WorldWideScience

Sample records for area watershed management

  1. Watershed basin management and agriculture practices: an application case for flooding areas in Piemonte.

    Science.gov (United States)

    Bianco, G.; Franzi, L.; Valvassore, U.

    2009-04-01

    Watershed basin management in Piemonte (Italy) is a challenging issue that forces the local Authorities to a careful land planning in the frame of a sustainable economy. Different and contrasting objectives should be taken into account and balanced in order to find the best or the most "reasonable" choice under many constraints. Frequently the need for flood risk reduction and the demand for economical exploitation of floodplain areas represent the most conflicting aspects that influence watershed management politics. Actually, flood plains have been the preferred places for socio-economical activities, due to the availability of water, fertility of soil and the easiness of agricultural soil exploitation. Sometimes the bed and planform profile adjustments of a river, as a consequence of natural processes, can impede some anthropogenic activities in agriculture, such as the erosion of areas used for crops, the impossibility of water diversion, the deposition of pollutants on the ground, with effects on the economy and on the social life of local communities. In these cases watershed basin management should either balance the opposite demands, as the protection of economic activities (that implies generally canalized rivers and levees construction) and the need of favouring the river morphological stability, allowing the flooding in the inundation areas. In the paper a case study in Piemonte region (Tortona irrigation district) is shown and discussed. The effects of the Scrivia river planform adjustment on water diversion and soil erodibility force the local community and the authority of the irrigation district to ask for flood protection and river bed excavation. A mathematical model is also applied to study the effects of local river channel excavation on flood risk. Some countermeasures are also suggested to properly balance the opposite needs in the frame of a watershed basin management.

  2. Realities of the Watershed Management Approach: The Magat Watershed Experience

    OpenAIRE

    Elazegui, Dulce D.; Combalicer, Edwin A.

    2004-01-01

    This paper aims to showcase the experience of the Magat watershed in the implementation of the watershed management approach. Magat watershed was declared as a forest-reservation area through Proclamation No. 573 on June 26, 1969 because of its great importance to human survival and environmental balance in the region. The Magat case demonstrates the important role that ‘champions’ like the local government unit (LGU) could play in managing the country’s watersheds. With the Nueva Viscaya pro...

  3. Rainwater Wildlife Area, Watershed Management Plan, A Columbia Basin Wildlife Mitigation Project, 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2002-03-01

    This Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary. The purpose of the project is

  4. A system method for the assessment of integrated water resources management (IWRM) in mountain watershed areas: the case of the "Giffre" watershed (France).

    Science.gov (United States)

    Charnay, Bérengère

    2011-07-01

    In the last fifty years, many mountain watersheds in temperate countries have known a progressive change from self-standing agro-silvo-pastoral systems to leisure dominated areas characterized by a concentration of tourist accommodations, leading to a drinking water peak during the winter tourist season, when the water level is lowest in rivers and sources. The concentration of water uses increases the pressure on "aquatic habitats" and competition between uses themselves. Consequently, a new concept was developed following the international conferences in Dublin (International Conference on Water and the Environment - ICWE) and Rio de Janeiro (UN Conference on Environment and Development), both in 1992, and was broadly acknowledged through international and European policies. It is the concept of Integrated Water Resource Management (IWRM). It meets the requirements of different uses of water and aquatic zones whilst preserving the natural functions of such areas and ensuring a satisfactory economic and social development. This paper seeks to evaluate a local water resources management system in order to implement it using IWRM in mountain watersheds. The assessment method is based on the systemic approach to take into account all components influencing a water resources management system at the watershed scale. A geographic information system was built to look into interactions between water resources, land uses, and water uses. This paper deals specifically with a spatial comparison between hydrologically sensitive areas and land uses. The method is applied to a French Alps watershed: the Giffre watershed (a tributary of the Arve in Haute-Savoie). The results emphasize both the needs and the gaps in implementing IWRM in vulnerable mountain regions.

  5. An Adaptive Watershed Management Assessment Based on Watershed Investigation Data

    Science.gov (United States)

    Kang, Min Goo; Park, Seung Woo

    2015-05-01

    The aim of this study was to assess the states of watersheds in South Korea and to formulate new measures to improve identified inadequacies. The study focused on the watersheds of the Han River basin and adopted an adaptive watershed management framework. Using data collected during watershed investigation projects, we analyzed the management context of the study basin and identified weaknesses in water use management, flood management, and environmental and ecosystems management in the watersheds. In addition, we conducted an interview survey to obtain experts' opinions on the possible management of watersheds in the future. The results of the assessment show that effective management of the Han River basin requires adaptive watershed management, which includes stakeholders' participation and social learning. Urbanization was the key variable in watershed management of the study basin. The results provide strong guidance for future watershed management and suggest that nonstructural measures are preferred to improve the states of the watersheds and that consistent implementation of the measures can lead to successful watershed management. The results also reveal that governance is essential for adaptive watershed management in the study basin. A special ordinance is necessary to establish governance and aid social learning. Based on the findings, a management process is proposed to support new watershed management practices. The results will be of use to policy makers and practitioners who can implement the measures recommended here in the early stages of adaptive watershed management in the Han River basin. The measures can also be applied to other river basins.

  6. Innovative assessment tools to improve water quality and watershed management in farming areas.

    Science.gov (United States)

    Merot, Philippe; Aurousseau, Pierre; Gascuel-Odoux, Chantal; Durand, Patrick

    2009-01-01

    A lot of initiatives for improving water quality have been developed over the last 15 y in Brittany in response to degradation induced by intensive farming and under the pressure of European policy and environmental organizations. This has involved the partnerships of farmer organizations, organizations in charge of rural affairs, research and formation institutes, and environmental nongovernmental organizations. In this paper, we present 2 complementary aspects of an original, and possibly efficient, water policy within the framework of water management in a medium-sized watershed, including 1) development of new methods of diagnostic and decision support based on participative approaches and 2) development of new methods to assess the current status and effect of alternative scenarios, taking into account the complexity of a system with strong agricultural and hydrological variability and a relatively long response time. The 1st series of methods, which deals with the buffering capacity of landscape structures, is close to a social learning approach; the 2nd illustrates the importance, for policy makers, of a precisely defined protocol for data monitoring and analysis and of the use of spatially distributed and dynamic models when water policy is based on an obligation of results. In spite of the coexistence of all the necessary constituents of a coherent policy, it seems difficult to build. The state of current water quality illustrates the importance and limitations of incentive policy.

  7. Improvement in health and empowerment of families as a result of watershed management in a tribal area in India - a qualitative study

    OpenAIRE

    2013-01-01

    Background Tribal people in India, as in other parts of the world, reside mostly in forests and/or hilly terrains. Water scarcity and health problems related to it are their prime concern. Watershed management can contribute to resolve their health related problems and can put them on a path of socio-economic development. Integrated management of land, water and biomass resources within a watershed, i.e. in an area or a region which contributes rainfall water to a river or lake, is referred t...

  8. Assessing the costs and benefits of improved land management practices in three watershed areas in Ethiopia

    Directory of Open Access Journals (Sweden)

    Abonesh Tesfaye

    2016-03-01

    Full Text Available Unsustainable land use management and the resulting soil erosion are among the most pervasive problems in rural Ethiopia, where most of the country’s people live, jeopardizing food security. Despite various efforts to introduce soil conservation measures and assess their costs and benefits, it is unclear how efficient these measures are from an economic point of view in securing food production. This paper examines the costs and benefits of three soil conservation measures applied in the country in three different rural districts facing different degrees of soil erosion problems using survey data collected from 750 farm households. A production function is estimated to quantify the costs and benefits of more sustainable land use management practices. We show that the soil conservation measures significantly increase productivity and hence food security. Comparing the costs and benefits, the results indicate that implementing soil conservation measures would benefit farm communities in the case study areas through increased grain productivity and food security.

  9. NYC Reservoirs Watershed Areas (HUC 12)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This NYC Reservoirs Watershed Areas (HUC 12) GIS layer was derived from the 12-Digit National Watershed Boundary Database (WBD) at 1:24,000 for EPA Region 2 and...

  10. Multiagent distributed watershed management

    Science.gov (United States)

    Giuliani, M.; Castelletti, A.; Amigoni, F.; Cai, X.

    2012-04-01

    Deregulation and democratization of water along with increasing environmental awareness are challenging integrated water resources planning and management worldwide. The traditional centralized approach to water management, as described in much of water resources literature, is often unfeasible in most of the modern social and institutional contexts. Thus it should be reconsidered from a more realistic and distributed perspective, in order to account for the presence of multiple and often independent Decision Makers (DMs) and many conflicting stakeholders. Game theory based approaches are often used to study these situations of conflict (Madani, 2010), but they are limited to a descriptive perspective. Multiagent systems (see Wooldridge, 2009), instead, seem to be a more suitable paradigm because they naturally allow to represent a set of self-interested agents (DMs and/or stakeholders) acting in a distributed decision process at the agent level, resulting in a promising compromise alternative between the ideal centralized solution and the actual uncoordinated practices. Casting a water management problem in a multiagent framework allows to exploit the techniques and methods that are already available in this field for solving distributed optimization problems. In particular, in Distributed Constraint Satisfaction Problems (DCSP, see Yokoo et al., 2000), each agent controls some variables according to his own utility function but has to satisfy inter-agent constraints; while in Distributed Constraint Optimization Problems (DCOP, see Modi et al., 2005), the problem is generalized by introducing a global objective function to be optimized that requires a coordination mechanism between the agents. In this work, we apply a DCSP-DCOP based approach to model a steady state hypothetical watershed management problem (Yang et al., 2009), involving several active human agents (i.e. agents who make decisions) and reactive ecological agents (i.e. agents representing

  11. Imagined Communities, Contested Watersheds: Challenges to Integrated Water Resources Management in Agricultural Areas

    Science.gov (United States)

    Ferreyra, Cecilia; de Loe, Rob C.; Kreutzwiser, Reid D.

    2008-01-01

    Integrated water resources management is one of the major bottom-up alternatives that emerged during the 1980s in North America as part of the trend towards more holistic and participatory styles of environmental governance. It aims to protect surface and groundwater resources by focusing on the integrated and collaborative management of land and…

  12. Community-Based Integrated Watershed Management

    Institute of Scientific and Technical Information of China (English)

    Li Qianxiang; Kennedy N.logbokwe; Li Jiayong

    2005-01-01

    Community-based watershed management is different from the traditional natural resources management. Traditional natural resources management is a way from up to bottom, but the community-based watershed management is from bottom to up. This approach focused on the joining of different stakeholders in integrated watershed management, especially the participation of the community who has been ignored in the past. The purpose of this paper is to outline some of the important basic definitions, concepts and operational framework for initiating community-based watershed management projects and programs as well as some successes and practical challenges associated with the approach.

  13. Impact of Integrated Watershed Management on Complex Interlinked Factors Influencing Health: Perceptions of Professional Stakeholders in a Hilly Tribal Area of India

    Directory of Open Access Journals (Sweden)

    Sandeep S. Nerkar

    2016-03-01

    Full Text Available Lack of access to water has a significant impact on the health of people in tribal areas, where water in households as well as for productive purposes is essential for life. In resource-limited settings such as hilly tribal areas, implementation of an integrated watershed management programme (IWMP can have a significant impact on public health by providing a solution to water scarcity and related problems. The professional stakeholders in rural healthcare and development administration are important pillars of the system that implements various programmes and policies of government and non-government organizations, and act as facilitators for the improvement of public health in tribal areas. Information about the perceptions of these stakeholders on public health implications of the integrated watershed management programme is important in this context. A qualitative study was conducted using face to face semi-structured interviews and focus group discussions (FGDs with stakeholders involved in healthcare provision, education and development administration. The transcripts of interviews and FGDs were analyzed using manifest and latent content analysis. The perceptions and experiences shared by healthcare and development administration stakeholders suggest that implementation of IWMP in tribal areas helps efficient water and agriculture management, which results in improved socio-economic conditions that lead to positive health outcomes.

  14. Impact of Integrated Watershed Management on Complex Interlinked Factors Influencing Health: Perceptions of Professional Stakeholders in a Hilly Tribal Area of India.

    Science.gov (United States)

    Nerkar, Sandeep S; Tamhankar, Ashok J; Johansson, Eva; Lundborg, Cecilia Stålsby

    2016-03-04

    Lack of access to water has a significant impact on the health of people in tribal areas, where water in households as well as for productive purposes is essential for life. In resource-limited settings such as hilly tribal areas, implementation of an integrated watershed management programme (IWMP) can have a significant impact on public health by providing a solution to water scarcity and related problems. The professional stakeholders in rural healthcare and development administration are important pillars of the system that implements various programmes and policies of government and non-government organizations, and act as facilitators for the improvement of public health in tribal areas. Information about the perceptions of these stakeholders on public health implications of the integrated watershed management programme is important in this context. A qualitative study was conducted using face to face semi-structured interviews and focus group discussions (FGDs) with stakeholders involved in healthcare provision, education and development administration. The transcripts of interviews and FGDs were analyzed using manifest and latent content analysis. The perceptions and experiences shared by healthcare and development administration stakeholders suggest that implementation of IWMP in tribal areas helps efficient water and agriculture management, which results in improved socio-economic conditions that lead to positive health outcomes.

  15. Curative vs. preventive management of nitrogen transfers in rural areas: lessons from the case of the Orgeval watershed (Seine River basin, France).

    Science.gov (United States)

    Garnier, J; Billen, G; Vilain, G; Benoit, M; Passy, P; Tallec, G; Tournebize, J; Anglade, J; Billy, C; Mercier, B; Ansart, P; Azougui, A; Sebilo, M; Kao, C

    2014-11-01

    The Orgeval watershed (104 km(2)) is a long-term experimental observatory and research site, representative of rural areas with intensive cereal farming of the temperate world. Since the past few years, we have been carrying out several studies on nitrate source, transformation and transfer of both surface and groundwaters in relation with land use and agriculture practices in order to assess nitrate (NO3(-)) leaching, contamination of aquifers, denitrification processes and associated nitrous oxide (N2O) emissions. A synthesis of these studies is presented to establish a quantitative diagnosis of nitrate contamination and N2O emissions at the watershed scale. Taking this watershed as a practical example, we compare curative management measures, such as pond introduction, and preventive measures, namely conversion to organic farming practices, using model simulations. It is concluded that only preventive measures are able to reduce the NO3(-) contamination level without further increasing N2O emissions, a result providing new insights for future management bringing together water-agro-ecosystems.

  16. 18 CFR 801.9 - Watershed management.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Watershed management... GENERAL POLICIES § 801.9 Watershed management. (a) The character, extent, and quality of water resources... management including soil and water conservation measures, land restoration and rehabilitation,...

  17. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development…

  18. Engaging Watershed Stakeholders for Cost-Effective Environmental Management Planning with "Watershed Manager"

    Science.gov (United States)

    Williams, Jeffery R.; Smith, Craig M.; Roe, Josh D.; Leatherman, John C.; Wilson, Robert M.

    2012-01-01

    "Watershed Manager" is a spreadsheet-based model that is used in extension education programs for learning about and selecting cost-effective watershed management practices to reduce soil, nitrogen, and phosphorus losses from cropland. It can facilitate Watershed Restoration and Protection Strategy (WRAPS) stakeholder groups' development of…

  19. Application of watershed modeling system (WMS) for integrated management of a watershed in Turkey.

    Science.gov (United States)

    Erturk, Ali; Gurel, Melike; Baloch, Mansoor Ahmed; Dikerler, Teoman; Varol, Evren; Akbulut, Neslihan; Tanik, Aysegul

    2006-01-01

    Watershed models, that enable the quantification of current and future pollution loading impacts, are essential tools to address the functions and conflicts faced in watershed planning and management. In this study, the Watershed Modeling System (WMS) version 7.1 was used for the delineation of boundaries of Koycegiz Lake-Dalyan Lagoon watershed located in the southwest of Turkey at the Mediterranean Sea coast. A Digital Elevation Model (DEM) was created for one of the major streams of the watershed, namely, Kargicak Creek by using WMS, and DEM data were further used to extract stream networks and delineate the watershed boundaries. Typical properties like drainage areas, characteristic length and slope of sub-drainage areas have also been determined to be used as model inputs in hydrological and diffuse pollution modeling. Besides, run-off hydrographs for the sub-drainages have been calculated using the Rational Method, which produces valuable data for calculating the time variable inflow and input pollution loads to be further utilized in the future water quality models of the Creek. Application of WMS in the study has shown that, it is capable to visualize the results in establishing watershed management strategies.

  20. Land protection plan : Bear River Watershed Conservation Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The U.S. Fish and Wildlife Service is establishing a conservation area for the Bear River watershed in Idaho, Utah, and Wyoming. The Bear River Watershed...

  1. Environmental indicators as an integrated management instrument for watersheds

    Directory of Open Access Journals (Sweden)

    Roxane Lopes de Mello

    2013-12-01

    Full Text Available Environmental problems at the watershed level are complex and require solutions that minimize socioeconomic, environmental, and political-institutional impacts. Within this context, a crosscutting analysis of concepts related to sustainable development, sustainable agriculture, watershed structure, and the use of indicators to measure local sustainability is of paramount importance for planning development at the local level. The objective of this research was to collect information related to management practices and rural development regarding the watersheds of Ribeirão Cachoeirinha and Córrego do Meio in the municipality of São Luiz do Paraitinga, SP. The goal was to propose sustainability indicators that would support an integrated watershed management strategy and promote sustainable development. Indicators should be based on the sustainability of watershed activities, be useful tools for implementing sustainable development and serve as reference in the decision-making process. Methods involved a general characterization of the area and the community using field surveys and published sources. The criteria utilized for defining the boundaries of the area were based on the Watershed State Program developed by the Agriculture and Supply Secretariat of the State of São Paulo. The results led to the development of 83 sustainability indicators and indicated the need for the community to develop an integrated strategy to promote local sustainable development.

  2. Land degradation and integrated watershed management in India

    Directory of Open Access Journals (Sweden)

    Suraj Bhan

    2013-06-01

    Government of India has launched various centre-sector, state-sector and foreign aided schemes for prevention of land degradation, reclamation of special problem areas for ensuring productivity of the land, preservation of land resources and improvement of ecology and environment. These schemes are being implemented on watershed basis in rainfed areas. Soil conservation measures and reclamation of degraded lands are decided considering the land capability and land uses. The efforts made so far resulted in enhancement of agricultural production and productivity of lands, increase in employment generation, improving the environment of the areas and socio-economic upgradation of the people. Integrated watershed management approach has been adopted as a key national strategy for sustainable development of rural areas. This has been proved by conducting monitoring and impact evaluation studies of the integrated watershed projects by external agencies.

  3. Integrated Resource Management at a Watershed Scale

    Science.gov (United States)

    Byrne, J. M.; MacDonald, R. J.; Cairns, D.; Barnes, C. C.; Mirmasoudi, S. S.; Lewis, D.

    2014-12-01

    Watershed hydrologists, managers and planners have a long list of resources to "manage." Our group has worked for over a decade to develop and apply the GENESYS (Generate Earth Systems Science) high-resolution spatial hydrometeorological model. GENESYS was intended for modelling of alpine snowpack, and that work has been the subject of a series of hydrometeorology papers that applied the model to evaluate how climate change may impact water resources for a series of climate warming scenarios through 2100. GENESYS has research modules that have been used to assess alpine glacier mass balance, soil water and drought, forest fire risk under climate change, and a series of papers linking GENESYS to a water temperature model for small headwater streams. Through a major commercialization grant, we are refining, building, adopting, and adapting routines for flood hydrology and hydraulics, surface and groundwater storage and runoff, crop and ecosystem soil water budgets, and biomass yields. The model will be available for research collaborations in the near future. The central goal of this development program is to provide a series of research and development tools for non-profit integrated resource management in the developed and developing world. A broader question that arises is what are the bounds of watershed management, if any? How long should our list of "managed" resources be? Parallel work is evaluating the relative values of watershed specialists managing many more resources with the watershed. Hydroelectric power is often a key resource complimentary to wind, solar and biomass renewable energy developments; and biomass energy is linked to water supply and agriculture. The August 2014 massive tailings dam failure in British Columbia threatens extensive portions of the Fraser River sockeye salmon run, millions of fish, and there are concerns about long-term contamination of water supplies for many British Columbians. This disaster, and many others that may occur

  4. Watershed Management Optimization Support Tool (WMOST) v2: Theoretical Documentation

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...

  5. Using a watershed-based approach to manage and protect water resources in the Bear Canyon Watershed, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Roth, F.J. [Univ. of New Mexico, Albuquerque, NM (United States)

    1995-12-31

    Depending upon how people use land in a watershed, whether it be farming, livestock grazing, timber harvesting, mining, urbanization, or even recreation, all have significant impacts on the water moving through that watershed. This paper will focus on the urban watershed and how stormwater runoff from urbanization affects erosion, sedimentation, and water quality. It also will explore the potential of a watershed as the basis for managing and protecting water resources. Watershed-based management offers a clear look at how land-use changes affect not only water quality but also erosion and sedimentation; in addition, this approach develops preventive strategies to restore those affected water and land resources. The preventive strategies the author uses for this watershed can be applied to other New Mexico urban watersheds. This paper is divided into three parts. The first part shows how past and present land-use activities affect erosion, sedimentation, and water quality in the Bear Canyon arroyo system. The second part provides solutions to the problems of soil erosion and stormwater pollution in the urban areas through government intervention. The third part discusses how Best Management Practices (BMPs) can be used to limit or reduce stormwater pollution in residential and industrial areas.

  6. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution.

    Science.gov (United States)

    Hobbie, Sarah E; Finlay, Jacques C; Janke, Benjamin D; Nidzgorski, Daniel A; Millet, Dylan B; Baker, Lawrence A

    2017-04-03

    Managing excess nutrients remains a major obstacle to improving ecosystem service benefits of urban waters. To inform more ecologically based landscape nutrient management, we compared watershed inputs, outputs, and retention for nitrogen (N) and phosphorus (P) in seven subwatersheds of the Mississippi River in St. Paul, Minnesota. Lawn fertilizer and pet waste dominated N and P inputs, respectively, underscoring the importance of household actions in influencing urban watershed nutrient budgets. Watersheds retained only 22% of net P inputs versus 80% of net N inputs (watershed area-weighted averages, where net inputs equal inputs minus biomass removal) despite relatively low P inputs. In contrast to many nonurban watersheds that exhibit high P retention, these urban watersheds have high street density that enhanced transport of P-rich materials from landscapes to stormwater. High P exports in storm drainage networks and yard waste resulted in net P losses in some watersheds. Comparisons of the N/P stoichiometry of net inputs versus storm drain exports implicated denitrification or leaching to groundwater as a likely fate for retained N. Thus, these urban watersheds exported high quantities of N and P, but via contrasting pathways: P was exported primarily via stormwater runoff, contributing to surface water degradation, whereas N losses additionally contribute to groundwater pollution. Consequently, N management and P management require different strategies, with N management focusing on reducing watershed inputs and P management also focusing on reducing P movement from vegetated landscapes to streets and storm drains.

  7. Diagnostic Systems Approach to Watershed Management

    Energy Technology Data Exchange (ETDEWEB)

    Davisson, M L

    2001-02-23

    The water quality of discharge from the surface water system is ultimately dictated by land use and climate within the watershed. Water quality has vastly improved from point source reduction measures, yet, non-point source pollutants continue to rise. 30 to 40% of rivers still do not meet water quality standards for reasons that include impact from urban storm water runoff, agricultural and livestock runoff, and loss of wetlands. Regulating non-point source pollutants proves to be difficult since specific dischargers are difficult to identify. However, parameters such as dissolved organic carbon (DOC) limit the amounts of chlorination due to simultaneous disinfection by-product formation. The concept of watershed management has gained much ground over the years as a means to resolve non-point source problems. Under this management scheme stakeholders in a watershed collectively agree to the nature and extent of non-point sources, determine water quality causes using sound scientific approaches, and together develop and implement a corrective plan. However, the ''science'' of watershed management currently has several shortcomings according to a recent National Research Council report. The scientific component of watershed management depends on acquiring knowledge that links water quality sources with geographic regions. However, there is an observational gap in this knowledge. In particular, almost all the water quality data that exists at a utility are of high frequency collected at a single point over a long period of time. Water quality data for utility purposes are rarely collected over an entire watershed. The potential is high, however, for various utilities in a single watershed to share and integrate water quality data, but no regulatory incentives exist at this point. The only other available water quality data originate from special scientific studies. Unfortunately these data rarely have long-term records and are usually tailored to

  8. A Spatially Explicit Decision Support System for Watershed-Scale Management of Salmon

    Directory of Open Access Journals (Sweden)

    Michael Maher

    2008-12-01

    Full Text Available Effective management for wide-ranging species must be conducted over vast spatial extents, such as whole watersheds and regions. Managers and decision makers must often consider results of multiple quantitative and qualitative models in developing these large-scale multispecies management strategies. We present a scenario-based decision support system to evaluate watershed-scale management plans for multiple species of Pacific salmon in the Lewis River watershed in southwestern Washington, USA. We identified six aquatic restoration management strategies either described in the literature or in common use for watershed recovery planning. For each of the six strategies, actions were identified and their effect on the landscape was estimated. In this way, we created six potential future landscapes, each estimating how the watershed might look under one of the management strategies. We controlled for cost across the six modeled strategies by creating simple economic estimates of the cost of each restoration or protection action and fixing the total allowable cost under each strategy. We then applied a suite of evaluation models to estimate watershed function and habitat condition and to predict biological response to those habitat conditions. The concurrent use of many types of models and our spatially explicit approach enables analysis of the trade-offs among various types of habitat improvements and also among improvements in different areas within the watershed. We report predictions of the quantity, quality, and distribution of aquatic habitat as well as predictions for multiple species of species-specific habitat capacity and survival rates that might result from each of the six management strategies. We use our results to develop four on-the-ground watershed management strategies given alternative social constraints and manager profiles. Our approach provides technical guidance in the study watershed by predicting future impacts of potential

  9. Open Source GIS based integrated watershed management

    Science.gov (United States)

    Byrne, J. M.; Lindsay, J.; Berg, A. A.

    2013-12-01

    Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address

  10. Optimal Subdivision for Treatment and Management of Catastrophic Landslides in a Watershed Using Topographic Factors

    Science.gov (United States)

    Lin, Chao-Yuan; Fu, Kuei-Lin; Lin, Cheng-Yu

    2016-11-01

    Recent extreme rainfall events led to many landslides due to climate changes in Taiwan. How to effectively promote post-disaster treatment and/or management works in a watershed/drainage basin is a crucial issue. Regarding the processes of watershed treatment and/or management works, disaster hotspot scanning and treatment priority setup should be carried out in advance. A scanning method using landslide ratio to determine the appropriate outlet of an interested watershed, and an optimal subdivision system with better homogeneity and accuracy in landslide ratio estimation were developed to help efficient executions of treatment and/or management works. Topography is a key factor affecting watershed landslide ratio. Considering the complexity and uncertainty of the natural phenomenon, multivariate analysis was applied to understand the relationship between topographic factors and landslide ratio in the interested watershed. The concept of species-area curve, which is usually adopted at on-site vegetation investigation to determinate the suitable quadrate size, was used to derive the optimal threshold in subdivisions. Results show that three main component axes including factors of scale, network and shape extracted from Digital Terrain Model coupled with areas of landslide can effectively explain the characteristics of landslide ratio in the interested watershed, and a relation curve obtained from the accuracy of landslide ratio classification and number of subdivisions could be established to derive optimal subdivision of the watershed. The subdivision method promoted in this study could be further used for priority rank and benefit assessment of landslide treatment in a watershed.

  11. User friendly tools to target vulnerable areas at watershed scale: evaluation of the soil vulnerability and conductivity claypan indices

    Science.gov (United States)

    One finding of the Conservation Effects Assessment Program (CEAP) watershed studies was that Best Management practices (BMPs) were not always installed where most needed: in many watersheds, only a fraction of BMPs were implemented in the most vulnerable areas. While complex computer simulation mode...

  12. SUSTAIN – A Framework for Placement of Best Management Practices in Urban Watersheds to Protect Water Quality

    Science.gov (United States)

    Watershed and stormwater managers need modeling tools to evaluate alternative plans for water quality management and flow abatement techniques in urban and developing areas. A watershed-scale, decision-support framework that is based on cost optimization is needed to support gov...

  13. Integrating contributing areas and indexing phosphorus loss from agricultural watersheds

    Science.gov (United States)

    Most states in the U.S. have adopted P Indexing to guide P-based management of agricultural fields by identifying the relative risk of P loss at farm and watershed scales. To a large extent, this risk is based on hydrologic principles whereby frequently occurring storms have a given potential to in...

  14. Watershed management program on Santiago Island, Cape Verde

    Science.gov (United States)

    Lopes, Vicente L.; Meyer, John

    1993-01-01

    The Watershed Management Program (WMP) was put into operation in early 1985 on Santiago Island, Cape Verde, with the stated purpose, “to develop and protect the soil and water resources of the Program-designated watersheds … to stabilize the natural environment and increase agricultural production potential in the Program area.” The approach to soil and water conservation in the program has been to build erosion and flood control structures (engineering approach) and plant trees (biological approach) to decrease rill and gully erosion, trap sediment behind control structures, provide flood protection, increase infiltration, increase fuelwood and fodder production, and increase water supplies for irrigation. There have been many successes resulting from specific management activities, but flawed approach or implementation in a few key areas has acted to impede the program's complete success, including lack of a scientific basis for evaluating its impact on soil and water conservation; poor design, placement, and maintenance of some major hydraulic structures; inadequate intervention in stabilizing farmlands or education of farmers and landowners in the need for and benefits of agroforestry; and incomplete integration of engineering and biological approaches.

  15. Integrating socio-economic and biophysical data to enhance watershed management and planning

    Science.gov (United States)

    Pirani, Farshad Jalili; Mousavi, Seyed Alireza

    2016-09-01

    Sustainability has always been considered as one of the main aspects of watershed management plans. In many developing countries, watershed management practices and planning are usually performed by integrating biophysical layers, and other existing layers which cannot be identified as geographic layers are ignored. We introduce an approach to consider some socioeconomic parameters which are important for watershed management decisions. Ganj basin in Chaharmahal-Bakhtiari Province was selected as the case study area, which includes three traditional sanctums: Ganj, Shiremard and Gerdabe Olya. Socioeconomic data including net agricultural income, net ranching income, population and household number, literacy rate, unemployment rate, population growth rate and active population were mapped within traditional sanctums and then were integrated into other biophysical layers. After overlaying and processing these data to determine management units, different quantitative and qualitative approaches were adopted to achieve a practical framework for watershed management planning and relevant plans for homogeneous units were afterwards proposed. Comparing the results with current plans, the area of allocated lands to different proposed operations considering both qualitative and quantitative approaches were the same in many cases and there was a meaningful difference with current plans; e.g., 3820 ha of lands are currently managed under an enclosure plan, while qualitative and quantitative approaches in this study suggest 1388 and 1428 ha to be allocated to this operation type, respectively. Findings show that despite the ambiguities and complexities, different techniques could be adopted to incorporate socioeconomic conditions in watershed management plans. This introductory approach will help to enhance watershed management decisions with more attention to societal background and economic conditions, which will presumably motivate local communities to participate in

  16. BMP analysis system for watershed-based stormwater management.

    Science.gov (United States)

    Zhen, Jenny; Shoemaker, Leslie; Riverson, John; Alvi, Khalid; Cheng, Mow-Soung

    2006-01-01

    Best Management Practices (BMPs) are measures for mitigating nonpoint source (NPS) pollution caused mainly by stormwater runoff. Established urban and newly developing areas must develop cost effective means for restoring or minimizing impacts, and planning future growth. Prince George's County in Maryland, USA, a fast-growing region in the Washington, DC metropolitan area, has developed a number of tools to support analysis and decision making for stormwater management planning and design at the watershed level. These tools support watershed analysis, innovative BMPs, and optimization. Application of these tools can help achieve environmental goals and lead to significant cost savings. This project includes software development that utilizes GIS information and technology, integrates BMP processes simulation models, and applies system optimization techniques for BMP planning and selection. The system employs the ESRI ArcGIS as the platform, and provides GIS-based visualization and support for developing networks including sequences of land uses, BMPs, and stream reaches. The system also provides interfaces for BMP placement, BMP attribute data input, and decision optimization management. The system includes a stand-alone BMP simulation and evaluation module, which complements both research and regulatory nonpoint source control assessment efforts, and allows flexibility in the examining various BMP design alternatives. Process based simulation of BMPs provides a technique that is sensitive to local climate and rainfall patterns. The system incorporates a meta-heuristic optimization technique to find the most cost-effective BMP placement and implementation plan given a control target, or a fixed cost. A case study is presented to demonstrate the application of the Prince George's County system. The case study involves a highly urbanized area in the Anacostia River (a tributary to Potomac River) watershed southeast of Washington, DC. An innovative system of

  17. Watershed management for water supply in developing world city

    Institute of Scientific and Technical Information of China (English)

    车越; 杨凯; 吕永鹏; 张宏伟; 吴健; 杨永川

    2009-01-01

    The water supply system in Shanghai provides about 2.55×109 m3/a,of which more than 50% is derived from the Upper Huangpu River Watershed. During the process of rapid urbanization and industrialization,the role of watershed management in sustaining clean drinking water quality at surface sources is emphasized in Shanghai. This paper proposes an integrated watershed management (IWM) approach in the context of the current pressures and problems of source water protection at the Upper Huangpu River Watershed in Shanghai. Based on data sets of land use,water quality and regional development,multi-criteria analysis and system dynamics techniques were used to evaluate effectiveness and improve decision-making of source water protection at a watershed scale. Different scenarios for potential source water quality changing from 2008 to 2020 were predicted,based on a systematic analysis and system dynamics modeling,a watershed management approach integrating land use prioritization and stakeholder involvement was designed to conserve the source water quality. The integrated watershed management (IWM) approach may help local authorities better understand and address the complex source water system,and develop improved safe drinking water strategies to better balance urban expansion and source water protection.

  18. Optimal allocation of watershed management cost among different water users

    Institute of Scientific and Technical Information of China (English)

    Wang Zanxin; Margaret M.Calderon

    2006-01-01

    The issue of water scarcity highlights the importance of watershed management. A sound watershed management should make all water users share the incurred cost. This study analyzes the optimal allocation of watershed management cost among different water users. As a consumable, water should be allocated to different users the amounts in which their marginal utilities (Mus) or marginal products (MPs) of water are equal. The value of Mus or MPs equals the water price that the watershed manager charges. When water is simultaneously used as consumable and non-consumable, the watershed manager produces the quantity of water in which the sum of Mus and/or MPs for the two types of uses equals the marginal cost of water production. Each water user should share the portion of watershed management cost in the percentage that his MU or MP accounts for the sum of Mus and/or MPs. Thus, the price of consumable water does not equal the marginal cost of water production even if there is no public good.

  19. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    OpenAIRE

    Qiu, Zeyuan

    2013-01-01

    Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs) have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMP...

  20. Iskuulpa Watershed Management Plan : A Five-Year Plan for Protecting and Enhancing Fish and Wildlife Habitats in the Iskuulpa Watershed.

    Energy Technology Data Exchange (ETDEWEB)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2003-01-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to protect, enhance, and mitigate wildlife and wildlife habitat and watershed resources in the Iskuulpa Watershed. The Iskuulpa Watershed Project was approved as a Columbia River Basin Wildlife Fish and Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1998. Iskuulpa will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the John Day and McNary Hydroelectric facilities on the Columbia River. By funding the enhancement and operation and maintenance of the Iskuulpa Watershed, BPA will receive credit towards their mitigation debt. The purpose of the Iskuulpa Watershed management plan update is to provide programmatic and site-specific standards and guidelines on how the Iskuulpa Watershed will be managed over the next three years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management.

  1. An Integrated Mobile Application to Improve the Watershed Management in Taiwan

    Science.gov (United States)

    Chou, T. Y.; Chen, M. H.; Lee, C. Y.

    2015-12-01

    This study aims to focus on the application of information technology on the reservoir watershed management. For the civil and commercial water usage, reservoirs and its upstream plays a significant role due to water scarcity and inequality, especially in Taiwan. Due to the progress of information technology, apply it can improve the efficiency and accuracy of daily affairs significantly which already proved by previous researches. Taipei Water Resource District (TWRD) is selected as study area for this study, it is the first reservoir watershed which authorized as special protection district by urban planning act. This study has designed a framework of mobile application, which addressed three types of public affairs relate to watershed management, includes building management, illegal land-use investigation, and a dashboard of real time stream information. This mobile application integrated a dis-connected map and interactive interface to collect, record and calculate field information which helps the authority manage the public affairs more efficiency.

  2. Toolkit of Available EPA Green Infrastructure Modeling Software: Watershed Management Optimization Support Tool (WMOST)

    Science.gov (United States)

    Watershed Management Optimization Support Tool (WMOST) is a software application designed tofacilitate integrated water resources management across wet and dry climate regions. It allows waterresources managers and planners to screen a wide range of practices across their watersh...

  3. Relating sediment impacts on coral reefs to watershed sources, processes and management: a review.

    Science.gov (United States)

    Bartley, Rebecca; Bainbridge, Zoe T; Lewis, Stephen E; Kroon, Frederieke J; Wilkinson, Scott N; Brodie, Jon E; Silburn, D Mark

    2014-01-15

    Modification of terrestrial sediment fluxes can result in increased sedimentation and turbidity in receiving waters, with detrimental impacts on coral reef ecosystems. Preventing anthropogenic sediment reaching coral reefs requires a better understanding of the specific characteristics, sources and processes generating the anthropogenic sediment, so that effective watershed management strategies can be implemented. Here, we review and synthesise research on measured runoff, sediment erosion and sediment delivery from watersheds to near-shore marine areas, with a strong focus on the Burdekin watershed in the Great Barrier Reef region, Australia. We first investigate the characteristics of sediment that pose the greatest risk to coral reef ecosystems. Next we track this sediment back from the marine system into the watershed to determine the storage zones, source areas and processes responsible for sediment generation and run-off. The review determined that only a small proportion of the sediment that has been eroded from the watershed makes it to the mid and outer reefs. The sediment transported >1 km offshore is generally the clay to fine silt (erosion is the dominant process responsible for the fine sediment exported from these watersheds in recent times, although further work on the particle size of this material is required. Maintaining average minimum ground cover >75% will likely be required to reduce runoff and prevent sub-soil erosion; however, it is not known whether ground cover management alone will reduce sediment supply to ecologically acceptable levels.

  4. Developing Participatory Models of Watershed Management in the Sugar Creek Watershed (Ohio, USA

    Directory of Open Access Journals (Sweden)

    Jason Shaw Parker

    2009-02-01

    Full Text Available The US Environmental Protection Agency (USEPA has historically used an expert-driven approach to water and watershed management. In an effort to create regulatory limits for pollution-loading to streams in the USA, the USEPA is establishing limits to the daily loading of nutrients specific to each watershed, which will affect many communities in America. As a part of this process, the Ohio Environmental Protection Agency ranked the Sugar Creek Watershed as the second "most-impaired" watershed in the State of Ohio. This article addresses an alternative approach to watershed management and that emphasises a partnership of farmers and researchers, using community participation in the Sugar Creek to establish a time-frame with goals for water quality remediation. Of interest are the collaborative efforts of a team of farmers, researchers, and agents from multiple levels of government who established this participatory, rather than expert-driven, programme. This new approach created an innovative and adaptive model of non-point source pollution remediation, incorporating strategies to address farmer needs and household decision making, while accounting for local and regional farm structures. In addition, this model has been adapted for point source pollution remediation that creates collaboration among local farmers and a discharge-permitted business that involves nutrient trading.

  5. Impact of water management interventions on hydrology and ecosystem services in Garhkundar-Dabar watershed of Bundelkhand region, Central India

    Science.gov (United States)

    Singh, Ramesh; Garg, Kaushal K.; Wani, Suhas P.; Tewari, R. K.; Dhyani, S. K.

    2014-02-01

    Bundelkhand region of Central India is a hot spot of water scarcity, land degradation, poverty and poor socio-economic status. Impacts of integrated watershed development (IWD) interventions on water balance and different ecosystem services are analyzed in one of the selected watershed of 850 ha in Bundelkhand region. Improved soil, water and crop management interventions in Garhkundar-Dabar (GKD) watershed of Bundelkhand region in India enhanced ET to 64% as compared to 58% in untreated (control) watershed receiving 815 mm annual average rainfall. Reduced storm flow (21% vs. 34%) along with increased base flow (4.5% vs. 1.2%) and groundwater recharge (11% vs. 7%) of total rainfall received were recorded in treated watershed as compared to untreated control watershed. Economic Water productivity and total income increased from 2.5 to 5.0 INR m-3 and 11,500 to 27,500 INR ha-1 yr-1 after implementing integrated watershed development interventions in GKD watershed, respectively. Moreover IWD interventions helped in reducing soil loss more than 50% compared to control watershed. The results demonstrated that integrated watershed management practices addressed issues of poverty in GKD watershed. Benefit to cost ratio of project interventions was found three and pay back period within four years suggest economic feasibility to scale-up IWD interventions in Bundelkhend region. Scaling-up of integrated watershed management in drought prone rainfed areas with enabling policy and institutional support is expected to promote equity and livelihood along with strengthening various ecosystem services, however, region-specific analysis is needed to assess trade-offs for downstream areas along with onsite impact.

  6. Multi-objective game-theory models for conflict analysis in reservoir watershed management.

    Science.gov (United States)

    Lee, Chih-Sheng

    2012-05-01

    This study focuses on the development of a multi-objective game-theory model (MOGM) for balancing economic and environmental concerns in reservoir watershed management and for assistance in decision. Game theory is used as an alternative tool for analyzing strategic interaction between economic development (land use and development) and environmental protection (water-quality protection and eutrophication control). Geographic information system is used to concisely illustrate and calculate the areas of various land use types. The MOGM methodology is illustrated in a case study of multi-objective watershed management in the Tseng-Wen reservoir, Taiwan. The innovation and advantages of MOGM can be seen in the results, which balance economic and environmental concerns in watershed management and which can be interpreted easily by decision makers. For comparison, the decision-making process using conventional multi-objective method to produce many alternatives was found to be more difficult.

  7. Development and implementation of a watershed management plan forLlac la Biche, Alberta, Canada.

    Science.gov (United States)

    White, J; Logan, M; Rawles, M

    2006-01-01

    Lakeland County is experiencing increasing developmental pressures arising from the oil and gas boom at nearby Fort McMurray. There is increased industrial traffic passing through the county, and 600 new residential lots are proposed in 2005, almost double from 5 years ago. Deteriorating surface water quality has been a concern in the area due to an increase in development and agriculture, while excessive fish harvesting and winterkills have impacted commercial and recreational fisheries. Today, walleye and pike populations in the lake remain collapsed and restocking efforts have not been successful. Due to the lack of studies done on the watershed, the county is leading a multidisciplinary research study which includes a baseline water quality study, riparian health assessments, land use mapping and ground-truthing and projects with the local health authority. This research has been summarized in a comprehensive state of the watershed report, which will be used to complete a watershed management plan for the Lac la Biche watershed. Recommendations from the state of the watershed report and watershed management plan will also be incorporated into municipal planning documents and recommend changes to the Municipal Government Act itself.

  8. Poverty within watershed and environmentally protected areas: the case of the indigenous community in Peninsular Malaysia.

    Science.gov (United States)

    Kari, Fatimah Binti; Masud, Muhammad Mehedi; Yahaya, Siti Rohani Binti; Saifullah, Md Khaled

    2016-03-01

    "Indigenous people" have been acknowledged as among the poorest and most socio-economically and culturally marginalized all over the world. This paper explores the socio-economic status of the indigenous people and their poverty profile within watershed and environmentally protected areas in Peninsular Malaysia. The findings of the study indicate that the "indigenous community" is likely to be poor if they live in environmentally sensitive and unprotected areas as compared to families under the new resettlement scheme. Inadequate access to basic education and employment contributed significantly to their poor economic status. The findings further reveal that the indigenous community is facing difficulties in receiving access and support in terms of basic needs such as housing, education, economic livelihood, and other social infrastructure. Moreover, the regulatory structure for the management of watershed areas as well as the emphasis for commodity crops such as palm oil and natural rubber have indirectly contributed toward the poverty level of the indigenous people.

  9. Watershed Management Optimization Support Tool (WMOST) v2: User Manual and Case Studies

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST) is a decision support tool that evaluates the relative cost-effectiveness of management practices at the local or watershed scale. WMOST models the environmental effects and costs of management decisions in a watershed c...

  10. Protected Areas, Waters with Public Rights Features designations (PRF), Published in 2009, 1:24000 (1in=2000ft) scale, Wisconsin DNR Bureau of Watershed Management.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Protected Areas dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2009. It is described as 'Waters...

  11. Protected Areas, Priority Navigable Waterway designations (PNW), Published in 2009, 1:24000 (1in=2000ft) scale, Wisconsin DNR Bureau of Watershed Management.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Protected Areas dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Other information as of 2009. It is described as 'Priority...

  12. Extent of Stream Burial and Relationships to Watershed Area, Topography, and Impervious Surface Area

    Directory of Open Access Journals (Sweden)

    Roy E. Weitzell

    2016-11-01

    Full Text Available Stream burial—the routing of streams through culverts, pipes, and concrete lined channels, or simply paving them over—is common during urbanization, and disproportionately affects small, headwater streams. Burial undermines the physical and chemical processes governing life in streams, with consequences for water quality and quantity that may amplify from headwaters to downstream receiving waters. Knowledge of the extent of stream burial is critical for understanding cumulative impacts to stream networks, and for future decision-making allowing for urban development while protecting ecosystem function. We predicted stream burial across the urbanizing Potomac River Basin (USA for each 10-m stream segment in the basin from medium-resolution impervious cover data and training observations obtained from high-resolution aerial photography in a GIS. Results were analyzed across a range in spatial aggregation, including counties and independent cities, small watersheds, and regular spatial grids. Stream burial was generally correlated with total impervious surface area (ISA, with areas exhibiting ISA above 30% often subject to elevated ratios of stream burial. Recurring patterns in burial predictions related to catchment area and topographic slope were also detected. We discuss these results in the context of physiographic constraints on stream location and urban development, including implications for environmental management of aquatic resources.

  13. Storm Event Suspended Sediment-Discharge Hysteresis and Controls in Agricultural Watersheds: Implications for Watershed Scale Sediment Management.

    Science.gov (United States)

    Sherriff, Sophie C; Rowan, John S; Fenton, Owen; Jordan, Philip; Melland, Alice R; Mellander, Per-Erik; hUallacháin, Daire Ó

    2016-02-16

    Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time. Flow-weighted event sediment export was further considered using multivariate techniques to delineate rainfall, stream hydrology, and antecedent moisture controls on sediment origins. Watersheds with low permeability (moderately- or poorly drained soils) with good surface hydrological connectivity, therefore, had contrasting hysteresis due to source location (hillslope versus channel bank). The well-drained watershed with reduced connectivity exported less sediment but, when watershed connectivity was established, the largest event sediment load of all watersheds occurred. Event sediment export was elevated in arable watersheds when low groundcover was coupled with high connectivity, whereas in the grassland watershed, export was attributed to wetter weather only. Hysteresis analysis successfully indicated contrasting seasonality, connectivity and source availability and is a useful tool to identify watershed specific sediment management practices.

  14. An object-oriented watershed management tool (QnD-VFS) to engage stakeholders in targeted implementation of filter strips in an arid surface irrigation area

    Science.gov (United States)

    Campo, M. A.; Perez-Ovilla, O.; Munoz-Carpena, R.; Kiker, G.; Ullman, J. L.

    2012-12-01

    Agricultural nonpoint source pollution cause the majority of the 1,224 different waterbodies failing to meet designated water use criteria in Washington. Although various best management practices (BMPs) are effective in mitigating agricultural pollutants, BMP placement is often haphazard and fails to address specific high-risk locations. Limited financial resources necessitate optimization of conservation efforts to meet water quality goals. Thus, there is a critical need to develop decision-making tools that target BMP implementation in order to maximize water quality protection. In addition to field parameters, it is essential to incorporate economic and social determinants in the decision-making process to encourage producer involvement. Decision-making tools that identify strategic pollution sources and integrate socio-economic factors will lead to more cost-effective water quality improvement, as well as encourage producer participation by incorporating real-world limitations. Therefore, this study examines vegetative filter strip use under different scenarios as a BMP to mitigate sediment and nutrients in the highly irrigated Yakima River Basin of central Washington. We developed QnD-VFS to integrate and visualize alternative, spatially-explicit, water management strategies and its economic impact. The QnDTM system was created as a decision education tool that incorporates management, economic, and socio- political issues in a user-friendly scenario framework. QnDTM, which incorporates elements of Multi-Criteria Decision Analysis (MCDA) and risk assessment, is written in object-oriented Java and can be deployed as a stand-alone program or a web-accessed tool. The model performs Euler numerical integration of various rate transformation and mass-balance transfer equations. The novelty of this object-oriented approach is that these differential equations are detailed in modular XML format for instantiation within the Java code. This design allows many levels

  15. Riverine threat indices to assess watershed condition and identify primary management capacity of agriculture natural resource management agencies.

    Science.gov (United States)

    Fore, Jeffrey D; Sowa, Scott P; Galat, David L; Annis, Gust M; Diamond, David D; Rewa, Charles

    2014-03-01

    Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture's Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.

  16. To manage inland fisheries is to manage at the social-ecological watershed scale.

    Science.gov (United States)

    Nguyen, Vivian M; Lynch, Abigail J; Young, Nathan; Cowx, Ian G; Beard, T Douglas; Taylor, William W; Cooke, Steven J

    2016-10-01

    Approaches to managing inland fisheries vary between systems and regions but are often based on large-scale marine fisheries principles and thus limited and outdated. Rarely do they adopt holistic approaches that consider the complex interplay among humans, fish, and the environment. We argue that there is an urgent need for a shift in inland fisheries management towards holistic and transdisciplinary approaches that embrace the principles of social-ecological systems at the watershed scale. The interconnectedness of inland fisheries with their associated watershed (biotic, abiotic, and humans) make them extremely complex and challenging to manage and protect. For this reason, the watershed is a logical management unit. To assist management at this scale, we propose a framework that integrates disparate concepts and management paradigms to facilitate inland fisheries management and sustainability. We contend that inland fisheries need to be managed as social-ecological watershed system (SEWS). The framework supports watershed-scale and transboundary governance to manage inland fisheries, and transdisciplinary projects and teams to ensure relevant and applicable monitoring and research. We discuss concepts of social-ecological feedback and interactions of multiple stressors and factors within/between the social-ecological systems. Moreover, we emphasize that management, monitoring, and research on inland fisheries at the watershed scale are needed to ensure long-term sustainable and resilient fisheries.

  17. Wastewater Management Alternatives for the Cleveland - Akron, Three Rivers Watershed Area. Technical Appendix - Phase II. System Design and Estimate of Cost.

    Science.gov (United States)

    1973-02-01

    certain instances in heavily urbanized areas. Deep Tunnel - Figure 32 represents the total capital cost for deep tunnel construction in shale . The...Practiced at South Tahoe", (WPRD 52-01-67), August, 1971. 4. Burgess § Niple, Ltd., "Project Cost Study" for Northeast Ohio Water Development Plan...21. Burgess & Niple, Ltd., "Design Criteria for Northeast and Southwest Ohio Water Development Plans", Ohio Department of Natural Resources

  18. Optimization Tool For Allocation Of Watershed Management Practices For Sediment And Nutrient Control

    Science.gov (United States)

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from nonpoint source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Herein...

  19. An Integrated Risk Management Model for Source Water Protection Areas

    Directory of Open Access Journals (Sweden)

    Shang-Lien Lo

    2012-10-01

    Full Text Available Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water quality. In this study, a quantitative risk model that uses hazard quotients for each water quality parameter was combined with a qualitative risk model that uses the relative risk level of potential pollution events in order to characterize the current condition and potential risk of watersheds providing drinking water. In a case study of Taipei Source Water Area in northern Taiwan, total coliforms and total phosphorus were the top two pollutants of concern. Intensive tea-growing and recreational activities around the riparian zone may contribute the greatest pollution to the watershed. Our risk assessment tool may be enhanced by developing, recording, and updating information on pollution sources in the water supply watersheds. Moreover, management authorities could use the resultant information to create watershed risk management plans.

  20. An integrated risk management model for source water protection areas.

    Science.gov (United States)

    Chiueh, Pei-Te; Shang, Wei-Ting; Lo, Shang-Lien

    2012-10-17

    Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water quality. In this study, a quantitative risk model that uses hazard quotients for each water quality parameter was combined with a qualitative risk model that uses the relative risk level of potential pollution events in order to characterize the current condition and potential risk of watersheds providing drinking water. In a case study of Taipei Source Water Area in northern Taiwan, total coliforms and total phosphorus were the top two pollutants of concern. Intensive tea-growing and recreational activities around the riparian zone may contribute the greatest pollution to the watershed. Our risk assessment tool may be enhanced by developing, recording, and updating information on pollution sources in the water supply watersheds. Moreover, management authorities could use the resultant information to create watershed risk management plans.

  1. Adaptive management of watersheds and related resources

    Science.gov (United States)

    Williams, Byron K.

    2009-01-01

    The concept of learning about natural resources through the practice of management has been around for several decades and by now is associated with the term adaptive management. The objectives of this paper are to offer a framework for adaptive management that includes an operational definition, a description of conditions in which it can be usefully applied, and a systematic approach to its application. Adaptive decisionmaking is described as iterative, learning-based management in two phases, each with its own mechanisms for feedback and adaptation. The linkages between traditional experimental science and adaptive management are discussed.

  2. A decision support system for phosphorus management at a watershed scale.

    Science.gov (United States)

    Djodjic, Faruk; Montas, Hubert; Shirmohammadi, Adel; Bergström, Lars; Ulén, Barbro

    2002-01-01

    Phosphorus (P) is one of the main nutrients controlling algal production in aquatic systems. Proper management of P in agricultural production systems can greatly enhance our ability to combat pollution of aquatic environments. To address this issue, a decision support system (DSS) consisting of the Maryland Phosphorus Index (PI), diagnosis expert system (ES), prescription ES, and a nonpoint-source pollution model, Ground Water Loading Effects of Agricultural Management Systems (GLEAMS), was developed and applied to an agricultural watershed in southern Sweden. This system can identify critical source areas (CSAs) regarding phosphorus losses within the watershed, make a diagnosis of probable causes, prescribe the most appropriate best management practices (BMPs), and test the environmental effects of the applied BMPs. The PI calculations identified small parts of the watershed as CSAs. Only 10.4% of the total watershed area in 1995 and 5.2% of the total watershed area in 1996 were classed as "high potential P movement." Four probable causes (high P level in soil, excessive P fertilization, stream proximity, and subsurface drainage) and three BMPs (riparian buffer strips, reduced P fertilizer application, and P fertilizer incorporation) were identified by a diagnosis and prescription expert system. The GLEAMS simulations conducted for one selected CSA field for a 24-yr period showed that the recommended BMP reduced runoff P losses by 55% and sediment P losses by 71%, if applied from the first year. Results showed that using DSS may enable us to select a proper BMP implementation strategy and to realize the beneficial effect of BMPs on a long-term basis.

  3. Multi-Objective Optimization and Multi-Model Analysis of Watershed Management Under Uncertainty

    Science.gov (United States)

    Shoemaker, C. A.; Akhtar, T.; Woodbury, J.

    2010-12-01

    Watershed Management planning can be assisted by the use of models that can incorporate the effect of management practices on hydrology and pollution transport under the effects of stochastic weather, including weather patterns influenced by climate change. However, such analysis is based usually on only one model (a set of equations) and the calibration of the model’s parameters to data. In this analysis we will discuss the use of two new multiobjective optimization methods for the incorporation of multiple criteria into choice of calibrated parameter values. One of these multiobjective methods (using radial basis functions) has been developed by our group, and a second new method from another group is based on Kriging. In addition we will compare these two new methods to the results obtained by the older (and widely used) NSGA-II multi-objective method on watershed models. We have developed two models and applied them to a large (1200 km2) northeastern watershed. The first model is based on SWAT2005, and the second model replaces SWAT’s Hortonian hydrology with variable source area (VSA) hydrology. In actuality a watershed’s flow paths can be expected to vary between Hortonian and VSA hydrology under different weather conditions. We present a multi-model analysis using Bayesian Model Averaging of these two types of models to obtain an improved estimate of the effects of alternative phosphorous management practices on long term sustainability of water quality in the watershed under a wide range of weather scenarios.

  4. Watershed management and organizational dynamics: nationwide findings and regional variation.

    Science.gov (United States)

    Clark, Brad T; Burkardt, Nina; King, Dawn

    2005-08-01

    Recent attention has focused on resource management initiatives at the watershed scale with emphasis on collaborative, locally driven, and decentralized institutional arrangements. Existing literature on limited selections of well-established watershed-based organizations has provided valuable insights. The current research extends this focus by including a broad survey of watershed organizations from across the United States as a means to estimate a national portrait. Organizational characteristics include year of formation, membership size and composition, budget, guiding principles, and mechanisms of decision-making. These characteristics and the issue concerns of organizations are expected to vary with respect to location. Because this research focuses on organizations that are place based and stakeholder driven, the forces driving them are expected to differ across regions of the country. On this basis of location, we suggest basic elements for a regional assessment of watershed organizations to channel future research and to better approximate the organizational dynamics, issue concerns, and information needs unique to organizations across the country. At the broadest level, the identification of regional patterns or organizational similarities may facilitate the linkage among organizations to coordinate their actions at the much broader river basin or ecosystem scale.

