X-rays, which results in high-contrast radiographs of objects containing elements with low atomic numbers. In addition, the high yield of scintillation light enables fast X-ray imaging, which is an advantage for constructing CT images with low-energy X-rays.

  7. Thin absorbers for large-area soft X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Rocks, L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: rocks@wisp.physics.wisc.edu; Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Brekosky, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gwynne Crowder, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Figueroa-Feliciano, E. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Nelms, K.L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sivananthan, S. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Zhao, J. [University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2006-04-15

    The X-ray Quantum Calorimeter (XQC) sounding rocket experiment utilizes a microcalorimeter array for observing the diffuse soft X-ray background. Observations of such low surface-brightness targets require a large-area detector. We will be using an array of large absorbers. Good absorbers must rapidly and completely thermalize photons, have small heat capacity for high stopping efficiency and have good lateral thermal transport. For observing the soft X-ray background (energies <1 keV), the volume and heat capacity of absorber material can be kept to a minimum by making the absorbers only as thick as needed for high quantum efficiency at these low energies. These thin, large-area absorbers are not self-supporting and have poor lateral heat transport. Depositing the absorber material on a Si substrate provides support and improves lateral thermal conduction. We present heat capacity results for thin HgTe and thin Bi, each on Si substrates. We also describe the HgTe absorber fabrication.

  8. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited)

    Energy Technology Data Exchange (ETDEWEB)

    MacPhee, A. G., E-mail: macphee2@llnl.gov; Hatch, B. W.; Bell, P. M.; Bradley, D. K.; Datte, P. S.; Landen, O. L.; Palmer, N. E.; Piston, K. W.; Rekow, V. V. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Dymoke-Bradshaw, A. K. L.; Hares, J. D. [Kentech Instruments Ltd., Isis Building, Howbery Park, Wallingford, Oxfordshire OX10 8BD (United Kingdom); Hassett, J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York 14627 (United States); Meadowcroft, A. L. [AWE Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Hilsabeck, T. J.; Kilkenny, J. D. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2016-11-15

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  9. Improving the off-axis spatial resolution and dynamic range of the NIF X-ray streak cameras (invited).

    Science.gov (United States)

    MacPhee, A G; Dymoke-Bradshaw, A K L; Hares, J D; Hassett, J; Hatch, B W; Meadowcroft, A L; Bell, P M; Bradley, D K; Datte, P S; Landen, O L; Palmer, N E; Piston, K W; Rekow, V V; Hilsabeck, T J; Kilkenny, J D

    2016-11-01

    We report simulations and experiments that demonstrate an increase in spatial resolution of the NIF core diagnostic x-ray streak cameras by at least a factor of two, especially off axis. A design was achieved by using a corrector electron optic to flatten the field curvature at the detector plane and corroborated by measurement. In addition, particle in cell simulations were performed to identify the regions in the streak camera that contribute the most to space charge blurring. These simulations provide a tool for convolving synthetic pre-shot spectra with the instrument function so signal levels can be set to maximize dynamic range for the relevant part of the streak record.

  10. Flat Field Anomalies in an X-Ray CCD Camera Measured Using a Manson X-Ray Source

    International Nuclear Information System (INIS)

    Michael Haugh

    2008-01-01

    The Static X-ray Imager (SXI) is a diagnostic used at the National Ignition Facility (NIF) to measure the position of the X-rays produced by lasers hitting a gold foil target. It determines how accurately NIF can point the laser beams and is critical to proper NIF operation. Imagers are located at the top and the bottom of the NIF target chamber. The CCD chip is an X-ray sensitive silicon sensor, with a large format array (2k x 2k), 24 (micro)m square pixels, and 15 (micro)m thick. A multi-anode Manson X-ray source, operating up to 10kV and 2mA, was used to characterize and calibrate the imagers. The output beam is heavily filtered to narrow the spectral beam width, giving a typical resolution E/ΔE ∼ 12. The X-ray beam intensity was measured using an absolute photodiode that has accuracy better than 1% up to the Si K edge and better than 5% at higher energies. The X-ray beam provides full CCD illumination and is flat, within ±1.5% maximum to minimum. The spectral efficiency was measured at 10 energy bands ranging from 930 eV to 8470 eV. The efficiency pattern follows the properties of Si. The maximum quantum efficiency is 0.71. We observed an energy dependent pixel sensitivity variation that showed continuous change over a large portion of the CCD. The maximum sensitivity variation was >8% at 8470 eV. The geometric pattern did not change at lower energies, but the maximum contrast decreased and was less than the measurement uncertainty below 4 keV. We were also able to observe debris on the CCD chip. The debris showed maximum contrast at the lowest energy used, 930 eV, and disappeared by 4 keV. The Manson source is a powerful tool for characterizing the imaging errors of an X-ray CCD imager. These errors are quite different from those found in a visible CCD imager

  11. Time-resolved suprathermal x-rays

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Rosen, M.D.

    1978-01-01

    Temporally resolved x-ray spectra in the range of 1 to 20 keV have been obtained from gold disk targets irradiated by 1.06 μm laser pulses from the Argus facility. The x-ray streak camera used for the measurement has been calibrated for streak speed and dynamic range by using an air-gap Fabry-Perot etalon, and the instrument response has been calibrated using a multi-range monoenergetic x-ray source. The experimental results indicate that we are able to observe the ''hot'' x-ray temperature evolve in time and that the experimentally observed values can be qualitatively predicted by LASNEX code computations when the inhibited transport model is used

  12. Development of intelligent control system for X-ray streak camera in diagnostic instrument manipulator

    International Nuclear Information System (INIS)

    Pei, Chengquan; Wu, Shengli; Tian, Jinshou; Liu, Zhen; Fang, Yuman; Gao, Guilong; Liang, Lingliang; Wen, Wenlong

    2015-01-01

    An intelligent control system for an X ray streak camera in a diagnostic instrument manipulator (DIM) is proposed and implemented, which can control time delay, electric focusing, image gain adjustment, switch of sweep voltage, acquiring environment parameters etc. The system consists of 16 A/D converters and 16 D/A converters, a 32-channel general purpose input/output (GPIO) and two sensors. An isolated DC/DC converter with multi-outputs and a single mode fiber were adopted to reduce the interference generated by the common ground among the A/D, D/A and I/O. The software was designed using graphical programming language and can remotely access the corresponding instrument from a website. The entire intelligent control system can acquire the desirable data at a speed of 30 Mb/s and store it for later analysis. The intelligent system was implemented on a streak camera in a DIM and it shows a temporal resolution of 11.25 ps, spatial distortion of less than 10% and dynamic range of 279:1. The intelligent control system has been successfully used in a streak camera to verify the synchronization of multi-channel laser on the Inertial Confinement Fusion Facility

  13. Development of intelligent control system for X-ray streak camera in diagnostic instrument manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Chengquan [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Wu, Shengli, E-mail: slwu@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Tian, Jinshou [Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Liu, Zhen [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Fang, Yuman [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Gao, Guilong; Liang, Lingliang [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China); Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Wen, Wenlong [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an 710049 (China)

    2015-11-01

    An intelligent control system for an X ray streak camera in a diagnostic instrument manipulator (DIM) is proposed and implemented, which can control time delay, electric focusing, image gain adjustment, switch of sweep voltage, acquiring environment parameters etc. The system consists of 16 A/D converters and 16 D/A converters, a 32-channel general purpose input/output (GPIO) and two sensors. An isolated DC/DC converter with multi-outputs and a single mode fiber were adopted to reduce the interference generated by the common ground among the A/D, D/A and I/O. The software was designed using graphical programming language and can remotely access the corresponding instrument from a website. The entire intelligent control system can acquire the desirable data at a speed of 30 Mb/s and store it for later analysis. The intelligent system was implemented on a streak camera in a DIM and it shows a temporal resolution of 11.25 ps, spatial distortion of less than 10% and dynamic range of 279:1. The intelligent control system has been successfully used in a streak camera to verify the synchronization of multi-channel laser on the Inertial Confinement Fusion Facility.

  14. Control of an X-ray cine radiography apparatus

    International Nuclear Information System (INIS)

    Nishio, K.

    1982-01-01

    This patent application describes an X-ray cine radiography apparatus comprising an X-ray tube, an image intensifier for converting the X-rays transmitted through an object into a visual image and a cine camera for picking up the visual image, a photomultiplier detects the brightness of the visual image to produce a brightness signal and a potentiometer detects the actual tube voltage of said X-ray tube. (author)

  15. X-ray topography with scintillators coupled to image intensifiers or camera tubes

    International Nuclear Information System (INIS)

    Beauvais, Yves; Mathiot, Alain.

    1978-01-01

    The possibility of imaging topographic figures in real time by using a thin scintillator coupled to either a high-gain image intensifier or a camera tube is investigated. The camera tube must have a high gain because of the low photon fluxes that are encountered in practice, and because of the relatively low quantum yield of thin phosphors. With conventional X-ray generators, the resolution is photon-noise limited. With more powerful generators like synchrotrons, real-time imaging appears possible, and the resolution is limited by the modulation transfer function of the image tube. Higher resolution can be reached by increasing the magnification between the screen and the image tube. When doing so, the input field is reduced and thinner phosphor screens must be used, resulting in a lower yield. Each time the magnification is doubled, the minimum required photon flux is multiplier by about 8, so that the advantages of increasing the magnification are rapidly limited, so far as real-time imaging is concerned. Because image tube resolution is mainly limited by the modulation transfer function of the phosphor for image intensifiers, and by that of the target for camera tubes, improvement of photocathode resolution can be obtained by magnifying electron optics. A zooming electron optic would permit the field and the resolution of the tube to be adapted to the observed subject. Unfortunately such tubes do not exist at present for this type of application, and in the required size

  16. X-ray technique and technology development trends

    International Nuclear Information System (INIS)

    Vlasov, P.V.; Chikirdin, Eh.G.

    1994-01-01

    Application of new types of x-ray devices for diagnosis of diseases was described. Modern roentgenological devices (Rentgen-60) were supplied by remote handling unit with the help of roentgen television. Roentgen television is based on transmission of image from the output of the screen of amplifier of x-ray image on the input of transmitting television camera. Scanning of input image accurred inside the camera, analog videosignal was amplified and reproduced on the display. The prospects of development of such roentgen equipment was emphasized

  17. RAMI analysis for ITER radial X-ray camera system

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Shijun, E-mail: sjqin@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Liqun; Chen, Kaiyun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Barnsley, Robin; Sirinelli, Antoine [ITER Organization, Route Vinon sur Verdon, CS 90046, 13067, St. Paul lez Durance, Cedex (France); Song, Yuntao; Lu, Kun; Yao, Damao; Chen, Yebin; Li, Shi; Cao, Hongrui; Yu, Hong; Sheng, Xiuli [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • The functional analysis of the ITER RXC system was performed. • A failure modes, effects and criticality analysis of the ITER RXC system was performed. • The reliability and availability of the ITER RXC system and its main functions were calculated. • The ITER RAMI approach was applied to the ITER RXC system for technical risk control in the preliminary design phase. - Abstract: ITER is the first international experimental nuclear fusion device. In the project, the RAMI approach (reliability, availability, maintainability and inspectability) has been adopted for technical risk control to mitigate all the possible failure of components in preparation for operation and maintenance. RAMI analysis of the ITER Radial X-ray Camera diagnostic (RXC) system during preliminary design phase was required, which insures the system with a very high performance to measure the X-ray emission and research the MHD of plasma with high accuracy on the ITER machine. A functional breakdown was prepared in a bottom-up approach, resulting in the system being divided into 3 main functions, 6 intermediate functions and 28 basic functions which are described using the IDEFØ method. Reliability block diagrams (RBDs) were prepared to calculate the reliability and availability of each function under assumption of operating conditions and failure data. Initial and expected scenarios were analyzed to define risk-mitigation actions. The initial availability of RXC system was 92.93%, while after optimization the expected availability was 95.23% over 11,520 h (approx. 16 months) which corresponds to ITER typical operation cycle. A Failure Modes, Effects and Criticality Analysis (FMECA) was performed to the system initial risk. Criticality charts highlight the risks of the different failure modes with regard to the probability of their occurrence and impact on operations. There are 28 risks for the initial state, including 8 major risks. No major risk remains after taking into

  18. SECCOX, a novel x-ray characterization bench for Bragg crystals and x-rays optics

    International Nuclear Information System (INIS)

    Caillaud, T.; Manson, M.; Desenne, D.; Goze, B.; Rivet, A.; Derouineau, Ph.

    2007-01-01

    Laser programs require the use of a large number of calibrated x-ray crystals implemented inside spectrometers and microscopes used in diagnostics. In this context, a new apparatus was designed in collaboration with CELIA laboratory, Saint-Gobain Crystals and Detectors and CEA to characterize x-ray Bragg crystals. Station d'Etude et de Caracterisation des Cristaux pour les Optiques X (SECCOX) is based on a micrometric x-ray source and an automated spectrometer equipped with a CCD camera. Properties such as homogeneity, resolution, radius of curvature and reflectivity are measured to guarantee diagnostic performance in laser-plasma physics experiments. We will present the experimental device, techniques and results of the calibration obtained. (authors)

  19. Panel type X-ray image intensifier tube

    International Nuclear Information System (INIS)

    Wang, S.P.

    1977-01-01

    A panel shaped, proximity type, X-ray image intensifier tube for medical X-ray diagnostic is disclosed. It has all linear components and yet a high brightness gain, in the range of 500 to 20,000 cd-sec/m 2 -R, the tube being comprised of a rugged metallic tube envelope, an inwardly concave metallic input window of full size output display screen, an alkaline-halide scintillator photocathode screen suspended on insulators within the envelope and in between the input window and the output screen, and a high Z glass output window to reduce X-ray backscatter inside and outside of the tube. An X-ray sensitive photographic camera for medical diagnostic use is also disclosed which includes an X-ray sensitive image intensifier means of the proximity type and a reduction type optical system having an effective foral length in excess of 100mm for focusing the emage generated on the output display screen of the image intensifier tube onto a small size but directly viewable photographic film. The parameters of the image intensifier, the optics and the film are specified and linked to each other in a manner which maximizes the image quality for a camera system of this type and at the same time restricts the system speed of the camera to a range of 500 to 5,000 R -1 for the film to achieve a net density of 1.0. (Auth.)

  20. X-ray image intensifier photography

    International Nuclear Information System (INIS)

    Richter, K.; Angerstein, W.; Steinhardt, L.

    1980-01-01

    The present treatise on X-ray image intensifier photography starts with introductory remarks on the history of X-ray imaging and image intensifiers. In the physical-technological part especially the quality of image and the methods of its measurement are discussed in detail. The relevant equipment such as image intensifier cameras, X-ray television, video recorder and devices of display and evaluation of images are presented as well as problems of radiation doses and radiation protection. Based on 25,000 examinations of the digestive, the biliary and the urinary tract, resp., as well as of the blood vessels the applicability of the X-ray image intensifier photography and its diagnostic value are demonstrated in the medical part of the book

  1. Evaluation of an infrared camera and X-ray system using implanted fiducials in patients with lung tumors for gated radiation therapy

    International Nuclear Information System (INIS)

    Willoughby, Twyla R.; Forbes, Alan R.; Buchholz, Daniel; Langen, Katja M.; Wagner, Thomas H.; Zeidan, Omar A.; Kupelian, Patrick A.; Meeks, Sanford L.

    2006-01-01

    Purpose: To report on the initial clinical use of a commercially available system to deliver gated treatment using implanted fiducials, in-room kV X-rays, and an infrared camera tracking system. Methods and Materials: ExacTrac Adaptive Gating from BrainLab is a localization system using infrared cameras and X-rays. Gating signals are the patient's breathing pattern obtained from infrared reflectors on the patient. kV X-rays of an implanted fiducial are synchronized to the breathing pattern. After localization and shift of the patient to isocenter, the breathing pattern is used to gate Radiation. Feasibility tests included localization accuracy, radiation output constancy, and dose distributions with gating. Clinical experience is reported on treatment of patients with small lung lesions. Results: Localization accuracy of a moving target with gating was 1.7 mm. Dose constancy measurements showed insignificant change in output with gating. Improvements of dose distributions on moving targets improved with gating. Eleven patients with lung lesions were implanted with 20 mm x 0.7 mm gold coil (Visicoil). The implanted fiducial was used to localize and treat the patients with gating. Treatment planning and repeat computed tomographic scans showed that the change in center of gross target volume (GTV) to implanted marker averaged 2.47 mm due in part to asymmetric tumor shrinkage. Conclusion: ExacTrac Adaptive Gating has been used to treat lung lesions. Initial system evaluation verified its accuracy and usability. Implanted fiducials are visible in X-rays and did not migrate

  2. Synchrotron radiation calibration for soft X-ray detector

    International Nuclear Information System (INIS)

    Ning, Jiamin; Guo, Cun; Xu, Rongkun; Jiang, Shilun; Xu, Zeping; Chen, Jinchuan; Xia, Guangxin; Xue, Feibiao; Qin, Yi

    2009-04-01

    The calibration experiments were carried out to X-ray film, scintillator and transmission grating by employing the soft X-ray station at 3W1B beam-line in Beijing synchrotron Radiation Facility. The experiments presented the black intensity curve and energy response curve of soft X-ray film. And the experimental results can be used in diagnosis of X-ray radiation characterization of Z-pinch, such as in the measurement of soft X-ray Power Meter, grating spectrometer, pinhole camera and one-dimension imaging system which can ensure precision of Z-pinch results. (authors)

  3. Investigation on diagnostic techniques of X-ray radiation characteristic from slit target

    International Nuclear Information System (INIS)

    Cheng Jinxiu; Miao Wenyong; Sun Kexu; Wang Hongbin; Cao Leifeng; Yang Jiamin; Chen Zhenglin

    2001-01-01

    On the Xingguang-II facility, X-ray transport process in a cavity target was simulated in a long cylindrical cavity with slits. High temporally and spatially resolved Microchannel Plate (MCP) gated X-ray picosecond frame camera and soft X-ray steak camera were used to investigate the temporal and spatial distribution of the soft X-ray emitted from the cavity wall through the slit. X-ray transport velocity, X-ray emission time and amount of intensity decay was obtained. X-ray CCD pinhole transmission grating spectrometer was used to investigate the spectrum change of the emitted X-ray versus its location. The change characteristic of the spectrum of X-ray absorbed and emitted again and again in transport was obtained. X-ray diodes and Dante spectrometer were used to measure X-ray flux and radiation temperature in the slit, the source and the transport end, respectively. The typical results in the experiment were given. A brief and essential analysis and discussion were made

  4. Soft X-ray images of krypton gas-puff Z-pinches

    International Nuclear Information System (INIS)

    Qiu Mengtong; Kuai Bin; Zeng Zhengzhong; Lu Min; Wang Kuilu; Qiu Aici; Zhang Mei; Luo Jianhui

    2002-01-01

    A series of experiments has been carried out on Qiang-guang I generator to study the dynamics of krypton gas-puff Z-pinches. The generator was operated at a peak current of 1.5 MA with a rise-time of 80 ns. The specific linear mass of gas liner was about 20 μg/cm in these experiments. In the diagnostic system, a four-frame x-ray framing camera and a pinhole camera were employed. A novel feature of this camera is that it can give time-resolved x-ray images with four frames and energy-resolved x-ray images with two different filters and an array of 8 pinholes integrated into one compact assemble. As a typical experimental result, an averaged radial imploding velocity of 157 km/s over 14 ns near the late phase of implosion was measured from the time-resolved x-ray images. From the time-integrated x-ray image an averaged radial convergence of 0.072 times of the original size was measured. An averaged radial expansion velocity was 130 km/s and the maximum radial convergence of 0.04 times of the original size were measured from the time-resolved x-ray images. The dominant axial wavelengths of instabilities in the plasma were between 1 and 2 mm. The change in average photons energy was observed from energy spectrum- and time-resolved x-ray images

  5. Soft X-ray Images of Krypton Gas-Puff Z-Pinches

    Institute of Scientific and Technical Information of China (English)

    邱孟通; 蒯斌; 曾正中; 吕敏; 王奎禄; 邱爱慈; 张美; 罗建辉

    2002-01-01

    A series of experiments has been carried out on Qiang-guang Ⅰ generator to study the dynamics of krypton gas-puff Z-pinches. The generator was operated at a peak current of 1.5 MA with a rise-time of 80 ns. The specific linear mass of gas liner was about 20 μg/cm in these experiments. In the diagnostic system, a four-frame x-ray framing camera and a pinhole camera were employed. A novel feature of this camera is that it can give time-resolved x-ray images with four frames and energy-resolved x-ray images with two different filters and an array of 8 pinholes integrated into one compact assemble. As a typical experimental result, an averaged radial imploding velocity of 157 km/s over 14 ns near the late phase of implosion was measured from the time-resolved x-ray images. From the time-integrated x-ray image an averaged radial convergence of 0.072 times of the original size was measured. An averaged radial expansion velocity was 130 km/s and the maximum radial convergence of 0.04 times of the original size were measured from the time-resolved x-ray images. The dominant axial wavelengths of instabilities in the plasma were between 1 and 2 mm. The change in average photons energy was observed from energy spectrum- and time-resolved x-ray images.

  6. Forge: a short pulse x-ray diagnostic development facility

    International Nuclear Information System (INIS)

    Stradling, G.L.; Hurry, T.R.; Denbow, E.R.; Selph, M.M.; Ameduri, F.P.

    1985-01-01

    A new short pulse x-ray calibration facility has been brought on line at Los Alamos. This facility is being used for the development, testing and calibration of fast x-ray diagnostic systems. The x-ray source consists of a moderate size, sub-nanosecond laser focused at high intensity on an appropriate target material to generate short pulses of x-ray emission from the resulting plasma. Dynamic performance parameters of fast x-ray diagnostic instruments, such as x-ray streak cameras, can be conveniently measured using this facility

  7. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    Energy Technology Data Exchange (ETDEWEB)

    Hoidn, Oliver R.; Seidler, Gerald T., E-mail: seidler@uw.edu [Physics Department, University of Washington, Seattle, Washington 98195 (United States)

    2015-08-15

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.

  8. The X-ray Astronomy Recovery Mission

    Science.gov (United States)

    Tashiro, M.; Kelley, R.

    2017-10-01

    On 25 March 2016, the Japanese 6th X-ray astronomical satellite ASTRO-H (Hitomi), launched on February 17, lost communication after a series of mishap in its attitude control system. In response to the mishap the X-ray astronomy community and JAXA analyzed the direct and root cause of the mishap and investigated possibility of a recovery mission with the international collaborator NASA and ESA. Thanks to great effort of scientists, agencies, and governments, the X-ray Astronomy Recovery Mission (XARM) are proposed. The recovery mission is planned to resume high resolution X-ray spectroscopy with imaging realized by Hitomi under the international collaboration in the shortest time possible, simply by focusing one of the main science goals of Hitomi Resolving astrophysical problems by precise high-resolution X-ray spectroscopy'. XARM will carry a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and wider field of view, but no hard X-ray or soft gamma-ray instruments are onboard. In this paper, we introduce the science objectives, mission concept, and schedule of XARM.

  9. Ultrafast laser pump/x-ray probe experiments

    International Nuclear Information System (INIS)

    Larsson, J.; Judd, E.; Schuck, P.J.

    1997-01-01

    In an ongoing project aimed at probing solids using x-rays obtained at the ALS synchrotron with a sub-picosecond time resolution following interactions with a 100 fs laser pulse, the authors have successfully performed pump-probe experiments limited by the temporal duration of ALS-pulse. They observe a drop in the diffraction efficiency following laser heating. They can attribute this to a disordering of the crystal. Studies with higher temporal resolution are required to determine the mechanism. The authors have also incorporated a low-jitter streakcamera as a diagnostic for observing time-dependant x-ray diffraction. The streakcamera triggered by a photoconductive switch was operated at kHz repetition rates. Using UV-pulses, the authors obtain a temporal response of 2 ps when averaging 5000 laser pulses. They demonstrate the ability to detect monochromatized x-ray radiation from a bend-magnet with the streak camera by measuring the pulse duration of a x-ray pulse to 70 ps. In conclusion, the authors show a rapid disordering of an InSb crystal. The resolution was determined by the duration of the ALS pulse. They also demonstrate that they can detect x-ray radiation from a synchrotron source with a temporal resolution of 2ps, by using an ultrafast x-ray streak camera. Their set-up will allow them to pursue laser pump/x-ray probe experiments to monitor structural changes in materials with ultrafast time resolution

  10. Laser interaction with matter as a source of U.V. and soft X-ray radiation: application to X-ray cinematography

    International Nuclear Information System (INIS)

    Tonon, G.F.; Colombant, Denis; Delmare, Claude; Rabeau, Maxime

    A new detecting device is described. It allows one to get the frequency, the time and space resolution of pictures of U.V. and soft X ray emission of a laser created plasma in a single shot: X ray pictures of such a plasma are presented. After these preliminary results, it is possible to set up readily an X ray framing camera. A laser created plasma is an X ray source of special interest: the emitted power can be 10% of the laser intensity and the emitted spectrum is centered around 1A wavelength [fr

  11. Gamma ray camera

    International Nuclear Information System (INIS)

    Wang, S.-H.; Robbins, C.D.

    1979-01-01

    An Anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the Anger camera. The image intensifier tube has a negatively charged flat scintillator screen, a flat photocathode layer, and a grounded, flat output phosphor display screen, all of which have the same dimension to maintain unit image magnification; all components are contained within a grounded metallic tube, with a metallic, inwardly curved input window between the scintillator screen and a collimator. The display screen can be viewed by an array of photomultipliers or solid state detectors. There are two photocathodes and two phosphor screens to give a two stage intensification, the two stages being optically coupled by a light guide. (author)

  12. A new miniature microchannel plate X-ray detector for synchrotron radiation

    International Nuclear Information System (INIS)

    Rosemeier, R.G.; Green, R.E. Jr.

    1982-01-01

    A state-of-the-art microchannel plate detector has been developed which allows real time X-ray imaging of X-ray diffraction as well as radiographic phenomenon. Advantages of the device include a 50 mm X-ray input, length less than 4'', and a weight of less than 1 lb. Since the use of synchrotron radiation is greatly facilitated by the capability of remote viewing of X-ray diffraction or radiographic images in real time, a prototype electro-optical system has been designed which couples the X-ray microchannel plate detector with a solid state television camera. Advantages of the miniature, lightweight, X-ray synchrotron camera include a large 50 mm X-ray input window, an output signal that is available in both analog format for display on a television monitor and in digital format for computer processing, and a completely modular design which allows all the components to be exchanged for other components optimally suited for the desired applications. (orig.)

  13. New method to analyse internal disruptions with five-camera soft x-ray tomography on RTP

    Energy Technology Data Exchange (ETDEWEB)

    Tanzi, C.P. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands); Blank, H.J. de [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1994-12-31

    The five-camera soft x-ray diagnostic on the Rijnhuizen Tokamak Project (RTP) offers a wealth of information on sawteeth. Using four or five cameras, tomographic images with 7 poloidal harmonics have been obtained throughout sawtooth crashes and precursor oscillations. The purpose of this paper is to determine whether the precursors are ideal MHD modes or can be attributed to the resistive growth of a magnetic island. In practice, the detection of the topology of magnetic surfaces from the reconstructed tomographic images is complicated by the fact that (except during the final phase of the collapse) the time dependence is dominated by rotation of the m = 1 displacement. A novel method allows to define quantities, e.g. the plasma volume where the emissivity is within a certain range, whose change is only determined by cross-field transport or reconnection, and is not affected by m = 1 convection and by rotation. (author) 6 refs., 2 figs.

  14. New method to analyse internal disruptions with five-camera soft x-ray tomography on RTP

    International Nuclear Information System (INIS)

    Tanzi, C.P.; Blank, H.J. de

    1994-01-01

    The five-camera soft x-ray diagnostic on the Rijnhuizen Tokamak Project (RTP) offers a wealth of information on sawteeth. Using four or five cameras, tomographic images with 7 poloidal harmonics have been obtained throughout sawtooth crashes and precursor oscillations. The purpose of this paper is to determine whether the precursors are ideal MHD modes or can be attributed to the resistive growth of a magnetic island. In practice, the detection of the topology of magnetic surfaces from the reconstructed tomographic images is complicated by the fact that (except during the final phase of the collapse) the time dependence is dominated by rotation of the m = 1 displacement. A novel method allows to define quantities, e.g. the plasma volume where the emissivity is within a certain range, whose change is only determined by cross-field transport or reconnection, and is not affected by m = 1 convection and by rotation. (author) 6 refs., 2 figs

  15. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    International Nuclear Information System (INIS)

    Revesz, Peter; Temnykh, Alexander B.; Pauling, Alan K.

    2011-01-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  16. New X-ray beam position monitors with submicron resolution utilizing imaging of scattered X-rays at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    Revesz, Peter, E-mail: pr20@cornell.edu [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States); Temnykh, Alexander B. [Cornell University, Laboratory for Elem-Particle Physics, Ithaca 14850, NY (United States); Pauling, Alan K. [Cornell University, Cornell High Energy Synchrotron Source, Ithaca 14850, NY (United States)

    2011-09-01

    At CHESS' A, F and G wiggler beam lines three new video beam position monitors (VBPMs) have been commissioned. These new VBPMs utilize X-rays scattered from the graphite filter (A and F line) or from a beryllium window (G-line) as the white wiggler beam passes through them. As the X-rays scatter in all directions from the scattering medium, a slit camera creates an image of the beam's footprint on a fluorescent screen. This image is then viewed by a CCD camera and analyzed using a computer program to calculate the intensity centroid, the beam profile and integrated intensity. These data are delivered to the CHESS signal archiving system for storage and display. The new systems employ digital cameras. These cameras are free of the noise inherent to the analog systems with long video signal connections. As a result, the beam position data delivered by the new systems are more reliable and accurate as shown by beam position traces using different beam position monitors on the same beam line.

  17. An X-ray camera for single-crystal studies at high temperatures under controlled atmosphere

    International Nuclear Information System (INIS)

    Adlhart, W.; Tzafaras, N.; Sueno, S.; Jagodzinski, H.; Huber, H.

    1982-01-01

    A vacuum heating camera has been developed for extremely low background X-ray film work between room temperature and 2000 K. It can be used with modified conventional Weissenberg goniometers and with a specially designed focusing goniometer. The temperature control is maintained by a Pt/Pt-10% Rh thermocouple, a three-term proportional, integral and derivative (PID) controller and a programmable power supply. The accuracy in the absolute temperature setting is 10 K, the stability better than 1 K and the maximum thermal gradient over the crystal 7 K mm -1 at 1330 K. A small oxygen pressure can be applied, depending on the temperature, to control oxidation or reduction reactions of the sample. (Auth.)

  18. Streaked, x-ray-transmission-grating spectrometer

    International Nuclear Information System (INIS)

    Ceglio, N.M.; Roth, M.; Hawryluk, A.M.

    1981-08-01

    A free standing x-ray transmission grating has been coupled with a soft x-ray streak camera to produce a time resolved x-ray spectrometer. The instrument has a temporal resolution of approx. 20 psec, is capable of covering a broad spectral range, 2 to 120 A, has high sensitivity, and is simple to use requiring no complex alignment procedure. In recent laser fusion experiments the spectrometer successfully recorded time resolved spectra over the range 10 to 120 A with a spectral resolving power, lambda/Δlambda of 4 to 50, limited primarily by source size and collimation effects

  19. Ultrahigh-speed X-ray imaging of hypervelocity projectiles

    Science.gov (United States)

    Miller, Stuart; Singh, Bipin; Cool, Steven; Entine, Gerald; Campbell, Larry; Bishel, Ron; Rushing, Rick; Nagarkar, Vivek V.

    2011-08-01

    High-speed X-ray imaging is an extremely important modality for healthcare, industrial, military and research applications such as medical computed tomography, non-destructive testing, imaging in-flight projectiles, characterizing exploding ordnance, and analyzing ballistic impacts. We report on the development of a modular, ultrahigh-speed, high-resolution digital X-ray imaging system with large active imaging area and microsecond time resolution, capable of acquiring at a rate of up to 150,000 frames per second. The system is based on a high-resolution, high-efficiency, and fast-decay scintillator screen optically coupled to an ultra-fast image-intensified CCD camera designed for ballistic impact studies and hypervelocity projectile imaging. A specially designed multi-anode, high-fluence X-ray source with 50 ns pulse duration provides a sequence of blur-free images of hypervelocity projectiles traveling at speeds exceeding 8 km/s (18,000 miles/h). This paper will discuss the design, performance, and high frame rate imaging capability of the system.

  20. X-ray filter for chest X-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    A description is given of an X-ray filter comprised of a sheet of radiation absorbing material with an opening corresponding to the spine and central portion of the heart. The upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter. This filter will permit an acceptable density level of x-ray exposure for the lungs while allowing a higher level of x-ray exposure for the mediastinum areas of the body. (author)

  1. Laboratory characterization of Woelter x-ray optics

    International Nuclear Information System (INIS)

    Remington, B.A.; Morales, R.I.

    1994-04-01

    We have conducted an extensive series of characterization measurements of a Woe1ter incidence x-ray microscope. The measurements were carried out on 5% sectors of the Woe1ter x-ray optic in a laboratory utilizing a high brightness, ''point'' x-ray source and fall into two categories. (1) Absolute reflectance measurements as a function of x-ray energy were made with Si(Li) detectors to acquire continuum spectra prior to and after reflecting off the Woe1ter optic. (2) Spatial resolution measurements were made using back-illuminated pinholes or grids imaged onto film or an x-ray CCD camera. The depth of field was mapped out by varying the distance between the Woe1ter optic and the backlit grid

  2. Shield device for controlling the dose of x-rays applied in an x-ray machine

    International Nuclear Information System (INIS)

    Charrier, P.

    1983-01-01

    This invention provides an improved shield for use with an x-ray machine. The shield can control the dose of x-rays applied by the machine in different areas without affecting the power of the x-rays. This is achieved with a shield especially designed and positioned to intercept with x-rays for longer or shorter periods in different areas during the taking of the picture, but not for the whole period of time necessary for taking this picture. Each area of the subject being x-rayed is exposed to full power x-rays. However, owing to the shield, the areas that require smaller dose receive these full power x-rays for a shorter portion of the time required to take the picture while the other areas that require larger dose of x-rays, receive the full power x-rays for a longer portion of the full period of time required to take the picture. To ensure this differential exposure, the shield is placed through the path of the x-rays and rotated about an axis which is generally transverse to the direction of travel of the x-rays to cut out some of said x-rays for different portions of the period of time necessary for taking the picture. The shield is preferably shaped to intercept x-rays for a longer period in some areas than in others depending on the required doses. A plurality of differently shaped shields can be provided to suit different picture taking situations

  3. High speed gated x-ray imagers

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Bell, P.; Hanks, R.; Power, G.; Turner, R.E.; Wiedwald, J.

    1988-01-01

    Single and multi-frame gated x-ray images with time-resolution as fast as 150 psec are described. These systems are based on the gating of microchannel plates in a stripline configuration. The gating voltage comes from the avalanche breakdown of reverse biased p-n junction producing high power voltage pulses as short as 70 psec. Results from single and four frame x-ray cameras used on Nova are described. 8 refs., 9 figs

  4. X-ray shout echoing through space

    Science.gov (United States)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many

  5. MOXE: An X-ray all-sky monitor for Soviet Spectrum-X-Gamma Mission

    Science.gov (United States)

    Priedhorsky, W.; Fenimore, E. E.; Moss, C. E.; Kelley, R. L.; Holt, S. S.

    1989-01-01

    A Monitoring Monitoring X-Ray Equipment (MOXE) is being developed for the Soviet Spectrum-X-Gamma Mission. MOXE is an X-ray all-sky monitor based on array of pinhole cameras, to be provided via a collaboration between Goddard Space Flight Center and Los Alamos National Laboratory. The objectives are to alert other observers on Spectrum-X-Gamma and other platforms of interesting transient activity, and to synoptically monitor the X-ray sky and study long-term changes in X-ray binaries. MOXE will be sensitive to sources as faint as 2 milliCrab (5 sigma) in 1 day, and cover the 2 to 20 KeV band.

  6. Camera for coherent diffractive imaging and holography with a soft-x-ray free-electron laser

    International Nuclear Information System (INIS)

    Bajt, Sasa; Chapman, Henry N.; Spiller, Eberhard A.; Alameda, Jennifer B.; Woods, Bruce W.; Frank, Matthias; Bogan, Michael J.; Barty, Anton; Boutet, Sebastien; Marchesini, Stefano; Hau-Riege, Stefan P.; Hajdu, Janos; Shapiro, David

    2008-01-01

    We describe a camera to record coherent scattering patterns with a soft-x-ray free-electron laser (FEL). The camera consists of a laterally graded multilayer mirror, which reflects the diffraction pattern onto a CCD detector. The mirror acts as a bandpass filter for both the wavelength and the angle, which isolates the desired scattering pattern from nonsample scattering or incoherent emission from the sample. The mirror also solves the particular problem of the extreme intensity of the FEL pulses, which are focused to greater than 10 14 W/cm 2 . The strong undiffracted pulse passes through a hole in the mirror and propagates onto a beam dump at a distance behind the instrument rather than interacting with a beam stop placed near the CCD. The camera concept is extendable for the full range of the fundamental wavelength of the free electron laser in Hamburg (FLASH) FEL (i.e., between 6 and 60 nm) and into the water window. We have fabricated and tested various multilayer mirrors for wavelengths of 32, 16, 13.5, and 4.5 nm. At the shorter wavelengths mirror roughness must be minimized to reduce scattering from the mirror. We have recorded over 30,000 diffraction patterns at the FLASH FEL with no observable mirror damage or degradation of performance

  7. A development of laser-plasma-based soft x-ray microscope system

    International Nuclear Information System (INIS)

    Nam, Ki Yong; Kim, Kyong Woo; Kim, Kyu Gyeom; Kwon, Young Man; Yoon, Kwon Ha

    2003-01-01

    Soft x-ray nano-imaging microscopy system for biomedical application with a high resolution about 50 nm has been designed and described, and its integrated techniques also have been studied. The system is mainly composed of soft x-ray generation system, nano-scaled control system, x-ray optical device like a condenser or object mirror, a CCD camera coupled with multichannel plate (MCP) and vacuum system. In the system, soft x-ray is generated from the laser-based plasma by focusing Nd:YAG laser beam on tantalum (Ta) target. In an x-ray optical system, a wolter mirror has been considering condensing the x-ray beam on a biological specimen and zone plate was adapted as an object mirror. A Si 3 N 4 was used as specimen holder for keeping a biological sample alive in atmosphere conditions. A back-illuminated-CCD camera coupled with multichannel plate was determined to set up.

  8. A development of laser-plasma-based soft x-ray microscope system

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ki Yong; Kim, Kyong Woo; Kim, Kyu Gyeom; Kwon, Young Man; Yoon, Kwon Ha [X-ray Microscopy Research Center, Wonkwang University, Iksan (Korea, Republic of)

    2003-07-01

    Soft x-ray nano-imaging microscopy system for biomedical application with a high resolution about 50 nm has been designed and described, and its integrated techniques also have been studied. The system is mainly composed of soft x-ray generation system, nano-scaled control system, x-ray optical device like a condenser or object mirror, a CCD camera coupled with multichannel plate (MCP) and vacuum system. In the system, soft x-ray is generated from the laser-based plasma by focusing Nd:YAG laser beam on tantalum (Ta) target. In an x-ray optical system, a wolter mirror has been considering condensing the x-ray beam on a biological specimen and zone plate was adapted as an object mirror. A Si{sub 3}N{sub 4} was used as specimen holder for keeping a biological sample alive in atmosphere conditions. A back-illuminated-CCD camera coupled with multichannel plate was determined to set up.