  5. Benthic habitat map of the U.S. Coral Reef Task Force Watershed Partnership Initiative Kā'anapali priority study area and the State of Hawai'i Kahekili Herbivore Fisheries Management Area, west-central Maui, Hawai'i

    Science.gov (United States)

    Cochran, Susan A.; Gibbs, Ann E.; White, Darla J.

    2014-01-01

    Nearshore areas off of west-central Maui, Hawai‘i, once dominated by abundant coral coverage, now are characterized by an increased abundance of turf algae and macroalgae. In an effort to improve the health and resilience of the coral reef system, the Kahekili Herbivore Fisheries Management Area was established by the State of Hawai‘i, and the U.S. Coral Reef Task Force selected the Kā‘anapali region as a priority study area. To support these efforts, the U.S. Geological survey mapped nearly 5 km2 of sea floor from the shoreline to water depths of about 30 m. Unconsolidated sediment (predominantly sand) constitutes 65 percent of the sea floor in the mapped area. Reef and other hardbottom potentially available for coral recruitments constitutes 35 percent of the mapped area. Of this potentially available hardbottom, only 51 percent is covered with a minimum of 10 percent coral, and most is found between 5 and 10 m water depth.

  6. Identifying Cost-Effective Water Resources Management Strategies: Watershed Management Optimization Support Tool (WMOST)

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST) is a public-domain software application designed to aid decision makers with integrated water resources management. The tool allows water resource managers and planners to screen a wide-range of management practices for c...

  7. Fuzzy Multicriteria Decision Analysis for Adaptive Watershed Management

    Science.gov (United States)

    Chang, N.

    2006-12-01

    The dramatic changes of societal complexity due to intensive interactions among agricultural, industrial, and municipal sectors have resulted in acute issues of water resources redistribution and water quality management in many river basins. Given the fact that integrated watershed management is more a political and societal than a technical challenge, there is a need for developing a compelling method leading to justify a water-based land use program in some critical regions. Adaptive watershed management is viewed as an indispensable tool nowadays for providing step-wise constructive decision support that is concerned with all related aspects of the water consumption cycle and those facilities affecting water quality and quantity temporally and spatially. Yet the greatest challenge that decision makers face today is to consider how to leverage ambiguity, paradox, and uncertainty to their competitive advantage of management policy quantitatively. This paper explores a fuzzy multicriteria evaluation method for water resources redistribution and subsequent water quality management with respect to a multipurpose channel-reservoir system--the Tseng- Wen River Basin, South Taiwan. Four fuzzy operators tailored for this fuzzy multicriteria decision analysis depict greater flexibility in representing the complexity of various possible trade-offs among management alternatives constrained by physical, economic, and technical factors essential for adaptive watershed management. The management strategies derived may enable decision makers to integrate a vast number of internal weirs, water intakes, reservoirs, drainage ditches, transfer pipelines, and wastewater treatment facilities within the basin and bring up the permitting issue for transboundary diversion from a neighboring river basin. Experience gained indicates that the use of different types of fuzzy operators is highly instructive, which also provide unique guidance collectively for achieving the overarching goals

  8. Headwater management alters sources, flowpaths, and fluxes of water, carbon, and nitrogen in urban watersheds

    Science.gov (United States)

    Pennino, M. J.; Kaushal, S.; Mayer, P. M.; Welty, C.; Miller, A. J.

    2012-12-01

    Increased urbanization has altered watershed hydrology and increased nutrient pollution, leading to eutrophication and hypoxia in downstream coastal ecosystems. Due to urban stream degradation, there have been efforts to restore streams and reduce peak-flow discharges and contaminant export through stormwater management and stream restoration. However, there have been relatively few studies comparing watershed scale impacts of contrasting headwater management practices on sources and fluxes of water, carbon, and nutrients across space and time. In this study we compared sources and fluxes of water, carbon (C), and nitrogen (N) along 4 watersheds of contrasting headwater management: 2 urban degraded watersheds with minimal or no stormwater management and 2 managed urban watersheds with stormwater controls and stream restoration. Surface water samples were collected biweekly at USGS gauging stations located within each watershed over 2 years. Spatially, watersheds were sampled longitudinally during 4 seasons. Sources of water, nitrate, and carbon were investigated using isotopic and spectroscopic tracer techniques. Indicator anions (F-, Cl-, I-, SO42-) were also used to trace anthropogenic vs. natural water sources. Hydrologic flowpaths (groundwater vs. overland flow) were assessed with longitudinal synoptic surveys using stable water isotopes of H and O. Annual fluxes of water, C, and N, were estimated using the USGS program LOADEST. H and O isotope data showed that the source of stream water is primarily groundwater during summer months, with greater contributions from stormflow during winter months for all 4 watersheds. Elevated levels of indicator anions (F-, Cl-, I-, SO42-) as well as greater "pulses" of C and N over time in the degraded vs. managed watersheds indicate potential sewage sources due to leaky sanitary sewers and greater stormdrain inputs. Unlike the managed watersheds where hydrologic flowpaths were from groundwater in headwaters, the longitudinal

  9. Hydrologically sensitive areas: theory and application to Barigui river watershed, PR, Brazil

    Directory of Open Access Journals (Sweden)

    Irani dos Santos

    2010-08-01

    Full Text Available The concept of hydrologically sensitive area (HSA is discussed and applied to Barigui river watershed (58.5 km², located in Almirante Tamandaré city, Parana State, Brazil. The HSA is considered as the area of the watershed with a higher probability of reaching a soil saturation condition, and is, therefore, defined as the area that remains saturated for more than 30% of the time. The Topmodel was used to simulate the saturated zone dynamics in the watershed. The model assumes that the saturated zone dynamics can be obtained by hydrological similarity given by the spatial distribution of topographic index, based on the construction of the soil saturation probability in the watershed. The Topmodel showed good results in observed flow data, confirming a high performance in the meso-scale watersheds, with humid climate and smooth relief. The HSA's in the watershed totaling 17.1 km² or 27% of the total area. Considering the HSAs as those of interest for environmental preservation, an increase of 13.2 km² of the permanent preservation areas in the watershed was found according to the Forest Code (Law n° 4.771 / 69. It makes a total of 44% of the whole watershed environmentally important.

  10. Preliminary United States-Mexico border watershed analysis, twin cities area of Nogales, Arizona and Nogales, Sonora

    Science.gov (United States)

    Brady, Laura Margaret; Gray, Floyd; Castaneda, Mario; Bultman, Mark; Bolm, Karen Sue

    2002-01-01

    The United States - Mexico border area faces the challenge of integrating aspects of its binational physical boundaries to form a unified or, at least, compatible natural resource management plan. Specified geospatial components such as stream drainages, mineral occurrences, vegetation, wildlife, and land-use can be analyzed in terms of their overlapping impacts upon one another. Watersheds have been utilized as a basic unit in resource analysis because they contain components that are interrelated and can be viewed as a single interactive ecological system. In developing and analyzing critical regional natural resource databases, the Environmental Protection Agency (EPA) and other federal and non-governmental agencies have adopted a ?watershed by watershed? approach to dealing with such complicated issues as ecosystem health, natural resource use, urban growth, and pollutant transport within hydrologic systems. These watersheds can facilitate the delineation of both large scale and locally important hydrologic systems and urban management parameters necessary for sustainable, diversified land-use. The twin border cities area of Nogales, Sonora and Nogales, Arizona, provide the ideal setting to demonstrate the utility and application of a complete, cross-border, geographic information systems (GIS) based, watershed analysis in the characterization of a wide range of natural resource as well as urban features and their interactions. In addition to the delineation of a unified, cross-border watershed, the database contains sewer/water line locations and status, well locations, geology, hydrology, topography, soils, geomorphology, and vegetation data, as well as remotely sensed imagery. This report is preliminary and part of an ongoing project to develop a GIS database that will be widely accessible to the general public, researchers, and the local land management community with a broad range of application and utility.

  11. Relating management practices and nutrient export in agricultural watersheds of the United States

    Science.gov (United States)

    Sprague, Lori A.; Gronberg, Jo Ann M.

    2012-01-01

    Relations between riverine export (load) of total nitrogen (N) and total phosphorus (P) from 133 large agricultural watersheds in the United States and factors affecting nutrient transport were evaluated using empirical regression models. After controlling for anthropogenic inputs and other landscape factors affecting nutrient transport-such as runoff, precipitation, slope, number of reservoirs, irrigated area, and area with subsurface tile drains-the relations between export and the area in the Conservation Reserve Program (CRP) (N) and conservation tillage (P) were positive. Additional interaction terms indicated that the relations between export and the area in conservation tillage (N) and the CRP (P) progressed from being clearly positive when soil erodibility was low or moderate, to being close to zero when soil erodibility was higher, to possibly being slightly negative only at the 90th to 95th percentile of soil erodibility values. Possible explanations for the increase in nutrient export with increased area in management practices include greater transport of soluble nutrients from areas in conservation tillage; lagged response of stream quality to implementation of management practices because of nitrogen transport in groundwater, time for vegetative cover to mature, and/or prior accumulation of P in soils; or limitations in the management practice and stream monitoring data sets. If lags are occurring, current nutrient export from agricultural watersheds may still be reflecting the influence of agricultural land-use practices that were in place before the implementation of these management practices.

  12. A Watershed Integrity Definition and Assessment Approach to Support Strategic Management of Watersheds

    Science.gov (United States)

    Although defined hydrologically as a drainage basin, watersheds are systems that physically link the individual social and ecological attributes that comprise them. Hence the structure, function, and feedback systems of watersheds are dependent on interactions between these soci...

  13. Community participation and implementation of water management instruments in watersheds

    Directory of Open Access Journals (Sweden)

    Mario Alejandro Perez Rincon

    2013-04-01

    Full Text Available The current model of water resources management in Brazil is decentralized, participative and integrated, and adopted the river basin as a planning unit. It is based on the performance of watershed committees; each committee has its own composition and rules of procedure, governed by its statute. The basic principles of this management have been established by the Brazilian Constitution of 1988 and detailed by the National Water Resources Policy in 1997. At the State level, São Paulo enacted its water resources policy in 1991. This paper examined the participatory process in basin committees of the São Paulo State and its implications in the implementation of the instruments of water management, based in a case study of the Tiete - Jacaré Watershed Committee, using questionnaires filled by the Committee’s members (2009 - 2011. Engagement and integration among the stakeholders was observed. Still, the interviews’ results have shown that the Committee’s statute should be reviewed due to differences between the Federal and the State legislation, mainly regarding the participating sectors and representatives. It also showed a need for more information about water resource issues in this basin and in the State of São Paulo, as a whole. At the same time, it is recommended that representativeness of the institutions within the water council management be improved and that the work produced by the technical chambers be recognised at the committee decision-making level.

  14. Supplement Analysis for the Watershed Management Program EIS --Idaho Model Watershed Habitat Projects - Pahsimeroi Fence Crossing

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-08-11

    The Bonneville Power Administration is proposing to fund the installation of a fenced stream crossing over the Pahsimeroi River to enhance a livestock riparian enclosure. This structure would include up to four wood fence posts and two deadman anchors buried in the ground. The goal of this project is to enhance salmon and steelhead rearing and migration habitat by preventing livestock from entering the riparian area via the river. The NEPA compliance checklist for this project was completed by Carl Rudeen with the Custer Soil and Water Conservation District (August 4, 2004) and meets the standards and guidelines for the Watershed Management Program Environmental Impact Statement (EIS) and Record of Decision (ROD). The Endangered Species Act (ESA) listed species that may occur in the general vicinity of the project area are gray wolf, Canada lynx, bald eagle, Ute ladies'Tresses, Snake River chinook salmon, Snake River steelhead trout, and Columbia River Basin bull trout. It was determined that the proposed fence crossing construction project would have no effect on these species. Bald eagle, gray wolf and Canada lynx are not known to occur in the immediate project vicinity. Since the site is used primarily as livestock pasture it does not lend itself to the presence of Ute ladies'Tresses. ESA listed fish may be present in the project vicinity but will not be affected because the project does not involve instream work. Soil disturbance will be limited to the livestock pasture and to two holes that will be used to bury anchors for the suspended portion of the fence. Required river crossings will be made on foot. Requirements associated with Section 106 of the National Historic Preservation Act were handled by the Natural Resource Conservation Service (NRCS), in cooperation with staff from the U.S. Forest Service (Boise National Forest), under their existing Programmatic Agreement with the Idaho State Historic Preservation Office (SHPO). A description of the

  15. Quito's Urban Watersheds: Applications of Low Impact Development and Sustainable Watershed Management

    Science.gov (United States)

    Marzion, R.; Serra-Llobet, A.; Ward Simons, C.; Kondolf, G. M.

    2013-12-01

    facilitate the evaluation of LID potential in Quito, we conducted field observations and measurements, completed archival research, analyzed available geographic and hydrologic data, and developed plans and designs for the Quebrada Ortega from its steep headwater reaches down through the densely-populated valley floor. We identified opportunities and constraints for LID, along with strategies from international LID precedent cities that can be applied in the context of Quito's unique physical and climatic characteristics, urban planning practices, and institutional structures. Using remote sensing techniques to determine permeable versus impermeable surface areas, we calculated that basins of at least 1% of the Ortega subwatershed's surface area would be needed to mitigate peak flows from most design storm scenarios. Rainwater harvesting can provide approximately 30% of average daily water needs based on current Quito consumption rates for the subwatershed's residents. By implementing LID strategies while also addressing other water management priorities, Quito provides a unique case study of a city that could bypass prohibitively expensive models used in industrialized countries (e.g., end-of-pipe treatments), and serve as a model for other Latin American cities seeking to resolve similar water management problems.

  16. Experimental study using coir geotextiles in watershed management

    Science.gov (United States)

    Vishnudas, S.; Savenije, H. H. G.; van der Zaag, P.; Anil, K. R.; Balan, K.

    2005-11-01

    This paper presents the results of a field experiment conducted in Kerala, South India, to test the effectiveness of coir geotextiles for embankment protection. In the context of sustainable watershed management, coir is a cheap and locally available material that can be used to strengthen traditional earthen bunds or protect the banks of village ponds from erosion. Particularly in developing countries, where coir is abundantly available and textiles can be produced by small-scale industry, this is an attractive alternative for conventional methods.

  17. Experimental study using coir geotextiles in watershed management

    Directory of Open Access Journals (Sweden)

    S. Vishnudas

    2005-11-01

    Full Text Available This paper presents the results of a field experiment conducted in Kerala, South India, to test the effectiveness of coir geotextiles for embankment protection. In the context of sustainable watershed management, coir is a cheap and locally available material that can be used to strengthen traditional earthen bunds or protect the banks of village ponds from erosion. Particularly in developing countries, where coir is abundantly available and textiles can be produced by small-scale industry, this is an attractive alternative for conventional methods.

  18. 2012 Puget Sound LiDAR Consortium (PSLC) Topographic LiDAR: Chehalis River Watershed Area, Washington

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Watershed Sciences, Inc. (WSI) collected Light Detection and Ranging (LiDAR) data for the Chehalis River Watershed study area on January 28th, February 2nd-7th,...

  19. Community implementation dynamics: Nutrient management in the New York City and Chesapeake Bay Watersheds

    Directory of Open Access Journals (Sweden)

    Glenn Earl Sterner

    2015-04-01

    Full Text Available The creation of natural resource management and conservation strategies can be affected by engagement with local citizens and competing interests between agencies and stakeholders at the varying levels of governance. This paper examines the role of local engagement and the interaction between governance levels on the outcomes of nutrient management policy, a specific area of natural resource conservation and management. Presented are two case studies of the New York City and Chesapeake Bay Watersheds in the US. These case studies touch upon the themes of local citizen engagement and governance stakeholder interaction in changing nutrient management to improve water quality. An analysis of these cases leads to several key considerations for the creation and implementation of nutrient management and natural resource management more broadly, including the importance of: local citizen engagement, government brokering and cost sharing; and the need of all stakeholders to respect each other in the policy creation and implementation process.

  20. Watershed Conservation and Groundwater Management: An Integrated Perspective

    Science.gov (United States)

    Kaiser, B. A.

    2005-05-01

    US natural resource policy has explicitly acknowledged the hydrological connection between forest resources and water resources from the inception of the USDA Forest Service for the dual purpose of timber and watershed management,, but it is often overlooked in short run policy decisions. In Hawaii, these closely interconnected resources led to the establishment of the Ko`olau Mountains Conservation District in the early 1900s in order to improve water supplies. This early action on the part of the state has enabled today a healthy watershed. The health of the watershed, however, is now under threat from incremental ecosystem change, particularly in the form of invasive species (e.g. pigs (Sus scrofa) and weedy shrubs (Miconia calvescens)) that change the hydrological properties of the watershed to increase runoff and reduce aquifer recharge. Economic costs of reduced recharge in the face of rising water demand from a growing population are potentially large, with preliminary estimates suggesting the losses from reduced groundwater recharge in the Pearl Harbor aquifer have a present value of 1.4 to 2.6 billion dollars (Kaiser and Roumasset, 2002). To refine and improve these preliminary estimates we use spatial analysis of the water balance in the Ko`olaus to relate land use and land cover to recharge and we simultaneously explore the risk of degradation of the forest quality for recharge purposes through a survey of watershed experts. Using this information together with a dynamic model of water pricing as a function of aquifer recharge and use, we examine how much of an economic return (in present value) forest conservation expenditures may produce in the form of protecting aquifer recharge. In conjunction, we begin to examine additional integrated benefits of reducing runoff to near-shore resources by relating upland conservation to reef quality using monitoring data from the Hawaii Coral Reef Assessment and Monitoring Program. Kaiser and Roumasset (2002

  1. Agile data management for curation of genomes to watershed datasets

    Science.gov (United States)

    Varadharajan, C.; Agarwal, D.; Faybishenko, B.; Versteeg, R.

    2015-12-01

    A software platform is being developed for data management and assimilation [DMA] as part of the U.S. Department of Energy's Genomes to Watershed Sustainable Systems Science Focus Area 2.0. The DMA components and capabilities are driven by the project science priorities and the development is based on agile development techniques. The goal of the DMA software platform is to enable users to integrate and synthesize diverse and disparate field, laboratory, and simulation datasets, including geological, geochemical, geophysical, microbiological, hydrological, and meteorological data across a range of spatial and temporal scales. The DMA objectives are (a) developing an integrated interface to the datasets, (b) storing field monitoring data, laboratory analytical results of water and sediments samples collected into a database, (c) providing automated QA/QC analysis of data and (d) working with data providers to modify high-priority field and laboratory data collection and reporting procedures as needed. The first three objectives are driven by user needs, while the last objective is driven by data management needs. The project needs and priorities are reassessed regularly with the users. After each user session we identify development priorities to match the identified user priorities. For instance, data QA/QC and collection activities have focused on the data and products needed for on-going scientific analyses (e.g. water level and geochemistry). We have also developed, tested and released a broker and portal that integrates diverse datasets from two different databases used for curation of project data. The development of the user interface was based on a user-centered design process involving several user interviews and constant interaction with data providers. The initial version focuses on the most requested feature - i.e. finding the data needed for analyses through an intuitive interface. Once the data is found, the user can immediately plot and download data

  2. Longitudinal patterns in carbon and nutrient export from urban watersheds with contrasting headwater management

    Science.gov (United States)

    Smith, R. M.; Kaushal, S.; Pennino, M. J.

    2012-12-01

    Stormwater management in urban areas presents challenges and opportunities to enhance water quality while simultaneously protecting property and infrastructure. Through several generations, stormwater management practices have evolved from 'gray infrastructure' such as pipes and ditches designed to quickly transport water away from the landscape, to more 'green infrastructure' projects meant to allow for biological processing and retention of urban runoff. Implementation of these practices has replaced traditional stream burial with bioretention cells, wetlands, and ponds. We hypothesize that these contrasting green versus gray strategies for headwater management may have significant consequences for the delivery and processing of dissolved carbon, nitrogen, and phosphorous. To address this hypothesis, we compared two paired urbanized watersheds with different stormwater management by measuring the longitudinal export of DOC, DIC, TDN, PO4+, and major anions, and characterizing dissolved organic matter using Fluorescence Index (FI) and Spectral Slope. Both watersheds were located in the Baltimore Ecosystem Study Long Term Ecological Research (LTER) site. Dead Run is an urbanized catchment with prevalent stream burial and minimal stormwater management which was implemented after initial development. Red Run is a similarly sized watershed with more recent development and comprehensive stormwater management (wetlands, ponds, bioretention cells, sand filters) and 100m wide stream buffer areas. In each of these contrasting watersheds, we chose two headwater streams which drain SWM features and one stream that terminates at a storm drain. We measured longitudinal changes in export by conducting a synoptic survey of both watersheds in which flow and water chemistry were measured every 500m in the main stem and approximately every 250m in the selected tributaries. Within watersheds, we found differences in the C, N and P loads from SWM and non-SWM streams. In Red Run, DOC

  3. Effects of impervious area and BMP implementation and design on storm runoff and water quality in eight small watersheds

    Science.gov (United States)

    Aulenbach, Brent T.; Landers, Mark N.; Musser, Jonathan W.; Painter, Jaime A.

    2017-01-01

    The effects of increases in effective impervious area (EIA) and the implementation of water quality protection designed detention pond best management practices (BMPs) on storm runoff and stormwater quality were assessed in Gwinnett County, Georgia, for the period 2001-2008. Trends among eight small watersheds were compared, using a time trend study design. Significant trends were detected in three storm hydrologic metrics and in five water quality constituents that were adjusted for variability in storm characteristics and climate. Trends in EIA ranged from 0.10 to 1.35, and changes in EIA treated by BMPs ranged from 0.19 to 1.32; both expressed in units of percentage of drainage area per year. Trend relations indicated that for every 1% increase in watershed EIA, about 2.6, 1.1, and 1.5% increases in EIA treated by BMPs would be required to counteract the effects of EIA added to the watersheds on peak streamflow, stormwater yield, and storm streamflow runoff, respectively. Relations between trends in EIA, BMP implementation, and water quality were counterintuitive. This may be the result of (1) changes in constituent inputs in the watersheds, especially downstream of areas treated by BMPs; (2) BMPs may have increased the duration of stormflow that results in downstream channel erosion; and/or (3) spurious relationships between increases in EIA, BMP implementation, and constituent inputs with development rates.

  4. Comparative Assessment of Stormwater and Nonpoint Source Pollution Best Management Practices in Suburban Watershed Management

    Directory of Open Access Journals (Sweden)

    Zeyuan Qiu

    2013-03-01

    Full Text Available Nonpoint source pollution control and stormwater management are two objectives in managing mixed land use watersheds like those in New Jersey. Various best management practices (BMPs have been developed and implemented to achieve both objectives. This study assesses the cost-effectiveness of selected BMPs for agricultural nonpoint source pollution control and stormwater management in the Neshanic River watershed, a typical mixed land use watershed in central New Jersey, USA. The selected BMPs for nonpoint source pollution control include cover crops, prescribed grazing, livestock access control, contour farming, nutrient management, and conservation buffers. The selected BMPs for stormwater management are rain gardens, roadside ditch retrofitting, and detention basin retrofitting. Cost-effectiveness is measured by the reduction in pollutant loads in total suspended solids and total phosphorus relative to the total costs of implementing the selected BMPs. The pollution load reductions for these BMPs are based on the total pollutant loads in the watershed simulated by the Soil and Water Assessment Tool and achievable pollutant reduction rates. The total implementation cost includes BMP installation and maintenance costs. The assessment results indicate that the BMPs for the nonpoint source pollution control are generally much more cost-effective in improving water quality than the BMPs for stormwater management.

  5. Streamflow and Soil Moisture of Agroforestry and Grass Watersheds in Hilly Area

    Institute of Scientific and Technical Information of China (English)

    LIU Gang-Cai; TIAN Guang-Long; SHU Dong-Cai; LIN San-Yi; LIU Shu-Zhen

    2004-01-01

    A study was conducted in a hilly area of Sichuan Province,Southwestern China, to compare the streamflow and soil moisture in two upland watersheds with different land use patterns. One was an agroforestry watershed, which consisted mainly of trees with alder (Alnus cremastogyne Burkill) and cypress (Cupressus funebris Endl.) planted in belts or strips with a coverage of about 46%, and the other was a grassland primarily composed of lalang grass (Imperata cylindrica var. major (Nees) C. E. Hubb.), filamentary clematis (Clematis filamentosa Dunn) and common eulaliopsis (Eulaliopsis binata (Retz.) C. E. Hubb) with a coverage of about 44%. Streamflow measurement with a hydrograph established at the watershed outlet showed that the average annual streamflow per 100 mm rainfall from 1983 to 1992 was 0.36 and 1.08 L s-1 km-2 for the agroforestry watershed and the grass watershed, respectively. This showed that the streamflow of the agroforestry watershed was reduced by 67% when compared to that of the grass watershed. The peak average monthly streamflow in the agroforestry watershed was over 5 times lower than that of the grass watershed and lagged by one month. In addition, the peak streamflow during a typical rainfall event of 38.3 mm in August 1986 was 37% lower in the agroforestry watershed than in the grass watershed. Results of the moisture contents of the soil samples from 3 slope locations (upper, middle and lower slopes) indicated that the agroforestry watershed maintained generally higher soil moisture contents than the grass watershed within 0-20 and 20-80 cm soil depths for the upper slope, especially for the period from May through July. For the other (middle and lower) slopes, soil moisture contents within 20-80 cm depth in the agroforestry watershed was generally lower than those in the grass watershed, particularly in September, revealing that water consumption by trees took place mainly below the plow layer. Therefore, agroforestry land use types might

  6. Watershed Modeling with ArcSWAT and SUFI2 In Cisadane Catchment Area: Calibration and Validation of River Flow Prediction

    Directory of Open Access Journals (Sweden)

    Iwan Ridwansyah

    2014-04-01

    Full Text Available Increasing of natural resources utilization as a result of population growth and economic development has caused severe damage on the watershed. The impacts of natural disasters such as floods, landslides and droughts become more frequent. Cisadane Catchment Area is one of 108 priority watershed in Indonesia. SWAT is currently applied world wide and considered as a versatile model that can be used to integrate multiple environmental processes, which support more effective watershed management and the development of better informed policy decision. The objective of this study is to examine the applicability of SWAT model for modeling mountainous catchments, focusing on Cisadane catchment Area in west Java Province, Indonesia. The SWAT model simulation was done for the periods of 2005 – 2010 while it used landuse information in 2009. Methods of Sequential Uncertainty Fitting ver. 2 (SUFI2 and combine with manual calibration were used in this study to calibrate a rainfall-runoff. The Calibration is done on 2007 and the validation on 2009, the R2 and Nash Sutchliffe Efficiency (NSE of the calibration were 0.71 and 0.72 respectively and the validation are 0.708 and 0.7 respectively. The monthly average of surface runoff and total water yield from the simulation were 27.7 mm and 2718.4 mm respectively. This study showed SWAT model can be a potential monitoring tool especially for watersheds in Cisadane Catchment Area or in the tropical regions. The model can be used for another purpose, especially in watershed management.

  7. 76 FR 68499 - Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity Announcement

    Science.gov (United States)

    2011-11-04

    ... Office of the Secretary Draft WaterSMART Cooperative Watershed Management Program Funding Opportunity Announcement AGENCY: Office of the Assistant Secretary for Water and Science, Interior. ACTION: Notice of... Cooperative Watershed Management Program whose goals are to improve water quality and ecological...

  8. Supplement Analysis for the Watershed Management Program EIS - John Day Watershed Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-08-04

    The Bonneville Power Administration (BPA) is proposing to fund the John Day Watershed Restoration Program, which includes projects to improve watershed conditions, resulting in improved fish and wildlife habitat. The project was planned and coordinated by the Confederated Tribes of the Warm Springs through the John Day Basin Office in Prairie City, Oregon. A variety of activities will be implemented, described below. The project will involve the installation of four permanent lay flat diversions (structures) to replace temporary diversions. Two structures would be constructed in Beech Creek, one in Little Beech Creek and one in the John Day River. The structures will replace temporary pushup dams, which were constructed annually of various materials. Installation of the permanent diversion structures eliminates the stream-disturbing activities associated with annual installation of temporary structures. They also will enable fish passage in all flow conditions, an improvement over the temporary structures which can obstruct fish passage under some conditions. Five scour chains will be installed in six sites within the John Day River. The chains will be 3 feet long and consist of 1/4 inch chain. They will be buried within the streambed to monitor the movement of material in the streambed. Other activities that will be implemented include: Installation of off-site water systems in areas where fencing and revegetation projects are implemented, in order to restrict livestock access to waterways; construction of facilities to return irrigation flows to the Johns Day River, including the installation of pipe to replace failing drains or return ditches; installation of pumps to replace temporary diversions; and removal of junipers from approximately 500 acres per year by hand felling.

  9. From Eutrophic to Mesotrophic: Modelling Watershed Management Scenarios to Change the Trophic Status of a Reservoir

    Directory of Open Access Journals (Sweden)

    Marcos Mateus

    2014-03-01

    Full Text Available Management decisions related with water quality in lakes and reservoirs require a combined land-water processes study approach. This study reports on an integrated watershed-reservoir modeling methodology: the Soil and Water Assessment Tool (SWAT model to estimate the nutrient input loads from the watershed, used afterwards as boundary conditions to the reservoir model, CE-QUAL-W2. The integrated modeling system was applied to the Torrão reservoir and drainage basin. The objective of the study was to quantify the total maximum input load that allows the reservoir to be classified as mesotrophic. Torrão reservoir is located in the Tâmega River, one of the most important tributaries of the Douro River in Portugal. The watershed is characterized by a variety of land uses and urban areas, accounting for a total Waste Water Treatment Plants (WWTP discharge of ~100,000 p.e. According to the criteria defined by the National Water Institute (based on the WWTP Directive, the Torrão reservoir is classified as eutrophic. Model estimates show that a 10% reduction in nutrient loads will suffice to change the state to mesotrophic, and should target primarily WWTP effluents, but also act on diffuse sources. The method applied in this study should provide a basis for water environmental management decision-making.

  10. Effectiveness of alternative management scenarios on the sediment load in a Mediterranean agricultural watershed

    Directory of Open Access Journals (Sweden)

    Ossama M. M. Abdelwahab

    2014-11-01

    Full Text Available The Annualised Agricultural Non-point Source model was used to evaluate the effectiveness of different management practices to control the soil erosion and sediment load in the Carapelle watershed, a Mediterranean medium-size watershed (506 km2 located in Apulia, Southern Italy. The model was previously calibrated and validated using five years of runoff and sediment load data measured at a monitoring station located at Ordona - Ponte dei Sauri Bridge. A total of 36 events were used to estimate the performance of the model during the period 2007-2011. The model performed well in predicting runoff, as the high values of the coefficients of efficiency and determination during the validation process showed. The peak flows predictions were satisfactory especially for the high flow events; the prediction capability of sediment load was good, even if a slight over-estimation was observed. Simulations of alternative management practices show that converting the most eroding cropland cells (13.5% of the catchment area to no tillage would reduce soil erosion by 30%, while converting them to grass or forest would reduce soil erosion by 36.5% in both cases. A crop rotation of wheat and a forage crop can also provide an effective way for soil erosion control as it reduces erosion by 69%. Those results can provide a good comparative analysis for conservation planners to choose the best scenarios to be adopted in the watershed to achieve goals in terms of soil conservation and water quality.

  11. A digraph permanent approach to evaluation and analysis of integrated watershed management system

    Science.gov (United States)

    Ratha, Dwarikanath; Agrawal, V. P.

    2015-06-01

    In the present study a deterministic quantitative model based on graph theory has been developed for the better development and management of watershed. Graph theory is an integrative systems approach to consider and model structural components of watershed management system along with the interrelationships between them concurrently and integratively. The factors responsible for the development of watershed system are identified. The degree of interaction between one subsystem with others are determined. The eigenvalue formulation is used to take care the inconsistencies arises due to inaccurate judgement in the degree of interaction between the subsystems. In this model the visual analysis is done to abstract the information using the directed graph or digraph. Then the matrix model is developed for computer processing. Variable permanent function in the form of multinomial represents the watershed system uniquely and completely by an index value. Different terms of the multinomial represent all possible subsystems of integrated watershed management system and thus different solutions for watershed management, leading to optimum solution. This index value is used to compare the suitability of the watershed with different alternatives available for its development. So the graph theory analysis presents a powerful tool to generate the optimum solutions for the decision maker for benefit of local people living in the watershed as well as the stakeholders. The proposed methodology is also demonstrated by a suitable example and is applied to the ecosystem and environment subsystem of the lake Qionghai watershed in China.

  12. Novel GIS approaches to watershed science and management: Description, prediction, and integration

    Science.gov (United States)

    Spatial data and geographic information systems (GIS) are playing an increasingly important role in watershed science and management, particularly in the face of increasing climate uncertainty and demand for water resources. Concomitantly, scientists and managers are presented wi...

  13. Socioeconomic issues for the Bear River Watershed Conservation Land Area Protection Plan

    Science.gov (United States)

    Thomas, Catherine Cullinane; Huber, Christopher; Gascoigne, William; Koontz, Lynne

    2012-01-01

    The Bear River Watershed Conservation Area is located in the Bear River Watershed, a vast basin covering fourteen counties across three states. Located in Wyoming, Utah, and Idaho, the watershed spans roughly 7,500 squares miles: 1,500 squares miles in Wyoming; 2,700 squares miles in Idaho; and 3,300 squares miles in Utah (Utah Division of Water Resources, 2004). Three National Wildlife Refuges are currently contained within the boundary of the BRWCA: the Bear River Migratory Bird Refuge in Utah, the Bear Lake National Wildlife Refuge in Idaho, and the Cokeville Meadows National Wildlife Refuge in Wyoming. In 2010, the U.S. Fish and Wildlife Service conducted a Preliminary Project Proposal and identified the Bear River Watershed Conservation Area as having high-value wildlife habitat. This finding initiated the Land Protection Planning process, which is used by the U.S. Fish and Wildlife Service to study land conservation opportunities including adding lands to the National Wildlife Refuge System. The U.S. Fish and Wildlife Service proposes to include part of the Bear River Watershed Conservation Area in the Refuge System by acquiring up to 920,000 acres of conservation easements from willing landowners to maintain landscape integrity and habitat connectivity in the region. The analysis described in this report provides a profile of the social and economic conditions in the Bear River Watershed Conservation Area and addresses social and economic questions and concerns raised during public involvement in the Land Protection Planning process.

  14. Satellite-based estimation of watershed groundwater storage dynamics in a freeze-thaw area under intensive agricultural development

    Science.gov (United States)

    Ouyang, Wei; Liu, Bing; Wu, Yuyang

    2016-06-01

    Understanding the temporal-spatial characteristics of groundwater storage is critical for agricultural planning and management in the future, thereby causing more challenges in water resource management. However, the special hydrological features of the snow water equivalent, soil moisture, and total canopy water storage in the freeze-thawing agricultural area requires the innovative methods for the water resource analysis. The watershed land cover variation and the expanding pattern of the farmlands over a decade were identified using the TM-Landsat series data. Combined with the traditional measurements of the water resource, the monthly gravity field data from the Gravity Recovery And Climate Experiment (GRACE) was validated and applied. The water resources distribution based on the remotely sensed data demonstrated that the forest in the watershed center had a larger amount of water storage. The inter-annual and seasonal variability of total water storage (TWS) over the agricultural area was analyzed and the higher value appeared in the thawing period of April. The correlations of the TWS streamflow, soil moisture and snow water equivalent with precipitation were all identified. The precipitation was the dominant factor for the watershed TWS and the groundwater dynamics. Under the similar precipitation condition, the lower groundwater storage in recent years was the consequence of the expanding of farmland. The watershed averaged decrease rate of groundwater level from 2003 to 2012 was 1.06 mm/year, which was much lower than the rates in other agricultural areas. The freeze-thawing process with smelt snow and rainfall in summer had more time and chance to recharge the groundwater resource and provided the sustainable water resource. This study proved that the application of GRACE was an effective method for the temporal-spatial estimation of the TWS anomalies in the freeze-thawing agricultural area.

  15. Watershed management for erosion and sedimentation control Case Study: Goodwin Creek, Panola County, MS

    Science.gov (United States)

    The Goodwin Creek watershed is located within the loessal hills of northern Mississippi, a region of high erosion risk and elevated watershed sediment yields. This manuscript combines a regional history of land management and conservation issues from the time of European settlement to present with a...

  16. COST-EFFECTIVE ALLOCATION OF WATERSHED MANAGEMENT PRACTICES USING A GENETIC ALGORITHM

    Science.gov (United States)

    Implementation of conservation programs are perceived as being crucial for restoring and protecting waters and watersheds from non-point source pollution. Success of these programs depends to a great extent on planning tools that can assist the watershed management process. Here-...

  17. Bridging the gap between uncertainty analysis for complex watershed models and decision-making for watershed-scale water management

    Science.gov (United States)

    Zheng, Y.; Han, F.; Wu, B.

    2013-12-01

    Process-based, spatially distributed and dynamic models provide desirable resolutions to watershed-scale water management. However, their reliability in solving real management problems has been seriously questioned, since the model simulation usually involves significant uncertainty with complicated origins. Uncertainty analysis (UA) for complex hydrological models has been a hot topic in the past decade, and a variety of UA approaches have been developed, but mostly in a theoretical setting. Whether and how a UA could benefit real management decisions remains to be critical questions. We have conducted a series of studies to investigate the applicability of classic approaches, such as GLUE and Markov Chain Monte Carlo (MCMC) methods, in real management settings, unravel the difficulties encountered by such methods, and tailor the methods to better serve the management. Frameworks and new algorithms, such as Probabilistic Collocation Method (PCM)-based approaches, were also proposed for specific management issues. This presentation summarize our past and ongoing studies on the role of UA in real water management. Challenges and potential strategies to bridge the gap between UA for complex models and decision-making for management will be discussed. Future directions for the research in this field will also be suggested. Two common water management settings were examined. One is the Total Maximum Daily Loads (TMDLs) management for surface water quality protection. The other is integrated water resources management for watershed sustainability. For the first setting, nutrients and pesticides TMDLs in the Newport Bay Watershed (Orange Country, California, USA) were discussed. It is a highly urbanized region with a semi-arid Mediterranean climate, typical of the western U.S. For the second setting, the water resources management in the Zhangye Basin (the midstream part of Heihe Baisn, China), where the famous 'Silk Road' came through, was investigated. The Zhangye

  18. Dynamics of Soil Erosion as Influenced by Watershed Management Practices: A Case Study of the Agula Watershed in the Semi-Arid Highlands of Northern Ethiopia

    Science.gov (United States)

    Fenta, Ayele Almaw; Yasuda, Hiroshi; Shimizu, Katsuyuki; Haregeweyn, Nigussie; Negussie, Aklilu

    2016-11-01

    Since the past two decades, watershed management practices such as construction of stone bunds and establishment of exclosures have been widely implemented in the semi-arid highlands of northern Ethiopia to curb land degradation by soil erosion. This study assessed changes in soil erosion for the years 1990, 2000 and 2012 as a result of such watershed management practices in Agula watershed using the Revised Universal Soil Loss Equation. The Revised Universal Soil Loss Equation factors were computed in a geographic information system for 30 × 30 m raster layers using spatial data obtained from different sources. The results revealed significant reduction in soil loss rates by about 55 % from about 28 to 12 t ha-1 per year in 1990-2000 and an overall 64 % reduction from 28 to 10 t ha-1 per year in 1990-2012. This change in soil loss is attributed to improvement in surface cover and stone bund practices, which resulted in the decrease in mean C and P-factors, respectively, by about 19 % and 34 % in 1990-2000 and an overall decrease in C-factor by 29 % in 1990-2012. Considerable reductions in soil loss were observed from bare land (89 %), followed by cultivated land (56 %) and shrub land (49 %). Furthermore, the reduction in soil loss was more pronounced in steeper slopes where very steep slope and steep slope classes experienced over 70 % reduction. Validation of soil erosion estimations using field observed points showed an overall accuracy of 69 %, which is fairly satisfactory. This study demonstrated the potential of watershed management efforts to bring remarkable restoration of degraded semi-arid lands that could serve as a basis for sustainable planning of future developments of areas experiencing severe land degradation due to water erosion.

  19. Identification and prioritization of subwatersheds for land and water management in Tekeze dam watershed, Northern Ethiopia

    Directory of Open Access Journals (Sweden)

    Kidane Welde

    2016-03-01

    Full Text Available Sedimentation and/or soil erosion are huge problems that have threatened many reservoirs in the Northern Ethiopian highlands, particularly in the Tekeze dam watershed. This study has been conducted to identify and prioritize the most sensitive subwatersheds with the help of a semi-distributed watershed model (SWAT 2009 for improved management of reservoir sedimentation mitigating strategies at the watershed level. SWAT 2009 was chosen for this study due to its ability to produce routed sediment yield and identify principal sediment source areas at the selected point of interest. Based on a digital elevation model (DEM the catchment was divided in to 47 subwatersheds using the dam axis as the main outlet. By overlaying land use, soil and slope of the study area, the subwatersheds were further divided in to 690 hydrological response units (HRUs. Model calibration (for the period of January 1996 to December 2002 and validation (for the period of January 2003 to December 2006 were carried out for stream flow rate and sediment yield data observed at Emba madre gage station. The results of model performance evaluation statistics for both stream flow and sediment yield shows that the model has a high potential in estimation of stream flow and sediment yield. Tekeze dam watershed has mean annual stream flow of 137.74 m3/s and annual sediment yield of 15.17 t/ha/year. Out of the 47 subwatersheds, 13 subwatersheds (mostly located in the north eastern and north western part of the catchment were prioritized. The maximum sediment outflow of these 13 subwatersheds, ranges from 18.49 to 32.57 t/ha/year and are characterized dominantly by cultivated land, shrub land & bare land with average land slope ranging from 7.9 to15.2% and with the dominant soil type of Eutric cambisols. These results can help to formulate and implement effective, appropriate and sustainable watershed management which in turn can help in sustaining the reservoir storage capacity of

  20. Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability.

    Science.gov (United States)

    Ghebremichael, Lula T; Veith, Tamie L; Hamlett, James M

    2013-01-15

    Quantitative risk assessments of pollution and data related to the effectiveness of mitigating best management practices (BMPs) are important aspects of nonpoint source pollution control efforts, particularly those driven by specific water quality objectives and by measurable improvement goals, such as the total maximum daily load (TMDL) requirements. Targeting critical source areas (CSAs) that generate disproportionately high pollutant loads within a watershed is a crucial step in successfully controlling nonpoint source pollution. The importance of watershed simulation models in assisting with the quantitative assessments of CSAs of pollution (relative to their magnitudes and extents) and of the effectiveness of associated BMPs has been well recognized. However, due to the distinct disconnect between the hydrological scale in which these models conduct their evaluation and the farm scale at which feasible BMPs are actually selected and implemented, and due to the difficulty and uncertainty involved in transferring watershed model data to farm fields, there are limited practical applications of these tools in the current nonpoint source pollution control efforts by conservation specialists for delineating CSAs and planning targeting measures. There are also limited approaches developed that can assess impacts of CSA-targeted BMPs on farm productivity and profitability together with the assessment of water quality improvements expected from applying these measures. This study developed a modeling framework that integrates farm economics and environmental aspects (such as identification and mitigation of CSAs) through joint use of watershed- and farm-scale models in a closed feedback loop. The integration of models in a closed feedback loop provides a way for environmental changes to be evaluated with regard to the impact on the practical aspects of farm management and economics, adjusted or reformulated as necessary, and revaluated with respect to effectiveness of

  1. Detection of the Coupling between Vegetation Leaf Area and Climate in a Multifunctional Watershed, Northwestern China

    Directory of Open Access Journals (Sweden)

    Lu Hao

    2016-12-01

    Full Text Available Accurate detection and quantification of vegetation dynamics and drivers of observed climatic and anthropogenic change in space and time is fundamental for our understanding of the atmosphere–biosphere interactions at local and global scales. This case study examined the coupled spatial patterns of vegetation dynamics and climatic variabilities during the past three decades in the Upper Heihe River Basin (UHRB, a complex multiple use watershed in arid northwestern China. We apply empirical orthogonal function (EOF and singular value decomposition (SVD analysis to isolate and identify the spatial patterns of satellite-derived leaf area index (LAI and their close relationship with the variability of an aridity index (AI = Precipitation/Potential Evapotranspiration. Results show that UHRB has become increasingly warm and wet during the past three decades. In general, the rise of air temperature and precipitation had a positive impact on mean LAI at the annual scale. At the monthly scale, LAI variations had a lagged response to climate. Two major coupled spatial change patterns explained 29% and 41% of the LAI dynamics during 1983–2000 and 2001–2010, respectively. The strongest connections between climate and LAI were found in the southwest part of the basin prior to 2000, but they shifted towards the north central area afterwards, suggesting that the sensitivity of LAI to climate varied over time, and that human disturbances might play an important role in altering LAI patterns. At the basin level, the positive effects of regional climate warming and precipitation increase as well as local ecological restoration efforts overwhelmed the negative effects of overgrazing. The study results offer insights about the coupled effects of climatic variability and grazing on ecosystem structure and functions at a watershed scale. Findings from this study are useful for land managers and policy makers to make better decisions in response to climate

  2. Development of a socio-ecological environmental justice model for watershed-based management

    Science.gov (United States)

    Sanchez, Georgina M.; Nejadhashemi, A. Pouyan; Zhang, Zhen; Woznicki, Sean A.; Habron, Geoffrey; Marquart-Pyatt, Sandra; Shortridge, Ashton

    2014-10-01

    The dynamics and relationships between society and nature are complex and difficult to predict. Anthropogenic activities affect the ecological integrity of our natural resources, specifically our streams. Further, it is well-established that the costs of these activities are born unequally by different human communities. This study considered the utility of integrating stream health metrics, based on stream health indicators, with socio-economic measures of communities, to better characterize these effects. This study used a spatial multi-factor model and bivariate mapping to produce a novel assessment for watershed management, identification of vulnerable areas, and allocation of resources. The study area is the Saginaw River watershed located in Michigan. In-stream hydrological and water quality data were used to predict fish and macroinvertebrate measures of stream health. These measures include the Index of Biological Integrity (IBI), Hilsenhoff Biotic Index (HBI), Family IBI, and total number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. Stream health indicators were then compared to spatially coincident socio-economic data, obtained from the United States Census Bureau (2010), including race, income, education, housing, and population size. Statistical analysis including spatial regression and cluster analysis were used to examine the correlation between vulnerable human populations and environmental conditions. Overall, limited correlation was observed between the socio-economic data and ecological measures of stream health, with the highest being a negative correlation of 0.18 between HBI and the social parameter household size. Clustering was observed in the datasets with urban areas representing a second order clustering effect over the watershed. Regions with the worst stream health and most vulnerable social populations were most commonly located nearby or down-stream to highly populated areas and agricultural lands.

  3. Soil and nutrient retention in winter-flooded ricefields with implications for watershed management

    Science.gov (United States)

    Manley, S.W.; Kaminski, R.M.; Rodrigue, P.B.; Dewey, J.C.; Schoenholtz, S.H.; Gerard, P.D.; Reinecke, K.J.

    2009-01-01

    The ability of water resources to support aquatic life and human needs depends, in part, on reducing nonpoint source pollution amid contemporary agricultural practices. Winter retention of shallow water on rice and other agricultural fields is an accepted management practice for wildlife conservation; however, soil and water conservation benefits are not well documented. We evaluated the ability of four post-harvest ricefield treatment combinations (stubble-flooded, stubble-open, disked-flooded and disked-open) to abate nonpoint source exports into watersheds of the Mississippi Alluvial Valley. Total suspended solid exports were 1,121 kg ha-1 (1,000 lb ac-1) from disked-open fields where rice stubble was disked after harvest and fields were allowed to drain, compared with 35 kg ha-1 (31 lb ac-1) from stubble-flooded fields where stubble was left standing after harvest and fields captured rainfall from November 1 to March 1. Estimates of total suspended solid exports from ricefields based on Landsat imagery and USDA crop data are 0.43 and 0.40 Mg km-2 day-1 in the Big Sunflower and L'Anguille watersheds, respectively. Estimated reductions in total suspended solid exports from ricefields into the Big Sunflower and L'Anguille water-sheds range from 26% to 64% under hypothetical scenarios in which 65% to 100% of the rice production area is managed to capture winter rainfall. Winter ricefield management reduced nonpoint source export by decreasing concentrations of solids and nutrients in, and reducing runoff volume from, ricefields in the Mississippi Alluvial Valley.

  4. A Decision Support Systems Using A Combined Dynamic Model For Integrated Watershed Management

    Science.gov (United States)

    Kudo, E.; Ostrowski, M.

    In this context A Decision Support System (DSS) is presented using a combined dy- namic model for Integrated Watershed Management (IWM) in a small urbanized basin in Japan. In order to improve today's often unsustainable watershed management, the causes of water problems, which interact with each other, must be identified and adequate actions must be chosen to solve the problems. To achieve the ultimate goal of sustain- able development (SD) for water it is essential to develop and apply generic DSSs. A DSS is frequently defined as a combination of a management information system, a model base and an evaluation / assessment module. The EU Water Framework Di- rectives recently established have a narrow time schedule requiring fast action into this direction, which does hardly allow to develop completely new tolls. Thus we are trying to combine different existing dynamic models that incorporate an urban man- agement model, a water quality analysis model, a groundwater analysis model and a water supply model including geographical information system data. With this com- bined model, the most appropriate and sustainable water management plan in an urban area will be developed while considering land use, ground water level, allocation of drainage system, sewerage, water supply works, water quality, and quantity. Because of sharing input data, using this combined model requires less data than using sev- eral separate models. The DSS can also be used to determine the optimum location of gages and monitoring sites. As a case study, the research will deal with the Taguri-river basin in Japan. This basin is located near Tokyo. Although the area in this basin has about 8 km2 only, there are densely build-up areas, paddy fields, and non-developed areas. The river is polluted due to wastewater from point resources: households, and non-point resources: roads and fields, etc. Overpumping of aquifers results in sinking groundwater tables and land subsidence. Moreover, a decrease

  5. Comparison of sediment supply to San Francisco Bay from watersheds draining the Bay Area and the Central Valley of California

    Science.gov (United States)

    McKee, L.J.; Lewicki, M.; Schoellhamer, D.H.; Ganju, N.K.

    2013-01-01

    Quantifying suspended sediment loads is important for managing the world's estuaries in the context of navigation, pollutant transport, wetland restoration, and coastal erosion. To address these needs, a comprehensive analysis was completed on sediment supply to San Francisco Bay from fluvial sources. Suspended sediment, optical backscatter, velocity data near the head of the estuary, and discharge data obtained from the output of a water balance model were used to generate continuous suspended sediment concentration records and compute loads to the Bay from the large Central Valley watershed. Sediment loads from small tributary watersheds around the Bay were determined using 235 station-years of suspended sediment data from 38 watershed locations, regression analysis, and simple modeling. Over 16 years, net annual suspended sediment load to the head of the estuary from its 154,000 km2 Central Valley watershed varied from 0.13 to 2.58 (mean = 0.89) million metric t of suspended sediment, or an average yield of 11 metric t/km2/yr. Small tributaries, totaling 8145 km2, in the nine-county Bay Area discharged between 0.081 and 4.27 (mean = 1.39) million metric t with a mean yield of 212 metric t/km2/yr. The results indicate that the hundreds of urbanized and tectonically active tributaries adjacent to the Bay, which together account for just 5% of the total watershed area draining to the Bay and provide just 7% of the annual average fluvial flow, supply 61% of the suspended sediment. The small tributary loads are more variable (53-fold between years compared to 21-fold for the inland Central Valley rivers) and dominated fluvial sediment supply to the Bay during 10 out of 16 yr. If San Francisco Bay is typical of other estuaries in active tectonic or climatically variable coastal regimes, managers responsible for water quality, dredging and reusing sediment accumulating in shipping channels, or restoring wetlands in the world's estuaries may need to more carefully

  6. Managing Watersheds as Couple Human-Natural Systems: A Review of Research Opportunities

    Science.gov (United States)

    Cai, X.

    2011-12-01

    Many watersheds around the world are impaired with severe social and environmental problems due to heavy anthropogenic stresses. Humans have transformed hydrological and biochemical processes in watersheds from a stationary to non-stationary status through direct (e.g., water withdrawals) and indirect (e.g., altering vegetation and land cover) interferences. It has been found that in many watersheds that socio-economic drivers, which have caused increasingly intensive alteration of natural processes, have even overcome natural variability to become the dominant factor affecting the behavior of watershed systems. Reversing this trend requires an understanding of the drivers of this intensification trajectory, and needs tremendous policy reform and investment. As stressed by several recent National Research Council (NRC) reports, watershed management will pose an enormous challenge in the coming decades. Correspondingly, the focus of research has started an evolution from the management of reservoir, stormwater and aquifer systems to the management of integrated watershed systems, to which policy instruments designed to make more rational economic use of water resources are likely to be applied. To provide a few examples: reservoir operation studies have moved from a local to a watershed scale in order to consider upstream best management practices in soil conservation and erosion control and downstream ecological flow requirements and water rights; watersheds have been modeled as integrated hydrologic-economic systems with multidisciplinary modeling efforts, instead of traditional isolated physical systems. Today's watershed management calls for a re-definition of watersheds from isolated natural systems to coupled human-natural systems (CHNS), which are characterized by the interactions between human activities and natural processes, crossing various spatial and temporal scales within the context of a watershed. The importance of the conceptual innovation has been

  7. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-11-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i municipal clean water program; (ii agricultural nutrient management scenarios; (iii past and future land use changes, as well as (iv determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  8. Spatial Management Areas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spatial management files combine all related and relevant spatial management files into an integrated fisheries management file. Overlaps of the redundant spatial...

  9. Influence of dem in Watershed Management as Flood Zonation Mapping

    Science.gov (United States)

    Alrajhi, Muhamad; Khan, Mudasir; Afroz Khan, Mohammad; Alobeid, Abdalla

    2016-06-01

    Despite of valuable efforts from working groups and research organizations towards flood hazard reduction through its program, still minimal diminution from these hazards has been realized. This is mainly due to the fact that with rapid increase in population and urbanization coupled with climate change, flood hazards are becoming increasingly catastrophic. Therefore there is a need to understand and access flood hazards and develop means to deal with it through proper preparations, and preventive measures. To achieve this aim, Geographical Information System (GIS), geospatial and hydrological models were used as tools to tackle with influence of flash floods in the Kingdom of Saudi Arabia due to existence of large valleys (Wadis) which is a matter of great concern. In this research paper, Digital Elevation Models (DEMs) of different resolution (30m, 20m,10m and 5m) have been used, which have proven to be valuable tool for the topographic parameterization of hydrological models which are the basis for any flood modelling process. The DEM was used as input for performing spatial analysis and obtaining derivative products and delineate watershed characteristics of the study area using ArcGIS desktop and its Arc Hydro extension tools to check comparability of different elevation models for flood Zonation mapping. The derived drainage patterns have been overlaid over aerial imagery of study area, to check influence of greater amount of precipitation which can turn into massive destructions. The flow accumulation maps derived provide zones of highest accumulation and possible flow directions. This approach provide simplified means of predicting extent of inundation during flood events for emergency action especially for large areas because of large coverage area of the remotely sensed data.

  10. Watershed influence on fluvial ecosystems: an integrated methodology for river water quality management.

    Science.gov (United States)

    Carone, Maria T; Simoniello, Tiziana; Manfreda, Salvatore; Caricato, Gaetano

    2009-05-01

    The EU Water Framework Directive 2000/60 (Integrated River Basin Management for Europe) establishes the importance of preserving water quality through policies applied at watershed level given the strong links existing among ecological, hydrological, and hydrogeological systems. Therefore, monitoring campaigns of river water quality should be planned with multidisciplinary approaches starting from a landscape perspective. In this paper, the effects of the basin hydrology on the river water quality and, in particular, the impacts caused by the runoff production coming from agricultural areas are investigated. The fluvial segments receiving consistent amount of pollutant loads (due to the runoff routing over agricultural areas) are assumed more critical in terms of water quality and thus, they require more accurate controls. Starting from this perspective, to evaluate the runoff productions coming from agricultural areas, we applied a semi-distributed hydrological model that adopts satellite data, pedological and morphological information for the watershed description. Then, the river segments receiving critical amount of runoff loads from the surrounding cultivated areas were identified. Finally, in order to validate the approach, water quality for critical and non critical segment was investigated seasonally, by using river macroinvertebrates as indicators of water quality because of their effectiveness in preserving in time a memory of pollution events. Biomonitoring data showed that river water quality strongly decreases in correspondence of fluvial segments receiving critical amount of runoff coming from agricultural areas. The results highlight the usefulness of such a methodology to plan monitoring campaigns specifically devoted to non-point pollution sources and suggest the possibility to use this approach for water quality management and for planning river restoration policies.

  11. Establishing ecological and social continuities: new challenges to optimize urban watershed management

    Science.gov (United States)

    Mitroi, V.; de Coninck, A.; Vinçon-Leite, B.; Deroubaix, J.-F.

    2014-09-01

    The (re)construction of the ecological continuity is stated as one of the main objectives of the European Water Framework Directive for watershed management in Europe. Analysing the social, political, technical and scientific processes characterising the implementation of different projects of ecological continuity in two adjacent peri-urban territories in Ile-de-France, we observed science-driven approaches disregarding the social contexts. We show that, in urbanized areas, ecological continuity requires not only important technical and ecological expertise, but also social and political participation to the definition of a common vision and action plan. Being a challenge for both, technical water management institutions and "classical" ecological policies, we propose some social science contributions to deal with ecological unpredictability and reconsider stakeholder resistance to this kind of project.