  9. Thick and large area PIN diodes for hard X-ray astronomy

    CERN Document Server

    Ota, N; Sugizaki, M; Kaneda, M; Tamura, T; Ozawa, H; Kamae, T; Makishima, K; Takahashi, T; Tashiro, M; Fukazawa, Y; Kataoka, J; Yamaoka, K; Kubo, S; Tanihata, C; Uchiyama, Y; Matsuzaki, K; Iyomoto, N; Kokubun, M; Nakazawa, T; Kubota, A; Mizuno, T; Matsumoto, Y; Isobe, N; Terada, Y; Sugiho, M; Onishi, T; Kubo, H; Ikeda, H; Nomachi, M; Ohsugi, T; Muramatsu, M; Akahori, H

    1999-01-01

    Thick and large area PIN diodes for the hard X-ray astronomy in the 10-60 keV range are developed. To cover this energy range in a room temperature and in a low background environment, Si PIN junction diodes of 2 mm in thickness with 2.5 cm sup 2 in effective area were developed, and will be used in the bottom of the Phoswich Hard X-ray Detector (HXD), on-board the ASTRO-E satellite. Problems related to a high purity Si and a thick depletion layer during our development and performance of the PIN diodes are presented in detail.

  10. CONTINUING THE DEVELOPMENT OF A 100 FEMTOSECOND X-RAY DETECTOR

    International Nuclear Information System (INIS)

    Zenghu Chang

    2005-01-01

    The detector is an x-ray streak camera running in accumulation mode for time resolved x-ray studies at the existing third generation synchrotron facilities and will also be used for the development and applications of the fourth generation x-ray sources. We have made significant progress on both the detector development and its applications at Synchrotron facilities

  11. X-ray image subtracting system

    International Nuclear Information System (INIS)

    Wesbey, W.H.; Keyes, G.S.; Georges, J.-P.J.

    1982-01-01

    An X-ray image subtracting system for making low contrast structures in the images more conspicuous is described. An X-ray source projects successive high and low energy X-ray beam pulses through a body and the resultant X-ray images are converted to optical images. Two image pick-up devices such as TV cameras that have synchronously operated shutters receive the alternate images and convert them to corresponding analog video signals. In some embodiments, the analog signals are converted to a matrix of digital pixel signals that are variously processed and subtracted and converted to signals for driving a TV monitor display and analog storage devices. In other embodiments the signals are processed and subtracted in analog form for display. The high and low energy pulses can follow each other immediately so good registration between subtracted images is obtainable even though the anatomy is in motion. The energy levels of the X-ray pulses are chosen to maximize the difference in attenuation between the anatomical structure which is to be subtracted out and that which remains. (author)

  12. Quasimonochromatic x-ray computed tomography by the balanced filter method using a conventional x-ray source

    International Nuclear Information System (INIS)

    Saito, Masatoshi

    2004-01-01

    A quasimonochromatic x-ray computed tomography (CT) system utilizing balanced filters has recently been developed for acquiring quantitative CT images. This system consisted of basic components such as a conventional x-ray generator for radiography, a stage for mounting and rotating objects, and an x-ray line sensor camera. Metallic sheets of Er and Yb were used as the balanced filters for obtaining quasimonochromatic incident x rays that include the characteristic lines of the W Kα doublet from a tungsten target. The mean energy and energy width of the quasimonochromatic x rays were determined to be 59.0 and 1.9 keV, respectively, from x-ray spectroscopic measurements using a high-purity Ge detector. The usefulness of the present x-ray CT system was demonstrated by obtaining spatial distributions of the linear attenuation coefficients of three selected samples--a 20 cm diameter cylindrical water phantom, a 3.5 cm diameter aluminum rod, and a human head phantom. The results clearly indicate that this apparatus is surprisingly effective for estimating the distribution of the linear attenuation coefficients without any correction of the beam-hardening effect. Thus, implementing the balanced filter method on an x-ray CT scanner has promise in producing highly quantitative CT images

  13. X-ray detectors at the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-01-01

    This paper offers an overview of area detectors developed for use at the Linac Coherent Light Source (LCLS) with particular emphasis on their impact on science. The experimental needs leading to the development of second-generation cameras for LCLS are discussed and the new detector prototypes are presented. Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced

  14. Precise X-ray and video overlay for augmented reality fluoroscopy.

    Science.gov (United States)

    Chen, Xin; Wang, Lejing; Fallavollita, Pascal; Navab, Nassir

    2013-01-01

    The camera-augmented mobile C-arm (CamC) augments any mobile C-arm by a video camera and mirror construction and provides a co-registration of X-ray with video images. The accurate overlay between these images is crucial to high-quality surgical outcomes. In this work, we propose a practical solution that improves the overlay accuracy for any C-arm orientation by: (i) improving the existing CamC calibration, (ii) removing distortion effects, and (iii) accounting for the mechanical sagging of the C-arm gantry due to gravity. A planar phantom is constructed and placed at different distances to the image intensifier in order to obtain the optimal homography that co-registers X-ray and video with a minimum error. To alleviate distortion, both X-ray calibration based on equidistant grid model and Zhang's camera calibration method are implemented for distortion correction. Lastly, the virtual detector plane (VDP) method is adapted and integrated to reduce errors due to the mechanical sagging of the C-arm gantry. The overlay errors are 0.38±0.06 mm when not correcting for distortion, 0.27±0.06 mm when applying Zhang's camera calibration, and 0.27±0.05 mm when applying X-ray calibration. Lastly, when taking into account all angular and orbital rotations of the C-arm, as well as correcting for distortion, the overlay errors are 0.53±0.24 mm using VDP and 1.67±1.25 mm excluding VDP. The augmented reality fluoroscope achieves an accurate video and X-ray overlay when applying the optimal homography calculated from distortion correction using X-ray calibration together with the VDP.

  15. Human genome sequencing with direct x-ray holographic imaging

    International Nuclear Information System (INIS)

    Rhodes, C.K.

    1993-01-01

    Direct holographic imaging of biological materials is widely applicable to the study of the structure, properties and action of genetic material. This particular application involves the sequencing of the human genome where prospective genomic imaging technology is composed of three subtechnologies, name an x-ray holographic camera, suitable chemistry and enzymology for the preparation of tagged DNA samples, and the illuminator in the form of an x-ray laser. We report appropriate x-ray camera, embodied by the instrument developed by MCR, is available and that suitable chemical and enzymatic procedures exist for the preparation of the necessary tagged DNA strands. Concerning the future development of the x-ray illuminator. We find that a practical small scale x-ray light source is indeed feasible. This outcome requires the use of unconventional physical processes in order to achieve the necessary power-compression in the amplifying medium. The understanding of these new physical mechanisms is developing rapidly. Importantly, although the x-ray source does not currently exist, the understanding of these new physical mechanisms is developing rapidly and the research has established the basic scaling laws that will determine the properties of the x-ray illuminator. When this x-ray source becomes available, an extremely rapid and cost effective instrument for 3-D imaging of biological materials can be applied to a wide range of biological structural assays, including the base-pair sequencing of the human genome and many questions regarding its higher levels of organization

  16. Physics of x-ray computed tomography

    International Nuclear Information System (INIS)

    Akutagawa, W.M.; Huth, G.C.

    1976-01-01

    Sections are included on theoretical limits of x-ray computed tomography and the relationship of these limits to human organ imaging and specific disease diagnosis; potential of x-ray computed tomography in detection of small calcified particles in early breast cancer detection; early lung cancer measurement and detection; advanced materials for ionizing radiation detection; positron system with circular ring transaxial tomographic camera; contrast mechanism of transmission scanner and algorithms; and status of design on a 200 keV scanning proton microprobe

  17. A multiframe soft x-ray camera with fast video capture for the LSX field reversed configuration (FRC) experiment

    International Nuclear Information System (INIS)

    Crawford, E.A.

    1992-01-01

    Soft x-ray pinhole imaging has proven to be an exceptionally useful diagnostic for qualitative observation of impurity radiation from field reversed configuration plasmas. We used a four frame device, similar in design to those discussed in an earlier paper [E. A. Crawford, D. P. Taggart, and A. D. Bailey III, Rev. Sci. Instrum. 61, 2795 (1990)] as a routine diagnostic during the last six months of the Large s Experiment (LSX) program. Our camera is an improvement over earlier implementations in several significant aspects. It was designed and used from the onset of the LSX experiments with a video frame capture system so that an instant visual record of the shot was available to the machine operator as well as facilitating quantitative interpretation of intensity information recorded in the images. The camera was installed in the end region of the LSX on axis approximately 5.5 m from the plasma midplane. Experience with bolometers on LSX showed serious problems with ''particle dumps'' at the axial location at various times during the plasma discharge. Therefore, the initial implementation of the camera included an effective magnetic sweeper assembly. Overall performance of the camera, video capture system, and sweeper is discussed

  18. Time-resolved X-ray PIV technique for diagnosing opaque biofluid flow with insufficient X-ray fluxes.

    Science.gov (United States)

    Jung, Sung Yong; Park, Han Wook; Kim, Bo Heum; Lee, Sang Joon

    2013-05-01

    X-ray imaging is used to visualize the biofluid flow phenomena in a nondestructive manner. A technique currently used for quantitative visualization is X-ray particle image velocimetry (PIV). Although this technique provides a high spatial resolution (less than 10 µm), significant hemodynamic parameters are difficult to obtain under actual physiological conditions because of the limited temporal resolution of the technique, which in turn is due to the relatively long exposure time (~10 ms) involved in X-ray imaging. This study combines an image intensifier with a high-speed camera to reduce exposure time, thereby improving temporal resolution. The image intensifier amplifies light flux by emitting secondary electrons in the micro-channel plate. The increased incident light flux greatly reduces the exposure time (below 200 µs). The proposed X-ray PIV system was applied to high-speed blood flows in a tube, and the velocity field information was successfully obtained. The time-resolved X-ray PIV system can be employed to investigate blood flows at beamlines with insufficient X-ray fluxes under specific physiological conditions. This method facilitates understanding of the basic hemodynamic characteristics and pathological mechanism of cardiovascular diseases.

  19. Photoemission measurements for low energy x-ray detector applications

    International Nuclear Information System (INIS)

    Day, R.H.

    1981-01-01

    Photoemission has been studied for nearly 100 years as both a means of investigating quantum physics, and as a practical technique for transducing optical/x-ray photons into electrical currents. Numerous x-ray detection schemes, such as streak cameras and x-ray sensitive diodes, exploit this process because of its simplicity, adaptability, and speed. Recent emphasis on diagnostics for low temperature, high density, and short-lived, plasmas for inertial confinement fusion has stimulated interest in x-ray photoemission in the sub-kilovolt regime. In this paper, a review of x-ray photoemission measurements in the 50 eV to 10 keV x-ray region is given and the experimental techniques are reviewed. A semiempirical model of x-ray photoemission is discussed and compared to experimental measurements. Finally, examples of absolutely calibrated instruments are shown

  20. Control area around dental x-ray units - dosimetric study I

    International Nuclear Information System (INIS)

    Suric Mihic, M.; Prlic, I.; Milkovic-Kraus, S.; Mestrovic, T.; Rojnica, F.

    2005-01-01

    The issue of prompt professional occupational dose reporting is raised when the interval between doses is short or when the radiation source suffers a technical failure. Every involved person should be able to recognised individual or group radiation exposure. Actual radiation quality of the source is to be taken into account. To optimise radiation protection of dental radiologists, dental x-ray units were subject to Quality Control measurements. Scattering radiation from the patient's dental structures was measured in order to prove the results published by S. Tabakov, but using the modern RVG dental mode and several classical diagnostic positions. We used a special head phantom (real scull + Perspex + crown glass) and common dental x-ray units of various brands and types. The radiation quality was measured using standard QA/QC equipment. We measured the radiation scattered from the phantom in the horizontal plane (at thyroid height) at 0.5 m distance from the centre of the phantom. The measurement were done for a number of standard dental x-ray procedures, but this paper presents only the scattering caused by the upper premolars. The attenuation in the facial tissue was minimal and the majority of incidental radiation passes through the open mouth of a patient directly into the room area causing occupational exposure. The results we obtained are consistent with earlier reports on patient dosimetry. Occupational exposure is much lower if a modern RVG technique is used and no radiation protection threshold is exceeded in relation to Croatian laws. Much more important is the fact that the need for protective equipment and shielding is smaller if QA warrants proper technical operation of the x-ray tube. The maintenance of dental units is essential and so is a proper training of staff using modern diagnostic techniques. The control area around the x-ray unit is to be calculated and established for every standard dental unit (this does not apply for panoramic x-rays

  1. Interferometric phase-contrast X-ray CT imaging of VX2 rabbit cancer at 35keV X-ray energy

    Science.gov (United States)

    Takeda, Tohoru; Wu, Jin; Tsuchiya, Yoshinori; Yoneyama, Akio; Lwin, Thet-Thet; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    Imaging of large objects at 17.7-keV low x-ray energy causes huge x-ray exposure to the objects even using interferometric phase-contrast x-ray CT (PCCT). Thus, we tried to obtain PCCT images at high x-ray energy of 35keV and examined the image quality using a formalin-fixed VX2 rabbit cancer specimen with 15-mm in diameter. The PCCT system consisted of an asymmetrically cut silicon (220) crystal, a monolithic x-ray interferometer, a phase-shifter, an object cell and an x-ray CCD camera. The PCCT at 35 keV clearly visualized various inner structures of VX2 rabbit cancer such as necrosis, cancer, the surrounding tumor vessels, and normal liver tissue. Besides, image-contrast was not degraded significantly. These results suggest that the PCCT at 35 KeV is sufficient to clearly depict the histopathological morphology of VX2 rabbit cancer specimen.

  2. Controlled area for mobile medical X-ray equipment

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, B; Taschner, P; Koenig, W [Staatliches Amt fuer Atomsicherheit und Strahlenschutz, Berlin (German Democratic Republic); Fuehr, K P; Kucharz, R [Rostock Univ. (German Democratic Republic). Radiologische Klinik

    1976-10-01

    On the basis of dose rate measurements the radiation protection situation during operation of mobile X-ray machines is described. According to these results, the controlled area has been definitely fixed by the National Board of Nuclear Safety and Radiation Protection with respect to the following fields of application: stomatology, mobile radiography of patients confined to bed as well as performing radiological examinations in the operating theatre.

  3. Patient positioning with X-ray detector self-calibration for image guided therapy

    International Nuclear Information System (INIS)

    Selby, B.P.; Sakas, G.; Stilla, U.; Groch, W.-D.

    2011-01-01

    Full text: Automatic alignment estimation from projection images has a range of applications, but misaligned cameras induce inaccuracies. Calibration methods for optical cameras requiring calibration bodies or detectable features have been a matter of research for years. Not so for image guided therapy, although exact patient pose recovery is crucial. To image patient anatomy, X-ray instead of optical equipment is used. Feature detection is often infeasible. Furthermore, a method not requiring a calibration body, usable during treatment, would be desirable to improve accuracy of the patient alignment. We present a novel approach not relying on image features but combining intensity based calibration with 3D pose recovery. A stereoscopic X-ray camera model is proposed, and effects of erroneous parameters on the patient alignment are evaluated. The relevant camera parameters are automatically computed by comparison of X-ray to CT images and are incorporated in the patient alignment computation. The methods were tested with ground truth data of an anatomic phantom with artificially produced misalignments and available real-patient images from a particle therapy machine. We show that our approach can compensate patient alignment errors through mis-calibration of a camera from more than 5 mm to below 0.2 mm. Usage of images with artificial noise shows that the method is robust against image degradation of 2-5%. X-ray camera sel calibration improves accuracy when cameras are misaligned. We could show that rigid body alignment was computed more accurately and that self-calibration is possible, even if detection of corresponding image features is not. (author)

  4. The MIRAX x-ray astronomy transient mission

    Science.gov (United States)

    Braga, João; Mejía, Jorge

    2006-06-01

    The Monitor e Imageador de Raios-X (MIRAX) is a small (~250 kg) X-ray astronomy satellite mission designed to monitor the central Galactic plane for transient phenomena. With a field-of-view of ~1000 square degrees and an angular resolution of ~6 arcmin, MIRAX will provide an unprecedented discovery-space coverage to study X-ray variability in detail, from fast X-ray novae to long-term (~several months) variable phenomena. Chiefly among MIRAX science objectives is its capability of providing simultaneous complete temporal coverage of the evolution of a large number of accreting black holes, including a detailed characterization of the spectral state transitions in these systems. MIRAX's instruments will include a soft X-ray (2-18 keV) and two hard X-ray (10-200 keV) coded-aperture imagers, with sensitivities of ~5 and ~2.6 mCrab/day, respectively. The hard X-ray imagers will be built at the Instituto Nacional de Pesquisas Espaciais (INPE), Brazil, in close collaboration with the Center for Astrophysics & Space Sciences (CASS) of the University of California, San Diego (UCSD) and the Institut fur Astronomie und Astrophysik of the University of Tubingen (IAAT) in Germany; UCSD will provide the crossed-strip position-sensitive (0.5- mm spatial resolution) CdZnTe (CZT) hard X-ray detectors. The soft X-ray camera, provided by the Space Research Organization Netherlands (SRON), will be the spare flight unit of the Wide Field Cameras that flew on the Italian-Dutch satellite BeppoSAX. MIRAX is an approved mission of the Brazilian Space Agency (Agnecia Espacial Brasileira - AEB) and is scheduled to be launched in 2011 in a low-altitude (~550 km) circular equatorial orbit. In this paper we present recent developments in the mission planning and design, as well as Monte Carlo simulations performed on the GEANT-based package MGGPOD environment (Weidenspointner et al. 2004) and new algorithms for image digital processing. Simulated images of the central Galactic plane as it

  5. Quantitative X-ray microtomography with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Donath, T. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2007-07-01

    Synchrotron-radiation-based computed microtomography (SR{sub {mu}}CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR{sub {mu}}CT measurements have been further improved by enhancements that were made to the SR{sub {mu}}CT apparatus and to the reconstruction chain. For high-resolution SR{sub {mu}}CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR{sub {mu}}CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  6. Quantitative X-ray microtomography with synchrotron radiation

    International Nuclear Information System (INIS)

    Donath, T.

    2007-01-01

    Synchrotron-radiation-based computed microtomography (SR μ CT) is an established method for the examination of volume structures. It allows to measure the x-ray attenuation coefficient of a specimen three-dimensionally with a spatial resolution of about one micrometer. In contrast to conventional x-ray sources (x-ray tubes), the unique properties of synchrotron radiation enable quantitative measurements that do not suffer from beam-hardening artifacts. During this work the capabilities for quantitative SR μ CT measurements have been further improved by enhancements that were made to the SR μ CT apparatus and to the reconstruction chain. For high-resolution SR μ CT an x-ray camera consisting of luminescent screen (x-ray phosphor), lens system, and CCD camera was used. A significant suppression of blur that is caused by reflections inside the luminescent screen could be achieved by application of an absorbing optical coating to the screen surface. It is shown that blur and ring artifacts in the tomographic reconstructions are thereby drastically reduced. Furthermore, a robust and objective method for the determination of the center of rotation in projection data (sinograms) is presented that achieves sub-pixel precision. By implementation of this method into the reconstruction chain, complete automation of the reconstruction process has been achieved. Examples of quantitative SR μ CT studies conducted at the Hamburger Synchrotronstrahlungslabor HASYLAB at the Deutsches Elektronen-Synchrotron DESY are presented and used for the demonstration of the achieved enhancements. (orig.)

  7. A study of x-ray microbeam stress measurement for local area

    International Nuclear Information System (INIS)

    Natsume, Yoshitaka; Miyakawa, Susumu

    1987-01-01

    A new type X-ray microbeam equipment which is capable of three-dimensional oscillation at an X-ray radiation position was used to measure the residual stress of pure iron powder and bending plate specimens as well as that in the vicinity of fatigue crack tip of 1/2 CT specimen. The results obtained are summerized as follows. (1) Diffraction profiles of pure iron powder with diameter 0.02 ∼ 0.03 μm particle size obtained by the present microbeam technique in the beam area of 80 μm in diamether and measuring time more than 800 sec showed Kα 1 and Kα 2 peaks clearly, so that these profiles are good enough for stress measurement. (2) The measured stress of pure iron powder with diameter 10 ∼ 25 μm particle size in the beam area of 80 μm in diameter was not equal to 0 MPa. The measured stress varied greatly and was independent of measuring time. (3) The measured stress of pure iron powder with diameter 0.02 ∼ 0.03 μm particle size in the beam area of 80 μm in diameter was almost 1 MPa, which shows the good accuracy of this X-ray micro-beam equipment. (4) The relation between the X-ray measured stress and the mechanically applied stress showed good agreement. (5) The distribution of residual stress at the vicinity of fatigue crack tip showed that the residual stress at the fatigue crack tip was compression and the residual stress in front of crack tip was tension. This tensile residual stress in front of crack tip existed in the area from 0.02 mm to 2 mm. (6) The above results show that the present equipment is advantageous in the investigation of local stress, shortening the measuring time without sacrificing the accuracy. (author)

  8. Scintillating ribbon x-ray detector

    International Nuclear Information System (INIS)

    Kinchen, B.E.; Rogers, A.

    1995-01-01

    A patent in the early 1970's by Aerojet Corporation in Sacramento, CA put forth the idea of using an array of scintillating fibers for x-ray detection and imaging. In about 1975, Pratt and Whitney Aircraft in East Hartford, CT designed and manufactured an imaging system based on the patent. The device was 1.75 in thick in the direction of the x-ray beam and about 4 in. by 4 in. square. The device was used with a 8 MeV x-ray source to image and measure internal clearances within operating aircraft, gas turbines engines. There are significant advantages of fiber optic detectors in x-ray detection. However, the advantages are often outweighed by the disadvantages. Two of the advantages of scintillating fiber optic x-ray detectors are: (1) high limiting spatial frequency -- between 20 and 25 lp/mm; and (2) excellent x-ray stopping power -- they can be made thick and retain spatial resolution. In traditional fiber optic detectors the x-rays are oriented parallel to the long axis of the fiber. For the scintillating ribbon x-ray sensor, the x-rays are oriented normal to the fiber long axis. This ribbon sensor technique has a number of advantages over the two current radiographic techniques digital x-radiography and x-ray film: The main advantage the ribbon has is size and shape. It can be as thin as 0.05 in., virtually any width or length, and flexible. Once positioned in a given location, 20 to 100 square inches of the object being inspected can be imaged with a single x-ray beam sweep. It is clear that conventional digital cameras do not lend themselves to placement between walls of aircraft structures or similar items requiring x-ray inspections. A prototype scintillating ribbon x-ray sensor has been fabricated and tested by Synergistic Detector Designs. Images were acquired on corrosion test panels of aluminum fabricated by Iowa State University

  9. Development and performance test of picosecond pulse x-ray excited streak camera system for scintillator characterization

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Yoshikawa, Akira

    2010-01-01

    To observe time and wavelength-resolved scintillation events, picosecond pulse X-ray excited streak camera system is developed. The wavelength range spreads from vacuum ultraviolet (VUV) to near infrared region (110-900 nm) and the instrumental response function is around 80 ps. This work describes the principle of the newly developed instrument and the first performance test using BaF 2 single crystal scintillator. Core valence luminescence of BaF 2 peaking around 190 and 220 nm is clearly detected by our system, and the decay time turned out to be of 0.7 ns. These results are consistent with literature and confirm that our system properly works. (author)

  10. The JET multi-camera soft X-ray diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Alper, B; Blackler, K; Dillon, S F; Edwards, A W; Gill, R D; Lyadina, E; Mulligan, W; Staunton-Lambert, S A.B.; Thompson, D G; Wilson, D J [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    A new soft X-ray detector system has been constructed for the pumped divertor phase of JET which incorporates a number of enhancements over the previous system in both hardware and data acquisition. The hardware improvements include: six independent views of the plasma at one toroidal location (as opposed to two in the old system), spatial resolution improved from 7 cm to 3 cm, frequency response increased from 30 khz to 100 khz and improved toroidal mode resolution. These enhancements will allow the study of MHD activity in finer detail. The tomographic reconstruction of soft X-ray emissivities will be improved to include Fourier terms up to cos(5{theta}) compared with only cos(2{theta}) before. Through the implementation of a fast central acquisition and trigger system, data from a range of diagnostics will be available at high bandwidth to allow processing of plasma phenomena of far greater complexity than was possible before. (authors). 2 refs., 5 figs.

  11. Soft x-ray imaging system for measurement of noncircular tokamak plasmas

    International Nuclear Information System (INIS)

    Fonck, R.J.; Reusch, M.; Jaehnig, K.P.; Hulse, R.; Roney, P.

    1986-08-01

    A soft x-ray camera and image processing system has been constructed to provide measurements of the internal shape of high temperature tokamak plasmas. The camera consists of a metallic-foil-filtered pinhole aperture and a microchannel plate image intensifier/convertor which produces a visible image for detection by a CCD TV camera. A wide-angle tangential view of the toroidal plasma allows a single compact camera to view the entire plasma cross section. With Be filters 12 to 50 μm thick, the signal from the microchannel plate is produced mostly by nickel L-line emissions which orignate in the hot plasma core. The measured toroidal image is numerically inverted to produce a cross-sectional soft x-ray image of the plasma. Since the internal magnetic flux surfaces are usually isothermal and the nickel emissivity depends strongly on the local electron temperature, the x-ray emission contours reflect the shape of the magnetic surfaces in the plasma interior. Initial results from the PBX tokamak experiment show clear differences in internal plasma shapes for circular and bean-shaped discharges

  12. Lifting the veil on the X-ray universe

    Science.gov (United States)

    1999-11-01

    ESA's X-ray Multi Mirror mission - XMM - is the second Cornerstone in ESA's Long Term Scientific Programme (*). This new X-ray space telescope promises even more discoveries. With the large collecting area of its mirrors and the high sensitivity of its cameras, XMM is expected to increase radically our understanding of high-energy sources - clues to a mysterious past, and keys to understanding the future of the Universe. 174 wafer-thin X-ray mirrors X-rays coming from celestial objects are highly energetic and elusive. They can best be measured and studied after focusing a sufficient number upon sensitive detectors. To achieve this, XMM's Mirror Modules have been given a gargantuan appetite for X-rays. The space observatory combines three barrel-shaped telescope modules. In each are nested 58 wafer-thin concentric mirror shells highly polished and subtly shaped. Passing through at an extremely shallow angle, the so-called "grazing incidence", the X-rays will be beamed to the science instruments situated on the focal plane at the other extremity of the satellite. The three mirror modules have a total mirror surface of over 120m2 - practically the size of a tennis court.. The collecting power of XMM's three telescopes is the greatest ever seen on an X-ray space mission, many times more than the most recently launched X-ray satellite. The design and assembly of the mirror modules, their testing for operation in space and their precise calibration constitute one of the greatest achievements of the XMM programme. The flimsy mirror shells, with their gold reflective surface on a nickel backing, were made by replication like carbon copies from master moulds. They were shaped to an accuracy of a thousandth of a millimetre, and then polished to a smoothness a thousand times better than that. Packaged one within another like Russian dolls, each mirror was focused and centred with respect to its neighbour to an accuracy of 25 microns - a quarter of the width of a human hair

  13. X-ray microbeam stand-alone facility for cultured cells irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Bożek, Sebastian, E-mail: sebastian.bozek@yahoo.com [Jagiellonian University Medical College, Department of Pharmaceutical Biophysics, Krakow (Poland); Bielecki, Jakub; Wiecheć, Anna; Lekki, Janusz; Stachura, Zbigniew; Pogoda, Katarzyna; Lipiec, Ewelina; Tkocz, Konrad; Kwiatek, Wojciech M. [Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow (Poland)

    2017-03-01

    Highlights: • An X-ray microbeam line for irradiation of living cultured cells was constructed. • A step by step explanation of working principles with engineering details, procedures and calculations is presented. • A model of beam and cell interaction is presented. • A method of uniform irradiation of living cells with an exact dose per a cell is presented. • Results of preliminary experiments are presented. - Abstract: The article describes an X-ray microbeam standalone facility dedicated for irradiation of living cultured cells. The article can serve as an advice for such facilities construction, as it begins from engineering details, through mathematical modeling and experimental procedures, ending up with preliminary experimental results and conclusions. The presented system consists of an open type X-ray tube with microfocusing down to about 2 μm, an X-ray focusing system with optical elements arranged in the nested Kirckpatrick-Baez (or Montel) geometry, a sample stand and an optical microscope with a scientific digital CCD camera. For the beam visualisation an X-ray sensitive CCD camera and a spectral detector are used, as well as a scintillator screen combined with the microscope. A method of precise one by one irradiation of previously chosen cells is presented, as well as a fast method of uniform irradiation of a chosen sample area. Mathematical models of beam and cell with calculations of kerma and dose are presented. The experiments on dose-effect relationship, kinetics of DNA double strand breaks repair, as well as micronuclei observation were performed on PC-3 (Prostate Cancer) cultured cells. The cells were seeded and irradiated on Mylar foil, which covered a hole drilled in the Petri dish. DNA lesions were visualised with γ-H2AX marker combined with Alexa Fluor 488 fluorescent dye.

  14. Elemental analysis of air particulate samples in Jakarta area by x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Yumiarti; Yusuf, M.; Mellawati, June; Menry, Yulizon; Surtipanti S

    1998-01-01

    Determination of elements in air particulate samples collected from Jakarta, especially from industrial area Pulo Gadung, also from residence, office, and recreation sites had been carried out. The samples collected periodically from August through December 1996. The elements were analyzed by X-ray fluorescence spectrometry method. Quantitative and qualitative analyses were done using QXAS AXIL (Quantitative X-ray Analysis System of x-ray Spectra by Iterative Least squares fitting) and QAES (Quantitative Analyses of Environmental Samples) package program. Results of the analyses showed that the content of heavy metal elements in air particulate samples from all areas studied were still below the maximum permissible concentration. (authors)

  15. X-ray beam generator

    International Nuclear Information System (INIS)

    Koller, T.J.; Randmer, J.A.

    1977-01-01

    A method of minimizing the preferential angular absorption of the divergent beam from an X-ray generator is described. The generator consists of an X-ray shielded housing with an X-ray transmissive window symmetrically placed in radial alignment with a focal spot area on a sloped target surface of an X-ray tube in the housing. The X-ray tube may be of the stationary anode type or of the rotating anode type. (U.K.)

  16. Flash X-Ray (FXR) Accelerator Optimization Electronic Time-Resolved Measurement of X-Ray Source Size

    International Nuclear Information System (INIS)

    Jacob, J; Ong, M; Wargo, P

    2005-01-01

    discuss an x-ray source size measurement system which utilizes a traditional roll-bar setup combined with a high resolution gated CCD camera, fast-response organic plastic scintillator, and image processing and analysis software, which is executable on a standard PC running which is executable on a standard PC running LabVIEW and Matlab. Analysis time is reduced from several hours to several minutes, while our experimental results demonstrate good agreement with both traditional film-based roll-bar measurements as well as the entirely unrelated technique of x-ray pinhole camera measurements; in addition, our time-resolved measurements show a significant variation in source size throughout the 70 ns beam pulse, a phenomenon which requires further investigation and indicates the possibility of greatly improving final spot size

  17. Picosecond chronography at x-ray wavelengths

    International Nuclear Information System (INIS)

    Bird, P.R.; Bradley, D.J.; Roddie, A.G.; Sibbett, W.; Key, M.H.; Lamb, M.J.; Lewis, C.L.S.

    1975-01-01

    An ultrafast streak camera for vacuum U-V to X-ray radiation is described. Preliminary measurements on laser-produced plasmas are presented with time resolution down to 150 psecs and space resolution down to 40μm for 1keV X-ray emission from a plasma generated by 2GW laser pulses focussed on a Cu target. High sensitivity and wide spectral bandwidth is due to front surface photoemission at oblique incidence. Time resolution capability of 40 psec and simultaneous spatial resolution down to a few microns is theoretically possible with this system. (author)

  18. The x-ray laser coherence experiments in neon-like yttrium

    International Nuclear Information System (INIS)

    Shimkaveg, G.M.; Carter, M.R.; Walling, R.S.; Ticehurst, J.M.; Koch, J.A.; Mrowka, S.; Trebes, J.E.; MacGowan, B.J.; Da Silva, L.B.; Matthews, D.L.; London, R.A.; Stewart, R.E.

    1992-01-01

    We present recent results from neon-like x-ray laser experiments conducted at the Nova laser's Two-Beam Facility. This begins a series of experiments aimed at the characterization and control of the degree of spatial coherece in our soft x-ray laser beams, important to planned applications areas susch as microscopy and holography. New instrumentation developed for this effort include a fully time-resolved coherence diagnostic (which records a multiple-slit diffraction pattern) and wide-angle extreme ultraviolet spectrographs and beam divergence cameras. We present new measurements of beam profiles and gain, as well as spatial coherence data such as time-resolved multi-slit diffraction patterns. This new time-resolved coherence data exhibit aperture functions which increase in size during the time of the lasing. Also, some preliminary data is given from the first ''double-foil'' experiments, involving two x-ray amplifiers spatially separated by 29 cm and shot sequentially, in an ''oscillator-amplifier'' configuration

  19. High resolution low energy X-ray microradiography using a CCD camera

    Czech Academy of Sciences Publication Activity Database

    Touš, J.; Horodysky, P.; Blažek, K.; Nikl, Martin; Mareš, Jiří A.

    2011-01-01

    Roč. 6, C1 (2011), s. 1-5 ISSN 1748-0221 R&D Projects: GA AV ČR KAN300100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : X-ray radiography and digital radiography * inspection with x-rays * detection of defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.869, year: 2011

  20. Development of X-ray and ion diagnostic methods for plasma focus research

    International Nuclear Information System (INIS)

    Sadowski, M.

    1986-12-01

    A review of experimental methods used for investigation of X-rays and ion-beams emmited from plasma focus facilities is presented. The research program has been realized at the Institute for Nuclear Studies in Swierk and at the Institut fuer Plasmaforschung in Stuttgart, within the frames of an international co-operation. The studies on ion emission from different PF facilities are reviewed. The application of CN-films with Al-filters and of different ion-pinhole cameras is described. The use of a Thomson mass-spectrometer adopted for plasma studies is presented. The time-resolved measurements combined with a simultaneous mass- and energy-analysis of the ion beams are also described. The most important results of these studies are summarized. Particular attention is also paid to the studies of the X-ray emission. The use of stereoscopic sets of vacuum pinhole cameras with thin Be-filters is described. The application of X-ray pinhole cameras equipped with miniature scintillators for time-resolved measurements is also presented. The most important results of the X-ray emission studies are summarized. 35 refs., 12 figs. (author)

  1. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1982-01-01

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 μg/cm 2 ) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-μm laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10 14 W/cm 2 and 1 x 10 15 W/cm 2

  2. Knot detection in X-ray images of wood planks using dictionary learning

    DEFF Research Database (Denmark)

    Hansson, Nils Mattias; Enescu, Alexandru; Brandt, Sami Sebastian

    2015-01-01

    This paper considers a novel application of x-ray imaging of planks, for the purpose of detecting knots in high quality furniture wood. X-ray imaging allows the detection of knots invisible from the surface to conventional cameras. Our approach is based on texture analysis, or more specifically, ......, discriminative dictionary learning. Experiments show that the knot detection and segmentation can be accurately performed by our approach. This is a promising result and can be directly applied in industrial processing of furniture wood.......This paper considers a novel application of x-ray imaging of planks, for the purpose of detecting knots in high quality furniture wood. X-ray imaging allows the detection of knots invisible from the surface to conventional cameras. Our approach is based on texture analysis, or more specifically...

  3. Time-resolved x-ray diagnostics

    International Nuclear Information System (INIS)

    Lyons, P.B.

    1981-01-01

    Techniques for time-resolved x-ray diagnostics will be reviewed with emphasis on systems utilizing x-ray diodes or scintillators. System design concerns for high-bandwidth (> 1 GHz) diagnostics will be emphasized. The limitations of a coaxial cable system and a technique for equalizing to improve bandwidth of such a system will be reviewed. Characteristics of new multi-GHz amplifiers will be presented. An example of a complete operational system on the Los Alamos Helios laser will be presented which has a bandwidth near 3 GHz over 38 m of coax. The system includes the cable, an amplifier, an oscilloscope, and a digital camera readout

  4. Novel Hybrid CMOS X-ray Detector Developments for Future Large Area and High Resolution X-ray Astronomy Missions

    Science.gov (United States)

    Falcone, Abe

    In the coming years, X-ray astronomy will require new soft X-ray detectors that can be read very quickly with low noise and can achieve small pixel sizes over a moderately large focal plane area. These requirements will be present for a variety of X-ray missions that will attempt to address science that was highly ranked by the 2010 Decadal Survey, including missions with science that overlaps with that of IXO and Athena, as well as other missions addressing science topics beyond those of IXO and Athena. An X-ray Surveyor mission was recently chosen by NASA for study by a Science & Technology Definition Team (STDT) so it can be considered as an option for an upcom-ing flagship mission. A mission such as this was endorsed by the NASA long term planning document entitled "Enduring Quests, Daring Visions," and a detailed description of one possible reali-zation of such a mission has been referred to as SMART-X, which was described in a recent NASA RFI response. This provides an example of a future mission concept with these requirements since it has high X-ray throughput and excellent spatial resolution. We propose to continue to modify current active pixel sensor designs, in particular the hybrid CMOS detectors that we have been working with for several years, and implement new in-pixel technologies that will allow us to achieve these ambitious and realistic requirements on a timeline that will make them available to upcoming X-ray missions. This proposal is a continuation of our program that has been work-ing on these developments for the past several years. The first 3 years of the program led to the development of a new circuit design for each pixel, which has now been shown to be suitable for a larger detector array. The proposed activity for the next four years will be to incorporate this pixel design into a new design of a full detector array (2k×2k pixels with digital output) and to fabricate this full-sized device so it can be thoroughly tested and

  5. X-ray ‘ghost images’ could cut radiation doses

    Science.gov (United States)

    Chen, Sophia

    2018-03-01

    On its own, a single-pixel camera captures pictures that are pretty dull: squares that are completely black, completely white, or some shade of gray in between. All it does, after all, is detect brightness. Yet by connecting a single-pixel camera to a patterned light source, a team of physicists in China has made detailed x-ray images using a statistical technique called ghost imaging, first pioneered 20 years ago in infrared and visible light. Researchers in the field say future versions of this system could take clear x-ray photographs with cheap cameras—no need for lenses and multipixel detectors—and less cancer-causing radiation than conventional techniques.

  6. A large area detector for x-ray applications

    International Nuclear Information System (INIS)

    Rodricks, B.; Huang, Qiang; Hopf, R.; Wang, Kemei.

    1993-01-01

    A large area detector for x-ray synchrotron applications has been developed. The front end of this device consist of a scintillator coupled to a fiber-optic taper. The fiber-optic taper is comprised of 4 smaller (70 mm x 70 mm) tapers fused together in a square matrix giving an active area of 140 mm x 140 mm. Each taper has a demagnification of 5.5 resulting in four small ends that are 12 mm diagonally across. The small ends of each taper are coupled to four microchannel-plate-based image intensifiers. The output from each image intensifier is focused onto a Charge Coupled Device (CCD) detector. The four CCDs are read out in parallel and are independently controlled. The image intensifiers also act as fast (20 ns) electronic shutters. The system is capable of displaying images in real time. Additionally, with independent control on the readout of each row of data from the CCD, the system is capable of performing high speed imaging through novel readout manipulation

  7. Process of the x-ray image formation, (2). The limit to recognize a simple figure, (2)

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuta, H [Osaka City Univ. (Japan). Hospital

    1980-03-01

    In recent year, X-ray photographs can be obtained by very low dose with high sensitivity photographic system. Such very low dose makes the image quality inferior because of the fluctuation of X-ray quanta so called ''quantum noise''. The process of the X-ray image formation was evaluated from a point of view that the X-ray images are formed by the accumulation of X-ray quanta distributed randomly. And the condition that the image of a simple-shaped small object can be recognized into background quanta was investigated. Under the assumption that the quanta absorbed by an object are N sub(s) and that the average number of background quanta per area which is in the same projected area of the object is N sub(b), the condition that N sub(s) is recognizable in background is mathematically led to the following formula: N sub(s) > 4(..sqrt..N sub(b) + 1). Then the validity of this formula was experimentally shown using a computer and a simulation system by a gamma camera.