  12. The participation of public institutions and private sector stakeholders to Devrekani Watershed management planning process

    Directory of Open Access Journals (Sweden)

    Sevgi Öztürk

    2014-07-01

    Full Text Available Watershed management is creating the ecological balance between human beings and habitats and natural resources especially water resources. In this study the nature and human beings and all of the components involving on human activities in nature were tried to be tackled and the strengths and weaknesses, threats and opportunities (SWOT analysis of the area were evaluated by prioritizing R’WOT (Ranking + SWOT analysis for ensuring the participation and evaluating the ideas and attitudes of public institutions and private sector which are interest groups of Devrekani Watershed. According to the analysis result, both of the participant groups stated that the planned Hydroelectric Power Plant (HPP in the basin will negatively affect the natural resource value. The economical deficiency- for the local administration- and the lack of qualified labour force –for private sector- issues are determined as the most important issues. Having an environmental plan (EP, supporting the traditional animal husbandry were determined as the highest priority factors by the local administration group and the presence of forests and grasslands and the eco-tourism potential were determined as the highest priority factors for the private sector. Creating awareness to local administration group, who are one of the most important decision making mechanisms in the area and did not prefer threats in a high priority way, is foreseen according to the context of the study.

  13. Erosion and Sediment Production in Small Watershed in Purple Hilly Areas and Prevention Techniques

    Institute of Scientific and Technical Information of China (English)

    ZhangBao-hua; HeYu-rong; ZhouHong-yi; ZhuBo

    2003-01-01

    Purple Soil distributes extensively and mainly in China. Because of abundant easily weatherable parent rocks/materials and unstable soil structure, and also influenced by parent materials, usage systems, and slope gradients, erosion and sediment production of purple soils are very severe with main fashions of water erosion and gravitational erosion. Basing on observed data in small watersheds, rainfall erosivity,vegetation coverage, previous soil water content, flow and relating; factors such as climate, topograph of small watershed,land usage, and soil kinds are all the influence factors of erosion and erodibility of purple soil as well as sediment production and transport in small watershed of purple hilly areas.The effective technological countermeasures of ecosystem restoration, agricultural tillage for water conservation and erosion prevention, agriculture project, and soil changing for fertility and anti-erosion were provided.

  14. Erosion and Sediment Production in Small Watershed in Purple Hilly Areas and Prevention Techniques

    Institute of Scientific and Technical Information of China (English)

    Zhang Bao-hua; He Yu-rong; Zhou Hong-yi; Zhu Bo

    2003-01-01

    Purple Soil distributes extensively and mainly in China. Because of abundant easily weatherable parent rocks/materials and unstable soil structure, and also influenced by parent materials, usage systems, and slope gradients, erosion and sediment production of purple soils are very severe with main fashions of water erosion and gravitational erosion. Basing on observed data in small watersheds, rainfall erosivity,vegetation coverage, previous soil water content, flow and relating factors such as climate, topograph of small watershed,land usage, and soil kinds are all the influence factors of erosion and erodibility of purple soil as well as sediment production and transport in small watershed of purple hilly areas.The effective technological countermeasures of ecosystem restoration, agricultural tillage for water conservation and erosion prevention, agriculture project, and soil changing for fertility and anti-erosion were provided.

  15. Putting watershed restoration in context: alternative future scenarios influence management outcomes.

    Science.gov (United States)

    Fullerton, A H; Steel, E A; Caras, Y; Sheer, M; Olson, P; Kaje, J

    2009-01-01

    Predicting effects of habitat restoration is an important step for recovery of imperiled anadromous salmonid populations. Habitat above three major hydropower dams in the Lewis River watershed, southwestern Washington, USA, will soon become accessible to anadromous fish. We used multiple models to estimate habitat conditions above dams and fish population responses. Additionally, we used scenario planning to predict how habitat and fish will respond to potential future trends in land use due to human population growth and riparian conservation policies. Finally, we developed a hypothetical management strategy (i.e., a set of prioritized restoration projects in specific locations within the watershed) as an example of how a fixed amount of restoration funds might be spent to enhance the success of reintroducing fish above dams. We then compared predicted outcomes from this new strategy to those of six previously modeled strategies. We estimated how the choice of the best management strategy might differ among alternative future scenarios. Results suggest that dam passage will provide access to large amounts of high-quality habitat that will benefit fish populations. Moreover, conservation of existing riparian areas, if implemented, has the potential to improve conditions to a much greater extent than restoration strategies examined, despite expected urban growth. We found that the relative performance of management strategies shifted when fish were allowed to migrate above dams, but less so among alternative futures examined. We discuss how predicted outcomes from these seven hypothetical management strategies could be used for developing an on-the-ground strategy to address a real management situation.

  16. Vertical Collective Action: Addressing Vertical Asymmetries in Watershed Management

    OpenAIRE

    2015-01-01

    Watersheds and irrigation systems have the characteristic of connecting people vertically by water flows. The location of users along these systems defines their role in the provision and appropriation of water which adds complexity to the potential for cooperation. Verticality thus imposes a challenge to collective action. This paper presents the results of field experiments conducted in four watersheds of Colombia (South America) and Kenya (East Africa) to study the role that location plays...

  17. Effects of forest vegetation on runoff and sediment transport of watershed in Loess area,west China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaoming; YU Xinxiao; WU Sihong; LIU Huifang

    2007-01-01

    This paper aims to study the effects of vegetation on runoff and sediment transport at the watershed scale,and to provide a theoretical basis for afforestation in the Loess area,in the nested Caijiachuan watershed,Jixian County,Shanxi Province of west China.Forest watersheds and farmland watersheds with similar ten'ain features were selected through cluster analysis to study their runoff and sediment transport characteristics.Results showed that compared with farmland watersheds,runoff generation time in forest watersheds was delayed remarkably,and peak flow was reduced greatly,which indicates that vegetation played an important role in holding and absorbing rainfall.Besides,with the increase of forest coverage,the runoff amount,runoff depth and runoff coefficient decreased during the rainy seasons.The runoff depth and runoff coefficient of farmland watersheds in the rainy season were 5-20-fold as much as that of forest watersheds,and runoff and sediment yield of watersheds with low forest coverage were 2.7-2.9-fold and 3-5-fold as great as those with high coverage during rainstorms,and low forest coverage had larger variation in sediment hydrograph.For the complexity and scale dependence of the influence of forest vegetation on runoff,forest hydrological functions based on regional scale or watershed scale were worthy of further studies.

  18. Ecological and Socio-Economic Modeling of Consequences of Biological Management Scenarios Implementation in Integrated Watershed Management (Case Study: Simindasht Catchment

    Directory of Open Access Journals (Sweden)

    A. R. Keshtkar

    2016-09-01

    Full Text Available Integrated watershed management is considered as a new principle for development planning and management of water and soil resources emphasizing on socio-economic characteristics of the region to sustainable livelihoods without vulnerability for plants and the residents of an area. This research, in line with the objectives of integrated management, has been carried out for modelling and evaluating the effects of ecological, socio-economic consequences resulting from the implementation of the proposed management plans on the vegetation changes with a focus on the problems in Simindasht catchment, located in Semnan and Tehran Provinces. After standardization of indices by distance method and weighing them, the scenarios were prioritized using multi-criteria decision-making technique. Trade-off analysis of the results indicates that in the integrated management of Simindasht catchment more than one single management solution, covering all aspects of the system can be recommended in different weighting approaches. The approach used herein, considering the results of different models and comparing the results, is an efficient tool to represent the watershed system as a whole and to facilitate decision making for integrated watershed management.

  19. Using game theory to assess multi-company strategies in watershed management

    OpenAIRE

    2016-01-01

    Abstract The main objective of this work was to evaluate the use of game theory as a strategic tool for watershed management decision-making. An engineering problem case study was used in which three organizations compare various scenarios when deciding where to locate a polluting plant on a watershed. Six games were modeled to provide a variety of conditions that could feasibly be implemented and were simulated using software for finding Nash Equilibria solutions. The results show that game ...

  20. Social Safeguards for REDD+ in Mexico’s Watershed Management Program

    OpenAIRE

    Garduño Diaz, Philippe Youssef

    2012-01-01

    Case studies on environmental governance are essential to improve comprehension on howto implement international agreements. This study focuses on seven social safeguards relevant toREDD+. The existence of these social safeguards is examined in Mexico’s watershed managementprogram in La Sierra Madre and La Costa of Chiapas. The watershed management program is anotherPayment for Ecosystem Services (PES) scheme similar to REDD+. Questionnaires and interviews wereused to conduct primary research...

  1. Quantify Effects of Integrated Land Management on Water Quality in Agricultural Landscape in South Fork Watershed, Iowa River

    Science.gov (United States)

    Ha, M.; Wu, M. M.

    2014-12-01

    Sustainable biofuel feedstock production — environmental sustainability and economic sustainability — may be achieved by using a multi-faceted approach. This study focuses on quantifying the water sustainability of an integrated landscaping strategy, by which current land use and land management, cropping system, agricultural Best Management Practices (BMPs), and economics play equal roles. The strategy was applied to the South Fork watershed, IA, including the tributaries of Tipton and Beaver Creeks, which expand to 800-km2 drainage areas. The watershed is an agricultural dominant area covered with row-crops production. On the basis of profitability, switchgrass was chosen as a replacement for row crops in low-productivity land. Areas for harvesting agricultural residue were selected on the basis of soil conservation principals. Double cropping with a cover crop was established to further reduce soil loss. Vegetation buffer strips were in place at fields and in riparian areas for water quality control, resource conservation, and eco service improvement. The Soil and Water Assessment Tool (SWAT) was applied to evaluate source reduction under various management schemes and land use changes. SWAT modeling incorporated 10-yr meteorological information, soil data, land slope classification, land use, four-year crop-rotation cycle, and management operations. Tile drain and pothole parameters were modeled to assess the fate and transport of nutrients. The influence of landscape management and cropping systems on nitrogen and phosphorus loadings, erosion process, and hydrological performance at the sub-watershed scale was analyzed and key factors identified. Results suggest strongly that incorporating agricultural BMPs and conservation strategies into integrated landscape management for certain energy crops in row-crop production regions can be economical and environmentally sustainable.

  2. A Study of Disaster Adaptation Behavior and Risk Communication for watershed Area Resident - the Case of Kaoping River Watershed in Taiwan

    Science.gov (United States)

    Te Pai, Jen; Chen, Yu-Yun; Huang, Kuan-Hua

    2016-04-01

    Along with the global climate change, the rainfall patterns become more centralized and cause natural disasters more frequently and heavily. Residents in river watersheds area are facing high risk of natural disasters and severe impacts, especially in Taiwan. From the experience of Typhoon Morakot in 2009, we learned that poor risk communication between the governments and the households and communities would lead to tremendous loss of property and life. Effective risk communication can trigger action to impending and current events. On the other hand, it can also build up knowledge on hazards and risks and encourage adaptation behaviors. Through the participation and cooperation of different stakeholders in disaster management, can reduce vulnerability, enhance adaptive capacity, improve the interaction between different stakeholders and also avoid conflicts. However, in Taiwan there are few studies about how households and communities perceive flood disaster risks, the process of risk communications between governments and households, or the relationship between risk communication and adaptation behaviors. Therefore, this study takes household and community of Kaoping River Watershed as study area. It aims to identify important factors in the process of disaster risk communication and find out the relationship between risk communication and adaptation behaviors. A framework of risk communication process was established to describe how to trigger adaptation behaviors and encourage adaptation behaviors with risk communication strategies. An ISM model was utilized to verify the framework by using household questionnaire survey. Moreover, a logit choice model was build to test the important factors for effective risk communication and adaption behavior. The result of this study would provide governments or relevant institutions suggestions about risk communication strategies and adaptation strategies to enhance the adaptive capacity of households and reduce the

  3. Impediments and solutions to sustainable, watershed-scale urban stormwater management: lessons from Australia and the United States.

    Science.gov (United States)

    Roy, Allison H; Wenger, Seth J; Fletcher, Tim D; Walsh, Christopher J; Ladson, Anthony R; Shuster, William D; Thurston, Hale W; Brown, Rebekah R

    2008-08-01

    In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.

  4. Application of the SUSTAIN Model to a Watershed-Scale Case for Water Quality Management

    Directory of Open Access Journals (Sweden)

    Chi-Feng Chen

    2014-11-01

    Full Text Available Low impact development (LID is a relatively new concept in land use management that aims to maintain hydrological conditions at a predevelopment level without deteriorating water quality during land development. The United States Environmental Protection Agency (USEPA developed the System for Urban Stormwater Treatment and Analysis Integration model (SUSTAIN to evaluate the performance of LID practices at different spatial scales; however, the application of this model has been limited relative to LID modeling. In this study, the SUSTAIN model was applied to a Taiwanese watershed. Model calibration and verification were performed, and different types of LID facilities were evaluated. The model simulation process and the verified model parameters could be used in other cases. Four LID scenarios combining bioretention ponds, grass swales, and pervious pavements were designed based on the land characteristics. For the SUSTAIN model simulation, the results showed that pollution reduction was mainly due to water quantity reduction, infiltration was the dominant mechanism and plant interception had a minor effect on the treatment. The simulation results were used to rank the primary areas for nonpoint source pollution and identify effective LID practices. In addition to the case study, a sensitivity analysis of the model parameters was performed, showing that the soil infiltration rate was the most sensitive parameter affecting the LID performance. The objectives of the study are to confirm the applicability of the SUSTAIN model and to assess the effectiveness of LID practices in the studied watershed.

  5. Understanding Urban Watersheds through Digital Interactive Maps, San Francisco Bay Area, California

    Science.gov (United States)

    Sowers, J. M.; Ticci, M. G.; Mulvey, P.

    2014-12-01

    Dense urbanization has resulted in the "disappearance" of many local creeks in urbanized areas surrounding the San Francisco Bay. Long reaches of creeks now flow in underground pipes. Municipalities and water agencies trying to reduce non-point-source pollution are faced with a public that cannot see and therefore does not understand the interconnected nature of the drainage system or its ultimate discharge to the bay. Since 1993, we have collaborated with the Oakland Museum, the San Francisco Estuary Institute, public agencies, and municipalities to create creek and watershed maps to address the need for public understanding of watershed concepts. Fifteen paper maps are now published (www.museumca.org/creeks), which have become a standard reference for educators and anyone working on local creek-related issues. We now present digital interactive creek and watershed maps in Google Earth. Four maps are completed covering urbanized areas of Santa Clara and Alameda Counties. The maps provide a 3D visualization of the watersheds, with cartography draped over the landscape in transparent colors. Each mapped area includes both Present and Past (circa 1800s) layers which can be clicked on or off by the user. The Present layers include the modern drainage network, watershed boundaries, and reservoirs. The Past layers include the 1800s-era creek systems, tidal marshes, lagoons, and other habitats. All data are developed in ArcGIS software and converted to Google Earth format. To ensure the maps are interesting and engaging, clickable icons pop-up provide information on places to visit, restoration projects, history, plants, and animals. Maps of Santa Clara Valley are available at http://www.valleywater.org/WOW.aspx. Maps of western Alameda County will soon be available at http://acfloodcontrol.org/. Digital interactive maps provide several advantages over paper maps. They are seamless within each map area, and the user can zoom in or out, and tilt, and fly over to explore

  6. Participatory integrated watershed management in the north-western highlands of Rwanda

    NARCIS (Netherlands)

    Kagabo, M.D.

    2013-01-01

    This thesis is the result of assessments on the extent of existing resource use and management practices using a Participatory Integrated Watershed Management (PIWM) as a viable approach to promote best soil water conservation (SWC) measures towards more sustainable land use. The study was conducted

  7. Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control

    Science.gov (United States)

    The “Innovative Approaches for Urban Watershed Wet-Weather Flow Management and Control: State of the Technology” project investigated a range of innovative technology and management strategies emerging outside the normal realm of business within the continental United States, fo...

  8. Watershed Restoration Project

    Energy Technology Data Exchange (ETDEWEB)

    Julie Thompson; Betsy Macfarlan

    2007-09-27

    In 2003, the U.S. Department of Energy issued the Eastern Nevada Landscape Coalition (ENLC) funding to implement ecological restoration in Gleason Creek and Smith Valley Watersheds. This project was made possible by congressionally directed funding that was provided through the US Department of Energy, Energy Efficiency and Renewable Energy, Office of the Biomass Program. The Ely District Bureau of Land Management (Ely BLM) manages these watersheds and considers them priority areas within the Ely BLM district. These three entities collaborated to address the issues and concerns of Gleason Creek and Smith Valley and prepared a restoration plan to improve the watersheds’ ecological health and resiliency. The restoration process began with watershed-scale vegetation assessments and state and transition models to focus on restoration sites. Design and implementation of restoration treatments ensued and were completed in January 2007. This report describes the restoration process ENLC undertook from planning to implementation of two watersheds in semi-arid Eastern Nevada.

  9. Suburban watershed nitrogen retention: Estimating the effectiveness of stormwater management structures

    Directory of Open Access Journals (Sweden)

    Benjamin J. Koch

    2015-07-01

    Full Text Available Abstract Excess nitrogen (N is a primary driver of freshwater and coastal eutrophication globally, and urban stormwater is a rapidly growing source of N pollution. Stormwater best management practices (BMPs are used widely to remove excess N from runoff in urban and suburban areas, and are expected to perform under a wide variety of environmental conditions. Yet the capacity of BMPs to retain excess N varies; and both the variation and the drivers thereof are largely unknown, hindering the ability of water resource managers to meet water quality targets in a cost-effective way. Here, we use structured expert judgment (SEJ, a performance-weighted method of expert elicitation, to quantify the uncertainty in BMP performance under a range of site-specific environmental conditions and to estimate the extent to which key environmental factors influence variation in BMP performance. We hypothesized that rain event frequency and magnitude, BMP type and size, and physiographic province would significantly influence the experts’ estimates of N retention by BMPs common to suburban Piedmont and Coastal Plain watersheds of the Chesapeake Bay region. Expert knowledge indicated wide uncertainty in BMP performance, with N removal efficiencies ranging from 40%. Experts believed that the amount of rain was the primary identifiable source of variability in BMP efficiency, which is relevant given climate projections of more frequent heavy rain events in the mid-Atlantic. To assess the extent to which those projected changes might alter N export from suburban BMPs and watersheds, we combined downscaled estimates of rainfall with distributions of N loads for different-sized rain events derived from our elicitation. The model predicted higher and more variable N loads under a projected future climate regime, suggesting that current BMP regulations for reducing nutrients may be inadequate in the future.

  10. Utilization of Remote Sensing Techniques for Monitoring and Evaluation of Solo Watershed Management

    Directory of Open Access Journals (Sweden)

    Totok Gunawan

    2004-01-01

    Full Text Available This research is an application of remote sensing technology for monitoring and evaluation of watershed management, which was conducted is Solo Watershed, Central and East Java. The research objectives were 1 to investigate the capability of photomorphic analysis of Landsat Thematic Mapper (TM and Enhanced Themmatic Mapper (ETM + imagery as the basic for analyzes of landforms, landuse, and morphometry of the land surface; 2 to calculate the overland flow – peak discharge and erosion – sediment yield as indicators of land degradation of the area; 3 to use the indicators as set of instrument for monitoring and evaluation of watershed management. In this study, visual interpretation by means of on-screen digilization of the digital imagery was carried out in order to identify and to delineate land parameters using photomorphic approach. Based on the photomorphic analysis, several image – based parameters such as relief topography, physical soil characteristic, litho – stratigraphy, and vegetation cover were integrated with other themati maps in a geographic information system (GIS environment. Estimation of overland flow (C based on Cook methods (1942 and calculation of peak disccharge (Qmax based on rational method (Qmax = C. I. A were applied. Meanwhile, estimation of surface erosion was carried out using Universal Soil Loss Equation (USLE, A = R. K. L. S. CP. The sediment yield (Sy was estimated using seddiment delivery ratio ( SDR based on the following formula: Sy = [A + (25% x A] x SDR. Both pairs of C – Qmax and A – Sy, were utilized as the basis for monitoring and evaluation of the watershed. The combination of C – Qmax and A – Sy were also used as the basis for selection of stream gauge setting / AWLR within particular sub – catchment. It was found that the photomorphic analysis is only color/tone, slope aspects, pattern, and texture, unit boundaries between volcanic – origin landscape (Wilis volcanic complex and folded

  11. MANAGEMENT IN RURAL AREAS

    Directory of Open Access Journals (Sweden)

    Danimir Štros

    2015-07-01

    Full Text Available Croatia has been seeking to achive pre-war results in tourism since its independence. Rural tourism in Croatia based on family farma faces a number of problems legal foundations, the involement of local communities, inadequate entepreneur support etc. The political will for development exists, but there is lack of willingness and the ability to get things started, which results in the closure of family farma who cannot cope with the parallel job of agriculture and tourism. Arriving guests certainly want a new type of tourism: peace, clean environment, cultural intangible and tangible treasures, all without the noise and stress; and Croatia can definitely offer it, either in coastal or inland areas with traditional food and drinks. The destinations connection is not satisfactora. there is also an evident lack of legislation and regional spatial development plans for sustainable tourism which is a prerequisite for successful tourism. With these plans presumptins accepted, Croatian tourism would become distinctive and inland and coastal branches of tourism could complement each other so that the customer can spend his vacation both in the continental ant the maritime part of the country, getting to know our culture and enjoy the traditional cousine.

  12. Towards sustainable integrated watershed ecosystem management: a case study in Dingxi on the loess plateau, China.

    Science.gov (United States)

    Chen, Liding; Yang, Lei; Wei, Wei; Wang, Ziting; Mo, Baoru; Cai, Guojun

    2013-01-01

    The Chinese government initiated a massive conservation program called "Grain-for-Green" in 1999 to reduce soil erosion and improve ecosystem function. Implementing practical sustainable development in the loess plateau still remains problematic, particularly in its eco-fragile areas. Here we discussed an approach for sustainable development at the watershed scale by integrating land use suitability, ecosystem services and public participation in the loess hilly area. We linked land use scenario analysis and economic modeling to compare the outcomes of three scenarios, CLU (Current Land Use), GOLU (Grain-production Oriented Land Use) and PSLU (Potential Sustainable Land Use). The results indicated that compared to PSLU, GOLU may provide a higher economic productivity in the short-term, but not in the long-term. CLU ranked lowest in terms of economic benefits and did not meet the daily needs of the local farmers. To reconcile the land use adjustments with farmers' basic needs, a labor-saving land use strategy is necessary. Since the PSLU scenario assumes that slope cropland should be converted to pastures or orchards, more time may be available for off-farm work and for more public participation in integrated ecosystem management. Financial support to the local farmers for environmental conservation should be modulated in function of their positive contribution to ecosystem management.

  13. Hydrological modeling of a watershed affected by acid mine drainage (Odiel River, SW Spain). Assessment of the pollutant contributing areas

    Science.gov (United States)

    Galván, L.; Olías, M.; Cánovas, C. R.; Sarmiento, A. M.; Nieto, J. M.

    2016-09-01

    The Odiel watershed drains materials belonging to the Iberian Pyrite Belt, where significant massive sulfide deposits have been mined historically. As a result, a huge amount of sulfide-rich wastes are deposited in the watershed, which suffer from oxidation, releasing acidic lixiviates with high sulfate and metal concentrations. In order to reliably estimate the metal loadings along the watershed a complete series of discharge and hydrochemical data are essential. A hydrological model was performed with SWAT (Soil and Water Assessment Tool) to solve the scarcity of gauge stations along the watershed. The model was calibrated and validated from daily discharge data (from 1980 to 2010) at the outlet of the watershed, river inputs into an existent reservoir, and a flow gauge station close to the northern area of the watershed. Discharge data obtained from the hydrological model, together with analytical data, allowed the estimation of the dissolved pollutant load delivered annually by the Odiel River (e.g. 9140 t of Al, 2760 t of Zn). The pollutant load is influenced strongly by the rainfall regime, and can even double during extremely rainy years. Around 50% of total pollution comes from the Riotinto Mining District, so the treatment of Riotinto lixiviates reaching the Odiel watershed would reduce the AMD (Acid Mine Drainages) in a remarkable way, improving the water quality downstream, especially in the reservoir of Alcolea, currently under construction. The information obtained in this study will allow the optimization of remediation efforts in the watershed, in order to improve its water quality.

  14. The Potential Importance of Conservation, Restoration and Altered Management Practices for Water Quality in the Wabash River Watershed

    Science.gov (United States)

    Yang, G.; Best, E. P.; Goodwin, S.

    2013-12-01

    Non-point source (NPS) pollution is one of the leading causes of water quality impairment within the United States. Conservation, restoration and altered management (CRAM) practices may effectively reduce NPS pollutants to receiving water bodies and enhance local and regional ecosystem services. Barriers for the implementation of CRAM include uncertainties related to the extent to which nutrients are removed by CRAM at various spatial and temporal scales, longevity, optimal placement of CRAM within the landscape, and implementation / operation / maintenance costs. We conducted a study aimed at the identification of optimal placement of CRAM in watersheds that reduces N loading to an environmentally sustainable level, at an acceptable, known, cost. For this study, we used a recently developed screening-level modeling approach, WQM-TMDL-N, running in the ArcGIS environment, to estimate nitrogen loading under current land use conditions (NLCD 2006). This model was equipped with a new option to explore the performances of placement of various CRAM types and areas to reduce nitrogen loading to a State-accepted Total Maximum Daily Load (TMDL) standard, with related annual average TN concentration, and a multi-objective algorithm optimizing load and cost. CRAM practices explored for implementation in rural area included buffer strips, nutrient management practices, and wetland restoration. We initially applied this modeling approach to the Tippecanoe River (TR) watershed (8-digit HUC), a headwater of the Wabash River (WR) watershed, where CRAM implementation in rural and urban areas is being planned and implemented at various spatial scales. Consequences of future land use are explored using a 2050 land use/land cover map forecasted by the Land Transformation Model. The WR watershed, IN, drains two-thirds of the state's 92 counties and supports predominantly agricultural land use. Because the WR accounts for over 40% of the nutrient loads of the Ohio River and

  15. Quantifying Urban Watershed Stressor Gradients and Evaluating How Different Land Cover Datasets Affect Stream Management

    Science.gov (United States)

    Smucker, Nathan J.; Kuhn, Anne; Charpentier, Michael A.; Cruz-Quinones, Carlos J.; Elonen, Colleen M.; Whorley, Sarah B.; Jicha, Terri M.; Serbst, Jonathan R.; Hill, Brian H.; Wehr, John D.

    2016-03-01

    Watershed management and policies affecting downstream ecosystems benefit from identifying relationships between land cover and water quality. However, different data sources can create dissimilarities in land cover estimates and models that characterize ecosystem responses. We used a spatially balanced stream study (1) to effectively sample development and urban stressor gradients while representing the extent of a large coastal watershed (>4400 km2), (2) to document differences between estimates of watershed land cover using 30-m resolution national land cover database (NLCD) and anions, and cations had similarly significant correlations with increased watershed percent impervious cover (IC), regardless of data resolution. The NLCD underestimated percent forest for 71/76 sites by a mean of 11 % and overestimated percent wetlands for 71/76 sites by a mean of 8 %. The NLCD almost always underestimated IC at low development intensities and overestimated IC at high development intensities. As a result of underestimated IC, regression models using NLCD data predicted mean background concentrations of NO3 - and Cl- that were 475 and 177 %, respectively, of those predicted when using finer resolution land cover data. Our sampling design could help states and other agencies seeking to create monitoring programs and indicators responsive to anthropogenic impacts. Differences between land cover datasets could affect resource protection due to misguided management targets, watershed development and conservation practices, or water quality criteria.

  16. Integrated watershed management: a planning methodology for construction of new dams in Ethiopia

    NARCIS (Netherlands)

    Bezuayehu, Tefera; Stroosnijder, L.

    2007-01-01

    Integrated watershed management (IWM) is emerging as an alternative to the centrally planned and sectoral approaches that currently characterize the planning process for dam construction in Ethiopia. This report clarifies the concept of IWM, and reviews the major social, environmental and economic p

  17. Development of a Prototype Web-Based Decision Support System for Watershed Management

    Directory of Open Access Journals (Sweden)

    Dejian Zhang

    2015-02-01

    Full Text Available Using distributed hydrological models to evaluate the effectiveness of reducing non-point source pollution by applying best management practices (BMPs is an important support to decision making for watershed management. However, complex interfaces and time-consuming simulations of the models have largely hindered the applications of these models. We designed and developed a prototype web-based decision support system for watershed management (DSS-WMRJ, which is user friendly and supports quasi-real-time decision making. DSS-WMRJ is based on integrating an open-source Web-based Geographical Information Systems (Web GIS tool (Geoserver, a modeling component (SWAT, Soil and Water Assessment Tool, a cloud computing platform (Hadoop and other open source components and libraries. In addition, a private cloud is used in an innovative manner to parallelize model simulations, which are time consuming and computationally costly. Then, the prototype DSS-WMRJ was tested with a case study. Successful implementation and testing of the prototype DSS-WMRJ lay a good foundation to develop DSS-WMRJ into a fully-fledged tool for watershed management. DSS-WMRJ can be easily customized for use in other watersheds and is valuable for constructing other environmental decision support systems, because of its performance, flexibility, scalability and economy.

  18. Using game theory to assess multi-company strategies in watershed management

    Directory of Open Access Journals (Sweden)

    Luke Ogilvie Thompson

    2016-06-01

    Full Text Available The main objective of this work was to evaluate the use of game theory as a strategic tool for watershed management decision-making. An engineering problem case study was used in which three organizations compare various scenarios when deciding where to locate a polluting plant on a watershed. Six games were modeled to provide a variety of conditions that could feasibly be implemented and were simulated using software for finding Nash Equilibria solutions. The results show that game theory can provide key insights, such as the consideration of other players' strategies, and identify possible pitfalls that may occur when the companies seek only to maximize their individual profitability.

  19. An index-based robust decision making framework for watershed management in a changing climate.

    Science.gov (United States)

    Kim, Yeonjoo; Chung, Eun-Sung

    2014-03-01

    This study developed an index-based robust decision making framework for watershed management dealing with water quantity and quality issues in a changing climate. It consists of two parts of management alternative development and analysis. The first part for alternative development consists of six steps: 1) to understand the watershed components and process using HSPF model, 2) to identify the spatial vulnerability ranking using two indices: potential streamflow depletion (PSD) and potential water quality deterioration (PWQD), 3) to quantify the residents' preferences on water management demands and calculate the watershed evaluation index which is the weighted combinations of PSD and PWQD, 4) to set the quantitative targets for water quantity and quality, 5) to develop a list of feasible alternatives and 6) to eliminate the unacceptable alternatives. The second part for alternative analysis has three steps: 7) to analyze all selected alternatives with a hydrologic simulation model considering various climate change scenarios, 8) to quantify the alternative evaluation index including social and hydrologic criteria with utilizing multi-criteria decision analysis methods and 9) to prioritize all options based on a minimax regret strategy for robust decision. This framework considers the uncertainty inherent in climate models and climate change scenarios with utilizing the minimax regret strategy, a decision making strategy under deep uncertainty and thus this procedure derives the robust prioritization based on the multiple utilities of alternatives from various scenarios. In this study, the proposed procedure was applied to the Korean urban watershed, which has suffered from streamflow depletion and water quality deterioration. Our application shows that the framework provides a useful watershed management tool for incorporating quantitative and qualitative information into the evaluation of various policies with regard to water resource planning and management.

  20. Spatially explicit methodology for coordinated manure management in shared watersheds.

    Science.gov (United States)

    Sharara, Mahmoud; Sampat, Apoorva; Good, Laura W; Smith, Amanda S; Porter, Pamela; Zavala, Victor M; Larson, Rebecca; Runge, Troy

    2017-05-01

    Increased clustering and consolidation of livestock production systems has been linked to adverse impacts on water quality. This study presents a methodology to optimize manure management within a hydrologic region to minimize agricultural phosphorus (P) loss associated with winter manure application. Spatial and non-spatial data representing livestock, crop, soil, terrain and hydrography were compiled to determine manure P production rates, crop P uptake, existing manure storage capabilities, and transportation distances. Field slope, hydrologic soil group (HSG), and proximity to waterbodies were used to classify crop fields according to their runoff risk for winter-applied manure. We use these data to construct a comprehensive optimization model that identifies optimal location, size, and transportation strategy to achieve environmental and economic goals. The environmental goal was the minimization of daily hauling of manure to environmentally sensitive crop fields, i.e., those classified as high P-loss fields, whereas the economic goal was the minimization of the transportation costs across the entire study area. A case study encompassing two contiguous 10-digit hydrologic unit subwatersheds (HUC-10) in South Central Wisconsin, USA was developed to demonstrate the proposed methodology. Additionally, scenarios representing different management decisions (storage facility maximum volume, and project capital) and production conditions (increased milk production and 20-year future projection) were analyzed to determine their impact on optimal decisions.

  1. Small watershed management as a tool of flood risk prevention

    Science.gov (United States)

    Jakubinsky, J.; Bacova, R.; Svobodova, E.; Kubicek, P.; Herber, V.

    2014-09-01

    According to the International Disaster Database (CRED 2009) frequency of extreme hydrological situations on a global scale is constantly increasing. The most typical example of a natural risk in Europe is flood - there is a decrease in the number of victims, but a significant increase in economic damage. A decrease in the number of victims is caused by the application of current hydrological management that focuses its attention primarily on large rivers and elimination of the damages caused by major flood situations. The growing economic losses, however, are a manifestation of the increasing intensity of floods on small watercourses, which are usually not sufficiently taken into account by the management approaches. The research of small streams should focus both on the study of the watercourse itself, especially its ecomorphological properties, and in particular on the possibility of flood control measures and their effectiveness. An important part of society's access to sustainable development is also the evolution of knowledge about the river landscape area, which is perceived as a significant component of global environmental security and resilience, thanks to its high compensatory potential for mitigation of environmental change. The findings discussed under this contribution are based on data obtained during implementation of the project "GeoRISK" (Geo-analysis of landscape level degradation and natural risks formation), which takes into account the above approaches applied in different case studies - catchments of small streams in different parts of the Czech Republic. Our findings offer an opportunity for practical application of field research knowledge in decision making processes within the national level of current water management.

  2. Soil Erodibility for Water Pollution Management of Melaka Watershed in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Md. Ibrahim Adham

    2015-07-01

    Full Text Available The relationships between surface runoffand soil erodibility are significant in water pollution and watershed management practices. Land use pattern, soil series and slope percentage are also major factors to develop the relationships. Daily rainfall data were collected and analyzed for variations in precipitation for calculating the surface runoff of these watersheds and surface runoff map was produced by GIS tools. Tew equation was utilized to predict soil erodibility of watershed soils.Results indicated that the weighted curve number varies from 82 to 85 and monthly runoff 23% to 30% among the five watersheds. Soil erodibility varies from 0.038 to 0.06 ton/ha (MJ.mm/ha/h. Linau-Telok-Local Alluvium, Malacca-Munchong, Munchong-Malacca-Serdang and Malacca-Munchong-Tavy are the dominant soil series of this region having the average soil erodibility of about 0.042 ton/ha (MJ.mm/ha/h. The main focus of this study is to provide the information of soil erodibility to reduce the water pollution of a watershed.

  3. Building Virtual Watersheds: A Global Opportunity to Strengthen Resource Management and Conservation.

    Science.gov (United States)

    Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y

    2016-03-01

    Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.

  4. Evaluating water management strategies in watersheds by new hybrid Fuzzy Analytical Network Process (FANP) methods

    Science.gov (United States)

    RazaviToosi, S. L.; Samani, J. M. V.

    2016-03-01

    Watersheds are considered as hydrological units. Their other important aspects such as economic, social and environmental functions play crucial roles in sustainable development. The objective of this work is to develop methodologies to prioritize watersheds by considering different development strategies in environmental, social and economic sectors. This ranking could play a significant role in management to assign the most critical watersheds where by employing water management strategies, best condition changes are expected to be accomplished. Due to complex relations among different criteria, two new hybrid fuzzy ANP (Analytical Network Process) algorithms, fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and fuzzy max-min set methods are used to provide more flexible and accurate decision model. Five watersheds in Iran named Oroomeyeh, Atrak, Sefidrood, Namak and Zayandehrood are considered as alternatives. Based on long term development goals, 38 water management strategies are defined as subcriteria in 10 clusters. The main advantage of the proposed methods is its ability to overcome uncertainty. This task is accomplished by using fuzzy numbers in all steps of the algorithms. To validate the proposed method, the final results were compared with those obtained from the ANP algorithm and the Spearman rank correlation coefficient is applied to find the similarity in the different ranking methods. Finally, the sensitivity analysis was conducted to investigate the influence of cluster weights on the final ranking.

  5. Building Virtual Watersheds: A Global Opportunity to Strengthen Resource Management and Conservation

    Science.gov (United States)

    Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y.

    2016-03-01

    Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.

  6. Watershed runoff and sediment transport impacts from management decisions using integrated AnnAGNPS and CCHE1D models

    Science.gov (United States)

    Conservation planning tools that consider all sources of erosion, sheet and rill, gully, and channels, is critical to developing an effective watershed management plan that considers the integrated effect of all practices on the watershed system. The Annualized Agricultural Non-Point Source polluta...

  7. MANAGING RISKS USING MEASUREMENTS OF STREAM COMMUNITY METABOLISM, NUTRIENT AND SEDIMENT DYNAMICS AND GEOMORPHOLOGY IN THE LMR WATERSHED

    Science.gov (United States)

    The goal of this project, and associated research, is to establish thresholds for ecological response to watershed disturbance and to develop tools and insights that will help us manage risks. Changes in the amount and types of land use in a watershed can result in increased ris...

  8. Environmental quality integrated indicator applied to the management of the Jiquiriçá river watershed, BA, Brazil

    Directory of Open Access Journals (Sweden)

    Raquel Maria de Oliveira

    2010-04-01

    Full Text Available In this work social, economic and environmental aspects were studied using the concept of programming by commitment, with the objective of structuring an integrated indicator capable of estimating the degree of the environmental quality of the Jiquiriça river basin, BA, composed by the indicator of environmental salubrity, water quality and soil’s protection. For the determination of the environmental salubrity indicator, data of the following variables were collected: existence of treated water supply, disposition and treatment of solid residues, diseases vectors control, the existence of the Agenda 21, socioeconomics data and indices of human development for each municipal district located in the area of the watershed. The indicator of the water quality was structured based on the analysis of water samples collected in eight sampling points along Jiquiriçá river and determined by seven parameters. The indicator of soil’s protection was based on the analysis of maps obtained according to the weight of each steepness and land use class. Results indicate that the watershed is in a poor equilibrium condition and suggest the need for structural investments as well as changes in public polices. The methodology used was efficient for this watershed management and could be used as tool for the environmental planning of the region, once it can be adapted to several situations depending on the data availability.

  9. Watershed regulation and local action: analysis of the Senegal River watershed management by a regional organisation and public participation

    Directory of Open Access Journals (Sweden)

    A. M. Sène

    2007-06-01

    Full Text Available Several social scientists have dealt with the usefulness of a participative approach in development plans. The call for sustainable development has increased the focus on this type of approach in a very classical way, which is the case for the creation of new water tanks. Most of these scientists have also pinpointed the major difficulties and failures faced during the execution of this new approach in developing countries. This study is a concrete example which underlines the lack of this type of approach as far as water management in the Senegal River is concerned, mainly in relation to watershed. We base our study on the analysis and criticism of the regional organization OMVS (Organization for the Development of the Senegal River which is in charge of water management in the Senegal River. The results of the study can, therefore, be summed up as follows: (i An on-site direct observation, individual interviews, group discussion and information analysis point out the lack of participation of local people in water management in the Senegal River and, in general, the harmful socio-economic impacts resulting from it. (ii The reasons for this lack of participative approach are mainly due to the model set up by the OMVS in terms of water management in the Senegal River, a model that has excluded or tackled in a very light way the issue of public participation in decision-making through out its juridical and regulation instruments. (iii Elements of consideration on some measures, which could possibly improve the level of participation of local people in river water management.

  10. Tribal Watershed Management: Culture, Science, Capacity, and Collaboration

    Science.gov (United States)

    Cronin, Amanda; Ostergren, David M.

    2007-01-01

    This research focuses on two elements of contemporary American Indian natural resource management. First, the authors explore the capacity of tribes to manage natural resources, including the merging of traditional ecological knowledge (TEK) with Western science. Second, they analyze tribal management in the context of local and regional…

  11. Fuzzy logic-based assessment for mapping potential infiltration areas in low-gradient watersheds.

    Science.gov (United States)

    Quiroz Londoño, Orlando Mauricio; Romanelli, Asunción; Lima, María Lourdes; Massone, Héctor Enrique; Martínez, Daniel Emilio

    2016-07-01

    This paper gives an account of the design a logic-based approach for identifying potential infiltration areas in low-gradient watersheds based on remote sensing data. This methodological framework is applied in a sector of the Pampa Plain, Argentina, which has high level of agricultural activities and large demands for groundwater supplies. Potential infiltration sites are assessed as a function of two primary topics: hydrologic and soil conditions. This model shows the state of each evaluated subwatershed respecting to its potential contribution to infiltration mainly based on easily measurable and commonly used parameters: drainage density, geomorphologic units, soil media, land-cover, slope and aspect (slope orientation). Mapped outputs from the logic model displayed 42% very low-low, 16% moderate, 41% high-very high contribution to potential infiltration in the whole watershed. Subwatersheds in the upper and lower section were identified as areas with high to very high potential infiltration according to the following media features: low drainage density (<1.5 km/km(2)), arable land and pastures as the main land-cover categories, sandy clay loam to loam - clay loam soils and with the geomorphological units named poorly drained plain, channelized drainage plain and, dunes and beaches.

  12. Protect and Restore Mill Creek Watershed : Annual Report CY 2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

  13. Ecological Engineering Practices for the Reduction of Excess Nitrogen in Human-Influenced Landscapes: A Guide for Watershed Managers

    Science.gov (United States)

    Passeport, Elodie; Vidon, Philippe; Forshay, Kenneth J.; Harris, Lora; Kaushal, Sujay S.; Kellogg, Dorothy Q.; Lazar, Julia; Mayer, Paul; Stander, Emilie K.

    2013-02-01

    Excess nitrogen (N) in freshwater systems, estuaries, and coastal areas has well-documented deleterious effects on ecosystems. Ecological engineering practices (EEPs) may be effective at decreasing nonpoint source N leaching to surface and groundwater. However, few studies have synthesized current knowledge about the functioning principles, performance, and cost of common EEPs used to mitigate N pollution at the watershed scale. Our review describes seven EEPs known to decrease N to help watershed managers select the most effective techniques from among the following approaches: advanced-treatment septic systems, low-impact development (LID) structures, permeable reactive barriers, treatment wetlands, riparian buffers, artificial lakes and reservoirs, and stream restoration. Our results show a broad range of N-removal effectiveness but suggest that all techniques could be optimized for N removal by promoting and sustaining conditions conducive to biological transformations (e.g., denitrification). Generally, N-removal efficiency is particularly affected by hydraulic residence time, organic carbon availability, and establishment of anaerobic conditions. There remains a critical need for systematic empirical studies documenting N-removal efficiency among EEPs and potential environmental and economic tradeoffs associated with the widespread use of these techniques. Under current trajectories of N inputs, land use, and climate change, ecological engineering alone may be insufficient to manage N in many watersheds, suggesting that N-pollution source prevention remains a critical need. Improved understanding of N-removal effectiveness and modeling efforts will be critical in building decision support tools to help guide the selection and application of best EEPs for N management.

  14. Spatial and temporal estimation of soil loss for the sustainable management of a wet semi-arid watershed cluster.

    Science.gov (United States)

    Rejani, R; Rao, K V; Osman, M; Srinivasa Rao, Ch; Reddy, K Sammi; Chary, G R; Pushpanjali; Samuel, Josily

    2016-03-01

    The ungauged wet semi-arid watershed cluster, Seethagondi, lies in the Adilabad district of Telangana in India and is prone to severe erosion and water scarcity. The runoff and soil loss data at watershed, catchment, and field level are necessary for planning soil and water conservation interventions. In this study, an attempt was made to develop a spatial soil loss estimation model for Seethagondi cluster using RUSLE coupled with ARCGIS and was used to estimate the soil loss spatially and temporally. The daily rainfall data of Aphrodite for the period from 1951 to 2007 was used, and the annual rainfall varied from 508 to 1351 mm with a mean annual rainfall of 950 mm and a mean erosivity of 6789 MJ mm ha(-1) h(-1) year(-1). Considerable variation in land use land cover especially in crop land and fallow land was observed during normal and drought years, and corresponding variation in the erosivity, C factor, and soil loss was also noted. The mean value of C factor derived from NDVI for crop land was 0.42 and 0.22 in normal year and drought years, respectively. The topography is undulating and major portion of the cluster has slope less than 10°, and 85.3% of the cluster has soil loss below 20 t ha(-1) year(-1). The soil loss from crop land varied from 2.9 to 3.6 t ha(-1) year(-1) in low rainfall years to 31.8 to 34.7 t ha(-1) year(-1) in high rainfall years with a mean annual soil loss of 12.2 t ha(-1) year(-1). The soil loss from crop land was higher in the month of August with an annual soil loss of 13.1 and 2.9 t ha(-1) year(-1) in normal and drought year, respectively. Based on the soil loss in a normal year, the interventions recommended for 85.3% of area of the watershed includes agronomic measures such as contour cultivation, graded bunds, strip cropping, mixed cropping, crop rotations, mulching, summer plowing, vegetative bunds, agri-horticultural system, and management practices such as broad bed furrow, raised sunken beds, and harvesting available water

  15. Tracing back nutrients from Southern North Sea eutrophicated areas up to the watersheds

    Science.gov (United States)

    Dulière, Valérie; Gypens, Nathalie; Lancelot, Christiane; Thieu, Vincent; Luyten, Patrick; Lacroix, Geneviève

    2015-04-01

    The Southern North Sea faces eutrophication problems. They result from growing anthropogenic pressure in the river watersheds, and subsequent increase in nutrients (nitrogen and phosphorus) loading to the sea. Establishing the link between human activities and eutrophication problems requires the identification of the major nutrient sources and the ecological response of the coastal ecosystem to these nutrient alterations. This information is crucial to mitigate eutrophication in coastal zones by applying appropriate dual-nutrient reduction strategies, therefore achieving the Good Environmental Status of EU marine waters by 2020. The marine biogeochemical model (MIRO&CO) has been coupled to a newly developed generic watershed model (PyNuts) based on Riverstrahler model. A nutrient tracking approach has been adapted and implemented in MIRO&CO. The transboundary nutrient transport method has been used to track the nutrients in the sea, and trace back their sources (river, ocean, and atmosphere). Here, the relative contributions of the different nutrient sources will be presented. Results show that the nitrogen contribution from atmospheric deposition is not negligible and that the nutrients released by French rivers reach the Southern North Sea in significant proportions. This work has done in the framework of the EMoSEM EU project (http://www.odnature.be/emosem/) that aims at providing support to eutrophication management in the North Atlantic Ocean, using state-of-the-art modelling tools.

  16. Stability of patches of oasis landscape in arid areas: A case study of Sangong River Watershed, Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    LUO Geping; ZHOU Chenghu; CHEN Xi

    2006-01-01

    The stability of oases is one of the key scientific issues in the process of evolution and management of oases in arid areas. The stability of oases and its representation are also different at different scales. This paper deals with the stability of oases at the landscape patch scale with a case study in the Sangong River Watershed of Tianshan Mountains.We employed the remote sensing, geographic information system and mathematical statistical methods to process the remote sensing images of three periods in 1978, 1987 and 1998, and put forward the approaches for representing the oasis stability at the landscape patch scale. The landscape control capacity of oasis patches is a kind of natural driving forces of the dynamic landscape change. The control capacity of a certain patch type on landscape change increases with its area and shape complexity and contrasts between it and other patches, and reduces with its spatial distances between it and other patches. The patch type with the strongest control capacity should be the matrix of landscape. The conversion of oasis landscape patches results from both natural and anthropogenic driving forces, particularly the anthropogenic driving forces. The higher the conversion proportion is, the lower the stability of patch types is and the stronger the anthropogenic disturbance is. The patch type with the strongest net control capacity in the Sangong River Watershed in 1987 was the desert grassland, which was the matrix of landscapes; but the matrix of landscapes had been changed into the irrigated lands in 1987 and 1998.The control capacities of landscape patches on the oasis landscape evolution have gradually reduced with time in the Sangong River Watershed, and the change extents also have reduced gradually. This reveals that the interaction among the landscape patch types generally tends to reduce, and the natural stability of the oasis landscape patches generally tends to increase. However, the conversion among the

  17. Impacts of Changing Agri-Environmental Policy on Countryside Conservation: A Report of Focus Groups Held in Association with Skaneateles Lake Watershed, Skaneateles, NY, USA, and High Weald Area of Outstanding Natural Beauty, Goudhurst, Kent, England, UK

    OpenAIRE

    Gross, David; Bills, Nelson L.

    2003-01-01

    Utilizing area-based agri-environmental programs, our work involves focus groups and interviews with program managers, landowners, and elected officials to assess the impact of on-farm managerial interventions on broader countryside conservation issues. Initially, two areas were compared: The Skaneateles Lake Watershed Agricultural Program (NY) and the High Weald Land Management Initiative (England). The organizing principle for this research is that the British experience with countryside ma...

  18. A decentralized optimization algorithm for multiagent system-based watershed management

    Science.gov (United States)

    Yang, Yi-Chen E.; Cai, Ximing; Stipanović, DušAn M.

    2009-08-01

    A watershed can be simulated as a multiagent system (MAS) composed of spatially distributed land and water users (agents) within a common defined environment. The watershed system is characterized by distributed decision processes at the agent level with a coordination mechanism organizing the interactions among individual decision processes at the system level. This paper presents a decentralized (distributed) optimization method known as constraint-based reasoning, which allows individual agents in an MAS to optimize their behaviors over various alternatives. The method incorporates the optimization of all agents' objectives through an interaction scheme, in which the ith agent optimizes its objective with a selected priority for collaboration and forwards the solution and consequences to all agents that interact with it. Agents are allowed to determine how important their own objectives are in comparison with the constraints, using a local interest factor (βi). A large βi value indicates a selfish agent who puts high priority on its own benefit and ignores collaboration requirements. This bottom-up problem-solving approach mimics real-world watershed management problems better than conventional "top-down" optimization methods in which it is assumed that individual agents will completely comply with any recommendations that the coordinator makes. The method is applied to a steady state hypothetical watershed with three off-stream human agents, one in-stream human agent (reservoir), and two ecological agents.

  19. Simulation Of Surface runoff For Upper Tapi Subcatchment Area (Burhanpur Watershed) Using SWAT

    Science.gov (United States)

    Shivhare, V.; Goel, M. K.; Singh, C. K.

    2014-11-01

    Water related activity that takes place in one part of a river basin may have consequence in the other part. Any plan related to inter basin transfer of water from a water surplus basin to a deficit basin has to take into account the water availability and demands under the present and future scenarios of water use. Watershed is a hydrologic unit where all stream exit from the common outlet. In the present study, Tapi subcatchment area (Burhanpur watershed) located in inter-state basin of Madhya Pradesh and Maharashtra, India, is selected for the estimation of surface runoff using SWAT model. The SWAT works in conjunction with Arc GIS 9.3. Various parameters Digital Elevation Model (DEM), slope derived from DEM, Landuse/Landcover (LULC) and NBSSLUP soil data and temporal data for temperature and precipitation was used as input for the model to predict runoff at the catchment outlet. The model was run from the year 1992 to 1997. The performance of the model in terms of simulated runoff was evaluated using statistical method and compared simulated monthly flow with the observed monthly flow values from 1992 to 1996 to a significant extent. The coefficient of determination (R2) for the monthly runoff values for 1992 to 1996 was observed to be 0.82, 0.68, 0.92, 0.69.

  20. Fostering Incentive-Based Policies and Partnerships for Integrated Watershed Management in the Southeast Asian Uplands

    Directory of Open Access Journals (Sweden)

    Andreas Neef

    2012-08-01

    Full Text Available This paper attempts to identify the major factors associated with some of the failures and successes of integrated watershed management policies and projects with a particular emphasis on the uplands of mainland Southeast Asia. It argues that many policy measures have been misguided by failing to acknowledge the multi-dimensional facets of sustainable watershed management and putting too much emphasis on command-and-control approaches to resource management and one-size-fits-all conservation models. Attempts to introduce soil and water conservation measures, for instance, have largely failed because they concentrated merely on the technical feasibility and potential ecological effects, while neglecting economic viability and socio-cultural acceptance. The production of agricultural commodities, on the other hand, has mostly been market-driven and often induced boom and bust cycles that compromised the ecological and social dimensions of sustainability. Purely community-based approaches to watershed management, on their part, have often failed to address issues of elite capture and competing interests within and between heterogeneous uplands communities. Drawing on a review of recent experience and on lessons from initiatives in a long-term collaborative research program in Thailand (The Uplands Program aimed at bridging the various dimensions of sustainability in the Southeast Asian uplands, this paper discusses how a socially, institutionally and ecologically sustainable mix of agricultural production, ecosystem services and rural livelihood opportunities can be achieved through incentive-based policies and multi-stakeholder partnerships that attempt to overcome the (perceived antagonism between conservation and development in upland watersheds of Southeast Asia.

  1. Land suitability in the recharging area of Guarani Aquiferous: case of Espraiado Stream Watershed, Ribeirão Preto - SP

    Directory of Open Access Journals (Sweden)

    Danilla Alves Pereira

    2006-08-01

    Full Text Available The Guarani Aquiferous System is Latina America’s biggest strategical freshwater reserve and one of the world’s biggest aquifer systems, with approximately 70% of its area located in Brazil. The recharging areas and adjacent areas are regions of natural water infiltration, with high vulnerability. In these areas there are different agricultural production systems and some of them are intensive systems. The objective of this work was to evaluate the land suitability of the watershed of the Espraiado stream, Ribeirão Preto-SP, located on the recharging area of the Guarani Aquifer, considering the potentialities of lands and waters in the studied region. The area of the watershed is approximately 4,131 ha, with predominance of sugar cane culture. The data base project was constructed in the Geographic Information System (GIS Idrisi 32. The land suitability evaluation was done considering the intensive agricultural production system predominant in the watershed, adjusted for the vulnerability of the areas of recharge and for the methodology of SIG. In the watershed, Oxysols and Nitosols are dominant, with good or regular aptitude for cultures in intensive agricultural systems. The presence of Quartzipsamments is also observed, and it occurs in small band. These soils play an important role in the direct recharge of the water-bearing due to its high water permeability. The land suitability evaluation in Guarani Aquifer must consider the soils potentialities and the impact the agricultural use can cause in the quantity and the quality of the infiltrated water.

  2. Watershed Assessment with Beach Microbial Source Tracking and Outcomes of Resulting Gull Management.

    Science.gov (United States)

    Goodwin, Kelly D; Gruber, Steve; Vondrak, Mary; Crumpacker, Andrea

    2016-09-20

    Total maximum daily load (TMDL) implementation at a southern California beach involved ultraviolet treatment of watershed drainage that provided >97% reduction in fecal indicator bacteria (FIB) concentrations. However, this pollutant control measure did not provide sufficient improvement of beach water quality, prompting further assessment. Investigation included microbial source tracking (MST) for human, gull, and canine fecal sources, monitoring of enterococci and fecal coliform, and measurement of chemical and physical water quality parameters for samples collected from watershed, groundwater, and beach sites, including a beach scour pond and tidal creek. FIB variability remained poorly modeled in regression analysis. However, MST revealed correlations between FIB and gull source tracking markers, leading to recommendations to manage gulls as a pollutant source. Beach conditions were followed for three years after implementation of a best management practice (BMP) to abate gulls using a falconry program for the beach and an upland landfill. The gull abatement BMP was associated with improved beach water quality, and this appears to be the first report of falconry in the context of TMDL implementation. Overall, MST data enabled management action despite an inability to fully model FIB dynamics in the coupled watershed-beach system.

  3. REMOTE SENSING APPLICATIONS FOR SUSTAINABLE WATERSHED MANAGEMENT AND FOOD SECURITY

    Science.gov (United States)

    The integration of IKONOS satellite data, airborne color infrared remote sensing, visualization, and decision support tools is discussed, within the contexts of management techniques for minimizing non-point source pollution in inland waterways, such s riparian buffer restoration...

  4. Sediment yield computation of the sandy and gritty area based on the digital watershed model

    Institute of Scientific and Technical Information of China (English)

    LIU; Jiahong; WANG; Guangqian; LI; Tiejian; XUE; Hai

    2006-01-01

    The Yellow River is well known as a sediment-laden river, which is the main reason that it cannot be controlled as easily as other rivers. Many researchers, such as Qian Ning et al., have found that the sediment load of the Yellow River comes mainly from the sandy and gritty area of the Loess Plateau. Therefore, it is very important to simulate the sediment yield in this area. This paper proposes a method to compute the sediment production in the sandy and gritty area based on the digital watershed model. The suggested model is calibrated and validated in the Chabagou basin, which is a small catchment in the study area. Finally, the model simulates the sediment yield of the sandy and gritty area in 1967, 1978, 1983, 1994 and 1997, which represents a high water and high sediment year, a mean water and mean sediment year, a high water and low sediment year, a low water and high sediment year, and a low water and low sediment year separately. The simulation results, including the runoff depth and erosion modulus, can well explain the "low water and high sediment" phenomena in the Yellow River basin. The total amount of the sediment production and its distribution generated by the model is very useful for water and soil conservation in the sandy and gritty area of the Loess Plateau.