  8. Synchrotron radiation sources and condensers for projection x-ray lithography

    International Nuclear Information System (INIS)

    Murphy, J.B.; MacDowell, A.A.; White, D.L.; Wood, O.R. II

    1992-01-01

    The design requirements for a compact electron storage ring that could be used as a soft x-ray source for projection lithography are discussed. The design concepts of the x-ray optics that are required to collect and condition the radiation in divergence, uniformity and direction to properly illuminate the mask and the particular x-ray projection camera used are discussed. Preliminary designs for an entire soft x-ray projection lithography system using an electron storage ring as a soft X-ray source are presented. It is shown that by combining the existing technology of storage rings with large collection angle condensers, a powerful and reliable source of 130 Angstrom photons for production line projection x-ray lithography is possible

  9. Picosecond x-ray measurements from 100 eV to 30 keV

    International Nuclear Information System (INIS)

    Attwood, D.T.; Kauffman, R.L.; Stradling, G.L.

    1980-01-01

    Picosecond x-ray measurements relevant to the Livermore Laser Fusion Program are reviewed. Resolved to 15 picoseconds, streak camera detection capabilities extend from 100 eV to higher than 30 keV, with synchronous capabilities in the visible, near infrared, and ultraviolet. Capabilities include automated data retrieval using charge coupled devices (CCD's), absolute x-ray intensity levels, novel cathodes, x-ray mirror/reflector combinations, and a variety of x-ray imaging devices

  10. Time-resolved x-ray spectra of laser irradiated high-Z targets

    International Nuclear Information System (INIS)

    Lee, P.H.Y.; Attwood, D.T.; Boyle, M.J.; Campbell, E.M.; Coleman, L.C.; Kornblum, H.N.

    1977-01-01

    Recent results obtained by using the Livermore 15 psec x-ray streak camera to record x-ray emission from laser-irradiated high-z targets in the 1-20 keV range are reported. Nine to eleven K-edge filter channels were used for the measurements. In the lower energy channels, a dynamic range of x-ray emission intensity of better than three orders of magnitude have been recorded. Data will be presented which describe temporally and spectrally resolved x-ray spectra of gold disk targets irradiated by laser pulses from the Argus facility, including the temporal evolution of the superthermal x-ray tail

  11. Rocket studies of solar corona and transition region. [X-Ray spectrometer/spectrograph telescope

    Science.gov (United States)

    Acton, L. W.; Bruner, E. C., Jr.; Brown, W. A.; Nobles, R. A.

    1979-01-01

    The XSST (X-Ray Spectrometer/Spectrograph Telescope) rocket payload launched by a Nike Boosted Black Brant was designed to provide high spectral resolution coronal soft X-ray line information on a spectrographic plate, as well as time resolved photo-electric records of pre-selected lines and spectral regions. This spectral data is obtained from a 1 x 10 arc second solar region defined by the paraboloidal telescope of the XSST. The transition region camera provided full disc images in selected spectral intervals originating in lower temperature zones than the emitting regions accessible to the XSST. A H-alpha camera system allowed referencing the measurements to the chromospheric temperatures and altitudes. Payload flight and recovery information is provided along with X-ray photoelectric and UV flight data, transition camera results and a summary of the anomalies encountered. Instrument mechanical stability and spectrometer pointing direction are also examined.

  12. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector

    DEFF Research Database (Denmark)

    Ejdrup, T.; Lemke, H.T.; Haldrup, Martin Kristoffer

    2009-01-01

    The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA...... limited time-resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X-ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline........ The capability of the gated PILATUS detector to selectively detect the signal from a given X-ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of [alpha]-perylene illustrates the possibility of reaching an X-ray pulse duration...

  13. Development and experimental study of beryllium window for ITER radial X-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoxi [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jin, Guangxu [Materion Brush (United States); Chen, Kaiyun; Chen, Yebin; Song, Yuntao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Liqun, E-mail: lqhu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Niu, Luying; Sheng, Xiuli; Cheng, Yong; Lu, Kun [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-12-15

    Highlights: • The thickness of the beryllium foil is chosen as 80 μm to guarantee its safety under high pressure differential in accident events. • Using low purity of beryllium as the transition material, the effect of thermal stress caused by diffusion bonding process can be reduced. • Sealing ring and honeycomb-like supports are designed and used in the mechanical clamped beryllium window to enhance its sealing and safety performance. • The beryllium windows have good performance under severe working conditions like high temperature baking, vibration or impact load. -- Abstract: Radial X-ray camera (RXC) is a diagnostic device planned to be installed in the ITER Equatorial Port no. 12. Beryllium window will be installed between the inner and outer camera of RXC, which severs as the transmission photocathode substrate and also the vacuum isolation component. In this paper the design and manufacture process of two types of beryllium windows were introduced. Although 50 μm thickness of beryllium foil is the best choice, the 80 μm one with X-ray threshold of 1.34 keV was selected for safety consideration. Using the intermediate layer (low purity of beryllium) between the beryllium foil and the stainless steel base flange is an effective strategy to limit the welding thermal deformation and thermal stress of the thin foil caused by bonding between different materials. By using ANSYS software, the feasibility of the aperture design was analyzed and validated. Metal sealing ring was applied in the mechanical clamped beryllium window for its good stability under high temperature and neutron radiation. Although both of the hollow metal sealing ring with 0.03 mm silver coating and the pure silver sealing ring can satisfy the sealing requirement, the later one was chosen to produce the final product. Two hours 240 °C high temperature baking test, two hours 3.3 Hz vibration test and fatigue test were performed on the two types of beryllium windows. Based on the

  14. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  15. X-ray fluorescence in Member States (Italy): Full field X-ray fluorescence imaging with high-energy and high-spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F. P.; Masini, N.; Pappalardo, L., E-mail: romanop@lns.infn.it [IBAM, CNR, Via Biblioteca 4, 95124 Catania (Italy); Cosentino, L.; Gammino, S.; Mascali, D.; Rizzo, F. [INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy)

    2014-02-15

    A full field X-ray camera for the X-Ray Fluorescence imaging of materials with high-energy and high-spatial resolution was designed and developed. The system was realized by coupling a pinhole collimator with a positionsensitive CCD detector. X-Ray fluorescence is induced on the samples by irradiation with an external X-ray tube. The characteristic X-ray spectra of the investigated materials are obtained by using a multi-frames acquisition in single-photon counting. The energy resolution measured at the Fe-Kα line was 157 eV. The spatial resolution of the system was determined by the analysis of a sharp-edge at different magnification values; it was estimated to be 90 μm at a magnification value of 3.2x and 190 μm at 0.8x. The present set-up of the system is suited to analyze samples with dimensions up to 5x4 cm{sup 2}. Typical measurement time is in the range between 1h to 4 h. (author)

  16. X-ray inspection of composite materials for aircraft structures using detectors of Medipix type

    International Nuclear Information System (INIS)

    Jandejsek, I; Jakubek, J; Jakubek, M; Krejci, F; Soukup, P; Turecek, D; Vavrik, D; Zemlicka, J; Prucha, P

    2014-01-01

    This work presents an overview of promising X-ray imaging techniques employed for non-destructive defectoscopy inspections of composite materials intended for the Aircraft industry. The major emphasis is placed on non-tomographic imaging techniques which do not require demanding spatial and time measurement conditions. Imaging methods for defects visualisation, delamination detection and porosity measurement of various composite materials such as carbon fibre reinforced polymers and honeycomb sendwiches are proposed. We make use of the new large area WidePix X-ray imaging camera assembled from up to 100 edgeless Medipix type detectors which is highly suitable for this type of measurements

  17. A CCD-based area detector for X-ray crystallography using synchrotron and laboratory sources

    International Nuclear Information System (INIS)

    Phillips, W.C.; Li Youli; Stanton, M.; Xie Yuanhui; O'Mara, D.; Kalata, K.

    1993-01-01

    The design and characteristics of a CCD-based area detector suitable for X-ray crystallographic studies using both synchrotron and laboratory sources are described. The active area is 75 mm in diameter, the FWHM of the point response function is 0.20 mm, and for Bragg peaks the dynamic range is 900 and the DQE ∼0.3. The 1320x1035-pixel Kodak CCD is read out into an 8 Mbyte memory system in 0.14 s and digitized to 12 bits. X-ray crystallographic data collected at the NSLS synchrotron from cubic insulin crystals are presented. (orig.)

  18. Development of variable-magnification X-ray Bragg optics.

    Science.gov (United States)

    Hirano, Keiichi; Yamashita, Yoshiki; Takahashi, Yumiko; Sugiyama, Hiroshi

    2015-07-01

    A novel X-ray Bragg optics is proposed for variable-magnification of an X-ray beam. This X-ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X-ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X-ray diffraction. The feasibility of the variable-magnification X-ray Bragg optics was verified at the vertical-wiggler beamline BL-14B of the Photon Factory. For X-ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M ≥ 1.0), X-ray images of a nylon mesh were observed with an air-cooled X-ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption-contrast but also edge-contrast due to Fresnel diffraction was observed in the magnified images.

  19. JEM-X: The X-ray monitor on INTEGRAL

    DEFF Research Database (Denmark)

    Lund, Niels; Budtz-Jørgensen, Carl; Westergaard, Niels Jørgen Stenfeldt

    1999-01-01

    and identification of gamma ray sources as well as in the analysis and scientific interpretation of the combined X-ray and gamma ray data. JEM-X is a coded aperture X-ray telescope consisting of two identical detectors. Each detector has a sensitive area of 500 cm(2), and views the sky (6.6 deg FOV, FWHM) through...

  20. Spectral and imaging characterization of tabletop X-ray lasers

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, J.; Osterheld, A.L.; Moon, S.J.; Fournier, K.B.; Nilsen, J. [Lawrence Livermore National Lab., CA (United States); Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu.; Magunov, A.I. [Lawrence Livermore National Lab., CA (United States); MISDC of VNIIFTRI, Mendeleevo (Russian Federation); Shlyaptsev, V.N. [Lawrence Livermore National Lab., CA (United States); California Univ., Davis, CA (United States). DAS

    2001-07-01

    We have performed L-shell spectroscopy and one-dimensional (1-D) imaging of a line focus plasma from a laser-heated Fe polished slab using the tabletop COMET laser system at the Lawrence Livermore National Laboratory. These plasmas are used to generate a Ne-like Fe transient gain X-ray laser that is recorded simultaneously. A spherically-curved crystal spectrometer gives high resolution X-ray spectra of the n=3-2 and n=4-2 resonance lines with 1-D spatial resolution along the line focus. Spectra are presented for different laser pulse conditions. In addition, a variety of X-ray imaging techniques are described. We discuss imaging results from a double-slit X-ray camera with a spherically-curved crystal spectrometer. We show a high resolution Fe K-{alpha} spectrum from the X-ray laser target that indicates the presence of hot electrons in the X-ray laser plasma. (orig.)

  1. Some new possibilities in direct visible and x ray measurements

    International Nuclear Information System (INIS)

    Gex, J.P.; Sauneuf, R.; Boutot, J.P.; Delmotte, J.C.

    1979-01-01

    Subnanosecond photodetection measurements in visible and X ray range with vacuum cell and very thin microchannel plate phototube (coupled with a fast scintillator or not) in conjunction with fast oscilloscope (5 GHz) are presented. They are compared to those given by a visible or a gold photocathode X-ray streak camera (temporal resolution better than 20 ps). (author)

  2. Real-time digital X-ray subtraction imaging

    International Nuclear Information System (INIS)

    Mistretta, C.A.; Kruger, R.A.; Houk, T.L.

    1979-01-01

    A diagnostic anatomical X-ray apparatus comprising a converter and a television camera for converting an X-ray image of a subject into a series of television fields of video signals is described in detail. A digital memory system stores and integrates the video signals over a time interval corresponding to a plurality of successive television fields. The integrated video signals are recovered from storage and fed to a digital or analogue subtractor, the resulting output being displayed on a television monitor. Thus the display represents on-going changes in the anatomical X-ray image. In a modification, successive groups of fields are stored and integrated in three memories, cyclically, and subtractions are performed between successive pieces of integrated signals to provide a display of successive alterations in the X-ray image. For investigations of the heart, the integrating interval should be of the order of one cardiac cycle. (author)

  3. Toward Adaptive X-Ray Telescopes

    Science.gov (United States)

    O'Dell, Stephen L.; Atkins, Carolyn; Button, Tim W.; Cotroneo, Vincenzo; Davis, William N.; Doel, Peer; Feldman, Charlotte H.; Freeman, Mark D.; Gubarev, Mikhail V.; Kolodziejczak, Jeffrey J.; hide

    2011-01-01

    Future x-ray observatories will require high-resolution (less than 1 inch) optics with very-large-aperture (greater than 25 square meter) areas. Even with the next generation of heavy-lift launch vehicles, launch-mass constraints and aperture-area requirements will limit the surface areal density of the grazing-incidence mirrors to about 1 kilogram per square meter or less. Achieving sub-arcsecond x-ray imaging with such lightweight mirrors will require excellent mirror surfaces, precise and stable alignment, and exceptional stiffness or deformation compensation. Attaining and maintaining alignment and figure control will likely involve adaptive (in-space adjustable) x-ray optics. In contrast with infrared and visible astronomy, adaptive optics for x-ray astronomy is in its infancy. In the middle of the past decade, two efforts began to advance technologies for adaptive x-ray telescopes: The Generation-X (Gen-X) concept studies in the United States, and the Smart X-ray Optics (SXO) Basic Technology project in the United Kingdom. This paper discusses relevant technological issues and summarizes progress toward adaptive x-ray telescopes.

  4. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  5. OPTICAL PROPERTIES OF THE ULTRALUMINOUS X-RAY SOURCE HOLMBERG IX X-1 AND ITS STELLAR ENVIRONMENT

    International Nuclear Information System (INIS)

    Grise, F.; Kaaret, P.; Pakull, M. W.; Motch, C.

    2011-01-01

    Holmberg IX X-1 is an archetypal ultraluminous X-ray source (ULX). Here we study the properties of the optical counterpart and of its stellar environment using optical data from SUBARU/Faint Object Camera and Spectrograph, GEMINI/GMOS-N and Hubble Space Telescope (HST)/Advanced Camera for Surveys, as well as simultaneous Chandra X-ray data. The V ∼ 22.6 spectroscopically identified optical counterpart is part of a loose cluster with an age ∼ sun . The counterpart is more luminous than the other stars of the association, suggesting a non-negligible optical contribution from the accretion disk. An observed UV excess also points to non-stellar light similar to X-ray active low-mass X-ray binaries. A broad He II λ4686 emission line identified in the optical spectrum of the ULX further suggests optical light from X-ray reprocessing in the accretion disk. Using stellar evolutionary tracks, we have constrained the mass of the counterpart to be ∼> 10 M sun , even if the accretion disk contributes significantly to the optical luminosity. Comparison of the photometric properties of the counterpart with binary models show that the donor may be more massive, ∼> 25 M sun , with the ULX system likely undergoing case AB mass transfer. Finally, the counterpart exhibits photometric variability of 0.14 mag between two HST observations separated by 50 days which could be due to ellipsoidal variations and/or disk reprocessing of variable X-ray emission.

  6. Development of x-ray imaging technique for liquid screening at airport

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, Nurhani binti, E-mail: nhani.sulaiman@gmail.com; Srisatit, Somyot, E-mail: somyot.s@chula.ac.th [Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Rd., Patumwan, Bangkok 10330 (Thailand)

    2016-01-22

    X-ray imaging technology is a viable option to recognize flammable liquids for the purposes of aviation security. In this study, an X-ray imaging technology was developed whereby, the image viewing system was built with the use of a digital camera coupled with a gadolinium oxysulfide (GOS) fluorescent screen. The camera was equipped with a software for remote control setting of the camera via a USB cable which allows the images to be captured. The image was analysed to determine the average grey level using a software designed by Microsoft Visual Basic 6.0. The data was obtained for various densities of liquid thickness of 4.5 cm, 6.0 cm and 7.5 cm respectively for X-ray energies ranging from 70 to 200 kVp. In order to verify the reliability of the constructed calibration data, the system was tested with a few types of unknown liquids. The developed system could be conveniently employed for security screening in order to discriminate between a threat and an innocuous liquid.

  7. Development of x-ray imaging technique for liquid screening at airport

    International Nuclear Information System (INIS)

    Sulaiman, Nurhani binti; Srisatit, Somyot

    2016-01-01

    X-ray imaging technology is a viable option to recognize flammable liquids for the purposes of aviation security. In this study, an X-ray imaging technology was developed whereby, the image viewing system was built with the use of a digital camera coupled with a gadolinium oxysulfide (GOS) fluorescent screen. The camera was equipped with a software for remote control setting of the camera via a USB cable which allows the images to be captured. The image was analysed to determine the average grey level using a software designed by Microsoft Visual Basic 6.0. The data was obtained for various densities of liquid thickness of 4.5 cm, 6.0 cm and 7.5 cm respectively for X-ray energies ranging from 70 to 200 kVp. In order to verify the reliability of the constructed calibration data, the system was tested with a few types of unknown liquids. The developed system could be conveniently employed for security screening in order to discriminate between a threat and an innocuous liquid

  8. Upgrade of the JET gamma-ray cameras

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Anghel, M.; Constantin, M.; David, E.; Craciunescu, T.; Falie, D.; Pantea, A.; Tiseanu, I.; Kiptily, V.; Prior, P.; Edlington, T.; Griph, S.; Krivchenkov, Y.; Loughlin, M.; Popovichev, S.; Riccardo, V; Syme, B.; Thompson, V.; Lengar, I.; Murari, A.; Bonheure, G.; Le Guern, F.

    2007-01-01

    Full text: The JET gamma-ray camera diagnostics have already provided valuable information on the gamma-ray imaging of fast ion in JET plasmas. The applicability of gamma-ray imaging to high performance deuterium and deuterium-tritium JET discharges is strongly dependent on the fulfilment of rather strict requirements for the characterisation of the neutron and gamma-ray radiation fields. These requirements have to be satisfied within very stringent boundary conditions for the design, such as the requirement of minimum impact on the co-existing neutron camera diagnostics. The JET Gamma-Ray Cameras (GRC) upgrade project deals with these issues with particular emphasis on the design of appropriate neutron/gamma-ray filters ('neutron attenuators'). Several design versions have been developed and evaluated for the JET GRC neutron attenuators at the conceptual design level. The main design parameter was the neutron attenuation factor. The two design solutions, that have been finally chosen and developed at the level of scheme design, consist of: a) one quasi-crescent shaped neutron attenuator (for the horizontal camera) and b) two quasi-trapezoid shaped neutron attenuators (for the vertical one). The second design solution has different attenuation lengths: a short version, to be used together with the horizontal attenuator for deuterium discharges, and a long version to be used for high performance deuterium and DT discharges. Various neutron-attenuating materials have been considered (lithium hydride with natural isotopic composition and 6 Li enriched, light and heavy water, polyethylene). Pure light water was finally chosen as the attenuating material for the JET gamma-ray cameras. The neutron attenuators will be steered in and out of the detector line-of-sight by means of an electro-pneumatic steering and control system. The MCNP code was used for neutron and gamma ray transport in order to evaluate the effect of the neutron attenuators on the neutron field of the

  9. High resolution X-ray detector for synchrotron-based microtomography

    CERN Document Server

    Stampanoni, M; Wyss, P; Abela, R; Patterson, B; Hunt, S; Vermeulen, D; Rueegsegger, P

    2002-01-01

    Synchrotron-based microtomographic devices are powerful, non-destructive, high-resolution research tools. Highly brilliant and coherent X-rays extend the traditional absorption imaging techniques and enable edge-enhanced and phase-sensitive measurements. At the Materials Science Beamline MS of the Swiss Light Source (SLS), the X-ray microtomographic device is now operative. A high performance detector based on a scintillating screen optically coupled to a CCD camera has been developed and tested. Different configurations are available, covering a field of view ranging from 715x715 mu m sup 2 to 7.15x7.15 mm sup 2 with magnifications from 4x to 40x. With the highest magnification 480 lp/mm had been achieved at 10% modulation transfer function which corresponds to a spatial resolution of 1.04 mu m. A low-noise fast-readout CCD camera transfers 2048x2048 pixels within 100-250 ms at a dynamic range of 12-14 bit to the file server. A user-friendly graphical interface gives access to the main parameters needed for ...

  10. X-ray streak-camera study of the dynamics of laser-imploded microballoons

    International Nuclear Information System (INIS)

    Key, M.H.; Lamb, M.J.; Lewis, C.L.S.; Moore, A.; Evans, R.G.

    1979-01-01

    The time and space development of the x-ray emission from the irradiated target surface and the implosion core in laser-compressed glass microballoons is recorded by x-ray streak photography. The experimental variation of implosion time with target mass and laser energy is considered and compared with computer modeling of the implosion

  11. X-ray filtration apparatus

    International Nuclear Information System (INIS)

    Thompson, G.

    1992-01-01

    This invention relates to an X-ray shielding support device. In spite of considerable development in X-ray taking techniques, a need still exists for effective shielding, inter alia, to compensate for variations in the thickness, density and the absorption properties of the object being studied. By appropriate shielding, the X-ray image produced is of sufficient detail, contrast and intensity over its entire area to constitute a useful diagnostic aid. It is also desirable to subject the patient to the smallest possible X-ray dosage. 4 figs

  12. Fabrication, test and performance of very large X-ray CCDs designed for astrophysical applications

    CERN Document Server

    Soltau, H; Meidinger, N; Stoetter, D; Strüder, L; Trümper, J E; Zanthier, C V; Braeuniger, H; Briel, U; Carathanassis, D; Dennerl, K; Engelhard, S; Haberl, F; Hartmann, R; Hartner, G; Hauff, D; Hippmann, H; Holl, P; Kendziorra, E; Krause, N; Lechner, P; Pfeffermann, E; Popp, M; Reppin, C; Seitz, H; Solc, P; Stadlbauer, T; Weber, U; Weichert, U

    2000-01-01

    A 6x6 cm sup 2 large X-ray CCD has been developed and fabricated at the Semiconductor Laboratory of the Max-Planck-Institut fuer Extraterrestrische Physik. The CCD has been designed for the focal plane cameras of two satellite missions. The concept is a fully depleted pn-CCD which is sensitive over the whole wafer thickness of about 300 mu m. It has been especially developed for X-ray detection delivering a high quantum efficiency over the energy range between 0.2 and 15 keV. A production yield of 27% was achieved. Seven good (almost) defect-free wafers were produced within the performance requirements, i.e. for temperatures below 180 K they show a homogeneous noise level smaller than 5 e sup - , a uniform spectral response with an energy resolution of 130 eV for Mn-K subalpha and a reduction of the sensitive area due to defects by less than 0.3%. Three CCDs have now been integrated in the flight cameras. The presentation comprises special aspects related with the fabrication of very large CCDs, a summary of ...

  13. Single-grain Silicon Technology for Large Area X-ray Imaging

    NARCIS (Netherlands)

    Arslan, A.

    2015-01-01

    Digital flat panel X-ray imagers are currently using a-Si and poly-Si thin-film-transistors (TFTs). a-Si TFT permits the use of large area substrates, however, due to the amorphous nature, the carrier mobility is very low (<1 cm2/Vs). Poly-Si TFT improves the mobility (~150 cm2/Vs) but due to random

  14. X-ray diffraction

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  15. VUV testing of science cameras at MSFC: QE measurement of the CLASP flight cameras

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-08-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint MSFC, National Astronomical Observatory of Japan (NAOJ), Instituto de Astrofisica de Canarias (IAC) and Institut D'Astrophysique Spatiale (IAS) sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512 × 512 detector, dual channel analog readout and an internally mounted cold block. At the flight CCD temperature of -20C, the CLASP cameras exceeded the low-noise performance requirements (UV, EUV and X-ray science cameras at MSFC.

  16. Adjustable Grazing-Incidence X-Ray Optics

    Science.gov (United States)

    O'Dell, Stephen L.; Reid, Paul B.

    2015-01-01

    With its unique subarcsecond imaging performance, NASA's Chandra X-ray Observatory illustrates the importance of fine angular resolution for x-ray astronomy. Indeed, the future of x-ray astronomy relies upon x-ray telescopes with comparable angular resolution but larger aperture areas. Combined with the special requirements of nested grazing-incidence optics, mass, and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. The goal of this technology research is to enable the cost-effective fabrication of large-area, lightweight grazing-incidence x-ray optics with subarcsecond resolution. Toward this end, the project is developing active x-ray optics using slumped-glass mirrors with thin-film piezoelectric arrays for correction of intrinsic or mount-induced distortions.

  17. Temporal resolution technology of a soft X-ray picosecond framing camera based on Chevron micro-channel plates gated in cascade

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wenzheng [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China)], E-mail: ywz@opt.ac.cn; Bai Yonglin; Liu Baiyu [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China); Bai Xiaohong; Zhao Junping; Qin Junjun [Key Laboratory of Ultra-fast Photoelectric Diagnostics Technology, Xi' an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi' an 710119 (China)

    2009-09-11

    We describe a soft X-ray picosecond framing camera (XFC) based on Chevron micro-channel plates (MCPs) gated in cascade for ultra-fast process diagnostics. The micro-strip lines are deposited on both the input and the output surfaces of the Chevron MCPs and can be gated by a negative (positive) electric pulse on the first (second) MCP. The gating is controlled by the time delay T{sub d} between two gating pulses. By increasing T{sub d}, the temporal resolution and the gain of the camera are greatly improved compared with a single-gated MCP-XFC. The optimal T{sub d}, which results in the best temporal resolution, is within the electron transit time and transit time spread of the MCP. Using 250 ps, {+-}2.5 kV gating pulses, the temporal resolution of the double-gated Chevron MCPs camera is improved from 60 ps for the single-gated MCP-XFC to 37 ps for T{sub d}=350 ps. The principle is presented in detail and accompanied with a theoretic simulation and experimental results.

  18. A color display device recording X ray spectra, especially intended for medical radiography

    International Nuclear Information System (INIS)

    Boulch, J.-M.

    1975-01-01

    Said invention relates to a color display recording device for X ray spectra intended for medical radiography. The video signal of the X ray camera receiving the radiation having passed through the patient is amplified and transformed into a color coding according to the energy spectrum received by the camera. In a first version, the energy spectrum from the camera gives directly an image on the color tube. In a second version the energy spectrum, after having been transformed into digital signals, is first sent into a memory, then into a computer used as a spectrum analyzer, and finally into the color display device [fr

  19. Effective and cheap X-ray television detector

    International Nuclear Information System (INIS)

    Artem'ev, A.N.; Potlovskij, K.G.; Rezvov, V.A.; Yudin, L.I.

    2002-01-01

    The position sensitive detector (PSD) is designed for investigations with traditional X-ray tubes and synchrotron radiation from 3 to 30 keV. PSD consists of light-tight box, which transforms X-ray photons to light photons. Light photons are registered with the help of TV camera. Then an image is digitized and introduced into computer. Software provides registration of the dim beam images by means of accumulation of the information. Statistic processing of the image series allows to determine of the parameters of the image. Sensitivity is 41 phot/pixel. Spatial resolution is not worse then 400 μ [ru

  20. Detailed measurements and shaping of gate profiles for microchannel-plate-based X-ray framing cameras

    International Nuclear Information System (INIS)

    Landen, O.L.; Hammel, B.A.; Bell, P.M.; Abare, A.; Bradley, D.K.; Univ. of Rochester, NY

    1994-01-01

    Gated, microchannel-plate-based (MCP) framing cameras are increasingly used worldwide for x-ray imaging of subnanosecond laser-plasma phenomena. Large dynamic range (> 1,000) measurements of gain profiles for gated microchannel plates (MCP) are presented. Temporal profiles are reconstructed for any point on the microstrip transmission line from data acquired over many shots with variable delay. No evidence for significant pulse distortion by voltage reflections at the ends of the microstrip is observed. The measured profiles compare well to predictions by a time-dependent discrete dynode model down to the 1% level. The calculations do overestimate the contrast further into the temporal wings. The role of electron transit time dispersion in limiting the minimum achievable gate duration is then investigated by using variable duration flattop gating pulses. A minimum gate duration of 50 ps is achieved with flattop gating, consistent with a fractional transit time spread of ∼ 15%

  1. Large area, low capacitance Si(Li) detectors for high rate x-ray applications

    International Nuclear Information System (INIS)

    Rossington, C.S.; Fine, P.M.; Madden, N.W.

    1992-10-01

    Large area, single-element Si(Li) detectors have been fabricated using a novel geometry which yields detectors with reduced capacitance and hence reduced noise at short amplifier pulse-processing times. A typical device employing the new geometry with a thickness of 6 mm and an active area of 175 mm 2 has a capacitance of only 0.5 pf, compared to 2.9 pf for a conventional planar device with equivalent dimensions. These new low capacitance detectors, used in conjunction with low capacitance field effect transistors, will result in x-ray spectrometers capable of operating at very high count rates while still maintaining excellent energy resolution. The spectral response of the low capacitance detectors to a wide range of x-ray energies at 80 K is comparable to typical state-of-the-art conventional Si(Li) devices. In addition to their low capacitance, the new devices offer other advantages over conventional detectors. Detector fabrication procedures, I-V and C-V characteristics, noise performance, and spectral response to 2-60 keV x-rays are described

  2. Gated x-ray detector for the National Ignition Facility

    International Nuclear Information System (INIS)

    Oertel, John A.; Aragonez, Robert; Archuleta, Tom; Barnes, Cris; Casper, Larry; Fatherley, Valerie; Heinrichs, Todd; King, Robert; Landers, Doug; Lopez, Frank; Sanchez, Phillip; Sandoval, George; Schrank, Lou; Walsh, Peter; Bell, Perry; Brown, Matt; Costa, Robert; Holder, Joe; Montelongo, Sam; Pederson, Neal

    2006-01-01

    Two new gated x-ray imaging cameras have recently been designed, constructed, and delivered to the National Ignition Facility in Livermore, CA. These gated x-Ray detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significantly different from earlier generations of gated x-ray images due, in part, to an innovative impedance matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring, and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution, and no detectable impedance reflections

  3. X-ray facility for the ground calibration of the X-ray monitor JEM-X on board INTEGRAL

    DEFF Research Database (Denmark)

    Loffredo, G.; Pelliciari, C.; Frontera, F.

    2003-01-01

    We describe the X-ray facility developed for the calibration of the X-ray monitor JEM-X on board the INTEGRAL satellite. The apparatus allowed the scanning of the detector geometric area with a pencil beam of desired energy over the major part of the passband of the instrument. The monochromatic...

  4. Time resolved x-ray pinhole photography of compressed laser fusion targets

    International Nuclear Information System (INIS)

    Attwood, D.T.

    1976-01-01

    Use of the Livermore x-ray streak camera to temporally record x-ray pinhole images of laser compressed targets is described. Use is made of specially fabricated composite x-ray pinholes which are near diffraction limited for 6 A x-rays, but easily aligned with a He--Ne laser of 6328 A wavelength. With a 6 μm x-ray pinhole, the overall system can be aligned to 5 μm accuracy and provides implosion characteristics with space--time resolutions of approximately 6 μm and 15 psec. Acceptable criteria for pinhole alignment, requisite x-ray flux, and filter characteristics are discussed. Implosion characteristics are presented from our present experiments with 68 μm diameter glass microshell targets and 0.45 terawatt, 70 psec Nd laser pulses. Final implosion velocities in excess of 3 x 10 7 cm/sec are evident

  5. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures

  6. Aluminum-coated optical fibers as efficient infrared timing fiducial photocathodes for synchronizing x-ray streak cameras

    International Nuclear Information System (INIS)

    Koch, J.A.; MacGowan, B.J.

    1991-01-01

    The timing fiducial system at the Nova Two-Beam Facility allows time-resolved x-ray and optical streak camera data from laser-produced plasmas to be synchronized to within 30 ps. In this system, an Al-coated optical fiber is inserted into an aperture in the cathode plate of each streak camera. The coating acts as a photocathode for a low-energy pulse of 1ω (λ = 1.054 μm) light which is synchronized to the main Nova beam. The use of the fundamental (1ω) for this fiducial pulse has been found to offer significant advantages over the use of the 2ω second harmonic (λ = 0.53 μm). These advantages include brighter signals, greater reliability, and a higher relative damage threshold, allowing routine use without fiber replacement. The operation of the system is described, and experimental data and interpretations are discussed which suggest that the electron production in the Al film is due to thermionic emission. The results of detailed numerical simulations of the relevant thermal processes, undertaken to model the response of the coated fiber to 1ω laser pulses, are also presented, which give qualitative agreement with experimental data. Quantitative discrepancies between the modeling results and the experimental data are discussed, and suggestions for further research are given

  7. A flexible geometry Compton camera for industrial gamma ray imaging

    International Nuclear Information System (INIS)

    Royle, G.J.; Speller, R.D.

    1996-01-01

    A design for a Compton scatter camera is proposed which is applicable to gamma ray imaging within limited access industrial sites. The camera consists of a number of single element detectors arranged in a small cluster. Coincidence circuitry enables the detectors to act as a scatter camera. Positioning the detector cluster at various locations within the site, and subsequent reconstruction of the recorded data, allows an image to be obtained. The camera design allows flexibility to cater for limited space or access simply by positioning the detectors in the optimum geometric arrangement within the space allowed. The quality of the image will be limited but imaging could still be achieved in regions which are otherwise inaccessible. Computer simulation algorithms have been written to optimize the various parameters involved, such as geometrical arrangement of the detector cluster and the positioning of the cluster within the site, and to estimate the performance of such a device. Both scintillator and semiconductor detectors have been studied. A prototype camera has been constructed which operates three small single element detectors in coincidence. It has been tested in a laboratory simulation of an industrial site. This consisted of a small room (2 m wide x 1 m deep x 2 m high) into which the only access points were two 6 cm diameter holes in a side wall. Simple images of Cs-137 sources have been produced. The work described has been done on behalf of BNFL for applications at their Sellafield reprocessing plant in the UK

  8. First peek of ASTRO-H Soft X-ray Telescope (SXT) in-orbit performance

    Science.gov (United States)

    Okajima, Takashi; Soong, Yang; Serlemitsos, Peter; Mori, Hideyuki; Olsen, Larry; Robinson, David; Koenecke, Richard; Chang, Bill; Hahne, Devin; Iizuka, Ryo; Ishida, Manabu; Maeda, Yoshitomo; Sato, Toshiki; Kikuchi, Naomichi; Kurashima, Sho; Nakaniwa, Nozomi; Hayashi, Takayuki; Ishibashi, Kazunori; Miyazawa, Takuya; Tachibana, Kenji; Tamura, Keisuke; Furuzawa, Akihiro; Tawara, Yuzuru; Sugita, Satoshi

    2016-07-01

    ASTRO-H (Hitomi) is a Japanese X-ray astrophysics satellite just launched in February, 2016, from Tanegashima, Japan by a JAXA's H-IIA launch vehicle. It has two Soft X-ray Telescopes (SXTs), among other instruments, that were developed by NASA's Goddard Space Flight Center in collaboration with ISAS/JAXA and Nagoya University. One is for an X-ray micro-calorimeter instrument (Soft X-ray Spectrometer, SXS) and the other for an X-ray CCD camera (Soft X-ray Imager, SXI), both covering the X-ray energy band up to 15 keV. The two SXTs were fully characterized at the 30-m X-ray beamline at ISAS/JAXA. The combined SXT+SXS system effective area is about 250 and 300 cm2 at 1 and 6 keV, respectively, although observations were performed with the gate valve at the dewar entrance closed, which blocks most of low energy X-rays and some of high energy ones. The angular resolution for SXS is 1.2 arcmin (Half Power Diameter, HPD). The combined SXT+SXI system effective area is about 370 and 350 cm2 at 1 and 6 keV, respectively. The angular resolution for SXI is 1.3 arcmin (HPD). The both SXTs have a field of view of about 16 arcmin (FWHM of their vignetting functions). The SXT+SXS field of view is limited to 3 x 3 arcmin by the SXS array size. In-flight data available to the SXT team was limited at the time of this conference and a point-like source data is not available for the SXT+SXS. Although due to lack of attitude information we were unable to reconstruct a point spread function of SXT+SXI, according to RXJ1856.5-3754 data, the SXT seems to be working as expected in terms of imaging capability. As for the overall effective area response for both SXT+SXS and SXT+SXI, consistent spectral model fitting parameters with the previous measurements were obtained for Crab and G21.5-0.9 data. On the other hand, their 2-10 keV fluxes differ by about 20% at this point. Calibration work is still under progress. The SXT is the latest version of the aluminum foil X-ray mirror, which is

  9. Using of a microcapillary refractive X-ray lens for focusing and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dudchik, Yu.I. [Institute of Applied Physics Problems, Kurchatova 7, 220064, Minsk (Belarus)], E-mail: dudchik@bsu.by; Komarov, F.F. [Institute of Applied Physics Problems, Kurchatova 7, 220064, Minsk (Belarus); Piestrup, M.A. [Adelphi Technology, 981-B Industrial Rd, San Carlos, 94070, California (United States)], E-mail: melpie@adelphitech.com; Gary, C.K.; Park, H.; Cremer, J.T. [Adelphi Technology, 981-B Industrial Rd, San Carlos, 94070, California (United States)

    2007-07-15

    The microcapillary lens, formed by air bubbles in a hollow core glass capillary filled with epoxy, is a novel design of a compound refractive lens for X-rays. The epoxy enclosed between two air bubbles has the form of a biconcave lens and acts as a positive lens for X-rays. Each individual lens is spherical with radius of curvature equal to the inner radius of the capillary. Up to 500 individual biconcave lenses can be formed in a single capillary with diameters from 50 to 500 {mu}m. Due to the small radius of curvatures that can be achieved, microcapillary lenses typically have shorter focal lengths than those made by compression or injection molding. For example, microcapillary lenses with a focal length about 5 cm for 8 keV X-rays and 50-micron aperture are readily available. We have produced a set of lenses in a 200-micron inner-diameter glass capillary with 100-350 individual microlenses and measured their parameters at the Stanford Synchrotron Radiation Laboratory and at the Advanced Photon Source. Our investigations have also shown that the lenses are suitable for imaging applications with an X-ray tube as a source of X-rays. A simple X-ray microscope is discussed. The microscope consists of a copper anode X-ray tube, X-ray lens and CCD-camera. The object, lens and CCD-camera were placed in-line at distances to satisfy the lens formula. It is shown that the field of view of the microscope is about 1 mm and resolution is equal to 3-5 {mu}m.

  10. X-ray spectrometry with Peltier-cooled large area avalanche photodiodes

    International Nuclear Information System (INIS)

    Fernandes, L.M.P.; Lopes, J.A.M.; Santos, J.M.F. dos; Conde, C.A.N.

    2004-01-01

    Performance characteristics of the response of a Peltier-cooled large-area avalanche photodiode are investigated. Detector gain, energy linearity, energy resolution and minimum detectable energy are studied at different operation temperatures. Detector energy resolution and lowest detectable X-ray energy present a strong improvement as the operation temperature is reduced from 25 to 15 deg. C and slower improvements are achieved for temperatures below 10 deg. C

  11. Applications of phase-contrast x-ray imaging to medicine using an x-ray interferometer

    Science.gov (United States)

    Momose, Atsushi; Yoneyama, Akio; Takeda, Tohoru; Itai, Yuji; Tu, Jinhong; Hirano, Keiichi

    1999-10-01

    We are investigating possible medical applications of phase- contrast X-ray imaging using an X-ray interferometer. This paper introduces the strategy of the research project and the present status. The main subject is to broaden the observation area to enable in vivo observation. For this purpose, large X-ray interferometers were developed, and 2.5 cm X 1.5 cm interference patterns were generated using synchrotron X-rays. An improvement of the spatial resolution is also included in the project, and an X-ray interferometer designed for high-resolution phase-contrast X-ray imaging was fabricated and tested. In parallel with the instrumental developments, various soft tissues are observed by phase- contrast X-ray CT to find correspondence between the generated contrast and our histological knowledge. The observation done so far suggests that cancerous tissues are differentiated from normal tissues and that blood can produce phase contrast. Furthermore, this project includes exploring materials that modulate phase contrast for selective imaging.