  5. Water environmental planning and management at the watershed scale:A case study of Lake Qilu,China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Water environmental planning and management has become essential for guiding the water pollution control activities.Past water pollution control activities have been site specific,with little thought on water quality standard reaching at the watershed scale.Based on the watershed approach,a seven-step methodological framework for water environmental planning and management was developed.The framework was applied to water environmental planning and management of the Lake Qilu watershed in Yunnan Province,China.Results show that the reduction amount of total nitrogen (TN) under the plan is 1,205 tons per year so that the target of environmental capacity can be reached in 2020.Compared with traditional methods,the framework has its prevalence and could be generalized to analogous watersheds.

  6. Leaf Area Index (LAI) in different type of agroforestry systems based on hemispherical photographs in Cidanau Watershed

    Science.gov (United States)

    Nur Khairiah, Rahmi; Setiawan, Yudi; Budi Prasetyo, Lilik; Ayu Permatasari, Prita

    2017-01-01

    Ecological functions of agroforestry systems have perceived benefit to people around Cidanau Watershed, especially in the protection of water quality. The main causes of the problems encountered in the Cidanau Watershed are associated with the human factors, especially encroachment and conversion of forest into farmland. The encroachment has made most forest in Cidanau Watershed become bare land. To preserve the ecological function of agroforestry systems in Cidanau Watershed, monitoring of the condition of the vegetation canopy in agroforestry systems is really needed. High intensity thinning of crown density due to deforestation can change stand leaf area index dramatically. By knowing LAI, we can assess the condition of the vegetation canopy in agroforestry systems. LAI in this research was obtained from Hemispherical Photographs analysis using the threshold method in HemiView Canopy Analysis Software. Our research results indicate that there are six types of agroforestry in Cidanau Watershed i.e. Sengon Agroforestry, Clove Agroforestry, Melinjo Agroforestry, Chocolate Agroforestry, Coffee Agroforestry, and Complex Agroforestry. Several factors potentially contribute to variations in the value of LAI in different types of agroforestry. The simple assumptions about differences ranges of LAI values on six types of agroforestry is closely related to leaf area and plant population density.

  7. Research on Modern Watershed Management System%现代流域管理体系研究

    Institute of Scientific and Technical Information of China (English)

    王秉杰

    2013-01-01

    Modem watershed management is a multi-level and unified pollution control system covering watershed-region-pollution control unit-pollution source, which includes the watershed target management system, the watershed pollution control system, the watershed monitoring and the early warning system, the law and policy guaranteeing system and the watershed administration system. The watershed target management system is the core of watershed management; the definitions, connotations, main contents and functions of water body health target, pollution control target, natural ecology target, and scientific utilization target of modern watershed target management system were elaborated. The watershed pollution control system is a supporting system for modern watershed management; in order to improve the watershed ecological environment, a practical and scientific watershed pollution control system should be established. The watershed monitoring and the early warning system plays the roles of "perception"; and a complete system should possess capability of provision of timely, accurate and complete monitoring data, capability of network monitoring, capability of assessing, as well as capability of early warning and emergency response. The necessity of law and policy guaranteeing system was stressed for modern watershed management; to intensify watershed law making, to improve management regulation and to make proper economy policy could guarantee and support the smooth running of the watershed target system, watershed pollution control system and the watershed monitoring and early warning system. Finally the problem of "many dragons managing the same water separately", in the other word, the separated management of the present watershed administration system was analyzed; the necessity and urgency of the watershed zoning management and regional coordination were pointed out. In China, watershed management is still at the beginning on stage, watershed pollution control

  8. Assisting community management of groundwater: Irrigator attitudes in two watersheds in Rajasthan and Gujarat, India

    Science.gov (United States)

    Varua, M. E.; Ward, J.; Maheshwari, B.; Oza, S.; Purohit, R.; Hakimuddin; Chinnasamy, P.

    2016-06-01

    The absence of either state regulations or markets to coordinate the operation of individual wells has focussed attention on community level institutions as the primary loci for sustainable groundwater management in Rajasthan and Gujarat, India. The reported research relied on theoretical propositions that livelihood strategies, groundwater management and the propensity to cooperate are associated with the attitudinal orientations of well owners in the Meghraj and Dharta watersheds, located in Gujarat and Rajasthan respectively. The research tested the hypothesis that attitudes to groundwater management and farming practices, household income and trust levels of assisting agencies were not consistent across the watersheds, implying that a targeted approach, in contrast to default uniform programs, would assist communities craft rules to manage groundwater across multiple hydro-geological settings. Hierarchical cluster analysis of attitudes held by survey respondents revealed four statistically significant discrete clusters, supporting acceptance of the hypothesis. Further analyses revealed significant differences in farming practices, household wealth and willingness to adapt across the four groundwater management clusters. In conclusion, the need to account for attitudinal diversity is highlighted and a framework to guide the specific design of processes to assist communities craft coordinating instruments to sustainably manage local aquifers described.

  9. The relationship between the Municipal Master Plan and local Watershed Plans in water management

    Directory of Open Access Journals (Sweden)

    Denise Gallo Pizella

    2015-07-01

    Full Text Available The National Water Resources Policy has as one of its tools the drafting of local Water Resource Plans. In view of water resources planning and its relationship to land use planning, the aim of this work is to analyze the institutional and legal difficulties and the potential for an integrated system of water resources management. For this, we used the method of documentary and bibliographic research, beginning with the “Estatuto da Cidade”, a law for urban policy in Brazil, and literature on water management at the municipal and watershed levels. At the municipal level, the “Master Plan” (municipal plan of land use planning became the main instrument of territorial and municipal management, defining the parameters for the compliance of social, environmental and economic functions of real property. In this sense, the municipalities have a responsibility to protect water resources and, without local support, territorial and water management cannot be integrated in the context of the river basin. Despite the difficulties of including environmental variable in urban planning, the Master Plan has the potential to shape local water management systems that are environmentally sustainable and that progressively improve water quality and quantity within the watershed. Similarly, with more significant participation of the municipality in the Basin Committee, it is possible that the forms of municipal land use and occupation can be considered during the development and implementation of the Basin Plan. Thus, the management of water resources can occur integrally.

  10. Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management

    Science.gov (United States)

    Beck, Scott M.; McHale, Melissa R.; Hess, George R.

    2016-07-01

    Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m2) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.

  11. Hydromentor: An integrated water resources monitoring and management system at modified semi-arid watersheds

    Science.gov (United States)

    Vasiliades, Lampros; Sidiropoulos, Pantelis; Tzabiras, John; Kokkinos, Konstantinos; Spiliotopoulos, Marios; Papaioannou, George; Fafoutis, Chrysostomos; Michailidou, Kalliopi; Tziatzios, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    Natural and engineered water systems interact throughout watersheds and while there is clearly a link between watershed activities and the quantity and quality of water entering the engineered environment, these systems are considered distinct operational systems. As a result, the strategic approach to data management and modeling within the two systems is very different, leading to significant difficulties in integrating the two systems in order to make comprehensive watershed decisions. In this paper, we describe the "HYDROMENTOR" research project, a highly-structured data storage and exchange system that integrates multiple tools and models describing both natural and modified environments, to provide an integrated tool for management of water resources. Our underlying objective in presenting our conceptual design for this water information system is to develop an integrated and automated system that will achieve monitoring and management of the water quantity and quality at watershed level for both surface water (rivers and lakes) and ground water resources (aquifers). The uniqueness of the system is the integrated treatment of the water resources management issue in terms of water quantity and quality in current climate conditions and in future conditions of climatic change. On an operational level, the system provides automated warnings when the availability, use and pollution levels exceed allowable limits pre-set by the management authorities. Decision making with respect to the apportionment of water use by surface and ground water resources are aided through this system, while the relationship between the polluting activity of a source to total incoming pollution by sources are determined; this way, the best management practices for dealing with a crisis are proposed. The computational system allows the development and application of actions, interventions and policies (alternative management scenarios) so that the impacts of climate change in quantity

  12. Watershed Dynamics, with focus on connectivity index and management of water related impacts on road infrastructure

    Science.gov (United States)

    Kalantari, Z.

    2015-12-01

    In Sweden, spatially explicit approaches have been applied in various disciplines such as landslide modelling based on soil type data and flood risk modelling for large rivers. Regarding flood mapping, most previous studies have focused on complex hydrological modelling on a small scale whereas just a few studies have used a robust GIS-based approach integrating most physical catchment descriptor (PCD) aspects on a larger scale. This study was built on a conceptual framework for looking at SedInConnect model, topography, land use, soil data and other PCDs and climate change in an integrated way to pave the way for more integrated policy making. The aim of the present study was to develop methodology for predicting the spatial probability of flooding on a general large scale. This framework can provide a region with an effective tool to inform a broad range of watershed planning activities within a region. Regional planners, decision-makers, etc. can utilize this tool to identify the most vulnerable points in a watershed and along roads to plan for interventions and actions to alter impacts of high flows and other extreme weather events on roads construction. The application of the model over a large scale can give a realistic spatial characterization of sediment connectivity for the optimal management of debris flow to road structures. The ability of the model to capture flooding probability was determined for different watersheds in central Sweden. Using data from this initial investigation, a method to subtract spatial data for multiple catchments and to produce soft data for statistical analysis was developed. It allowed flood probability to be predicted from spatially sparse data without compromising the significant hydrological features on the landscape. This in turn allowed objective quantification of the probability of floods at the field scale for future model development and watershed management.

  13. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    Science.gov (United States)

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses.

  14. DEVELOPMENT OF A DECISION SUPPORT SYSTEM FOR MANAGING PESTICIDE LOSSES IN AGRICULTURAL WATERSHEDS

    Institute of Scientific and Technical Information of China (English)

    Y.-F.LI; Y.R.LI; G.H.HUANG; J.STRUGER; J.D.FISCHER; Xinzhu WANG; B.CHEN; J.B.LI; X.H.NIE

    2003-01-01

    In this study,a decision support system for managing pesticides losses in agricultural watersheds,based on a number of simulation,GIS and RS technologies was developed. The system allows acquisition of information through not only on-site survey but also RS technologies. Aerial photographs were used to generate DEM,and a set of terrain analysis methods were employed to calculate hydrological parameters that are needed for the pesticide loss model. The system also facilitates convenient management and presentation of vast amounts of modeling inputs and outputs through user interfaces. A case study in the Kintore Creek Watershed,Ontario,Canada was undertaken to provide bases for environmental management in the watershed and to demonstrate practical applicability of the developed DSS. The modeling outputs were verified through monitoring data,demonstrating reasonable prediction accuracy. The result indicated that the model provides an effective means for forecasting pesticide losses from agriculture lands. Especially,incorporation of GIS and remote sensing with the pesticides losses model provide a powerful tool for system simulation and environmental management. The major contribution of this study is the development of a new integrated modeling system for simulating fate of pesticides in agricultural lands,as well as its application to a real Canadian case study. In detail,a dynamic simulation model was developed,a solution algorithm was implemented,and the modeling results were verified. The developed simulator was also enhanced through incorporation of GIS and RS technologies within its framework to facilitate effective data acquisition and management,as well as input/output presentation.

  15. Minnesota Watersheds

    Data.gov (United States)

    Minnesota Department of Natural Resources — Statewide minor watershed delineations with major/minor watershed identifiers and names for provinces, major watersheds, and basins. Also included are watershed...

  16. Bureau of Land Management Wilderness Areas

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset is meant to depict wilderness areas within the state of New Mexico managed by the Bureau of Land Management These wilderness areas are officially...

  17. Hawaii ESI: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for artificial reefs, designated critical habitats, national parks, marine sanctuaries, special management areas,...

  18. Quality of water and antibiotic resistance of Escherichia coli from water sources of hilly tribal villages with and without integrated watershed management-a one year prospective study.

    Science.gov (United States)

    Nerkar, Sandeep S; Tamhankar, Ashok J; Khedkar, Smita U; Lundborg, Cecilia Stålsby

    2014-06-01

    In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP) aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV) compared to integrated watershed management villages (IWMV) (95% CI 0.8–6.45, p = 0.081). The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05) was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV.

  19. Flood Assessment Area 3 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2007-07-01

    A flood assessment was conducted at the Area 3 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) in Nye County, Nevada (Figure 1-1). The study area encompasses the watershed of Yucca Flat, a closed basin approximately 780 square kilometers (km2) (300 square miles) in size. The focus of this effort was on a drainage area of approximately 94 km2 (36 mi2), determined from review of topographic maps and aerial photographs to be the only part of the Yucca Flat watershed that could directly impact the Area 3 RWMS. This smaller area encompasses portions of the Halfpint Range, including Paiute Ridge, Jangle Ridge, Carbonate Ridge, Slanted Buttes, Cockeyed Ridge, and Banded Mountain. The Area 3 RWMS is located on coalescing alluvial fans emanating from this drainage area.

  20. Protect and Restore Mill Creek Watershed; Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2004-01-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Mill Creek watershed are coordinated with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. During the FY 2002, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed. Maintenance to the previously built fence was also completed.

  1. Economics of integrated watershed management in the presence of a dam

    Science.gov (United States)

    Lee, Yoon; Yoon, Taeyeon; Shah, Farhed A.

    2011-10-01

    This paper presents an optimal control model of integrated watershed management in the presence of a dam. Management efforts focus on upstream soil conservation, reservoir-level sediment removal, and downstream damage control from water pollution. Increased soil conservation potentially benefits farmers and also has the external benefit of reducing sediment accumulation in the reservoir. Sediment is released downstream of the reservoir using the hydrosuction sediment removal system (HSRS). This sediment release extends reservoir life and provides nutrients to downstream farmers who then use less fertilizer. Also included in the functions of the dam manager are the provision of water to downstream farms, the control of instream flow to mitigate downstream damages from water pollution, and the use of water treatment to meet quality standards for water supplied directly from the reservoir to residential users. An illustrative application of the model to Lake Aswan, located between Egypt and Sudan, indicates substantial benefits from far-sighted behavior and cooperation across all agents. Moving from the baseline case that reflects the status quo to the socially optimal solution increases watershed net present value by more than $500 billion. Other scenarios with varying types of collaboration among the agents are also explored. Interestingly, while decisions with respect to soil conservation do impact the welfare of upstream farmers, the benefits to reservoir management and agriculture in Egypt are modest compared to benefits Egypt gets from improved control of instream flow. Also, subject to technical limits, increasing reservoir life through practice of HSRS is economically desirable.

  2. SWAT ASSESSMENT OF MANAGEMENT PRACTICES ON ATRAZINE LOSS IN THE GOOD WATER CREEK EXPERIMENTAL WATERSHED.

    Science.gov (United States)

    The Goodwater Creek Watershed is a subwatershed of the Mark Twain Lake watershed, an ARS-CEAP benchmark watershed in Northeast Missouri. This 7,250-ha watershed was selected for initial modeling because of its smaller size and the large hydrologic and climatologic dataset available. A SWAT model of ...

  3. 流域差别化环境管理研究%Research on Watershed-Differentiated Environmental Management LUO Hong, FENG Hui-juan

    Institute of Scientific and Technical Information of China (English)

    罗宏; 冯慧娟

    2011-01-01

    按照自然规律和经济规律要求对流域实施差别化环境管理,是提高流域环境管理针对性、有效性,改善环境管理效率和效果的必然选择.通过对流域差别化管理在系统论和行为经济学的理论剖析,以及流域在地理要素、功能和经济发展上的地域分异性特征分析,提出"分域、分区、分序、分期、分类、分级、分责、分权、分策"的"九分"原则.在"九分"原则指导下,从划分流域环境经济功能区、优化流域环境管理手段、创造流域差别化环境管理的实施条件等方面,体现流域差别化环境管理思想并保证其得以顺利实施.%Watershed-differentiated environmental management is an inevitable choice for improving pertinence, validity, efficiency and effects of environmental management according to the rules of nature and economy. Through analyzing system theory, behavior economics theory and the features of differentiated geographic factors, function, and economic development, the "nine divisions" concept of watershed-differentiated environmental management was put forward. The "nine divisions" are basin division, area division, sequence division, stage division, kind division, class division, responsibility division, authority division and policy division.Under the guidance of the "nine divisions", mechanisms including repartitioning environmental economic functional area,optimizing watershed environmental management instruments and creating executable conditions for watershed-differentiated environmental management can embody the thoughts of differentiated watershed environmental management and assure healthily implemented differentiated management.

  4. An establishment on the hazard mitigation system of large scale landslides for Zengwen reservoir watershed management in Taiwan

    Science.gov (United States)

    Tsai, Kuang-Jung; Lee, Ming-Hsi; Chen, Yie-Ruey; Huang, Meng-Hsuan; Yu, Chia-Ching

    2016-04-01

    hazard mitigation program operated by local government and reservoir watershed management in southern Taiwan. Keywords: large scale landslide, disaster prevention, hazard mitigation, watershed management

  5. Kirtland's Warbler Wildlife Management Area Habitat Management Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Kirtland's Warbler Wildlife Management Area Habitat Management Plan provides a long-term vision and specific guidance on managing habitats for the resources of...

  6. Application of a Structured Decision Process for Informing Watershed Management Options in Guánica Bay, Puerto Rico

    Science.gov (United States)

    The Guánica Bay watershed has been a priority for research, assessment and management since the 1970s, and since 2008, has been the focus of a U.S. Coral Reef Task Force (USCRTF) research initiative involving multiple agencies assembled to address the effect of land management de...

  7. Observing, studying, and managing for change-Proceedings of the Fourth Interagency Conference on Research in the Watersheds

    Science.gov (United States)

    Medley, Nicolas; Patterson, Glenn; Parker, Melanie J.

    2011-01-01

    These proceedings contain the abstracts, manuscripts, and posters of presentations given at the Fourth Interagency Conference on Research in the Watersheds-Observing, Studying, and Managing for Change, held at the Westmark Hotel in Fairbanks, Alaska, September 26-30, 2011. The conference was jointly hosted by the Bureau of Land Management and the National Park Service.

  8. Real-Time Forecast of Hydrologically Sensitive Areas in the Salmon Creek Watershed, New York State, Using an Online Prediction Tool

    Directory of Open Access Journals (Sweden)

    M. Todd Walter

    2013-07-01

    Full Text Available In the northeastern United States (U.S., watersheds and ecosystems are impacted by nonpoint source pollution (NPS from agricultural activity. Where agricultural fields coincide with runoff-producing areas—so called hydrologically sensitive areas (HSA—there is a potential risk of NPS contaminant transport to streams during rainfall events. Although improvements have been made, water management practices implemented to reduce NPS pollution generally do not account for the highly variable, spatiotemporal dynamics of HSAs and the associated dynamics in NPS pollution risks. This paper presents a prototype for a web-based HSA prediction tool developed for the Salmon Creek watershed in upstate New York to assist producers and planners in quickly identifying areas at high risk of generating storm runoff. These predictions can be used to prioritize potentially polluting activities to parts of the landscape with low risks of generating storm runoff. The tool uses real-time measured data and 24–48 h weather forecasts so that locations and the timing of storm runoff generation are accurately predicted based on present-day and future moisture conditions. Analysis of HSA predictions in Salmon Creek show that 71% of the largest storm events between 2006 and 2009 were correctly predicted based on 48 h forecasted weather data. Real-time forecast of HSAs represents an important paradigm shift for the management of NPS in the northeastern U.S.

  9. Lessons From Watershed-Based Climate Smart Agricultural Practices In Jogo-Gudedo Watershed Ethiopia

    Directory of Open Access Journals (Sweden)

    Abera Assefa

    2015-08-01

    Full Text Available Abstract Land degradation is the most chronic problem in the Ethiopia. Soil erosion and denudation of vegetation covers are tending to enlarge the area of degraded and west land in semi-arid watersheds. It is therefore watershed management is believed as a holistic approach to create a climate smart landscape that integrate forestry agriculture pasture and soil water management with an objective of sustainable management of natural resources to improve livelihood. This approach pursues to promote interactions among multiple stakeholders and their interests within and between the upstream and downstream locations of a watershed. Melkassa Agricultural Research Centre MARC has been implementing integrated watershed management research project in the Jogo-gudedo watershed from 2010-2014 and lessons from Jogo-gudedo watershed are presented in this research report. Participatory action research PAR was implemented on Soil and Water Conservation SWC area enclosure Agroforestry AF Conservation Tillage CT energy saving stove drought resistance crop varieties in the Jogo-gudedo watershed. Empirical research and action research at plot level and evaluation of introduced technologies with farmers through experimental learning approach and documentation were employed. The participatory evaluation and collective action of SWC and improved practices brought high degree of acceptance of the practices and technologies. This had been ratified by the implementation of comprehensive watershed management action research which in turn enabled to taste and exploit benefits of climate-smart agricultural practices. Eventually significant reduction on soil loss and fuel wood consumption improvements on vegetation cover and crop production were quantitatively recorded as a good indicator and success. Field visit meetings trainings and frequent dialogues between practitioners and communities at watershed level have had a help in promoting the climate smart agriculture

  10. Stable isotope fingerprint of open-water evaporation losses and effective drainage area fluctuations in a subarctic shield watershed

    Science.gov (United States)

    Gibson, J. J.; Reid, R.

    2010-02-01

    SummaryStable isotopes of water, oxygen-18 and deuterium, were measured at biweekly to monthly intervals during the open-water season in a small, headwater lake (Pocket Lake, 4.8 ha) near Yellowknife Northwest Territories, and concurrently in a nearby string-of-lakes watershed (Baker Creek, 137 km 2) situated in the subarctic Precambrian Shield region. As measured in water samples collected over a 12 year period (1997-2008), the levels of evaporative isotopic enrichment in both lake and watershed outflow were differentially offset, and seasonal variations were found in both to be driven by variations in open-water evaporation. Systematic differences measured in the magnitude of the offset between the lake and watershed outflow are interpreted as being caused by changes in the effective drainage area contributing to runoff. Based on the observed and extremely consistent relationship between isotopic compositions of lake water and watershed outflow ( r2 = 0.849, p isotopic signals transferred downstream in a typical shield drainage system within the Mackenzie Basin.

  11. Evaluation of Distributed BMPs in an Urban Watershed - High Resolution Modeling for Stormwater Management

    Science.gov (United States)

    Fry, T. J.; Maxwell, R. M.; McCray, J. E.; Higgins, C. P.

    2015-12-01

    Urbanization presents challenging water resource problems for communities worldwide. The hydromodifications associated with urbanization results in increased runoff rates and volumes and increased peak flows which can lead to increased erosion and stream destabilization, decreased evapotranspiration, decreased ground water recharge, increases in pollutant loading, and localized anthropogenic climate change or Urban Heat Islands. Stormwater management is shifting from a drainage-efficiency focus to a natural systems focus. The natural system focus, referred to as Low Impact Development (LID), or Green Infrastructure, uses best management practices (BMPs) to reduce the impacts caused by urbanization hydromodification. Currently there are two modeling approaches used to evaluate BMPs in urban watersheds, conceptually-based coarse resolution hydrologic models and high-resolution physically-based models. Conceptual urban hydrology-hydraulic models typically are used to determine peak flow hydrographs within a watershed based on uniform rainfall, the basins size, shape, and percent of impervious land cover. Physically-based hydrologic models simulate integrated surface and subsurface water flow. Here, we use high-resolution physically based hydrologic models of the urban hydrologic cycle with explicit inclusion of the built environment. We compare the inclusion and exclusion of LID features to evaluate the parameterizations used to model these components in more conceptually based models. Differences in response are discussed and a road map is put forth for improving LID representation in commonly used urban water models.

  12. Different seasonality of nitrate export from an agricultural watershed and an urbanized watershed in Midwestern USA

    Science.gov (United States)

    Tian, S.; Youssef, M. A.; Richards, R. P.; Liu, J.; Baker, D. B.; Liu, Y.

    2016-10-01

    Land use/land cover is a critical factor affecting temporal dynamics of nitrate export from watersheds. Based on a long-term (>30 years) water quality monitoring program in the Western Lake Erie area, United States, this study compared seasonal variation of nitrate export from an agricultural watershed and an urbanized watershed. A seasonality index was adapted to quantitatively characterize seasonal variation of nitrate export from the two watersheds. Results showed that monthly nitrate concentrations from the two watersheds exhibited different seasonal variation. Seasonality index of monthly nitrate loading for the agricultural watershed is approximately 3 times of that from the urbanized watershed and the difference is statistically significant (p export from the two watersheds were mainly attributed to their distinct nitrogen sources, physical and biogeochemical settings. The declining seasonality index of monthly nitrate loading from the agricultural watershed could be partially caused by historical climate change in the study region, especially increased temperature during winter. Urbanization could be one key factor contributing to the declining seasonality index of monthly nitrate loading from the urbanized watershed. Information derived from this study have practical implications for developing proper management practices to mitigate nitrate pollution in Midwestern United States.

  13. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    Directory of Open Access Journals (Sweden)

    Manoj Kumar Jha

    2011-06-01

    Full Text Available This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS. Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices.

  14. Application of risk-based multiple criteria decision analysis for selection of the best agricultural scenario for effective watershed management.

    Science.gov (United States)

    Javidi Sabbaghian, Reza; Zarghami, Mahdi; Nejadhashemi, A Pouyan; Sharifi, Mohammad Bagher; Herman, Matthew R; Daneshvar, Fariborz

    2016-03-01

    Effective watershed management requires the evaluation of agricultural best management practice (BMP) scenarios which carefully consider the relevant environmental, economic, and social criteria involved. In the Multiple Criteria Decision-Making (MCDM) process, scenarios are first evaluated and then ranked to determine the most desirable outcome for the particular watershed. The main challenge of this process is the accurate identification of the best solution for the watershed in question, despite the various risk attitudes presented by the associated decision-makers (DMs). This paper introduces a novel approach for implementation of the MCDM process based on a comparative neutral risk/risk-based decision analysis, which results in the selection of the most desirable scenario for use in the entire watershed. At the sub-basin level, each scenario includes multiple BMPs with scores that have been calculated using the criteria derived from two cases of neutral risk and risk-based decision-making. The simple additive weighting (SAW) operator is applied for use in neutral risk decision-making, while the ordered weighted averaging (OWA) and induced OWA (IOWA) operators are effective for risk-based decision-making. At the watershed level, the BMP scores of the sub-basins are aggregated to calculate each scenarios' combined goodness measurements; the most desirable scenario for the entire watershed is then selected based on the combined goodness measurements. Our final results illustrate the type of operator and risk attitudes needed to satisfy the relevant criteria within the number of sub-basins, and how they ultimately affect the final ranking of the given scenarios. The methodology proposed here has been successfully applied to the Honeyoey Creek-Pine Creek watershed in Michigan, USA to evaluate various BMP scenarios and determine the best solution for both the stakeholders and the overall stream health.

  15. Agricultural Land Use Optimal Allocation System in Developing Area:Application to Yili Watershed, Xinjiang Region

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; ZHANG Hongqi; NI Dongying; SONG Wei

    2012-01-01

    In developing countries,land productivity involves little market,where the agricultural land use is mainly determined by the food demands as well as the land suitability.The land use pattern will not ensure everywhere enough land for certain cropping if spatial allocation just according to land use suitability.To solve this problem,a subzone and a pre-allocation for each land use are added in spatial allocation module,and land use suitability and area optimization module are incorporated to constitute a whole agricultural land use optimal allocation (ALUOA) system.The system is developed on the platform.Net 2005 using ArcGIS Engine (version 9.2) and C# language,and is tested and validated in Yili watershed of Xinjiang Region on the newly reclaimed area.In the case study,with the help of soil data obtained from 69 points sampled in the fieldwork in 2008,main river data supplied by the Department of Water Resources of Xinjiang Uygur Autonomous Region in China,and temperature data provided by Data Center for Resources and Environmental Sciences,Chinese Academy of Sciences,land use suitability on eight common crops are evaluated one by one using linear weighted summation method in the land use suitability model.The linear programming (LP) model in area optimization model succeeds to give out land area target of each crop under three scenarios.At last,the land use targets are allotted in space both with a six subzone file and without a subzone file.The results show that the land use maps with a subzone not only ensure every part has enough land for every crop,but also gives a more fragmental land use pattern,with about 87.99% and 135.92% more patches than the one without,while at the expense of loss between 15.30% and 19.53% in the overall suitability at the same time.

  16. Environmental management cognitive strategies: Acid rain in the Yamaska watershed, Quebec, Canada

    Science.gov (United States)

    Sasseville, Jean-Louis; Lachance, Marius

    1983-05-01

    Systematic budgetary restrictions foreseen for the next few years will require greater organizational effectiveness in public management systems, particularly in environmental management, in which costs are seen as a burden to the national economy Environmental management efficiency could be increased, among other means, by the adoption of knowledge acquisition strategies that take into account the multiple facets of environmental management, these cognitive strategies involve the development and use of methods to establish facts and to analyze complex environmental situations It is the purpose of this paper to show that an efficient approach is possible in establishing facts from existing data. The method involves a heuristic use of advanced statistical tools to integrate multiple data into the description of environmental phenomena An example is given in which the method has been applied to a data base obtained from the inventory of Yamaska watershed; it revealed 16 facts of potential interest to environmental managers The case study suggests that management system efficiency could be improved by a more comprehensive understanding of the environmental situation that takes into account the structure of biophysical processes and the elements involved in information processing

  17. Range ecosystem management for natural areas

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report describes methods for managing range ecosystems in natural areas. Preserved natural areas on rangeland may, in a short time, be only those which received...

  18. Southeast Alaska ESI: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains management area data for National Parks, Wildlife Refuges, and areas designated as Critical Habitat in Southeast Alaska. Vector polygons in...

  19. RESEARCH FOR MANAGING URBAN WATERSHED MICROBIAL CONTAMINATION (PROJECT 1: MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION: 2. EFFECT OF LAND USE AND SEASON ON MICROORGANISM CONCENTRATION ON URBAN STORMWATER RUNOFF; 3. MICROORGANISM DIE-OFF RATES UNDER VARIOUS CONDITIONS.

    Science.gov (United States)

    The Water Supply and Water Resources Division (WSWRD) developed a document entitled Managing Urban Watershed Pathogen Contamination (EPA 600/R-03/111). This document provides information to support specific steps of the total maximum daily load (TMDL) process for meeting water q...

  20. Best Management Practices in the CEAP Goodwater Creek Watershed: What, Where, Why, and How Much?

    Science.gov (United States)

    Continuation of conservation funding may depend upon demonstration that past funded projects have contributed to improvement of water quality or reduction of pollutant loadings from agricultural sources. In the Goodwater Creek watershed, a 7,250 ha sub-watershed of the Mark Twain Lake watershed in N...

  1. Protect and Restore Mill Creek Watershed; Annual Report 2004-2005.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2005-12-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and one high priority culvert was replaced in 2004. Maintenance to the previously built fence was also completed.

  2. Protect and Restore Mill Creek Watershed; Annual Report 2003-2004.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2004-06-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. The Nez Perce Tribe and the Nez Perce National Forest have formed a partnership in completing watershed restoration activities, and through this partnership, more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Mill Creek watershed of the South Fork Clearwater River in 2000. Progress has been made in restoring the watershed through excluding cattle from critical riparian areas through fencing. Starting in FY 2002, continuing into 2004, trees were planted in riparian areas in the meadow of the upper watershed. In addition, a complete inventory of culverts at road-stream crossings was completed. Culverts have been prioritized for replacement to accommodate fish passage throughout the watershed, and designs completed on two of the high priority culverts. Maintenance to the previously built fence was also completed.

  3. Amendment I : Basic fur management plan : Stillwater Wildlife Management Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This amendment to the fur management plan for Stillwater Wildlife Management area calls for the annual trapping of beaver. The Lower Carson River is overpopulated...

  4. Basic fur management plan : Stillwater Wildlife Management Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This fur management plan for Stillwater Wildlife Management Area outlines methods of fur harvest, trapping territories, selection of trappers, trapping equipment,...

  5. Suisun Marsh Primary Management Area

    Data.gov (United States)

    California Department of Resources — Suisun Marsh or the 'Marsh' means tidal marsh, water-covered areas, diked-off wetlands, seasonal marshes, lowland grasslands, upland grasslands, and cultivated...

  6. Suisun Marsh Secondary Management Area

    Data.gov (United States)

    California Department of Resources — Suisun Marsh or the 'Marsh' means tidal marsh, water-covered areas, diked-off wetlands, seasonal marshes, lowland grasslands, upland grasslands, and cultivated lands...

  7. Participatory Scenario Planning for the Cienega Watershed: Embracing Uncertainty in Public Lands Management in the U.S. Southwest

    Science.gov (United States)

    Hartmann, H.; Morino, K.; Bodner, G.; Markstein, A.; McFarlin, S.

    2013-12-01

    Land managers and communities struggle to sustain natural landscapes and the benefits they provide--especially in an era of rapid and unpredictable changes being driven by shifts in climate and other drivers that are largely outside the control of local managers and residents. The Cienega Watershed Partnership (CWP) is a long-standing multi-agency partnership involved in managing lands and resources over about 700,000 acres in southeast Arizona, surrounding the Bureau of Land Management's Las Cienegas National Conservation Area. The region forms a vital wildlife corridor connecting the diverse ecosystems of the Sonoran and Chihuahuan deserts and grasslands with the Sierra Madrean and Rocky Mountain forests and woodlands. The CWP has long-standing forums and relationships for considering complex issues and novel approaches for management, including practical implementation of adaptive management, development of monitoring programs and protocols, and the use of nested objectives to adjust management targets. However, current plans have objectives and strategies based on what is known or likely to become known about natural and socio-cultural systems; they do not incorporate uncertainties related to rapid changes in climate or have well developed feedback mechanisms for routinely reconsidering climate information. Since 2011, more than 50 individuals from over 20 federal and local governments, non-governmental organizations, and private landowners have participated in scenario planning for the Cienega Watershed. Scenario planning is an important tool for (1) managing risks in the face of high volatility, uncertainty, complexity, and ambiguity; (2) integrating quantitative climate projections, trend and impact assessments, and local expertise to develop qualitative scenario narratives that can inform decisions even by simply provoking insights; and (3) engaging jurisdictions having different missions, objectives, and planning processes. Participants are helping to

  8. History of the Wildlife Areas Iroquois National Wildlife Refuge, Oak Orchard Wildlife Management Area, Tonawanda Wildlife Management Area, John White Wildlife Management Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report provides a history of four management areas in Western New York: Iroquois National Wildlife Refuge, Oak Orchard Management Area, Tonawanda Wildlife...

  9. Identification of active erosion areas and areas at risk by remote sensing: an example in the Esera Isabena watershed, Central Spanish Pyrenees

    Energy Technology Data Exchange (ETDEWEB)

    Alatorre, L. C.; Begueria, S.; Vicente Serrano, S. M.

    2009-07-01

    The identification of eroded areas at basin scale can be very useful for environmental planning and can help to reduce land degradation and sediments yield. In this paper remote sensing technique are used to discriminate eroded areas and areas at risk in a badlands landscape developed on Eocene marls. In the Esera Isabena watershed (Spanish Pyrenees). The spatial distribution, the scarce vegetal cover and the high level of erosion let a good visual and digital discrimination of badlands, as opposed to other land covers and surfaces. A maximum likelihood supervised method was used to discriminate heavily eroded areas (badlands) from scarce or densely vegetated lands. the classification distance was used to obtain thresholds for eroded areas and areas at risk. Two error statistics (sensitivity and specificity), where used to determine the most adequate threshold values. The resulting map shows that most areas at risk are located surrounding the badlands areas. (Author) 8 refs.

  10. Turning conflict into collaboration in managing commons: A case of Rupa Lake Watershed, Nepal

    Directory of Open Access Journals (Sweden)

    Pashupati Chaudhary

    2015-09-01

    Full Text Available A growing body of literature on the commons has provided fascinating and intricate insights on how some local institutions have successfully managed to avoid a seemingly inevitable “tragedy of the commons” once popularized by Garrett Hardin. Primarily benefitting from the recent studies on the commonpool resources conducted by Elinor Ostrom and colleagues, polycentric selforganization and autonomy, rather than the direct state or market control over the commons, are often recognized as key features of the long enduring commons.However, these commons are quite diverse and the outcomes are often multiple and complex, accentuating the needs to differentiate among multiple commons outcomes. Furthermore, relatively under-reported are the cases where the degradation of common-pool resources are actually halted, and even restored. This study examines both the turbulent history of fishery mismanagement in Rupa Lake, Nepal and its reversal built around the participation, engagement and inclusiveness in the governance of its watershed. We find that Rupa Lake’s experience tells two stories. Reflecting Hardin’s dire forecast, the Rupa Lake watershed verged on collapse as population grew and seemingly selfish behaviorintensified under an open-access regime. But the users also found a way to rebound and reverse their course as they adopted a bottom-up approach to fishery management and established an innovative community institution, the ‘Rupa Lake Rehabilitation and Fishery Cooperative’, dedicated to the sustainable governance of the commons. This case highlights how one community at the threshold of ‘tragedy’ transformed itself by turning conflict into collaboration, which we hope contributes to the effort of better understanding multiple commons.

  11. Parcelling out the Watershed: The Recurring Consequences of Organising Columbia River Management within a Basin-Based Territory

    Directory of Open Access Journals (Sweden)

    Eve Vogel

    2012-02-01

    Full Text Available This article examines a 75-year history of North America’s Columbia river to answer the question: what difference does a river basin territory actually make? Advocates reason that river basins and watersheds are natural and holistic water management spaces, and can avoid the fragmentations and conflicts endemic to water management within traditional political territories. However, on the Columbia, this reasoning has not played out in practice. Instead, basin management has been shaped by challenges from and negotiations with more traditional jurisdictional spaces and political districts. The recurring result has been 'parcelling out the watershed': coordinating river management to produce a few spreadable benefits, and distributing these benefits, as well as other responsibilities and policy-making influence, to jurisdictional parts and political districts. To provide generous spreadable benefits, river management has unevenly emphasised hydropower, resulting in considerable environmental losses. However, benefits have been widely spread and shared – and over time challengers have forced management to diversify. Thus a river basin territory over time produced patterns of both positive and negative environmental, social, economic, and democratic outcomes. To improve the outcomes of watershed-based water management, we need more interactive and longer-term models attentive to dynamic politics and geographies.

  12. AnnAGNPS – A United States Department of Agriculture Watershed Conservation Management Planning Tool for Non-Point Source Pollution Control

    Science.gov (United States)

    A watershed scale assessment of the effect of conservation practices on the environment is critical when recommending best management practices to agricultural producers. The environmental benefits of these practices have not been widely quantified at the watershed scale, which would require extens...

  13. Watershed management and public health: an exploration of the intersection of two fields as reported in the literature from 2000 to 2010.

    Science.gov (United States)

    Bunch, Martin J; Parkes, Margot; Zubrycki, Karla; Venema, Henry; Hallstrom, Lars; Neudorffer, Cynthia; Berbés-Blázquez, Marta; Morrison, Karen

    2014-08-01

    Watersheds are settings for health and well-being that have a great deal to offer the public health community due to the correspondence between the spatial form of the watershed unit and the importance to health and well-being of water. However, managing watersheds for human health and well-being requires the ability to move beyond typical reductionist approaches toward more holistic methods. Health and well-being are emergent properties of inter-related social and biophysical processes. This paper characterizes points of connection and integration between watershed management and public health and tests a new conceptual model, the Watershed Governance Prism, to determine the prevalence in peer-reviewed literature of different perspectives relating to watersheds and public health. We conducted an initial search of academic databases for papers that addressed the interface between watershed management (or governance) and public health themes. We then generated a sample of these papers and undertook a collaborative analysis informed by the Watershed Governance Prism. Our analysis found that although these manuscripts dealt with a range of biophysical and social determinants of health, there was a tendency for social factors and health outcomes to be framed as context only for these studies, rather than form the core of the relationships being investigated. At least one cluster of papers emerged from this analysis that represented a cohesive perspective on watershed governance and health; "Perspective B" on the Watershed Governance Prism, "water governance for ecosystems and well-being," was dominant. Overall, the integration of watershed management/governance and public health is in its infancy.

  14. Effects of brush management on the hydrologic budget and water quality in and adjacent to Honey Creek State Natural Area, Comal County, Texas, 2001--10

    Science.gov (United States)

    Banta, J. Ryan; Slattery, Richard N.

    2012-01-01

    Woody vegetation, including ashe juniper (Juniperus ashei), has encroached on some areas in central Texas that were historically oak grassland savannah. Encroachment of woody vegetation is generally attributed to overgrazing and fire suppression. Removing the ashe juniper and allowing native grasses to reestablish in the area as a brush management conservation practice (hereinafter referred to as "brush management") might change the hydrology in the watershed. These hydrologic changes might include changes to surface-water runoff, evapotranspiration, or groundwater recharge. The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local partners, examined the hydrologic effects of brush management in two adjacent watersheds in Comal County, Tex. Hydrologic data were collected in the watersheds for 3-4 years (pre-treatment) depending on the type of data, after which brush management occurred on one watershed (treatment watershed) and the other was left in its original condition (reference watershed). Hydrologic data were collected in the study area for another 6 years (post-treatment). These hydrologic data included rainfall, streamflow, evapotranspiration, and water quality. Groundwater recharge was not directly measured, but potential groundwater recharge was calculated by using a simplified mass balance approach. This fact sheet summarizes highlights of the study from the USGS Scientific Investigations Report on which it is based.

  15. Managing Risk Areas in Software Development Offshoring

    DEFF Research Database (Denmark)

    Persson, John Stouby; Schlichter, Bjarne Rerup

    2015-01-01

    Software companies are increasingly offshoring development to countries with high expertise at lower cost. Offshoring involves particular risk areas that if ignored increase the likelihood of failure. However, the offshoring client’s maturity level may influence the management of these risk areas....... Against this backdrop, we present an interpretive case study of how managers perceive and mitigate the risk areas in software development offshoring with a mature CMMI level 5 (Capability Maturity Model, Integrated) software company as the client. We find that managers perceive and mitigate most...... of the offshoring risk areas in accordance with the findings of previous research. However, the risk area of task distribution is a notable exception. In this case, managers perceive high task uncertainty, equivocality, and coupling across sites as risk mitigation rather than risk taking. The paper discusses how...

  16. Sustainable Water Resources Management in a Complex Watershed Under Climate Change Scenarios

    Science.gov (United States)

    Schuster, J. P.; McPhee, J.

    2007-05-01

    The Aconcagua River Basin in central Chile supplies water for over one million people, high-return agriculture, mining and hydropower industries. The Aconcagua river basin has Mediterranean/semi-arid climate, its hydrologic regime varies along its path from snow- to a rainfall-dominated, and significant stream-aquifer interaction is observed throughout the river path. A complex water market operates in the Aconcagua River Basin, where private owners hold surface and subsurface water rights independently of land ownership and/or intended use. The above yield integrated watershed management critical for the sustainability of basin operations, moreover under conditions of significant precipitation interannual variability and uncertain future climatic scenarios. In this work we propose an integrated hydrologic-operational model for the Aconcagua River in order to evaluate sustainable management scenarios under conditions of climatic uncertainty. The modeling software WEAP (Water Evaluation and Planning System) serves as the platform for decision support, allowing the assessment of diverse scenarios of water use development and hydrologic conditions. The hydrologic component of the adopted model utilizes conceptual functions for describing the relations between different hydrologic variables. The management component relies on economic valuation for characterizing the space of efficient operational policies.

  17. RAINWATER MANAGEMENT IN PROTECTED AREAS

    Directory of Open Access Journals (Sweden)

    Wioletta Żarnowiec

    2017-03-01

    Full Text Available The aim of the study was to find out whether the climate of the southern Poland allows for removing rainwater from industrial areas by evaporation from roof surfaces. The study covered the premises of a Logistics Centre with an approximate area of 34 hectares, located in the catchment of the Wedonka stream and in the region of water intake for Kraków at the Rudawa river. In the future, the Centre will comprise nine large warehouses. Road traffic associated with the project will cause potential risks for groundwater and surface water of this protected area. Therefore, the Centre’s investor decided to evaporate rainwater from the premises. To establish advisability of this plan, the study team designed and built a unique experimental station consisting of experimental roof, tank for collecting water for the sprinkler system, system for delivering, distributing and discharging water from the roof, measuring tilt tray, automatic meteorological station, and electronic devices for recording measurement data. The research on the experimental station was carried out from April to October in 2011 and 2012 and included continuous measurements of the volume of water supplied to and discharged from the roof. Moreover, the temperature of the roof and water in the tank and a number of important meteorological parameters were measured. The difference between supplied and discharged water, divided by the wetted surface of the roof, helped to determine thickness of the evaporation layer in millimeters. The study confirmed the possibility of removing potentially contaminated rainwater by evaporating it from roof surfaces of the Logistics Centre located near Kraków at an average rate of 5.9 dm3·m–2.d–1. However, due to high seasonal variability of rainfall and air temperature, it is necessary to temporarily collect water in an expansion tank of suitable capacity.

  18. Post-adoption behaviour of farmers towards soil and water conservation technologies of watershed management in India

    Directory of Open Access Journals (Sweden)

    Gopal Lal Bagdi

    2015-09-01

    Full Text Available The Indian Institute of Soil and Water Conservation (IISWC and its Research Centres have developed many successful model watershed projects in India in the past and implemented many Soil and Water Conservation (SWC technologies for sustainable watershed management. While many evaluation studies were conducted on these projects in the past, there has been no assessment of the post-adoption status of the SWC technologies over a longer period. It was imperative to appraise the behaviour of the farmers with regard to the continuance or discontinuance of the technologies adopted, diffusion or infusion that took place and technological gaps that occurred in due course of time in the post watershed programme. Therefore, it was realized that the post-adoption behaviour of beneficiary farmers who have adopted different soil and water conservation technologies for watershed management projects should be studied in detail. The research study was initiated in 2012 as a core project at Vasad as the lead Centre along with IISWC headquarter Dehradun, and Centres Agra, Bellary, Chandigarh, Datia, Kota & Ooty, with the specific objectives of the study to measure the extent of post-adoption behaviour (continued-adoption, discontinuance, technological gap, diffusion and infusion of farmers towards the adopted SWC technologies of watershed management. In the present study various indices regarding continued adoption, dis-adoption (discontinuance, technological gap, diffusion, infusion regarding soil and water conservation technologies for watershed management were developed for measurement of post-adoption behaviour of farmers. It was revealed that a little less than three-fourth (73% of SWC technologies continued to be adopted and more than one-fourth (27% were discontinued by farmers. Out of the total continue adopted SWC technologies by farmers, a little less than one-fifth (19% of technologies continued to be adopted with a technological gap. More than one

  19. Estimating management costs of protected areas

    DEFF Research Database (Denmark)

    Green, Jonathan M.H.; Burgess, Neil David; Green, Rhys E.

    2012-01-01

    area managers in the Eastern Arc Mountains (EAMs) of Tanzania to establish how much is currently spent on reserve management and how much is required to meet conservation objectives. We use an information theoretic approach to model spatial variation in these costs using a range of plausible, spatially...... in actual spend and over 40% of variation in necessary spend. Population pressure is a variable that has not been used to model protected area management costs before, yet proved to be considerably better at predicting both actual and necessary spend than other measures of anthropogenic pressure. We use our......Despite chronic underfunding for conservation and the recognition that funds must be invested wisely, few studies have analysed the direct costs of managing protected areas at the spatial scales needed to inform local site management. Using a questionnaire survey we collected data from protected...

  20. Alabama ESI: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive human-use data for designated critical habitats, state parks, wildlife refuges, and wildlife management areas in Alabama. Vector...

  1. Bureau of Land Management Wilderness Study Areas

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset is meant to depict Wilderness Study Areas (WSA's), within the state of New Mexico, identified by the U.S. Bureau of Land Management (BLM) as having...

  2. Virginia ESI: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains boundaries for management areas, national parks, state and local parks, and wildlife refuges in Virginia. Vector polygons in this data set...

  3. State Wildlife Management Area Boundaries - Publicly Accessible

    Data.gov (United States)

    Minnesota Department of Natural Resources — This polygon theme contains boundaries for approximately 1392 Wildlife Management Areas (WMAs) across the state covering nearly 1,288,000 acres. WMAs are part of the...

  4. Optimal Reoperation of Multi-Reservoirs for Integrated Watershed Management with Multiple Benefits

    Directory of Open Access Journals (Sweden)

    Xinyi Xu

    2014-04-01

    Full Text Available Constructing reservoirs can make more efficient use of water resources for human society. However, the negative impacts of these projects on the environment are often ignored. Optimal reoperation of reservoirs, which considers not only in socio-economic values but also environmental benefits, is increasingly important. A model of optimal reoperation of multi-reservoirs for integrated watershed management with multiple benefits was proposed to alleviate the conflict between water use and environmental deterioration. The social, economic, water quality and ecological benefits were respectively taken into account as the scheduling objectives and quantified according to economic models. River minimum ecological flows and reservoir water levels based on flood control were taken as key constraint conditions. Feasible search discrete differential dynamic programming (FS-DDDP was used to run the model. The proposed model was used in the upstream of the Nanpan River, to quantitatively evaluate the difference between optimal reoperation and routine operation. The results indicated that the reoperation could significantly increase the water quality benefit and have a minor effect on the benefits of power generation and irrigation under different hydrological years. The model can be readily adapted to other multi-reservoir systems for water resources management.

  5. Nutrient Loss from Various Land-Use Areas in Shixia Small Watershed of Miyun County, Beijing, China

    Institute of Scientific and Technical Information of China (English)

    王晓燕; 王晓峰; 王振刚; 汪青平; 蔡新广

    2003-01-01

    In the Shixia small watershed, twenty experimental plots and two monitoring channels, the residential area and livestock areas were used to monitor the flow, runoff and erosion.Nitrogen and phosphorous concentrations associated with various land uses were analyzed at the same time. The results are presented as follows: ( 1 ) TP, TN and COD concentrations of runoff samples in the residential area and livestock areas are nearly 10 times those in other land-use areas. High nutrient loads are associated with village land use, which is due to unsuitable livestock rising. These areas should be treated as the critical areas of non-point source pollution.(2) Different land-use influences intensity the loss of nutrients, especially slope tillings in agricultural land. The amount of nutrient loss from agricultural land per unit is highest, that from forestry is intermediate and that from pastures is lowest. However, in consideration of the variability of land-use areas, agricultural land contributes the greatest to TP and forestry land to TN.(3) The concentrations of TN and TP in sediments from gangues are highest, those in forestry land are intermediate, and those in agricultural land are lowest. Nutrient loss from hilly areas is much greater than from mountainous areas.

  6. Selection and placement of best management practices used to reduce water quality degradation in Lincoln Lake watershed

    Science.gov (United States)

    Rodriguez, Hector German; Popp, Jennie; Maringanti, Chetan; Chaubey, Indrajeet

    2011-01-01

    An increased loss of agricultural nutrients is a growing concern for water quality in Arkansas. Several studies have shown that best management practices (BMPs) are effective in controlling water pollution. However, those affected with water quality issues need water management plans that take into consideration BMPs selection, placement, and affordability. This study used a nondominated sorting genetic algorithm (NSGA-II). This multiobjective algorithm selects and locates BMPs that minimize nutrients pollution cost-effectively by providing trade-off curves (optimal fronts) between pollutant reduction and total net cost increase. The usefulness of this optimization framework was evaluated in the Lincoln Lake watershed. The final NSGA-II optimization model generated a number of near-optimal solutions by selecting from 35 BMPs (combinations of pasture management, buffer zones, and poultry litter application practices). Selection and placement of BMPs were analyzed under various cost solutions. The NSGA-II provides multiple solutions that could fit the water management plan for the watershed. For instance, by implementing all the BMP combinations recommended in the lowest-cost solution, total phosphorous (TP) could be reduced by at least 76% while increasing cost by less than 2% in the entire watershed. This value represents an increase in cost of 5.49 ha-1 when compared to the baseline. Implementing all the BMP combinations proposed with the medium- and the highest-cost solutions could decrease TP drastically but will increase cost by 24,282 (7%) and $82,306 (25%), respectively.

  7. The effectiveness and resilience of phosphorus management practices in the Lake Simcoe watershed, Ontario, Canada

    Science.gov (United States)

    Crossman, J.; Futter, M. N.; Palmer, M.; Whitehead, P. G.; Baulch, H. M.; Woods, D.; Jin, L.; Oni, S. K.; Dillon, P. J.

    2016-09-01

    Uncertainty surrounding future climate makes it difficult to have confidence that current nutrient management strategies will remain effective. This study used monitoring and modeling to assess current effectiveness (% phosphorus reduction) and resilience (defined as continued effectiveness under a changing climate) of best management practices (BMPs) within five catchments of the Lake Simcoe watershed, Ontario. The Integrated Catchment Phosphorus model (INCA-P) was used, and monitoring data were used to calibrate and validate a series of management scenarios. To assess current BMP effectiveness, models were run over a baseline period 1985-2014 with and without management scenarios. Climate simulations were run (2070-2099), and BMP resilience was calculated as the percent change in effectiveness between the baseline and future period. Results demonstrated that livestock removal from water courses was the most effective BMP, while manure storage adjustments were the least. Effectiveness varied between catchments, influenced by the dominant hydrological and nutrient transport pathways. Resilience of individual BMPs was associated with catchment sensitivity to climate change. BMPs were most resilient in catchments with high soil water storage capacity and small projected changes in frozen-water availability and in soil moisture deficits. Conversely, BMPs were less resilient in catchments with larger changes in spring melt magnitude and in overland flow proportions. Results indicated that BMPs implemented are not always those most suited to catchment flow pathways, and a more site-specific approach would enhance prospects for maintaining P reduction targets. Furthermore, BMP resilience to climate change can be predicted from catchment physical properties and present-day hydrochemical sensitivity to climate forcing.

  8. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT (AGWA): A GIS-BASED HYDROLOGIC MODELING TOOL FOR LANDSCAPE ASSESSMENT AND WATERSHED MANAGEMENT

    Science.gov (United States)

    The assessment of land use and land cover is an extremely important activity for contemporary land management. A large body of current literature suggests that human land-use practice is the most important factor influencing natural resource management and environmental condition...

  9. Mercury Fate and Transport in Hunza River Watershed, Northern Areas, Pakistan

    Science.gov (United States)

    Biber, K.; Khan, S. D.; Shah, M. T.

    2012-12-01

    smelting processes were acquired through interviews with miners. Panning, amalgamation and roasting processes were being done at workers huts where large amount of mercury is released to environment particularly due to no mercury recycling in the smelting process. This ongoing research study attempted to explore the source, fate and transport dynamics of mercury by 1) using high frequency sampling to examine potential source locations and transport dynamics of mercury; 2) determining the relationship between total suspended solids in the water column and mercury transport; 3) comparing analytical and observational data in GIS. Results of this study show that mercury concentrations are elevated in the upstream parts of Hunza watershed, where observational and earlier geochemical data confirm that gold panning activities are common in these areas. Furthermore, particulate bound mercury concentration is 3 orders of magnitude greater than that of dissolved mercury. This suggests that mercury contamination in the rivers is mostly associated with suspended sediments. Abrupt decrease in particulate and dissolved mercury concentration downstream of a naturally formed lake due to landslide, suggests that mercury is being deposited or used in methylation processes.

  10. Sustaining the Earth's Watersheds-Agricultural Research Data System: Data development, user interaction, and operations management

    Science.gov (United States)

    To support the Agricultural Research Service’s Conservation Effects Assessment Project (CEAP) in assessing USDA conservation programs and practices on soil and water quality, a publicly available web-based watershed data system, called Sustaining the Earth’s Watersheds, Agricultural Research Data Sy...

  11. LANDSLIDE POTENTIALITY OF THE TSENGWEN RESERVOIR WATERSHED,TAIWAN,CHINA

    Institute of Scientific and Technical Information of China (English)

    Chin-yu LEE

    2004-01-01

    To recognize the geographical characteristics of the landslide areas will be helpful for the watershed management in the reservoir watershed.According to the quantitative analysis,we'll take different scores and weighting for the potential parameters of the landslide areas in the Tsengwen reservoir watershed,and in the meanwhile,we'll extract the different factors,including the slope,aspect,altitude,soil and geological textures etc.,and the results shown as maximum one-day rainfall,ratio of forests and average relief is the most affecting parameters on the potential risk map of landslide areas.

  12. Determining Watershed Management Efficacy in West Maui: line-point-intercept and photo quadrat surveys of benthic communities for benthic cover from 2014 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  13. Determining Watershed Management Efficacy in West Maui: Belt transect surveys of coral demography (adult and juvenile corals) from 2014 to 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  14. Managing ecotourism visitation in protected areas

    Science.gov (United States)

    Marion, J.L.; Farrell, T.A.; Lindberg, Kreg; Wood, Megan Epler; Engeldrum, David

    1998-01-01

    Ecotourism management seeks to integrate and balance several potentially conflicting objectives: protection of natural and cultural resources, provision of recreation opportunities and generation of economic benefits. In the absence of effective planning and management, ecotourism can lead to significant negative impacts on vegetation, soil, water, wildlife, historic resources, cultures, and visitor experiences. This chapter reviews visitor-related natural resource and experience impacts associated with ecotourism within protected areas. The influence of factors that control the nature and extent of impacts are also reviewed, including type and amount of use, the variable resistance and resilience of environmental attributes such as vegetation and soil types, and the role of management in shaping visitation, resources and facilities to support visitation while minimizing associated impacts. Implications for managing the effects of protected area visitation are highlighted, including carrying capacity decision frameworks and selecting management strategies and tactics.