  12. Relation between X-Ray and γ-Ray Emissions for Fermi Blazars ...

    Indian Academy of Sciences (India)

    Abstract. Using γ-ray band data detected by Fermi Large Area Tele- scope (LAT) and X-ray band data for 78 blazars, we find a medium cor- relation between X-ray and γ-ray fluxes in the average state. A medium anticorrelation is also found between X-ray (1 KeV) mean spectral index αx and γ-ray mean spectral index αγ for ...

  13. Development of the neutron filters for JET gamma-ray cameras

    International Nuclear Information System (INIS)

    Soare, S.; Curuia, M.; Anghel, M.; Constantin, M.; David, E.; Kiptily, V.; Prior, P.; Edlington, T.; Griph, S.; Krivchenkov, Y.; Popovichev, S.; Riccardo, V.; Syme, B; Thompson, V.; Murari, A.; Zoita, V.; Bonheure, G.; Le Guern

    2007-01-01

    The JET gamma-ray camera diagnostics have already provided valuable information on the gamma-ray imaging of fast ion evaluation in JET plasmas. The JET Gamma-Ray Cameras (GRC) upgrade project deals with the design of appropriate neutron/gamma-ray filters ('neutron attenuaters').The main design parameter was the neutron attenuation factor. The two design solutions, that have been finally chosen and developed at the level of scheme design, consist of: a) one quasi-crescent shaped neutron attenuator (for the horizontal camera) and b) two quasi-trapezoid shaped neutron attenuators (for the vertical one). Various neutron-attenuating materials have been considered (lithium hydride with natural isotopic composition and 6 Li enriched, light and heavy water, polyethylene). Pure light water was finally chosen as the attenuating material for the JET gamma-ray cameras. FEA methods used to evaluate the behaviour of the filter casings under the loadings (internal hydrostatic pressure, torques) have proven the stability of the structure. (authors)

  14. Characteristics of X-ray photons in tilted incident laser-produced plasma

    International Nuclear Information System (INIS)

    Wang Ruirong; Chen Weimin; Xie Dongzhu

    2008-01-01

    Characteristics of X-ray and spout direction of heat plasma flow were studied on Shenguang-II laser facility. Using of pinhole X-ray camera, X-ray photons from the plasma of aluminum (Al) irradiated by 1.053 μm laser, was measured and analysed. It is observed that the spatial distribution of X-ray photons in Al plasma for tilted irradiation is symmetic at the center of the target. The spout direction of heat plasma flow is inferred by the distribution contour of X-ray photons. the experimental results show that the spout direction of heat plasma flow is normal to target plane and the output intensity of X-ray photons does not increase significantly for tilted laser incidence. Uniformity of laser energy deposition is improved by superposing tilted incident and laser perpendicularly incident laser. At the same time, it is found that the conversion efficiency from the tilted incident laser energy to X-ray photons of laser-produced plasma is decreased. (authors)

  15. An x-ray technique for precision laser beam synchronization

    International Nuclear Information System (INIS)

    Landen, O.L.; Lerche, R.A.; Hay, R.G.; Hammel, B.A.; Kalantar, D.; Cable, M.D.

    1994-01-01

    A new x-ray technique for recording the relative arrival times of multiple laser beams at a common target with better than ± 10 ps accuracy has been implemented at the Nova laser facility. 100 ps, 3ω Nova beam are focused to separate locations on a gold ribbon target viewed from the side. The measurement consists of using well characterized re-entrant x-ray streak cameras for 1-dimensional streaked imaging of the > 3 keV x-rays emanating from these isolated laser plasmas. After making the necessary correction for the differential laser, x-ray and electron transit times involved, timing offsets as low as ± 7 ps are resolved, and on subsequent shots, corrected for, verified and independently checked. This level of synchronization proved critical in meeting the power balance requirements for indirectly-driven pulse-shaped Nova implosions

  16. Large-area soft x-ray projection lithography using multilayer mirrors structured by RIE

    Science.gov (United States)

    Rahn, Steffen; Kloidt, Andreas; Kleineberg, Ulf; Schmiedeskamp, Bernt; Kadel, Klaus; Schomburg, Werner K.; Hormes, F. J.; Heinzmann, Ulrich

    1993-01-01

    SXPL (soft X-ray projection lithography) is one of the most promising applications of X-ray reflecting optics using multilayer mirrors. Within our collaboration, such multilayer mirrors were fabricated, characterized, laterally structured and then used as reflection masks in a projecting lithography procedure. Mo/Si-multilayer mirrors were produced by electron beam evaporation in UHV under thermal treatment with an in-situ X-ray controlled thickness in the region of 2d equals 14 nm. The reflectivities measured at normal incidence reached up to 54%. Various surface analysis techniques have been applied in order to characterize and optimize the X-ray mirrors. The multilayers were patterned by reactive ion etching (RIE) with CF(subscript 4), using a photoresist as the etch mask, thus producing X-ray reflection masks. The masks were tested in the synchrotron radiation laboratory of the electron accelerator ELSA at the Physikalisches Institut of Bonn University. A double crystal X-ray monochromator was modified so as to allow about 0.5 cm(superscript 2) of the reflection mask to be illuminated by white synchrotron radiation. The reflected patterns were projected (with an energy of 100 eV) onto the resist (Hoechst AZ PF 514), which was mounted at an average distance of about 7 mm. In the first test-experiments, structure sizes down to 8 micrometers were nicely reproduced over the whole of the exposed area. Smaller structures were distorted by Fresnel-diffraction. The theoretically calculated diffraction images agree very well with the observed images.

  17. X-ray photoelectron microscope with a compact x-ray source generated by line-focused laser irradiation

    International Nuclear Information System (INIS)

    Yamaguchi, N.; Okamoto, Y.; Hara, T.; Takahashi, Z.; Nishimura, Y.; Sakata, A.; Watanabe, K.; Azuma, H.

    2004-01-01

    Full text: A laboratory-sized microscopic system of x-ray photoelectrons has been developing using a compact x-ray source produced by line-focused laser irradiation. The system is a scanning type photoelectron microscope where x-ray beam is micro-focused via a Schwartzschild optics. A compact laser-plasma x-ray source has been developed with a YAG laser system, a line-focus lens system, a tape-target driving system and a debris prevention system, that was operated at repetition rate of 10 Hz or 50 Hz. X-rays were delivered along line plasma whose length was 0.6 to 11 mm with higher intensity than that from a point-focused source. Because the transition line of Al V (13.1 nm) was prominent in the soft x-ray spectrum when the Al tape target irradiated at the lower power density of 10 11 W/cm 2 , the 13.1 nm x-ray was used as an excitation source. The Schwartzschild optics was set on the beamline at a distance about 1 m from the source, which was coated with Mo/Si multilayers for 13.1 nm x-ray. The designed demagnification is 224 that was confirmed in the previous experiment. Therefore, an x-ray micro spot of sub-micron size can be formed on a sample surface when the source size is less than about 0.2 mm. Samples were set on a two-axis high-precision piezo stage mounted to a four-axis manipulator. The electron energy analyzer was a spherical capacitor analyzer with mean diameter of 279.4 mm. The electron detector was a microchannel plate (MCP) with a phosphor screen and the optical image of electrons on the exit plane of the analyzer was taken and recorded by using an ultra low dark noise CCD camera, that was suited for detection of vast photoelectrons excited by x-ray pulse of ns-order duration. We performed spatial resolution test measurements by using a GaAs wafer coated with photo-resist that formed a stripe pattern. The spatial resolution less than 3 micron has been obtained from the variation of As 3d electron intensity along the position of the GaAs sample

  18. A prototype PET/SPECT/X-rays scanner dedicated for whole body small animal studies.

    Science.gov (United States)

    Rouchota, Maritina; Georgiou, Maria; Fysikopoulos, Eleftherios; Fragogeorgi, Eirini; Mikropoulos, Konstantinos; Papadimitroulas, Panagiotis; Kagadis, George; Loudos, George

    2017-01-01

    To present a prototype tri-modal imaging system, consisting of a single photon emission computed tomography (SPET), a positron emission tomography (PET), and a computed tomography (CT) subsystem, evaluated in planar mode. The subsystems are mounted on a rotating gantry, so as to be able to allow tomographic imaging in the future. The system, designed and constructed by our group, allows whole body mouse imaging of competent performance and is currently, to the best of our knowledge, unequaled in a national and regional level. The SPET camera is based on two Position Sensitive Photomultiplier Tubes (PSPMT), coupled to a pixilated Sodium Iodide activated with Thallium (NaI(Tl)) scintillator, having an active area of 5x10cm 2 . The dual head PET camera is also based on two pairs of PSPMT, coupled to pixelated berillium germanium oxide (BGO) scintillators, having an active area of 5x10cm 2 . The X-rays system consists of a micro focus X-rays tube and a complementary metal-oxide-semiconductor (CMOS) detector, having an active area of 12x12cm 2 . The scintigraphic mode has a spatial resolution of 1.88mm full width at half maximum (FWHM) and a sensitivity of 107.5cpm/0.037MBq at the collimator surface. The coincidence PET mode has an average spatial resolution of 3.5mm (FWHM) and a peak sensitivity of 29.9cpm/0.037MBq. The X-rays spatial resolution is 3.5lp/mm and the contrast discrimination function value is lower than 2%. A compact tri-modal system was successfully built and evaluated for planar mode operation. The system has an efficient performance, allowing accurate and informative anatomical and functional imaging, as well as semi-quantitative results. Compared to other available systems, it provides a moderate but comparable performance, at a fraction of the cost and complexity. It is fully open, scalable and its main purpose is to support groups on a national and regional level and provide an open technological platform to study different detector components and

  19. X-Ray Calorimeter Arrays for Astrophysics

    Science.gov (United States)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  20. Determination of the Effective Detector Area of an Energy-Dispersive X-Ray Spectrometer at the Scanning Electron Microscope Using Experimental and Theoretical X-Ray Emission Yields.

    Science.gov (United States)

    Procop, Mathias; Hodoroaba, Vasile-Dan; Terborg, Ralf; Berger, Dirk

    2016-12-01

    A method is proposed to determine the effective detector area for energy-dispersive X-ray spectrometers (EDS). Nowadays, detectors are available for a wide range of nominal areas ranging from 10 up to 150 mm2. However, it remains in most cases unknown whether this nominal area coincides with the "net active sensor area" that should be given according to the related standard ISO 15632, or with any other area of the detector device. Moreover, the specific geometry of EDS installation may further reduce a given detector area. The proposed method can be applied to most scanning electron microscope/EDS configurations. The basic idea consists in a comparison of the measured count rate with the count rate resulting from known X-ray yields of copper, titanium, or silicon. The method was successfully tested on three detectors with known effective area and applied further to seven spectrometers from different manufacturers. In most cases the method gave an effective area smaller than the area given in the detector description.

  1. Fast Soft X-ray Images of MHD Phenomena in NSTX

    International Nuclear Information System (INIS)

    Bush, C.E.; Stratton, B.C.; Robinson, J.; Zakharov, L.E.; Fredrickson, E.D.; Stutman, D.; Tritz, K.

    2008-01-01

    A variety of magnetohydrodynamic (MHD) phenomena have been observed on the National Spherical Torus Experiment (NSTX). Many of these affect fast particle losses, which are of major concern for future burning plasma experiments. Usual diagnostics for studying these phenomena are arrays of Mirnov coils for magnetic oscillations and PIN diode arrays for soft x-ray emission from the plasma core. Data reported here are from an unique fast soft x-ray imaging camera (FSXIC) with a wide-angle (pinhole) tangential view of the entire plasma minor cross section. The camera provides a 64x64 pixel image, on a CCD chip, of light resulting from conversion of soft x-rays incident on a phosphor to the visible. We have acquired plasma images at frame rates of 1-500 kHz (300 frames/shot), and have observed a variety of MHD phenomena: disruptions, sawteeth, fishbones, tearing modes, and ELMs. New data including modes with frequency > 90 kHz are also presented. Data analysis and modeling techniques used to interpret the FSXIC data are described and compared, and FSXIC results are compared to Mirnov and PIN diode array results.

  2. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  3. Aspergillosis - chest x-ray (image)

    Science.gov (United States)

    ... usually occurs in immunocompromised individuals. Here, a chest x-ray shows that the fungus has invaded the lung ... are usually seen as black areas on an x-ray. The cloudiness on the left side of this ...

  4. Miniature, mobile X-ray computed radiography system

    Science.gov (United States)

    Watson, Scott A; Rose, Evan A

    2017-03-07

    A miniature, portable x-ray system may be configured to scan images stored on a phosphor. A flash circuit may be configured to project red light onto a phosphor and receive blue light from the phosphor. A digital monochrome camera may be configured to receive the blue light to capture an article near the phosphor.

  5. A Chandra High-Resolution X-ray Image of Centaurus A.

    Science.gov (United States)

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  6. Use of an axisymmetric microscope with electronic readout for collecting soft X-ray images

    International Nuclear Information System (INIS)

    Cavailler, C.; Henry, P.; Launspach, J.; De Mascureau, J.; Millerioux, M.; Rostaing, M.; Sauneuf, R.

    1984-08-01

    The axisymmetric microscope, first discussed by Wolter, provides high resolution and sensitivity for investigating the soft X-ray emission of laser-driven plasmas. Such a device having a 10 X magnification has been constructed. We present a comparison between the images of laser-driven plasmas given by this microscope and by a 10 X pinhole camera. Until now these images were recorded on X-ray film. We have shown that film could be replaced by C.C.D. in a pinhole camera when the photon energy lies within the 1-10 keV range. Below 1 keV the quantum yield is too low so we have used an image converter tube made by RTC. It is a diode-inverter tube with a soft X-ray photocathode and a P20 phosphor deposited on an optic fiber plate. The electronic image appearing on the screen is read by a C.C.D. working in the visible spectral fields. An electronic image readout chain, which is identical to those associated with streak cameras, then processes automatically and immediately the images given by the microscope [fr

  7. Large area APDs for low energy X-ray detection in intense magnetic fields

    International Nuclear Information System (INIS)

    Boucher, M.; Huot, O.; Knowles, P.E.; Ludhova, L.; Mulhauser, F.; Schaller, L.A.; Conde, C.A.N.; Santos, J.M.F. dos; Fernandes, L.M.P.; Veloso, J.F.C.A.; Kottmann, F.; Antognini, A.; Pohl, R.; Taqqu, D.

    2003-01-01

    An experiment to measure the energy difference between the 2S-2P atomic levels (Lamb shift) in muonic hydrogen is being prepared at PSI. Since the energy levels of muonic hydrogen are a factor of 186 more energetic than those of hydrogen, according to the ratio of reduced masses, the transitions lie in the soft X-ray region. The experiment needs long-lived muonic hydrogen in the 2S state. This is achieved by stopping a low energy muon beam in a small volume of low pressure hydrogen in a 5 T magnetic field. A pulsed beam from a tunable laser induces the 2S-2P transition and the 1.9 keV X-ray photons resulting from the 2P-1S deexcitation will be detected. Measuring the coincidences between the laser pulse and the X-ray as a function of the laser wavelength allows us to determine the Lamb shift. In this presentation we will discuss the perspectives of using large area avalanche photodiodes for the direct detection of the X-rays. Compared to gaseous detectors, they are more compact and simpler in operation. They are also insensitive to magnetic fields

  8. Large area APDs for low energy X-ray detection in intense magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, M.; Huot, O.; Knowles, P.E.; Ludhova, L.; Mulhauser, F. E-mail: francoise.mulhauser@unifr.ch; Schaller, L.A.; Conde, C.A.N.; Santos, J.M.F. dos; Fernandes, L.M.P.; Veloso, J.F.C.A.; Kottmann, F.; Antognini, A.; Pohl, R.; Taqqu, D

    2003-06-01

    An experiment to measure the energy difference between the 2S-2P atomic levels (Lamb shift) in muonic hydrogen is being prepared at PSI. Since the energy levels of muonic hydrogen are a factor of 186 more energetic than those of hydrogen, according to the ratio of reduced masses, the transitions lie in the soft X-ray region. The experiment needs long-lived muonic hydrogen in the 2S state. This is achieved by stopping a low energy muon beam in a small volume of low pressure hydrogen in a 5 T magnetic field. A pulsed beam from a tunable laser induces the 2S-2P transition and the 1.9 keV X-ray photons resulting from the 2P-1S deexcitation will be detected. Measuring the coincidences between the laser pulse and the X-ray as a function of the laser wavelength allows us to determine the Lamb shift. In this presentation we will discuss the perspectives of using large area avalanche photodiodes for the direct detection of the X-rays. Compared to gaseous detectors, they are more compact and simpler in operation. They are also insensitive to magnetic fields.

  9. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    Science.gov (United States)

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  10. X-ray image intensifier/television systems for digital skeletal radiography

    International Nuclear Information System (INIS)

    Rowlands, J.A.; Hynes, D.M.; Edmonds, E.W.; Porter, A.J.; Toth, B.J.

    1987-01-01

    The imaging criteria for skeletal radiography (high resolution and low noise) relevant to the use of x-ray image intensifier/TV digital systems are discussed. It is shown from the modulation transfer function (MTF), noise, and phantom evaluations that conventional x-ray image intensifiers in conjunction with a 1,000-line Plumbicon or Saticon TV camera are in most respects suitable for skeletal radiography. The optimum focal spot size depends on a trade-off with motion blurring through the x-ray exposure time and so is a function of the clinical problem. Since the skeletal system is readily immobilized, a 0.3-mm focal spot size is nearly optimum

  11. New technology and techniques for x-ray mirror calibration at PANTER

    Science.gov (United States)

    Freyberg, Michael J.; Budau, Bernd; Burkert, Wolfgang; Friedrich, Peter; Hartner, Gisela; Misaki, Kazutami; Mühlegger, Martin

    2008-07-01

    The PANTER X-ray Test Facility has been utilized successfully for developing and calibrating X-ray astronomical instrumentation for observatories such as ROSAT, Chandra, XMM-Newton, Swift, etc. Future missions like eROSITA, SIMBOL-X, or XEUS require improved spatial resolution and broader energy band pass, both for optics and for cameras. Calibration campaigns at PANTER have made use of flight spare instrumentation for space applications; here we report on a new dedicated CCD camera for on-ground calibration, called TRoPIC. As the CCD is similar to ones used for eROSITA (pn-type, back-illuminated, 75 μm pixel size, frame store mode, 450 μm micron wafer thickness, etc.) it can serve as prototype for eROSITA camera development. New techniques enable and enhance the analysis of measurements of eROSITA shells or silicon pore optics. Specifically, we show how sub-pixel resolution can be utilized to improve spatial resolution and subsequently the characterization of of mirror shell quality and of point spread function parameters in particular, also relevant for position reconstruction of astronomical sources in orbit.

  12. Constellation-X to Generation-X: evolution of large collecting area moderate resolution grazing incidence x-ray telescopes to larger area high-resolution adjustable optics

    Science.gov (United States)

    Reid, Paul B.; Cameron, Robert A.; Cohen, Lester; Elvis, Martin; Gorenstein, Paul; Jerius, Diab; Petre, Robert; Podgorski, William A.; Schwartz, Daniel A.; Zhang, William W.

    2004-10-01

    Large collecting area x-ray telescopes are designed to study the early Universe, trace the evolution of black holes, stars and galaxies, study the chemical evolution of the Universe, and study matter in extreme environments. The Constellation-X mission (Con-X), planned for launch in 2016, will provide ~ 10^4 cm^2 collecting area with 15 arc-sec resolution, with a goal of 5 arc-sec. Future missions require larger collecting area and finer resolution. Generation-X (Gen-X), a NASA Visions Mission, will achieve 100 m^2 effective area at 1 keV and angular resolution of 0.1 arc-sec, half power diameter. We briefly describe the Con-X flowdown of imaging requirements to reflector figure error. To meet requirements beyond Con-X, Gen-X optics will be thinner and more accurately shaped than has ever been accomplished. To meet these challenging goals, we incorporate for the first time active figure control with grazing incidence optics. Piezoelectric material will be deposited in discrete cells directly on the back surface of the optical segments, with the strain directions oriented parallel to the surface. Differential strain between the two layers of the mirror causes localized bending in two directions, enabling local figure control. Adjusting figure on-orbit eases fabrication and metrology. The ability to make changes to mirror figure adds margin by mitigating risk due to launch-induced deformations and/or on-orbit degradation. We flowdown the Gen-X requirements to mirror figure and four telescope designs, and discuss various trades between the designs.

  13. Development of an omnidirectional gamma-ray imaging Compton camera for low-radiation-level environmental monitoring

    Science.gov (United States)

    Watanabe, Takara; Enomoto, Ryoji; Muraishi, Hiroshi; Katagiri, Hideaki; Kagaya, Mika; Fukushi, Masahiro; Kano, Daisuke; Satoh, Wataru; Takeda, Tohoru; Tanaka, Manobu M.; Tanaka, Souichi; Uchida, Tomohisa; Wada, Kiyoto; Wakamatsu, Ryo

    2018-02-01

    We have developed an omnidirectional gamma-ray imaging Compton camera for environmental monitoring at low levels of radiation. The camera consisted of only six CsI(Tl) scintillator cubes of 3.5 cm, each of which was readout by super-bialkali photo-multiplier tubes (PMTs). Our camera enables the visualization of the position of gamma-ray sources in all directions (∼4π sr) over a wide energy range between 300 and 1400 keV. The angular resolution (σ) was found to be ∼11°, which was realized using an image-sharpening technique. A high detection efficiency of 18 cps/(µSv/h) for 511 keV (1.6 cps/MBq at 1 m) was achieved, indicating the capability of this camera to visualize hotspots in areas with low-radiation-level contamination from the order of µSv/h to natural background levels. Our proposed technique can be easily used as a low-radiation-level imaging monitor in radiation control areas, such as medical and accelerator facilities.

  14. A high resolution position sensitive X-ray MWPC for small angle X-ray diffraction

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.; Stephenson, R.; Tappern, G.J.

    1981-02-01

    A small sealed-off delay line readout MWPC X-ray detector has been designed and built for small angle X-ray diffraction applications. Featuring a sensitive area of 100 mm x 25 mm it yields a spatial resolution of 0.13 mm (standard deviation) with a high rate capability and good quantum efficiency for copper K radiation. (author)

  15. X-ray Imaging and preliminary studies of the X-ray self-emission from an innovative plasma-trap based on the Bernstein waves heating mechanism

    Science.gov (United States)

    Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.

  16. In-flight calibration of Hitomi Soft X-ray Spectrometer. (3) Effective area

    Science.gov (United States)

    Tsujimoto, Masahiro; Okajima, Takashi; Eckart, Megan E.; Hayashi, Takayuki; Hoshino, Akio; Iizuka, Ryo; Kelley, Richard L.; Kilbourne, Caroline A.; Leutenegger, Maurice A.; Maeda, Yoshitomo; Mori, Hideyuki; Porter, Frederick S.; Sato, Kosuke; Sato, Toshiki; Serlemitsos, Peter J.; Szymkowiak, Andrew; Yaqoob, Tahir

    2018-03-01

    We present the result of the in-flight calibration of the effective area of the Soft X-ray Spectrometer (SXS) on board the Hitomi X-ray satellite using an observation of the Crab nebula. We corrected for artifacts when observing high count rate sources with the X-ray microcalorimeter. We then constructed a spectrum in the 0.5-20 keV band, which we modeled with a single power-law continuum attenuated by interstellar extinction. We evaluated the systematic uncertainty of the spectral parameters by various calibration items. In the 2-12 keV band, the SXS result is consistent with the literature values in flux (2.20 ± 0.08 × 10-8 erg s-1 cm-2 with a 1 σ statistical uncertainty) but is softer in the power-law index (2.19 ± 0.11). The discrepancy is attributable to the systematic uncertainty of about +6%/-7% and +2%/-5% respectively for the flux and the power-law index. The softer spectrum is affected primarily by the systematic uncertainty of the Dewar gate valve transmission and the event screening.

  17. Environmental studies in Khartoum area using x-ray fluorescence

    International Nuclear Information System (INIS)

    Abdel Elmagid, Suliman Alamin

    1996-06-01

    In the present work an attempt has been made for the analysis of some soil, plant, sediments and fish samples of relevance to environmental pollution in Khartoum area. These samples have been collected from different places in residential areas, so as to cover industrial areas, agricultural and residential areas, as well as Tuti Island as control area. Special attention has been dedicated to the analysis of lead concentrations resulting from automobile-emissions in soils and to other toxic metals such as Cr in some industries. The samples were analysed by x-ray fluorescence (XRF) technique. The results obtained using XRF measurements and computer software called QXAS for data analysis. The concentrations of lead and some heavy metals such as Cr in soils from certain locations were alarming and may create pollution problems in the near future. The results obtained from different countries. The results are generally lower than the international limits. (Author)

  18. Phase-contrast X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi [Hitachi Ltd., Saitama (Japan). Advanced Research Laboratory; Takeda, Tohoru; Itai, Yuji

    1995-12-01

    Phase-contrast X-ray computed tomography (CT) enabling the observation of biological soft tissues without contrast enhancement has been developed. The X-ray phase shift caused by an object is measured and input to a standard CT reconstruction algorithm. A thousand times increase in the image sensitivity to soft tissues is achieved compared with the conventional CT using absorption contrast. This is because the X-ray phase shift cross section of light elements is about a thousand times larger than the absorption cross section. The phase shift is detected using an X-ray interferometer and computer analyses of interference patterns. Experiments were performed using a synchrotron X-ray source. Excellent image sensitivity is demonstrated in the observation of cancerous rabbit liver. The CT images distinguish cancer lesion from normal liver tissue and, moreover, visualize the pathological condition in the lesion. Although the X-ray energy employed and the present observation area size are not suitable for medical applications as they are, phase-contrast X-ray CT is promising for investigating the internal structure of soft tissue which is almost transparent for X-rays. The high sensitivity also provides the advantage of reducing X-ray doses. (author).

  19. Development of a compact x-ray particle image velocimetry for measuring opaque flows.

    Science.gov (United States)

    Lee, Sang Joon; Kim, Guk Bae; Yim, Dae Hyun; Jung, Sung Yong

    2009-03-01

    A compact x-ray particle image velocimetry (PIV) system employing a medical x-ray tube as a light source was developed to measure quantitative velocity field information of opaque flows. The x-ray PIV system consists of a medical x-ray tube, an x-ray charge coupled device camera, a programmable shutter for a pulse-type x ray, and a synchronization device. Through performance tests, the feasibility of the developed x-ray PIV system as a flow measuring device was verified. To check the feasibility of the developed system, we tested a tube flow at two different mean velocities of 1 and 2 mm/s. The x-ray absorption of tracer particles must be quite different from that of working fluid to have a good contrast in x-ray images. All experiments were performed under atmospheric pressure condition. This system is unique and useful for investigating various opaque flows or flows inside opaque conduits.

  20. Development of a compact x-ray particle image velocimetry for measuring opaque flows

    International Nuclear Information System (INIS)

    Lee, Sang Joon; Kim, Guk Bae; Yim, Dae Hyun; Jung, Sung Yong

    2009-01-01

    A compact x-ray particle image velocimetry (PIV) system employing a medical x-ray tube as a light source was developed to measure quantitative velocity field information of opaque flows. The x-ray PIV system consists of a medical x-ray tube, an x-ray charge coupled device camera, a programmable shutter for a pulse-type x ray, and a synchronization device. Through performance tests, the feasibility of the developed x-ray PIV system as a flow measuring device was verified. To check the feasibility of the developed system, we tested a tube flow at two different mean velocities of 1 and 2 mm/s. The x-ray absorption of tracer particles must be quite different from that of working fluid to have a good contrast in x-ray images. All experiments were performed under atmospheric pressure condition. This system is unique and useful for investigating various opaque flows or flows inside opaque conduits.

  1. On-Line High Dose-Rate Gamma Ray Irradiation Test of the CCD/CMOS Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Jeong, Kyung Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    In this paper, test results of gamma ray irradiation to CCD/CMOS cameras are described. From the CAMS (containment atmospheric monitoring system) data of Fukushima Dai-ichi nuclear power plant station, we found out that the gamma ray dose-rate when the hydrogen explosion occurred in nuclear reactors 1{approx}3 is about 160 Gy/h. If assumed that the emergency response robot for the management of severe accident of the nuclear power plant has been sent into the reactor area to grasp the inside situation of reactor building and to take precautionary measures against releasing radioactive materials, the CCD/CMOS cameras, which are loaded with the robot, serve as eye of the emergency response robot. In the case of the Japanese Quince robot system, which was sent to carry out investigating the unit 2 reactor building refueling floor situation, 7 CCD/CMOS cameras are used. 2 CCD cameras of Quince robot are used for the forward and backward monitoring of the surroundings during navigation. And 2 CCD (or CMOS) cameras are used for monitoring the status of front-end and back-end motion mechanics such as flippers and crawlers. A CCD camera with wide field of view optics is used for monitoring the status of the communication (VDSL) cable reel. And another 2 CCD cameras are assigned for reading the indication value of the radiation dosimeter and the instrument. In the preceding assumptions, a major problem which arises when dealing with CCD/CMOS cameras in the severe accident situations of the nuclear power plant is the presence of high dose-rate gamma irradiation fields. In the case of the DBA (design basis accident) situations of the nuclear power plant, in order to use a CCD/CMOS camera as an ad-hoc monitoring unit in the vicinity of high radioactivity structures and components of the nuclear reactor area, a robust survivability of this camera in such intense gamma-radiation fields therefore should be verified. The CCD/CMOS cameras of various types were gamma irradiated at a

  2. Spectral structure of a polycapillary lens shaped X-ray beam

    Science.gov (United States)

    Gogolev, A. S.; Filatov, N. A.; Uglov, S. R.; Hampai, D.; Dabagov, S. B.

    2018-04-01

    Polycapillary X-ray optics is widely used in X-ray analysis techniques to create a small secondary source, for instance, or to deliver X-rays to the point of interest with minimum intensity losses [1]. The main characteristics of the analytical devices on its base are the size and divergence of the focused or translated beam. In this work, we used the photon-counting pixel detector ModuPIX to study the parameters for polycapillary focused X-ray tube radiation as well as the energy and spatial dependences of radiation at the focus. We have characterized the high-speed spectral camera ModuPIX, which is a single Timepix device with a fast parallel readout allowing up to 850 frames per second with 256 × 256 pixels and a 55 μm pitch defined by the frame frequency. By means of the silicon monochromator the energy response function is measured in clustering mode by the energy scan over total X-ray tube spectrum.

  3. Pixel detectors for x-ray imaging spectroscopy in space

    International Nuclear Information System (INIS)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L

    2009-01-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  4. Pixel detectors for x-ray imaging spectroscopy in space

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, D-81739 Munich (Germany)], E-mail: jft@hll.mpg.de

    2009-03-15

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  5. X-ray spectroscopy for high energy-density X pinch density and temperature measurements (invited)

    International Nuclear Information System (INIS)

    Pikuz, S.A.; Shelkovenko, T.A.; Chandler, K.M.; Mitchell, M.D.; Hammer, D.A.; Skobelev, I.Y.; Shlyaptseva, A.S.; Hansen, S.B.

    2004-01-01

    X pinch plasmas produced from fine metal wires can reach near solid densities and temperatures of 1 keV or even more. Plasma conditions change on time scales as short as 5-10 ps as determined using an x-ray streak camera viewing a focusing crystal spectrograph or directly viewing the plasma through multiple filters on a single test. As a result, it is possible to determine plasma conditions from spectra with ∼10 ps time resolution. Experiments and theory are now coming together to give a consistent picture of the dynamics and kinetics of these high energy density plasmas with very high temporal and spatial precision. A set of diagnostic techniques used in experiments for spectrally, temporally, and spatially resolved measurements of X pinch plasmas is described. Results of plasma parameter determination from these measurements are presented. X ray backlighting of one x-pinch by another with ∼30 ps x-ray pulses enables the dynamics and kinetics to be correlated in time

  6. Time Resolved X-Ray Spot Size Diagnostic

    CERN Document Server

    Richardson, Roger; Falabella, Steven; Guethlein, Gary; Raymond, Brett; Weir, John

    2005-01-01

    A diagnostic was developed for the determination of temporal history of an X-ray spot. A pair of thin (0.5 mm) slits image the x-ray spot to a fast scintillator which is coupled to a fast detector, thus sampling a slice of the X-Ray spot. Two other scintillator/detectors are used to determine the position of the spot and total forward dose. The slit signal is normalized to the dose and the resulting signal is analyzed to get the spot size. The position information is used to compensate for small changes due to spot motion and misalignment. The time resolution of the diagnostic is about 1 ns and measures spots from 0.5 mm to over 3 mm. The theory and equations used to calculate spot size and position are presented, as well as data. The calculations assume a symmetric, Gaussian spot. The spot data is generated by the ETA II accelerator, a 2kA, 5.5 MeV, 60ns electron beam focused on a Tantalum target. The spot generated is typically about 1 mm FWHM. Comparisons are made to an X-ray pinhole camera which images th...

  7. High-resolution accelerator alignment using x-ray optics

    Directory of Open Access Journals (Sweden)

    Bingxin Yang

    2006-03-01

    Full Text Available We propose a novel alignment technique utilizing the x-ray beam of an undulator in conjunction with pinholes and position-sensitive detectors for positioning components of the accelerator, undulator, and beam line in an x-ray free-electron laser. Two retractable pinholes at each end of the undulator define a stable and reproducible x-ray beam axis (XBA. Targets are precisely positioned on the XBA using a pinhole camera technique. Position-sensitive detectors responding to both x-ray and electron beams enable direct transfer of the position setting from the XBA to the electron beam. This system has the potential to deliver superior alignment accuracy (1–3   μm for target pinholes in the transverse directions over a long distance (200 m or longer. It can be used to define the beam axis of the electron-beam–based alignment, enabling high reproducibility of the latter. This x-ray–based concept should complement the electron-beam–based alignment and the existing survey methods to raise the alignment accuracy of long accelerators to an unprecedented level. Further improvement of the transverse accuracy using x-ray zone plates will be discussed. We also propose a concurrent measurement scheme during accelerator operation to allow real-time feedback for transverse position correction.

  8. An experimental measurement of metal multilayer x-ray reflectivity degradation due to intense x-ray flux

    International Nuclear Information System (INIS)

    Hockaday, M.Y.P.

    1987-06-01

    The degradation of the x-ray reflection characteristics of metal multilayer Bragg diffractors due to intense x-ray flux was investigated. The Z-pinch plasma produced by PROTO II of Sandia National Laboratories, Albuquerque, New Mexico, was used as the source. The plasma generated total x-ray yields of as much as 40 kJ with up to 15 kJ in the neon hydrogen- and helium-like resonance lines in nominal 20-ns pulses. Molybdenum-carbon, palladium-carbon, and tungsten-carbon metal multilayers were placed at 15 and 150 cm from the plasma center. The multilayers were at nominal angles of 5 0 and 10 0 to diffract the neon resonance lines. The time-integrated x-ray reflection of the metal multilayers was monitored by x-ray film. A fluorescer-fiber optic-visible streak camera detector system was then used to monitor the time-resolved x-ray reflection characteristics of 135 A- 2d tungsten-carbon multilayers. A large specular component in the reflectivity prevented determination of the rocking curve of the multilayer. For a neon implosion onto a vanadium-doped polyacrylic acid foam target shot, detailed modeling was attempted. The spectral flux was determined with data from 5 XRD channels and deconvolved using the code SHAZAM. The observed decay in reflectivity was assumed to correspond to the melting of the first tungsten layer. A ''conduction factor'' of 82 was required to manipulate the heat loading of the first tungsten layer such that the time of melting corresponded to the observed decay. The power at destruction was 141 MW/cm 2 and the integrated energy at destruction was 2.0 J/cm 2 . 82 refs., 66 figs., 10 tabs

  9. Television area detectors

    International Nuclear Information System (INIS)

    Arndt, V.W.

    1977-01-01

    This paper discusses the use of standard television camera tubes as X-ray detectors in X-ray diffraction studies. Standard tubes can be modified to detect X rays by depositing an external X-ray phosphor on the fibre optics face plate either of a highly sensitive television camera tube or of an image intensifier coupled to a camera tube. The author considers various X-ray phosphors and concludes that polycrystalline silver activated ZnS is most suitable for crystallographic applications. In the following sections various types of television camera tubes with adequate light sensitivity for use in an X-ray detection system are described, and also three types of image intensifiers. The digitization of the television output signals and their statistical precision are discussed and the electronic circuitry for the detector system is briefly described. (B.D.)

  10. Pixel detectors for x-ray imaging spectroscopy in space

    Science.gov (United States)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  11. Miniature gamma-ray camera for tumor localization

    International Nuclear Information System (INIS)

    Lund, J.C.; Olsen, R.W.; James, R.B.; Cross, E.

    1997-08-01

    The overall goal of this LDRD project was to develop technology for a miniature gamma-ray camera for use in nuclear medicine. The camera will meet a need of the medical community for an improved means to image radio-pharmaceuticals in the body. In addition, this technology-with only slight modifications-should prove useful in applications requiring the monitoring and verification of special nuclear materials (SNMs). Utilization of the good energy resolution of mercuric iodide and cadmium zinc telluride detectors provides a means for rejecting scattered gamma-rays and improving the isotopic selectivity in gamma-ray images. The first year of this project involved fabrication and testing of a monolithic mercuric iodide and cadmium zinc telluride detector arrays and appropriate collimators/apertures. The second year of the program involved integration of the front-end detector module, pulse processing electronics, computer, software, and display

  12. X-ray analysis of electron Bernstein wave heating in MST

    Energy Technology Data Exchange (ETDEWEB)

    Seltzman, A. H., E-mail: seltzman@wisc.edu; Anderson, J. K.; DuBois, A. M.; Almagri, A.; Forest, C. B. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2016-11-15

    A pulse height analyzing x-ray tomography system has been developed to detect x-rays from electron Bernstein wave heated electrons in the Madison symmetric torus reversed field pinch (RFP). Cadmium zinc telluride detectors are arranged in a parallel beam array with two orthogonal multi-chord detectors that may be used for tomography. In addition a repositionable 16 channel fan beam camera with a 55° field of view is used to augment data collected with the Hard X-ray array. The chord integrated signals identify target emission from RF heated electrons striking a limiter located 12° toroidally away from the RF injection port. This provides information on heated electron spectrum, transport, and diffusion. RF induced x-ray emission from absorption on harmonic electron cyclotron resonances in low current (<250 kA) RFP discharges has been observed.

  13. Neutron and X-ray emission studies in a low energy plasma focus

    Energy Technology Data Exchange (ETDEWEB)

    Zakaullah, M. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Murtaza, G. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Qamar, S. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Ahmad, I. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics; Beg, M.M. [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Physics

    1996-03-01

    In a low energy Mather-type plasma focus energized by a single 32 {mu}F capacitor, the X-ray and neutron emission is investigated using time-integrated and time-resolved detectors. The X-ray emission profile has a width (FWHM) of 40-50 ns. The neutron emission profile is broader compared to the X-ray emission profile and also delayed by 30-40 ns. To identify different regimes of X-ray emission, an X-ray pin-hole camera along with different absorption filters is employed. While the X-ray emission is high within a narrow pressure range of 2.0-2.5 mbar, the neutron emission is intense for a wider range of 1.0-4.5 mbar. The intense X-ray emission seems to originate from the axially moving shock wave. These results also indicate rather different production mechanisms for X-ray and neutron emission. Also on comparing the X-ray images with Al(2 {mu}m), Al(5 {mu}m), Al(9 {mu}m) filters, we find that the bulk of X-rays from the focus filament have energies less than 2 keV. (orig.).

  14. Detectability of Sungrazing Comet Soft X-ray Irradiance

    Directory of Open Access Journals (Sweden)

    Su Yeon Oh

    2007-12-01

    Full Text Available Originating from the Oort cloud, some comets disappear to impact against the Sun or to split up by strong gravitational force. Then they don't go back to the Oort cloud. They are called sungrazing comets. The comets are detected by sublimation of ices and ejection of gas and dust through solar heat close to the Sun. There exists the charge transfer from heavy ions in the solar wind to neutral atoms in the cometary atmosphere by interaction with the solar wind. Cometary atoms would be excited to high electronic levels and their de-excitation would result in X-ray emission, or it would be scattering of solar X-ray emission by very small cometary grains. We calculated the X-ray emission applying the model suggested by Mendis & Flammer (1984 and Cravens (1997. In our estimation, the sungrazing comet whose nucleus size is about 1 km in radius might be detectable within a distance of 3 solar radius from the sun on soft X-ray solar camera.

  15. Multiwavelength study of Chandra X-ray sources in the Antennae

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2011-01-01

    We use Wide-field InfraRed Camera (WIRC) infrared (IR) images of the Antennae (NGC 4038/4039) together with the extensive catalogue of 120 X-ray point sources to search for counterpart candidates. Using our proven frame-tie technique, we find 38 X-ray sources with IR counterparts, almost doubling the number of IR counterparts to X-ray sources that we first identified. In our photometric analysis, we consider the 35 IR counterparts that are confirmed star clusters. We show that the clusters with X-ray sources tend to be brighter, Ks≈ 16 mag, with (J-Ks) = 1.1 mag. We then use archival Hubble Space Telescope (HST) images of the Antennae to search for optical counterparts to the X-ray point sources. We employ our previous IR-to-X-ray frame-tie as an intermediary to establish a precise optical-to-X-ray frame-tie with <0.6 arcsec rms positional uncertainty. Due to the high optical source density near the X-ray sources, we determine that we cannot reliably identify counterparts. Comparing the HST positions to the 35 identified IR star cluster counterparts, we find optical matches for 27 of these sources. Using Bruzual-Charlot spectral evolutionary models, we find that most clusters associated with an X-ray source are massive, and young, ˜ 106 yr.

  16. Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Yuki, E-mail: f.yuki@mail.tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kawaguchi, Noriaki [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Research and Development Division, Tokuyama., Co. Ltd., ICR-Building, Minamiyoshinari, Aoba-ku, Sendai (Japan); Ishizu, Sumito [Research and Development Division, Tokuyama., Co. Ltd., ICR-Building, Minamiyoshinari, Aoba-ku, Sendai (Japan); Uchiyama, Koro; Mori, Kuniyoshi [Hamamatsu Photonics K.K., 325-6, Sunayama-cho, Naka-ku, Hamamatsu, Shizuoka 430-8587 (Japan); Kitano, Ken [Vacuum and Optical Instruments, 2-18-18 Shimomaruko, Ota, Tokyo 146-0092 (Japan); Nikl, Martin [Institute of Physics ASCR, Cukrovarnicka 10, Prague 6, 162-53 (Czech Republic); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2011-04-01

    To design new scintillating materials, it is very important to understand detailed information about the events, which occurred during the excitation and emission processes under the ionizing radiation excitation. We developed a streak camera system equipped with picosecond pulsed X-ray source to observe time- and wavelength-resolved scintillation events. In this report, we test the performance of this new system using several types of scintillators including bulk oxide/halide crystals, transparent ceramics, plastics and powders. For all samples, the results were consistent with those reported previously. The results demonstrated that the developed system is suitable for evaluation of the scintillation properties.

  17. Obtaining absolute spatial flux measurements with a time-resolved pinhole camera

    International Nuclear Information System (INIS)

    Baker, K.L.; Porter, J.L.; Ruggles, L.E.; Fehl, D.L.; Chandler, G.A.; Vargas, M.; Mix, L.P.; Simpson, W.W.; Deeney, C.; Chrien, R.E.; Idzorek, G.C.

    1999-01-01

    A technique is described to determine the spatial x-ray flux emitted from a hohlraum wall and subsequently transmitted through a diagnostic hole. This technique uses x-ray diodes, bolometers, and a time-resolved pinhole camera to determine the spatial flux of x rays emitted through a hohlraum close-quote s diagnostic hole. The primary motivation for this analysis was the relatively long duration, nearly 100 ns, of the x-ray drive present in z-pinch driven hohlraums. This radiation causes plasma to ablate from the hohlraum walls surrounding the diagnostic hole and results in a partial obscuration that reduces the effective area over which diagnostics view the radiation. The effective change in area leads to an underestimation of the wall temperature when nonimaging diagnostics such as x-ray diodes and bolometers are used to determine power and later to infer a wall temperature. An analysis similar to the one described below is then necessary to understand the radiation environment present in x-ray driven hohlraums when these diagnostics are used and hole closure is important. copyright 1999 American Institute of Physics

  18. X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Zucarias, A; Shepherd, J W

    1982-09-08

    An X-ray tube has a tubular envelope with a cathode for directing an electron beam onto a focal spot area of a spaced anode target to generate X-rays. The target is mounted for axial rotation on one end of a rotor disposed in an end portion of the envelope and encircled by a stator of an alternating current induction motor. An annular shield of high permeability magnetic material extends transversely between the electron beam and the stator of the induction motor for shunting stray or fringe electromagnetic fields established by the stator away from the electron beam to avoid consequent lateral deflections of the electron and corresponding lateral movements of the focal spot area.

  19. A synchrotron radiation camera and data acquisition system for time resolved x-ray scattering studies

    International Nuclear Information System (INIS)

    Bordas, J.; Koch, M.H.J.; Clout, P.N.; Dorrington, E.; Boulin, C.; Gabriel, A.

    1980-01-01

    Until recently, time resolved measurements of x-ray scattering patterns have not been feasible because laboratory x-ray sources were too weak and detectors unavailable. Recent developments in both these fields have changed the situation, and it is now possible to follow changes in x-ray scattering patterns with a time resolution of a few ms. The apparatus used to achieve this is described and some examples from recent biological experiments are given. (author)

  20. Europe's space camera unmasks a cosmic gamma-ray machine

    Science.gov (United States)

    1996-11-01

    brighter flashes when the electrons hit a phosphor screen. Since Hubble's launch in 1990, the Faint Object Camera has examined many different kinds of cosmic objects, from the moons of Jupiter to remote galaxies and quasars. When the space telescope's optics were corrected at the end of 1993 the Faint Object Camera immediately celebrated the event with the discovery of primeval helium in intergalactic gas. In their search for Pulsar 1055-52, the astronomers chose a near-ultraviolet filter to sharpen the Faint Object Camera's vision and reduce the adjacent star's huge advantage in intensity. In May 1996, the Hubble Space Telescope operators aimed at the spot which radio astronomers had indicated, as the source of the radio pulsations of Pulsar 1055-52. The neutron star appeared precisely in the centre of the field of view, and it was clearly separated from the glare of the adjacent star. At magnitude 24.9, Pulsar 1055-52 was comfortably within the power of the Faint Object Camera, which can see stars 20 times fainter still. "The Faint Object Camera is the instrument of choice for looking for neutron stars," says Giovanni Bignami, speaking on behalf of the Italian team. "Whenever it points to a judiciously selected neutron star it detects the corresponding visible or ultraviolet light. The Faint Object Camera has now identified three neutron stars in that way, including Pulsar 1055-52, and it has examined a few that were first detected by other instruments." Mysteries of the neutron stars The importance of the new result can be gauged by the tally of only eight neutron stars seen so far at optical wavelengths, compared with about 760 known from their radio pulsations, and about 21 seen emitting X-rays. Since the first pulsar was detected by radio astronomers in Cambridge, England, nearly 30 years ago, theorists have come to recognize neutron stars as fantastic objects. They are veritable cosmic laboratories in which Nature reveals the behaviour of matter under extreme stress

  1. Measurement of the point spread function and effective area of the Solar-A Soft X-ray Telescope mirror

    Science.gov (United States)

    Lemen, J. R.; Claflin, E. S.; Brown, W. A.; Bruner, M. E.; Catura, R. C.

    1989-01-01

    A grazing incidence solar X-ray telescope, Soft X-ray Telescope (SXT), will be flown on the Solar-A satellite in 1991. Measurements have been conducted to determine the focal length, Point Spread Function (PSF), and effective area of the SXT mirror. The measurements were made with pinholes, knife edges, a CCD, and a proportional counter. The results show the 1/r character of the PSF, and indicate a half power diameter of 4.9 arcsec and an effective area of 1.33 sq cm at 13.3 A (0.93 keV). The mirror was found to provide a high contrast image with very little X-ray scattering.

  2. X-ray filter for x-ray powder diffraction

    Science.gov (United States)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  3. The Very Local Universe in X-Rays

    Science.gov (United States)

    Ptak, A.

    2011-01-01

    There are many open questions in X-ray observations of the Galactic neighborhood and nearby galaxies, such as the properties of the hot ISM and accreting sources, the X-ray/star-formation rate correlation and how the X-ray luminosity function of starburst galaxies. We discuss how these would be addressed by very wide-area (> 100 sq. deg.) X-ray surveys and upcoming X-ray missions. In particular planned NuStar observations of the Galaxy and nearby galaxies will be highlighted.

  4. Soft X-ray imaging with axisymmetry microscope and electronic readout

    International Nuclear Information System (INIS)

    Sauneuf, A.; Cavailler, C.; Henry, Ph.; Launspach, J.; Mascureau, J. de; Rostaing, M.

    1984-11-01

    An axisymmetric microscope with 10 X magnification has been constructed; its resolution has been measured using severals grids, backlighted by an X-ray source and found to be near 25 μm. So it could be used to make images of laser driven plasmas in the soft X-ray region. In order to see rapidly those images we have associated it with a new detector. It is a small image converter tube with a soft X-ray photocathode and a P20 phosphor deposited on an optic fiber plate. The electronic image appearing on the screen is read by a CCD working in the spectral range. An electronic image readout chain, which is identical to those we use with streak cameras, then processes automatically and immediatly the images given by the microscope

  5. Modeling x-ray data for the Saturn z-pinch machine

    International Nuclear Information System (INIS)

    Matuska, W.; Peterson, D.; Deeney, C.; Derzon, M.

    1997-01-01

    A wealth of XRD and time dependent x-ray imaging data exist for the Saturn z-pinch machine, where the load is either a tungsten wire array or a tungsten wire array which implodes onto a SiO 2 foam. Also, these pinches have been modeled with a 2-D RMHD Eulerian computer code. In this paper the authors start with the 2-D Eulerian results to calculate time and spatially dependent spectra using both LTE and NLTE models. Then using response functions, these spectra are converted to XRD currents and camera images, which are quantitatively compared with the data. Through these comparisons, areas of good and lesser quality agreement are determined, and areas are identified where the 2-D Eulerian code should be improved

  6. First indirect x-ray imaging tests with an 88-mm diameter single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Macrander, A. T. [Argonne

    2017-02-01

    Using the 1-BM-C beamline at the Advanced Photon Source (APS), we have performed the initial indirect x - ray imaging point-spread-function (PSF) test of a unique 88-mm diameter YAG:Ce single crystal of only 100 - micron thickness. The crystal was bonded to a fiber optic plat e (FOP) for mechanical support and to allow the option for FO coupling to a large format camera. This configuration resolution was compared to that of self - supported 25-mm diameter crystals, with and without an Al reflective coating. An upstream monochromator was used to select 17-keV x-rays from the broadband APS bending magnet source of synchrotron radiation. The upstream , adjustable Mo collimators were then used to provide a series of x-ray source transverse sizes from 200 microns down to about 15-20 microns (FWHM) at the crystal surface. The emitted scintillator radiation was in this case lens coupled to the ANDOR Neo sCMOS camera, and the indirect x-ray images were processed offline by a MATLAB - based image processing program. Based on single Gaussian peak fits to the x-ray image projected profiles, we observed a 10.5 micron PSF. This sample thus exhibited superior spatial resolution to standard P43 polycrystalline phosphors of the same thickness which would have about a 100-micron PSF. Lastly, this single crystal resolution combined with the 88-mm diameter makes it a candidate to support future x-ray diffraction or wafer topography experiments.

  7. Optics Developments for X-Ray Astronomy

    Science.gov (United States)

    Ramsey, Brian

    2014-01-01

    X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.

  8. Point spread function and centroiding accuracy measurements with the JET-X mirror and MOS CCD detector of the Swift gamma ray burst explorer's X-ray telescope

    CERN Document Server

    Ambrosi, R M; Hutchinson, I B; Willingale, R; Wells, A; Short, A D T; Campana, S; Citterio, O; Tagliaferri, G; Burkert, W; Bräuninger, H

    2002-01-01

    The optical components of the Swift X-ray telescope (XRT) are already developed items. They are the flight spare X-ray mirror from the JET-X/Spectrum-X program and an MOS CCD (CCD22) of the type currently operating in orbit as part of the EPIC focal plane camera on XMM-Newton (SPIE 4140 (2000) 64). The JET-X mirrors were first calibrated at the Max Planck Institute for Extraterrestrial Physics' (MPE) Panter facility, Garching, Germany in 1996 (SPIE 2805 (1996) 56; SPIE 3114 (1997) 392). Half-energy widths of 16 arcsec at 1.5 keV were confirmed for the two flight mirrors and the flight spare. The calibration of the flight spare was repeated at Panter in July 2000 in order to establish whether any changes had occurred during the 4 yr that the mirror had been in storage at the OAB, Milan, Italy. The results reported in this paper confirm that the resolution of the JET-X mirrors has remained stable over this storage period. In an extension of this test program, the flight spare EPIC camera was installed at the fo...

  9. Images of the laser entrance hole from the static x-ray imager at NIF.

    Science.gov (United States)

    Schneider, M B; Jones, O S; Meezan, N B; Milovich, J L; Town, R P; Alvarez, S S; Beeler, R G; Bradley, D K; Celeste, J R; Dixit, S N; Edwards, M J; Haugh, M J; Kalantar, D H; Kline, J L; Kyrala, G A; Landen, O L; MacGowan, B J; Michel, P; Moody, J D; Oberhelman, S K; Piston, K W; Pivovaroff, M J; Suter, L J; Teruya, A T; Thomas, C A; Vernon, S P; Warrick, A L; Widmann, K; Wood, R D; Young, B K

    2010-10-01

    The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 μm spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eV temperature ignition Hohlraum) is discussed.

  10. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited).

    Science.gov (United States)

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Piston, K; Felker, B; Kilkenny, J D; Chung, T; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2014-11-01

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2-17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10(17). We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  11. Investigating high speed phenomena in laser plasma interactions using dilation x-ray imager (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, S. R., E-mail: nagel7@llnl.gov; Bell, P. M.; Bradley, D. K.; Ayers, M. J.; Piston, K.; Felker, B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Hilsabeck, T. J.; Kilkenny, J. D.; Chung, T.; Sammuli, B. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Hares, J. D.; Dymoke-Bradshaw, A. K. L. [Kentech Instruments Ltd., Wallingford, Oxfordshire OX10 (United Kingdom)

    2014-11-15

    The DIlation X-ray Imager (DIXI) is a new, high-speed x-ray framing camera at the National Ignition Facility (NIF) sensitive to x-rays in the range of ≈2–17 keV. DIXI uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps, a ≈10× improvement over conventional framing cameras currently employed on the NIF (≈100 ps resolution), and otherwise only attainable with 1D streaked imaging. The pulse-dilation technique utilizes a voltage ramp to impart a velocity gradient on the signal-bearing electrons. The temporal response, spatial resolution, and x-ray sensitivity of DIXI are characterized with a short x-ray impulse generated using the COMET laser facility at Lawrence Livermore National Laboratory. At the NIF a pinhole array at 10 cm from target chamber center (tcc) projects images onto the photocathode situated outside the NIF chamber wall with a magnification of ≈64×. DIXI will provide important capabilities for warm-dense-matter physics, high-energy-density science, and inertial confinement fusion, adding important capabilities to temporally resolve hot-spot formation, x-ray emission, fuel motion, and mix levels in the hot-spot at neutron yields of up to 10{sup 17}. We present characterization data as well as first results on electron-transport phenomena in buried-layer foil experiments.

  12. The PixFEL project: development of advanced X-ray pixel detectors for application at future FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Paladino, A.; Paoloni, E.; Comotti, D.; Grassi, M.; Lodola, L.; Malcovati, P.; Ratti, L.; Vacchi, C.; Fabris, L.; Manghisoni, M.; Re, V.; Traversi, G.; Morsani, F.; Betta, G.-F. Dalla; Pancheri, L.

    2015-01-01

    The PixFEL project aims to develop an advanced X-ray camera for imaging suited for the demanding requirements of next generation free electron laser (FEL) facilities. New technologies can be deployed to boost the performance of imaging detectors as well as future pixel devices for tracking. In the first phase of the PixFEL project, approved by the INFN, the focus will be on the development of the microelectronic building blocks, carried out with a 65 nm CMOS technology, implementing a low noise analog front-end channel with high dynamic range and compression features, a low power ADC and high density memory. At the same time PixFEL will investigate and implement some of the enabling technologies to assembly a seamless large area X-ray camera composed by a matrix of multilayer four-side buttable tiles. A pixel matrix with active edge will be developed to minimize the dead area of the sensor layer. Vertical interconnection of two CMOS tiers will be explored to build a four-side buttable readout chip with small pixel pitch and all the on-board required functionalities. The ambitious target requirements of the new pixel device are: single photon resolution, 1 to 10 4 photons @ 1 keV to 10 keV input dynamic range, 10-bit analog to digital conversion up to 5 MHz, 1 kevent in-pixel memory and 100 μm pixel pitch. The long term goal of PixFEL will be the development of a versatile X-ray camera to be operated either in burst mode (European XFEL), or in continuous mode to cope with the high frame rates foreseen for the upgrade phase of the LCLS-II at SLAC

  13. Simulation of high-resolution X-ray microscopic images for improved alignment

    International Nuclear Information System (INIS)

    Song Xiangxia; Zhang Xiaobo; Liu Gang; Cheng Xianchao; Li Wenjie; Guan Yong; Liu Ying; Xiong Ying; Tian Yangchao

    2011-01-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  14. Mobile X-ray radiographic systems

    International Nuclear Information System (INIS)

    Buchmann, F.

    1990-01-01

    Mobile X-ray radiography equipment consists of the X-ray source with the generator and the switching and control devices, mounted on a mobile unit for transport to the patient to be examined. These mobile systems, just as the stationary equipment, have been profiting from the technological progress made in the area of X-ray generation, and the considerable improvements thus achieved have altered not only the value of these systems, but also their applicability which frequently comes near that of stationary equipment. (orig./GDG) [de

  15. A Soft X-ray Imager for MIRAX

    International Nuclear Information System (INIS)

    Zand, Jean in 't; Mels, Wim; Heise, John

    2006-01-01

    The flight spare model of the BeppoSAX Wide Field Cameras is being considered as the Soft X-ray Imager for MIRAX. A description is provided of this instrument, the performance of its siblings on BeppoSAX, and the prospects of flying it on MIRAX. Like on BeppoSAX, the instrument on MIRAX will excel in the study of transient phenomena lasting shorter than 1 day

  16. Infrared Counterparts to Chandra X-Ray Sources in the Antennae

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. L.; Barry, D. J.; Ptak, A. F.; Colbert, E. J. M.

    2007-03-01

    We use deep J (1.25 μm) and Ks (2.15 μm) images of the Antennae (NGC 4038/4039) obtained with the Wide-field InfraRed Camera on the Palomar 200 inch (5 m) telescope, together with the Chandra X-ray source list of Zezas and coworkers to search for infrared counterparts to X-ray point sources. We establish an X-ray/IR astrometric frame tie with ~0.5" rms residuals over a ~4.3' field. We find 13 ``strong'' IR counterparts brighter than Ks=17.8 mag and 99.9% confidence level that IR counterparts to X-ray sources are ΔMKs~1.2 mag more luminous than average non-X-ray clusters. We also note that the X-ray/IR matches are concentrated in the spiral arms and ``overlap'' regions of the Antennae. This implies that these X-ray sources lie in the most ``super'' of the Antennae's super star clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing'' IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (possibly older) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, although small-number statistics hamper this analysis.

  17. X-ray masks

    International Nuclear Information System (INIS)

    Greenwood, J.C.; Satchell, D.W.

    1984-01-01

    In semiconductor manufacture, where X-ray irradiation is used, a thin silicon membrane can be used as an X-ray mask. This membrane has areas on which are patterns to define the regions to be irradiated. These regions are of antireflection material. With the thin, in the order of 3 microns, membranes used, fragility is a problem. Hence a number of ribs of silicon are formed integral with the membrane, and which are relatively thick, 5 to 10 microns. The ribs may be formed by localised deeper boron deposition followed by a selective etch. (author)

  18. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  19. Optical properties of X-ray stars. 3

    International Nuclear Information System (INIS)

    Hudec, R.

    1984-01-01

    822 observations of X-ray system HZ Her/Her X-1 on Sonneberg sky-patrol-camera plates are interpreted with the following main results: (i) altogether 3 (and possibly 4) active and 3 (possibly 4) inactive states were revealed during the time span 1928 to 1979, (ii) the comparison of individual active-state light curves shows no clear differences, (iii) a very quick transition between active and inactive state JD 243 1313.382-JD 243 1321.403 was observed. Some other studies of the optical data were carried out and are briefly described. (author)

  20. Operation of a separated-type x-ray interferometer for phase-contrast x-ray imaging

    Science.gov (United States)

    Yoneyama, Akio; Momose, Atsushi; Seya, Eiichi; Hirano, Keiichi; Takeda, Tohoru; Itai, Yuji

    1999-12-01

    Aiming at large-area phase-contrast x-ray imaging, a separated-type x-ray interferometer system was designed and developed to produce 25×20 mm interference patterns. The skew-symmetric optical system was adopted because of the feasibility of alignment. The rotation between the separated crystal blocks was controlled within a drift of 0.06 nrad using a feedback positioning system. This interferometer generated a 25×15 mm interference pattern with 0.07 nm synchrotron x-rays. A slice of a rabbit's kidney was observed, and its tubular structure could be revealed in a measured phase map.

  1. Magnetically-coupled microcalorimeter arrays for x-ray astrophysics with sub-eV spectral resolution and large format capability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "We propose to develop a revolutionary x-ray camera for astrophysical imaging spectroscopy. High-resolution x-ray spectroscopy is a powerful tool for studying the...

  2. X-Ray Diffraction Project Final Report, Fiscal Year 2006

    International Nuclear Information System (INIS)

    Dane V. Morgan

    2006-01-01

    An x-ray diffraction diagnostic system was developed for determining real-time shock-driven lattice parameter shifts in single crystals at the gas gun at TA-IV at Sandia National Laboratories (SNL). The signal-to-noise ratio and resolution of the system were measured using imaging plates as the detector and by varying the slit width. This report includes tests of the x-ray diffraction system using a phosphor coupled to a charge-coupled device (CCD) camera by a coherent fiber-optic bundle. The system timing delay was measured with a newly installed transistor-transistor logic (TTL) bypass designed to reduce the x-ray delay time. The axial misalignment of the Bragg planes was determined with respect to the optical axis for a set of eight LiF [lithium fluoride] crystals provided by SNL to determine their suitability for gas gun experiments

  3. Development of a Wolter Optic X-ray Imager on Z

    Science.gov (United States)

    Fein, Jeffrey R.; Ampleford, David J.; Vogel, Julia K.; Kozioziemski, Bernie; Walton, Christopher C.; Wu, Ming; Ayers, Jay; Ball, Chris J.; Bourdon, Chris J.; Maurer, Andrew; Pivovaroff, Mike; Ramsey, Brian; Romaine, Suzanne

    2017-10-01

    A Wolter optic x-ray imager is being developed for the Z Machine to study the dynamics of warm x-ray sources with energies above 10 keV. The optic is adapted from observational astronomy and uses multilayer-coated, hyperbolic and parabolic x-ray mirrors to form a 2D image with predicted 100- μm resolution over a 5x5-mm field of view. The imager is expected to have several advantages over a simple pinhole camera. In particular, it can form quasi mono-energetic images due to the inherent band-pass nature of the x-ray mirrors from Bragg diffraction. As well, its larger collection solid angle can lead to an overall increase in efficiency for the x-rays in the desirable energy band. We present the design of the imaging system, which is initially optimized to view Mo K-alpha x-rays (17.5 keV). In addition, we will present preliminary measurements of the point-spread function as well as the spectral sensitivity of the instrument. Sandia National Laboratories is a multimission laboratory managed and operated by NTESS, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's NNSA under contract DE-NA-0003525.

  4. CMOS-sensors for energy-resolved X-ray imaging

    International Nuclear Information System (INIS)

    Doering, D.; Amar-Youcef, S.; Deveaux, M.; Linnik, B.; Müntz, C.; Stroth, Joachim; Baudot, J.; Dulinski, W.; Kachel, M.

    2016-01-01

    Due to their low noise, CMOS Monolithic Active Pixel Sensors are suited to sense X-rays with a few keV quantum energy, which is of interest for high resolution X-ray imaging. Moreover, the good energy resolution of the silicon sensors might be used to measure this quantum energy. Combining both features with the good spatial resolution of CMOS sensors opens the potential to build ''color sensitive' X-ray cameras. Taking such colored images is hampered by the need to operate the CMOS sensors in a single photon counting mode, which restricts the photon flux capability of the sensors. More importantly, the charge sharing between the pixels smears the potentially good energy resolution of the sensors. Based on our experience with CMOS sensors for charged particle tracking, we studied techniques to overcome the latter by means of an offline processing of the data obtained from a CMOS sensor prototype. We found that the energy resolution of the pixels can be recovered at the expense of reduced quantum efficiency. We will introduce the results of our study and discuss the feasibility of taking colored X-ray pictures with CMOS sensors

  5. X-ray cinematography on the nuclear fuel and cladding motion diagnostics

    International Nuclear Information System (INIS)

    Mizuta, Hiroshi; Uruwashi, Shinichi.

    1979-01-01

    X-ray cinematography has been used for monitoring fuel motion in the out-of-pile fuel pin joule melting experiments for nuclear, liquid metal cooled fast breeder reactor, safety studies related to fuel pin failure, initial fuel motion and thermal fuel-coolant interaction (FCI) of the hypothetical core distractive accident. In order to visually observe the nuclear fuel motion, the X-ray cinematography system consists of an X-ray source located about 5 cm from the test section and an image intensifier located at a corresponding position on the opposite side of the test section. The image from the image intensifier has been recorded both with a high speed camera and video recorder. (author)

  6. X-ray data processing

    OpenAIRE

    Powell, Harold R.

    2017-01-01

    The method of molecular structure determination by X-ray crystallography is a little over a century old. The history is described briefly, along with developments in X-ray sources and detectors. The fundamental processes involved in measuring diffraction patterns on area detectors, i.e. autoindexing, refining crystal and detector parameters, integrating the reflections themselves and putting the resultant measurements on to a common scale are discussed, with particular reference to the most c...

  7. Dentistry 4. X-ray diagnostics

    International Nuclear Information System (INIS)

    2014-01-01

    DIN pocketbook 267/4 gives an overview of the normative requirements of the new X-Ray and Radiation Protection Ordinance, which has been in effect since 1 November 2011. This DIN pocketbook is intended for anyone charged with professional responsibility for the use of ionizing radiation in dentistry, operators and users of x-ray devices, radiation protection officers, accredited experts, manufacturers as well as for anyone with an interest in radiation protection or optimal radiological diagnostics. It contains standards relating to the following areas: acceptance and constancy testing; devices for evaluating findings (monitors, film viewing devices), films, printers; archiving, designating, labelling. Adherence to the standards makes it possible to avoid distractive artefacts in x-ray images and optimise the quality of x-ray diagnostics in dentistry.

  8. Large area avalanche photodiodes in scintillation and X-rays detection

    International Nuclear Information System (INIS)

    Moszynski, M.; Szawlowski, M.; Kapusta, M.; Balcerzyk, M.

    2002-01-01

    The presented paper summarizes our earlier studies on application of beveled-edge Large Area Avalanche Photodiodes (LAAPDs) in γ-rays scintillation detection. LAAPDs, due to their high quantum efficiency and low excess noise factor allow for better statistical accuracy of the signal as compared to photomultipliers. The device dark noise contribution significantly affects energy resolution only for γ-rays with energy below 50 keV. Notably better or comparable energy resolutions to those observed with a XP2020Q photomultiplier were obtained with the LAAPDs for a number of different scintillators. Particularly, the recorded energy resolutions of 4.3±0.2% and 4.8±0.14% measured with YAP and CsI(Tl) crystals, respectively, for the 662 keV γ-peak from a 137 Cs source belong to the best observed ever with these scintillation detectors. Results of the study of timing with fast scintillators coupled to the LAAPD showed subnanosecond time resolution of 570±30 ps for 60 Co γ-rays detected in LSO crystal. The response of LAAPD to X-rays and factors limiting energy resolution have been discussed too

  9. Studies of soft x-ray transmission through grid supported CH layers

    Science.gov (United States)

    Davis, J. S.; Keiter, P. A.; Klein, S. R.; Frank, Y.; Drake, R. P.; Shvarts, D.

    2017-10-01

    Recent experiments have shown that it may be possible to use laser-heated high-Z foils to drive new radiation transport (RadTran) experiments in gas fill tubes. These tubes must be pressurized above 1atm and the x-ray source needs to be physically separated from the gas. To achieve this, a grid-supported CH seal is implemented. The grid reduces the total surface area of the gas-seal interaction region lowering the thickness requirements for the CH layer. However, as mesh spacing is reduced, hole closure from wire ablation may reduce the x-ray flux. To optimize the seal design, experiments were performed measuring x-ray transmission through CH layers supported by meshes composed of copper, gold, or stainless steel and using hexagonal or square mesh geometries. The x-ray source was formed by heating a 0.5 μm thick planar gold foil with a 4 ns laser pulse at an intensity of 2 ×1014 W / cm 2. Emission data was collected using an x-ray framing camera and a Dante photodiode array. Experiments show that the CH layers can reach effective temperatures of nearly 100 eV but mesh design significantly affects performance, with a nearly 20 eV difference between the best and worst performing seal targets. This talk will discuss our findings and their impact on future RadTran experiments. This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HED Laboratory Plasmas, Grant Number DE-NA0001840, the National LUFP, Grant Number DE-NA0000850, and through NNSA/OICF under Cooperatvie Agreement No. DE-FC52-08NA2830.

  10. Laboratory source based full-field x-ray microscopy at 9 keV

    Energy Technology Data Exchange (ETDEWEB)

    Fella, C.; Balles, A.; Wiest, W. [Lehrstuhl für Röntgenmikroskopie, Julius-Maximilians-Universität, 97074 Würzburg (Germany); Zabler, S.; Hanke, R. [Lehrstuhl für Röntgenmikroskopie, Julius-Maximilians-Universität, 97074 Würzburg (Germany); Fraunhofer Development Center X-Ray Technology (EZRT), Flugplatzstrasse 75, 90768 Fürth (Germany)

    2016-01-28

    In the past decade, hard x-ray transmission microscopy experienced tremendous developments. With the avail-ability of efficient Fresnel zone plates, even set-ups utilizing laboratory sources were developed [1]. In order to improve the performance of these x-ray microscopes, novel approaches to fabricate optical elements [2] and brighter x-ray tubes [3] are promising candidates. We are currently building a laboratory transmission x-ray microscope for 9.25 keV, using an electron impact liquid-metal-jet anode source. Up to now, the further elements of our setup are: a polycapillary condenser, a tungsten zone plate, and a scintillator which is optically coupled to a CMOS camera. However, further variations in terms of optical elements are intended. Here we present the current status of our work, as well as first experimental results.

  11. X-ray spectroscopy an introduction

    CERN Document Server

    Agarwal, Bipin K

    1979-01-01

    Rontgen's discovery of X-rays in 1895 launched a subject which became central to the development of modern physics. The verification of many of the predic­ tions of quantum theory by X-ray spectroscopy in the early part of the twen­ tieth century stimulated great interest in thi's area, which has subsequently influenced fields as diverse as chemical physics, nuclear physics, and the study of the electronic properties of solids, and led to the development of techniques such as Auger, Raman, and X-ray photoelectron spectroscopy. The improvement of the theoretical understanding of the physics underlying X-ray spectroscopy has been accompanied by advances in experimental techniques, and the subject provides an instructive example of how progress on both these fronts can be mutually beneficial. This book strikes a balance between his­ torical description, which illustrates this symbiosis, and the discussion of new developments. The application of X-ray spectroscopic methods to the in­ vestigation of chemical b...

  12. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  13. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    Science.gov (United States)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  14. 14th International Conference on X-Ray Lasers

    CERN Document Server

    Menoni, Carmen; Marconi, Mario

    2016-01-01

    These proceedings comprise invited and contributed papers presented at the 14th International Conference on X-Ray Lasers (ICXRL 2014). This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense, coherent x-rays and progress toward practical devices and their applications in numerous fields are reported. Areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation, and other x-ray generation schemes are covered.  The scope of ICXRL 2014 included, but was not limited to: Laser-pumped X-ray lasers Discharge excitation and other X-ray laser pumping methods Injection/seeding of X-ray amplifiers New lasing transitions and novel X-ray laser schemes High Harmonic sources-Free-electron laser generation in the XUV and X-ray range Novel schemes for coherent XUV and X-ray ge...

  15. CdTe Based Hard X-ray Imager Technology For Space Borne Missions

    Science.gov (United States)

    Limousin, Olivier; Delagnes, E.; Laurent, P.; Lugiez, F.; Gevin, O.; Meuris, A.

    2009-01-01

    CEA Saclay has recently developed an innovative technology for CdTe based Pixelated Hard X-Ray Imagers with high spectral performance and high timing resolution for efficient background rejection when the camera is coupled to an active veto shield. This development has been done in a R&D program supported by CNES (French National Space Agency) and has been optimized towards the Simbol-X mission requirements. In the latter telescope, the hard X-Ray imager is 64 cm² and is equipped with 625µm pitch pixels (16384 independent channels) operating at -40°C in the range of 4 to 80 keV. The camera we demonstrate in this paper consists of a mosaic of 64 independent cameras, divided in 8 independent sectors. Each elementary detection unit, called Caliste, is the hybridization of a 256-pixel Cadmium Telluride (CdTe) detector with full custom front-end electronics into a unique 1 cm² component, juxtaposable on its four sides. Recently, promising results have been obtained from the first micro-camera prototypes called Caliste 64 and will be presented to illustrate the capabilities of the device as well as the expected performance of an instrument based on it. The modular design of Caliste enables to consider extended developments toward IXO type mission, according to its specific scientific requirements.

  16. Comparison of high speed movie and flash x-ray measurement of the translational and rotational motions of projectiles penetrating gelatin

    International Nuclear Information System (INIS)

    Roecker, E.T.

    1979-01-01

    Projectiles penetrating a gelatin block were simultaneously measured by a high speed movie camera, Dynafax, and by a sequential, orthogonal, flash x-ray system. The eight orthogonal views of the x-ray system provided position and orientation of the projectiles vs. time. From onset of tumble in the gelatin, owing to gyroscopic instability, the growth of yaw was the same for each round in a replicated set. This phenomenon provided a legitimate procedure for pooling the x-ray data, giving well determined curves of velocity decay and yaw growth. The movie camera observed the progress of the cavity formed by the projectile. The resulting velocity decay of the cavity tip was compared to that of the projectile as measured by the x-ray technique. (author)

  17. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  18. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  19. A real-time regional adaptive exposure method for saving dose-area product in x-ray fluoroscopy

    International Nuclear Information System (INIS)

    Burion, Steve; Funk, Tobias; Speidel, Michael A.

    2013-01-01

    Purpose: Reduction of radiation dose in x-ray imaging has been recognized as a high priority in the medical community. Here the authors show that a regional adaptive exposure method can reduce dose-area product (DAP) in x-ray fluoroscopy. The authors' method is particularly geared toward providing dose savings for the pediatric population. Methods: The scanning beam digital x-ray system uses a large-area x-ray source with 8000 focal spots in combination with a small photon-counting detector. An imaging frame is obtained by acquiring and reconstructing up to 8000 detector images, each viewing only a small portion of the patient. Regional adaptive exposure was implemented by varying the exposure of the detector images depending on the local opacity of the object. A family of phantoms ranging in size from infant to obese adult was imaged in anteroposterior view with and without adaptive exposure. The DAP delivered to each phantom was measured in each case, and noise performance was compared by generating noise arrays to represent regional noise in the images. These noise arrays were generated by dividing the image into regions of about 6 mm 2 , calculating the relative noise in each region, and placing the relative noise value of each region in a one-dimensional array (noise array) sorted from highest to lowest. Dose-area product savings were calculated as the difference between the ratio of DAP with adaptive exposure to DAP without adaptive exposure. The authors modified this value by a correction factor that matches the noise arrays where relative noise is the highest to report a final dose-area product savings. Results: The average dose-area product saving across the phantom family was (42 ± 8)% with the highest dose-area product saving in the child-sized phantom (50%) and the lowest in the phantom mimicking an obese adult (23%). Conclusions: Phantom measurements indicate that a regional adaptive exposure method can produce large DAP savings without compromising

  20. Ion chamber area monitor for low level scattered x-rays

    International Nuclear Information System (INIS)

    Fergus, R.W.; Robinet, M.J.