  15. Chemical characterization of sediment "Legacy P" in watershed streams - implications for P loading under land management

    Science.gov (United States)

    Audette, Yuki; O'Halloran, Ivan; Voroney, Paul

    2016-04-01

    Transfer of dissolved phosphorus (P) in runoff water via streams is regulated mainly by both stream sediment P adsorption and precipitation processes. The adsorption capacity of stream sediments acting as a P sink was a great benefit to preserving water quality in downstream lakes in the past, as it minimized the effects of surplus P loading from watershed streams. However, with long-term continued P loading the capacity of the sediments to store P has diminished, and eventually converted stream sediments from P sinks to sources of dissolved P. This accumulation of 'legacy P' in stream sediments has become the major source of dissolved P and risk to downstream water quality. Agricultural best management practices (BMP) for P typically attempt to minimize the transfer of P from farmland. However, because of the limitation in sediment P adsorption capacity, adoption of BMPs, such as reduction of external P loading, may not result in an immediate improvement in water quality. The goal of the research is to chemically characterize the P forms contributing to legacy P in stream sediments located in the watershed connecting to Cook's Bay, one of three basins of Lake Simcoe, Ontario, Canada. This watershed receives the largest amount of external P loading and has the highest rate of sediment build-up, both of which are attributed to agriculture. Water samples were collected monthly at six study sites from October 2015 for analysis of pH, temperature, dissolved oxygen, total P, dissolved reactive P, particulate P, total N, NH4-N, NO3-N, TOC and other elements including Al, Fe, Mn, Mg, Ca, S, Na, K and Zn. Sediment core samples were collected in November 2015 and will continue to be collected in March, July and October 2016. Various forms of P in five vertical sections were characterized by sequential fractionation and solution 31P NMR spectroscopy techniques. Pore water, sediment texture and clay identification were performed. The concentration of total P in water samples

  16. Using Four Capitals to Assess Watershed Sustainability

    Science.gov (United States)

    Pérez-Maqueo, Octavio; Martinez, M. Luisa; Vázquez, Gabriela; Equihua, Miguel

    2013-03-01

    The La Antigua watershed drains into the Gulf of Mexico and can be considered as one of the most important areas in Mexico because of its high productivity, history, and biodiversity, although poverty remains high in the area in spite of these positive attributes. In this study, we performed an integrated assessment of the watershed to recommend a better direction toward a sustainable management in which the four capitals (natural, human, social, and built) are balanced. We contrasted these four capitals in the municipalities of the upper, middle and lower watershed and found that natural capital (natural ecosystems and ecosystem services) was higher in the upper and middle watershed, while human and social capitals (literacy, health, education and income) were generally higher downstream. Overall, Human Development Index was negatively correlated with the percentage of natural ecosystems in the watershed, especially in the upper and lower watershed regions. Our results indicate that natural capital must be fully considered in projections for increasing human development, so that natural resources can be preserved and managed adequately while sustaining intergenerational well-being.

  17. Longer-term Stream Nitrogen Dynamics after Wildfire and Salvage Harvesting: Implications for Management Concepts based on Trajectories of Post-disturbance Watershed Recovery.

    Science.gov (United States)

    Silins, U.; Emelko, M. B.; Bladon, K. D.; Stone, M.; Williams, C.; Martens, A. M.; Wagner, M. J.

    2015-12-01

    Biogeochemical processes reflecting interaction of vegetation and hydrology govern long-term export of nutrients such as nitrogen, phosphorus, and carbon over successional time scales. While management concepts of watershed "recovery" from disturbance back towards pre-disturbance conditions are often considered over much shorter timescales, few studies have directly explored watershed biogeochemical responses to disturbance long enough to directly document the longer-term trajectory of responses to severe land disturbance on nitrogen export. The objectives of this study were to document both the initial magnitude and patterns of longer-term recovery of stream nitrogen after the 2003 Lost Creek wildfire over nine years in front ranges of the Rocky Mountains in south-west Alberta, Canada. The study was conducted in seven instrumented catchments (4-14 km2), including burned, burned and salvage logged, and unburned (reference) conditions since 2004. Total nitrogen (TN) and nitrate (NO3-) concentrations and area-normalized yields were greater and more variable in burned and post-fire salvage logged catchments when compared with unburned catchments. Large initial increases in stream TN and NO3- production 1-3 years after both wildfire and post-fire salvage logging declined strongly to levels similar to, or below that of unburned watersheds 4-6 years after the fire, and continued to decline (although more slowly) 7-9 years after the wildfire. Post-fire salvage logging produced lower impacts on TN and NO3- in streams and these effects declined even more rapidly compared to the effects of wildfire alone. These changes closely corresponded to the early trajectory of establishment and rapid juvenile growth of post-fire regenerating forest vegetation in both catchment groups. While the concept of hydrologic recovery from disturbance is both a practical and meaningful concept for integrated landscape management for protection of forest water resources, the benchmark for

  18. SWAT meta-modeling as support of the management scenario analysis in large watersheds.

    Science.gov (United States)

    Azzellino, A; Çevirgen, S; Giupponi, C; Parati, P; Ragusa, F; Salvetti, R

    2015-01-01

    In the last two decades, numerous models and modeling techniques have been developed to simulate nonpoint source pollution effects. Most models simulate the hydrological, chemical, and physical processes involved in the entrainment and transport of sediment, nutrients, and pesticides. Very often these models require a distributed modeling approach and are limited in scope by the requirement of homogeneity and by the need to manipulate extensive data sets. Physically based models are extensively used in this field as a decision support for managing the nonpoint source emissions. A common characteristic of this type of model is a demanding input of several state variables that makes the calibration and effort-costing in implementing any simulation scenario more difficult. In this study the USDA Soil and Water Assessment Tool (SWAT) was used to model the Venice Lagoon Watershed (VLW), Northern Italy. A Multi-Layer Perceptron (MLP) network was trained on SWAT simulations and used as a meta-model for scenario analysis. The MLP meta-model was successfully trained and showed an overall accuracy higher than 70% both on the training and on the evaluation set, allowing a significant simplification in conducting scenario analysis.

  19. Development of Optimal Water-Resources Management Strategies for Kaidu-Kongque Watershed under Multiple Uncertainties

    Directory of Open Access Journals (Sweden)

    Y. Zhou

    2013-01-01

    Full Text Available In this study, an interval-stochastic fractile optimization (ISFO model is advanced for developing optimal water-resources management strategies under multiple uncertainties. The ISFO model can not only handle uncertainties presented in terms of probability distributions and intervals with possibility distribution boundary, but also quantify subjective information (i.e., expected system benefit preference and risk-averse attitude from different decision makers. The ISFO model is then applied to a real case of water-resources systems planning in Kaidu-kongque watershed, China, and a number of scenarios with different ecological water-allocation policies under varied p-necessity fractiles are analyzed. Results indicate that different policies for ecological water allocation can lead to varied water supplies, economic penalties, and system benefits. The solutions obtained can help decision makers identify optimized water-allocation alternatives, alleviate the water supply-demand conflict, and achieve socioeconomic and ecological sustainability, particularly when limited water resources are available for multiple competing users.

  20. Simulation of streamflow and the effects of brush management on water yields in the Double Mountain Fork Brazos River watershed, western Texas 1994–2013

    Science.gov (United States)

    Harwell, Glenn R.; Stengel, Victoria G.; Bumgarner, Johnathan R.

    2016-04-20

    The U.S. Geological Survey, in cooperation with the City of Lubbock and the Texas State Soil and Water Conservation Board, developed and calibrated a Soil and Water Assessment Tool watershed model of the Double Mountain Fork Brazos River watershed in western Texas to simulate monthly mean streamflow and to evaluate the effects of brush management on water yields in the watershed, particularly to Lake Alan Henry, for calendar years 1994–2013. Model simulations were done to quantify the possible change in water yield of individual subbasins in the Double Mountain Fork Brazos River watershed as a result of the replacement of shrubland (brush) with grassland. The simulation results will serve as a tool for resource managers to guide brush-management efforts.

  1. Simulation of streamflow and the effects of brush management on water yields in the upper Guadalupe River watershed, south-central Texas, 1995-2010

    Science.gov (United States)

    Bumgarner, Johnathan R.; Thompson, Florence E.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board and the Upper Guadalupe River Authority, developed and calibrated a Soil and Water Assessment Tool watershed model of the upper Guadalupe River watershed in south-central Texas to simulate streamflow and the effects of brush management on water yields in the watershed and to Canyon Lake for 1995–2010. Model simulations were done to quantify the possible change in water yield of individual subbasins in the upper Guadalupe River watershed as a result of the replacement of ashe juniper (Juniperus ashei) with grasslands. The simulation results will serve as a tool for resource managers to guide their brush-management efforts.

  2. A framework model for investigating the export of phosphorus to surface waters in forested watersheds: Implications to management.

    Science.gov (United States)

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-12-01

    The present study was developed in four sub-basins of rivers Cávado and Douro, located in the North of mainland Portugal. The goal was to identify main stressors as well as driving and attenuating processes responsible for the presence of phosphorus in masses of surface water in those catchments. To accomplish the goal, the basins were selected where a quality station was present at the outlet, the forest occupation was greater than 75% and the phosphorus concentrations have repeatedly exceeded the threshold for the good ecological status in the period 2000-2006. Further, in two basins the quality station was installed in a lotic (free-flow water) environment whereas in the other two was placed in a lentic (dammed water) environment. The ArcMap GIS-based software package was used for the spatial analysis of stressors and processes. The yields of phosphorus vary widely across the studied basins, from 0.2-30 kg·ha(-1)·yr(-1). The results point to post-fire soil erosion and hardwood clear cuttings as leading factors of phosphorus exports across the watersheds, with precipitation intensity being the key variable of erosion. However, yields can be attenuated by sediment deposition along the pathway from burned or managed areas to water masses. The observed high yields and concentrations of phosphorus in surface water encompass serious implications for water resources management in the basins, amplified in the lentic cases by potential release of phosphorus from lake sediments especially during the summer season. Therefore, a number of measures were proposed as regards wildfire combat, reduction of phosphorus exports after tree cuts, attenuation of soil erosion and improvement of riparian buffers, all with the purpose of preventing phosphorus concentrations to go beyond the regulatory good ecological status.

  3. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This document contains Appendixes A ``Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed`` and B ``Human Health Risk Assessment for White Oak Creek / Melton Valley Area`` for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites.

  4. Space shuttle entry terminal area energy management

    Science.gov (United States)

    Moore, Thomas E.

    1991-01-01

    A historical account of the development for Shuttle's Terminal Area Energy Management (TAEM) is presented. A derivation and explanation of logic and equations are provided as a supplement to the well documented guidance computation requirements contained within the official Functional Subsystem Software Requirements (FSSR) published by Rockwell for NASA. The FSSR contains the full set of equations and logic, whereas this document addresses just certain areas for amplification.

  5. [Output characteristics of rainfall runoff phosphorus pollution from a typical small watershed in Yimeng mountainous area].

    Science.gov (United States)

    Yu, Xing-xiu; Li, Zhen-wei; Liu, Qian-jin; Jing, Guang-hua

    2012-08-01

    Relationships between phosphorus pollutant concentrations and precipitation-runoff were analyzed by monitoring pollutant losses at outlets of the Menglianggu watershed in 2010. A typical small watershed was selected to examine the runoff and quality parameters such as total phosphorus (TP), particle phosphorus (PP), dissolve phosphorus (DP) and dissolve inorganic phosphorus (DIP) in rainfall-runoff of 10 rainfall events. Precipitation was above 2 mm for all the 10 rainfall events. The results showed that the peak of phosphorus concentrations occurred before the peak of water flows, whereas change processes of the phosphorus fluxes were consistent with that of the water flows and the phosphorus flux also have a strong linear relationship with the water flows. The minimums of the phosphorus concentrations in every 10 natural rainfall events have small differences with each other, but the maximum and EMCs of the phosphorus concentrations have significant differences with each rainfall event. This was mainly influenced by the precipitation, maximum rainfall intensity and mean rainfall intensity (EMCs) and was less influenced by rainfall duration. DP and TP were mainly composed of DIP and PP, respectively. There were no significant correlations between DIP/DP dynamic changes and rainfall characteristics, whereas significant correlations between PP/TP dynamic changes and maximum rainfall intensity were detected. The production of DIP, DP, AND TP were mainly influenced by the direct runoff (DR) and base flow (BF). The EMCs of DIP, DP, TP and the variations of DIP/DP were all found to have significant polynomial relationships with DR/TR., but the dynamic changes of PP/ TP and the EMCS of PP were less influenced by the DR/TR.

  6. High-resolution maps of forest-urban watersheds present an opportunity for ecologists and managers

    Science.gov (United States)

    Dense populations of people and abundant impervious surfaces contribute to poor water quality and increased flooding in forest-urban watersheds. Green infrastructure mitigates these effects, but precisely quantifying benefits is difficult because most land cover maps rely on coar...

  7. 2007 Bureau of Land Management (BLM) Lidar: Panther Creek Watershed, Yamhill County

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset represents LiDAR elevations acquired during a leaf-off and a leaf-on vegetative condition for the Upper Panther Creek Watershed in the Yamhill County...

  8. Watershed Management Tool for Selection and Spacial Allocation of Non-Point Source Pollution Control Practices

    Science.gov (United States)

    Distributed-parameter watershed models are often utilized for evaluating the effectiveness of sediment and nutrient abatement strategies through the traditional {calibrate→ validate→ predict} approach. The applicability of the method is limited due to modeling approximations. In ...

  9. Watershed Management Optimization Support Tool: An approach for incorporating LID into integrated water management plans

    Science.gov (United States)

    To assist communities in the evaluation of green infrastructure, low impact development, and land conservation practices as part of an Integrated Water Resources Management (IWRM) approach, the U.S. Environmental Protection Agency (US EPA) has supported the development of the Wat...

  10. Spatiotemporal variation of watershed health propensity through reliability-resilience-vulnerability based drought index (case study: Shazand Watershed in Iran).

    Science.gov (United States)

    Sadeghi, Seyed Hamidreza; Hazbavi, Zeinab

    2017-06-01

    Quantitative response of the watershed health to climate variability is of critical importance for watershed managers. However, existing studies seldom considered the impact of climate variability on watershed health. The present study therefore aimed to analyze the temporal and spatial variability of reliability (Rel), resilience (Res) and vulnerability (Vul) indicators in node years of 1986, 1998, 2008 and 2014 in connection with Standardized Precipitation Index (SPI) for 24 sub-watersheds in the Shazand Watershed of Markazi Province in Iran. The analysis was based on rainfall variability as one of the main climatic drivers. To achieve the study purposes, the monthly rainfall time series of eight rain gauge stations distributed across the watershed or neighboring areas were analyzed and corresponding SPIs and Rel ResVul indicators were calculated. Ultimately, the spatial variation of SPI oriented Rel ResVul was mapped for the study watershed using Geographic Information System (GIS). The average and standard deviation of SPI-Rel ResVul index for the study years of 1986, 1998, 2008 and 2014 was obtained 0.240±0.025, 0.290±0.036, 0.077±0.0280 and 0.241±0.081, respectively. In overall, the results of the study proved the spatiotemporal variations of SPI-Rel ResVul watershed health index in the study area. Accordingly, all the sub-watersheds of the Shazand Watershed were grouped in unhealthy and very unhealthy conditions in all the study years. For 1986 and 1998 all the sub-watersheds were assessed in unhealthy status. Whilst, it declined to very unhealthy condition in 2008 and then some 75% of the watershed ultimately referred again to unhealthy and the rest still remained under very unhealthy conditions in 2014.

  11. Local Area Network Management: An Unresolved Issue.

    Science.gov (United States)

    Howden, Norman

    1989-01-01

    Discussion of management issues involved with local area networks (LAN) among information organizations focuses on a project at the University of North Texas that was designed to investigate problems associated with LAN. Topics discussed include purchasing decisions for hardware and software, and integration among various groups of users. (Eight…

  12. Solid Waste Management in Recreational Forest Areas.

    Science.gov (United States)

    Spooner, Charles S.

    The Forest Service, U. S. Department of Agriculture, requested the Bureau of Solid Waste Management to conduct a study of National Forest recreation areas to establish waste generation rates for major recreation activities and to determine the cost of solid waste handling for selected Forest Service Districts. This report describes the 1968 solid…

  13. Habitat changes: Mount Haggin Wildlife Management Area

    Science.gov (United States)

    Frisina, M.R.; Keigley, R.B.

    2004-01-01

    In 1984, a rest-rotation grazing system was established on the Mount Haggin Wildlife Management Area (MHWMA) in southwest Montana. The area is a mixture of wet and dry meadow types, grass/shrublands, and forest. Prior to implementing the grazing system, photo-monitoring points were established on the MHWMA at locations were cattle concentrate were grazing. The area consists of a three pasture rest-rotation system incorporating 20,000 acres. Photo essays revealed changes in riparian, lowland, and upland sites within the grazing system. In addition, gross changes in the amount of willow present were documented.

  14. Watershed development practices for ecorestoration in a tribal area - A case study in Attappady hills, South India

    Science.gov (United States)

    Vishnudas, Subha; Savenije, Hubert H. G.; Zaag, Pieter Van der

    Attappady is a rural area in Kerala, South India, that has suffered from severe land degradation and which is inhabited by a poor and predominantly tribal population. The combination of severe land degradation, poverty and a tribal population make Attappady hydrologically and socially unique. Ecological degradation and deforestation followed the gradual building up of land pressure resulting from immigration by more wealthy outsiders. The hills of Attappady were once the forest land of Kerala. Recently it was on the verge of complete degradation. This paper explains how an ecorestoration project involving soil and water conservation interventions, the introduction of agro-forestry, nutritional diversification, income generation activities and training was implemented in a participatory manner. The project had positive impacts on both the environment and the livelihoods of the people living in the watershed, but it also suffered from drawbacks. This paper reports on the successes as well as the lessons learned from this unique ecorestoration project.

  15. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  16. Effects of reforestation on the hydrological function of a small watershed in the Three Gorges Reservoir Area

    Institute of Scientific and Technical Information of China (English)

    QI Shi; WANG Yunqi; WANG Yujie

    2007-01-01

    For vegetation communities with hydrological function in the Three Gorges Reservoir Area,the storm event distributed hydrological model Precipitation-Runoff Modeling System (PRMS)-Storm was built based on modular modeling system developed by the US Geological Survey,and was employed to study the effects of forests on peak flows in the Xiangshuixi forest watershed in the Three Gorges Reservoir Area.The results showed that:1) this simulation study suggested that PRMS-Storm can meet the second level national flood prediction standards of China for simulating storm events of small forest watersheds,and can issue flood forecasting;2) hydrological functions of different vegetation communities were evaluated,and three simulation scenarios were arranged:mixed conifer-broadleaf forests (scenario 1),broad-leaved forests (scenario 2),and general forests arrangement (scenario 3);3) the well-arranged forest scenarios can reduce over 20% of surface rtmoff,result in an increase of over 16% in subsurface flow,and decrease peak flow by 20.8%,9.6%,and 18.9%,respectively.The reduction of peak flow rates was significant when rainfall peak was higher than 0.8 mm/min,especially for short-term rainfall events.In general,we found that scenarios 1 and 3 were preferable for reducing peak flow rates and volumes in the reforestation practices in the study region,and scenario 1 was better than scenario 3,so the mixed conifer-broadleaf forests had the best hydrological function.

  17. 泰国的流域环境管理%Environmental Management of Watershed in Thailand

    Institute of Scientific and Technical Information of China (English)

    萨穆朗

    2005-01-01

    Concept of watershed has been used in this country for a long time. The reason for its popularity is its simplicity to understand the role of the flow of the water from an upper area to a lower one. The problems associated with watershed concentrate on a couple of major items: water use and availability, and environmental degradation. A few examples have been brought forward from existing works. Upland-lowland conflicts are a global problem, with the use of water as the main issue, plus the contamination of the environment with pesticides and other wastes. The misuse of land by influential people, especially on sloping areas, may induce flood and landslide to occur. In some mining areas, some heavy metals like lead may cause damages to health and well-being of inhabitants. Some cases have been stagnating and people cannot find help from anywhere. On a bright side, there have been good examples of cooperation in saving some rivers, e.g. the Tha Chin, which can exemplify for other similar cases too. Finally the pollutants go down to the sea though some parts of them have been caused by activities in and around there. Establishments of the Environmental Dispute Mediation Center and the Green Bench for environmental court cases are considered a good progress of environmental circles of the country.%流域的概念在泰国沿用已久.之所以这么普及,是由于河流自上游地区流往下游地区这一概念容易被人理解接受.与小流域相关的问题主要包括以下几个方面:水资源利用及其有效性,环境退化问题等.针对现在的工作举几个例子.上下游冲突是个全球性的问题,其中水资源利用是个主要问题,还包括因为杀虫剂和其他废弃物造成的环境污染问题等.滥用土地,特别是在坡地上的过度开发,可能会导致洪灾和山崩.在某些矿区,某些重金属,诸如铅等,对人体健康和居民生活产生不良影响.有些情况无法解决,而人们却无法从其他地区获

  18. Empirical streamflow simulation for water resource management in data-scarce seasonal watersheds

    Directory of Open Access Journals (Sweden)

    J. E. Shortridge

    2015-10-01

    Full Text Available In the past decade, certain methods for empirical rainfall–runoff modeling have seen extensive development and been proposed as a useful complement to physical hydrologic models, particularly in basins where data to support process-based models is limited. However, the majority of research has focused on a small number of methods, such as artificial neural networks, despite the development of multiple other approaches for non-parametric regression in recent years. Furthermore, this work has generally evaluated model performance based on predictive accuracy alone, while not considering broader objectives such as model interpretability and uncertainty that are important if such methods are to be used for planning and management decisions. In this paper, we use multiple regression and machine-learning approaches to simulate monthly streamflow in five highly-seasonal rivers in the highlands of Ethiopia and compare their performance in terms of predictive accuracy, error structure and bias, model interpretability, and uncertainty when faced with extreme climate conditions. While the relative predictive performance of models differed across basins, data-driven approaches were able to achieve reduced errors when compared to physical models developed for the region. Methods such as random forests and generalized additive models may have advantages in terms of visualization and interpretation of model structure, which can be useful in providing insights into physical watershed function. However, the uncertainty associated with model predictions under climate change should be carefully evaluated, since certain models (especially generalized additive models and multivariate adaptive regression splines became highly variable when faced with high temperatures.

  19. Technical review of managed underground storage of water study of the upper Catherine Creek watershed, Union County, northeastern Oregon

    Science.gov (United States)

    Snyder, Daniel T.

    2014-01-01

    Because of water diversions during summer, flow in Catherine Creek, a tributary to the Grande Ronde River in northeastern Oregon, is insufficient to sustain several aquatic species for which the stream is listed as critical habitat. A feasibility study for managed underground storage (MUS) in the upper Catherine Creek watershed in Union County, Oregon, was undertaken by Anderson Perry and Associates, Inc., to address the issue of low flows in summer. The results of the study were released as a report titled “Upper Catherine Creek Storage Feasibility Study for Grande Ronde Model Watershed,” which evaluated the possibility of diverting Catherine Creek streamflow during winter (when stream discharge is high), storing the water by infiltration or injection into an aquifer adjacent to the stream, and discharging the water back to the stream in summer to augment low flows. The method of MUS would be accomplished using either (1) aquifer storage and recovery (ASR) that allows for the injection of water that meets drinking-water-quality standards into an aquifer for later recovery and use, or (2) artificial recharge (AR) that involves the intentional addition of water diverted from another source to a groundwater reservoir. Concerns by resource managers that the actions taken to improve water availability for upper Catherine Creek be effective, cost-efficient, long-term, and based on sound analysis led the National Fish and Wildlife Foundation to request that the U.S. Geological Survey conduct an independent review and evaluation of the feasibility study. This report contains the results of that review. The primary objectives of the Anderson Perry and Associates study reviewed here included (1) identifying potentially fatal flaws with the concept of using AR and (or) ASR to augment the streamflow of Catherine Creek, (2) identifying potentially favorable locations for augmenting streamflow, (3) developing and evaluating alternatives for implementing AR and (or) ASR, and

  20. Spatial distribution of soil organic carbon and total nitrogen based on GIS and geostatistics in a small watershed in a hilly area of northern China.

    Science.gov (United States)

    Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang

    2013-01-01

    The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0-20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km(2)) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed.

  1. GIS based generation of dynamic hydrological and land patch simulation models for rural watershed areas

    Directory of Open Access Journals (Sweden)

    M. Varga

    2016-03-01

    Full Text Available This paper introduces a GIS based methodology to generate dynamic process model for the simulation based analysis of a sensitive rural watershed. The Direct Computer Mapping (DCM based solution starts from GIS layers and, via the graph interpretation and graphical edition of the process network, the expert interface is able to integrate the field experts’ knowledge in the computer aided generation of the simulation model. The methodology was applied and tested for the Southern catchment basin of Lake Balaton, Hungary. In the simplified hydrological model the GIS description of nine watercourses, 121 water sections, 57 small lakes and 20 Lake Balaton compartments were mapped through the expert interface to the dynamic databases of the DCM model. The hydrological model involved precipitation, evaporation, transpiration, runoff, infiltration. The COoRdination of INformation on the Environment (CORINE land cover based simplified “land patch” model considered the effect of meteorological and hydrological scenarios on freshwater resources in the land patches, rivers and lakes. The first results show that the applied model generation methodology helps to build complex models, which, after validation can support the analysis of various land use, with the consideration of environmental aspects.

  2. Simple Method for Assessing Spread of Flood Prone Areas under Historical and Future Rainfall in the Upper Citarum Watershed

    Directory of Open Access Journals (Sweden)

    Bambang Dwi Dasanto

    2014-06-01

    Full Text Available From 1931 to 2010 the flood frequency in Upper Citarum Watershed had increased sharply indicating the decline of the wateshed quality. With the change of climate, risk of the flood may get worse. This study aims to determine effective rainfall that caused flooding and to evaluate the impact of future rainfall changes on the flood prone areas. Effective rainfall which contributes to direct runoff (DRO and leads to flooding was determined using regression equation relating the DRO and cumulative rainfall of a number of consecutive days. Mapping the flood prone areas was developed using the GIS techniques. Results showed that the effective rainfall which caused flooding was the rainfall accumulation for four consecutive days before occurrence of peak of DRO. The percentage of accuracy between estimated and actual flood maps was about 76.9%. According to historical rainfall, the flood prone areas spreaded at right and left directions of the Upstream Citarum River. If this area experiences the climate change, the frequency and flood extents will increase. This study can only identify locations and possibility of flood occurrence but it cannot demonstrate widespread of flood inundation precisely. However, this simple approach can evaluate the flood frequency and intensity quite well.

  3. Minimum sampling area and a biodiversity of riparian broad-leaved/Korean pine forest in Erdaobaihe forested watershed, Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Riparian zone is an important component of forested watershed. Species component, structure, and distribution pattern of plant community in riparian zone are different from those of forest far away from the riparian zone because of edge effect and influence of river, and their minimum sampling areas are also different. To study the minimum area and a biodiversity of broad-leaved/Korean pine forest in riparian zone, three 8 m × 32 m sampling belts were selected and distributed at elevation of 800 m, 900 m, and 1000 m. In the riparian broad-leaved/Korean pine forest, mean minimum sampling areas including 60%, 80%, and 90% of total species were 80 m2 (8 m×10 m), 180 m2 (12 m×15 m), and 320 m2 (16 m × 20 m) respectively; The corresponding mean minimum areas of non-riparian forest were about 260 m2, 380 m2, and 480 m2; and the former were smaller than the latter. In the riparian zone, species richness, Shannon-Weiner index and species evenness were also higher than those in non-riparian forest. On the contrary, species dominance in forest community was higher than that in riparian zone.

  4. 50 CFR 697.18 - Lobster management areas.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Lobster management areas. 697.18 Section... Measures § 697.18 Lobster management areas. The following lobster management areas are established for... American lobster EEZ management areas is available upon request to the Office of the Regional...

  5. Landscape processes, effects and the consequences of migration in their management at the Jatún Mayu watershed (Bolivia)

    Science.gov (United States)

    Penna, Ivanna; Jaquet, Stephanie; Sudmeier-Rieux, Karen; Kaenzig, Raoul; Schwilch, Gudrun; Jaboyedoff, Michel; Liniger, Hanspeter; Machaca, Angelica; Cuba, Edgar; Boillat, Sebastien

    2014-05-01

    Bolivia has a large rural population, mostly composed of subsistence farmers that face natural and anthropogenic driven processes affecting their livelihoods. In order to establish sustainable management strategies, it is important to understand the factors governing landscape changes. This work explores the geomorphic imprint and effects of natural and anthropogenic driven processes on three mountain communities undergoing de-population in the Jatún Mayu watershed (Cochabamba, Bolivia). Based on satellite image interpretation, field work and household surveys, we have identified gullies and landslides as main active processes, causing land losses, affecting inter-communal roads, etc. While landslides are mostly occurring in the middle and lower section of the basin, gullies are especially affecting the upper part (especially the southern slope). Our analysis indicated that in the middle and lower part of the basin, landslides are developing in response to the Jatún Mayu incision (slopes reach a critical angle and slope failures increase). However in the upper part, where no river down-cutting is taking place, preliminary analysis indicates that past and present human interventions (over-grazing, agriculture, road construction, etc.) play a key role on driving land degradation toward the formation of gullies. Based on the comparison of high resolution images from 2004 and 2009, we determined an agricultural land loss rate of 8452 m2/year, mostly in the form of landslides. One single event swept away 0.03 km2 of agricultural lands (~13 parcels), approximately 87% of an average household property. People's main concerns are hail, frost and droughts because they cause an "immediate" loss on family incomes, but the impacts caused by landslides and gullies are not disregarded by the communities and the government. Communities are organized to set up and maintain key infrastructure such as irrigation canals and roads. They also intend to develop protective measures

  6. Operational water management applications of snowcovered area observations

    Science.gov (United States)

    Rango, A.; Salomonson, V. V.; Foster, J. L.

    1975-01-01

    An effort was made to evaluate the utility of satellite snowcover observations for seasonal streamflow prediction. On a representative, large watershed(10 to the 5th power to 10 to the sixth power sq km) it was found, based on six years of data, that meteorological satellite observations of snow cover early in the snowmelt season exhibit a relationship to seasonal runoff having a statistically significant coefficient of determination of 0.92. Analyses of LANDSAT-1 snow-cover observations over the Wind River Mountains of Wyoming reveals that for areas with infrequent cloud cover the extent of snowcover and its change with time can be monitored on watersheds as small as 10 sq km in areal extent. The change in the snow cover with time as observed from LANDSAT-1 is found to reflect major differences in seasonal runoff from high altitude (mean altitude 3 km) and low altitude ( 3 km) watersheds. There are quantitative indications that LANDSAT observations over small watersheds could be used in a manner similar to that employed for meteorological satellite observations to relate the percent of a basin snowcovered on a given data to seasonal runoff.

  7. Differences in Net Ecosystem Exchange for an intensely managed watershed using a lumped, regional model and a mechanistic, hillslope-scale model

    Science.gov (United States)

    Wilson, C. G.; Wacha, K.; Papanicolaou, T.; Stanier, C. O.; Jamroensan, A.

    2014-12-01

    In this study, Net Ecosystem Exchange (NEE), and its components Gross Ecosystem Exchange (GEE) and Ecosystem Respiration (RESP), were compared from a lumped, regional model and a mechanistic, hillslope-scale model to determine if the effects of land management on the carbon cycle are captured by larger-scale biosphere models that determine CO2 sources and sinks. WRF-VPRM (Weather Research & Forecasting - Vegetation Photosynthesis & Respiration Model) is a regional-scale model that uses simulated downward shortwave radiation and surface temperatures, along with satellite-derived land cover indices and eddy flux tower-derived parameters to estimate biosphere CO2 fluxes with empirical equations. The DAYCENT biogeochemical model coupled with the Watershed Erosion Prediction Project model (WEPP), which simulates changes in soil carbon stocks due to different land management and the resulting enhanced erosion, can also quantify biosphere CO2 fluxes. Both models (i.e., WRF-VPRM and WEPP-DAYCENT) were used to quantify GEE, RESP, and NEE for the summer of 2008 in the IML-CZO Clear Creek watershed of the U.S. Midwest to examine the role of land management heterogeneity in CO2 exchanges between the biosphere and atmosphere. Comparing average daily GEE rates from WRF-VPRM (-11.0 ± 5.2 g C/m2/d) with WEPP-DAYCENT average values weighted per land use area in the watershed (-10.2 ± 1.5 g C/m2/d) showed no significant differences (t-test; p=0.08). In contrast, daily RESP values were different between the two models. Daily respiration rates were relatively constant for WRF-VPRM (6.0 ± 0.8 g C/m2/d), while WEPP-DAYCENT values for each management practice were significantly greater (7.2 ± 1.8 g C/m2/d; t-test, prates from WRF-VPRM (-5.0 ± 5.3 g C/m2/d) with WEPP-DAYCENT average weighted values (-3.0 ± 1.8 g C/m2/d) also showed significant differences (t-test; p<0.001).

  8. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.

    Science.gov (United States)

    Wu, Lei; Long, Tian-Yu; Li, Chong-Ming

    2010-01-01

    Xiao-jiang, with a basin area of almost 5,276 km(2) and a length of 182.4 km, is located in the center of the Three Gorges Reservoir Area, and is the largest tributary of the central section in Three Gorges Reservoir Area, farmland accounts for a large proportion of Xiao-jiang watershed, and the hilly cropland of purple soil is much of the farmland of the watershed. After the second phase of water storage in the Three Gorges Reservoir, the majority of sub-rivers in the reservoir area experienced eutrophication phenomenon frequently, and non-point source (NPS) pollution has become an important source of pollution in Xiao-jiang Watershed. Because dissolved nitrogen and phosphorus non-point source pollution are related to surface runoff and interflow, using climatic, topographic and land cover data from the internet and research institutes, the Semi-Distributed Land-use Runoff Process (SLURP) hydrological model was introduced to simulate the complete hydrological cycle of the Xiao-jiang Watershed. Based on the SLURP distributed hydrological model, non-point source pollution annual output load models of land use and rural residents were respectively established. Therefore, using GIS technology, considering the losses of dissolved nitrogen and phosphorus in the course of transport, a dissolved non-point source pollution load dynamic model was established by the organic coupling of the SLURP hydrological model and land-use output model. Through the above dynamic model, the annual dissolved non-point source nitrogen and phosphorus pollution output as well as the load in different types were simulated and quantitatively estimated from 2001 to 2008, furthermore, the loads of Xiao-jiang Watershed were calculated and expressed by temporal and spatial distribution in the Three Gorges Reservoir Area. The simulation results show that: the temporal changes of dissolved nitrogen and phosphorus load in the watershed are close to the inter-annual changes of rainfall runoff, and the

  9. The simulated effects of wastewater-management actions on the hydrologic system and nitrogen-loading rates to wells and ecological receptors, Popponesset Bay Watershed, Cape Cod, Massachusetts

    Science.gov (United States)

    Walter, Donald A.

    2013-01-01

    The discharge of excess nitrogen into Popponesset Bay, an estuarine system on western Cape Cod, has resulted in eutrophication and the loss of eel grass habitat within the estuaries. Septic-system return flow in residential areas within the watershed is the primary source of nitrogen. Total Maximum Daily Loads (TMDLs) for nitrogen have been assigned to the six estuaries that compose the system, and local communities are in the process of implementing the TMDLs by the partial sewering, treatment, and disposal of treated wastewater at wastewater-treatment facilities (WTFs). Loads of waste-derived nitrogen from both current (1997–2001) and future sources can be estimated implicitly from parcel-scale water-use data and recharge areas delineated by a groundwater-flow model. These loads are referred to as “instantaneous” loads because it is assumed that the nitrogen from surface sources is delivered to receptors instantaneously and that there is no traveltime through the aquifer. The use of a solute-transport model to explicitly simulate the transport of mass through the aquifer from sources to receptors can improve implementation of TMDLs by (1) accounting for traveltime through the aquifer, (2) avoiding limitations associated with the estimation of loads from static recharge areas, (3) accounting more accurately for the effect of surface waters on nitrogen loads, and (4) determining the response of waste-derived nitrogen loads to potential wastewater-management actions. The load of nitrogen to Popponesset Bay on western Cape Cod, which was estimated by using current sources as input to a solute-transport model based on a steady-state flow model, is about 50 percent of the instantaneous load after about 7 years of transport (loads to estuary are equal to loads discharged from sources); this estimate is consistent with simulated advective traveltimes in the aquifer, which have a median of 5 years. Model-calculated loads originating from recharge areas reach 80

  10. Sub-watershed prioritization based on sediment yield using game theory

    Science.gov (United States)

    Adhami, Maryam; Sadeghi, Seyed Hamidreza

    2016-10-01

    The proper placement of soil and water conservation measures cannot be designated due to lack of appropriate technical prioritization of different areas of a watershed. Therefore, quantifying soil erosion hazard and spatial prioritization of sub-watersheds would aid in better watershed management planning. Although, many approaches have been applied to prioritize sub-watersheds, but still the efficient techniques like game theory have not been practically applied to prioritize sub-watersheds. The present study therefore has used the game theory to prioritize sub-watersheds in Gorganroud and Qareh Sou watersheds in Golestan Province, northern Iran. Towards this goal, 38 independent factors were classified in seven components using Principal Component Analysis (PCA) method with one representative variable in each component. The Condorcet method used for prioritization of effective variables indicated that the percent of forestry lands (52 scores) and discharge with 10 years of return period (32 scores) were respectively the most and the least effective variables on sediment yield. The Fallback bargaining and the Borda Scoring algorithms were also selected to prioritize study sub-watersheds based on weighted grades of total score for each variable. Accordingly, the aforesaid algorithms classified sub-watersheds in three categories. Comparison of results similarly introduced Galikesh, Qazaqli, Gonbad, Siyah Ab and Tamar as first ranked sub-watersheds with the worth condition, Tangrah and Naharkhoran as second priority and eventually Pole Ordougah as sub-watershed with the lowest priority.

  11. Watersheds in disordered media

    CERN Document Server

    Araújo, N A M; Herrmann, H J; Andrade, J S

    2014-01-01

    What is the best way to divide a rugged landscape? Since ancient times, watersheds separating adjacent water systems that flow, for example, toward different seas, have been used to delimit boundaries. Interestingly, serious and even tense border disputes between countries have relied on the subtle geometrical properties of these tortuous lines. For instance, slight and even anthropogenic modifications of landscapes can produce large changes in a watershed, and the effects can be highly nonlocal. Although the watershed concept arises naturally in geomorphology, where it plays a fundamental role in water management, landslide, and flood prevention, it also has important applications in seemingly unrelated fields such as image processing and medicine. Despite the far-reaching consequences of the scaling properties on watershed-related hydrological and political issues, it was only recently that a more profound and revealing connection has been disclosed between the concept of watershed and statistical physics o...

  12. [Nonpoint source pollution model, AnnAGNPS, assessment for a mixed forested watershed in Three Gorges Reservoir area].

    Science.gov (United States)

    Huang, Zhi-lin; Tian, Yao-wu; Xiao, Wen-fa; Zeng, Li-xiong; Ma, De-ju

    2009-10-15

    Watershed models provide a cost-effective and efficient means of estimating the pollutant loadings entering surface waters, especially when combined with traditional water quality sampling and analyses. But there have often been questions about the accuracy or certainty of models and their predictions. The main goal of this study was to evaluate the performance of AnnAGNPS (Annualized AGricultural NonPoint Source)Pollution Model, in simulating runoff, sediment loading and nutrient loadings under Three Gorges Reservoir area. Most of model input parameters were sourced from Zigui Forest Ecology Station in Three Gorges Reservoir area, State Forestry Administration. Data year 2003 was used for calibration while data year 2004 was used for validation of the model. The whole evaluation consisted of determining the coefficient of determination (R2), Nash-Sutcliffe coefficient of efficiency (E), and the percentage volume error (VE). Results showed that the model predicted the daily runoff volume within the range of acceptable accuracy. The runoff on a daily basis was underpredicted by 5.0% with R2 of 0.93 (p mixed types of land uses and steep slopes.

  13. Management of water resources in the Cantareira Water Producer System area: a look at the rural context

    Directory of Open Access Journals (Sweden)

    Rafael Eduardo Chiodi

    2013-12-01

    Full Text Available The National Water Resources Policy established the principles of participation, integration and decentralization, as well as new instruments for the management of water resources in Brazil. The implementation of this policy created several challenges, such as establishing effective management within the framework of rural territorial structure. The example of the Cantareira’s System in Piracicaba river watershed is conducive to the understanding of this challenge. In this scenario, we analyzed the effective implementation of principles, and of two instruments of water resource management from the perspective of farmers’ participation: the integration of water management and rural land use, and public policies for rural areas. To accomplish this, we reviewed documents and literature, and considered conclusions drawn from meetings at the Technical Chamber of Use and Water Conservation in Rural Areas (CT-Rural. We identified a lack of participation by farmers’ representatives in the CT-Rural Chamber and little concern to increase their participation in the management practices. However, the support payments for environmental services projects (PES are stimulating farmers and calling attention to the Cantareira area, in addition to promoting the integration of water resource management and rural land use. However, even though this support acknowledges the importance of the farmers, we emphasize the low priority given by the Piracicaba, Capivari and Jundiaí Watershed Committee to the rural context of the area studied.

  14. Characterization of sources and loadings of fecal pollutants using microbial source tracking assays in urban and rural areas of the Grand River Watershed, Southwestern Ontario.

    Science.gov (United States)

    Lee, Dae-Young; Lee, Hung; Trevors, Jack T; Weir, Susan C; Thomas, Janis L; Habash, Marc

    2014-04-15

    Sources of fecal water pollution were assessed in the Grand River and two of its tributaries (Ontario, Canada) using total and host-specific (human and bovine) Bacteroidales genetic markers in conjunction with reference information, such as land use and weather. In-stream levels of the markers and culturable Escherichia coli were also monitored during multiple rain events to gain information on fecal loadings to catchment from diffuse sources. Elevated human-specific marker levels were accurately identified in river water impacted by a municipal wastewater treatment plant (WWTP) effluent and at a downstream site in the Grand River. In contrast, the bovine-specific marker showed high levels of cattle fecal pollution in two tributaries, both of which are characterized as intensely farmed areas. The bovine-specific Bacteroidales marker increased with rainfall in the agricultural tributaries, indicating enhanced loading of cattle-derived fecal pollutants to river from non-point sources following rain events. However, rain-triggered fecal loading was not substantiated in urban settings, indicating continuous inputs of human-originated fecal pollutants from point sources, such as WWTP effluent. This study demonstrated that the Bacteroidales source tracking assays, in combination with land use information and hydrological data, may provide additional insight into the spatial and temporal distribution of source-specific fecal contamination in streams impacted by varying land uses. Using the approach described in this study may help to characterize impacted water sources and to design targeted land use management plans in other watersheds in the future.

  15. Mixed Waste Focus Area program management plan

    Energy Technology Data Exchange (ETDEWEB)

    Beitel, G.A.

    1996-10-01

    This plan describes the program management principles and functions to be implemented in the Mixed Waste Focus Area (MWFA). The mission of the MWFA is to provide acceptable technologies that enable implementation of mixed waste treatment systems developed in partnership with end-users, stakeholders, tribal governments and regulators. The MWFA will develop, demonstrate and deliver implementable technologies for treatment of mixed waste within the DOE Complex. Treatment refers to all post waste-generation activities including sampling and analysis, characterization, storage, processing, packaging, transportation and disposal.

  16. Quantifying the Effect of Thinning Vegetation on Evapotranspiration in a Mountainous Watershed through Remote Sensing: Improving Water Balance Estimates for Managed Aquifer Recharge

    Science.gov (United States)

    Revelle, P.; Hendrickx, J. M. H.

    2015-12-01

    A long-term water balance study in an experimental watershed of the Sacramento Mountains in New Mexico monitors the impact of thinning vegetation on groundwater recharge. The study objective is to evaluate if thinning forest vegetation will increase groundwater recharge in the mountains to provide larger regional flows to aquifers in surrounding basins. In the semi-arid Southwest, evapotranspiration (ET) makes up 75 to 95% or more of the total water budget. The variability of daily vegetation transpiration and solar radiation with time of year and the effects of complex terrain create a seasonal and spatial variability of ET that is not well quantified in mountainous regions. Through applying the remote sensing model METRIC (Mapping Evapotranspiration with High Resolution and Internalized Calibration) to satellite imagery from the LANDSAT satellite, we calculate high-resolution maps of ET for the Sacramento Mountains watershed area to quantify spatially-distributed estimates of ET before and after thinning to provide improved estimates for determining the water balance and the effect on recharge. METRIC calculates ET through applying an energy balance spatially across an image to estimate ET for each pixel (30m x 30m). Differences in ET are calculated between thinned and control plots in the watershed before and after thinning with the net impact of thinning on ET for an image determined with standard statistical tests following a Before-After Control-Impact (BACI) approach commonly used in environmental impact assessment studies. Estimates of ET from METRIC indicate a net decrease in ET in the first year after thinning for all of the thinned plots but show significant variability (~2 - 12 %) between areas with different terrain characteristics. The impact of surface parameters such as slope, aspect, or albedo among others are currently being examined using multivariate statistical analysis methods to improve the understanding of the spatial and temporal

  17. Effects of brush management on the hydrologic budget and water quality in and adjacent to Honey Creek State Natural Area, Comal County, Texas, 2001-10

    Science.gov (United States)

    Banta, J. Ryan; Slattery, Richard N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Natural Resources Conservation Service, the Edwards Region Grazing Lands Conservation Initiative, the Texas State Soil and Water Conservation Board, the San Antonio River Authority, the Edwards Aquifer Authority, Texas Parks and Wildlife, the Guadalupe Blanco River Authority, and the San Antonio Water System, evaluated the hydrologic effects of ashe juniper (Juniperus ashei) removal as a brush management conservation practice in and adjacent to the Honey Creek State Natural Area in Comal County, Tex. By removing the ashe juniper and allowing native grasses to reestablish in the area as a brush management conservation practice, the hydrology in the watershed might change. Using a simplified mass balance approach of the hydrologic cycle, the incoming rainfall was distributed to surface water runoff, evapotranspiration, or groundwater recharge. After hydrologic data were collected in adjacent watersheds for 3 years, brush management occurred on the treatment watershed while the reference watershed was left in its original condition. Hydrologic data were collected for another 6 years. Hydrologic data include rainfall, streamflow, evapotranspiration, and water quality. Groundwater recharge was not directly measured but potential groundwater recharge was calculated using a simplified mass balance approach. The resulting hydrologic datasets were examined for differences between the watersheds and between pre- and post-treatment periods to assess the effects of brush management. The streamflow to rainfall relation (expressed as event unit runoff to event rainfall relation) did not change between the watersheds during pre- and post-treatment periods. The daily evapotranspiration rates at the reference watershed and treatment watershed sites exhibited a seasonal cycle during the pre- and post-treatment periods, with intra- and interannual variability. Statistical analyses indicate the mean

  18. [New paradigm for soil and water conservation: a method based on watershed process modeling and scenario analysis].

    Science.gov (United States)

    Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo

    2012-07-01

    With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.

  19. Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers

    Directory of Open Access Journals (Sweden)

    O. S. Pokrovsky

    2015-07-01

    Full Text Available Analysis of dissolved organic and inorganic carbon (DOC and DIC, respectively, pH, Na, K, Ca, Mg, Cl, SO4 and Si in ~ 100 large and small rivers (2 of western Siberia sampled in winter, spring, summer and autumn over a more than 1500 km latitudinal gradient allowed for establishing the main environmental factors controlling the transport of dissolved river components in this environmentally important region, comprising continuous, discontinuous, sporadic and permafrost-free zones. There was significant latitudinal trend consisting in general decrease of DOC, DIC, SO4, and major cation (Ca, Mg, Na, K concentrations northward, reflecting the interplay between groundwater feeding (detectable mostly in the permafrost-free zone, south of 60° N and surface flux (in the permafrost-bearing zone. The trend of inorganic components was mostly pronounced in winter and less visible in spring, whereas for DOC, the trend of concentration decrease with latitude was absent in winter, and less pronounced in the spring flood than in the summer baseflow. The latitudinal trends persisted over all river watershed sizes, from 10 000 km2. This suggested that in addition to groundwater feeding of the river, there was a significant role of surface and shallow subsurface flow linked to plant litter degradation and peat leaching. Environmental factors are ranked by their increasing effect on DOC, DIC, δ13CDIC, and major elements in western Siberian rivers as the following: watershed area −2 yr−1 until 61° N, decreased two-fold in the discontinuous permafrost zone (62–66° N, and increased again to 3 t km−2 yr−1 in the continuous permafrost zone (67° N. The DIC, Mg, K and Ca followed this pattern. The total dissolved cation flux (TDS_c ranged from 1.5 to 5.5 t km−2 yr−1, similar to that in central Siberian rivers of the continuous permafrost region. While Si concentration was almost unaffected by the latitude over all seasons, the Si flux systematically

  20. 2012 Oregon Department of Interior, Bureau of Land Management (BLM) Lidar: Panther Creek Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Oregon Department of Interior, Bureau of Land Management (BLM) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  1. Monitoring leaf area index at watershed level through NDVI from Landsat-7/ETM+ data

    Directory of Open Access Journals (Sweden)

    Xavier Alexandre Cândido

    2004-01-01

    Full Text Available Leaf area index (LAI is an important parameter of the vegetation canopy, and is used, for instance, to estimate evapotranspiration, an important component of the hydrological cycle. This work analyzed the relationship between LAI, measured in field, and NDVI from four dates (derived from Landsat-7/ETM+ data, and with such vegetation index, to generate and analyze LAI maps of the study area for the diverse dates. LAI data were collected monthly in the field with LAI-2000 equipment in stands of sugar cane, pasture, corn, eucalypt, and riparian forest. The relationships between LAI and NDVI were adjusted by a potential model; 57% to 72% of the NDVI variance were explained by the LAI. LAI maps generated by empirical relationships between LAI and NDVI showed reasonable precision (standard error of LAI estimate ranged from 0.42 to 0.87 m² m-2. The mean LAI value of each monthly LAI map was shown to be related to the total precipitation in the three previous months.

  2. Geospatial tool-based morphometric analysis using SRTM data in Sarabanga Watershed, Cauvery River, Salem district, Tamil Nadu, India

    Science.gov (United States)

    Arulbalaji, P.; Gurugnanam, B.

    2017-02-01

    A morphometric analysis of Sarabanga watershed in Salem district has been chosen for the present study. Geospatial tools, such as remote sensing and GIS, are utilized for the extraction of river basin and its drainage networks. The Shuttle Radar Topographic Mission (SRTM-30 m resolution) data have been used for morphometric analysis and evaluating various morphometric parameters. The morphometric parameters of Sarabanga watershed have been analyzed and evaluated by pioneer methods, such as Horton and Strahler. The dendritic type of drainage pattern is draining the Sarabanga watershed, which indicates that lithology and gentle slope category is controlling the study area. The Sarabanga watershed is covered an area of 1208 km2. The slope of the watershed is various from 10 to 40% and which is controlled by lithology of the watershed. The bifurcation ratio ranges from 3 to 4.66 indicating the influence of geological structure and suffered more structural disturbances. The form factor indicates elongated shape of the study area. The total stream length and area of watershed indicate that mean annual rainfall runoff is relatively moderate. The basin relief expressed that watershed has relatively high denudation rates. The drainage density of the watershed is low indicating that infiltration is more dominant. The ruggedness number shows the peak discharges that are likely to be relatively higher. The present study is very useful to plan the watershed management.

  3. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.

    Science.gov (United States)

    Liu, Yaoze; Bralts, Vincent F; Engel, Bernard A

    2015-04-01

    The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales.

  4. Beyond formal groups: neighboring acts and watershed protection in Appalachia

    Directory of Open Access Journals (Sweden)

    Heather Lukacs

    2016-09-01

    Full Text Available This paper explores how watershed organizations in Appalachia have persisted in addressing water quality issues in areas with a history of coal mining. We identified two watershed groups that have taken responsibility for restoring local creeks that were previously highly degraded and sporadically managed. These watershed groups represent cases of self-organized commons governance in resource-rich, economically poor Appalachian communities. We describe the extent and characteristics of links between watershed group volunteers and watershed residents who are not group members. Through surveys, participant observation, and key-informant consultation, we found that neighbors – group members as well as non-group-members – supported the group's function through informal neighboring acts. Past research has shown that local commons governance institutions benefit from being nested in supportive external structures. We found that the persistence and success of community watershed organizations depends on the informal participation of local residents, affirming the necessity of looking beyond formal, organized groups to understand the resources, expertise, and information needed to address complex water pollution at the watershed level. Our findings augment the concept of nestedness in commons governance to include that of a formal organization acting as a neighbor that exchanges informal neighboring acts with local residents. In this way, we extend the concept of neighboring to include interactions between individuals and a group operating in the same geographic area.

  5. Management of Environmental Risks in Coastal Areas

    Science.gov (United States)

    Caprioli, M.; Trizzino, R.; Pagliarulo, R.; Scarano, M.; Mazzone, F.; Scognamiglio, A.

    2015-08-01

    The present work deals with the assessment and management of environmental risk conditions in a typical costal area of Southern Italy. This area, located in the Salento peninsula, is subject to recurrent widespread instability phenomena due to the presence of steep rocky cliffs. Along the coast there are numerous beach resorts that are very crowded in the summer season. The environmental hazard deriving from the possible rock falls is unacceptably high for the people safety. Moreover, the land-based mapping of the dangerous natural structures is very difficult and time and resources expending. In this context, we carried out an UAV survey along about 1 km of coast, near the towns of San Foca, Torre dell'Orso and Sant' Andrea ( Lecce, Southern Italy). The UAV platform was equipped with a photogrammetric measurement system that allowed us to obtain a mobile mapping of the fractured fronts of dangerous rocky cliffs. UAV-images data have been processed using dedicated software (Agisoft Photoscan). The total error obtained was of centimeter-order that is a very satisfactory result. The environmental information has been arranged in an ArcGIS platform in order to assess the risk levels. The possibility to repeat the survey at time intervals more or less close together depending on the measured levels of risk and to compare the output allows following the trend of the dangerous phenomena. In conclusion, for inaccessible locations of dangerous rocky bodies the UAV survey coupled with a GIS methodology proved to be a key engineering tool for the management of environmental risks.

  6. Participatory research using coir geotextiles in watershed management A case study in south India

    Science.gov (United States)

    Vishnudas, Subha; Savenije, Hubert H. G.; van der Zaag, Pieter; Anil, Kunnathu R.; Balan, Krishnan

    This paper deals with participatory research on the introduction and use of coir geotextiles for soil and water conservation in a small community pond in a watershed in south India. The results demonstrate that a participatory approach enables the community to visualize and evaluate the impact of innovative technologies. As a result, farmers readily adapt a technology when they have experienced the positive research outcome. This reduces the adoption time, and can bring significant increase in yield, or decrease in labour costs, helping to enhance productivity, sustainability and improvement of livelihood.

  7. Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers

    Science.gov (United States)

    Pokrovsky, O. S.; Manasypov, R. M.; Loiko, S.; Shirokova, L. S.; Krivtzov, I. A.; Pokrovsky, B. G.; Kolesnichenko, L. G.; Kopysov, S. G.; Zemtzov, V. A.; Kulizhsky, S. P.; Vorobiev, S. N.; Kirpotin, S. N.

    2015-07-01

    Analysis of dissolved organic and inorganic carbon (DOC and DIC, respectively), pH, Na, K, Ca, Mg, Cl, SO4 and Si in ~ 100 large and small rivers ( 10 000 km2. This suggested that in addition to groundwater feeding of the river, there was a significant role of surface and shallow subsurface flow linked to plant litter degradation and peat leaching. Environmental factors are ranked by their increasing effect on DOC, DIC, δ13CDIC, and major elements in western Siberian rivers as the following: watershed area water flow path (deep vs. surface) but has to be considered in the context of different climate, plant biomass productivity, unfrozen peat thickness and peat chemical composition. It can be anticipated that, under climate warming in western Siberia, the maximal change will occur in small (ionic composition, and this change will be mostly pronounced in summer and autumn. The wintertime concentrations and spring flood fluxes and concentrations are unlikely to be appreciably affected by the change of the active layer depth and terrestrial biomass productivity. Assuming a conservative precipitation scenario and rising temperature over next few centuries, the annual fluxes of DOC and K in the discontinuous permafrost zone may see a maximum increase by a factor of 2, whereas for DIC and Mg, this increase may achieve a factor of 3. The fluxes of Ca and TDSc may increase by a factor of 5. At the same time, Si fluxes will either remain constant or decrease two-fold in the permafrost-bearing zone relative to the permafrost-free zone of western Siberia.

  8. Perceiving Patagonia: An Assessment of Social Values and Perspectives Regarding Watershed Ecosystem Services and Management in Southern South America

    Science.gov (United States)

    Zagarola, Jean-Paul A.; Anderson, Christopher B.; Veteto, James R.

    2014-04-01

    Research on human dimensions of ecosystems through the ecosystem services (ES) concept has proliferated over recent decades but has largely focused on monetary value of ecosystems while excluding other community-based values. We conducted 312 surveys of general community members and regional researchers and decision-makers (specialists) to understand local perceptions and values of watershed ES and natural resource management in South America's southern Patagonian ecoregion. Results indicated that specialists shared many similar values of ES with community members, but at the same time their mentalities did not capture the diversity of values that existed within the broader community. The supporting services were most highly valued by both groups, but generally poorly understood by the community. Many services that are not easily captured in monetary terms, particularly cultural services, were highly valued by community members and specialists. Both groups perceived a lack of communication and access to basic scientific information in current management approaches and differed slightly in their perspective on potential threats to ES. We recommend that a community-based approach be integrated into the natural resource management framework that better embodies the diversity of values that exist in these communities, while enhancing the science-society dialog and thereby encouraging the application of multiple forms of ecological knowledge in place-based environmental management.