    1978-01-01

    An economical, high confidence instrument was developed for laboratories using low energy x-rays. The instrument detects increases in background caused by scattered radiation. Exposure rates close to the open part of the x-ray tubes are of the order of 10 3 to 10 6 R/min. A few meters away the background is a few tenths of a mR/hr

  1. Direct observations of cracks and voids in structural materials by X-ray imaging using ultra-bright synchrotron radiation

    International Nuclear Information System (INIS)

    Nakayama, Takenori; Yuse, Fumio; Tsubokawa, Yoshiyuki; Matsui, Junji

    2003-01-01

    Refraction contrast X-ray imaging experiments were conducted on acrylic resin with an artificial cylindrical hole, A7075 aluminum alloy, A6063 aluminum castings, mild steel with cracks or voids, and low alloy steel with inclusions, using a ultra-bright synchrotron radiation X-ray beam in BL24XU hutch C of SPring-8. Conventional absorption contrast X-ray imaging experiments were also done for the comparison. The X-ray beam was controlled to be monochromatic by Si double-crystals and collimated by a slit. The distance between the sample and the detector was changed from 0 to 3 m, and the X-ray energy was 15 to 25 keV. Photographs were taken by X-ray film and/or X-ray CCD camera. As a result, the refraction imaging method gave a much more distinct image of the artificial cylindrical hole in acrylic resin as compared with the absorption method. The fatigue cracks in aluminum alloy and mild steel were also distinctly observed. The X-ray imaging revealed the presence of MnS nonmetallic inclusions in low alloy steel. Void defects in aluminum castings were clearly detected by the imaging. In addition, in-situ observation of tensile fracture of aluminum alloys using a high resolution X-ray CCD camera system wa successfully conducted. The observations by use of asymmetric reflection technique for X-ray imaging experiment were also well performed. From above, the X-ray imaging method using ultra-bright synchrotron radiation is concluded to be very useful for fracture research of materials. (author)

  2. Direct observations of cracks and voids in structural materials by X-ray imaging using ultra-bright synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Takenori; Yuse, Fumio [Kobe Steel, Ltd., Materials Research Laboratory, Kobe, Hyogo (Japan); Tsubokawa, Yoshiyuki [Kobelco Research Inst., Kobe, Hyogo (Japan); Matsui, Junji [Himeji Inst. of Technology, Kamigori, Hyogo (Japan)

    2003-04-01

    Refraction contrast X-ray imaging experiments were conducted on acrylic resin with an artificial cylindrical hole, A7075 aluminum alloy, A6063 aluminum castings, mild steel with cracks or voids, and low alloy steel with inclusions, using a ultra-bright synchrotron radiation X-ray beam in BL24XU hutch C of SPring-8. Conventional absorption contrast X-ray imaging experiments were also done for the comparison. The X-ray beam was controlled to be monochromatic by Si double-crystals and collimated by a slit. The distance between the sample and the detector was changed from 0 to 3 m, and the X-ray energy was 15 to 25 keV. Photographs were taken by X-ray film and/or X-ray CCD camera. As a result, the refraction imaging method gave a much more distinct image of the artificial cylindrical hole in acrylic resin as compared with the absorption method. The fatigue cracks in aluminum alloy and mild steel were also distinctly observed. The X-ray imaging revealed the presence of MnS nonmetallic inclusions in low alloy steel. Void defects in aluminum castings were clearly detected by the imaging. In addition, in-situ observation of tensile fracture of aluminum alloys using a high resolution X-ray CCD camera system wa successfully conducted. The observations by use of asymmetric reflection technique for X-ray imaging experiment were also well performed. From above, the X-ray imaging method using ultra-bright synchrotron radiation is concluded to be very useful for fracture research of materials. (author)

  3. Requirements for industrial x-ray equipment

    International Nuclear Information System (INIS)

    1987-01-01

    This safety code is concerned with the protection of all individuals who may be exposed to radiation emitted by X-ray equipment operating at energies up to 1 MeV as used in industrial radiography. This code presents basic radiation safety information for the protection of personnel operating and servicing X-ray equipment and other workers and the general public in the vicinity of areas where X-ray equipment is in operation. It specifies general safety features of design, construction and functioning of X-ray equipment and facilities; describes the responsibilities of the user, operator and maintenance personnel; contains recommendations to ensure that the X-ray equipment is used and maintained in accordance with the ALARA principle; and describes a program of personnel monitoring and radiation safety surveys. ( 6 refs., 5 tabs., 4 figs.)

  4. X-Ray Optics: Past, Present, and Future

    Science.gov (United States)

    Zhang, William W.

    2010-01-01

    X-ray astronomy started with a small collimated proportional counter atop a rocket in the early 1960s. It was immediately recognized that focusing X-ray optics would drastically improve both source location accuracy and source detection sensitivity. In the past 5 decades, X-ray astronomy has made significant strides in achieving better angular resolution, large photon collection area, and better spectral and timing resolutions, culminating in the three currently operating X-ray observatories: Chandra, XMM/Newton, and Suzaku. In this talk I will give a brief history of X-ray optics, concentrating on the characteristics of the optics of these three observatories. Then I will discuss current X-ray mirror technologies being developed in several institutions. I will end with a discussion of the optics for the International X-ray Observatory that I have been developing at Goddard Space Flight Center.

  5. Phosphor Scanner For Imaging X-Ray Diffraction

    Science.gov (United States)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  6. Radiation Protection Control Area Around Baggage Control X-ray Units

    International Nuclear Information System (INIS)

    Prlic, I.; Radalj, Z.; Milkovic-Kraus, S.; Cerovac, Z.

    2003-01-01

    The importance of prompt occupational dose reporting rises when dose is received within a short-time interval or when the radiation source suffers any technical failures. Radiation exposure is to be recognized as a private/or group hazard of each person alone. Actual radiation quality of the source is to be taken into account. To optimize the radiological radiation protection Quality Control measurements of the source are done. We have developed digital dosemeters of type ALARA OD2 for external dosimetry to be used for establishing the real pattern of occupational dose delivered to the workers or/and as the (Ort) professional environmental measuring station. We are using dosemeter to define the control areas and areas of concern - point (Ort) around the source. This upgrade to legal obligatory external (film badge) dosimetry will help us to ease defining the professional stuff and working places which are actually exposed to ionising radiation of concern and for which it is necessary to provide legally required, or even additional, occupational health care programme. This means the analysis of exposure situations for specific jobs near the X-ray equipment used for baggage control in the context of carrying out a detailed study for the optimisation of radiation protection. PC data readout from device forms a real time exposure dose rate pattern that proves that any worker or other employee working nearby the baggage X-ray unit is not obliged to undergo any legal occupational monitoring (dosimetry or health) hence the total dose per year will not exceed 1 mSv under the worst working conditions. (author)

  7. Micron-CT using quasi-monochromatic x-rays produced in micro-PIXE

    International Nuclear Information System (INIS)

    Ishii, K.

    2009-01-01

    In ion-atom collision, characteristic X-rays are intensively produced and can be considered as a monochromatic X-ray source. We apply this feature to X-ray CT. By using micro-beams, cross sectional images can be provided with a spatial resolution of about 1 μm. On the basis of this idea, we developed a micron-CT consisting of a micro-beam system and an X-ray CCD camera. A tube holding samples was rotated by a stepping motor and the transmission images of the sample were taken with characteristic K-X-rays of Ti (4.558 keV) produced by 3 MeV proton micro-beams. After image reconstruction, images of cross sections of small objects were obtained with a spatial resolution of 3 μm. Using an absorption edge, we can identify an element in a sample. It is expected that our micron-CT can provide cross sectional images of in-vivo cellular samples and can be applied to a wide range of researches in biology and medicine. (author)

  8. Development of X-ray radiography examination technology by image processing method

    Energy Technology Data Exchange (ETDEWEB)

    Min, Duck Kee; Koo, Dae Seo; Kim, Eun Ka [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    Because the dimension of nuclear fuel rods was measured with rapidity and accuracy by X-ray radiography examination, the set-up of image processing system which was composed of 979 CCD-L camera, image processing card and fluorescent lighting was carried out, and the image processing system enabled image processing to perform. The examination technology of X-ray radiography, which enabled dimension measurement of nuclear fuel rods to perform, was developed by image processing method. The result of dimension measurement of standard fuel rod by image processing method was 2% reduction in relative measuring error than that of X-ray radiography film, while the former was better by 100 {approx} 200 {mu}m in measuring accuracy than the latter. (author). 9 refs., 22 figs., 3 tabs.

  9. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  10. Cone beam x-ray luminescence computed tomography: a feasibility study.

    Science.gov (United States)

    Chen, Dongmei; Zhu, Shouping; Yi, Huangjian; Zhang, Xianghan; Chen, Duofang; Liang, Jimin; Tian, Jie

    2013-03-01

    The appearance of x-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging by x ray. In the previous XLCT system, the sample was irradiated by a sequence of narrow x-ray beams and the x-ray luminescence was measured by a highly sensitive charge coupled device (CCD) camera. This resulted in a relatively long sampling time and relatively low utilization of the x-ray beam. In this paper, a novel cone beam x-ray luminescence computed tomography strategy is proposed, which can fully utilize the x-ray dose and shorten the scanning time. The imaging model and reconstruction method are described. The validity of the imaging strategy has been studied in this paper. In the cone beam XLCT system, the cone beam x ray was adopted to illuminate the sample and a highly sensitive CCD camera was utilized to acquire luminescent photons emitted from the sample. Photons scattering in biological tissues makes it an ill-posed problem to reconstruct the 3D distribution of the x-ray luminescent sample in the cone beam XLCT. In order to overcome this issue, the authors used the diffusion approximation model to describe the photon propagation in tissues, and employed the sparse regularization method for reconstruction. An incomplete variables truncated conjugate gradient method and permissible region strategy were used for reconstruction. Meanwhile, traditional x-ray CT imaging could also be performed in this system. The x-ray attenuation effect has been considered in their imaging model, which is helpful in improving the reconstruction accuracy. First, simulation experiments with cylinder phantoms were carried out to illustrate the validity of the proposed compensated method. The experimental results showed that the location error of the compensated algorithm was smaller than that of the uncompensated method. The permissible region strategy was applied and reduced the reconstruction error to less than 2 mm. The robustness and stability were then

  11. X-ray data processing.

    Science.gov (United States)

    Powell, Harold R

    2017-10-31

    The method of molecular structure determination by X-ray crystallography is a little over a century old. The history is described briefly, along with developments in X-ray sources and detectors. The fundamental processes involved in measuring diffraction patterns on area detectors, i.e. autoindexing, refining crystal and detector parameters, integrating the reflections themselves and putting the resultant measurements on to a common scale are discussed, with particular reference to the most commonly used software in the field. © 2017 The Author(s).

  12. Printable organometallic perovskite enables large-area, low-dose X-ray imaging

    Science.gov (United States)

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-01

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGyair-1 cm-2) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  13. Printable organometallic perovskite enables large-area, low-dose X-ray imaging.

    Science.gov (United States)

    Kim, Yong Churl; Kim, Kwang Hee; Son, Dae-Yong; Jeong, Dong-Nyuk; Seo, Ja-Young; Choi, Yeong Suk; Han, In Taek; Lee, Sang Yoon; Park, Nam-Gyu

    2017-10-04

    Medical X-ray imaging procedures require digital flat detectors operating at low doses to reduce radiation health risks. Solution-processed organic-inorganic hybrid perovskites have characteristics that make them good candidates for the photoconductive layer of such sensitive detectors. However, such detectors have not yet been built on thin-film transistor arrays because it has been difficult to prepare thick perovskite films (more than a few hundred micrometres) over large areas (a detector is typically 50 centimetres by 50 centimetres). We report here an all-solution-based (in contrast to conventional vacuum processing) synthetic route to producing printable polycrystalline perovskites with sharply faceted large grains having morphologies and optoelectronic properties comparable to those of single crystals. High sensitivities of up to 11 microcoulombs per air KERMA of milligray per square centimetre (μC mGy air -1 cm -2 ) are achieved under irradiation with a 100-kilovolt bremsstrahlung source, which are at least one order of magnitude higher than the sensitivities achieved with currently used amorphous selenium or thallium-doped cesium iodide detectors. We demonstrate X-ray imaging in a conventional thin-film transistor substrate by embedding an 830-micrometre-thick perovskite film and an additional two interlayers of polymer/perovskite composites to provide conformal interfaces between perovskite films and electrodes that control dark currents and temporal charge carrier transportation. Such an all-solution-based perovskite detector could enable low-dose X-ray imaging, and could also be used in photoconductive devices for radiation imaging, sensing and energy harvesting.

  14. A simple, semi-quantitative method for measuring pulsed soft x-rays

    International Nuclear Information System (INIS)

    Takahama, Y.; Du, J.; Yanagidaira, T.; Hirano, K.

    1993-01-01

    A simple semi-quantitative measurement and image processing system for pulsed soft X-rays with a time and spatial resolution is proposed. Performance of the system is examined using a cylindrical soft X-ray source generated with a plasma device. The system consists of commercial facilities which are easily obtained such as a microchannel plate-phosphor screen combination, a CCD camera, an image memory board and a personal computer. To make a quantitative measurement possible, the image processing and observation of the phosphor screen current are used in conjunction. (author)

  15. The X-ray imager on AXO

    DEFF Research Database (Denmark)

    Budtz-Jørgensen, Carl; Kuvvetli, Irfan; Westergaard, Niels Jørgen Stenfeldt

    2001-01-01

    DSRI has initiated a development program of CZT X-ray and gamma-ray detectors employing strip readout techniques. A dramatic improvement of the energy response was found operating the detectors as the so-called drift detectors. For the electronic readout, modern ASIC chips were investigated....... Modular design and the low-power electronics will make large area detectors using the drift strip method feasible. The performance of a prototype CZT system will be presented and discussed. One such detector system has been proposed for future space missions: the X-Ray Imager (XRI) on the Atmospheric X-ray...... Observatory (AXO), which is a mission proposed to the Danish Small Satellite Program and is dedicated to observations of X-ray generating processes in the Earth's atmosphere. Of special interest will be simultaneous optical and X-ray observations of sprites that are flashes appearing directly above an active...

  16. Evaluation of a computer aided X-ray fluorographic system: part 1 - system analysis

    International Nuclear Information System (INIS)

    Burch, S.F.; Cocking, S.J.

    1982-02-01

    A computer aided, X-ray fluorographic (CAF) system has been assembled for application in non-destructive testing. The fluorographic hardware comprises a rare earth phosphor viewed with a low-light level SIT (Silicon intensifier target) TV camera, suitable for real time imaging in an industrial environment. A digital image processor allows integration to reduce noise and hence increase the thickness sensitivity. It also provides image modification for optimum visual detection of defects. Measurements of the resolution of the system and the noise on the fluorographic images are presented. Observations of wire type IQIs gave subjective thickness sensitivities of 2 to 4% for steel specimens up to 9mm thick. The observed noise was caused primarily by the camera rather than by the fundamental limit expected from X-ray photon statistics. The present system has, in practical applications, shown a capability to detect small (0.5mm) volumetric defects in castings. Further developments of the system are also discussed. It is concluded that a micro-focus X-ray set should be used with the existing hardware to investigate projection magnification fluoroscopy. (author)

  17. The STAR-X X-Ray Telescope Assembly (XTA)

    Science.gov (United States)

    McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2017-01-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  18. X-Ray

    Science.gov (United States)

    ... enema. What you can expect During the X-ray X-rays are performed at doctors' offices, dentists' offices, ... as those using a contrast medium. Your child's X-ray Restraints or other techniques may be used to ...

  19. Pushing the Boundaries of X-ray Grating Spectroscopy in a Suborbital Rocket

    Science.gov (United States)

    McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Zhang, William W.; Murray, Neil J.; O'Dell, Stephen; Cash, Webster

    2013-01-01

    Developments in grating spectroscopy are paramount for meeting the soft X-ray science goals of future NASA X-ray Observatories. While developments in the laboratory setting have verified the technical feasibility of using off-plane reflection gratings to reach this goal, flight heritage is a key step in the development process toward large missions. To this end we have developed a design for a suborbital rocket payload employing an Off-Plane X-ray Grating Spectrometer. This spectrometer utilizes slumped glass Wolter-1 optics, an array of gratings, and a CCD camera. We discuss the unique capabilities of this design, the expected performance, the science return, and the perceived impact to future missions.

  20. Soft x-ray emission from gamma-ray bursts observed with ginga

    International Nuclear Information System (INIS)

    Yoshida, Atsumasa; Murakami, Toshio; Itoh, Masayuki

    1989-01-01

    The soft X-ray emission of gamma-ray bursts below 10 keV provides information about size, location, and emission mechanism. The Gamma-ray Burst Detector (GBD) on board Ginga, which consists of a proportional counter and a scintillation detector, covers an energy range down to 1.5 keV with 63 cm 2 effective area. In several of the observed gamma-ray bursts, the intensity of the soft X-ray emission showed a longer decay time of 50 to 100s after the higher energy gamma-ray emission had ended. Although we cannot rule out other models, such as bremsstrahlung and thermal cyclotron types, due to poor statistics, the soft X-ray spectra are consistent with a blackbody of 1 to 2 keV in the late phase of the gamma-ray bursts. This enables us to estimate the size of the blackbody responsible for the X-ray emission. (author)

  1. Dose levels in conventional X-rays

    International Nuclear Information System (INIS)

    Guerra M, J. A.; Gonzalez G, J. A.; Pinedo S, A.; Salas L, M. A.; Vega C, H. R.; Rivera M, T.; Azorin N, J.

    2009-10-01

    There were a series of measures in the General Hospital of Fresnillo in the X-ray Department in the areas of X-1 and X-2-ray rooms and in the neonatal intensive care unit 2, was determined the dose surface entry in eyes, thyroid and gonads for patients undergoing to X-ray study of chest Tele by thermoluminescent dosimetry. Five dosemeters were used in each one of the scans; so find the following dose ranges 20 + - 23 mGy to 350 + - 41 mGy. With the results obtained we can conclude that the procedures used and the equipment calibration is adequate. (Author)

  2. X-ray imaging studies of electron cyclotron microwave-heated plasmas in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Failor, B.H.

    1986-02-01

    An x-ray pinhole camera designed to efficiently detect photons with energies between 5 and 250 keV was built to image bremsstrahlung emission from a microwave-heated hot electron plasma. This plasma is formed at one of the thermal barrier locations in the Tandem Experiment-Upgrade at Lawrence Livermore National Laboratory. The instrument consists of a lead aperture, an x-ray converter in the form of a sodium-activated cesium iodide scintillator, light intensifier electronics, and a recording medium that may either be high speed film or a CCD array. The nominal spatial and temporal resolutions are one part in 40 and 17 msec, respectively. The component requirements for optimum performance were determined both analytically and by computer simulation, and were verified experimentally. The details of these results are presented. The instrument has been used to measure x-ray emission from the TMX-U west end cell. Data acquired with the x-ray camera has allowed us to infer the temporal evolution of the mirror-trapped electron radial profile

  3. Small Pixel Hybrid CMOS X-ray Detectors

    Science.gov (United States)

    Hull, Samuel; Bray, Evan; Burrows, David N.; Chattopadhyay, Tanmoy; Falcone, Abraham; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    Concepts for future space-based X-ray observatories call for a large effective area and high angular resolution instrument to enable precision X-ray astronomy at high redshift and low luminosity. Hybrid CMOS detectors are well suited for such high throughput instruments, and the Penn State X-ray detector lab, in collaboration with Teledyne Imaging Sensors, has recently developed new small pixel hybrid CMOS X-ray detectors. These prototype 128x128 pixel devices have 12.5 micron pixel pitch, 200 micron fully depleted depth, and include crosstalk eliminating CTIA amplifiers and in-pixel correlated double sampling (CDS) capability. We report on characteristics of these new detectors, including the best read noise ever measured for an X-ray hybrid CMOS detector, 5.67 e- (RMS).

  4. Method for measuring the focal spot size of an x-ray tube using a coded aperture mask and a digital detector.

    Science.gov (United States)

    Russo, Paolo; Mettivier, Giovanni

    2011-04-01

    kVp and M = 6.1, with a detector entrance exposure as low as 1.82 mR (0.125 mA s tube load). The slit camera indicated a focal spot of 0.112 mm x 0.104 mm at 35 kVp and M = 3.15, with an exposure at the detector of 72 mR. Focal spot measurements with the coded mask could be performed up to 80 kVp. Tolerance to angular misalignment with the reference beam up to 7 degrees in in-plane rotations and 1 degrees deg in out-of-plane rotations was observed. The axial distance of the focal spot from the coded mask could also be determined. It is possible to determine the beam intensity via measurement of the intensity of the decoded image of the focal spot and via a calibration procedure. Coded aperture masks coupled to a digital area detector produce precise determinations of the focal spot of an x-ray tube with reduced tube loading and measurement time, coupled to a large tolerance in the alignment of the mask.

  5. Automated analysis of hot spot X-ray images at the National Ignition Facility

    Science.gov (United States)

    Khan, S. F.; Izumi, N.; Glenn, S.; Tommasini, R.; Benedetti, L. R.; Ma, T.; Pak, A.; Kyrala, G. A.; Springer, P.; Bradley, D. K.; Town, R. P. J.

    2016-11-01

    At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ˜4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.

  6. Automated analysis of hot spot X-ray images at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S. F., E-mail: khan9@llnl.gov; Izumi, N.; Glenn, S.; Tommasini, R.; Benedetti, L. R.; Ma, T.; Pak, A.; Springer, P.; Bradley, D. K.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-11-15

    At the National Ignition Facility, the symmetry of the hot spot of imploding capsules is diagnosed by imaging the emitted x-rays using gated cameras and image plates. The symmetry of an implosion is an important factor in the yield generated from the resulting fusion process. The x-ray images are analyzed by decomposing the image intensity contours into Fourier and Legendre modes. This paper focuses on the additional protocols for the time-integrated shape analysis from image plates. For implosions with temperatures above ∼4 keV, the hard x-ray background can be utilized to infer the temperature of the hot spot.

  7. Technology development of the soft X-ray tomography system in Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Schülke, M., E-mail: mathias.schuelke@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Cardella, A.; Hathiramani, D.; Mettchen, S.; Thomsen, H.; Weißflog, S.; Zacharias, D. [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany)

    2013-10-15

    Highlights: ► Engineering and design of soft X-ray Multi Camera Tomography System. ► Requirements of in-vessel diagnostics in Wendelstein 7-X. ► Development of internal cooling system including FEM-Analysis. ► Development of lateral shield system with testing for microwave stray radiation compatibility. ► Development of multipin feedthrough including welding qualification and leak tests. -- Abstract: The engineering and design of the soft X-ray Multi Camera Tomography System (XMCTS) in Wendelstein 7-X stellarator (W7-X) must fulfill several additional requirements compared to short pulse machines. The XMCTS has to withstand irradiation and electron cyclotron microwave loads in addition to being ultra high vacuum compatible, having low magnetic permeability and using low neutron activation materials (e.g. Co ≤ 2000 ppm). A further difficulty is the limited space inside the plasma vessel, which requires special engineering solutions. After detailed design development, supported by finite element analyses, prototypes have been manufactured and tested. At the end all test results have successfully proven that the components fulfill the requirements and that reliable and stable measurements will be possible with the XMCTS diagnostics during W7-X operation. The paper describes the design and the technological development, in particular on the electric multipin feedthrough (UHV barrier between in vessel detectors and the preamplifiers), the active cooling of the electronic components (reducing dark current/noise increase), the pneumatic shutter (protection of the detectors from sputtering and during baking) and the fiber optics illumination system (calibration of the detectors)

  8. ePix100 camera: Use and applications at LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Carini, G. A., E-mail: carini@slac.stanford.edu; Alonso-Mori, R.; Blaj, G.; Caragiulo, P.; Chollet, M.; Damiani, D.; Dragone, A.; Feng, Y.; Haller, G.; Hart, P.; Hasi, J.; Herbst, R.; Herrmann, S.; Kenney, C.; Lemke, H.; Manger, L.; Markovic, B.; Mehta, A.; Nelson, S.; Nishimura, K. [SLAC National Accelerator Laboratory (United States); and others

    2016-07-27

    The ePix100 x-ray camera is a new system designed and built at SLAC for experiments at the Linac Coherent Light Source (LCLS). The camera is the first member of a family of detectors built around a single hardware and software platform, supporting a variety of front-end chips. With a readout speed of 120 Hz, matching the LCLS repetition rate, a noise lower than 80 e-rms and pixels of 50 µm × 50 µm, this camera offers a viable alternative to fast readout, direct conversion, scientific CCDs in imaging mode. The detector, designed for applications such as X-ray Photon Correlation Spectroscopy (XPCS) and wavelength dispersive X-ray Emission Spectroscopy (XES) in the energy range from 2 to 10 keV and above, comprises up to 0.5 Mpixels in a very compact form factor. In this paper, we report the performance of the camera during its first use at LCLS.

  9. Synchrotron x-ray microbeam characteristics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi

    1995-01-01

    X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis. 16 refs., 5 figs

  10. Fabrication of the multilayer beam splitters with large area for soft X-ray laser interferometer

    International Nuclear Information System (INIS)

    Wang Zhanshan; Zhang Zhong; Wang Fengli; Wu Wenjuan; Wang Hongchang; Qin Shuji; Chen Lingyan

    2004-01-01

    The soft X-ray laser Mach-Zehnder interferometer is an important tool to measure the electron densities of a laser-produced plasma near the critical surface. The design of a multilayer beam splitter at 13.9 nm for soft X-ray laser Mach-Zehnder interferometer is completed based on the standard of maximizing product of reflectivity and transmission of the beam splitter. The beam splitters which is Mo/Si multilayers on 10 mm x 10 mm area Si 3 N 4 membrane are fabricated using the magnetron sputtering. The figure error of the beam splitter has reached the deep nanometer magnitude by using optical profiler and the product of reflectivity and transmission measured by synchrotron radiation is up to to 4%. (authors)

  11. SMART-X: Square Meter, Arcsecond Resolution Telescope for X-rays

    Science.gov (United States)

    Vikhlinin, Alexey; SMART-X Collaboration

    2013-04-01

    SMART-X is a concept for a next-generation X-ray observatory with large-area, 0.5" angular resolution grazing incidence adjustable X-ray mirrors, high-throughput critical angle transmission gratings, and X-ray microcalorimeter and CMOS-based imager in the focal plane. High angular resolution is enabled by new technology based on controlling the shape of mirror segments using thin film piezo actuators deposited on the back surface. Science applications include observations of growth of supermassive black holes since redshifts of ~10, ultra-deep surveys over 10's of square degrees, galaxy assembly at z=2-3, as well as new opportunities in the high-resolution X-ray spectroscopy and time domains. We also review the progress in technology development, tests, and mission design over the past year.

  12. SphinX: The Solar Photometer in X-Rays

    Science.gov (United States)

    Gburek, Szymon; Sylwester, Janusz; Kowalinski, Miroslaw; Bakala, Jaroslaw; Kordylewski, Zbigniew; Podgorski, Piotr; Plocieniak, Stefan; Siarkowski, Marek; Sylwester, Barbara; Trzebinski, Witold; Kuzin, Sergey V.; Pertsov, Andrey A.; Kotov, Yurij D.; Farnik, Frantisek; Reale, Fabio; Phillips, Kenneth J. H.

    2013-04-01

    Solar Photometer in X-rays (SphinX) was a spectrophotometer developed to observe the Sun in soft X-rays. The instrument observed in the energy range ≈ 1 - 15 keV with resolution ≈ 0.4 keV. SphinX was flown on the Russian CORONAS-PHOTON satellite placed inside the TESIS EUV and X telescope assembly. The spacecraft launch took place on 30 January 2009 at 13:30 UT at the Plesetsk Cosmodrome in Russia. The SphinX experiment mission began a couple of weeks later on 20 February 2009 when the first telemetry dumps were received. The mission ended nine months later on 29 November 2009 when data transmission was terminated. SphinX provided an excellent set of observations during very low solar activity. This was indeed the period in which solar activity dropped to the lowest level observed in X-rays ever. The SphinX instrument design, construction, and operation principle are described. Information on SphinX data repositories, dissemination methods, format, and calibration is given together with general recommendations for data users. Scientific research areas in which SphinX data find application are reviewed.

  13. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  14. Camera Concepts for the Advanced Gamma-Ray Imaging System (AGIS)

    Science.gov (United States)

    Nepomuk Otte, Adam

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. The incorporation of trigger electronics and signal digitization into the camera are under study. Given the size of AGIS, the camera must be reliable, robust, and cost effective. We are investigating several directions that include innovative technologies such as Geiger-mode avalanche-photodiodes as a possible detector and switched capacitor arrays for the digitization.

  15. Improved backscatter x-ray detection for anti-terrorist applications

    International Nuclear Information System (INIS)

    Shope, S.L.; Lockwood, G.J.; Selph, M.M.; Wehlburg, J.C.

    1999-01-01

    Currently the most common method to determine the contents of a package suspected of containing an explosive device is to use transmission radiography. This technique requires that an x-ray source and film be placed on opposite sides of the package. This poses a problem if the package is placed so that only one side is accessible, such as against a wall. There is also a threat to personnel and property since explosive devices may be booby trapped. The authors have developed a method to x-ray a package using backscattered x-rays based on similar work for landmine detection. This procedure eliminates the use of film behind the target. All of the detection is done from the same side as the source. Backscatter experiments at Sandia National Laboratories have been conducted on mock bombs in packages. They are able to readily identify the bomb components. The images that are obtained in this procedure are done in real time and the image is displayed on a computer screen. Preliminary experiments have also imaged objects within or behind a wall. They are currently using a scanning x-ray source and scintillating plastic detectors. It can take several hours to image a briefcase size object. This time could be reduced if better x-ray detection methods could be used. They have looked at using pinhole photography and CCD cameras to reduce this time

  16. Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading

    Energy Technology Data Exchange (ETDEWEB)

    Fan, D.; Luo, S. N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Huang, J. W.; Zeng, X. L.; Li, Y.; E, J. C.; Huang, J. Y. [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Sun, T.; Fezzaa, K. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Wang, Z. [Physics Division P-25, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-05-15

    We develop a mini gas gun system for simultaneous, single-pulse, x-ray diffraction and imaging under high strain-rate loading at the beamline 32-ID of the Advanced Photon Source. In order to increase the reciprocal space covered by a small-area detector, a conventional target chamber is split into two chambers: a narrowed measurement chamber and a relief chamber. The gas gun impact is synchronized with synchrotron x-ray pulses and high-speed cameras. Depending on a camera’s capability, multiframe imaging and diffraction can be achieved. The proof-of-principle experiments are performed on single-crystal sapphire. The diffraction spots and images during impact are analyzed to quantify lattice deformation and fracture; fracture is dominated by splitting cracks followed by wing cracks, and diffraction peaks are broadened likely due to mosaic spread. Our results demonstrate the potential of such multiscale measurements for studying high strain-rate phenomena at dynamic extremes.

  17. Toward Rapid Unattended X-ray Tomography of Large Planar Samples at 50-nm Resolution

    International Nuclear Information System (INIS)

    Rudati, J.; Tkachuk, A.; Gelb, J.; Hsu, G.; Feng, Y.; Pastrick, R.; Lyon, A.; Trapp, D.; Beetz, T.; Chen, S.; Hornberger, B.; Seshadri, S.; Kamath, S.; Zeng, X.; Feser, M.; Yun, W.; Pianetta, P.; Andrews, J.; Brennan, S.; Chu, Y. S.

    2009-01-01

    X-ray tomography at sub-50 nm resolution of small areas (∼15 μmx15 μm) are routinely performed with both laboratory and synchrotron sources. Optics and detectors for laboratory systems have been optimized to approach the theoretical efficiency limit. Limited by the availability of relatively low-brightness laboratory X-ray sources, exposure times for 3-D data sets at 50 nm resolution are still many hours up to a full day. However, for bright synchrotron sources, the use of these optimized imaging systems results in extremely short exposure times, approaching live-camera speeds at the Advanced Photon Source at Argonne National Laboratory near Chicago in the US These speeds make it possible to acquire a full tomographic dataset at 50 nm resolution in less than a minute of true X-ray exposure time. However, limits in the control and positioning system lead to large overhead that results in typical exposure times of ∼15 min currently.We present our work on the reduction and elimination of system overhead and toward complete automation of the data acquisition process. The enhancements underway are primarily to boost the scanning rate, sample positioning speed, and illumination homogeneity to performance levels necessary for unattended tomography of large areas (many mm 2 in size). We present first results on this ongoing project.

  18. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  19. Magnetically-coupled microcalorimeter arrays for x-ray astrophysics

    Science.gov (United States)

    Bandler, Simon

    The "X-ray Surveyor" has been listed by NASA as one of the four major large mission concepts to be studied in the next Astrophysics Decadal Review in its preliminary list of large concepts. One of the key instruments on such a mission would be a very large format X-ray microcalorimeter array, with an array size of greater than 100 thousand pixels. Magnetically-coupled microcalorimeters (MCC) are one of the technologies with the greatest potential to meet the requirements of this mission, and this proposal is one to carry out research specifically to reach the goals of this vision. The "X-ray Surveyor" is a concept for a future mission that will make X-ray observations that are instrumental to understanding the quickly emerging population of galaxies and supermassive black holes at z ~10. The observations will trace the formation of galaxies and their assembly into large-scale structures starting from the earliest possible epochs. This mission would be observing baryons and large-scale physical processes outside of the very densest regions in the local Universe. This can be achieved with an X-ray observatory with similar angular resolution as Chandra but with significantly improved optic area and detector sensitivity. Chandra-scale angular resolution (1" or better) is essential in building more powerful, higher throughput observatories to avoid source confusion and remain photon-limited rather than background-limited. A prime consideration for the microcalorimeter camera on this type of mission is maintaining ~ 1 arcsec spatial resolution over the largest possible field of view, even if this means a slight trade-off against the spectral resolution. A uniform array of 1" pixels covering at least 5'x5' field of view is desired. To reduce the number of sensors read out, in geometries where extremely fine pitch (~50 microns) is desired, the most promising technologies are those in which a thermal sensor such an MCC can read out a sub-array of 20-25 individual 1'

  20. Imaging design of the wide field x-ray monitor onboard the HETE satellite

    International Nuclear Information System (INIS)

    Zand, J.J.M. In'T; Fenimore, E.E.; Kawai, N.; Yoshida, A.; Matsuoka, M.; Yamauchi, M.

    1994-01-01

    The High Energy Transient Experiment (HETE), to be launched in 1995, will study Gamma-Ray Bursts in an unprecendented wide wavelength range from Gamma- and X-ray to UV wavelengths. The X-ray range (2 to 25 keV) will be covered by 2 perpendicularly oriented 1-dimensional coded aperture cameras. These instruments cover a wide field of view of 2 sr and thus have a relatively large potential to locate GRBs to a fraction of a degree, which is an order of magnitude better than BATSE. The imaging design of these coded aperture cameras relates to the design of the coded apertures and the decoding algorithm. The aperture pattern is to a large extent determined by the high background in this wide field application and the low number of pattern elements (∼100) in each direction. The result is a random pattern with an open fraction of 33%. The onboard decoding algorithm is dedicated to the localization of a single point source

  1. Performance of the gamma-ray camera based on GSO(Ce) scintillator array and PSPMT with the ASIC readout system

    International Nuclear Information System (INIS)

    Ueno, Kazuki; Hattori, Kaori; Ida, Chihiro; Iwaki, Satoru; Kabuki, Shigeto; Kubo, Hidetoshi; Kurosawa, Shunsuke; Miuchi, Kentaro; Nagayoshi, Tsutomu; Nishimura, Hironobu; Orito, Reiko; Takada, Atsushi; Tanimori, Toru

    2008-01-01

    We have studied the performance of a readout system with ASIC chips for a gamma-ray camera based on a 64-channel multi-anode PSPMT (Hamamatsu flat-panel H8500) coupled to a GSO(Ce) scintillator array. The GSO array consists of 8x8 pixels of 6x6x13 mm 3 with the same pixel pitch as the anode of the H8500. This camera is intended to serve as an absorber of an electron tracking Compton gamma-ray camera that measures gamma rays up to ∼1 MeV. Because we need a readout system with low power consumption for a balloon-borne experiment, we adopted a 32-channel ASIC chip, IDEAS VA32 H DR11, which has one of the widest dynamic range among commercial chips. However, in the case of using a GSO(Ce) crystal and the H8500, the dynamic range of VA32 H DR11 is narrow, and therefore the H8500 has to be operated with a low gain of about 10 5 . If the H8500 is operated with a low gain, the camera has a narrow incident-energy dynamic range from 100 to 700 keV, and a bad energy resolution of 13.0% (FWHM) at 662 keV. We have therefore developed an attenuator board in order to operate the H8500 with the typical gain of 10 6 , which can measure up to ∼1 MeV gamma ray. The board makes the variation of the anode gain uniform and widens the dynamic range of the H8500. The system using the new attenuator board has a good uniformity of min:max∼1:1.6, an incident-energy dynamic range from 30 to 900 keV, a position resolution of less than 6 mm, and a typical energy resolution of 10.6% (FWHM) at 662 keV with a low power consumption of about 1.7 W/64ch

  2. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  3. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  4. X-ray imaging: Status and trends

    International Nuclear Information System (INIS)

    Ryon, R.W.; Martz, H.E.; Hernandez, J.M.; Haskins, J.J.; Day, R.A.; Brase, J.M.; Cross, B.; Wherry, D.

    1987-08-01

    There is a veritable renaissance occurring in x-ray imaging. X-ray imaging by radiography has been a highly developed technology in medicine and industry for many years. However, high resolution imaging has not generally been practical because sources have been relatively dim and diffuse, optical elements have been nonexistent for most applications, and detectors have been slow and of low resolution. Materials analysis needs have therefore gone unmet. Rapid progress is now taking place because we are able to exploit developments in microelectronics and related material fabrication techniques, and because of the availability of intense x-ray sources. This report describes the methods and uses of x-ray imaging along with a discussion of technology advances in these areas

  5. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions, however the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron Radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area whilst still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes is described below. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  6. High resolution time- and 2-dimensional space-resolved x-ray imaging of plasmas at NOVA

    International Nuclear Information System (INIS)

    Landen, O.L.

    1992-01-01

    A streaked multiple pinhole camera technique, first used by P. Choi et al. to record time- and 2-D space-resolved soft X-ray images of plasma pinches, has been implemented on laser plasmas at NOVA. The instrument is particularly useful for time-resolved imaging of small sources ( 2.5 key imaging, complementing the existing 1--3 key streaked X-ray microscope capabilities at NOVA

  7. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization.

    Science.gov (United States)

    Zhao, Chumin; Kanicki, Jerzy; Konstantinidis, Anastasios C; Patel, Tushita

    2015-11-01

    Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50-300 e-) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). In this study, imaging performance of a large area (29×23 cm2) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165-400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. The LFW mode shows better DQE at low air kerma (Ka<10 μGy) and should be used for DBT. At current DBT applications, air kerma (Ka∼10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165-400 μm in size can be resolved using a MGD range of 0.3-1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 mGy), an increased CNR (by ∼10) for

  8. Development of portable X-ray diffractometer equipped with X-ray fluorescence spectrometer and its application to archaeology

    International Nuclear Information System (INIS)

    Yamashita, Daisuke; Ishizaki, Atsushi; Uda, Masayuki

    2009-01-01

    A portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer was improved so as to obtain a diffraction pattern and a fluorescence spectrum in air from one and the same small area of a specimen. The reason why the portable XRD with an XRF spectrometer was specially designed for archaeology may be understood from the following facts: (1) some objects exhibited in museums are not allowed to be transferred from the open air to a vacuum, even if their volumes are small; (2) some objects are very difficult to move from their original sites; (3) some parts of exhibits are extremely fragile and cannot be examined in a vacuum; and (4) information on the chemical composition and structure from the same area of an object offers a better understanding of the constitutive materials of the object. Some examples of the use of a portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer in the field are also introduced. Experimental results of Sho-kannon, Snew's mask and Tutankhamun's golden mask are shown here. (author)

  9. A new streaked soft x-ray imager for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Benstead, J., E-mail: james.benstead@awe.co.uk; Morton, J.; Guymer, T. M.; Garbett, W. J.; Rubery, M. S.; Skidmore, J. W. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Moore, A. S.; Ahmed, M. F.; Soufli, R.; Pardini, T.; Hibbard, R. L.; Bailey, C. G.; Bell, P. M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bedzyk, M.; Shoup, M. J.; Reagan, S.; Agliata, T.; Jungquist, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Schmidt, D. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); and others

    2016-05-15

    A new streaked soft x-ray imager has been designed for use on high energy-density (HED) physics experiments at the National Ignition Facility based at the Lawrence Livermore National Laboratory. This streaked imager uses a slit aperture, single shallow angle reflection from a nickel mirror, and soft x-ray filtering to, when coupled to one of the NIF’s x-ray streak cameras, record a 4× magnification, one-dimensional image of an x-ray source with a spatial resolution of less than 90 μm. The energy band pass produced depends upon the filter material used; for the first qualification shots, vanadium and silver-on-titanium filters were used to gate on photon energy ranges of approximately 300–510 eV and 200–400 eV, respectively. A two-channel version of the snout is available for x-ray sources up to 1 mm and a single-channel is available for larger sources up to 3 mm. Both the one and two-channel variants have been qualified on quartz wire and HED physics target shots.

  10. New techniques provide low-cost X-ray inspection of highly attenuating materials

    International Nuclear Information System (INIS)

    Stupin, D.M.; Mueller, K.H.; Viskoe, D.A.; Howard, B.; Poland, R.W.; Schneberk, D.; Dolan, K.; Thompson, K.; Stoker, G.

    1995-01-01

    As a result of an arms reduction treaty between the United States and the Russian Federation, both countries will each be storing over 40,000 containers of plutonium. To help detect any deterioration of the containers and prevent leakage, the authors are designing a digital radiography and computed tomography system capable of handling this volume reliably, efficiently, and at a lower cost. The materials to be stored have very high x-ray attenuations, and, in the past, were inspected using 1- to 24-MV x-ray sources. This inspection system, however, uses a new scintillating (Lockheed) glass and an integrating CCD camera. Preliminary experiments show that this will permit the use of a 450-kV x-ray source. This low-energy system will cost much less than others designed to use a higher-energy x-ray source because it will require a less expensive source, less shielding, and less floor space. Furthermore, they can achieve a tenfold improvement in spatial resolution by using their knowledge of the point-spread function of the x-ray imaging system and a least-squares fitting technique

  11. X-ray pencil beam facility for optics characterization

    Science.gov (United States)

    Krumrey, Michael; Cibik, Levent; Müller, Peter; Bavdaz, Marcos; Wille, Eric; Ackermann, Marcelo; Collon, Maximilien J.

    2010-07-01

    The Physikalisch-Technische Bundesanstalt (PTB) has used synchrotron radiation for the characterization of optics and detectors for astrophysical X-ray telescopes for more than 20 years. At a dedicated beamline at BESSY II, a monochromatic pencil beam is used by ESA and cosine Research since the end of 2005 for the characterization of novel silicon pore optics, currently under development for the International X-ray Observatory (IXO). At this beamline, a photon energy of 2.8 keV is selected by a Si channel-cut monochromator. Two apertures at distances of 12.2 m and 30.5 m from the dipole source form a pencil beam with a typical diameter of 100 μm and a divergence below 1". The optics to be investigated is placed in a vacuum chamber on a hexapod, the angular positioning is controlled by means of autocollimators to below 1". The reflected beam is registered at 5 m distance from the optics with a CCD-based camera system. This contribution presents design and performance of the upgrade of this beamline to cope with the updated design for IXO. The distance between optics and detector can now be 20 m. For double reflection from an X-ray Optical Unit (XOU) and incidence angles up to 1.4°, this corresponds to a vertical translation of the camera by 2 m. To achieve high reflectance at this angle even with uncoated silicon, a lower photon energy of 1 keV is available from a pair of W/B4C multilayers. For coated optics, a high energy option can provide a pencil beam of 7.6 keV radiation.

  12. X-ray optics and X-ray microscopes: new challenges

    International Nuclear Information System (INIS)

    Susini, J.

    2004-01-01

    Soon after the discovery of X-rays in 1895 by W. Roentgen, it became rapidly clear that the methods traditionally used in the visible light regime, namely refraction, diffraction and reflection were difficult to apply for X-ray optics. The physical origins of these difficulties are closely linked to the very nature of interaction of X-rays with matter. The small deviation δ of the refractive index of condensed matter from unity makes it difficult to extend refraction-based optics from the optical spectral region to the X-ray region because the refraction angle is proportional to δ. Similarly it is very challenging to extend diffraction-based focusing techniques to X-rays because the diffraction angle scales inversely with wavelength. Finally, the use of reflection-based optics is also limited by the very small critical angle for total reflection. All those fundamental limitations prevented for almost one century, the development of X-ray microscopy whereas electron microscopy became a standard tool. In the past twenty years, interests for X-ray microscopy revived, mainly because of several major advances in X-ray sources and X-ray optics. X-ray microscopy techniques are now emerging as powerful and complementary tools for submicron investigations. Soft X-ray microscopes offer traditionally the possibility to form direct images of thick hydrated biological material in near-native environment, at a spatial resolution well beyond that achievable with visible light microscopy. Natural contrast is available in the soft X-ray region, in the so-called ''water-window'', due to the presence of absorption edges of the major constituents (C,N,O). Recent advances in manufacturing techniques have enlarged the accessible energy range of micro-focussing optics and offer new applications in a broad range of disciplines. X-ray microscopy in the 1 - 30 keV energy range is better suited for fluorescence to map trace elements, tomography for 3D imaging and micro-diffraction. The

  13. Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum

    Science.gov (United States)

    Tennant, Allyn F.; Becker, Werner; Juda, Michael; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.

    2001-01-01

    The Chandra X-Ray Observatory observed the Crab pulsar using the Low-Energy Transmission Grating with the High-Resolution Camera. Time-resolved zeroth-order images reveal that the pulsar emits X-rays at all pulse phases. Analysis of the flux at minimum - most likely non-thermal in origin - places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile establishes that the error in the Chandra-determined absolute time is quite small, -0.2 +/- 0.1 ms.

  14. Development and commissioning of an x-ray beam alignment flag for NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Kosciuk, B., E-mail: bkosciuk@bnl.gov; Hu, Y.; Keister, J.; Seletskiy, S. [National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2016-07-27

    The NSLS-II Synchrotron Light Source is a 3 GeV electron storage ring recently commissioned and is now entering operations at Brookhaven National Laboratory. One of the major tasks was to commission the six project beamline front ends which required a diagnostic to resolve x-ray beam position for the purpose of beam alignment at low current. Since none of the front ends were outfitted with any x-ray diagnostics in the baseline design, an x-ray beam profile monitor or “flag” that could be easily installed into existing front end vacuum chambers was proposed to satisfy this requirement. Here we present the development of this novel device which utilizes a polycrystalline CVD diamond luminescent screen to produce a visible image of the x-ray beam cross-section and is then captured with a CCD camera.

  15. X-ray geometrical smoothing effect in indirect x-ray-drive implosion

    International Nuclear Information System (INIS)

    Mochizuki, Takayasu; Sakabe, Shuji; Yamanaka, Chiyoe

    1983-01-01

    X-ray geometrical smoothing effect in indirect X-ray drive pellet implosion for inertial confinement fusion has been numerically analyzed. Attainable X-ray driven ablation pressure has been found to be coupled with X-ray irradiation uniformity. (author)

  16. Different X-ray spectral evolution for black hole X-ray binaries in dual tracks of radio-X-ray correlation

    International Nuclear Information System (INIS)

    Cao, Xiao-Feng; Wu, Qingwen; Dong, Ai-Jun

    2014-01-01

    Recently, an 'outlier' track of radio-X-ray correlation was found, which is much steeper than the former universal correlation, where dual tracks were speculated to be triggered by different accretion processes. In this work, we test this issue by exploring hard X-ray spectral evolution in four black-hole X-ray binaries with multiple, quasi-simultaneous radio and X-ray observations. First, we find that hard X-ray photon indices, Γ, are negatively and positively correlated with X-ray fluxes when the X-ray flux, F 3-9 keV , is below and above a critical flux, F X, crit , which are consistent with predictions of the advection-dominated accretion flow and the disk-corona model, respectively. Second, and most importantly, we find that the radio-X-ray correlations are also clearly different when the X-ray fluxes are higher and lower than the critical flux as defined by X-ray spectral evolution. The data points with F 3-9 keV ≳ F X, crit have a steeper radio-X-ray correlation (F X ∝F R b and b ∼ 1.1-1.4), which roughly forms the ''outlier'' track. However, the data points with anti-correlation of Γ – F 3-9 keV either stay in the universal track with b ∼ 0.61 or stay in the transition track (from the universal to 'outlier' tracks or vice versa). Therefore, our results support that the universal and ''outlier'' tracks of radio-X-ray correlations are regulated by radiatively inefficient and radiatively efficient accretion model, respectively.

  17. Imaging X-ray astronomy

    International Nuclear Information System (INIS)

    Elvis, M.

    1990-01-01

    The launch of the High Energy Astrophysical Observatory, more appealingly called the Einstein Observatory, marked one of the most revolutionary steps taken in astrophysics this century. Its greater sensitivity compared with earlier satellites and its ability to make high spacial and spectral resolution observations transformed X-ray astronomy. This book is based on a Symposium held in Cambridge, Massachusetts, to celebrate a decade of Einstein Observatory's achievements. It discusses the contributions that this satellite has made to each area of modern astrophysics and the diversity of the ongoing work based on Einstein data. There is a guide to each of the main data bases now coming on-line to increase the availability and to preserve this valuable archive for the future. A review of NASA's next big X-ray mission, AXAF, and a visionary program for novel X-ray astronomy satellites by Riccardo Giacconi conclude this wide-ranging volume. (author)

  18. Comparison of x-ray output of inverter-type x-ray equipment

    International Nuclear Information System (INIS)

    Asano, Hiroshi; Miyake, Hiroyuki; Yamamoto, Keiichi

    2000-01-01

    The x-ray output of 54 inverter-type x-ray apparatuses used at 18 institutions was investigated. The reproducibility and linearity of x-ray output and variations among the x-ray equipment were evaluated using the same fluorescence meter. In addition, the x-ray apparatuses were re-measured using the same non-invasive instrument to check for variations in tube voltage, tube current, and irradiation time. The non-invasive instrument was calibrated by simultaneously obtaining measurements with an invasive instrument, employing the tube voltage and current used for the invasive instrument, and the difference was calculated. Reproducibility of x-ray output was satisfactory for all x-ray apparatuses. The coefficient of variation was 0.04 or less for irradiation times of 5 ms or longer. In 84.3% of all x-ray equipment, variation in the linearity of x-ray output was 15% or less for an irradiation time of 5 ms. However, for all the apparatuses, the figure was 50% when irradiation time was the shortest (1 to 3 ms). Variation in x-ray output increased as irradiation time decreased. Variation in x-ray output ranged between 1.8 and 2.5 compared with the maximum and minimum values, excluding those obtained at the shortest irradiation time. The relative standard deviation ranged from ±15.5% to ±21.0%. The largest variation in x-ray output was confirmed in regions irradiated for the shortest time, with smaller variations observed for longer irradiation times. The major factor responsible for variation in x-ray output in regions irradiated for 10 ms or longer, which is a relatively long irradiation time, was variation in tube current. Variation in tube current was slightly greater than 30% at maximum, with an average value of 7% compared with the preset tube current. Variations in x-ray output in regions irradiated for the shortest time were due to photographic effects related to the rise and fall times of the tube voltage waveform. Accordingly, in order to obtain constant x-ray

  19. Large area quantitative X-ray mapping of (U,Pu)O2 nuclear fuel pellets using wavelength dispersive electron probe microanalysis

    International Nuclear Information System (INIS)

    Bremier, S.; Haas, D.; Somers, J.; Walker, C.T.

    2003-01-01

    The work presented is an example of how large area compositional mapping (≥1 mm 2 ) can be used to provide quantitative information on element distribution and specimen homogeneity. High-resolution was accomplished by producing a collage of X-ray maps acquired using classical conditions; magnification x400, spatial resolution 256x256 pixels. The individual images, each measuring roughly 250x250 μm, were converted to quantitative maps using the HIMAX reg software package and the XMAS reg matrix correction from SAMx. The quantitative gray-level large area X-ray picture was pieced together using the 'Multiple Image Alignment' function of the ANALYSIS reg image processing software. This software was also used to convert the gray-level pictures to false color images. The specimens investigated were transverse sections of MOX fuel pellets. Results are presented for the distribution of Pu by area fraction and cumulative area fraction, the size distribution of regions of high Pu concentration and average separation of these regions

  20. X-ray testing for short-time dynamic applications

    International Nuclear Information System (INIS)

    Kurfiss, Malte; Moser, Stefan; Popko, Gregor; Nau, Siegfried

    2017-01-01

    For nondestructive testing purposes new challenges are short-time dynamic processes. The application of x-ray flash tubes and modern high-speed cameras allows the observation of the opening of air-bags or the energy absorption of compressed tubes as occurring during a vehicle crash. Special algorithms designed for computerized tomography analyses allow the 3D reconstruction at individual time points of the dynamic process. Possibilities and limitations of the actual techniques are discussed.

  1. Chest X-Ray

    Medline Plus

    Full Text Available ... about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed x-ray exams and use a very small dose of ... of the inside of the chest. A chest x-ray is used to evaluate the lungs, heart and ...

  2. Time-resolved soft x-ray spectra from laser-produced Cu plasma

    International Nuclear Information System (INIS)

    Cone, K.V.; Dunn, J.; Baldis, H.A.; May, M.J.; Purvis, M.A.; Scott, H.A.; Schneider, M.B.

    2012-01-01

    The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated from a plasma produced using the Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) laser. A variable spaced grating spectrometer coupled to an x-ray streak camera measured soft x-ray emission (800-1550 eV) from the back of the copper target to characterize the bulk heating of the target. Radiation hydrodynamic simulations were modeled in 2-dimensions using the HYDRA code. The target conditions calculated by HYDRA were post-processed with the atomic kinetics code CRETIN to generate synthetic emission spectra. A comparison between the experimental and simulated spectra indicates the presence of specific ionization states of copper and the corresponding electron temperatures and ion densities throughout the laser-heated copper target.

  3. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Matthew D., E-mail: Matt.Wilson@stfc.ac.uk; Seller, Paul; Veale, Matthew C. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus,UK (United Kingdom); Connolley, Thomas [Diamond Light Source, I12 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal [Diamond Light Source, B16 Beamline, Harwell Campus, Didcot, Oxfordshire (United Kingdom); Grant, Patrick S.; Liotti, Enzo; Lui, Andrew [Department of Materials, University of Oxford Parks Road, Oxford (United Kingdom)

    2016-07-27

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm{sup 2} with one of the 80×80 pixels imaging an area equivalent to 13µm{sup 2}. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  4. Energy dispersive detector for white beam synchrotron x-ray fluorescence imaging

    International Nuclear Information System (INIS)

    Wilson, Matthew D.; Seller, Paul; Veale, Matthew C.; Connolley, Thomas; Dolbnya, Igor P.; Malandain, Andrew; Sawhney, Kawal; Grant, Patrick S.; Liotti, Enzo; Lui, Andrew

    2016-01-01

    A novel, “single-shot” fluorescence imaging technique has been demonstrated on the B16 beamline at the Diamond Light Source synchrotron using the HEXITEC energy dispersive imaging detector. A custom made furnace with 200µm thick metal alloy samples was positioned in a white X-ray beam with a hole made in the furnace walls to allow the transmitted beam to be imaged with a conventional X-ray imaging camera consisting of a 500 µm thick single crystal LYSO scintillator, mirror and lens coupled to an AVT Manta G125B CCD sensor. The samples were positioned 45° to the incident beam to enable simultaneous transmission and fluorescence imaging. The HEXITEC detector was positioned at 90° to the sample with a 50 µm pinhole 13 cm from the sample and the detector positioned 2.3m from pinhole. The geometric magnification provided a field of view of 1.1×1.1mm"2 with one of the 80×80 pixels imaging an area equivalent to 13µm"2. Al-Cu alloys doped with Zr, Ag and Mo were imaged in transmission and fluorescence mode. The fluorescence images showed that the dopant metals could be simultaneously imaged with sufficient counts on all 80x80 pixels within 60 s, with the X-ray flux limiting the fluorescence imaging rate. This technique demonstrated that it is possible to simultaneously image and identify multiple elements on a spatial resolution scale ~10µm or higher without the time consuming need to scan monochromatic energies or raster scan a focused beam of X-rays. Moving to high flux beamlines and using an array of detectors could improve the imaging speed of the technique with element specific imaging estimated to be on a 1 s timescale.

  5. Radiation area monitoring by wireless-communicating area monitor with surveillance camera

    International Nuclear Information System (INIS)

    Shimura, Mitsuo; Kobayashi, Hiromitsu; Kitahara, Hideki; Kobayashi, Hironobu; Okamoto, Shinji

    2004-01-01

    Aiming at a dose reduction and a work efficiency improvement for nuclear power plants that have high dose regions, we have developed our system of wireless-communicating Area Monitor with Surveillance Camera, and have performed an on-site test. Now we are implementing this Area Monitor with Surveillance Camera for a use as a TV camera in the controlled-area, which enables a personal computer to simultaneously display two or more dose values and site live images on the screen. For the radiation detector of this Area Monitor System, our wireless-communicating dosimeter is utilized. Image data are transmitted via a wireless Local Area Network (LAN). As a test result, image transmission of a maximum of 20 frames per second has been realized, which shows that this concept is a practical application. Remote-site monitoring also has been realized from an office desk located within the non-controlled area, adopting a Japan's wireless phone system, PHS (Personal Handy Phone) for the transmission interface. (author)

  6. Probing hot-electron effects in wide area plasmonic surfaces using X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ayas, Sencer; Cupallari, Andi; Dana, Aykutlu, E-mail: aykutlu@unam.bilkent.edu.tr [UNAM Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey)

    2014-12-01

    Plasmon enhanced hot carrier formation in metallic nanostructures increasingly attracts attention due to potential applications in photodetection, photocatalysis, and solar energy conversion. Here, hot-electron effects in nanoscale metal-insulator-metal (MIM) structures are investigated using a non-contact X-ray photoelectron spectroscopy based technique using continuous wave X-ray and laser excitations. The effects are observed through shifts of the binding energy of the top metal layer upon excitation with lasers of 445, 532, and 650 nm wavelength. The shifts are polarization dependent for plasmonic MIM grating structures fabricated by electron beam lithography. Wide area plasmonic MIM surfaces fabricated using a lithography free route by the dewetting of evaporated Ag on HfO{sub 2} exhibit polarization independent optical absorption and surface photovoltage. Using a simple model and making several assumptions about the magnitude of the photoemission current, the responsivity and external quantum efficiency of wide area plasmonic MIM surfaces are estimated as 500 nA/W and 11 × 10{sup −6} for 445 nm illumination.

  7. SU-G-IeP3-10: Molecular Imaging with Clinical X-Ray Sources and Compton Cameras

    International Nuclear Information System (INIS)

    Vernekohl, D; Ahmad, M; Chinn, G; Xing, L

    2016-01-01

    Purpose: The application of Compton cameras (CC) is a novel approach translating XFCT to a practical modality realized with clinical CT systems without the restriction of pencil beams. The dual modality design offers additional information without extra patient dose. The purpose of this work is to investigate the feasibility and efficacy of using CCs for volumetric x-ray fluorescence (XF) imaging by Monte Carlo (MC) simulations and statistical image reconstruction. Methods: The feasibility of a CC for imaging x-ray fluorescence emitted from targeted lesions is examined by MC simulations. 3 mm diameter water spheres with various gold concentrations and detector distances are placed inside the lung of an adult human phantom (MIRD) and are irradiated with both fan and cone-beam geometries. A sandwich design CC composed of Silicon and CdTe is used to image the gold nanoparticle distribution. The detection system comprises four 16×26 cm"2 detector panels placed on the chest of a MIRD phantom. Constraints of energy-, spatial-resolution, clinical geometries and Doppler broadening are taken into account. Image reconstruction is performed with a list-mode MLEM algorithm with cone-projector on a GPU. Results: The comparison of reconstruction of cone- and fan-beam excitation shows that the spatial resolution is improved by 23% for fan-beams with significantly decreased processing time. Cone-beam excitation increases scatter content disturbing quantification of lesions near the body surface. Spatial resolution and detectability limit in the center of the lung is 8.7 mm and 20 fM for 50 nm diameter gold nanoparticles at 20 mGy. Conclusion: The implementation of XFCT with a CC is a feasible method for molecular imaging with high atomic number probes. Given constrains of detector resolutions, Doppler broadening, and limited exposure dose, spatial resolutions comparable with PET and molecular sensitivities in the fM range are realizable with current detector technology.

  8. SU-G-IeP3-10: Molecular Imaging with Clinical X-Ray Sources and Compton Cameras

    Energy Technology Data Exchange (ETDEWEB)

    Vernekohl, D; Ahmad, M; Chinn, G; Xing, L [Stanford University, Stanford, CA (United States)

    2016-06-15

    Purpose: The application of Compton cameras (CC) is a novel approach translating XFCT to a practical modality realized with clinical CT systems without the restriction of pencil beams. The dual modality design offers additional information without extra patient dose. The purpose of this work is to investigate the feasibility and efficacy of using CCs for volumetric x-ray fluorescence (XF) imaging by Monte Carlo (MC) simulations and statistical image reconstruction. Methods: The feasibility of a CC for imaging x-ray fluorescence emitted from targeted lesions is examined by MC simulations. 3 mm diameter water spheres with various gold concentrations and detector distances are placed inside the lung of an adult human phantom (MIRD) and are irradiated with both fan and cone-beam geometries. A sandwich design CC composed of Silicon and CdTe is used to image the gold nanoparticle distribution. The detection system comprises four 16×26 cm{sup 2} detector panels placed on the chest of a MIRD phantom. Constraints of energy-, spatial-resolution, clinical geometries and Doppler broadening are taken into account. Image reconstruction is performed with a list-mode MLEM algorithm with cone-projector on a GPU. Results: The comparison of reconstruction of cone- and fan-beam excitation shows that the spatial resolution is improved by 23% for fan-beams with significantly decreased processing time. Cone-beam excitation increases scatter content disturbing quantification of lesions near the body surface. Spatial resolution and detectability limit in the center of the lung is 8.7 mm and 20 fM for 50 nm diameter gold nanoparticles at 20 mGy. Conclusion: The implementation of XFCT with a CC is a feasible method for molecular imaging with high atomic number probes. Given constrains of detector resolutions, Doppler broadening, and limited exposure dose, spatial resolutions comparable with PET and molecular sensitivities in the fM range are realizable with current detector technology.

  9. Dose distribution at junctional area abutting X-ray and electron fields

    International Nuclear Information System (INIS)

    Yang, Kwang Mo

    2004-01-01

    For the head and neck radiotherapy, abutting photon field with electron field is frequently used for the irradiation of posterior neck when tolerable dose on spinal cord has been reached. Using 6 MV X-ray and 9 MeV electron beams of Clinac1800(Varian, USA) linear accelerator, we performed film dosimetry by the X-OMAT V film of Kodak in solid water phantom according to depths(0 cm, 1.5 cm, 3 cm, 5 cm). 6 MV X-ray and 9 MeV electron(1 Gy) were exposes to 8 cm depth and surface(SSD 100 cm) of phantom. The dose distribution to the junction line between photon(10 x 10 cm field with block) and electron(15 cm x 15 cm field with block) fields was also measured according to depths(0 cm, 0.5 1.5 cm, 3 cm, 5 cm). At the junction line between photon and electron fields, the hot spot was developed on the side of the photon field and a cold spot was developed on that of the electron field. The hot spot in the photon side was developed at depth 1.5 cm with 7 mm width. The maximum dose of hot spot was increased to 6% of reference doses in the photon field. The cold spot in the electron side was developed at all measured depths(0.5 cm-3 cm) with 1-12.5 mm widths. The decreased dose in the cold spot was 4.5-30% of reference dose in the electron field. When we make use of abutting photon field with electron field for the treatment of head and neck cancer we should consider the hot and cold dose area in the junction of photon and electron field according to location of tumor.

  10. Wide field X-ray telescopes: Detecting X-ray transients/afterglows related to gamma ray bursts

    International Nuclear Information System (INIS)

    Hudec, Rene; Pina, Ladislav; Inneman, Adolf; Gorenstein, Paul; Rezek, Tomas

    1999-01-01

    The recent discovery of X-ray afterglows of GRBs opens the possibility of analyses of GRBs by their X-ray detections. However, imaging X-ray telescopes in current use mostly have limited field of view. Alternative X-ray optics geometries achieving very large fields of view have been theoretically suggested in the 70ies but not constructed and used so far. We review the geometries and basic properties of the wide-field X-ray optical systems based on one- and two-dimensional lobster-eye geometry and suggest technologies for their development and construction. First results of the development of double replicated X-ray reflecting flats for use in one-dimensional X-ray optics of lobster eye type are presented and discussed. Optimum strategy for locating GRBs upon their X-ray counterparts is also presented and discussed

  11. Development of multi-color scintillator based X-ray image intensifier

    International Nuclear Information System (INIS)

    Nittoh, Koichi; Konagai, Chikara; Noji, Takashi

    2004-01-01

    A multi-color scintillator based high-sensitive, wide dynamic range and long-life X-ray image intensifier has been developed. An europium activated Y 2 O 2 S scintillator, emitting red, green and blue photons of different intensities, is utilized as the output fluorescent screen of the intensifier. By combining this image intensifier with a suitably tuned high sensitive color CCD camera, it is possible for a sensitivity of the red color component to become six times higher than that of the conventional image intensifier. Simultaneous emission of a moderate green color and a weak blue color covers different sensitivity regions. This widens the dynamic range, by nearly two orders of ten. With this image intensifier, it is possible to image simultaneously complex objects containing various different X-ray transmission from paper, water or plastic to heavy metals. This high sensitivity intensifier, operated at lower X-ray exposure, causes less degradation of scintillator materials and less colorization of output screen glass, and thus helps achieve a longer lifetime. This color scintillator based image intensifier is being introduced for X-ray inspection in various fields

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... a large photographic negative). Today, most images are digital files that are stored electronically. These stored images ... and places the x-ray film holder or digital recording plate under the table in the area ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... carefully aimed at the part of the body being examined, an x-ray machine produces a small ... the table in the area of the body being imaged. When necessary, sandbags, pillows or other positioning ...

  14. Optimization of gamma-ray cameras of Anger type

    International Nuclear Information System (INIS)

    Jatteau, Michel; Lelong, Pierre; Normand, Gerard; Ott, Jean; Pauvert, Joseph; Pergrale, Jean

    1979-01-01

    Most of the radionuclide imaging equipments used for the diagnosis in nuclear medicine include a scintillation camera of the Anger type. Following a period of camera improvements connected to pure technological advances, perfecting the camera can only result nowadays from more thorough studies based on numerical approaches and computer simulations. Two important contributions to an optimization study of Anger gamma-ray cameras are presented, the first one being related to the light collection by the photomultiplier tubes, i.e. one of the processes which determine for a large part the performance parameters; the second one being connected to the computation of the intrinsic geometrical and spectral resolutions, which are two of the main characteristics acting on the image quality. The validity of computer simulation is shown by comparison between theoretical and experimental results before the simulation programmes to study the influence of various parameters are used [fr

  15. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  16. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chumin; Kanicki, Jerzy, E-mail: kanicki@eecs.umich.edu [Solid-State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Konstantinidis, Anastasios C. [Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom and Diagnostic Radiology and Radiation Protection, Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester M20 4BX (United Kingdom); Patel, Tushita [Department of Physics, University of Virginia, Charlottesville, Virginia 22908 (United States)

    2015-11-15

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e{sup −}) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm{sup 2}) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K{sub a} < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K{sub a} ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at

  17. Large area CMOS active pixel sensor x-ray imager for digital breast tomosynthesis: Analysis, modeling, and characterization

    International Nuclear Information System (INIS)

    Zhao, Chumin; Kanicki, Jerzy; Konstantinidis, Anastasios C.; Patel, Tushita

    2015-01-01

    Purpose: Large area x-ray imagers based on complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been proposed for various medical imaging applications including digital breast tomosynthesis (DBT). The low electronic noise (50–300 e − ) of CMOS APS x-ray imagers provides a possible route to shrink the pixel pitch to smaller than 75 μm for microcalcification detection and possible reduction of the DBT mean glandular dose (MGD). Methods: In this study, imaging performance of a large area (29 × 23 cm 2 ) CMOS APS x-ray imager [Dexela 2923 MAM (PerkinElmer, London)] with a pixel pitch of 75 μm was characterized and modeled. The authors developed a cascaded system model for CMOS APS x-ray imagers using both a broadband x-ray radiation and monochromatic synchrotron radiation. The experimental data including modulation transfer function, noise power spectrum, and detective quantum efficiency (DQE) were theoretically described using the proposed cascaded system model with satisfactory consistency to experimental results. Both high full well and low full well (LFW) modes of the Dexela 2923 MAM CMOS APS x-ray imager were characterized and modeled. The cascaded system analysis results were further used to extract the contrast-to-noise ratio (CNR) for microcalcifications with sizes of 165–400 μm at various MGDs. The impact of electronic noise on CNR was also evaluated. Results: The LFW mode shows better DQE at low air kerma (K a < 10 μGy) and should be used for DBT. At current DBT applications, air kerma (K a ∼ 10 μGy, broadband radiation of 28 kVp), DQE of more than 0.7 and ∼0.3 was achieved using the LFW mode at spatial frequency of 0.5 line pairs per millimeter (lp/mm) and Nyquist frequency ∼6.7 lp/mm, respectively. It is shown that microcalcifications of 165–400 μm in size can be resolved using a MGD range of 0.3–1 mGy, respectively. In comparison to a General Electric GEN2 prototype DBT system (at MGD of 2.5 m

  18. High resolution x-ray microscope

    OpenAIRE

    Gary, C. K.; Park, H.; Lombardo, L. W.; Piestrup, M. A.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.

    2007-01-01

    The authors present x-ray images of grid meshes and biological material obtained using a microspot x-ray tube with a multilayer optic and a 92-element parabolic compound refractive lens CRL made of a plastic containing only hydrogen and carbon. Images obtained using this apparatus are compared with those using an area source with a spherical lens and a spherical lens with multilayer condenser. The authors found the best image quality using the multilayer condenser with a parabolic lens, com...

  19. X-ray beam qualities for dental radiology purposes

    International Nuclear Information System (INIS)

    Santos, Marcus Aurelio P. dos; Fragoso, Maria da Conceicao de F.; Lima, Ricardo de A.; Hazim, Clovis A.

    2009-01-01

    In order to establish characteristics or properties of equipment for diagnostic radiology, e.g. ion chambers and semiconductor detectors, calibration laboratories offer a set of well-defined radiation conditions, called X-ray qualities, which can be used for many Physics studies and medical purposes. The standardization of radiation qualities has been carried out in several fields of study, but little attention has been given to the area of dental radiology, mainly for medical and physical applications using single-phase units with half-wave rectification. For this reason, a single-phase dental unit with adjustable peak voltage and tube current, called 'variable potential X-ray equipment', was developed aiming to define X-ray beam qualities for test and calibrations purposes. X-ray spectra at 50, 60 and 70 kVp were determined by using a CdTe detector and compared with those obtained for ten commercial X-ray dental units. As a result of this study, a set of X-ray qualities for the variable potential X-ray equipment was determined. The X-ray qualities spectra were utilized as reference for determination of a new set of X-ray qualities characterized for a constant potential X-ray equipment. Thus, sets of X-ray qualities were standardized and implemented in two X-ray laboratories: one with the variable potential X-ray equipment and other with constant potential X-ray equipment. These reference X-ray beam qualities should be used for test and calibration purposes involving scientific studies and services. (author)

  20. Conceptual design of the tomographic system for simultaneous studying of soft and hard X-ray emission from dense magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bielecki, J., E-mail: jakub.bielecki@ifj.edu.edu; Wójcik-Gargula, A.; Scholz, M.

    2016-11-15

    The article presents a new approach for investigation of spatial distributions of soft and hard X-rays emitted from dense magnetized plasma. The approach is based on the application of tomographic methods to the X-ray emission reconstruction in a plasma focus (PF) device. Quantitative investigation of the anisotropy of the reconstructed X–ray plasma emissivity may help to explain the nature of fusion reaction mechanisms in a PF device. The aim of this work is to present a conceptual design of a novel dual-energy X-ray emission tomographic system dedicated to the PF-24 plasma focus device. The system, which enables the simultaneous registration of soft and hard X-rays, is composed of three X‐ray pinhole cameras. Each camera is equipped with a pair of 16-element Si photodiode arrays arranged in two layers separated by an aluminum attenuator. The Geant4 code was used to optimize the layout and parameters of the applied detectors. In addition, a method of tomographic reconstruction from a sparse data set provided by the experimental setup has been presented.

  1. X-Ray and Near-Infrared Spectroscopy of Dim X-Ray Point Sources Constituting the Galactic Ridge X-Ray Emission

    Directory of Open Access Journals (Sweden)

    Kumiko Morihana

    2014-12-01

    Full Text Available We present the results of X-ray and Near-Infrared observations of the Galactic Ridge X-ray Emission (GRXE. We extracted 2,002 X-ray point sources in the Chandra Bulge Field (l =0°.113, b = 1°.424 down to ~10-14.8 ergscm-2s-1 in 2-8 keV band with the longest observation (900 ks of the GRXE. Based on X-ray brightness and hardness, we classied the X-ray point sources into three groups: A (hard, B (soft and broad spectrum, and C (soft and peaked spectrum. In order to know populations of the X-ray point sources, we carried out NIR imaging and spectroscopy observation. We identied 11% of X-ray point sources with NIR and extracted NIR spectra for some of them. Based on X-ray and NIR properties, we concluded that non-thermal sources in the group A are mostly active galactic nuclei and the thermal sources are mostly white dwarf binaries such as cataclysmic variables (CVs and Pre-CVs. We concluded that the group B and C sources are X-ray active stars in flare and quiescence, respectively.

  2. Spatially resolved X-ray spectra of coronal active regions

    International Nuclear Information System (INIS)

    Catura, R.C.; Acton, L.W.; Joki, E.G.; Rapley, C.G.; Culhane, J.L.

    1975-01-01

    X-ray spectra from a number of coronal active regions were obtained during ATM support rocket flights carried out by the Lockheed group on June 11 and December 19, 1973. Multi-grid collimators were used to provide fields of view of 40ins. diameter and 90ins. diameter for a number of scanning crystal spectrometers and a bent crystal spectrometer which employed a position sensitive proportional counter to register the diffracted spectrum. A solar image was produced on film and on a TV camera on board the rocket with the aid of a 1 A Hα filter. A small part of the X-ray collimator was used to generate a multiple spot diffraction pattern which was superimposed on the Hα image and the composite picture was transmitted to the ground. Pre-launch calibrations allowed the spot corresponding to the X-ray collimator axis to be identified and so the collimator pointing direction on the solar disc was controlled from the ground by means of commands sent to the rocket. (Auth.)

  3. Multiwire area x-ray diffractometers

    International Nuclear Information System (INIS)

    Hamlin, R.

    1985-01-01

    The multiwire proportional counter is at this writing the only type of two-dimensional position-sensitive X-ray detector capable of collecting diffraction data accurate enough for solution of new protein structures. The first diffractometer system to use this type of detector (the Mark I diffractometer system) was assembled at the University of California, San Diego and has collected the data used to solve for four new protein structures. Similar diffractometer systems using a single thin, flat multiwire counter are now being constructed in several other laboratories around the world, and several of these should routinely be collecting good diffraction data from protein and perhaps even virus crystals by 1986. A table describing some of these other systems is included later in this chapter. The next step in the evolution of area diffractometer systems based on the multiwire proportional counter is more complete coverage of the solid angle of the diffraction pattern - more complete than the 10 - 40% coverage possible with one flat multiwire counter. The phenomenon called ''parallax'' makes it impractical to intercept the whole diffraction pattern with one flat, xenon-filled multiwire counter. Two strategies for dealing with parallax are now being pursued. One strategy involves adding a spherical drift region to the front of a flat multiwire counter and a detector using this idea will be described. The other strategy, one being pursued by the author, involves building an array of flat detectors arranged to approximate a section of the surface of a sphere. The array of flat detectors gives more flexibility in crystal-to-detector distance and distributes the dead time over many detectors, thereby allowing the full array to have a high counting rate capacity even using only medium speed (2 μsec) position readout circuits for each individual detector

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  6. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  7. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  8. CRL X-ray tube

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed. (authors)

  9. Environments of High Luminosity X-Ray Sources in the Antennae Galaxies

    Science.gov (United States)

    Clark, D. M.; Eikenberry, S. S.; Brandl, B. R.; Wilson, J. C.; Carson, J. C.; Henderson, C. P.; Hayward, T. P.; Barry, D. J.; Houck, J. R.; Ptak, A.; Colbert, E.

    2003-12-01

    We use deep J (1.25 μ m) and Ks (2.15 μ m) images of the Antennae (NGC 4038/9) obtained with the Wide-field InfraRed Camera on the Palomar 200-inch telescope, together with the Chandra X-ray source list of Zezas et al. (2001), to establish an X-ray/IR astrometric frame tie with ˜ 0.5 ″ RMS residuals over a ˜ 5 ‧ field. We find 13 ``strong" IR counterparts 99.9% confidence), and that the X-ray/IR matches are concentrated in the spiral arms and ``bridge" regions of the Antennae. This implies that these X-ray sources lie in the most ``super" of the Antennae's Super Star Clusters, and thus trace the recent massive star formation history here. Based on the NH inferred from the X-ray sources without IR counterparts, we determine that the absence of most of the ``missing" IR counterparts is not due to extinction, but that these sources are intrinsically less luminous in the IR, implying that they trace a different (older?) stellar population. We find no clear correlation between X-ray luminosity classes and IR properties of the sources, though small number statistics hamper this analysis. Finally, we find a Ks = 16.2 mag counterpart to the Ultra-Luminous X-ray (ULX) source X-37 within <0.5 ″ , eliminating the need for the ``runaway binary" hypothesis proposed by previous authors for this object. We discuss some of the implications of this detection for models of ULX emission. This work is funded by an NSF CAREER grant.

  10. Sixth symposium on x- and gamma ray sources and applications. Abstracts

    International Nuclear Information System (INIS)

    1985-01-01

    Abstracts are provided for technical presentations in the areas of: gamma and x-ray sources, kinds of detectors, characterization of detectors and detector systems, models and data analysis, gamma spectroscopy, instrumentation, x-ray fluorescence, tomography, x-ray absorption, and pion induced x-ray emission

  11. Calibration of hard x-ray (15 - 50 keV) optics at the MPE test facility PANTER

    Science.gov (United States)

    Bräuninger, Heinrich; Burkert, Wolfgang; Hartner, Gisela D.; Citterio, Oberto; Ghigo, Mauro; Mazzoleni, Francesco; Pareschi, Giovanni; Spiga, Daniele

    2004-02-01

    The Max-Planck-Institut für extraterrestrische Physik (MPE) in Garching, Germany, operates the large X-ray beam line facility PANTER for testing astronomical systems. At PANTER a number of telescopes like EXOSAT, ROSAT, SAX, JET-X, ABRIXAS, XMM and SWIFT operating in the soft energy range (0.02 - 15 keV) have been successfully calibrated. In the present paper we report on an important upgrade recently implemented that enables the calibration of hard X-ray optics (from 15 up to 50 keV). Currently hard X-ray optics based on single and multilayer coating are being developed for several future X-ray missions. The hard X-ray calibrations at PANTER are carried out by a high energy source based on an electron gun and several anodes, able to cover the energy range from 4.5 up to 50 keV. It provides fluxes up to 104 counts/sec/cm2 at the instrument chamber with a stability better than 1%. As detector a pn-CCD camera operating between 0.2 and 50 keV and a collecting area of 36 cm2 is used. Taking into account the high energy resolution of the CCD (145 eV at 6 keV), a very easy way to operate the facility in hard X-ray is in energy-dispersive mode (i.e. with a broad-band beam). A double crystal monochromator is also available providing energies up to 20 keV. In this paper we present the first results obtained by using PANTER for hard X-ray characterizations, performed on prototype multilayer optics developed by the Osservatorio Astronomico di Brera (OAB), Milano, Italy, and the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA.

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  13. Large Area X-ray Proportional Counter (LAXPC) Instrument on AstroSat and Some Preliminary Results from its performance in the orbit

    OpenAIRE

    Agrawal, P. C.; Yadav, J. S.; Antia, H. M.; Dedhia, Dhiraj; Shah, P.; Chauhan, Jai Verdhan; Manchanda, R. K.; Chitnis, V. R.; Gujar, V. M.; Katoch, Tilak; Kurhade, V. N.; Madhwani, P.; Manojkumar, T. K.; Nikam, V. A.; Pandya, A. S.

    2017-01-01

    Large Area X-ray Propositional Counter (LAXPC) instrument on AstroSat is aimed at providing high time resolution X-ray observations in 3 to 80 keV energy band with moderate energy resolution. To achieve large collecting area, a cluster of three co-aligned identical LAXPC detectors, is used to realize an effective area in access of about 6000 cm2 at 15 keV. The large detection volume of the LAXPC detectors, filled with xenon gas at about 2 atmosphere pressure, results in detection efficiency g...