  9. Buffalo Metropolitan Area, New York Water Resources Management. Interim Report on Feasibility of Flood Management. Appendices.

    Science.gov (United States)

    1983-07-01

    B17 Current Employment in the Buffalo Labor Area B-20 B18 Agricultural Earnings Projected Agricultural Earnings to 2030 B-21 B19 Agricultural Output...Orleans County. The political subdivisions of the watershed, in addition to clima - tological and hydrologic stations, are shown on Plate BI. Economic...York. Its highway network, large supply of skilled labor , access to raw materials, ample electric power, and ready access to markets in the northeast

  10. FISHERY MANAGEMENT IN THE DANUBE CATCHMENT AREA

    Directory of Open Access Journals (Sweden)

    Tomislav Treer

    1999-12-01

    Full Text Available There are three successive regions of the Danube, each of which has to deal with its own problems in fisheries. Sport fishing and ecological recontruction problem matters predominate in the upper flow. These problems also characterize the middle flow, where to a certain extent, commercial fishery is coming into view, while the lower flow has to deal with commercial fishery problems to full extent. The difference is not so much due to the morphometry as to the development and state of the economy of the countries in the river basin, their legislation on fishery and the manner in which the legislation is applied. Numerous dams of the upper flow of the Danube (29 in Germany, 9 in Austria, influence significantly the ichthyocenoses. An extreme example of that is Gabčikovo dam at the Slovak-Hungarian border where fish catch decreased to one fourth. In the lower segment of the Danube fish catch falls down to one third and is followed, by a drastically negative change of fish species composition. The records show that highly valued species as sturgeons, pike and tench are in drastic decline over the last few years. The changes were caused by physical barriers, like dams and weirs, by water pollution, by increasing concentration of nutrients and heavy metals, by poaching and by overexploitation. For all those alarming reasons, some legal interventions in commercial fishery must be undertaken. In the middle flow, where the Danube flows through Croatian territory, there have also been declining trends of bentivore and phytophyl species respectively. The law supports the coexistence of sport and commercial fishery in this area and although sport fishing should be given the advantage, commercial fishing should be rigorously supervised and allowed only when there is a naturally produced surplus. Because of fish migrations and political frontiers of Danube area, it is essential that the neighboring countries coordinate their efforts in managing fisheries

  11. DNR Watersheds - DNR Level 02 - HUC 04

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data consists of watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Level 02 Watersheds....

  12. Can Integrated Watershed Management Contribute to Improvement of Public Health? A Cross-Sectional Study from Hilly Tribal Villages in India

    Directory of Open Access Journals (Sweden)

    Sandeep S. Nerkar

    2015-02-01

    Full Text Available Tribal people living in hilly areas suffer from water scarcity in many parts of the world, including India. Water scarcity adversely impacts all aspects of life, including public health. Implementation of an Integrated Watershed Management Programme (IWMP can help solve the problems arising out of water scarcity in such areas. However, the knowledge about and views of the water scarcity sufferers on the public health implications of IWMP have not been well documented. This cross-sectional study was performed in six purposively selected tribal villages located in Maharashtra, India. In three of the villages IWMP had been implemented (IWMV, but not in the other three (NWMV. The head of each household in all villages was interviewed using a questionnaire covering various public health aspects relevant to the villages. A total of 286/313 (92% households participated in the study. Compared to NWMV, respondents in IWMV experienced significantly lesser prolonged water scarcity (OR = 0.39, had greater number of toilets (OR = 6.95, cultivated more variety of crops (OR = 2.61, had lower migration (OR = 0.59, higher number of girls continuing education (OR = 3.04 and better utilized modern healthcare facilities in the antenatal, natal and postnatal period (OR = 3.75, 2.57, 4.88 respectively. Thus, tribal people in IWMP-implemented villages reported advantages in many aspects of public health.

  13. Can integrated watershed management contribute to improvement of public health? A cross-sectional study from hilly tribal villages in India.

    Science.gov (United States)

    Nerkar, Sandeep S; Pathak, Ashish; Lundborg, Cecilia Stålsby; Tamhankar, Ashok J

    2015-02-27

    Tribal people living in hilly areas suffer from water scarcity in many parts of the world, including India. Water scarcity adversely impacts all aspects of life, including public health. Implementation of an Integrated Watershed Management Programme (IWMP) can help solve the problems arising out of water scarcity in such areas. However, the knowledge about and views of the water scarcity sufferers on the public health implications of IWMP have not been well documented. This cross-sectional study was performed in six purposively selected tribal villages located in Maharashtra, India. In three of the villages IWMP had been implemented (IWMV), but not in the other three (NWMV). The head of each household in all villages was interviewed using a questionnaire covering various public health aspects relevant to the villages. A total of 286/313 (92%) households participated in the study. Compared to NWMV, respondents in IWMV experienced significantly lesser prolonged water scarcity (OR=0.39), had greater number of toilets (OR=6.95), cultivated more variety of crops (OR=2.61), had lower migration (OR=0.59), higher number of girls continuing education (OR=3.04) and better utilized modern healthcare facilities in the antenatal, natal and postnatal period (OR=3.75, 2.57, 4.88 respectively). Thus, tribal people in IWMP-implemented villages reported advantages in many aspects of public health.

  14. Wakarusa Watershed Inundation Areas

    Data.gov (United States)

    Kansas Data Access and Support Center — Dam breach analysis provides a prediction of the extent and timing of flooding from a catastrophic breach of the dams. These results are sufficient for developing...

  15. Watershed Boundary Areas

    Data.gov (United States)

    Department of Homeland Security — This map layer contains hydrologic unit boundaries and codes for the United States, Puerto Rico, and the U.S. Virgin Islands. It was revised for inclusion in the...

  16. Environmental Sensitive Areas (ESAs) changes in the Canyoles river watershed in Eastern Spain since the European Common Agriculture Policies (CAP) implementation

    Science.gov (United States)

    Ángel González Peñaloza, Félix; Cerdà, Artemi

    2014-05-01

    The Enviromental Sensitive Areas (ESAs) approach to study the Land Degradation is a methodology developed by professor Costas Kosmas et al., (1999) to map environmental sensitive areas and then the impact of Land Degradation and desertification on Mediterranean Type Ecosystems (Salvati et al., 2013). This methodology has been applied mainly to the Mediterranean Belt (Lavado Contador et al., 2009), but other authors adapted the methodology to other climatic regions (Izzo et al., 2013). The ESAs methodology allows mapping changes in the distribution of the sensitive areas to Desertification as a consequence of biophysical or human chances. In the Mediterranean countries of Europe, especially Spain, suffered a dramatic change due to the application of the European Common Agricultural Policies (CAP) after 1992. The objective of the CAP was to implemented policies to improve the environmental conditions of agricultural land. This target is especially relevant in Mediterranean areas of Spain, mainly the South and the East of the country. An Environmental Sensitive Area (ESAs) model (Kosmas et al., 2009) was implemented using Geographical Information System (GIS) tools, to identify, assess, monitor and map the levels of sensitivity to land degradation in the Canyoles river watershed, which is a representative landscape of the Mediterranean belt in Eastern Spain The results show that it was found that after the implementation of CAP, the most sensitive areas have expanded. This increase in degraded areas is driven by the expansion of commercial and chemically managed crops that increased the soil erosion (Cerdà et al., 2009) and that few soil conservation strategies were applied (Giménez Morera et al., 2010). Another factor that triggered Desertification processes is the increase in the recurrencesof forest fires as a consequence of land abandonment (Cerdà and Lasanta, 2005; Cerdà and Doerr, 2007). This contributed to an increase of scrubland. Our research show an

  17. Morphometric evaluation of Swarnrekha watershed, Madhya Pradesh, India: an integrated GIS-based approach

    Science.gov (United States)

    Banerjee, Abhishek; Singh, Prafull; Pratap, Kamleshwar

    2015-10-01

    The quantitative analysis of the watershed is vital to understand the hydrological setup of any terrain. The present study deals with quantitative evaluation of Swarnrekha Watershed, Madhya Pradesh, India based on IRS satellite data and SRTM DEM. Morphometric parameters of the watershed were evaluated by computations of linear and areal aspect using standard methodology in GIS environment. ARC GIS software was utilized for morphometric component analysis and delineation of the watershed using SRTM digital elevation model (DEM). The watershed is drained by a fifth-order river and shown a dendritic drainage pattern, which is a sign of the homogeneity in texture and lack of structural control. The drainage density in the area has been found to be low which indicates that the area possesses highly permeable soils and low relief. The bifurcation ratio varies from 3.00 to 5.60 and elongation ratio is 0.518 which reveals that the basin belongs to the elongated shape basin and has the potential for water management. The main objective of the paper is to extract the morphometric parameters of the watershed and their relevance in water resource evaluation management. The results observed from this work would be useful in categorization of watershed for future water management and selection recharge structure in the area.

  18. Reply to comment on “Suburban watershed nitrogen retention: Estimating the effectiveness of stormwater management structures” by Koch et al. (Elem Sci Anth 3:000063, July 2015

    Directory of Open Access Journals (Sweden)

    Benjamin J. Koch

    2015-12-01

    Full Text Available Abstract We reply to a comment on our recent structured expert judgment analysis of stormwater nitrogen retention in suburban watersheds. Low relief, permeable soils, a dynamic stream channel, and subsurface flows characterize many lowland Coastal Plain watersheds. These features result in unique catchment hydrology, limit the precision of streamflow measurements, and challenge the assumptions for calculating runoff from rainfall and catchment area. We reiterate that the paucity of high-resolution nitrogen loading data for Chesapeake Bay watersheds warrants greater investment in long-term empirical studies of suburban watershed nutrient budgets for this region.

  19. Community-based shared values as a 'Heart-ware' driver for integrated watershed management: Japan-Malaysia policy learning perspective

    Science.gov (United States)

    Mohamad, Zeeda Fatimah; Nasaruddin, Affan; Abd Kadir, Siti Norasiah; Musa, Mohd Noor; Ong, Benjamin; Sakai, Nobumitsu

    2015-11-01

    This paper explores the case for using "community-based shared values" as a potential driver for the "Heartware" aspects of governance in Integrated Watershed Management (IWM) - from a Japan-Malaysia policy learning perspective. This policy approach was originally inspired by the Japanese experience, and the paper investigates whether a similar strategy can be adapted in the Malaysian context-based on a qualitative exploratory case study of a local downstream watershed community. The community-based shared values are categorized into six functional values that can be placed on a watershed: industry, ecosystem, lifestyle, landscape, water resource and spirituality. The study confirmed the availability of a range of community-based shared values in each category that are promising to drive the heartware for integrated watershed management in the local Malaysian context. However, most of these shared values are either declining in its appreciation or nostalgic in nature. The paper ends with findings on key differences and similarities between the Malaysian and Japanese contexts, and concludes with lessons for international transfer of IWM heartware policy strategies between the two countries.

  20. Narrative Report : Stillwater Wildlife Management Area : September - December 1949

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report details the conditions and management of Stillwater Wildlife Management Area from September through December of 1949. The report begins with...

  1. Narrative Report : Stillwater Wildlife Management Area : September-December 1955

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report details the conditions and management of Stillwater Wildlife Management Area from September through December of 1955. The report begins with...

  2. Narrative Report : Stillwater Wildlife Management Area : May-August 1955

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report details the conditions and management of Stillwater Wildlife Management Area from May through August of 1955. The report begins with general...

  3. Narrative Report : Stillwater Wildlife Management Area : May - August 1949

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report details the conditions and management of Stillwater Wildlife Management Area from May through August of 1949. The report begins with general...

  4. Narrative Report : Stillwater Wildlife Management Area : January-April 1955

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report details the conditions and management of Stillwater Wildlife Management Area from January through April of 1955. The report begins with general...

  5. Narrative Report : Stillwater Wildlife Management Area : January-April 1954

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report details the conditions and management of Stillwater Wildlife Management Area from January through April of 1954. The report begins with general...

  6. Narrative Report : Stillwater Wildlife Management Area : May-August 1954

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report details the conditions and management of Stillwater Wildlife Management Area from May through August of 1954. The report begins with general...

  7. Narrative Report : Stillwater Wildlife Management Area : January - April, 1949

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report details the conditions and management of Stillwater Wildlife Management Area from January through April of 1949. The report begins with general...

  8. Narrative Report : Stillwater Wildlife Management Area : September-December 1954

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report details the conditions and management of Stillwater Wildlife Management Area from September through December of 1954. The report begins with...

  9. Evaluating Landsat 8 Satellite Sensor Data for Improved Vegetation Mapping Accuracy of the New Hampshire Coastal Watershed Area

    Science.gov (United States)

    Ledoux, Lindsay

    Remote sensing is a technology that has been used for many years to generate land cover maps. These maps provide insight as to the landscape, and features that are on the ground. One way in which this is useful is through the visualization of forest cover types. The forests of New England have been notoriously difficult to map, due to their high complexity and fine-scale heterogeneity. In order to be able to better map these features, the newest satellite imagery available may be the best technology to use. Landsat 8 is the newest satellite created by a team of scientists and engineers from the United States Geological Survey and the National Aeronautics and Space Administration, and was launched in February of 2013. The Landsat 8 satellite sensor is considered an improvement over previous Landsat sensors, as it has three additional bands: (1) a coastal/ aerosol band, band 1, that senses light in deep blue, (2) a cirrus band, band 9, that provides detection of wispy clouds that may interfere with analysis, and (3) a Quality Assessment band whose bits contain information regarding conditions that may affect the quality and applicability of certain image pixels. In addition to these added bands, the data generated by Landsat 8 are delivered at an increased radiometric resolution compared with previous Landsat sensors, increasing the dynamic range of the data the sensor can retrieve. In order to investigate the satellite sensor data, a novel approach to classifying Landsat 8 imagery was used. Object-Based Image Analysis was employed, along with the random forest machine learning classifier, to segment and classify the land cover of the Coastal Watershed of southeastern New Hampshire. In order to account strictly for band improvements, supervised classification using the maximum likelihood classifier was completed, on imagery created: (1) using all of the original bands provided by Landsat 8, and (2) an image created using Landsat 8 bands that were only available on

  10. The Use of LiDAR Elevation Data and Satellite Imagery to Locate Critical Source Areas to Diffuse Pollution in Agricultural Watersheds

    Science.gov (United States)

    Drouin, Ariane; Michaud, Aubert; Thériault, Georges; Beaudin, Isabelle; Rodrigue, Jean-François; Denault, Jean-Thomas; Desjardins, Jacques; Côté, Noémi

    2013-04-01

    In Quebec / Canada, water quality improvement in rural areas greatly depends on the reduction of diffuse pollution. Indeed, point source pollution has been reduced significantly in Canada in recent years by creating circumscribed pits for manure and removing animals from stream. Diffuse pollution differs from point source pollution because it is spread over large areas. In agricultural areas, sediment loss by soil and riverbank erosion along with loss of nutrients (phosphorus, nitrogen, etc.) and pesticides from fields represent the main source of non-point source pollution. The factor mainly responsible for diffuse pollution in agricultural areas is surface runoff occurring in poorly drained areas in fields. The presence of these poorly drained areas is also one of the most limiting factors in crop productivity. Thus, a reconciliation of objectives at the farm (financial concern for farmers) and off-farm concerns (environmental concern) is possible. In short, drainage, runoff, erosion, water quality and crop production are all interconnected issues that need to be tackled together. Two complementary data sources are mainly used in the diagnosis of drainage, surface runoff and erosion : elevation data and multispectral satellite images. In this study of two watersheds located in Québec (Canada), LiDAR elevation data and satellite imagery (QuickBird, Spot and Landsat) were acquired. The studied territories have been partitioned in hydrologic response units (HRUs) according to sub-basins, soils, elevation (topographic index) and land use. These HRUs are afterwards used in a P index software (P-Edit) that calculates the quantities of sediments and phosphorus exported from each HRUs. These exports of sediments and phosphorus are validated with hydrometric and water quality data obtain in two sub-basins and are also compared to soil brightness index derived from multispectral images. This index is sensitive to soil moisture and thus highlights areas where the soil is

  11. Nulhegan Deer Wintering Area Management Plan 1994

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Within the Nulhegan basin lies the Nulhegan Deer Wintering Area, an approximately 15,000-acre tract of land. In addition to being the largest deer wintering area in...

  12. 2002 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    Y. E. Townsend

    2003-06-01

    Environmental, subsidence, and meteorological monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS)(refer to Figure 1). These monitoring data include radiation exposure, air, groundwater,meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorological data indicate that 2002 was a dry year: rainfall totaled 26 mm (1.0 in) at the Area 3 RWMS and 38 mm (1.5 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2002 rainfall infiltrated less than 30 cm (1 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. Special investigations conducted in 2002 included: a comparison between waste cover water contents measured by neutron probe and coring; and a comparison of four methods for measuring radon concentrations in air. All 2002 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility Performance Assessments (PAs).

  13. Artificial neural networks applied to flow prediction scenarios in Tomebamba River - Paute watershed, for flood and water quality control and management at City of Cuenca Ecuador

    Science.gov (United States)

    Cisneros, Felipe; Veintimilla, Jaime

    2013-04-01

    The main aim of this research is to create a model of Artificial Neural Networks (ANN) that allows predicting the flow in Tomebamba River both, at real time and in a certain day of year. As inputs we are using information of rainfall and flow of the stations along of the river. This information is organized in scenarios and each scenario is prepared to a specific area. The information is acquired from the hydrological stations placed in the watershed using an electronic system developed at real time and it supports any kind or brands of this type of sensors. The prediction works very good three days in advance This research includes two ANN models: Back propagation and a hybrid model between back propagation and OWO-HWO. These last two models have been tested in a preliminary research. To validate the results we are using some error indicators such as: MSE, RMSE, EF, CD and BIAS. The results of this research reached high levels of reliability and the level of error are minimal. These predictions are useful for flood and water quality control and management at City of Cuenca Ecuador

  14. Determining Watershed Management Efficacy in West Maui: Belt transect surveys of coral demography (adult and juvenile corals) from 2014-06-29 to 2015-12-01 (NCEI Accession 0137092)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  15. Determining Watershed Management Efficacy in West Maui: line-point-intercept and photo quadrat surveys of benthic communities for benthic cover from 2014-06-24 to 2015-07-31 (NCEI Accession 0138585)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The focus of the Wahikuli-Honokowai Watershed Management Plan is the land use practices and alterations affected in the agricultural and urban districts that have...

  16. Design of Water Discharge of Medewi Watershed Using Avswat Model

    Science.gov (United States)

    Pramana, Y. H.; Purwanto, B. P.

    2013-12-01

    Medewi watersheds is located in the southern of Bali Island and its estuary is located in Medewi Beach at Kabupaten Jembrana. The exact location of Medewi watersheds is between Desa Medewi and Desa Pulukan, Kecamatan Pekutatan, Kabupaten Jembrana. The watersheds itself, due to its strategic location is used as a territorial border between the two villages. Geographically, Medewi watersheds is between 114o48'00' - 114o50'00' east longitude and 08o20'00' - 08o26,5'00' south latitude. The main river of Medewi Watersheds is 25,64 km long and is classified as a continuous river, the width of the watersheds itself is measured 128,2 km2. Medewi watersheds have two tributaries which is Medaan watersheds and Pangliman watersheds, both watersheds' heads are located in Medewi Beach. Medewi watersheds is often flooded and brings heavy toll to its surrounding areas and citizen. Therefore, there is an urgent need to perform engineering techniques to overcome the aforementioned problem. However, there is a slight issue in the definition of water discharge plan in the location. The water discharge plan, which is used as a basis to prevent flooding, is often inaccurate. That is the reason why it is needed to build a model in order to accurately find out the amount of water discharge in the study location. Medewi watersheds' area usage is as follow: bushes (9,44%), forestation (77,10%), farm (7,76%), settlement (2,15%), irrigation field (1,64%), rainfed field (1,88%) and crops field (0,48%). The result of our modeling using ASVAT shows that the maximum water discharge is 149,9 m3/sec. The discharge is calibrated with the available water discharge data log. According to AWLR data, it is known that the largest discharge occurred on June 2nd, 2009 and measured at 147,9 m3/sec. Our conclusion is that the model used in this study managed to approach the field result with minimum error.

  17. Assessment and modelling of the influence of man-made networks on the hydrology of a small watershed: implications for fast flow components, water quality and landscape management

    Science.gov (United States)

    Carluer, Nadia; Marsily, Ghislain De

    2004-01-01

    Up to now, most watershed models have been focused on the representation of 'natural' flow and transport processes. In this paper, we discuss the role of man-made networks, such as ditches, roads, hedge rows and hedges, underground drainage by buried pipes, etc. The influence of such features on the hydrology of a watershed may be of particular importance if the aim of the modelling is to predict the effect of landscape management or the fate of contaminants, e.g. pesticides, when a rain event occurs very soon after their spreading on the soil surface. It is likely that such artificial networks may act as conduits or short-circuits for the transport of contaminants, either dissolved or sorbed on soil particles, by-passing some of the retardation mechanisms such as sorption in the soil, retention of surface runoff by grass verges, biodegradation in the unsaturated zone, etc. We first present a small watershed on which the study was conducted, the Kervidy, which is a 5 km 2 'bocage ' catchment in Brittany, France. The man-made networks were observed and their extent and functioning described. We then included the potential hydraulic role of these networks in a distributed watershed model (TOPOG, [J. Hydrol. 150 (1993) 665]). This modified model, ANTHROPOG, was run, for comparison, with and without the man-made network; sensitivity tests were also made to assess the hydrologic importance of these networks. It was shown that they can have a very significant effect on the functioning of a watershed. We conclude on the relevance of the improved distributed model for the management of rural landscapes, and on the type of additional data needed to calibrate the model with parameters representative of the true processes. Bocage is a landscape with grassland, hedges, and occasional trees—often apple trees—typical of Brittany and Normandy.

  18. US Forest Service Special Interest Management Areas

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www that depicts National Forest System land parcels that have management or use limits placed on them by the Forest Service. Examples include:...

  19. PENSIONS MANAGEMENT IN THE RURAL AREAS

    Directory of Open Access Journals (Sweden)

    Angela BOTEZATU

    2015-04-01

    Full Text Available Local boarding houses tourism has found its best expression represented by tourist areas, because the natural landscapes and authentic rural customs already exist and thrive. Rural tourism and tourism business initiation at the hostel comes with solutions for rural development. Moreover, the rural areas represent about 92% of the total area of the country. In this context, the author comes to treat the aspects of tourism activities in rural areas in this article, focusing on practical research in the field. There are described pensions performance factors, complexity of administrator's functions from pension, the importance of cooperation and the networking in the field and examples of good practice.

  20. Soil quality index comparisons using Fort Cobb Oklahoma watershed-scale land management data

    Science.gov (United States)

    The Soil Conditioning Index (SCI) and Soil Management Assessment Framework (SMAF) are two different but complementary methods for evaluating soil management effects on soil quality. Although both tools have been widely used, little is known regarding how they compare to one another and if they produ...

  1. Management effectiveness evaluation in protected areas of southern Ecuador.

    Science.gov (United States)

    López-Rodríguez, Fausto; Rosado, Daniel

    2017-04-01

    Protected areas are home to biodiversity, habitats and ecosystem as well as a critical component of human well-being and a generator of leisure-related revenues. However, management is sometimes unsatisfactory and requires new ways of evaluation. Management effectiveness of 36 protected areas in southern Ecuador have been assessed. The protected areas belong to three categories: Heritage of Natural Areas of the Ecuadorian State (PANE), created and funded by the State, Areas of Forest and Protective Vegetation (ABVP), created but no funded by the State, and private reserves, declared and funded by private entities. Management effectiveness was evaluated by answers of managers of the protected areas to questionnaires adapted to the socio-economic and environmental characteristics of the region. Questions were classified into six elements of evaluation: context, planning, inputs, processes, outputs and outcomes as recommended by IUCN. Results were classified into four levels: unsatisfactory, slightly satisfactory, satisfactory and very satisfactory. The PANE areas and private reserves showed higher management effectiveness levels (satisfactory and very satisfactory) than ABVP areas, where slightly satisfactory and unsatisfactory levels prevailed. Resources availability was found as the main reason behind this difference. The extension, age and province of location were found irrelevant. Outputs, inputs and processes require main efforts to improve management effectiveness. Improving planning and input in the PANE areas and inputs and outcomes on ABVP areas is necessary to obtain a similar result in all areas.

  2. Watershed Fact Sheet: Improving Utah's Water Quality, Upper Bear River Watershed

    OpenAIRE

    2012-01-01

    The Upper Watershed of the Bear River Basin extends from the river's headwaters to Pixley Dam in Wyoming. This is the largest watershed in the Bear River Basin, with an area of about 2,000 square miles.

  3. Effect of cropland management and slope position on soil organic carbon pool at the North Appalachian Experimental Watersheds

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Yueli; Lal, Rattan; Owens, Lloyd; Izaurralde, R Cesar C.; Post, W M.; Hothem, Daniel

    2002-12-01

    Soil organic matter is strongly related to soil type, landscape morphology, and soil and crop management practices. Therefore, long-term (15-36-years) effects of six cropland management systems on soil organic carbon (SOC) pool in 0-30 cm depth were studied for the period of 1939-1999 at the North Appalachian Experimental Watersheds (<3 ha, Dystric Cambisol, Haplic Luvisol, and Haplic Alisol) near Coshocton, OH, USA. Six management treatments were: (1) no tillage continuous corn with NPK (NC); (2) no tillage continuous corn with NPK and manure (NTC-M); (3) no tillage corn?soybean rotation (NTR); (4) chisel tillage corn?soybean rotation (CTR); (5) moldboard tillage with corn?wheat?meadow?meadow rotation with improved practices (MTR-I); (6) moldboard tillage with corn?wheat?meadow?meadow rotation with prevalent practices (MTR-P). The SOC pool ranged from 24.5Mgha?1 in the 32-years moldboard tillage corn (Zea mays L.)?wheat (Triticum aestivum L.)?meadow?meadow rotation with straight row farming and annual application of fertilizer (N:P:K = 5:9:17) of 56?112 kg ha?1 and cattle (Bos taurus) manure of 9Mg ha?1 as the prevalent system (MTR-P) to 65.5Mgha?1 in the 36-years no tillage continuous corn with contour row farming and annual application of 170?225 kgNha?1 and appropriate amounts of P and K, and 6?11Mgha?1 of cattle manure as the improved system (NTC-M).

  4. Effects of climate and land management change on streamflow in the driftless area of Wisconsin

    Science.gov (United States)

    Juckem, P.F.; Hunt, R.J.; Anderson, M.P.; Robertson, D.M.

    2008-01-01

    Baseflow and precipitation in the Kickapoo River Watershed, located in the Driftless Area of Wisconsin, exhibit a step increase around 1970, similar to minimum and median flows in many other central and eastern USA streams. Potential effects on streamflow due to climatic and land management changes were evaluated by comparing volumetric changes in the hydrologic budget before and after 1970. Increases in precipitation do not fully account for the increase in baseflow, which appears to be offset by a volumetric decrease in stormflow. This suggests that factors that influence the partitioning of precipitation into overland runoff or infiltration have changed. A transition from relatively more intensive to relatively less intensive agricultural land use is generally associated with higher infiltration rates, and likely influences partitioning of flow. Changes in agricultural land management practices in the Driftless Area, which began in the mid-1930s, do not coincide with the abrupt increase in baseflow around 1970. Instead, the timing of hydrologic change appears to coincide with changes in precipitation, whereas the magnitude of the change in baseflow and stormflow was likely amplified by changes in agricultural land management. ?? 2008 Elsevier B.V. All rights reserved.

  5. Restore McComas Meadows; Meadow Creek Watershed, 2005-2006 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McRoberts, Heidi (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2006-07-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads to reduce sediment input. During this contract period work was completed on two culvert replacement projects; Doe Creek and a tributary to Meadow Creek. Additionally construction was also completed for the ditch restoration project within McComas Meadows. Monitoring for project effectiveness and trends in watershed conditions was also completed. Road decommissioning monitoring, as well as stream temperature, sediment, and discharge were completed.

  6. Columbia River ESI: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive human-use data for Wildlife Refuges, National Forests, and State Parks for the Columbia River area. Vector polygons in this data set...

  7. Adaptive flood risk management in urban areas

    NARCIS (Netherlands)

    Mees, H.L.P.; Driessen, P.P.J.; Runhaar, H.A.C.

    2012-01-01

    In recent times a shift has occurred from traditional flood management focused on the prevention of flooding (reduction of the probability) only, to more adaptive strategies focused on the reduction of the impacts of floods as a means to improve the resilience of occupied flood plains to increased r

  8. Decision Making for Natural Resources and Watershed Management: Current Thinking and Approaches

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document overviews representative research related to natural resources andwatershed management, and gives directions to readers regarding publicly available...

  9. 流域管理决策支持系统研究进展%Decision support system for watershed management: A review

    Institute of Scientific and Technical Information of China (English)

    曹宇; 颜晶

    2012-01-01

    Watershed management decision support system ( DSS) is an intellectual system developed for the optimal allocation of water resources by watershed managers, and the simulation results of the system can directly affect the scientificity and practicability of watershed management. This paper summarized the related researches from the aspects of water quantity simulation and deployment systems, water quality monitoring and evaluation systems, and integrated watershed management systems. The main features and problems in existing DSS were analyzed, and the model structure and development status of the representative systems such as AQUA-Tool, Elbe-DSS, and HD were introduced. It was suggested that the accuracy and stability of simulated results, the succinctness of working process, and the high degree of user visualization would be the focuses in developing the DSS in the future, and the optimization of program-selecting models and 3D visualization tools, the research and development of inter-basin integrated management DSS, and the improvement of stakeholder participation would be the development trend for the future watershed management DSS.%流域管理决策支持系统是为帮助流域管理者实现水资源优化配置而研发的智能系统,其模拟结果直接影响流域管理的科学性和实用性.本文从水量模拟和调配系统、水质监测和评价系统、流域综合管理系统三方面总结了国内外的相关研究,并分析了现存系统的特点和存在的问题,同时简要介绍AQUA-Tool、Elbe-DSS、HD等代表性系统的模型结构和发展现状.模拟结果精确稳定、工作流程简洁、用户可视化程度高是流域管理决策支持系统的研发重点,优化方案选择模型和三维可视化工具、研发跨流域综合管理系统、提高利益相关者的参与度是未来该领域的发展方向.

  10. Incorporating green-area user groups in urban ecosystem management.

    Science.gov (United States)

    Colding, Johan; Lundberg, Jakob; Folke, Carl

    2006-08-01

    We analyze the role of urban green areas managed by local user groups in their potential for supporting biodiversity and ecosystem services in growing city-regions, with focus on allotment areas, domestic gardens, and golf courses. Using Stockholm, Sweden, as an example cityregion, we compile GIS data of its spatial characteristics and relate these data to GIS data for protected areas and "green wedges" prioritized in biodiversity conservation. Results reveal that the three land uses cover 18% of the studied land area of metropolitan Stockholm, which corresponds to more than twice the land set aside as protected areas. We review the literature to identify ecosystem functions and services provided by the three green areas and discuss their potential in urban ecosystem management. We conclude that the incorporation of locally managed lands, and their stewards and institutions, into comanagement designs holds potential for improving conditions for urban biodiversity, reducing transaction costs in ecosystem management, and realizing local Agenda 21.

  11. Watershed District

    Data.gov (United States)

    Kansas Data Access and Support Center — Boundaries show on this map are derived from legal descriptions contained in petitions to the Kansas Secretary of State for the creation or extension of watershed...

  12. Watershed Investigations

    Science.gov (United States)

    Bodzin, Alec; Shive, Louise

    2004-01-01

    Investigating local watersheds presents middle school students with authentic opportunities to engage in inquiry and address questions about their immediate environment. Investigation activities promote learning in an investigations interdisciplinary context as students explore relationships among chemical, biological, physical, geological, and…

  13. Clear Creek Watershed Flood Risk Management Habitat Assessments Using Habitat Evaluation Procedures (HEP): Analyses, Results and Documentation

    Science.gov (United States)

    2013-07-01

    There are an additional 16 cities that are at least partially within the watershed including Pearland, Friendswood, and League City. Clear Creek...LULC) classes present in the Clear Creek watershed.1 Landuse/Landcover Characterization of the Clear Creek Watershed Legend Clear Creek and...br KAIIr A. _, 1A El\\DC𔃻 EA"’""""’uJ !Abono- lor clio tiSACt-DoalDCn Cltu Ct"k Floo4 IU&k Rt4JCOODI!..-,_ Pro!oa tnMq:OOS Legend Cover Types

  14. Air quality management in Riga area

    Energy Technology Data Exchange (ETDEWEB)

    Leitass, A. [Riga City Council (Latvia). Air Monitoring Dept.

    1995-12-31

    The present Air Quality Management System was started in 1992 as a result of co-operation between two cities - Riga and Norrkoping (Sweden) supported by BITS (The Swedish Agency for International Technical and Economic Co-operation). Lots of Swedish companies were involved in different parts of this project. The strategy is designed by INDIC company developing the AIRVIRO which is a computer based system for all aspects of air quality management. Air pollution in Riga is a serious problem affecting health and damaging valuable buildings of historic value. The majority of the city`s air pollution is the result of emission sources inside the city. The traffic is the predominant source of pollution now. The fossil fuel power stations in the country are not considered to affect the air quality situation in Riga. (author)

  15. Stillwater Wildlife Management Area Annual Water Management Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan summarizes last years planned water management program and actual CY 1983 water events. A more detailed summary is available in the CY 1983 Annual Water...

  16. Stillwater Wildlife Management Area : Grasslands Management Plan : North Marsh Unit

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan is designed to serve as the initial Fish and Wildlife Service habitat management proposal for the North Marsh grazing unit of Stillwater National Wildlife...

  17. The response of hydrophobic organics and potential toxicity in streams to urbanization of watersheds in six metropolitan areas of the United States

    Science.gov (United States)

    Bryant, W.L.; Goodbred, S.L.

    2009-01-01

    Semipermeable membrane devices (SPMDs) were deployed in streams along a gradient of urban land-use intensity in and around six metropolitan areas: Atlanta, Georgia; Raleigh - Durham, North Carolina; and Denver - Fort Collins, Colorado, in 2003; and Dallas - Fort Worth, Texas; Milwaukee - Green Bay, Wisconsin; and Portland, Oregon, in 2004 to examine relations between percent urban land cover in watersheds and the occurrence, concentrations, and potential toxicity of hydrophobic compounds. Of the 142 endpoints measured in SPMD dialysates, 30 were significantly (alpha = 0.05) related to the percent of urban land cover in the watersheds in at least one metropolitan area. These 30 endpoints included the aggregated measures of the total number of compounds detected and relative toxicity (Microtox?? and P450RGS assays), in addition to the concentrations of 27 individual hydrophobic compounds. The number of compounds detected, P450RGS assay values, and the concentrations of pyrogenic polycyclic aromatic hydrocarbons (PAHs) were significantly related to percent urban land cover in all six metropolitan areas. Pentachloroanisole, the most frequently detected compound, was significantly related to urban land cover in all metropolitan areas except Dallas - Fort Worth. Petrogenic PAHs and dibenzofurans were positively related to percent urban land cover in Atlanta, Raleigh - Durham, Denver, and Milwaukee - Green Bay. Results for other endpoints were much more variable. The number of endpoints significantly related to urban land cover ranged from 6 in Portland to 21 Raleigh-Durham. Based on differences in the number and suite of endpoints related to urban intensity, these results provide evidence of differences in factors governing source strength, transport, and/or fate of hydrophobic compounds in the six metropolitan areas studied. The most consistent and significant results were that bioavailable, aryl hydrocarbon receptor agonists increase in streams as basins become

  18. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  19. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  20. Assessing Changes in Impervious Area Using Land Use Maps of Different Resolution in the Croton NY City Water Supply Watershed

    Science.gov (United States)

    Somerlot, C.; Duncan, J.; Endreny, T.

    2001-05-01

    With the advance of remote sensing, options arise for the hydrologic modeler to access both public domain and privately contracted watershed land cover maps. Land use classification processes using aerial photographs are highly variable depending on tools and training, but distinction between impervious and pervious land cover is relatively simple. Hydrologic models will estimate different runoff timing, volume, and water quality depending on the percent imperviousness of the watershed. This research will examine how percent imperviousness varies with changes in both radiometric and spatial land cover map resolution. WinHSPF was run with four distinct land cover maps derived from remote imagery: MRLC (30 m), LULC (1 km), contracted aerial photos (1 m), and processed digital (1 M) ortho quarter quads. Comparisons were made between map percent impervious cover and runoff timing and volume. A modified export coefficient model that tracks pollutant discharge through down gradient filters examined how estimated nutrient loading changed with differences in these land cover map products. Methods are suggested for updating estimates of percent impervious cover in coarser resolution maps using field data or other means.

  1. 2011 Federal Emergency Management Agency (FEMA) Topographic Lidar: Concord River Watershed, Massachusetts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Concord AOI consists of one area. Ground Control is collected throughout the AOI for use in the processing of LiDAR data to ensure data accurately represents the...

  2. 2011 Federal Emergency Management Agency (FEMA) Topographic LiDAR: Quinnipiac River Watershed, Connecticut

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Quinnipiac AOI consists of one 443 square mile area. Ground Control is collected throughout the AOI for use in the processing of LiDAR data to ensure data...

  3. 2010 Federal Emergency Management Agency (FEMA) Topographic Lidar: Concord River Watershed, Massachusetts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Concord AOI consists of one area. Ground Control is collected throughout the AOI for use in the processing of LiDAR data to ensure data accurately represents the...

  4. Mapping benefits as a tool for natural resource management in estuarine watersheds

    Science.gov (United States)

    Natural resource managers are often called upon to justify the value of protecting or restoring natural capital based on its perceived benefit to stakeholders. This usually takes the form of formal valuation exercises (i.e., ancillary costs) of a resource without consideration f...

  5. Game theory and fuzzy programming approaches for bi-objective optimization of reservoir watershed management: a case study in Namazgah reservoir.

    Science.gov (United States)

    Üçler, N; Engin, G Onkal; Köçken, H G; Öncel, M S

    2015-05-01

    In this study, game theory and fuzzy programming approaches were used to balance economic and environmental impacts in the Namazgah reservoir, Turkey. The main goals identified were to maximize economic benefits of land use and to protect water quality of reservoir and land resources. Total phosphorous load (kg ha(-1) year(-1)) and economic income (USD ha(-1) year(-1)) from land use were determined as environmental value and economic value, respectively. The surface area of existing land use types, which are grouped under 10 headings according to the investigations on the watershed area, and the constraint values for the watershed were calculated using aerial photos, master plans, and basin slope map. The results of fuzzy programming approach were found to be very close to the results of the game theory model. It was concluded that the amount of fertilizer used in the current situation presents a danger to the reservoir and, therefore, unnecessary fertilizer use should be prevented. Additionally, nuts, fruit, and vegetable cultivation, instead of wheat and corn cultivation, was found to be more suitable due to their high economic income and low total phosphorus (TP) load. Apart from agricultural activities, livestock farming should also be considered in the area as a second source of income. It is believed that the results obtained in this study will help decision makers to identify possible problems of the watershed.

  6. Volcanic hazard management in dispersed volcanism areas

    Science.gov (United States)

    Marrero, Jose Manuel; Garcia, Alicia; Ortiz, Ramon

    2014-05-01

    Traditional volcanic hazard methodologies were developed mainly to deal with the big stratovolcanoes. In such type of volcanoes, the hazard map is an important tool for decision-makers not only during a volcanic crisis but also for territorial planning. According to the past and recent eruptions of a volcano, all possible volcanic hazards are modelled and included in the hazard map. Combining the hazard map with the Event Tree the impact area can be zoned and defining the likely eruptive scenarios that will be used during a real volcanic crisis. But in areas of disperse volcanism is very complex to apply the same volcanic hazard methodologies. The event tree do not take into account unknown vents, because the spatial concepts included in it are only related with the distance reached by volcanic hazards. The volcanic hazard simulation is also difficult because the vent scatter modifies the results. The volcanic susceptibility try to solve this problem, calculating the most likely areas to have an eruption, but the differences between low and large values obtained are often very small. In these conditions the traditional hazard map effectiveness could be questioned, making necessary a change in the concept of hazard map. Instead to delimit the potential impact areas, the hazard map should show the expected behaviour of the volcanic activity and how the differences in the landscape and internal geo-structures could condition such behaviour. This approach has been carried out in La Palma (Canary Islands), combining the concept of long-term hazard map with the short-term volcanic scenario to show the expected volcanic activity behaviour. The objective is the decision-makers understand how a volcanic crisis could be and what kind of mitigation measurement and strategy could be used.

  7. Healthy Watersheds Protection

    Science.gov (United States)

    Jump to main content US EPA United States Environmental Protection Agency Search Search Healthy Watersheds Protection (HWP) Share ... live in a watershed — thus watershed condition is important to everyone. Watersheds exist at different geographic scales, ...

  8. A model for simulating the response of runoff from the mountainous watersheds of inland river basins in the arid area of northwest China to climatic changes

    Institute of Scientific and Technical Information of China (English)

    康尔泗; 程国栋; 蓝永超; 金会军

    1999-01-01

    A model for simulating the response of monthly runoff from the mountainous watersheds to climatic changes is developed.The model is based on the modifications to the HBV runoff model, and therefore represents the characteristics and runoff generation processes of inland river basins in the arid area of northwest China. Taking the mountainous watershed of an inland river, the Heihe River originating from the Qilian Mountains and running through the Hexi Corridor as an example, the monthly runoff changes under different climate scenarios are simulated. The simulation indicates that, during the years from 1994 to 2030, if the annual mean air temperature increases by 0.5℃, and precipitation keeps unchanged, then the runoff of May and October will increase because of the increase of the snow melt runoff, but the runoff of July and August will decrease to some extent because of the increase of evaporation, and as a result, the annual runoff will decrease by 4%. If the precipitation still keeps unchanged, an

  9. Incorporating uncertainty into the ranking of SPARROW model nutrient yields from Mississippi/Atchafalaya River basin watersheds

    Science.gov (United States)

    Robertson, Dale M.; Schwarz, Gregory E.; Saad, David A.; Alexander, Richard B.

    2009-01-01

    Excessive loads of nutrients transported by tributary rivers have been linked to hypoxia in the Gulf of Mexico. Management efforts to reduce the hypoxic zone in the Gulf of Mexico and improve the water quality of rivers and streams could benefit from targeting nutrient reductions toward watersheds with the highest nutrient yields delivered to sensitive downstream waters. One challenge is that most conventional watershed modeling approaches (e.g., mechanistic models) used in these management decisions do not consider uncertainties in the predictions of nutrient yields and their downstream delivery. The increasing use of parameter estimation procedures to statistically estimate model coefficients, however, allows uncertainties in these predictions to be reliably estimated. Here, we use a robust bootstrapping procedure applied to the results of a previous application of the hybrid statistical/mechanistic watershed model SPARROW (Spatially Referenced Regression On Watershed attributes) to develop a statistically reliable method for identifying “high priority” areas for management, based on a probabilistic ranking of delivered nutrient yields from watersheds throughout a basin. The method is designed to be used by managers to prioritize watersheds where additional stream monitoring and evaluations of nutrient-reduction strategies could be undertaken. Our ranking procedure incorporates information on the confidence intervals of model predictions and the corresponding watershed rankings of the delivered nutrient yields. From this quantified uncertainty, we estimate the probability that individual watersheds are among a collection of watersheds that have the highest delivered nutrient yields. We illustrate the application of the procedure to 818 eight-digit Hydrologic Unit Code watersheds in the Mississippi/Atchafalaya River basin by identifying 150 watersheds having the highest delivered nutrient yields to the Gulf of Mexico. Highest delivered yields were from

  10. Wastewater Management Study for Cleveland-Akron Metropolitan and Three Rivers Watershed Areas. VIII. Public Involvement

    Science.gov (United States)

    1973-08-01

    4I County Commissioner SOURS , EDWARD J., County Commissioner, Sandusky County (j SPEECE, MELVIN & JUNE, Rt. $1, Attica, Ohio Teacher & Landmark, Inc...much concerned about your farm, and I am too, but I am also concerned in another , aspect of this thing. We’re spending an awful lot of dough ’r for

  11. SWAT: Agricultural water and nonpoint source pollution management at a watershed scale

    Science.gov (United States)

    Global change and demographic changes increasingly cause water, food, and health problems in many areas of the world. In addition, the growth in bioenergy production leads to land-use change and associated environmental impacts. The lack of integration in resource assessments and policy-making leads...

  12. Ecosystem health assessment of the Jinghe River Watershed on the Huangtu Plateau.

    Science.gov (United States)

    Suo, An-Ning; Xiong, You-Cai; Wang, Tian-Ming; Yue, Dong-Xia; Ge, Jian-Ping

    2008-06-01

    An improved Costanza model was developed to assess the health of the Jinhe River Watershed ecosystem. The watershed is located at the center of the Huangtu Plateau in China and has suffered a severe disturbance in the last few decades. Three indicators including vigor, organization, and resilience were calculated respectively by merging ground-based observations with remotely sensed data on a watershed scale. Health indices of 12 topographic sub-watersheds were calculated using a modified Costanza formula. Health evaluated results indicated that sub-watersheds in the Huangtu mountain region were relatively healthy ecosystems with scores over 0.673. The sub-watersheds in the loess mountain and the loess gully regions, e.g., Jinghe, Heihe, and Honghe regions, scored moderately; their evaluated value ranged from 0.505 to 0.606. The two sub-watersheds in the loess gully region and all sub-watersheds in the loess hilly region scored the lowest, less than 0.50 and were considered unhealthy ecosystems. It can be argued that the loess hilly region and the loess gully regions should be in primary consideration for ecological protection and rehabilitation. This study provided a possible quantitative model for ecological planning and landscape management with respect to topographic conditions in this area.

  13. Water and Poverty in Two Colombian Watersheds

    Directory of Open Access Journals (Sweden)

    Nancy Johnson

    2009-02-01

    Full Text Available Watersheds, especially in the developing world, are increasingly being managed for both environmental conservation and poverty alleviation. How complementary are these objectives? In the context of a watershed, the actual and potential linkages between land and water management and poverty are complex and likely to be very site specific and scale dependent. This study analyses the importance of watershed resources in the livelihoods of the poor in two watersheds in the Colombian Andes. Results of the participatory poverty assessment reveal significant decreases in poverty in both watersheds over the past 25 years, which was largely achieved by the diversification of livelihoods outside of agriculture. Water is an important resource for household welfare. However, opportunities for reducing poverty by increasing the quantity or quality of water available to the poor may be limited. While improved watershed management may have limited direct benefits in terms of poverty alleviation, there are important indirect linkages between watershed management and poverty, mainly through labour and service markets. The results suggest that at the level of the watershed the interests of the rich and the poor are not always in conflict over water. Sectoral as well as socio-economic differences define stakeholder groups in watershed management. The findings have implications for policymakers, planners and practitioners in various sectors involved in the implementation of integrated water resources management (IWRM.

  14. Integrating Collaboration, Adaptive Management, and Scenario-Planning: Experiences at Las Cienegas National Conservation Area

    Directory of Open Access Journals (Sweden)

    Jeremy K. Caves

    2013-09-01

    Full Text Available There is growing recognition that public lands cannot be managed as islands; rather, land management must address the ecological, social, and temporal complexity that often spans jurisdictions and traditional planning horizons. Collaborative decision making and adaptive management (CAM have been promoted as methods to reconcile competing societal demands and respond to complex ecosystem dynamics. We detail the experiences of land managers and stakeholders in using CAM at Las Cienegas National Conservation Area (LCNCA, a highly valued site under the jurisdiction of the Bureau of Land Management (BLM. The CAM process at Las Cienegas is marked by strong stakeholder engagement, with four core elements: (1 shared watershed goals with measurable resource objectives; (2 relevant and reliable scientific information; (3 mechanisms to incorporate new information into decision making; and (4 shared learning to improve both the process and management actions. The combination of stakeholder engagement and adaptive management has led to agreement on contentious issues, more innovative solutions, and more effective land management. However, the region is now experiencing rapid changes outside managers' control, including climate change, human population growth, and reduced federal budgets, with large but unpredictable impacts on natural resources. Although the CAM experience provides a strong foundation for making the difficult and contentious management decisions that such changes are likely to require, neither collaboration nor adaptive management provides a sufficient structure for addressing the externalities that drive uncontrollable and unpredictable change. As a result, LCNCA is exploring two specific modifications to CAM that may better address emerging challenges, including: (1 creating nested resource objectives to distinguish between those objectives that may be crucial to maintaining ecological resilience from those that may hinder a flexible

  15. Forest Management Plan Area 1 Erie National Wildlife Refuge 1985

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The management objective on Area l at Erie National Wildlife Refuge is to increase forest diversity in order to benefit all indigenous species with primary...

  16. Coastal Resources Atlas: Long Island: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use data for management areas, National Park Service properties, State Parks, and National Wildlife Refuges in Long Island, New York....

  17. Stillwater National Wildlife Refuge Including Stillwater Wildlife Management Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Stillwater National Wildlife Refuge (Stillwater NWR) and Stillwater Wildlife Management Area (Stillwater WMA) are located in western Nevada within Churchill...

  18. [Cold Bay Game Management Area Narrative report : January - April, 1950

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Cold Bay Game Management Area outlines Refuge accomplishments from January through April of 1950. The report begins by summarizing the...

  19. Narrative Report : Stillwater Wildlife Management Area : September-December 1951

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Stillwater Wildlife Management Area, Anaho Island NWR, Fallon NWR, and Winnemucca NWR outlines Refuge accomplishments from September...

  20. Narrative Report : Stillwater Wildlife Management Area : May-August 1952

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Stillwater Wildlife Management Area, Anaho Island, Fallon NWR, and Winnemucca NWR outlines Refuge accomplishments from May through August...

  1. Narrative Report : Stillwater Wildlife Management Area : May-August 1951

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This narrative report for Stillwater Wildlife Management Area and Anaho Island outlines Refuge accomplishments from May through August of 1951. The report begins by...

  2. Historical review of avian botulism at Stillwater Wildlife Management Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of this report is to review historical information on avian botulism at Stillwater Wildlife Management Area. This report includes incidental reports of...

  3. Kirtland's Warbler Wildlife Management Area Comprehensive Conservation Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Comprehensive Conservation Plan (CCP) for Kirtland’s Warbler Wildlife Management Area (WMA) was signed on September 10, 2009, completing a planning process that...

  4. Stillwater National Wildlife Refuge Including Stillwater Wildlife Management Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Stillwater National Wildlife Refuge (SNWR) and Stillwater Wildlife Management Area (SWMA) are located in western Nevada within Churchill County, approximately 70...

  5. Stillwater Wildlife Management Area Annual Narrative Report: 1980

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Stillwater Basin, which includes the Stillwater Wildlife Management Area (SWMA), Carson Lake Pasture, Fernley and other wetlands, Lahontan Reservoir and numerous...

  6. Butte Sink Wildlife Management Area [Land Status Map: Index Sheet

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This map was produced by the Division of Realty to depict landownership at Butte Sink Wildlife Management Area. It was generated from rectified aerial photography,...

  7. Bristol Bay, Alaska Subarea ESI: MGT (Management Area Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive human-use data for Critical Habitats, Wildlife Refuges, National Park lands, and other management areas in the Bristol Bay Subarea....

  8. 1988 Duck nesting study: Stillwater Wildlife Management Area

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — During the summer, 1988, we conducted a duck nesting study to determine nest success for ducks at Stillwater Wildlife Management Area (WMA). We calculated nest...

  9. Crosby Waterfowl Production Area Management Office Narrative report, 1966

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This annual narrative report for Crosby Waterfowl Production Area Management Office outlines Refuge accomplishments during the 1966 calendar year. The report begins...

  10. Rainwater Wildlife Area Management Plan : Executive Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.; Confederated Tribes of the Umatilla Indian Reservation in Oregon.

    2002-02-01

    The purpose of the project is to protect, enhance, and mitigate fish and wildlife resources impacted by Columbia River Basin hydroelectric development. The effort is one of several wildlife mitigation projects in the region developed to compensate for terrestrial habitat losses resulting from the construction of McNary and John Day Hydroelectric facilities located on the mainstem Columbia River. While this project is driven primarily by the purpose and need to mitigate for wildlife habitat losses, it is also recognized that management strategies will also benefit many other non-target fish and wildlife species and associated natural resources. The Northwest Power Act directs the NPPC to develop a program to ''protect, mitigate, and enhance'' fish and wildlife of the Columbia River and its tributaries. The overarching goals include: A Columbia River ecosystem that sustains an abundant, productive, and diverse community of fish and wildlife; Mitigation across the basin for the adverse effects to fish and wildlife caused by the development and operation of the hydrosystem; Sufficient populations of fish and wildlife for abundant opportunities for tribal trust and treaty right harvest and for non-tribal harvest; and Recovery of the fish and wildlife affected by the development and operation of the hydrosystem that are listed under the Endangered Species Act.

  11. 23 CFR 450.320 - Congestion management process in transportation management areas.

    Science.gov (United States)

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Congestion management process in transportation... Programming § 450.320 Congestion management process in transportation management areas. (a) The transportation planning process in a TMA shall address congestion management through a process that provides for safe...

  12. Development of Watershed Evaluation Index for Water Resources Considering Climate Change

    Science.gov (United States)

    Lee, K. S.; Oh, J.; Lee, S.; Chung, E.

    2010-12-01

    The concept of sustainable development is the center of issue between economic development and environmental protection. Water resources development and management is a main part of the issue. With this, integrated watershed management (IWM) which considers flood, drought and water quality control together is needed for watershed management. The Green house effect has been increased by the carbon based and thoughtless development, and climate change caused by global warming will affect all human activities. Accordingly, this study developed watershed evaluation index for water resources to assess water resources of watershed considering flood, drought, water quality control, and climate change and then applied results to actual watershed. This study consists of mainly 2 parts. The first is development of watershed evaluation index to analyze water resources vulnerability considering flood, drought, water quality, and climate change. Watershed evaluation index for water resources consists of flood indicator with climate change, drought indicator with climate change, and water quality indicator with climate change. There are two frameworks to make indices. One is a cause-effect chain framework and the other is a theme framework. Watershed evaluation index for water resources has been developed using DPSIR (Driving force-Pressure-Impact-Response) framework by EEA (European Environment Agency) that can explain interactions between socio-economic and water resources. The second is applying the index to study watershed. Three kinds of date sets are needed to apply the index. These are socio-economic data, meteorological and hydrologic data, and GCM (General Circulation Model) as a future climate change scenario. In this study, the North Han River watershed was selected as a study area. The socio-economic data set was collected using municipal statistics. The meteorological and hydrologic data, especially flow and water quality (BOD, DO et al.) data has been simulated

  13. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    Science.gov (United States)

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal.

  14. Stillwater Wildlife Management Area : Annual Water Management Program : January 1, 1972 to December 31, 1972

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This 1972 Annual Water Management Program for the Stillwater Wildlife Management Area summarizes the water receipts, distribution, and marsh conditions attributed to...

  15. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

  16. The economic and social viability of Tanzanian Wildlife Management Areas

    DEFF Research Database (Denmark)

    Homewood, Katherine; Bluwstein, Jevgeniy; Lund, Jens Friis

    This policy brief contributes to assessing the economic and social viability of Tanzania’s Wildlife Management Areas (WMAs) through preliminary findings by the ‘Poverty and ecosystem Impacts of Tanzania’s Wildlife Management Areas’ (PIMA) project, focusing on benefits, costs, and their distribution...

  17. Baseline Profile of Soil Samples from Upian River Watershed

    Directory of Open Access Journals (Sweden)

    Wilanfranco Caballero TAYONE

    2014-06-01

    Full Text Available The Mines and Geosciences Bureau (MGB in the Philippines is currently mapping out the entire Davao City Watershed Area (DCWA. There are 8 major watershed areas within DCWA that has been identified by the MGB and the largest is the Davao River Watershed Area (DRWA. A smaller sub-watershed within DRWA, the Upian River Watershed Area (URWA, was proposed of which its boundary and soil profile is yet to be established. This study focused on the analyses of the soil samples from URWA. The results for pH, organic matter, cation exchange capacity, N, P, K, Ca and Mg were then compared to the Bureau of Soil standard for its fertility rating. Analysis of lead (Pb was also included as a pollutant indicator for possible soil contamination. There are 4 sampling sites with unfavorable ratings for pH, 3 for both organic matter and phosphorus, and 2 stations for both nitrogen and calcium. Fertility rating is generally good for cation exchange capacity, potassium and magnesium. The Bureau of Soil has no existing standards for micronutrients. However, all sampling sites were found to be too low with micronutrients according to Gershuny and Smillie. No indication of lead contamination or pollution on all sites as far as natural levels of lead in surface soil is concerned. This study will provide baseline information that is useful to all stakeholders, to the people living near the area, farmers, planners, and resource managers. This can also provide inputs to key government agencies in the Philippines like the Department of Environment and Natural Resources (DENR and the City Planning Office of Davao in formulating policies for sustainable management of the resource upon implementation of their programs and projects. Without the aforementioned information, planners would have difficulty in predicting the impact or recommend best management strategies for a specific land use.

  18. 2012 U.S. Department of Interior, Bureau of Land Management (BLM) Lidar: Panther Creek Study Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Department of Interior, Bureau of Land Management (BLM) contracted with Watershed Sciences, Inc. to collect high resolution topographic LiDAR data for...

  19. Watershed Boundaries, Watershed areas include Rough Creek, Jonathan Creek, Campbell Creek, Allens Creek and Pigeon River, Published in 1993, 1:4800 (1in=400ft) scale, Haywood County Land Records/Geographic Information Systems.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Watershed Boundaries dataset, published at 1:4800 (1in=400ft) scale, was produced all or in part from Hardcopy Maps information as of 1993. It is described as...

  20. Traffic Management System on Airport Manoeuvring Areas

    Directory of Open Access Journals (Sweden)

    Miroslav Borković

    2006-11-01

    Full Text Available In the last twenty years the number of flights at the busiestairports in the world has doubled, which, in the meantime hasled to a situation in which runways and taxi ways (manoeuvringareas cannot follow such substantial increase. As the result,many airports could not use their capacities in the full range interms of handling passengers and cargo. As a consequence,there were delays and traffic congestion, fuel was unnecessarilywasted, all of which caused negative impact on the environment.Traffic capacity increase on the ground cannot be consideredwithout the development and implementation of thesystem infrastructure that would optimize traffic flows and itsdistribution on the airport itself In these terms, and for positivesolution of these problems, a new system for surveillance andcontrol of aircraft on the airport manoeuvring areas is necessary,one which could be implemented fairly quickly, would becomplementary with the existing international standards andwould be upgraded to the existing and available technology andinfrastructure. With the implementation of the Advanced SurfaceMonitoring and Control System (A-SMGCS the aircrafttaxiing time could be significantly shortened and could be determinedmore accurately, which would have positive impacton the flight schedule. The unnecessary aircraft braking actionscould be also avoided, and this would reduce the fuel consumption,as well as noise and environmental pollution.

  1. Geospatial techniques for developing a sampling frame of watersheds across a region

    Science.gov (United States)

    Gresswell, Robert E.; Bateman, Doug; Lienkaemper, George; Guy, T.J.

    2004-01-01

    Current land-management decisions that affect the persistence of native salmonids are often influenced by studies of individual sites that are selected based on judgment and convenience. Although this approach is useful for some purposes, extrapolating results to areas that were not sampled is statistically inappropriate because the sampling design is usually biased. Therefore, in recent investigations of coastal cutthroat trout (Oncorhynchus clarki clarki) located above natural barriers to anadromous salmonids, we used a methodology for extending the statistical scope of inference. The purpose of this paper is to apply geospatial tools to identify a population of watersheds and develop a probability-based sampling design for coastal cutthroat trout in western Oregon, USA. The population of mid-size watersheds (500-5800 ha) west of the Cascade Range divide was derived from watershed delineations based on digital elevation models. Because a database with locations of isolated populations of coastal cutthroat trout did not exist, a sampling frame of isolated watersheds containing cutthroat trout had to be developed. After the sampling frame of watersheds was established, isolated watersheds with coastal cutthroat trout were stratified by ecoregion and erosion potential based on dominant bedrock lithology (i.e., sedimentary and igneous). A stratified random sample of 60 watersheds was selected with proportional allocation in each stratum. By comparing watershed drainage areas of streams in the general population to those in the sampling frame and the resulting sample (n = 60), we were able to evaluate the how representative the subset of watersheds was in relation to the population of watersheds. Geospatial tools provided a relatively inexpensive means to generate the information necessary to develop a statistically robust, probability-based sampling design.

  2. Management Effectiveness of Southeast Aru Islands Marine Conservation Area

    Directory of Open Access Journals (Sweden)

    Fernando Dayandri Willem Dangeubun

    2013-08-01

    Full Text Available Southeast Aru Islands Marine Conservation Area (SE Aru MCA has been existed for nearly 21 years, a period that long enough for a timely evaluation about how far improvement of management has been made in the area in question, i.e. whether management has improved situation of local communities and marine resources availability in the area. This study, therefore, aims at assessing management effectiveness and impacts of SE Aru MCA. Results suggest that the MCA, which was originally established as a marine nature reserve (Cagar Alam Laut, CAL in 1991 and changed status into marine sanctuary in 2009, has not yet produced the expected positive impacts. Assessment using available tools indicated that the management level of SE Aru MCA is at level 1, with percentage of 34.12%, meaning it is still at initiation stage and less effective in terms of management outcomes. Index of conservation area effectiveness with a value of 0.387 shows that the overall conservation area in the 3 categories mentioned above is less effective, therefore conservation effect has not been able to solve area problems. It is concluded that, after more than 20 years exists in the area, few benefits have been produced by SE Aru MCA for local people associated with it and biological resources in it.Keywords: marine sanctuary, conservation, effectiveness, impactDOI: 10.7226/jtfm.19.2.119

  3. Study on the Soil Erosion Status and Prevention & Control Measures in the Slope Cropland Areas of Western Guangdong Province---A Case Study of Silun Small Watershed%粤西坡耕地区水土流失特征及防治措施--以泗纶小流域为例

    Institute of Scientific and Technical Information of China (English)

    张晓远; 张凯锋; 丘保芳

    2014-01-01

    选取广东省泗纶小流域为研究区,以GIS技术为支撑,选用通用土壤流失方程( USLE )为数学模型,利用GIS技术的空间分析功能,计算降雨、植被、土壤、地形、土地利用等单因子并叠加分析,生成水土流失现状分布图。通过对区域内的土壤侵蚀强度进行分析、评价,得出影响流域水土流失的关键因子,并根据研究结果对流域内坡耕地水土流失提出相关防治措施,从而为广东省坡耕地区小流域水土流失治理提供理论支撑。%The Silun small watershed in Guangdong province was selected as the study area .Based on the spatial a-nalysis function of the GIS , the calculation and overlay analysis was conducted on the single factor of rainfall , vegeta-tion, soil, topography, land use and so on by using the Universal Soil Loss Equation ( USLE) as the mathematical models, so as to generate status maps of soil erosion .The analysis and evaluation was conducted on the soil erosion strength in the region and got the key factor of soil erosion in the watershed .In accordance with the research results, it was suggested the prevention and management measures on soil erosion of slope cropland areas within the watershed so as to provide the theory support for the soil erosion control at the small watershed in slope cropland areas of Guangdong Province .

  4. Using the soil and water assessment tool to estimate achievable water quality targets through implementation of beneficial management practices in an agricultural watershed.

    Science.gov (United States)

    Yang, Qi; Benoy, Glenn A; Chow, Thien Lien; Daigle, Jean-Louis; Bourque, Charles P-A; Meng, Fan-Rui

    2012-01-01

    Runoff from crop production in agricultural watersheds can cause widespread soil loss and degradation of surface water quality. Beneficial management practices (BMPs) for soil conservation are often implemented as remedial measures because BMPs can reduce soil erosion and improve water quality. However, the efficacy of BMPs may be unknown because it can be affected by many factors, such as farming practices, land-use, soil type, topography, and climatic conditions. As such, it is difficult to estimate the impacts of BMPs on water quality through field experiments alone. In this research, the Soil and Water Assessment Tool was used to estimate achievable performance targets of water quality indicators (sediment and soluble P loadings) after implementation of combinations of selected BMPs in the Black Brook Watershed in northwestern New Brunswick, Canada. Four commonly used BMPs (flow diversion terraces [FDTs], fertilizer reductions, tillage methods, and crop rotations), were considered individually and in different combinations. At the watershed level, the best achievable sediment loading was 1.9 t ha(-1) yr(-1) (89% reduction compared with default scenario), with a BMP combination of crop rotation, FDT, and no-till. The best achievable soluble P loading was 0.5 kg ha(-1) yr(-1) (62% reduction), with a BMP combination of crop rotation and FDT and fertilizer reduction. Targets estimated through nonpoint source water quality modeling can be used to evaluate BMP implementation initiatives and provide milestones for the rehabilitation of streams and rivers in agricultural regions.

  5. Managing extreme natural disasters in coastal areas

    Science.gov (United States)

    Kesavan, P. C.; Swaminathan, M. S.

    2006-08-01

    Extreme natural hazards, particularly the hydro-meteorological disasters, are emerging as a cause of major concern in the coastal regions of India and a few other developing countries. These have become more frequent in the recent past, and are taking a heavy toll of life and livelihoods. Low level of technology development in the rural areas together with social, economic and gender inequities enhance the vulnerability of the largely illiterate, unskilled, and resource-poor fishing, farming and landless labour communities. Their resilience to bounce back to pre-disaster level of normality is highly limited. For the planet Earth at crossroads, the imminent threat, however, is from a vicious spiral among environmental degradation, poverty and climate change-related natural disasters interacting in a mutually reinforcing manner. These, in turn, retard sustainable development, and also wipe out any small gains made thereof. To counter this unacceptable trend, the M.S. Swaminathan Research Foundation has developed a biovillage paradigm and rural knowledge centres for ecotechnological and knowledge empowerment of the coastal communities at risk. Frontier science and technologies blended with traditional knowledge and ecological prudence result in ecotechnologies with pro-nature, pro-poor and pro-women orientation. The rural communities are given training and helped to develop capacity to adopt ecotechnologies for market-driven eco-enterprises. The modern information and communication-based rural knowledge centres largely operated by trained semi-literate young women provide time- and locale-specific information on weather, crop and animal husbandry, market trends and prices for local communities, healthcare, transport, education, etc. to the local communities. The ecotechnologies and time- and locale-specific information content development are need-based and chosen in a ‘bottom-up’ manner. The use of recombinant DNA technology for genetic shielding of agricultural

  6. Watershed model calibration framework developed using an influence coefficient algorithm and a genetic algorithm and analysis of pollutant discharge characteristics and load reduction in a TMDL planning area.

    Science.gov (United States)

    Cho, Jae Heon; Lee, Jong Ho

    2015-11-01

    Manual calibration is common in rainfall-runoff model applications. However, rainfall-runoff models include several complicated parameters; thus, significant time and effort are required to manually calibrate the parameters individually and repeatedly. Automatic calibration has relative merit regarding time efficiency and objectivity but shortcomings regarding understanding indigenous processes in the basin. In this study, a watershed model calibration framework was developed using an influence coefficient algorithm and genetic algorithm (WMCIG) to automatically calibrate the distributed models. The optimization problem used to minimize the sum of squares of the normalized residuals of the observed and predicted values was solved using a genetic algorithm (GA). The final model parameters were determined from the iteration with the smallest sum of squares of the normalized residuals of all iterations. The WMCIG was applied to a Gomakwoncheon watershed located in an area that presents a total maximum daily load (TMDL) in Korea. The proportion of urbanized area in this watershed is low, and the diffuse pollution loads of nutrients such as phosphorus are greater than the point-source pollution loads because of the concentration of rainfall that occurs during the summer. The pollution discharges from the watershed were estimated for each land-use type, and the seasonal variations of the pollution loads were analyzed. Consecutive flow measurement gauges have not been installed in this area, and it is difficult to survey the flow and water quality in this area during the frequent heavy rainfall that occurs during the wet season. The Hydrological Simulation Program-Fortran (HSPF) model was used to calculate the runoff flow and water quality in this basin. Using the water quality results, a load duration curve was constructed for the basin, the exceedance frequency of the water quality standard was calculated for each hydrologic condition class, and the percent reduction

  7. Income and managing problems of the protected areas in China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    n 2000, the authors collected a great quantity of relevant data by investigating more than 50 nature reserves. Based on the analysis of development and management situation of the protected areas in China, the main problems were put forward, such as, no unified management for income and managing activities, lack of special guideline and effective supervision, lack of income and investment, investing financial difference in different provinces. All these problems caused the lack of funds for construction, as well as the damage of resources and environment. Furthermore the conserving activities have to transmit to the profits in many protected areas. Combined with these problems, the primary solution programmers also were put forward.

  8. Delineation of the recharge areas and distinguishing the sources of karst springs in Bringi watershed, Kashmir Himalayas using hydrochemistry and environmental isotopes

    Indian Academy of Sciences (India)

    Nadeem A Bhat; Gh Jeelani

    2015-12-01

    Water samples were collected from precipitation, streams and karst springs of the mountainous Bringi catchment of Kashmir Himalayas for major ions, stable isotopes (18O and D) and 3H analysis. The main objective is to identify the potential recharge area for karst springs. The water in the Triassic limestone aquifer of the Bringi watershed is characterized by low levels of mineralization with TDS of the spring water samples ranging between 99 and 222 mg/l except the Kongamnag spring, which contained TDS up to 425 mg/l. As expected in an area with dominant carbonate lithology, Ca–HCO3 and Ca–Mg–HCO3 hydrochemical facies were found. Based on the amount weighed monthly averages ( = 6), the local meteoric water line (LMWL) for Bringi watershed is D = 7.7 ×18O + 11.1 (2 = 0.99). The isotopic signature of winter precipitation is reflected in stream and spring water in late spring and is therefore, a representative of snow melting. The spring waters in September bear the 2H and 18O enriched isotopic signatures of summer rainfall. With the help of the local vertical isotopic gradient of precipitation (18O = −0.27‰ per 100 m increase in elevation), the mean elevation of precipitation that recharged the aquifer is estimated and ranges about 2500–2900 m amsl. There is a very strong correlation (2 = 0.97) between the seasonal isotope composition of streams and springs, indicating that streams and springs either share similar catchments or the springs are recharged by the streams.

  9. Biotransformation of chlorpyrifos in riparian wetlands in agricultural watersheds: implications for wetland management.

    Science.gov (United States)

    Karpuzcu, M Ekrem; Sedlak, David L; Stringfellow, William T

    2013-01-15

    Biodegradation of the organophosphate insecticide chlorpyrifos (O,O-diethyl O-(3,5,6-trichloropyridin-2-yl) phosphorothioate) in sediments from wetlands and agricultural drains in San Joaquin Valley, CA was investigated. Sediments were collected monthly, spiked with chlorpyrifos, and rates of chlorpyrifos degradation were measured using a standardized aerobic biodegradation assay. Phosphoesterase enzyme activities were measured and phosphotriesterase activity was related to observed biodegradation kinetics. First-order biodegradation rates varied between 0.02 and 0.69 day(-1), after accounting for abiotic losses. The average rate of abiotic chlorpyrifos hydrolysis was 0.02 d(-1) at pH 7.2 and 30 °C. Sediments from the site exhibiting the highest chlorpyrifos degradation capacity were incubated under anaerobic conditions to assess the effect of redox conditions on degradation rates. Half-lives were 5 and 92 days under aerobic and anaerobic conditions, respectively. There was a consistent decrease in observed biodegradation rates at one site due to permanently flooded conditions prevailing during one sampling year. These results suggest that wetland management strategies such as allowing a wet-dry cycle could enhance degradation rates. There was significant correlation between phosphotriesterase (PTE) activity and the chlorpyrifos biotransformation rates, with this relationship varying among sites. PTE activities may be useful as an indicator of biodegradation potential with reference to the previously established site-specific correlations.

  10. Model Watershed Plan; Lemhi, Pahsimeroi, and East Fork of the Salmon River Management Plan, 1995 Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Ralph

    1995-11-01

    Idaho`s Model Watershed Project was established as part of the Northwest Power Planning Council`s plan for salmon recovery in the Columbia River Basin. The Council`s charge was simply stated and came without strings. The tasks were to identify actions within the watershed that are planned or needed for salmon habitat, and establish a procedure for implementing habitat-improvement measures. The Council gave the responsibility of developing this project to the Idaho Soil Conservation Commission. This Model Watershed Plan is intended to be a dynamic plan that helps address these two tasks. It is not intended to be the final say on either. It is also not meant to establish laws, policies, or regulations for the agencies, groups, or individuals who participated in the plan development.

  11. Innovation in Management Plans for Community Conserved Areas: Experiences from Australian Indigenous Protected Areas

    Directory of Open Access Journals (Sweden)

    Jocelyn Davies

    2013-06-01

    Full Text Available Increasing attention to formal recognition of indigenous and community conserved areas (ICCAs as part of national and/or global protected area systems is generating novel encounters between the customary institutions through which indigenous peoples and local communities manage these traditional estates and the bureaucratic institutions of protected area management planning. Although management plans are widely considered to be important to effective management of protected areas, little guidance has been available about how their form and content can effectively reflect the distinctive socio-cultural and political characteristics of ICCAs. This gap has been particularly apparent in Australia where a trend to rapidly increased formal engagement of indigenous people in environmental management resulted, by 2012, in 50 indigenous groups voluntarily declaring their intent to manage all or part of their estates for conservation in perpetuity, as an indigenous protected area (IPA. Development and adoption of a management plan is central to the process through which the Australian Government recognizes these voluntary declarations and invests resources in IPA management. We identified four types of innovations, apparent in some recent IPA plans, which reflect the distinctive socio-cultural and political characteristics of ICCAs and support indigenous people as the primary decision makers and drivers of knowledge integration in IPAs. These are (1 a focus on customary institutions in governance; (2 strategic planning approaches that respond to interlinkages of stewardship between people, place, plants, and animals; (3 planning frameworks that bridge scales by considering values and issues across the whole of an indigenous people's territory; and (4 varied communication modes appropriate to varied audiences, including an emphasis on visual and spatial modes. Further research is warranted into how governance and management of IPAs, and the plans that

  12. Supplement Analysis for the Watershed Management Program EIS - Libby Creek (Lower Cleveland) Stabilization Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-07-29

    This project is follow-up to stream stabilization activities on Libby Creek that were initiated on the Upper Cleveland reach of Libby Creek 2 years ago. BPA now proposes to fund FWP to complete channel stabilization activities on the Lower Cleveland reach of Libby Creek, reduce sediment sources, convert overwidened portions of the stream into self-maintaining channel types, use natural stream stabilization techniques, and improve wildlife migratory corridors. This lower reach is about one river mile below the upper Cleveland Reach and the proposed activities are very similar to those conducted before. The current work would be constructed in two additional phases. The first phase of the Lower Cleveland project would be completed in the fall of 2004 (9/1/04--12/31/04), to include the upper 3,100 feet. The second phase will be constructed in the fall of 2005 (9/1/05--12/31/05), to include stabilizing the remaining 6,200 feet of stream. The Cleveland reaches are a spawning and rearing tributary for resident redband trout, and resident and fluvial bull trout migrating from the Kootenai River. The planned work at the two remaining phases calls for shaping cut banks; installing root wads and tree revetments; installing channel grade control structures; planting native vegetation; and installing cross vanes constructed from rock and trees to control channel gradient. In the past, this reach of Libby Creek has been degraded by past management practices, including road building, hydraulic and dredge mining, and riparian logging. This past activity has resulted in accelerated bank erosion along a number of meander bends, resulting in channel degradation and poor fish habitat. Currently the stream channel is over-widened and shallow having limited pool habitat. The current stream channel is over-widened and shallow, having limited pool habitat.

  13. Effects of environmental protection on forest management costs in the Nehalliston creek watershed: An analysis. FERIC special report No. SR-95, and Working paper No. WP-6-008

    Energy Technology Data Exchange (ETDEWEB)

    Thibodeau, E.D.

    1994-12-31

    This report presents results of a study investigating the economic impacts of environmental protection on forest management for a typical watershed in the interior of British Columbia. The study compares three scenarios representing past, present, and future generations of integrated resource management guidelines. Specific objectives of the study were to analyze, describe, and compare the sustainable flow of harvested timber over a 120-year period from the watershed, and to estimate and compare the annual costs of harvesting and related management activities for the first 20 years of each scenario. The study estimated sustainable harvest volumes over a full rotation using the ATLAS (A Tactical Landscape Analysis System) computer model.

  14. WATERSHED MANAGEMENT – A MEANS OF SUSTAINABLE DEVELOPMENT - A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Mrs. Vidula Arun Swami,

    2011-03-01

    Full Text Available In this era of ever increasing water demands and rapidly depleting water resources coupled with overpopulation, it has become necessary to develop the means to recharge the ground water resources which arenecessary for future requirements. This paper presents one such case study where large amount of rainwater is directed to recharge ground water resources. Somwar Peth is a small village located at distance of 15 Kms. from Kolhapur city. Under Social Forestry Department, some measures have been adopted to recharge the ground water resources, ut it has been found that these measures don’t work with full apacity in some cases. Hence it is planned to take such engineering and biological measures which will direct this extra runoff to ground water storage. The most significant feature of the work is that if such technologies are developed and adopted at larger scale in rural areas, it will prevent thousands of villages of the country from water supply by tankers. Moreover this will also help us to tackle the issue of flood which mainly occurs due to excess runoff.

  15. Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: environmental risk assessment.

    Science.gov (United States)

    Galunin, Evgeny; Ferreti, Jeferson; Zapelini, Iago; Vieira, Isadora; Ricardo Teixeira Tarley, César; Abrão, Taufik; Santos, Maria Josefa

    2014-01-30

    The risk of cadmium contamination in the Tibagi River watershed (Parana State, Brazil) affected by past coal mining activities was assessed through sorption-desorption modeling for sediment and soil samples. The acidic character of the samples resulted in more competition between the cadmium ions and protons, thereby influencing the cadmium sorption-desorption. The sorption isotherms were fitted to the Langmuir and Freundlich single models and to the dual-site Langmuir-Freundlich (or Sips) model. The single-site models indicated a low-energy character of sorption sites on the sample sorption sites, whereas the dual-site model explained the availability of higher-affinity and lower-affinity non-specific sites. The correlation of the sorption and desorption constants with the physicochemical and mineralogical characteristics of the samples showed that the cadmium sorption behavior was significantly affected by the pH, point of zero charge, and also by the magnesium, aluminum, calcium and manganese amounts. Besides, the desorption rate and hysteresis index suggested a high risk of cadmium mobilization along the Tibagi River basin.

  16. Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: Environmental risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Galunin, Evgeny; Ferreti, Jeferson; Zapelini, Iago; Vieira, Isadora; Ricardo Teixeira Tarley, César [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid – PR 445, 86051-990 Londrina (Brazil); Abrão, Taufik [Departamento de Engenharia Elétrica, Universidade Estadual de Londrina, Rod. Celso Garcia Cid – PR 445, 86051-990 Londrina (Brazil); Santos, Maria Josefa, E-mail: mjyabe@uel.br [Departamento de Química, Universidade Estadual de Londrina, Rod. Celso Garcia Cid – PR 445, 86051-990 Londrina (Brazil)

    2014-01-30

    Highlights: • The cadmium sorption–desorption behavior on environmental samples was investigated. • The sorption decreased due to competition between Cd and protons in aqueous medium. • The experimental data were successfully adjusted to the Langmuir–Freundlich model. • The role of low-energy non-specific sites on the sample surfaces was elucidated. • The desorption rate and hysteresis index suggested a high risk of cadmium pollution. -- Abstract: The risk of cadmium contamination in the Tibagi River watershed (Parana State, Brazil) affected by past coal mining activities was assessed through sorption–desorption modeling for sediment and soil samples. The acidic character of the samples resulted in more competition between the cadmium ions and protons, thereby influencing the cadmium sorption–desorption. The sorption isotherms were fitted to the Langmuir and Freundlich single models and to the dual-site Langmuir–Freundlich (or Sips) model. The single-site models indicated a low-energy character of sorption sites on the sample sorption sites, whereas the dual-site model explained the availability of higher-affinity and lower-affinity non-specific sites. The correlation of the sorption and desorption constants with the physicochemical and mineralogical characteristics of the samples showed that the cadmium sorption behavior was significantly affected by the pH, point of zero charge, and also by the magnesium, aluminum, calcium and manganese amounts. Besides, the desorption rate and hysteresis index suggested a high risk of cadmium mobilization along the Tibagi River basin.

  17. Watersheds in disordered media

    Directory of Open Access Journals (Sweden)

    José S. Andrade Jr.

    2015-02-01

    Full Text Available What is the best way to divide a rugged landscape? Since ancient times, watershedsseparating adjacent water systems that flow, for example, toward different seas, have beenused to delimit boundaries. Interestingly, serious and even tense border disputes betweencountries have relied on the subtle geometrical properties of these tortuous lines. For instance,slight and even anthropogenic modifications of landscapes can produce large changes in awatershed, and the effects can be highly nonlocal. Although the watershed concept arisesnaturally in geomorphology, where it plays a fundamental role in water management, landslide,and flood prevention, it also has important applications in seemingly unrelated fields suchas image processing and medicine. Despite the far-reaching consequences of the scalingproperties on watershed-related hydrological and political issues, it was only recently that a moreprofound and revealing connection has been disclosed between the concept of watershed andstatistical physics of disordered systems. This review initially surveys the origin and definition of awatershed line in a geomorphological framework to subsequently introduce its basic geometricaland physical properties. Results on statistical properties of watersheds obtained from artificialmodel landscapes generated with long-range correlations are presented and shown to be ingood qualitative and quantitative agreement with real landscapes.

  18. Nevada Test Site 2008 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2009-06-23

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2008 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities.

  19. MesoHABSIM: an effective tool for river and watershed management; MesoHABSIM: una herramienta eficaz para la gestion de rios y cuencas fluviales

    Energy Technology Data Exchange (ETDEWEB)

    Parasiewicz, P.; Gortazar rubial, J.; Mateo Sanchez, M.; Garcia de Jalon Lastra, D.

    2009-07-01

    MesoHABSIM is an approach to modelling in stream habitats. It allows a user to compute how much habitat is available for selected aquatic fauna under specific environmental circumstances. It overcomes the classical physical habitat models, since it is designed to work in a catchment scale. For this reason it is a very efficient tool for the decision making in the management of rivers and watersheds. MesoHABSIM has applications in Environmental Impact Assessment, in the design of Ecological Flow Regimes or in river restoration planning. (Author) 19 refs.

  20. Cycling of Organoarsenic Compounds in Agricultural Watersheds

    Science.gov (United States)

    Schreiber, M. E.; Chambers, D. B.; White, J. S.

    2004-12-01

    The use of the organoarsenical roxarsone, added to poultry feed to increase weight gain, results in elevated arsenic concentrations (10-50 mg/kg) in poultry litter. This litter is extensively applied to crop fields and pastures, both as a fertilizer and as a waste disposal technique, in agricultural regions. Using a combination of field sampling and laboratory experiments, we investigated the sources and sinks of arsenic within soils and natural waters in an agricultural watershed in the Shenandoah Valley of Virginia, USA, an area of intense poultry production. Surface, ground, and soil waters were collected in an instrumented field site to examine arsenic and other litter-derived species in different hydrologic compartments and different settings within the field site. We collected soil cores of the Frederick series, common in the Shenandoah Valley, from several areas experiencing different litter application histories in the valley to examine relationships between arsenic and physico-chemical properties of the soils. Last, we conducted a series of batch experiments to examine adsorption and biotransformation characteristics of roxarsone within Ap and Bt soil horizons of the Frederick soils. Results of these combined studies document a complex yet intriguing cycling of arsenic through the watershed, which will provide useful information for management of poultry litter in agricultural watersheds.

  1. General principles for integrating geoheritage conservation in protected area management

    Science.gov (United States)

    Gordon, John E.; Crofts, Roger

    2015-04-01

    Development of more integrated approaches to the management of protected areas requires not only the protection of geosites, but also the effective application of geoconservation principles that apply more widely to the sustainable management of natural systems. Key guiding principles include: working with natural processes; managing natural systems and processes in a spatially integrated manner; accepting the inevitability of natural change; considering the responses of geomorphological processes to the effects of global climate change; recognising the sensitivity of natural systems and managing them within the limits of their capacity to absorb change; basing conservation management of active systems on a sound understanding of the underlying physical processes; making provision for managing visitors at sensitive sites; and acknowledging the interdependency of geodiversity and biodiversity management. As well as recognising the value of geoheritage in its own right, a more integrated approach to conservation across the full range of IUCN Protected Area Management Categories would benefit both biodiversity and geodiversity, through application of the concept of 'conserving nature's stage' and adopting an ecosystem approach.

  2. Comparison of Hydrologic Dynamics in Forested and Agricultural Sub-watersheds of a Large Mixed-use Prairie Watershed

    Science.gov (United States)

    Petzold, H.; Ali, G.

    2013-12-01

    The natural history of the Prairies includes the large-scale human modification of landscape biology and hydrology from first settlement to present. Forested land has been and continues to be lost and runoff is increasingly artificially drained in this intensively managed region. The impact of such modifications on hydrological dynamics has yet to be understood in such a way that measurable landscape alterations (i.e., area of forest loss, hydraulic capacity of artificial surface drains) can be linked to quantifiable alterations in event storm hydrographs or hydrological regimes. Here we focused on a large mixed-used watershed to compare the hydrological dynamics of forested sub-watersheds to those of neighboring deforested agricultural sub-watersheds within a similar geologic and pedologic setting. The chosen study site, the Catfish Creek watershed (CCW), drains a 600 km2 area located approximately 90 km north-east of Winnipeg (Manitoba, Canada) and has been extensively impacted by human activities including the continued clearing of forested land for cultivation. It is characterized as a low-relief, agro-forested watershed (~45% forest, ~40% crops, ~10% swamp, ~5% other). Surface runoff is managed in part by a network of artificial drains in both the forested and cultivated portions of this watershed. The lower CCW is naturally-vegetated by parkland forest and swamp. The eastern edge of the upper watershed is also forested and of greater relative relief; while to the west the landscape is dominated by intensive, large-scale agricultural operations on a near level landscape. Detailed topographic information was collected in 1 m LiDAR survey of the area. Through the spring of 2013, CCW was instrumented with thirteen water level recorders (15-minute frequency) and five weather stations (1-minute frequency) to monitor the precipitation-runoff dynamics from spring thaw to winter freeze-up. Water level gauging stations, 12 located in-stream and 1 located in swampland

  3. Multi-gauge Calibration for modeling the Semi-Arid Santa Cruz Watershed in Arizona-Mexico Border Area Using SWAT

    Science.gov (United States)

    Niraula, Rewati; Norman, Laura A.; Meixner, Thomas; Callegary, James B.

    2012-01-01

    In most watershed-modeling studies, flow is calibrated at one monitoring site, usually at the watershed outlet. Like many arid and semi-arid watersheds, the main reach of the Santa Cruz watershed, located on the Arizona-Mexico border, is discontinuous for most of the year except during large flood events, and therefore the flow characteristics at the outlet do not represent the entire watershed. Calibration is required at multiple locations along the Santa Cruz River to improve model reliability. The objective of this study was to best portray surface water flow in this semiarid watershed and evaluate the effect of multi-gage calibration on flow predictions. In this study, the Soil and Water Assessment Tool (SWAT) was calibrated at seven monitoring stations, which improved model performance and increased the reliability of flow, in the Santa Cruz watershed. The most sensitive parameters to affect flow were found to be curve number (CN2), soil evaporation and compensation coefficient (ESCO), threshold water depth in shallow aquifer for return flow to occur (GWQMN), base flow alpha factor (Alpha_Bf), and effective hydraulic conductivity of the soil layer (Ch_K2). In comparison, when the model was established with a single calibration at the watershed outlet, flow predictions at other monitoring gages were inaccurate. This study emphasizes the importance of multi-gage calibration to develop a reliable watershed model in arid and semiarid environments. The developed model, with further calibration of water quality parameters will be an integral part of the Santa Cruz Watershed Ecosystem Portfolio Model (SCWEPM), an online decision support tool, to assess the impacts of climate change and urban growth in the Santa Cruz watershed.

  4. Multidisciplinary work on barium contamination of the karstic upper Kupa River drainage basin (Croatia and Slovenia); calling for watershed management.

    Science.gov (United States)

    Francisković-Bilinski, S; Bilinski, H; Grbac, R; Zunić, J; Necemer, M; Hanzel, D

    2007-02-01

    problems. Diseases of the circulatory system, endocrine, nutritional, and metabolic diseases, neoplasms, and respiratory diseases predominate. This paper calls for further multidisciplinary research on the health effects of barium and trace elements, as well as for bioremediation of contaminated gardens and for watershed management of vulnerable karstic aquifers.

  5. Sustainable rainwater management in the Emscher river catchment area.

    Science.gov (United States)

    Becker, M; Raasch, U

    2002-01-01

    The wastewater management system of the Emscher region is currently being radically restructured. The receiving waters currently surviving as open sewers are to be freed of their wastewater burden and reconstituted to a state as natural as possible, while the wastewater is to be routed underground to the treatment plants. Great importance is attached to the most natural possible rainwater management, in order to buffer extreme run-off situations in the watercourses and to minimize the costs for residential-area water management engineering. Rethinking, which in many cases percolates through only slowly, is necessary in many respects for this purpose. A contest has been set up in the Emscher catchment area in order to accelerate this in the existing residential areas. Seepage, decentralized retention, disconnection and discharge into bodies of water and watercourses have been financially supported. The results are presented and the further procedure deriving from them discussed.

  6. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S. [and others

    1996-05-01

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

  7. Hydrological modeling of the Jiaoyi watershed (China) using HSPF model.

    Science.gov (United States)

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie

    2014-01-01

    A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001-2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R (2)), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin.

  8. Hydrological Modeling of the Jiaoyi Watershed (China Using HSPF Model

    Directory of Open Access Journals (Sweden)

    Chang-An Yan

    2014-01-01

    Full Text Available A watershed hydrological model, hydrological simulation program-Fortran (HSPF, was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001–2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE, coefficient of correlation (R2, and the relative error (RE. The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin.

  9. Evaluation of municipal solid waste management in egyptian rural areas.

    Science.gov (United States)

    El-Messery, Mamdouh A; Ismail, Gaber A; Arafa, Anwaar K

    2009-01-01

    A two years study was conducted to evaluate the solid waste management system in 143 villages representing the Egyptian rural areas. The study covers the legal responsibilities, service availability, environmental impacts, service providers, financial resources, private sector participation and the quality of collection services. According to UN reports more than 55% of Egyptian population lives in rural areas. A drastic change in the consumption pattern altered the quantity and quality of the generated solid wastes from these areas. Poor solid waste management systems are stigmata in most of the Egyptian rural areas. This causes several environmental and health problems. It has been found that solid waste collection services cover only 27% of the surveyed villages, while, the statistics show that 75% of the surveyed villages are formally covered. The service providers are local villager units, private contractors and civil community associations with a percentage share 71%, 24% and 5% respectively. The operated services among these sectors were 25%, 71% and 100% respectively. The share of private sector in solid waste management in rural areas is still very limited as a result of the poverty of these communities and the lack of recyclable materials in their solid waste. It has been found that direct throwing of solid waste on the banks of drains and canals as well as open dumping and uncontrolled burning of solid waste are the common practice in most of the Egyptian rural areas. The available land for landfill is not enough, pitiable designed, defectively constructed and unreliably operated. Although solid waste generated in rural areas has high organic contents, no composting plant was installed. Shortage in financial resources allocated for valorization of solid waste management in the Egyptian rural areas and lower collection fees are the main points of weakness which resulted in poor solid waste management systems. On the other hand, the farmer's participation

  10. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future

    Science.gov (United States)

    Coles, Robert G.; Rasheed, Michael A.; McKenzie, Len J.; Grech, Alana; York, Paul H.; Sheaves, Marcus; McKenna, Skye; Bryant, Catherine

    2015-02-01

    The Great Barrier Reef World Heritage Area (GBRWHA) includes one of the world's largest areas of seagrass (35,000 km2) encompassing approximately 20% of the world's species. Mapping and monitoring programs sponsored by the Australian and Queensland Governments and Queensland Port Authorities have tracked a worrying decrease in abundance and area since 2007. This decline has almost certainly been the result of a series of severe tropical storms and associated floods exacerbating existing human induced stressors. A complex variety of marine and terrestrial management actions and plans have been implemented to protect seagrass and other habitats in the GBRWHA. For seagrasses, these actions are inadequate. They provide an impression of effective protection of seagrasses; reduce the sense of urgency needed to trigger action; and waste the valuable and limited supply of "conservation capital". There is a management focus on ports, driven by public concerns about high profile development projects, which exaggerates the importance of these relatively concentrated impacts in comparison to the total range of threats and stressors. For effective management of seagrass at the scale of the GBRWHA, more emphasis needs to be placed on the connectivity between seagrass meadow health, watersheds, and all terrestrial urban and agricultural development associated with human populations. The cumulative impacts to seagrass from coastal and marine processes in the GBRWHA are not evenly distributed, with a mosaic of high and low vulnerability areas. This provides an opportunity to make choices for future coastal development plans that minimise stress on seagrass meadows.

  11. [Effects of land use and landscape pattern on nitrogen and phosphorus exports in Lanlingxi Watershed of the Three Gorges Reservoir Area, China].

    Science.gov (United States)

    Han, Li-Yang; Huang, Zhi-Lin; Xiao, Wen-Fa; Tian, Yao-Wu; Zeng, Li-Xiong; Wu, Dong

    2014-03-01

    The temporal and spatial characteristics of N, P exports and effects of land use and landscape pattern on N, P exports were analyzed in the Lanlingxi Watershed of the Three Gorges Reservoir Area. The results showed that the TN, TP and NO3(-) -N were mainly generated by non-wood forest, the N, P exports in flood period (June to September) were significantly higher than the non-flood period (January to May). The NH4(+) -N export was derived from the residential area in the non-flood period, while from non-wood forest in the flood period. In addition, the performance of samples N, P exports with forest distributed were lower in both two periods. Also, the proportion of forest significantly negatively correlated with NO3(-) -N, TP in the non-flood period and TN, TP in the flood period. The residential area proportion notably positively correlated with NO3(-) -N, TN in non-flood period and NO3(-) -N, TN, TP in the flood period. The non-wood forest proportion also significantly positively correlated with NH4(+) -N, TN in the flood period. Moreover, PD closely positively correlated with N exports in non-flood period, with NO3(-) -N, NH4(+) -N in flood period. The CONT index strongly negatively correlated with N exports in flood period and TP in non-flood period. However, the proportions of farmland, unused land and the indices of ED were relatively weakened with N, P exports in both periods, while SHMN and water proportion did not show any positive or negative correlation. Moreover, the regression fitting degree of NH4(+)-N was superior to NO3(-) -N, TN and TP with the adjust R2 of 0.885 and 0.969 in two periods, while the regression relation was better than that of non-flood period. The result of redundancy analysis further demonstrated that the landscape fragmentation caused by patches types of different land uses could better explain impacts on the exports of nitrogen and phosphorus. The two canonical axes accumulated explained the 90% proportion of the variables and

  12. Ghana Watershed Prototype Products

    Science.gov (United States)

    ,

    2007-01-01

    Introduction/Background A number of satellite data sets are available through the U.S. Geological Survey (USGS) for monitoring land surface features. Representative data sets include Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Shuttle Radar Topography Mission (SRTM). The Ghana Watershed Prototype Products cover an area within southern Ghana, Africa, and include examples of the aforementioned data sets along with sample SRTM derivative data sets.

  13. Statewide Watershed Protection and Local Implementation: A Comparison of Washington, Minnesota, and Oregon

    OpenAIRE

    1999-01-01

    Abstract In 1991 EPA embraced the watershed protection approach for environmental management. EPA defines watershed protection as â a strategy for effectively protecting and restoring aquatic ecosystems and protecting human health.â To encourage statewide watershed protection, EPA developed the â Statewide Watershed Protection Approachâ document, which is designed to aid states in developing their own watershed protection program. The watershed protection approach is n...

  14. DNR Watersheds - DNR Level 04 - HUC 08 - Majors

    Data.gov (United States)

    Minnesota Department of Natural Resources — These data consists of 81 watershed delineations in one seamless dataset of drainage areas called Minnesota Department of Natural Resources (DNR) Major Watersheds....

  15. Using a GIS transfer model to evaluate pollutant loads in the Lake Kinneret watershed, Israel.

    Science.gov (United States)

    Markel, D; Somma, F; Evans, B M

    2006-01-01

    Lake Kinneret (Sea of Galilee) is the only large surface water body in Israel, encompassing an area of 167 km2 and supplying some 30% of the country's fresh water. Pollution from anthropogenic sources and water abstraction for domestic and agricultural uses has long been threatening the water quality of the lake. Point-source pollution in the watershed has decreased drastically with the development of wastewater treatment. However, diffuse pollution from agricultural activities is still an unresolved issue. In this paper we present an application of AVGWLF (a GIS-based watershed load model) to the Lake Kinneret watershed. The model allows one to simulate daily stream flows and monthly sediment, nitrogen, and phosphorus loads discharged to the lake from the surrounding watershed. Results from simulations yield a satisfactory correspondence between simulated and measured daily water volume. Partition by source of total phosphorus delivered to the lake in the period of 2000-04 confirms the reduction in point source nutrient contribution due to improvement of wastewater treatment facilities in the area. Future management should focus on reduction of nutrients originating from septic systems (point sources) and pasture and cropland areas (diffuse sources). Results from simulations will enable watershed managers to prioritize effective management alternatives for protecting the water quality in the lake.

  16. Physical characterization of a watershed through GIS: a study in the Schmidt stream, Brazil.

    Science.gov (United States)

    Reis, D R; Plangg, R; Tundisi, J G; Quevedo, D M

    2015-12-01

    Remote sensing and geoprocessing are essential tools for obtaining and maintaining records of human actions on space over the course of time; these tools offer the basis for diagnoses of land use, environmental interference and local development. The Schmidt stream watershed, located in the Sinos River basin, in southern Brazil, has an environmental situation similar to that of the majority of small streams draining rural and urban areas in southern Brazil: agricultural and urbanization practices do not recognize the riparian area and there is removal of original vegetation, disregarding the suitability of land use; removal of wetlands; intensive water use for various activities; and lack of control and monitoring in the discharge of wastewater, among other factors, deteriorate the quality of this important environment.This article aims to achieve a physical characterization of the Schmidt stream watershed (Sinos river basin) identifying elements such as land use and occupation, soil science, geology, climatology, extent and location of watershed, among others, so as to serve as the basis for a tool that helps in the integrated environmental management of watersheds. By applying geographic information system - GIS to the process of obtaining maps of land use and occupation, pedologicaland geological, and using climatological data from the Campo Bom meteorological station, field visit, review of literature and journals, and publicly available data, the physical characterization of the Schmidt stream watershed was performed, with a view to the integrated environmental management of this watershed. Out of the total area of the Schmidt stream watershed (23.92 km(2)), in terms of geology, it was observed that 23.7% consist of colluvial deposits, 22.6% consist of grass facies, and 53.7% consist of Botucatu formation. Major soil types of the watershed: 97.4% Argisols and only 2.6% Planosols. Land use and occupation is characterized by wetland (0.5%), Native Forest (12

  17. Geology and mineral resources of the Southwestern and South-Central Wyoming Sagebrush Focal Area, Wyoming, and the Bear River Watershed Sagebrush Focal Area, Wyoming and Utah: Chapter E in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    Science.gov (United States)

    Wilson, Anna B.; Hayes, Timothy S.; Benson, Mary Ellen; Yager, Douglas B.; Anderson, Eric D.; Bleiwas, Donald I.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; Fernette, Gregory L.; Giles, Stuart A.; Glen, Jonathan M. G.; Haacke, Jon E.; Horton, John D.; Parks, Heather L.; Rockwell, Barnaby W.; Williams, Colin F.

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of locatable minerals in the Southwestern and South-Central Wyoming and Bear River Watershed, Wyoming and Utah, SFAs.

  18. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  19. An examination of the use of "Vetiver grass" to prevent erosion in Yusufeli region (Coruh Watershed area-Turkey): a case study.

    Science.gov (United States)

    Demirel, Oner; Demirel, Kürşad

    2005-06-01

    The goal of this study is to explore opportunities for plantation at Coruh Watershed area, where severe erosion has been observed, using "Vetiver grass" which has proven successful in preventing erosion in South America and in other countries. A site on the banks of the Cakaloğlu stream located in the borders Yusufeli settlement is chosen as a study area and four experimental sites were been determined considering altitude (700-750 m., 750-800 m.), direction faced by the sites; facing South and facing North-East and slope (%53, %60). At these experimental sites, eight parcels have been formed, one being control and the rest being experimental. Soil patterns taken from two different depth levels; 0-30 cm. and 30-60 cm. and Vetiver grass being tested at these parcels have been used as material. The lengths of stem and root and vegetation coverage of the plants at the sample parcels have been measured and the shoot numbers have been counted. Analysis for soil patterns, soil texture, pH, dispersion ratio and erosion have been done on specimens of soil taken from the sample sites. Using the obtained data, observations and the results of tha analysis of variance (ANOVA), it has been concluded that "Vetiver grass" can be used at the steep slopes of arid regions where erosion is severe to prevent erosion due to the fact that it has proven successful in holding the soil.

  20. PREFERRED WATERFLOOD MANAGEMENT PRACTICES FOR THE SPRABERRY TREND AREA

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    2004-08-31

    The naturally fractured Spraberry Trend Area is one of the largest reservoirs in the domestic U.S. and is the largest reservoir in area extent in the world. Production from Spraberry sands is found over a 2,500 sq. mile area and Spraberry reservoirs can be found in an eight county area in west Texas. Over 150 operators produce 65,000 barrels of oil per day (bopd) from the Spraberry Trend Area from more than 9,000 production wells. Recovery is poor, on the order of 7-10% due to the profoundly complicated nature of the reservoir, yet billions of barrels of hydrocarbons remain. We estimate over 15% of remaining reserves in domestic Class III reservoirs are in Spraberry Trend Area reservoirs. This tremendous domestic asset is a prime example of an endangered hydrocarbon resource in need of immediate technological advancements before thousands of wells are permanently abandoned. This report describes the final work of the project, ''Preferred Waterflood Management Practices for the Spraberry Trend Area.'' The objective of this project is to significantly increase field-wide production in the Spraberry Trend in a short time frame through the application of preferred practices for managing and optimizing water injection. Our goal is to dispel negative attitudes and lack of confidence in water injection and to document the methodology and results for public dissemination to motivate waterflood expansion in the Spraberry Trend. This objective has been accomplished through research in three areas: (1) detail historical review and extensive reservoir characterization, (2) production data management, and (3) field demonstration. This provides results of the final year of the three-year project for each of the three areas.

  1. Promoting Sustainable Water Management in Area Development: A Regulatory Approach

    NARCIS (Netherlands)

    Buijze, Anoeska

    2015-01-01

    Water management is an integral part of sustainable area/urban development, and this article examines the interplay between water law and governance in three cases in the Netherlands to determine what sort of written law can provide normative guidance during governance processes, whilst at the same

  2. The development of area wide traffic management scenarios

    NARCIS (Netherlands)

    Van Zuylen, H.J.; Lu, S.; Li, J.; Yusen, C.

    2014-01-01

    Traffic management in cities with congestion is a big challenge with still unused opportunities. Intersection control is a corner stone but this should be done in an area-wide context. The dominant traffic process on urban roads is the traffic flow on the intersections. Spill back is a most importan

  3. Ecosystem services of human-dominated watersheds and land use influences: a case study from the Dianchi Lake watershed in China.

    Science.gov (United States)

    Hou, Ying; Li, Bo; Müller, Felix; Chen, Weiping

    2016-11-01

    Watersheds provide multiple ecosystem services. Ecosystem service assessment is a promising approach to investigate human-environment interaction at the watershed scale. The spatial characteristics of ecosystem services are closely related to land use statuses in human-dominated watersheds. This study aims to investigate the effects of land use on the spatial variations of ecosystem services at the Dianchi Lake watershed in Southwest China. We investigated the spatial variations of six ecosystem services-food supply, net primary productivity (NPP), habitat quality, evapotranspiration, water yield, and nitrogen retention. These services were selected based on their significance at the Dianchi Lake watershed and the availability of their data. The quantification of these services was based on modeling, value transference, and spatial analysis in combination with biophysical and socioeconomic data. Furthermore, we calculated the values of ecosystem services provided by different land use types and quantified the correlations between ecosystem service values and land use area proportions. The results show considerable spatial variations in the six ecosystem services associated with land use influences in the Dianchi Lake watershed. The cropland and forest land use types had predominantly positive influences on food productivity and NPP, respectively. The rural residential area and forest land use types reduced and enhanced habitat quality, respectively; these influences were identical to those of evapotranspiration. Urban area and rural residential area exerted significantly positive influences on water yield. In contrast, water yield was negatively correlated with forest area proportion. Finally, cropland and forest had significantly positive and negative influences, respectively, on nitrogen retention. Our study emphasizes the importance of consideration of the influences from land use composition and distribution on ecosystem services for managing the ecosystems of

  4. SUSTAINABLE MANAGEMENT STRATEGY OF PROTECTED AREAS IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Rodica Manuela GOGONEA

    2015-06-01

    Full Text Available The sustainability manifested locally expanded to national, outlining the context of Romanian tourism industry under guidance protection, conservation and regeneration of environmental resources. The paper analyzes the evolution over time of the number, and surface of protected natural areas, being a reference point in the direction of strategic management thinking of tourism in the protected areas in Romania under the spectrum of sustainability, leading to a quantitative development and qualitative at high levels. The analysis of the number and surface of protected natural areas is through the data retrieved from the database Tempo-one line from the NIS.

  5. Payments for watershed services: opportunities and realities

    Energy Technology Data Exchange (ETDEWEB)

    Bond, Ivan

    2007-08-15

    Many nations have found that regulatory approaches to land and water management have limited impact. An alternative is to create incentives for sound management - under mechanisms known as payments for ecosystem services. It is a simple idea: people who look after ecosystems that benefit others should be recognised and rewarded. In the case of watersheds, downstream beneficiaries of wise upstream land and water use should compensate the stewards. To be effective these 'payments for watershed services' must cover the cost of watershed management. In developing countries, they might also aid local development and reduce poverty. But new research shows that the problems in watersheds are complex and not easily solved. Payments for watershed services do not guarantee poverty reduction and cannot replace the best aspects of regulation.

  6. Methods for interfacing IPCC climate change scenarios with higher resolution watershed management models in the Ethiopian Blue Nile Basin

    Science.gov (United States)

    Easton, Z. M.; MacAlister, C.; Fuka, D. R.

    2013-12-01

    As much as 90% of the Nile River flow that reaches Egypt originates in the Highlands of the Ethiopian Blue Nile Basin. This imbalance in water availability poses a threat to water security in the region, and could be severely impacted by projected climate change. This analysis coupled hydrodynamic/watershed models with the Intergovernmental Panel on Climate Change (IPCC) AR4 climate change scenarios to assess the potential impact on water resources and sediment dynamics. Specific AR4 scenarios include the A1B, B1, B2 and COMMIT, which were used to force the baseline hydrodynamic models calibrated against 1979-2011 streamflow for 20 sub-watersheds in the Tana and Beles basins. Transfer functions were developed to distribute the model parameters from the calibrated sub-watersheds to un-gauged portions of the basins based on a similarity index of hydrologic response units. We analyzed the scenario in two manners: first we ran all of the seven individual Global Circulation Model results in the IPCC AR4 report though our watershed models to asses the potential spread of climate change predictions; then we assessed the mean value produced for each IPCC AR4 scenario to better estimate convergence. Results indicate that the Tana basin is expected to experience an increase in mean annual flow. The Beles basin is predicted to experience a small decrease in mean annual flow. Sediment concentrations in the Tana basin increase proportionally more than the flow increase. Interestingly, and perhaps counter to what might be expected for a decrease in flow in the Beles basin, sediment concentrations increase.

  7. Sustainable Land Management in Mining Areas in Serbia and Romania

    Directory of Open Access Journals (Sweden)

    Vesna Popović

    2015-08-01

    Full Text Available The paper analyzes the impacts of mining activities on sustainable land management in mining areas in the Republic of Serbia and Romania and discusses the main challenges related to the management of these issues in legislation and practice. Particular attention is paid to land disturbance, mine waste management and land reclamation, as well as access to land for mining purposes, the transfer of mining royalties and the partnerships of the mining industry, governments, communities and civil society for sustainable mining. Both governments are willing to provide the adequate role to mining in strengthening the national economies, but they face numerous constraints in this matter. Sustainable mining practices and consistent implementation of the mining for the closure planning approach, within an improved legislative framework and in cooperation with stakeholders at all levels, create conditions for the development of creative, profitable, environmentally-sound and socially-responsible management and reuse of mine lands.

  8. Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, Patrice Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baumer, Andrew Ronald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-26

    Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste management and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste

  9. Differences of soil fertility in farmland occupation and supplement areas in the Taihu Lake watershed during 1985-2010.

    Science.gov (United States)

    Su, Weizhong; Ye, Gaobin

    2014-05-26

    Since the 1980s a series of farmland policies have been implemented in China to stabilize the balance of farmland quantity and quality against accelerating urbanization and industrialization processes. This paper aims to reveal differences of soil fertility in the farmland occupation area (FOA) and farmland supplement area (FSA). In 1985-2000 the decline of the FOA area was 181,000 ha, but the FSA rarely increased. In 2000-2010 the decline of the FOA area was 824,800 ha, but the FSA increased dramatically. The accelerating loss process is closely related to urbanization and industrialization of the locations. Most occupied farmland was still located in the areas with higher soil fertility. The FOA in 1985-2000 had higher soil fertility than the FSA, but the FSA in 2000-2010 significantly raised its soil fertility to close to the FOAs' level. The rate of excellent-good levels of the FOA in 2000-2010 decreased from 46.13% to 37.61%; The development model shifts and farmland policies implementation are the chief driving factors behind AFOS changes. The TDBF policy and the main function zoning project should continue to play an effective role in balancing the farmland system.

  10. Differences of Soil Fertility in Farmland Occupation and Supplement Areas in the Taihu Lake Watershed during 1985–2010

    Directory of Open Access Journals (Sweden)

    Weizhong Su

    2014-05-01

    Full Text Available Since the 1980s a series of farmland policies have been implemented in China to stabilize the balance of farmland quantity and quality against accelerating urbanization and industrialization processes. This paper aims to reveal differences of soil fertility in the farmland occupation area (FOA and farmland supplement area (FSA. In 1985–2000 the decline of the FOA area was 181,000 ha, but the FSA rarely increased. In 2000–2010 the decline of the FOA area was 824,800 ha, but the FSA increased dramatically. The accelerating loss process is closely related to urbanization and industrialization of the locations. Most occupied farmland was still located in the areas with higher soil fertility. The FOA in 1985–2000 had higher soil fertility than the FSA, but the FSA in 2000–2010 significantly raised its soil fertility to close to the FOAs’ level. The rate of excellent-good levels of the FOA in 2000–2010 decreased from 46.13% to 37.61%; The development model shifts and farmland policies implementation are the chief driving factors behind AFOS changes. The TDBF policy and the main function zoning project should continue to play an effective role in balancing the farmland system.

  11. Buffalo Metropolitan Area, New York Water Resources Management. Interim Report on Feasibility of Flood Management in Cazenovia Creek Watershed.

    Science.gov (United States)

    1977-03-01

    Pheucticus ludovicianus rose-breasted grosbeak Passerina cyanea indigo bunting Carpodacus purpureus purple finch Spinus tristis American goldfish...Henslow’s sparrow Pooecetes graminius vesper sparrow Junko hyemalis slate-colored junko (2) Spizella Passerina chipping sparrow Spizella pusilla

  12. Buffalo Metropolitan Area, New York Water Resources Management Study, Tonawanda Creek Watershed. Interim Flood Management Study. Appendices.

    Science.gov (United States)

    1980-12-01

    T I t . ITLAAEIAI I-I caI’I 0 x4 20 3 40 IOSP 9 20 40 5~ 7 DNA WAGE RM bA, INSQUAE 4U PLT4A lii: or Izo Wi - I > :’’’4, . (.0 0’ Hi ,. TOAWND CRE...water scorpions), decapods (crayfish), ephemeropterans (mayflies), gastropods (snails), isopods, lepidopterans (water moths), megalopterans

  13. GRA prospectus: optimizing design and management of protected areas

    Science.gov (United States)

    Bernknopf, Richard; Halsing, David

    2001-01-01

    Protected areas comprise one major type of global conservation effort that has been in the form of parks, easements, or conservation concessions. Though protected areas are increasing in number and size throughout tropical ecosystems, there is no systematic method for optimally targeting specific local areas for protection, designing the protected area, and monitoring it, or for guiding follow-up actions to manage it or its surroundings over the long run. Without such a system, conservation projects often cost more than necessary and/or risk protecting ecosystems and biodiversity less efficiently than desired. Correcting these failures requires tools and strategies for improving the placement, design, and long-term management of protected areas. The objective of this project is to develop a set of spatially based analytical tools to improve the selection, design, and management of protected areas. In this project, several conservation concessions will be compared using an economic optimization technique. The forest land use portfolio model is an integrated assessment that measures investment in different land uses in a forest. The case studies of individual tropical ecosystems are developed as forest (land) use and preservation portfolios in a geographic information system (GIS). Conservation concessions involve a private organization purchasing development and resource access rights in a certain area and retiring them. Forests are put into conservation, and those people who would otherwise have benefited from extracting resources or selling the right to do so are compensated. Concessions are legal agreements wherein the exact amount and nature of the compensation result from a negotiated agreement between an agent of the conservation community and the local community. Funds are placed in a trust fund, and annual payments are made to local communities and regional/national governments. The payments are made pending third-party verification that the forest expanse

  14. Status of vegetation management activity in the Bald Eagle Management Area and other sites at Rocky Mountain Arsenal National Wildlife Area final report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The vegetation management program for the Bald Eagle Management Area (BEMA) at Rocky Mountain Arsenal National Wildlife Area (RMA, the Arsenal) was initiated in the...