  14. Novel X-ray telescopes for wide-field X-ray monitoring

    International Nuclear Information System (INIS)

    Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.

    2005-01-01

    We report on fully innovative very wide-field of view X-ray telescopes with high sensitivity as well as large field of view. The prototypes are very promising, allowing the proposals for space projects with very wide-field Lobster-eye X-ray optics to be considered. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study and to understand various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. The Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  15. X-rays and magnetism

    International Nuclear Information System (INIS)

    Fischer, Peter; Ohldag, Hendrik

    2015-01-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques. (report on progress)

  16. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  17. Perfect-crystal x-ray optics to treat x-ray coherence

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Ishikawa, Tetsuya

    2007-01-01

    X-ray diffraction of perfect crystals, which serve as x-ray monochromator and collimator, modifies coherence properties of x-ray beams. From the time-dependent Takagi-Taupin equations that x-ray wavefields obey in crystals, the reflected wavefield is formulated as an integral transform of a general incident wavefield with temporal and spatial inhomogeneity. A reformulation of rocking-curve profiles from the field solution of the Takagi-Taupin equations allows experimental evaluation of the mutual coherence function of x-ray beam. The rigorous relationship of the coherence functions between before and after reflection clarifies how the coherence is transferred by a crystal. These results will be beneficial to developers of beamline optics for the next generation synchrotron sources. (author)

  18. Versatile, reprogrammable area pixel array detector for time-resolved synchrotron x-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, Sol [Cornell Univ., Ithaca, NY (United States)

    2010-05-01

    The final technical report for DOE grant DE-SC0004079 is presented. The goal of the grant was to perform research, development and application of novel imaging x-ray detectors so as to effectively utilize the high intensity and brightness of the national synchrotron radiation facilities to enable previously unfeasible time-resolved x-ray research. The report summarizes the development of the resultant imaging x-ray detectors. Two types of detector platforms were developed: The first is a detector platform (called a Mixed-Mode Pixel Array Detector, or MM-PAD) that can image continuously at over a thousand images per second while maintaining high efficiency for wide dynamic range signals ranging from 1 to hundreds of millions of x-rays per pixel per image. Research on an even higher dynamic range variant is also described. The second detector platform (called the Keck Pixel Array Detector) is capable of acquiring a burst of x-ray images at a rate of millions of images per second.

  19. Tomographic image reconstruction using x-ray phase information

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  20. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Hodoroaba, V.-D.; Radtke, M.; Vincze, L.; Rackwitz, V.; Reuter, D.

    2010-01-01

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  1. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  2. X-ray diagnostic installation for X-ray tomographic images

    International Nuclear Information System (INIS)

    Haendle, J.; Sklebitz, H.

    1984-01-01

    An exemplary embodiment includes at least one x-ray tube for the generation of an x-ray beam, a patient support, an image detector, and a control generator-connected with the x-ray tube and the image detector-for the purpose of moving the x-ray beam, and in opposition thereto, the image field of the image detector. There is connected to the control generator a layer height computer which calculates the enlargement from the geometric data for the tomogram. The image detector has a circuit-connected with the layer height computer-for the purpose of fading-in a marking for the dimensions in the layer plane

  3. Recent developments in X-ray and neutron small-angle scattering instrumentation and data analysis

    International Nuclear Information System (INIS)

    Schelten, J.

    1978-01-01

    The developments in instrumentation and data analysis that have occurred in the field of small-angle X-ray and neutron scattering since 1973 are reviewed. For X-rays, the cone camera collimation was invented, synchrotrons and storage rings were demonstrated to be intense sources of X-radiation, and one- and two-dimensional position-sensitive detectors were interfaced to cameras with both point and line collimation. For neutrons, the collimators and detectors on the Juelich and Grenoble machines were improved, new D11-type instruments were built or are under construction at several sites, double-crystal instruments were set up, and various new machines have been proposed. Significant progress in data analysis and evaluation has been made through application of mathematical techniques such as the use of spline functions, error minimization with constraints, and linear programming. Several special experiments, unusual in respect to the anisotropy of the scattering pattern, gravitational effects, moving scatterers, and dynamic fast time slicing, are discussed. (Auth.)

  4. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  5. Providing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.

    1985-01-01

    This invention provides an apparatus for providing x-rays to an object that may be in an ordinary environment such as air at approximately atmospheric pressure. The apparatus comprises: means (typically a laser beam) for directing energy onto a target to produce x-rays of a selected spectrum and intensity at the target; a fluid-tight enclosure around the target; means for maintaining the pressure in the first enclosure substantially below atmospheric pressure; a fluid-tight second enclosure adjoining the first enclosure, the common wall portion having an opening large enough to permit x-rays to pass through but small enough to allow the pressure reducing means to evacuate gas from the first enclosure at least as fast as it enters through the opening; the second enclosure filled with a gas that is highly transparent to x-rays; the wall of the second enclosure to which the x-rays travel having a portion that is highly transparent to x-rays (usually a beryllium or plastic foil), so that the object to which the x-rays are to be provided may be located outside the second enclosure and adjacent thereto and thus receive the x-rays substantially unimpeded by air or other intervening matter. The apparatus is particularly suited to obtaining EXAFS (extended x-ray fine structure spectroscopy) data on a material

  6. Development of a hard x-ray wavefront sensor for the EuXFEL

    Science.gov (United States)

    Berujon, Sebastien; Ziegler, Eric; Cojocaru, Ruxandra; Martin, Thierry

    2017-05-01

    We present developments on a hard X-ray wavefront sensing instrument for characterizing and monitoring the beam of the European X-ray Free Electron Lasers (EuXFEL). The pulsed nature of the intense X-ray beam delivered by this new class of facility gives rise to strong challenges for the optics and their diagnostic. In the frame of the EUCALL project Work Package 7, we are developing a sensor able to observe the beam in the X-ray energy range [8-40] keV without altering it. The sensor is based on the speckle tracking principle and employs two semi-transparent optics optimized such that their X-ray absorption is reduced. Furthermore, this instrument requires a scattering object with small random features placed in the beam and two cameras to record images of the beam at two different propagation distances. The analysis of the speckle pattern and its distortion from one image to the other allows absolute or differential wavefront recovery from pulse to pulse. Herein, we introduce the stakes and challenges of wavefront sensing at an XFEL source and explain the strategies adopted to fulfil the high requirements set by such a source.

  7. Recent advances in X-ray lithography

    International Nuclear Information System (INIS)

    Cerrina, F.

    1992-01-01

    We report some significant developments in the area of X-ray technology, in the area of the modeling of image formation, in distortion control and in mask replication. Early simple models have been replaced by complete optical calculations based on physical optics and including all relevant factors. These models provide good agreement with the available experimental results. In the area of mask distortions, the use of finite element analysis models has clarified the roles played by the various sources of stress and explained in greater detail the origin of temperature changes. These progress have paved the way to the optimization of the exposure system and to the achievement of the large exposure latitude potential of X-ray lithography. (author)

  8. X-ray detector for a panoramic X-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, D; Ensslin, F H

    1976-01-15

    The discovery deals with an X-ray detector suitable for the controlling of panoramic X-ray systems. It consists of a fluorescent image screen and a semiconductor photo cell. The output signal of the detector is proportional to the intensity of the X-radiation and the response time is large enough to follow the change of amplitude of the contours of the modulated X radiation. The detector with band-pass filter regulates, via a control system, the moving rate of the X-ray source and of the film opposite it in dependence of the intensity, so that a uniform exposure is ensured.

  9. Soft X-ray Tangential Imaging of the NSTX Core Plasma by Means of a MPGD Pin-hole Camera

    International Nuclear Information System (INIS)

    Pacella, D.; Leigheb, M.; Bellazzini, R.; Brez, A.; Finkenthal, M.; Stutman, D.; Kaita, R.; Sabbagh, S.A.

    2003-01-01

    A fast X-ray system based on a Micro Pattern Gas Detector has been used, for the first time, to investigate emission from the plasma core of the National Spherical Tokamak eXperiment (NSTX) at the Princeton Plasma Physics Laboratory. The results presented in this work demonstrate the capability of such a device to measure with a time resolution of the order of 1 ms the curvature and the elongation of the X-ray iso-emissivity contours, under various plasma conditions. Also, comparisons with the magnetic surface structure calculated by the EFIT code show good agreement between reconstructed flux surface and the soft X-ray emissions (SXR) for poloidal beta values up to 0.6. For greater values of beta, X-ray iso-emissivity contours become circular, while magnetic flux surface reconstructions yield elongation 1.5 < k < 2.2. The X-ray images have been acquired with a (statistical) signal to noise ratio (SNR) per pixel of about 30. Thanks to the direct and efficient X-ray conversion and its operation in a photon counting mode, this new diagnostic tool allows the routine investigation of the plasma core with a sampling rate of 1 kHz and extremely high SNR under all experimental conditions in NSTX

  10. Microstructural characterization of porous materials by X-ray microtomography and gamma ray transmission techniques

    International Nuclear Information System (INIS)

    Moreira, Anderson Camargo

    2006-01-01

    This work presents the application of the X-ray microtomography and gamma ray transmission techniques for the microstructure characterization of different kinds of materials. Total porosity, pore size distribution and the two point correlation functions were measured. The two point correlation function, which allows the reconstruction of 3D models, was carried out for two samples. Seven ceramic tablets of Alumina (Al 2 O 3 ), seven tablets of Boron Carbide (B 4 C), three samples of sedimentary rocks and one sample of Titanium foam were analyzed. The experimental set up for the Gamma Ray Transmission technique consisted of: a 2'' x 2'' crystal NaI(Tl) detector, an 241 Am radioactive source (59,53 keV, 100 mCi), an automatic micrometric table for the sample XZ movement and standard gamma spectrometry electronics. Two microtomography systems were used: a Fein Focus system, constituted by an X-ray tube, operated at 160 kV and 0.3 to 1.1 mA, a CCD camera and the movement sample system, and a Skyscan system, model 1072, with a X-ray tube operated at 100 kV and 100μA, and a CCD camera. The ceramic tablets, analyzed by the gamma ray transmission technique presented results for most of the porosities data with smaller confidence intervals and inside the intervals supplied by the tablets manufacturer. The Titanium porous sample was analyzed by the two techniques, its microtomography images achieved a resolution of 17μm, obtained employing the Fein Focus system. For both techniques, this sample showed high porosity, which allows its application for this purpose. The sandstones samples were analyzed by the Skyscan system, achieving resolutions of 19μm, 11μm and 3.8μm for each sample, respectively. The resolutions of 11μm and 3.8μm were the ones that generated better 2D sections for the respective samples and, consequently, more reliable porosities. The 3.8μm resolution was the one that best quantified the pore size distribution data, showing information not shown by

  11. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  12. Applying x-ray digital imaging to the verification of cadmium in fuel-storage components

    International Nuclear Information System (INIS)

    Dabbs, R.D.; Cook, D.H.

    1997-01-01

    The High Flux Isotope Reactor utilizes large underwater fuel-storage arrays to stage irradiated fuel before it is shipped from the facility. Cadmium is required as a thermal neutron absorber in these fuel-storage arrays to produce an acceptable margin of nuclear subcriticality during both normal and off-normal operating conditions. Due to incomplete documentation from the time of their fabrication, the presence of cadmium within two stainless-steel parts of fuel-storage arrays must be experimentally verified before they are reused in new fuel-storage arrays. A cadmium-verification program has been developed in association with the Waste Examination and Assay Facility located at the Oak Ridge national Laboratory to nondestructively examine these older shroud assemblies. The program includes the following elements (1) x-ray analog imaging, (2) x-ray digital imaging, (3) prompt-gamma-ray spectroscopy measurements, and (4) neutron-transmission measurements. X-ray digital imaging utilizes an analog-to-digital convertor to record attenuated x-ray intensities observed on a fluorescent detector by a video camera. These x-ray intensities are utilized in expressions for cadmium thickness based upon x-ray attenuation theory

  13. Hard X-ray techniques suitable for polymer experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bras, W; Goossens, H; Goderis, B, E-mail: Wim.Bras@esrf.fr [Netherlands Organisation for Scientific Research (NWO) (Netherlands); DUBBLE-ESRF, BP 220, F38043 Grenoble Cedex (France); Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Molecular and Nanomaterials, Chemistry Department, Catholic University of Leuven, Celestijnenlaan 200F (Belgium)

    2010-11-15

    Polymers have been studied since 1979 with 8-12 keV synchrotron radiation X-ray scattering methods and the number and sophistication of the experiments have rapidly grown ever since. More recently, new experimental techniques have been developed that use softer or harder X-rays in less conventional ways. This article provides a brief overview of the possibilities of hard X-ray techniques and indicates some areas that might gain from further developments.

  14. Hard X-ray techniques suitable for polymer experiments

    International Nuclear Information System (INIS)

    Bras, W; Goossens, H; Goderis, B

    2010-01-01

    Polymers have been studied since 1979 with 8-12 keV synchrotron radiation X-ray scattering methods and the number and sophistication of the experiments have rapidly grown ever since. More recently, new experimental techniques have been developed that use softer or harder X-rays in less conventional ways. This article provides a brief overview of the possibilities of hard X-ray techniques and indicates some areas that might gain from further developments.

  15. X-ray spectroscopy and X-ray crystallography of metalloenzymes at XFELs

    International Nuclear Information System (INIS)

    Yano, Junko

    2016-01-01

    The ultra-bright femtosecond X-ray pulses provided by X-ray Free Electron Lasers (XFELs) open capabilities for studying the structure and dynamics of a wide variety of biological and inorganic systems beyond what is possible at synchrotron sources. Although the structure and chemistry at the catalytic sites have been studied intensively in both biological and inorganic systems, a full understanding of the atomic-scale chemistry requires new approaches beyond the steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure at ambient conditions, while overcoming X-ray damage to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by using the intense and ultra-short femtosecond X-ray pulses from an XFEL, where sample is probed before it is damaged. We have developed methodology for simultaneously collecting crystallography data and X-ray emission spectra, using an energy dispersive spectrometer at ambient conditions. In addition, we have developed a way to collect metal L-edge data of dilute samples using soft X-rays at XFELs. The advantages and challenges of these methods will be described in this review. (author)

  16. FACT-The first Cherenkov telescope using a G-APD camera for TeV gamma-ray astronomy

    International Nuclear Information System (INIS)

    Anderhub, H.; Backes, M.; Biland, A.; Boller, A.; Braun, I.; Bretz, T.; Commichau, S.; Commichau, V.; Domke, M.; Dorner, D.; Gendotti, A.; Grimm, O.; Gunten, H. von; Hildebrand, D.; Horisberger, U.; Koehne, J.-H.; Kraehenbuehl, T.; Kranich, D.; Krumm, B.; Lorenz, E.

    2011-01-01

    Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and are constructing a new, fine-pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details.

  17. Chest X-Ray

    Medline Plus

    Full Text Available ... talk with you about chest radiography also known as chest x-rays. Chest x-rays are the ... treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray ...

  18. Modern X-ray spectroscopy 3. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi

    2008-01-01

    X-ray fluorescence holography (XFH) provides three dimensional atomic images around specified elements. The XFH uses atoms as a wave source or monitor of interference field within a crystal sample, and therefore it can record both intensity and phase of scattered X-rays. Its current performance makes it possible to apply to ultra thin film, impurity and quasicrystal. In this article, I show the theory including solutions for twin image problem, advanced measuring system, data processing for reconstruction of the atomic images and for obtaining accurate atomic positions, applications using resonant X-ray scattering and X-ray excited optical luminescence, and an example of XFH result on the local structure around copper in silicon steal. (author)

  19. X-ray holography: X-ray interactions and their effects

    International Nuclear Information System (INIS)

    London, R.A.; Trebes, J.E.; Rosen, M.D.

    1988-01-01

    The authors summarize a theoretical study of the interactions of x-rays with a biological sample during the creation of a hologram. The choice of an optimal wavelength for x-ray holography is discussed, based on a description of scattering by objects within an aqueous environment. The problem of the motion resulting from the absorption of x-rays during a short exposure is described. The possibility of using very short exposures in order to capture the image before motion can compromise the resolution is explored. The impact of these calculation on the question of the feasibility of using an x-ray laser for holography of biological structures is discussed. 12 refs., 2 figs

  20. Design and testing of a compact X-ray diode. 1998 summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetics. Student research reports

    International Nuclear Information System (INIS)

    Stern, A.

    1999-03-01

    Omega, the University of Rochester's high powered laser dedicated to fusion research gives off x-rays with different energy levels. Measuring the number of x-rays and the energy of each is important in understanding what happens in the target chamber when Omega is fired. Existing x-ray detectors are expensive, big, and cumbersome. Imaging detectors such as x-ray pinhole cameras which record onto film, x-ray framing cameras which make videos, and most often, x-ray streak cameras which measure time dependences of x-rays. They require a lot of maintenance and are difficult to keep operational. Lawrence Livermore National Laboratory has developed the Dante Diode. The Dante diode array on Omega functions as a group of 12 diodes which take up a 24 inch port in the target chamber, making it space-consuming and difficult to move for alternate views. In designing a new detector, space was the main issue. The smallest possible functional diode, without losing accuracy was desired. Since the laser pulse only lasts a few nanoseconds it is important that the x-ray detector have a response time of a few tenths of a nanosecond. Other criteria include that it be easy to use for measuring the energy and number of x-ray photons and that cost be kept down. This report discusses the design process and testing of the new diode

  1. Development of confocal micro X-ray fluorescence instrument using two X-ray beams

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Nakano, Kazuhiko; Ding Xunliang

    2007-01-01

    A new confocal micro X-ray fluorescence instrument was developed. This instrument has two independent micro X-ray tubes with Mo targets. A full polycapillary X-ray lens was attached to each X-ray tube. Another half polycapillary lens was attached to a silicon drift X-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The effects of the excitation of two X-ray beams were investigated. The instrument enabled highly sensitive three-dimensional X-ray fluorescence analysis. We confirmed that the X-ray fluorescence intensity from the sample increased by applying the two independent X-ray tubes in confocal configuration. Elemental depth profiling of black wheat was demonstrated with the result that each element in the surface coat of a wheat grain showed unique distribution

  2. Modern X-ray difraction. X-ray diffractometry for material scientists, physicists, and chemicists

    International Nuclear Information System (INIS)

    Spiess, L.; Schwarzer, R.; Behnken, H.; Teichert, G.

    2005-01-01

    The book yields a comprehensive survey over the applications of X-ray diffraction in fields like material techniques, metallurgy, electrotechniques, machine engineering, as well as micro- and nanotechniques. The necessary fundamental knowledge on X-ray diffraction are mediated foundedly and illustratively. Thereby new techniques and evaluation procedures are presented as well as well known methods. The content: Production and properties of X radiation, diffraction of X radiation, hardware for X-ray diffraction, methods of X-ray diffraction, lattice-constant determination, phase analysis, X-ray profile analysis, crystal structure analysis, X-ray radiographic stress analysis, X-ray radiographic texture analysis, crystal orientation determination, pecularities at thin films, small angle scattering

  3. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: ... Ray Exam: Hip Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  4. Diagnostics for an XUV/soft x-ray laser

    International Nuclear Information System (INIS)

    Kauffman, R.L.; Matthews, D.L.; Ceglio, N.; Medecki, H.

    1984-01-01

    We have begun investigating the production of an XUV/soft x-ray laser, using our high-powered glass lasers as drivers. A major diagnostic for lasing is the measure of the absolute power produced in the lasing line. I have developed a spectrograph to time-resolved lasing lines in the energy range from 50 eV to greater than 200 eV. the spectrograph combines a transmission grating and x-ray streak camera to produce a flat field instrument. A cylindrical mirror is used in front of the grating to image the source and act as a collecting optic. The efficiency of the components is calibrated so that absolute intensities can be measured. I will compare the performance of this instrument with reflection grating systems. I will also discuss planned improvements to the system which should increase total throughput, image quality, and resolving power

  5. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  6. X-ray examination apparatus

    NARCIS (Netherlands)

    2000-01-01

    The invention relates to an X-ray apparatus which includes an adjustable X-ray filter. In order to adjust an intensity profile of the X-ray beam, an X-ray absorbing liquid is transported to filter elements of the X-ray filter. Such transport is susceptible to gravitational forces which lead to an

  7. Digital optical correlator x-ray telescope alignment monitoring system

    Science.gov (United States)

    Lis, Tomasz; Gaskin, Jessica; Jasper, John; Gregory, Don A.

    2018-01-01

    The High-Energy Replicated Optics to Explore the Sun (HEROES) program is a balloon-borne x-ray telescope mission to observe hard x-rays (˜20 to 70 keV) from the sun and multiple astrophysical targets. The payload consists of eight mirror modules with a total of 114 optics that are mounted on a 6-m-long optical bench. Each mirror module is complemented by a high-pressure xenon gas scintillation proportional counter. Attached to the payload is a camera that acquires star fields and then matches the acquired field to star maps to determine the pointing of the optical bench. Slight misalignments between the star camera, the optical bench, and the telescope elements attached to the optical bench may occur during flight due to mechanical shifts, thermal gradients, and gravitational effects. These misalignments can result in diminished imaging and reduced photon collection efficiency. To monitor these misalignments during flight, a supplementary Bench Alignment Monitoring System (BAMS) was added to the payload. BAMS hardware comprises two cameras mounted directly to the optical bench and rings of light-emitting diodes (LEDs) mounted onto the telescope components. The LEDs in these rings are mounted in a predefined, asymmetric pattern, and their positions are tracked using an optical/digital correlator. The BAMS analysis software is a digital adaption of an optical joint transform correlator. The aim is to enhance the observational proficiency of HEROES while providing insight into the magnitude of mechanically and thermally induced misalignments during flight. Results from a preflight test of the system are reported.

  8. Development of x-ray laminography under an x-ray microscopic condition

    International Nuclear Information System (INIS)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto

    2011-01-01

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

  9. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  10. Microfocussing of synchrotron X-rays using X-ray refractive lens

    Indian Academy of Sciences (India)

    X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Diamond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at moderate and low emittance ...

  11. Optical, Near-IR, and X-Ray Observations of SN 2015J and Its Host Galaxy

    Science.gov (United States)

    Nucita, A. A.; De Paolis, F.; Saxton, R.; Testa, V.; Strafella, F.; Read, A.; Licchelli, D.; Ingrosso, G.; Convenga, F.; Boutsia, K.

    2017-12-01

    SN 2015J was discovered on 2015 April 27th and is classified as an SN IIn. At first, it appeared to be an orphan SN candidate, I.e., without any clear identification of its host galaxy. Here, we present an analysis of the observations carried out by the VLT 8 m class telescope with the FORS2 camera in the R band and the Magellan telescope (6.5 m) equipped with the IMACS Short-Camera (V and I filters) and the FourStar camera (Ks filter). We show that SN 2015J resides in what appears to be a very compact galaxy, establishing a relation between the SN event and its natural host. We also present and discuss archival and new X-ray data centered on SN 2015J. At the time of the supernova explosion, Swift/XRT observations were made and a weak X-ray source was detected at the location of SN 2015J. Almost one year later, the same source was unambiguously identified during serendipitous observations by Swift/XRT and XMM-Newton, clearly showing an enhancement of the 0.3-10 keV band flux by a factor ≃ 30 with respect to the initial state. Swift/XRT observations show that the source is still active in the X-rays at a level of ≃ 0.05 counts s-1. The unabsorbed X-ray luminosity derived from the XMM-Newton slew and SWIFT observations, {L}x≃ 5× {10}41 erg s-1, places SN 2015J among the brightest young supernovae in X-rays. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA, with ESO Telescopes at the La Silla-Paranal Observatory under program ID 298.D-5016(A), and with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. We also acknowledge the use of public data from the Swift data archive.

  12. A 5-μm pitch charge-coupled device optimized for resonant inelastic soft X-ray scattering

    Science.gov (United States)

    Andresen, N. C.; Denes, P.; Goldschmidt, A.; Joseph, J.; Karcher, A.; Tindall, C. S.

    2017-08-01

    We have developed a charge-coupled device (CCD) with 5 μm × 45 μm pixels on high-resistivity silicon. The fully depleted 200 μm-thick silicon detector is back-illuminated through a 10 nm-thick in situ doped polysilicon window and is thus highly efficient for soft through >8 keV hard X-rays. The device described here is a 1.5 megapixel CCD with 2496 × 620 pixels. The pixel and camera geometry was optimized for Resonant Inelastic X-ray Scattering (RIXS) and is particularly advantageous for spectrometers with limited arm lengths. In this article, we describe the device architecture, construction and operation, and its performance during tests at the Advance Light Source (ALS) 8.0.1 RIXS beamline. The improved spectroscopic performance, when compared with a current standard commercial camera, is demonstrated with a ˜280 eV (CK) X-ray beam on a graphite sample. Readout noise is typically 3-6 electrons and the point spread function for soft CK X-rays in the 5 μm direction is 4.0 μm ± 0.2 μm. The measured quantum efficiency of the CCD is greater than 75% in the range from 200 eV to 1 keV.

  13. A 5-μm pitch charge-coupled device optimized for resonant inelastic soft X-ray scattering.

    Science.gov (United States)

    Andresen, N C; Denes, P; Goldschmidt, A; Joseph, J; Karcher, A; Tindall, C S

    2017-08-01

    We have developed a charge-coupled device (CCD) with 5 μm × 45 μm pixels on high-resistivity silicon. The fully depleted 200 μm-thick silicon detector is back-illuminated through a 10 nm-thick in situ doped polysilicon window and is thus highly efficient for soft through >8 keV hard X-rays. The device described here is a 1.5 megapixel CCD with 2496 × 620 pixels. The pixel and camera geometry was optimized for Resonant Inelastic X-ray Scattering (RIXS) and is particularly advantageous for spectrometers with limited arm lengths. In this article, we describe the device architecture, construction and operation, and its performance during tests at the Advance Light Source (ALS) 8.0.1 RIXS beamline. The improved spectroscopic performance, when compared with a current standard commercial camera, is demonstrated with a ∼280 eV (C K ) X-ray beam on a graphite sample. Readout noise is typically 3-6 electrons and the point spread function for soft C K X-rays in the 5 μm direction is 4.0 μm ± 0.2 μm. The measured quantum efficiency of the CCD is greater than 75% in the range from 200 eV to 1 keV.

  14. Monolithic CMOS imaging x-ray spectrometers

    Science.gov (United States)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Murray, Stephen S.

    2014-07-01

    spectrally resolved without saturation. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting x-ray astronomy. These features include read noise, x-ray spectral response and quantum efficiency. Funding for this work has been provided in large part by NASA Grant NNX09AE86G and a grant from the Betty and Gordon Moore Foundation.

  15. Configuring and Characterizing X-Rays for Laser-Driven Compression Experiments at the Dynamic Compression Sector

    Science.gov (United States)

    Li, Y.; Capatina, D.; D'Amico, K.; Eng, P.; Hawreliak, J.; Graber, T.; Rickerson, D.; Klug, J.; Rigg, P. A.; Gupta, Y. M.

    2017-06-01

    Coupling laser-driven compression experiments to the x-ray beam at the Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS) of Argonne National Laboratory requires state-of-the-art x-ray focusing, pulse isolation, and diagnostics capabilities. The 100J UV pulsed laser system can be fired once every 20 minutes so precise alignment and focusing of the x-rays on each new sample must be fast and reproducible. Multiple Kirkpatrick-Baez (KB) mirrors are used to achieve a focal spot size as small as 50 μm at the target, while the strategic placement of scintillating screens, cameras, and detectors allows for fast diagnosis of the beam shape, intensity, and alignment of the sample to the x-ray beam. In addition, a series of x-ray choppers and shutters are used to ensure that the sample is exposed to only a single x-ray pulse ( 80ps) during the dynamic compression event and require highly precise synchronization. Details of the technical requirements, layout, and performance of these instruments will be presented. Work supported by DOE/NNSA.

  16. X-Ray-Driven Gamma Emission

    International Nuclear Information System (INIS)

    Carroll, J. J.; Karamian, S. A.; Rivlin, L. A.; Zadernovsky, A. A.

    2001-01-01

    X-ray-driven gamma emission describes processes that may release nuclear energy in a 'clean' way, as bursts of incoherent or coherent gamma rays without the production of radioactive by-products. Over the past decade, studies in this area, as a part of the larger field of quantum nucleonics, have gained tremendous momentum. Since 1987 it has been established that photons could trigger gamma emission from a long-lived metastable nuclear excited state of one nuclide and it appears likely that triggering in other isotopes will be demonstrated conclusively in the near future. With these experimental results have come new proposals for the creation of collective and avalanche-like incoherent gamma-ray bursts and even for the ultimate light source, a gamma-ray laser. Obviously, many applications would benefit from controlled bursts of gamma radiation, whether coherent or not. This paper reviews the experimental results and concepts for the production of gamma rays, driven by externally produced X-rays

  17. Applications of particle induced X-ray emission

    International Nuclear Information System (INIS)

    Akselsson, K. R.

    1978-01-01

    In Particle Induced X-ray Emission (PIXE) analysis samples are bombarded by protons or α-particles of a few MeV/u. The induced characteristic x-rays are detected with a x-ray detector e.g. a Si(Li)-detector. The energies of the x-ray peaks are characteristic for the elements in the samples and the intensities of the x-ray transitions are proportional to the abundances of the elements. The research area which first attracted those of us working with PIXE was the study of sources, transport and deposition of airborne particulates. Sources, transport, wet deposition, other applications where PIXE is already known to be competitive are trace elemental analysis of water below the ppb-level and analyses requiring a space resolution of 1-10μ. However, there is still much to do for physicists in developing the full potential of low-energy accelerators as analytical tools in multidisciplinary teams. (JIW)

  18. X-ray television area detectors for macromolecular structural studies with synchrotron radiation sources

    International Nuclear Information System (INIS)

    Arndt, U.W.; Gilmore, D.J.

    1978-01-01

    Two-dimensional X-ray diffraction patterns may be recorded quantitatively by means of X-ray-to-electron converters which are scanned in a television-type raster scan. Detectors of this type are capable of operating over the whole range of counting rates from very low to higher than those with which other types of converters can deal. The component parts of an X-ray television detector are examined and the limits to the precision of the measurements are analysed. (Auth.)

  19. The development of high-speed 100 fps CCD camera

    International Nuclear Information System (INIS)

    Hoffberg, M.; Laird, R.; Lenkzsus, F.; Liu, C.; Rodricks, B.

    1997-01-01

    This paper describes the development of a high-speed CCD digital camera system. The system has been designed to use CCDs from various manufacturers with minimal modifications. The first camera built on this design utilizes a Thomson 512 x 512 pixel CCD as its sensor, which is read out from two parallel outputs at a speed of 15 MHz/pixel/output. The data undergo correlated double sampling after which it is digitized into 12 bits. The throughput of the system translates into 60 MB/second, which is either stored directly in a PC or transferred to a custom-designed VXI module. The PC data acquisition version of the camera can collect sustained data in real time that is limited to the memory installed in the PC. The VXI version of the camera, also controlled by a PC, stores 512 MB of real-time data before it must be read out to the PC disk storage. The uncooled CCD can be used either with lenses for visible light imaging or with a phosphor screen for X-ray imaging. This camera has been tested with a phosphor screen coupled to a fiber-optic face plate for high-resolution, high-speed X-ray imaging. The camera is controlled through a custom event-driven user-friendly Windows package. The pixel clock speed can be changed from 1 to 15 MHz. The noise was measured to be 1.05 bits at a 13.3 MHz pixel clock. This paper will describe the electronics, software, and characterizations that have been performed using both visible and X-ray photons. (orig.)

  20. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    International Nuclear Information System (INIS)

    Crist, C.E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D.; Krogh, M.

    1998-01-01

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse

  1. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  2. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  3. X-ray focusing with Wolter microchannel plate optics

    CERN Document Server

    Price, G J; Beijersbergen, M W; Fraser, G W; Bavdaz, M; Boutot, J P; Fairbend, R; Flyckt, S O; Peacock, A; Tomaselli, E

    2002-01-01

    Square-pore microchannel plate (MCP) X-ray optics of the 'lobster-eye' geometry have frequently been described in the literature. We have now investigated the use of a radial channel packing geometry which, in the context of an MCP pair slumped to the correct radii of curvature, can form a conic approximation to the Wolter Type I grazing incidence X-ray optic. Such an optic can provide a large effective area with very low mass and may be ideally suited for use in applications such as planetary imaging X-ray fluorescence. We present here the results of X-ray illumination of the first such optic, fabricated by Photonis SAS, France.

  4. X-ray instrumentation in astronomy

    International Nuclear Information System (INIS)

    Cuhlane, J.L.

    1985-01-01

    This book presents the proceedings of a conference devoted to x-ray instrumentation in astronomy. Special sections are: AXAF X-Ray Optical Systems; Specialized X-Ray Systems; X-Ray Optical Systems I; X-Ray Optical Systems II; Gas Filled X-Ray Detectors II; The NASA Advanced X-Ray Astrophysics Facility; X-Ray and EUV Spectrometers; Microchannel Plates; and Solid State Detectors

  5. Observation of hard X-rays line emission from Her X-1

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, V.F.; Bazzano, A.; la Padula, C.; Ubertini, P.; Vialetto, G.; Manchanda, R.K.; Damle, S.V.

    1982-04-01

    We present the results of a hard X-ray measurement of the binary source Her X-1, carried out with a balloon borne X-ray telescope consisting of two Multiwire Proportional Counters, having 900 cm/sup 2/ sensitive area each and spectral resolution of 15% and 24% FWHM respectively at 60 keV. The source was observed during the 'Mid-on' state. Our data confirm the previously reported high energy emission line overimposed on the low energy thermal spectrum.

  6. Effect of area x-ray beam equalization on image quality and dose in digital mammography

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Jerry; Xu Tong; Husain, Adeel; Le, Huy; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, CA 92697 (United States)

    2004-08-21

    In mammography, thick or dense breast regions persistently suffer from reduced contrast-to-noise ratio (CNR) because of degraded contrast from large scatter intensities and relatively high noise. Area x-ray beam equalization can improve image quality by increasing the x-ray exposure to under-penetrated regions without increasing the exposure to other breast regions. Optimal equalization parameters with respect to image quality and patient dose were determined through computer simulations and validated with experimental observations on a step phantom and an anthropomorphic breast phantom. Three parameters important in equalization digital mammography were considered: attenuator material (Z = 13-92), beam energy (22-34 kVp) and equalization level. A Mo/Mo digital mammography system was used for image acquisition. A prototype 16 x 16 piston driven equalization system was used for preparing patient-specific equalization masks. Simulation studies showed that a molybdenum attenuator and an equalization level of 20 were optimal for improving contrast, CNR and figure of merit (FOM = CNR{sup 2}/dose). Experimental measurements using these parameters showed significant improvements in contrast, CNR and FOM. Moreover, equalized images of a breast phantom showed improved image quality. These results indicate that area beam equalization can improve image quality in digital mammography.

  7. Astro 4 - a sounding rocket programme of the X-ray astronomy

    International Nuclear Information System (INIS)

    Henkel, R.; Pechstein, H.

    1980-01-01

    The 'Astro 4' program is part of the German Astronomy Sounding Rocket Program and was divided into two different tasks. The 'Astro 4/1' project had the task to perform X-ray spectroscopic investigations and imaging of solar coronal active regions by means of zone-plate cameras, a Rowland spectrograph and a KAP crystal spectrometer aboard of a three-axis stabilized payload. The 'Astro 4/2' project had the task to take investigations of the X-ray sources Puppis A and the Crab Nebula by means of a Wolter Telescope, equipped with a position-sensitive proportional counter. Up to now the three-axis stabilized payload 'Astro 4/2' has been the longest Skylark payload. (Auth.)

  8. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  9. Sixa-silicon x-ray array

    International Nuclear Information System (INIS)

    Taylor, I.

    1995-01-01

    Full text: The Spectrum-X-Gamma (SRG) satellite is scheduled for launch in 1995-96. Mission objectives include broad and narrow band imaging spectroscopy over a wide range of energies from the EUV through hard X-rays with an emphasis on studying galactic and extragalactic X-ray sources. Timing and moderate resolution spectroscopy can be performed with the solid state spectrometer SIXA (Silicon X-Ray Array), placed on the focal plane of the SODART telescope with total effective area of 1150 cm 2 at 6 keV (for f = 8 in telescope). The detector consists of 19 circular Si(Li) pixels, each with an active diameter of 9.2 min and thickness of 3 min. A radiative cooler will be used to bring the detector to the proper operating temperature (120-130 K). The energy range 0.5-20 keV is divided into 1024 channels of 20 eV size. Photons can be recorded with 30 μs time resolution and 160-200 eV (1-7 keV) energy resolution. Potential observing programmes (for e.g. time-resolved Iron Kα line spectroscopy) include stellar coronae, cataclysmic variables and X-ray binaries; accretion discs and coronae of neutron stars and black hole candidates; supernova remnants, active galactic nuclei and clusters of galaxies. (author)

  10. Chest X-Ray

    Medline Plus

    Full Text Available ... I’d like to talk with you about chest radiography also known as chest x-rays. Chest x-rays are the most ... far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  11. 13th International Conference on X-Ray Lasers

    CERN Document Server

    Gautier, Julien; Ros, David; Zeitoun, Philippe

    2014-01-01

    These proceedings comprise of invited and contributed papers presented at the 13th International Conference on X-Ray Lasers (ICXRL 2012) which was held 11–15 June 2012 in Paris, in the famous Quartier Latin, inside the historical Center of Cordeliers. This conference is part of a continuing series dedicated to recent developments and applications of x-ray lasers and other coherent x-ray sources with attention to supporting technologies and instrumentation. New results in the generation of intense, coherent x-rays and progress towards practical devices and their applications are reported in these proceedings, including areas of research in plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generation. Recent achievements related to the increase of the repetition rate up to 100 Hz and shorter wavelength collisional plasma-based soft x-ray lasers down to about 7 nm are presented. Seeding the amplifying plasma with a femtosecond high-order harmonic of infrared laser was fore...

  12. Miniature x-ray point source for alignment and calibration of x-ray optics

    International Nuclear Information System (INIS)

    Price, R.H.; Boyle, M.J.; Glaros, S.S.

    1977-01-01

    A miniature x-ray point source of high brightness similar to that of Rovinsky, et al. is described. One version of the x-ray source is used to align the x-ray optics on the Argus and Shiva laser systems. A second version is used to determine the spatial and spectral transmission functions of the x-ray optics. The spatial and spectral characteristics of the x-ray emission from the x-ray point source are described. The physical constraints including size, intensity and thermal limitations, and useful lifetime are discussed. The alignment and calibration techniques for various x-ray optics and detector combinations are described

  13. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  14. Soft x-ray spectro microscope

    International Nuclear Information System (INIS)

    Campuzano, J.C.; Jennings, G.; Beaulaigue, L.; Rodricks, B.G.; Brizard, C.

    1990-01-01

    This paper reports on the development of an x-ray photoelectron microscope that provides spatial as well as chemical information on the nature of the sample. Photons from the Aladdin Synchrotron at the Synchrotron Radiation Center in Stoughton, WI are monochromatized by an extended-range Grasshopper monochromator covering the range 40 to 1500 eV with energy resolution varying between 10 and 200 MeV. The monochromatized radiation generates photoelectrons in the sample, which are energy-analyzed with a resolving power E|ΔE > 5 x 10 4 and imaged by a multichannel plate array. The visible image is transferred to a computer by a virtual-phase charge-coupled device camera with a dynamic range of 4096:1. Preliminary coarse measurements indicate a spatial resolution of the instrument of better than 1μm, although a limit of 600 Angstrom is possible. The instrument provides chemical shift-resolved images of low-lying core levels in a variety of samples

  15. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  16. X-Ray Exam: Forearm

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Forearm KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  17. X-Ray Exam: Foot

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  18. X-Ray Exam: Wrist

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Wrist KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  19. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  20. X-Ray Exam: Finger

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...