  15. Small Water System Management Program: 100 K Area

    Energy Technology Data Exchange (ETDEWEB)

    Hunacek, G.S. Jr. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-06-29

    Purposes of this document are: to provide an overview of the service and potable water system presently in service at the Hanford Site`s 100 K Area; to provide future system forecasts based on anticipated DOE activities and programs; to delineate performance, design, and operations criteria; and to describe planned improvements. The objective of the small water system management program is to assure the water system is properly and reliably managed and operated, and continues to exist as a functional and viable entity in accordance with WAC 246-290-410.

  16. Agroforestry buffers for nonpoint source pollution reductions from agricultural watersheds.

    Science.gov (United States)

    Udawatta, Ranjith P; Garrett, Harold E; Kallenbach, Robert

    2011-01-01

    Despite increased attention and demand for the adoption of agroforestry practices throughout the world, rigorous long-term scientific studies confirming environmental benefits from the use of agroforestry practices are limited. The objective was to examine nonpoint-source pollution (NPSP) reduction as influenced by agroforestry buffers in watersheds under grazing and row crop management. The grazing study consists of six watersheds in the Central Mississippi Valley wooded slopes and the row crop study site consists of three watersheds in a paired watershed design in Central Claypan areas. Runoff water samples were analyzed for sediment, total nitrogen (TN), and total phosphorus (TP) for the 2004 to 2008 period. Results indicate that agroforestry and grass buffers on grazed and row crop management sites significantly reduce runoff, sediment, TN, and TP losses to streams. Buffers in association with grazing and row crop management reduced runoff by 49 and 19%, respectively, during the study period as compared with respective control treatments. Average sediment loss for grazing and row crop management systems was 13.8 and 17.9 kg ha yr, respectively. On average, grass and agroforestry buffers reduced sediment, TN, and TP losses by 32, 42, and 46% compared with the control treatments. Buffers were more effective in the grazing management practice than row crop management practice. These differences could in part be attributed to the differences in soils, management, and landscape features. Results from this study strongly indicate that agroforestry and grass buffers can be designed to improve water quality while minimizing the amount of land taken out of production.

  17. Identifying Riparian Buffer Effects on Stream 1 Nitrogen in Southeastern Coastal Plain Watersheds

    Science.gov (United States)

    Riparian areas have long demonstrated their ability to attenuate nutrients and sediments from agricultural runoff at the field scale; however, to inform effective nutrient management choices, the impact of riparian buffers on water quality services must be assessed at watershed s...

  18. Hydrologic analysis for selection and placement of conservation practices at the watershed scale

    Science.gov (United States)

    Wilson, C.; Brooks, E. S.; Boll, J.

    2012-12-01

    When a water body is exceeding water quality standards and a Total Maximum Daily Load has been established, conservation practices in the watershed are able to reduce point and non-point source pollution. Hydrological analysis is needed to place conservation practices in the most hydrologically sensitive areas. The selection and placement of conservation practices, however, is challenging in ungauged watersheds with little or no data for the hydrological analysis. The objective of this research is to perform a hydrological analysis for mitigation of erosion and total phosphorus in a mixed land use watershed, and to select and place the conservation practices in the most sensitive areas. The study area is the Hangman Creek watershed in Idaho and Washington State, upstream of Long Lake (WA) reservoir, east of Spokane, WA. While the pollutant of concern is total phosphorus (TP), reductions in TP were translated to total suspended solids or reductions in nonpoint source erosion and sediment delivery to streams. Hydrological characterization was done with a simple web-based tool, which runs the Water Erosion Prediction Project (WEPP) model for representative land types in the watersheds, where a land type is defined as a unique combination of soil type, slope configuration, land use and management, and climate. The web-based tool used site-specific spatial and temporal data on land use, soil physical parameters, slope, and climate derived from readily available data sources and provided information on potential pollutant pathways (i.e. erosion, runoff, lateral flow, and percolation). Multiple land types representative in the watershed were ordered from most effective to least effective, and displayed spatially using GIS. The methodology for the Hangman Creek watershed was validated in the nearby Paradise Creek watershed that has long-term stream discharge and monitoring as well as land use data. Output from the web-based tool shows the potential reductions for different

  19. The impact of topographical characteristics and land use change on the quality of Umbaniun micro-watershed water resources, Meghalaya

    Directory of Open Access Journals (Sweden)

    Phyllbor Rymbai

    2012-03-01

    Full Text Available A watershed is a geohydrological unit draining at a common point. Such natural unit has evolved through rain water interaction with land mass, typically comprising arable land, non-arable land and natural drainage lines in rain-fed areas. Sustainable production depends on the health, vitality and purity of a particular environment in which land and water are important constituents. A pilot study was thus undertaken to study the geomorphology, land-use systems and their impact on water resource management on the Meghalaya Umbaniun micro-watershed. In this Micro-watershed (3951.18 ha, water body covers an area of 5.69ha (0.14%. The paper highlights the linkage between geomorphology, land use systems and its impact on quality of water resources on the Umbaniun Micro-Watershed, Meghalaya. Topographical and physical-chemical characteristics, such as pH, conductivity, dissolved oxygen, turbidity and water temperature, were used as environmental degradation indicators

  20. 61 FR 42052 - Owyhee Resource Area, ID; Resource Management Plan, etc.

    Science.gov (United States)

    1996-08-13

    ... Bureau of Land Management Owyhee Resource Area, ID; Resource Management Plan, etc. AGENCY: Bureau of Land... Management Plan (RMP) and associated draft Environmental Impact Statement (EIS) for the Owyhee Resource Area... be sent to: Owyhee Area Manager, Bureau of Land Management, Boise Field Office, 3948...

  1. Flood risk management: cases studies in French Mediterranean area

    Directory of Open Access Journals (Sweden)

    Defossez Stéphanie

    2016-01-01

    Full Text Available In France, for a long time, flood risk management has only oriented to controlling flood hazard with structural measures such as dikes. But since 1990’s many events have proved they have not totally efficient measures. So, institutions decided it’s necessary to manage flood risk with others ways like prevention. Risk management is so organize about holistic policies with different stakeholders and societies exposed at risk. Our study have the aim to demonstrate through several examples how flood risk is manage in French Mediterranean area. Post event feedback permit us to evaluate damage and crisis management. This method is use for show if this strategies is efficient or not. This study demonstrate how is risk management in France. Regulations are they efficient, so have they an influence about the reduction of deaths and damages? Individual measures are they more important than collective action? Finally, what policies and strategies are used and effective? The main results about cases studies show that natural event has most important that publics policies and it determines preventive policies.

  2. Determining management strategies for the Sarikum Nature Protection Area.

    Science.gov (United States)

    Öztürk, Sevgi

    2015-03-01

    In recent years, many environmental problems have become important factors in promoting the economic need to develop tourist activity: climate change such as energy wars, increasing hunger and aridity, population increases in urban areas, excessive and unthinking use of natural resources, difficult international relations, economic competition, and increasing environmental stress. Trends in global tourism have changed with changes in culture and our attitude to nature. Changes in both the profile and consumption patterns of tourists have called for the need to balance the use of natural and cultural assets with the need to adequately protect them. In this study, the Sarikum Nature Protection Area (SNPA) was selected as a case study because of its significance as a Turkish wetland area and the variety of different ecosystems coexisting within it. The study focussed on management strategies, but also provides a broader strategy for an area that currently has no management plan. Strengths and weaknesses, opportunities and threats (SWOT) analyses of the area were gathered and analyzed using R'WOT analysis (ranking + SWOT), a multi-criteria assessment method, in order to determine strategies, obtain the participation of interest groups, and assess their opinions and attitudes. The analysis showed the following: the rich biological diversity and the existence of endemic species were the reserve's most significant strength; the presence of natural areas in surrounding regions was the most significant opportunity; the shortage of infrastructure and lack of legal regulation of ecotourism was the most significant weakness; and the lack of a management plan was the most immediate threat.

  3. Discussions about some theoretical issues of small watershed comprehensive management%小流域综合治理的几个理论问题探讨

    Institute of Scientific and Technical Information of China (English)

    余新晓

    2012-01-01

    Soil and water resources are vital basic resources in mankind' s living and development progress. The Loss of soil and water resources caused by soil erosion has already seriously obstructed economy development of our country, which has been the first environmental problem. Therefore, it is essential for our country to carry out comprehensive management of soil erosion, with small watershed as unit. After SO years of exploration and development, the achievements of the small watershed management model are positive and remarkable. However, many weaknesses and outstanding theoretical problems we faced must be resolved. In order to solve the outstanding theory problems and provide some references for future study, this paper summarized the problems existed in comprehensive management of small watershed from the following aspects: soil erosion, hydrology and water resources, ecosystem economy, health, environment and ecosystem engineering.%水土资源是人类生存和发展过程中不可代替的基础资源,而由土壤侵蚀引发的水土资源流失问题已严重阻碍了我国经济的可持续发展,成为我国的头号环境问题.为此以小流域为单元,开展水土流失综合治理是我国可持续发展的必然选择.经过50多年的不断探索与发展,小流域综合治理模式成效显著,治理模式已日趋成熟,然而在肯定成果的同时,也面临着不少薄弱环节和突出理论问题亟待解决.为此,主要基于理论角度,从流域土壤侵蚀、流域水文与水资源、流域生态经济、流域生态系统健康、流域环境和流域生态工程等6方面对小流域综合治理过程中存在的问题加以总结,为小流域综合治理的未来发展提供一定参考.

  4. Hydrosedimentological modeling of watershed in southeast Brazil, using SWAT

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2010-08-01

    Full Text Available The quantitative evaluation of soil loss due to erosion, of water loss and of load sediments that reach water bodies is fundamental to the environmental planning of a watershed, contributing to the process of decision for best options for soil tillage and water quality maintenance. Estimates of these data have been accomplished throughout the world using empiric or conceptual models. Besides being economically viable in scenarios development, environmental models may contribute to the location of critical areas, leading to emergency contention operations caused by erosive processes. Among these models, we highlight the SWAT (Soil and Water Assessment Tool which was applied in São Bartolomeu watershed, located in the Zona da Mata, Minas Gerais state, southeastern Brazil, to identify areas of greater sensitivity to erosion considering the soil type and land use. To validate the model, 10 experimental plots were installed in the dominant crops of the watershed between 2006 and 2008, for monitoring the runoff and soil losses under natural rainfall. Field results and simulations showed the SWAT efficiency for sediment yield and soil losses estimations, as they are influenced by factors such as soil moisture, rainfall intensity, soil type and land use (dominated by Oxisols, Ultisols, Inceptisols and Entisols. These losses can be reduced significantly by improving crops management of. A simulation scenario replacing pastures cover by Eucalyptus was introduced, which significantly reduced soil loss in many parts of the watershed.

  5. Groundwater Quality Assessment for Waste Management Area U: First Determination

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Floyd N.; Chou, Charissa J.

    2000-08-04

    As a result of the most recent recalculation one of the indicator parameters, specific conductance, exceeded its background value in downgradient well 299-W19-41, triggering a change from detection monitoring to groundwater quality assessment program. The major contributors to the higher specific conductance are nonhazardous constituents (i.e., sodium, calcium, magnesium, chloride, sulfate, and bicarbonate). Nitrate, chromium, and technetium-99 are present and are increasing; however, they are significantly below their drinking waster standards. Interpretation of groundwater monitoring data indicates that both the nonhazardous constituents causing elevated specific conductance in groundwater and the tank waste constituents present in groundwater at the waste management area are a result of surface water infiltration in the southern portion of the facility. There is evidence for both upgradient and waste management area sources for observed nitrate concentrations. There is no indication of an upgradient source for the observed chromium and technetium-99.

  6. Segmentation by watersheds : definition and parallel implementation

    NARCIS (Netherlands)

    Roerdink, Jos B.T.M.; Meijster, Arnold

    1997-01-01

    The watershed algorithm is a method for image segmentation widely used in the area of mathematical morphology. In this paper we first address the problem of how to define watersheds. It is pointed out that various existing definitions are not equivalent. In particular we explain the differences betw

  7. 59 FR- Intent To Gather Wild Horses From the Owyhee Herd Management Area

    Science.gov (United States)

    1994-10-17

    ... Bureau of Land Management [ID-015-1060-04] Intent To Gather Wild Horses From the Owyhee Herd Management... Hardtrigger and Black Mountain Herd Areas located within the Owyhee Herd Management Area. A public...

  8. Environmental Policy Beliefs of Stakeholders in Protected Area Management

    Science.gov (United States)

    Hovardas, Tasos; Poirazidis, Kostas

    2007-04-01

    Although the importance of understanding stakeholder beliefs regarding environmental policy has been noted by many authors, research focusing on the heterogeneity of stakeholder views is still very scarce and concentrated on a product-oriented definition of stakeholders. The aim of the present study is to address this gap by examining environmental policy beliefs of stakeholder groups engaged in protected area management. Questionnaires containing 73 five-point Likert scale items were administered to eight different stakeholder groups involved in the management of Greek protected areas. Items referred to core beliefs on environmental policy, namely, the value framework and sustainable development, and secondary beliefs, that is, beliefs on social consensus and ecotourism development. Our study used as a starting point respondent recruitment on the basis of a traditional product-centered approach. We investigated whether environmental policy beliefs can be used to effectively segregate stakeholders in well-defined segments, which override the product-oriented definition of stakeholders. Indeed, K-means clustering revealed an innovation-introduction and an implementation-charged sample segment. The instrument utilized in this research proved quite reliable and valid in measuring stakeholder environmental policy beliefs. Furthermore, the methodology implied that stakeholder groups differ in a significant number of belief-system elements. On the other hand, stakeholder groups were effectively distinguished on a small set of both core and secondary beliefs. Therefore, the instrument used can be an effective tool for determining and monitoring environmental policy beliefs of stakeholders in protected area management. This is of considerable importance in the Greek case, given the recent establishment of 27 administrative bodies of protected areas, all of which are required to incorporate public consultation into management practices.

  9. The relative importance of road density and physical watershed features in determining coastal marsh water quality in Georgian Bay.

    Science.gov (United States)

    Decatanzaro, Rachel; Cvetkovic, Maja; Chow-Fraser, Patricia

    2009-09-01

    We used a GIS-based approach to examine the influence of road density and physical watershed features (watershed size, wetland cover, and bedrock type) on water quality in coastal marshes of Georgian Bay, Ontario. We created a GIS that included landscape information and water-quality data from a 9-year synoptic survey of 105 coastal marshes covering 28 quaternary watersheds. Multiple regressions and partial correlations were used to discern confounding effects of human-induced (road density) versus natural physical watershed determinants of water quality. Road density was the dominant factor influencing many water quality variables, showing positive correlations with specific conductivity (COND), total suspended solids (TSS), and inorganic suspended solids (ISS) and a negative correlation with overall Water Quality Index scores. Road density also showed positive correlations with total nitrate nitrogen (TNN) and total phosphorus (TP). By comparison, larger watershed area was the main factor leading to elevated TP concentrations. The proportion of the watershed occupied by wetlands explained the largest amount of variation in TNN concentrations (negative correlation) and was also negatively correlated with COND and positively correlated with TSS and ISS when we controlled for road density. Bedrock type did not have a significant effect in any of the models. Our findings suggest that road density is currently the overriding factor governing water quality of coastal marshes in Georgian Bay during the summer low-flow period. We recommend that natural variation in physical watershed characteristics be considered when developing water quality standards and management practices for freshwater coastal areas.

  10. Weeds of Hawaii’s lands devoted to watershed protection and biodiversity conservation: Role of biological control as the missing piece in an integrated pest management strategy

    Science.gov (United States)

    Medeiros, Arthur C.; Loope, L.L.

    2011-01-01

    Despite Hawaii’s reputation as an extinction icon, significant biological resources remain, especially in watersheds, natural areas, and specialized edaphic sites (e.g., lava dry forest, coastal). While direct habitat destruction by humans continues, human-facilitated biological invaders are currently the primary agents of continuing degradation. The ability of invasive plants to have prolific seed production, efficient dispersal systems, and to become established in dense vegetation, complicated by Hawaii’s rugged topography, appears to render mechanical and chemical control as mere holding actions. Costly, ‘environmentally unfriendly’, and often ineffective, strategies using chemical and mechanical control on a large scale, despite the most valiant of efforts, can be viewed simply as attempts to buy time. Without increased levels of safely tested biological control, the seemingly inevitable result is the landscape level transformation of native forests, with potentially catastrophic consequences to cultural, biological, water, and economic resources. Increased levels of effective biological control for certain intractable invasive species appear to comprise a conspicuous ‘missing piece’ in our efforts to protect Hawaiian watersheds and other conservation lands.

  11. Hydrologic response to stormwater control measures in urban watersheds

    Science.gov (United States)

    Bell, Colin D.; McMillan, Sara K.; Clinton, Sandra M.; Jefferson, Anne J.

    2016-10-01

    Stormwater control measures (SCMs) are designed to mitigate deleterious effects of urbanization on river networks, but our ability to predict the cumulative effect of multiple SCMs at watershed scales is limited. The most widely used metric to quantify impacts of urban development, total imperviousness (TI), does not contain information about the extent of stormwater control. We analyzed the discharge records of 16 urban watersheds in Charlotte, NC spanning a range of TI (4.1-54%) and area mitigated with SCMs (1.3-89%). We then tested multiple watershed metrics that quantify the degree of urban impact and SCM mitigation to determine which best predicted hydrologic response across sites. At the event time scale, linear models showed TI to be the best predictor of both peak unit discharge and rainfall-runoff ratios across a range of storm sizes. TI was also a strong driver of both a watershed's capacity to buffer small (e.g., 1-10 mm) rain events, and the relationship between peak discharge and precipitation once that buffering capacity is exceeded. Metrics containing information about SCMs did not appear as primary predictors of event hydrologic response, suggesting that the level of SCM mitigation in many urban watersheds is insufficient to influence hydrologic response. Over annual timescales, impervious surfaces unmitigated by SCMs and tree coverage were best correlated with streamflow flashiness and water yield, respectively. The shift in controls from the event scale to the annual scale has important implications for water resource management, suggesting that overall limitation of watershed imperviousness rather than partial mitigation by SCMs may be necessary to alleviate the hydrologic impacts of urbanization.

  12. Potential and limitations of Payments for Environmental Services (PES as a means to manage watershed services in mainland Southeast Asia

    Directory of Open Access Journals (Sweden)

    Alana George

    2009-04-01

    Full Text Available Based on two case studies conducted at local sites in Northern Thailand and Lao PDR, the objectives of this paper are (i to assess whether conditions for the establishment of PES at the watershed level exist in the uplands of mainland SE Asia and (ii to examine and discuss limitations that are likely to impinge on direct transfer of the PES concept as well as the institutional adaptations and support that are required for the successful implementation of PES markets in this regional context. The study's main findings are that: (i acceptance of PES principles and constraints are directly related to stakeholders' perception of their land rights irrespective of their actual rights; (ii willingness to pay (WTP is very low among local stakeholders, making any PES market unlikely to emerge without external support; (iii the classical scheme for watershed services hardly applies in its original form because environmental service (ES providers and buyers are generally the same people; (iv where potential ES buyers feel that ES providers are better-off or wealthier than them, they do not have any WTP for ES; (v good governance, including a strong liaising at various levels between people and the authorities is a strong prerequisite for the successful establishment of PES markets, even without direct government funding

  13. Forrest Conservation Area : Management & Implementation FY 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Brent

    2008-12-01

    The Confederated Tribes of Warm Springs Reservation of Oregon (Tribes) acquired the Forrest Conservation Area during July of 2002. The property is located in the Upper John Day subbasin within the Columbia basin. The property consists of two parcels comprising 4,232 acres. The Mainstem parcel consists of 3,445 acres and is located 1/2 mile to the east of Prairie City, Oregon on the mainstem John Day River. The Middle Fork parcel consists of 786 acres and is located one mile to the west of the town of Austin, OR on the Middle Fork John Day River. The Forrest Conservation Area is under a memorandum of agreement with the Bonneville Power Administration (BPA) to provide an annual written report generally describing the real property interests of the project and management activities undertaken or in progress. Acquisition of the Forrest Conservation Area was funded by BPA as part of their program to protect, mitigate, and enhance fish and wildlife habitat affected by hydroelectric facilities on the Columbia River and its tributaries. The intent of the Conservation Area is to partially mitigate fish and wildlife impacts for the John Day Dam on the Columbia River as outlined in the Northwest Power Planning Council's Wildlife Program (NPPC 1994, {section}11.1, {section}7.6). While the Tribes hold fee-title to the property, the BPA has assured a level of management funding for the protection and restoration of fish and wildlife habitat through a memorandum of agreement.

  14. Ecotourism management in Banat’s protected areas

    Directory of Open Access Journals (Sweden)

    Ionut Mircea Petroman

    2014-11-01

    Full Text Available The strategies developed in the field of ecotourismcontribute to the creation of a favourable environment in this sector ofactivity and to the meeting of tourists’ demands without endangering thenatural resources in the Banat’s protected areas. Management should take intoaccount the main requirements regarding the ecological exploitation of theareas, the judicious exploitation of the tourist flows and the establishment ofsupport thresholds as well as the implementation of material recycling measuresin the area. Cooperation between rural and ecological tourism produces benefitssuch as diversification of economic activities, development of infrastructureand increase of demand for rural goods and services – all this contributing tothe long-term economic stability in areas with such natural resources.

  15. Assessing the effectiveness of winter cover crop on nitrate reduction in two-paired sub-basins on the Coastal Plain of the Chesapeake Bay Watershed

    Science.gov (United States)

    Lee, S.; Yeo, I. Y.; Sadeghi, A. M.; Mccarty, G.; Hively, W. D.; Lang, M. W.

    2014-12-01

    Best management practices (BMPs) have been widely adopted to improve water quality throughout the Chesapeake Bay Watershed (CBW). Winter cover crops (WCC) use has been highlighted for the reduction of nitrate leaching over the fallow season. Although various WCC practices are currently conducted in local croplands, the water quality improvement benefits of WCC have not been studied thoroughly at the watershed scale. The objective of this study is to assess the long-term impacts of WCC on reducing nitrate loadings using a processed-based watershed model, Soil and Water Assessment Tool (SWAT). Remote sensing based estimates of WCC biomass will be used to calibrate plant growth processes of SWAT and its nutrient cycling. The study will be undertaken in two-paired agricultural watersheds in the Coastal Plain of CBW. Multiple WCC practice scenarios will be prepared to investigate how nitrate loading varies with crop species, planting dates, and implementation areas. The performance of WCC on two-paired watersheds will be compared in order to understand the effects of different watershed characteristics on nitrate uptake by crops. The results will demonstrate the nitrate reduction efficiency of different WCC practices and identify the targeting area for WCC implementation at the watershed scale. This study will not only integrate remote sensing data into the physically based model but also extend our understandings of WCC functions. This will provide key information for effective conservation decision making. Key words: Water quality, Chesapeake Bay Watershed, Winter Cover Crop, Soil and Water Assessment Tool (SWAT)

  16. Management of the water balance and quality in mining areas

    Science.gov (United States)

    Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani

    2015-04-01

    Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to

  17. Discussion on the Landscape Pattern Change of Watershed

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-bin

    2006-01-01

    Evaluating the transition of landscape can understand that ecosystem processes are being influenced by disturbance. For this reason, it is essential that using appropriate mapping techniques and quantitative methods to assess landscape condition within different disturbance regimes. Landscape metrics were calculated for segmented areas of homogeneous land use in watershed to allow understanding and characterization of ecosystem.Chen-yu-lan watershed, located in the central of Taiwan, is a sensitivity area for disaster such as earthquakes and typhoons. In this study we focus on how the natural disaster affect landscape pattern. The study shows that landscape metrics can measure the effect of typhoon and earthquake disturbance regime. The analysis shows that evaluating landscape transition can contribute more detailed information for managing ecosystem.

  18. Nevada Test Site, 2006 Waste Management Monitoring Report, Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    David B. Hudson

    2007-06-30

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2006 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2006; Warren and Grossman, 2007; National Security Technologies, LLC, 2007). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2006 totaled 98.6 millimeters (mm) (3.9 inches [in.]) at the Area 3 RWMS and 80.7 mm (3.2 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 remains at the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that evaporation continues to slowly remove soil moisture that came from the heavy precipitation in the fall of 2004 and the spring of

  19. Regionalization of SWAT Model Parameters for Use in Ungauged Watersheds

    Directory of Open Access Journals (Sweden)

    Indrajeet Chaubey

    2010-11-01

    Full Text Available There has been a steady shift towards modeling and model-based approaches as primary methods of assessing watershed response to hydrologic inputs and land management, and of quantifying watershed-wide best management practice (BMP effectiveness. Watershed models often require some degree of calibration and validation to achieve adequate watershed and therefore BMP representation. This is, however, only possible for gauged watersheds. There are many watersheds for which there are very little or no monitoring data available, thus the question as to whether it would be possible to extend and/or generalize model parameters obtained through calibration of gauged watersheds to ungauged watersheds within the same region. This study explored the possibility of developing regionalized model parameter sets for use in ungauged watersheds. The study evaluated two regionalization methods: global averaging, and regression-based parameters, on the SWAT model using data from priority watersheds in Arkansas. Resulting parameters were tested and model performance determined on three gauged watersheds. Nash-Sutcliffe efficiencies (NS for stream flow obtained using regression-based parameters (0.53–0.83 compared well with corresponding values obtained through model calibration (0.45–0.90. Model performance obtained using global averaged parameter values was also generally acceptable (0.4 ≤ NS ≤ 0.75. Results from this study indicate that regionalized parameter sets for the SWAT model can be obtained and used for making satisfactory hydrologic response predictions in ungauged watersheds.

  20. Hydrologic conditions and water quality of rainfall and storm runoff for two agricultural areas of the Oso Creek watershed, Nueces County, Texas, 2005-08

    Science.gov (United States)

    Ockerman, Darwin J.; Fernandez, Carlos J.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Texas State Soil and Water Conservation Board, Coastal Bend Bays and Estuaries Program, and Texas AgriLife Research and Extension Center at Corpus Christi, studied hydrologic conditions and water quality of rainfall and storm runoff of two primarily agricultural subwatersheds of the Oso Creek watershed in Nueces County, Texas. One area, the upper West Oso Creek subwatershed, is about 5,145 acres. The other area, a subwatershed drained by an unnamed tributary to Oso Creek (hereinafter, Oso Creek tributary), is about 5,287 acres. Rainfall and runoff (streamflow) were continuously monitored at the outlets of the two subwatersheds during the study period October 2005-September 2008. Seventeen rainfall samples were collected and analyzed for nutrients and major inorganic ions. Twenty-four composite runoff water-quality samples (12 at West Oso Creek, 12 at Oso Creek tributary) were collected and analyzed for nutrients, major inorganic ions, and pesticides. Twenty-six discrete suspended-sediment samples (12 West Oso Creek, 14 Oso Creek tributary) and 17 bacteria samples (10 West Oso Creek, 7 Oso Creek tributary) were collected and analyzed. These data were used to estimate, for selected constituents, rainfall deposition to and runoff loads and yields from the two subwatersheds. Quantities of fertilizers and pesticides applied in the two subwatersheds were compared with quantities of nutrients and pesticides in rainfall and runoff. For the study period, total rainfall was greater than average. Most of the runoff from the two subwatersheds occurred in response to a few specific storm periods. The West Oso Creek subwatershed produced more runoff during the study period than the Oso Creek tributary subwatershed, 13.95 inches compared with 9.45 inches. Runoff response was quicker and peak flows were higher in the West Oso Creek subwatershed than in the Oso Creek tributary subwatershed. Total nitrogen runoff yield for the 3

  1. Testing the Hydrological Landscape Unit Classification System and Other Terrain Analysis Measures for Predicting Low-Flow Nitrate and Chloride in Watersheds

    OpenAIRE

    Poor, C.J.; J. J. McDonnell; Bolte, J.

    2008-01-01

    Elevated nitrate concentrations in streamwater are a major environmental management problem. While land use exerts a large control on stream nitrate, hydrology often plays an equally important role. To date, predictions of low-flow nitrate in ungauged watersheds have been poor because of the difficulty in describing the uniqueness of watershed hydrology over large areas. Clearly, hydrologic response varies depending on the states and stocks of water, flow pathways, and residence times. How to...

  2. SPECIFIC DEGRADATION OF WATERSHEDS

    Institute of Scientific and Technical Information of China (English)

    Boubacar KANE; Pierre Y.JULIEN

    2007-01-01

    An extensive database of reservoir sedimentation surveys throughout continental United States is compiled and analyzed to determine specific degradation SD relationships as function of mean annual rainfall R, drainage area A, and watershed slope S. The database contains 1463 field measurements and specific degradation relationships are defined as function of A, R and S. Weak trends and significant variability in the data are noticeable. Specific degradation measurements are log normally distributed with respect to R, A, and S and 95% confidence intervals are determined accordingly. The accuracy of the predictions does not significantly increase as more independent variables are added to the regression analyses.

  3. pyLIDEM: A Python-Based Tool to Delineate Coastal Watersheds Using LIDAR Data

    Science.gov (United States)

    O'Banion, R.; Alameddine, I.; Gronewold, A.; Reckhow, K.

    2008-12-01

    Accurately identifying the boundary of a watershed is one of the most fundamental and important steps in any hydrological assessment. Representative applications include defining a study area, predicting overland flow, estimating groundwater infiltration, modeling pollutant accumulation and wash-off rates, and evaluating effectiveness of pollutant mitigation measures. The United States Environmental Protection Agency (USEPA) Total Maximum Daily Load (TMDL) program, the most comprehensive water quality management program in the United States (US), is just one example of an application in which accurate and efficient watershed delineation tools play a critical role. For example, many impaired water bodies currently being addressed through the TMDL program drain small coastal watersheds with relatively flat terrain, making watershed delineation particularly challenging. Most of these TMDL studies use 30-meter digital elevation models (DEMs) that rarely capture all of the small elevation changes in coastal watersheds, leading to errors not only in watershed boundary delineation, but in subsequent model predictions (such as watershed runoff flow and pollutant deposition rate predictions) for which watershed attributes are key inputs. Manually delineating these low-relief coastal watersheds through the use of expert knowledge of local water flow patterns, often produces relatively accurate (and often more accurate) watershed boundaries as compared to the boundaries generated by the 30-meter DEMs. Yet, manual delineation is a costly and time consuming procedure that is often not opted for. There is a growing need, therefore, particularly to address the ongoing needs of the TMDL program (and similar environmental management programs), for software tools which can utilize high resolution topography data to more accurately delineate coastal watersheds. Here, we address this need by developing pyLIDEM (python LIdar DEM), a python-based tool which processes bare earth high

  4. 50 CFR 665.806 - Longline fishing prohibited area management.

    Science.gov (United States)

    2010-10-01

    .... W. long. A 18°05′ 155°40′ L 18°25′ 155°40′ M 19°00′ 154°45′ N 19°15′ 154°25′ O 19°40′ 154°20′ P 20... PACIFIC Western Pacific Pelagic Fisheries § 665.806 Longline fishing prohibited area management. (a... follows: Name N. lat. W. long. Nihoa Island 23°05′ 161°55′ Necker Island 23°35′ 164°40′ French...

  5. Data Base for the Management of Green Urban Areas

    Directory of Open Access Journals (Sweden)

    Sandro Parinello

    2012-11-01

    Full Text Available This research is aimed to studying the reading systems and identify opportunities for the analysis of complex equipment plants that live in urban areas. Analyzing census systems, generally used for the creation of databases and archives on virtual plant health of ornamental species that inhabit urban environments, we propose a system of interaction between the clouds, provided by the laser scanner, and banks virtual data, integrating quantitative understanding of digital archives, with descriptive data, creating useful tools for the management of urban space for the comprehensive interpretation of the various activities of knowledge on the green and the city.

  6. Results-based management - Developing one's key results areas (KRAs).

    Science.gov (United States)

    Kansal, Om Prakash; Goel, Sonu

    2015-01-01

    In spite of aspiring to be a good manager, we public health experts fail to evaluate ourselves against our personal and professional goals. The Key Result Areas (KRAs) or key performance indicators (KPIs) help us in setting our operational (day-to-day) and/or strategic (long-term) goals followed by grading ourselves at different times of our careers. These shall help in assessing our strengths and weaknesses. The weakest KRA should set the maximum extent to which one should use his/her skills and abilities to have the greatest impact on his/her career.

  7. An Intelligent Parking Management System for Urban Areas

    OpenAIRE

    Juan A. Vera-Gómez; Alexis Quesada-Arencibia; García, Carmelo R.; Raúl Suárez Moreno; Fernando Guerra Hernández

    2016-01-01

    In this article we describe a low-cost, minimally-intrusive system for the efficient management of parking spaces on both public roads and controlled zones. This system is based on wireless networks of photoelectric sensors that are deployed on the access roads into and out of these areas. The sensors detect the passage of vehicles on these roads and communicate this information to a data centre, thus making it possible to know the number of vehicles in the controlled zone and the occupancy l...

  8. Integrated Landsat Image Analysis and Hydrologic Modeling to Detect Impacts of 25-Year Land-Cover Change on Surface Runoff in a Philippine Watershed

    Directory of Open Access Journals (Sweden)

    Enrico Paringit

    2011-05-01

    Full Text Available Landsat MSS and ETM+ images were analyzed to detect 25-year land-cover change (1976–2001 in the critical Taguibo Watershed in Mindanao Island, Southern Philippines. This watershed has experienced historical modifications of its land-cover due to the presence of logging industries in the 1950s, and continuous deforestation due to illegal logging and slash-and-burn agriculture in the present time. To estimate the impacts of land-cover change on watershed runoff, land-cover information derived from the Landsat images was utilized to parameterize a GIS-based hydrologic model. The model was then calibrated with field-measured discharge data and used to simulate the responses of the watershed in its year 2001 and year 1976 land-cover conditions. The availability of land-cover information on the most recent state of the watershed from the Landsat ETM+ image made it possible to locate areas for rehabilitation such as barren and logged-over areas. We then created a “rehabilitated” land-cover condition map of the watershed (re-forestation of logged-over areas and agro-forestation of barren areas and used it to parameterize the model and predict the runoff responses of the watershed. Model results showed that changes in land-cover from 1976 to 2001 were directly related to the significant increase in surface runoff. Runoff predictions showed that a full rehabilitation of the watershed, especially in barren and logged-over areas, will be likely to reduce the generation of a huge volume of runoff during rainfall events. The results of this study have demonstrated the usefulness of multi-temporal Landsat images in detecting land-cover change, in identifying areas for rehabilitation, and in evaluating rehabilitation strategies for management of tropical watersheds through its use in hydrologic modeling.

  9. Measuring environmental sustainability of water in watersheds.

    Science.gov (United States)

    Hester, Erich T; Little, John C

    2013-08-06

    Environmental sustainability assessment is a rapidly growing field where measures of sustainability are used within an assessment framework to evaluate and compare alternative actions. Here we argue for the importance of evaluating environmental sustainability of water at the watershed scale. We review existing frameworks in brief before reviewing watershed-relevant measures in more detail. While existing measures are diverse, overlapping, and interdependent, certain attributes that are important for watersheds are poorly represented, including spatial explicitness and the effect of natural watershed components, such as rivers. Most studies focus on one or a few measures, but a complete assessment will require use of many existing measures, as well as, perhaps, new ones. Increased awareness of the broad dimensions of environmental sustainability as applied to water management should encourage integration of existing approaches into a unified assessment framework appropriate for watersheds.

  10. Weed management in tropical turfgrass areas: A review

    Directory of Open Access Journals (Sweden)

    Uddin Kamal M.D.

    2012-01-01

    Full Text Available Cultural practices promoting vigorous, environmentally friendly dense turf are discussed. These are the most important and least recognized means of preventing weed establishment and encroachment which includes appropriate propagation material selection, sanitation and cultivation, adjustment of planting time, manual weed control (hand pulling, hoeing and rouging, turfgrass selection to better compete with weed populations, applying physiological stresses, fertilizer management, moisture management, mowing, and irrigation with salt water. Cultural management of weed is important because it reduces dependence on synthetic pesticides. A healthy turfgrass stand has been reported to be the best defense against weed colonization, and can be accomplished by proper mowing, watering, and fertilization. Mowing height is the clearest and best-documented cultural factor and a lower mowing height is always associated with more weeds in the turfgrass. Split application of fertilizer at intervals throughout the growing period is recommended for warm season turfgrasses. The application of fertilizer during dormant periods or periods of low growth may encourage weed growth. Hand pulling and hoeing effectively control annual and biennial seedling weeds for small areas. Irrigation by saltwater has been one method used recently to effectively control grassy broadleaved and sedge weeds in salt-tolerant turfgrass species. Cultural weed management practices in turf might provide a first defense: however, relying only on cultural control measures may not be a good idea. An integrated approach of combining cultural practices and chemicals can complement each other and give flexibility to decision making. Research is needed on optimizing the choices of herbicide and/or cultural practices as part of an integrated management system for turfgrass.

  11. Nevada Test Site 2005 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    David B. Hudson, Cathy A. Wills

    2006-08-01

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site. These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2005 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports (U.S. Department of Energy, 2005; Grossman, 2005; Bechtel Nevada, 2006). Direct radiation monitoring data indicate that exposure levels around the RWMSs are at or below background levels. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. There is no detectable man-made radioactivity by gamma spectroscopy, and concentrations of americium and plutonium are only slightly above detection limits at the Area 3 RWMS. Measurements at the Area 5 RWMS show that radon flux from waste covers is no higher than natural radon flux from undisturbed soil in Area 5. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. Precipitation during 2005 totaled 219.1 millimeters (mm) (8.63 inches [in.]) at the Area 3 RWMS and 201.4 mm (7.93 in.) at the Area 5 RWMS. Soil-gas tritium monitoring continues to show slow subsurface migration consistent with previous results. Moisture from precipitation at Area 5 has percolated to the bottom of the bare-soil weighing lysimeter, but this same moisture has been removed from the vegetated weighing lysimeter by evapotranspiration. Vadose zone data from the operational waste pit covers show that precipitation from the fall of 2004 and the spring of 2005 infiltrated past the deepest sensors at 188 centimeters (6.2 feet) and remains in the pit cover

  12. The Applications of GIS in the Analysis of the Impacts of Human Activities on South Texas Watersheds

    Directory of Open Access Journals (Sweden)

    Chandra Richardson

    2011-06-01

    Full Text Available With water resource planning assuming greater importance in environmental protection efforts, analyzing the health of agricultural watersheds using Geographic Information Systems (GIS becomes essential for decision-makers in Southern Texas. Within the area, there exist numerous threats from conflicting land uses. These include the conversion of land formerly designated for agricultural purposes to other uses. Despite current efforts, anthropogenic factors are greatly contributing to the degradation of watersheds. Additionally, the activities of waste water facilities located in some of the counties, rising populations, and other socioeconomic variables are negatively impacting the quality of water in the agricultural watersheds. To map the location of these stressors spatially and the extent of their impacts across time, the paper adopts a mix scale method of temporal spatial analysis consisting of simple descriptive statistics. In terms of objectives, this research provides geo-spatial analysis of the effects of human activities on agricultural watersheds in Southern Texas and the factors fuelling the concerns under the purview of watershed management. The results point to growing ecosystem decline across time and a geographic cluster of counties experiencing environmental stress. Accordingly, the emergence of stressors such as rising population, increased use of fertilizer treatments on farm land, discharges of atmospheric pollutants and the large presence of municipal and industrial waste treatment facilities emitting pathogens and pesticides directly into the agricultural watersheds pose a growing threat to the quality of the watershed ecosystem.

  13. The applications of GIS in the analysis of the impacts of human activities on south Texas watersheds.

    Science.gov (United States)

    Merem, Edmund C; Yerramilli, Sudha; Twumasi, Yaw A; Wesley, Joan M; Robinson, Bennetta; Richardson, Chandra

    2011-06-01

    With water resource planning assuming greater importance in environmental protection efforts, analyzing the health of agricultural watersheds using Geographic Information Systems (GIS) becomes essential for decision-makers in Southern Texas. Within the area, there exist numerous threats from conflicting land uses. These include the conversion of land formerly designated for agricultural purposes to other uses. Despite current efforts, anthropogenic factors are greatly contributing to the degradation of watersheds. Additionally, the activities of waste water facilities located in some of the counties, rising populations, and other socioeconomic variables are negatively impacting the quality of water in the agricultural watersheds. To map the location of these stressors spatially and the extent of their impacts across time, the paper adopts a mix scale method of temporal spatial analysis consisting of simple descriptive statistics. In terms of objectives, this research provides geo-spatial analysis of the effects of human activities on agricultural watersheds in Southern Texas and the factors fuelling the concerns under the purview of watershed management. The results point to growing ecosystem decline across time and a geographic cluster of counties experiencing environmental stress. Accordingly, the emergence of stressors such as rising population, increased use of fertilizer treatments on farm land, discharges of atmospheric pollutants and the large presence of municipal and industrial waste treatment facilities emitting pathogens and pesticides directly into the agricultural watersheds pose a growing threat to the quality of the watershed ecosystem.

  14. Near-Channel Sediment Sources Now Dominate in Many Agricultural Landscapes: The Emergence of River-Network Models to Guide Watershed Management

    Science.gov (United States)

    Czuba, J. A.; Foufoula-Georgiou, E.; Gran, K. B.; Belmont, P.; Wilcock, P. R.

    2015-12-01

    Detailed sediment budgets for many agricultural watersheds are revealing a surprising story - that sediment is no longer primarily sourced from upland fields, but instead from near-channel sources. This is the case for the Minnesota River Basin (MRB) where an intensification and expansion of agricultural drainage combined with increased precipitation has (1) reduced surface runoff and erosion, (2) amplified streamflows, and (3) accelerated both near-channel sediment generation and sediment transport. Bluffs and streambanks in the MRB are now the dominant sources of sediment, but these features are not easily incorporated into traditional watershed-scale, sediment-transport models. Instead, we are advancing a network-based modeling framework that explicitly considers sediment sources, transport, and storage along a river network. We apply this framework to bed-material sediment transport in the Greater Blue Earth River Basin, the major sediment-generating subbasin of the MRB, where a recent sediment budget has quantified the locations and rates of erosion and deposition of major sediment sources and sinks (i.e., bluffs, streambanks/floodplains, agricultural fields, and ravines) over millennial and decadal timescales. With the river network as the basis of a simple model, inputs of sediment to the network are informed by the sediment budget and these inputs are tracked through the network using process-based time delays that incorporate uniform-flow hydraulics and at-capacity sediment transport. We explore how this sediment might move through the network and affect the variability of bed elevations under cases where the mechanisms of in-channel and floodplain storage are turned on and off. We will discuss timescales of movement of sediment through the system to better inform legacy effects and hysteresis, and also discuss targeted management actions that will most effectively reduce the detrimental effects of excess sediment.

  15. Study on the Land Use Structure and Soil Erosion Variation before and a fter the Small Watershed Comprehensive Management%小流域综合治理前后土地利用结构和土壤侵蚀强度变化研究

    Institute of Scientific and Technical Information of China (English)

    邝高明; 刘银迪; 郝名利; 王敬贵; 刘超群

    2014-01-01

    土地利用结构调整和减少土壤侵蚀面积、降低土壤侵蚀强度是小流域综合治理工程的主要效益,小流域综合治理前后土地利用和土壤侵蚀变化分析是评价工程实施效益的重要方面。以云贵鄂渝水土保持世行贷款/欧盟赠款项目重点监测小流域-盆古小流域为研究对象,基于治理前后的两期高分辨率遥感影像和eCogni-tion、Arcgis软件,对盆古小流域治理前后的土地利用和土壤侵蚀变化情况进行了分析研究。结果表明:2008~2011年盆古小流域旱地、水田等面积减少,有林地和梯田等面积增加;小流域轻度侵蚀在有林地中分布最多,而轻度以上侵蚀主要分布在旱地中;另外,小流域土壤侵蚀这一期间整体呈现由强转弱的趋势,表明小流域综合治理工程取得了明显成效。%Main benefits of the small watershed comprehensive management include the adjustment of the land use structure , reduction of the soil erosion areas and the reduction of soil erosion strength .The land use before&after the small watershed comprehensive management and the soil erosion variation analysis are the important aspects in the as -sessment of the project implementation benefits .Based on the high -resolution RS images took before and after the management with the software such as the eCognition , Arcgis,the analysis and study was conducted on the land use and soil erosion variation before and after the management of the Pengu Small Watershed , that is under the Key Moni-toring Small Watershed of the World Bank Loan /EU Grant Project of Yunnan ,Guizhou , Hubei and Chongqing Prov-inces .The results showed that from 2008 to 2011 the area of dry land and paddy land reduced while the areas of forest and terrace increased .Most of the slight erosion is located in the forest land , while the erosion level higher than slight erosion is mainly located in the dry land .In addition , the soil erosion of

  16. Nevada Test Site 2001 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    Y. E. Townsend

    2002-06-01

    Environmental monitoring data, subsidence monitoring data, and meteorology monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS) (refer to Figure 1). These monitoring data include radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota data. Although some of these media (radiation exposure, air, and groundwater) are reported in detail in other Bechtel Nevada (BN) reports (Annual Site Environmental Report [ASER], the National Emissions Standard for Hazardous Air Pollutants [NESHAP] report, and the Annual Groundwater Monitoring Report), they are also summarized in this report to provide an overall evaluation of RWMS performance and environmental compliance. Direct radiation monitoring data indicate that exposure at and around the RWMSs is not above background levels. Air monitoring data indicate that tritium concentrations are slightly above background levels. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS has not been affected by the facility. Meteorology data indicate that 2001 was an average rainfall year: rainfall totaled 150 mm (5.9 in) at the Area 3 RWMS and 120 mm (4.7 in) at the Area 5 RWMS. Vadose zone monitoring data indicate that 2001 rainfall infiltrated less than one meter (3 ft) before being returned to the atmosphere by evaporation. Soil-gas tritium monitoring data indicate slow subsurface migration, and tritium concentrations in biota were lower than in previous years. All 2001 monitoring data indicate that the Area 3 and Area 5 RWMSs are performing within expectations of the model and parameter assumptions for the facility performance assessments.

  17. An Integrated Approach to Identification, Assessment and Management of Watershed-Scale Risk for Sustainable Water Use Through Reuse and Recycling

    Science.gov (United States)

    Hunter, C. K.; Bolster, D.; Gironas, J. A.

    2014-12-01

    Water resources are essential to development, not only economically but also socially, politically and ecologically. With growing demand and potentially shrinking supply, water scarcity is one of the most pressing socio-ecological problems of the 21st century. Considering implications of global change and the complexity of interrelated systems, uncertain future conditions compound problems associated with water stress, requiring hydrologic models to re-examine traditional water resource planning and management. The Copiapó water basin, located in the Atacama Desert of northern Chile exhibits a complex resource management scenario. With annual average precipitation of only 28 mm, water intensive sectors such as export agriculture, extensive mining, and a growing population have depleted the aquifeŕs reserves to near critical levels. Being that global climate change models predict a decrease in already scarce precipitation, and that growing population and economies demand will likely increase, the real future situation might be even worse than that predicted. A viable option for alleviation of water stress, water reuse and recycling has evolved through technological innovation to feasibly meet hydraulic needs with reclaimed water. For the proper application of these methods for resource management, however, stakeholders must possess tools by which to quantify hydrologic risk, understand its factors of causation, and choose between competing management scenarios and technologies so as to optimize productivity. While previous investigations have addressed similar problems, they often overlook aspects of forecasting uncertainty, proposing solutions that while accurate under specific scenarios, lack robustness to withstand future variations. Using the WEAP (Water Evaluation and Planning) platform for hydrologic modeling, this study proposes a methodology, applicable to other stressed watersheds, to quantify inherent risk in water management positions, while considering

  18. The Achievement of a Decentralized Water Management Through Stakeholder Participation: An Example from the Drôme River Catchment Area in France (1981-2008)

    Science.gov (United States)

    Comby, Emeline; Le Lay, Yves-François; Piégay, Hervé

    2014-11-01

    Different water Acts (e.g., the European Water Framework Directive) and stakeholders involved in aquatic affairs have promoted integrated river basin management over recent decades. However, few studies have provided feedback on these policies. The aim of the current article is to fill this gap by exploring how local newspapers reflect the implementation of a broad public participation within a catchment of France known for its innovation with regard to this domain. The media coverage of a water management strategy in the Drôme watershed from 1981 to 2008 was investigated using a content analysis and a geographic information system. We sought to determine what public participation and decentralized decision-making can be in practice. The results showed that this policy was integrated because of its social perspective, the high number of involved stakeholders, the willingness to handle water issues, and the local scale suitable for participation. We emphasized the prominence of the watershed scale guaranteed by the local water authority. This area was also characterized by compromise, arrangements, and power dynamics on a fine scale. We examined the most politically engaged writings regarding water management, which topics of each group emphasized, and how the groups agreed and disagreed on issues based on their values and context. The temporal pattern of participation implementation was progressive but worked by fits and starts.

  19. Waste Management Policy In Tourism Area of Saensuk Municipality, Thailand

    Directory of Open Access Journals (Sweden)

    Pongsathon Kaewmanee

    2014-01-01

    Full Text Available Saensuk Municipality is a famous tourism city in Thailand, especially Bangsaen beach. In supporting the tourism activity, it has waste managing method by using new generation administrator and technologies. However, the waste problem happened in Saensuk Municipality is included the human resource ability, technical facility, and the amount of waste. By using the qualitative descriptive method and doing a series of interview to selected informants, the researcher studied and analyzed the problem, factors, and solutions of the issue. This study found that the nature of the beach and the visitor behavior is among the reason behind the large amount of waste daily in the site. Moreover, the regulation by the local government is sufficient to cover the issue if implemented fully. The study shows that the city had implemented the good governance idea in several instances, and giving the waste management to the private sector is one of the optionsto resolve the problem since the quality of the work could be improved. Keywords:waste management,public policy, tourism area, Thailand

  20. Locating farmer-based knowledge and vested interests in natural resource management: the interface of ethnopedology, land tenure and gender in soil erosion management in the Manupali watershed, Philippines.

    Science.gov (United States)

    Price, Lisa Leimar

    2007-09-05

    This paper examines local soil knowledge and management in the Manupali watershed in the Philippines. The study focuses on soil erosion and its control. Research methods used in the study include ethnosemantic elicitations on soils and focus group discussions. In addition, in-depth work was conducted with 48 farmers holding 154 parcels at different elevations/locations in the watershed. The on-parcel research consisted of farmer classifications of the soil, topography, and erosion status of their parcels. Soil samples were also taken and examined. Farming households were also examined with regard to erosion control activities conducted by age and sex. Erosion management was examined in relation to tenure of the parcel, which emerged as a salient aspect among focus group members and was evidenced by the actual control measures taken on farmed parcels. The results show that the major constraint in soil erosion management is not local knowledge as much as it is the tenure arrangements which allow "temporary owners" (those working rented or mortgaged parcels) to manage the parcels as they see fit. Most of these temporary owners are not willing to invest in erosion control measures other than water diversion ditches. Parcel owners, in contrast, do invest in longer term erosion control measures on the parcels they actually work. The findings of this paper illustrate that linking local knowledge and practices is often not sufficient in and of itself for addressing questions of sound environmental management. While local knowledge serves farmers generally well, there are some limitations. Importantly, the pressures in the contemporary world of markets and cash can undermine what they know as the right thing to do for the environment.

  1. Locating farmer-based knowledge and vested interests in natural resource management: the interface of ethnopedology, land tenure and gender in soil erosion management in the Manupali watershed, Philippines

    Directory of Open Access Journals (Sweden)

    Price Lisa

    2007-09-01

    Full Text Available Abstract This paper examines local soil knowledge and management in the Manupali watershed in the Philippines. The study focuses on soil erosion and its control. Research methods used in the study include ethnosemantic elicitations on soils and focus group discussions. In addition, in-depth work was conducted with 48 farmers holding 154 parcels at different elevations/locations in the watershed. The on-parcel research consisted of farmer classifications of the soil, topography, and erosion status of their parcels. Soil samples were also taken and examined. Farming households were also examined with regard to erosion control activities conducted by age and sex. Erosion management was examined in relation to tenure of the parcel, which emerged as a salient aspect among focus group members and was evidenced by the actual control measures taken on farmed parcels. The results show that the major constraint in soil erosion management is not local knowledge as much as it is the tenure arrangements which allow "temporary owners" (those working rented or mortgaged parcels to manage the parcels as they see fit. Most of these temporary owners are not willing to invest in erosion control measures other than water diversion ditches. Parcel owners, in contrast, do invest in longer term erosion control measures on the parcels they actually work. The findings of this paper illustrate that linking local knowledge and practices is often not sufficient in and of itself for addressing questions of sound environmental management. While local knowledge serves farmers generally well, there are some limitations. Importantly, the pressures in the contemporary world of markets and cash can undermine what they know as the right thing to do for the environment.

  2. Watershed Scale Impacts of Stormwater Green Infrastructure on Hydrology, Nitrogen Fluxes, and Combined Sewer Overflows in the Baltimore, MD and Washington, DC area

    Science.gov (United States)

    Despite the increasing use of urban stormwater green infrastructure (SGI), including detention ponds and rain gardens, few studies have quantified the cumulative effects of multiple SGI projects on hydrology and water quality at the watershed scale. To assess the effects of SGI, ...

  3. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed.

    Science.gov (United States)

    Altaf, Sadaff; Meraj, Gowhar; Romshoo, Shakil Ahmad

    2014-12-01

    Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area.

  4. Grays River Watershed and Biological Assessment, 2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher; Geist, David [Pacific Northwest National Laboratory

    2007-04-01

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  5. Grays River Watershed and Biological Assessment Final Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

    2008-02-04

    The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic

  6. Mine waste management legislation. Gold mining areas in Romania

    Science.gov (United States)

    Maftei, Raluca-Mihaela; Filipciuc, Constantina; Tudor, Elena

    2014-05-01

    Problems in the post-mining regions of Eastern Europe range from degraded land and landscapes, huge insecure dumps, surface cracks, soil pollution, lowering groundwater table, deforestation, and damaged cultural potentials to socio economic problems like unemployment or population decline. There is no common prescription for tackling the development of post-mining regions after mine closure nor is there a common definition of good practices or policy in this field. Key words : waste management, legislation, EU Directive, post mining Rosia Montana is a common oh 16 villages; one of them is also called Rosia Montana, a traditional mining Community, located in the Apuseni Mountains in the North-Western Romania. Beneath part of the village area lays one of the largest gold and silver deposits in Europe. In the Rosia Montana area mining had begun ever since the height of the Roman Empire. While the modern approach to mining demands careful remediation of environmental impacts, historically disused mines in this region have been abandoned, leaving widespread environmental damage. General legislative framework Strict regulations and procedures govern modern mining activity, including mitigation of all environmental impacts. Precious metals exploitation is put under GO no. 190/2000 re-published in 2004. The institutional framework was established and organized based on specific regulations, being represented by the following bodies: • The Ministry of Economy and Commerce (MEC), a public institution which develops the Government policy in the mining area, also provides the management of the public property in the mineral resources area; • The National Agency for the development and implementation of the mining Regions Reconstruction Programs (NAD), responsible with promotion of social mitigation measures and actions; • The Office for Industry Privatization, within the Education Ministry, responsible with privatization of companies under the CEM; • The National

  7. Nevada Test Site 2009 Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Radioactive Waste

    2010-06-23

    Environmental monitoring data were collected at and around the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) at the Nevada Test Site (NTS). These data are associated with radiation exposure, air, groundwater, meteorology, vadose zone, subsidence, and biota. This report summarizes the 2009 environmental data to provide an overall evaluation of RWMS performance and to support environmental compliance and performance assessment (PA) activities. Some of these data (e.g., radiation exposure, air, and groundwater) are presented in other reports. Direct radiation monitoring data indicate exposure levels at the RWMSs are within the range of background levels measured at the NTS. Air monitoring data at the Area 3 and Area 5 RWMSs indicate that tritium concentrations are slightly above background levels. All gamma spectroscopy results for air particulates collected at the Area 3 and Area 5 RWMS were below the minimum detectable concentrations, and concentrations of americium and plutonium are only slightly above detection limits. The measured levels of radionuclides in air particulates and moisture are below derived concentration guides for these radionuclides. Radon flux from waste covers is well below regulatory limits. Groundwater monitoring data indicate that the groundwater in the uppermost aquifer beneath the Area 5 RWMS is not impacted by facility operations. The 87.6 millimeters (mm) (3.45 inches [in.]) of precipitation at the Area 3 RWMS during 2009 is 43 percent below the average of 152.4 mm (6.00 in.), and the 62.7 mm (2.47 in.) of precipitation at the Area 5 RWMS during 2009 is 49 percent below the average of 122.5 mm (4.82 in.). Soil-gas tritium monitoring at borehole GCD-05 continues to show slow subsurface migration consistent with previous results. Water balance measurements indicate that evapotranspiration from the vegetated weighing lysimeter dries the soil and prevents downward percolation of precipitation more effectively than evaporation

  8. Water-quality and physical characteristics of streams in the Treyburn development area of Falls Lake watershed, North Carolina, 1994-98

    Science.gov (United States)

    Oblinger, C.J.; Cuffney, T.F.; Meador, M.R.; Garrett, R.G.

    2002-01-01

    Treyburn is a 5,400-acre planned, mixed-use development in the upper Neuse River Basin of North Carolina. The development, which began in 1986, is located in the Falls Lake watershed near three water-supply reservoirs-Lake Michie to the north, Falls Lake to the southeast, and Little River Reservoir to the west. A study began in 1988 to determine the water-quality characteristics of surface waters in and around the Treyburn development area. Data to characterize water quality at five different sites were collected from July 1994 through September 1998. Data from a previous study are available for some sites for the period 1988-93. The sites were selected to characterize water quality and qua